
Machine Minimization for Scheduling Jobs with Interval Constraints

Julia Chuzhoy∗ Sudipto Guha† Sanjeev Khanna‡ Joseph (Seffi) Naor§

Abstract

The problem of scheduling jobs with interval constraints is
a well-studied classical scheduling problem. The input to
the problem is a collection of n jobs where each job has a
set of intervals on which it can be scheduled. The goal is to
minimize the total number of machines needed to schedule
all jobs subject to these interval constraints. In the con-
tinuous version, the allowed intervals associated with a job
form a continuous time segment, described by a release date
and a deadline. In the discrete version of the problem, the
set of allowed intervals for a job is given explicitly. So far,
only an O(log n

log log n)-approximation is known for either ver-
sion of the problem, obtained by a randomized rounding of
a natural linear programming relaxation of the problem. In
fact, we show here that this analysis is tight for both ver-
sions of the problem by providing a matching lower bound
on the integrality gap of the linear program. Moreover, even
when all jobs can be scheduled on a single machine, the dis-
crete case has recently been shown to be Ω(log log n)-hard
to approximate.

In this paper we provide improved approximation factors
for the number of machines needed to schedule all jobs in
the continuous version of the problem. Our main result is
an O(1)-approximation algorithm when the optimal num-
ber of machines needed is bounded by a fixed constant.
Thus, our results separate the approximability of the con-
tinuous and the discrete cases of the problem. For general
instances, we strengthen the natural linear programming re-
laxation in a recursive manner by forbidding certain con-
figurations which cannot arise in an integral feasible so-

∗Computer Science Dept., Technion, Haifa, Israel. Email: cju-
lia@cs.technion.ac.il

†Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19103.
Email:sudipto@cis.upenn.edu

‡Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19103.
Email:sanjeev@cis.upenn.edu. Supported in part by an Alfred P.
Sloan Research Fellowship and by an NSF Career Award CCR-0093117.

§Computer Science Dept., Technion, Haifa, Israel. Email:
naor@cs.technion.ac.il. Research supported in part by US-Israel
BSF Grant 2002276 and by EU contract IST-1999-14084 (APPOL II).

lution. This yields an O(OPT)-approximation, where OPT
denotes the number of machines needed by an optimal so-
lution. Combined with earlier results, our work implies an

O(
√

log n
log log n)-approximation for any value of OPT.

1 Introduction

We consider the problem of scheduling a set of jobs with
specified time intervals during which they must be sched-
uled. Specifically, we are given a set J = {1, . . . , n} of
jobs, and for each job j ∈ J , there is a set I(j) of time
intervals on the time line, called job intervals. Scheduling
a job j means choosing one of its associated time intervals
from I(j). The goal is to schedule all the jobs on a mini-
mum number of machines, such that no two jobs assigned
to the same machine overlap in time. This means that the
maximum number of chosen job intervals at any point of
time must not exceed the number of machines.

There are two variations of the problem. In the discrete
version, the sets of job intervals I(j) are given explicitly.
In the continuous version, each job j has a release date rj ,
a deadline dj , and a processing time pj . The time interval
[rj , dj] is called the job window. The set of job intervals
I(j) is implied by these parameters, and it consists of all
the time intervals of length pj which are contained inside
the window [rj , dj]. Garey and Johnson [6] (see also [7])
show that for this case, deciding whether all the jobs can be
scheduled on a single machine is already NP-hard.

The currently best known approximation factor for the ma-
chine minimization problem is O(log n

log log n). This factor is
achieved through a linear programming relaxation of the
problem and then applying Chernoff bounds to analyze the
randomized rounding procedure [8]. The approximation
factor achieved by the randomized rounding in fact im-
proves as the value of the optimal solution increases. Let
OPT denote the number of machines used by an optimal so-
lution to the machine minimization problem. For example,
using the standard Chernoff bounds, it is easy to show that

1Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)

0272-5428/04 $20.00 © 2004 IEEE

the randomized rounding procedure guarantees a solution
of value O(OPT ·

√
(log n/ log log n)) machines whenever

OPT = Ω(
√

(log n/ log log n). Once OPT is Ω(log n), the
approximation factor further improves to O(1). Thus an in-
teresting question is whether the approximation factor can
be improved for small values of OPT. For example, does
there exist a constant approximation factor in the case OPT is
a constant? For the discrete version, the answer to this ques-
tion is negative. Recently, Chuzhoy and Naor [4] showed
that it is Ω(log log n)-hard to approximate the machine min-
imization problem, even if OPT = 1.

Results and Techniques: In this paper we consider the
continuous version of the machine minimization problem.
We show that the “natural” linear programming formula-
tion for the problem has an integrality gap of Θ(log n

log log n)
even when OPT = 1. However, in the continuous version,
the linear programming formulation can be strengthened by
adding constraints that explicitly forbid certain configura-
tions which can not arise in any integral solution. We de-
sign a rounding scheme that allows us to transform the re-
sulting fractional schedule into an integral one by using a
constant number of machines, for this case. We build on
this idea to design an approximation algorithm that achieves
an O(OPT)-approximation for any value of OPT. Extend-
ing the idea of forbidden configurations to instances where
an optimal schedule itself requires multiple machines, is
technically difficult since the configurations that need to
be forbidden have complex nested structure and we need
to discover them by recursively solving linear programs on
smaller instances. Specifically, the strengthened linear pro-
gramming solution for a given time interval is computed via
a dynamic program that uses a linear programming subrou-
tine to compose recursively computed solutions on smaller
time intervals. We believe this novel idea for strengthen-
ing a linear programming relaxation is of independent in-
terest. Combined with earlier results, our results imply

an O(
√

log n
log log n)-approximation algorithm for any value of

OPT.

Our results provide an interesting separation between the
approximability of discrete and continuous versions, espe-
cially as no such separation is known for the packing ver-
sion of the problem, commonly referred to as the through-
put maximization problem. In throughput maximization,
the goal is to schedule a maximum weight subset of the
jobs using only a fixed number of machines. Spieksma [9]
showed that the discrete version of throughput maximiza-
tion is MAX SNP-hard, but no such hardness result for
the continuous version is known. However, the best ap-
proximation results currently known for both discrete and
continuous versions are the same: both problems have a

2-approximation for weighted input [2, 1, 3], and e
e−1 ≈

1.582 for unweighted input [5].

Organization: In Section 2, we describe the strengthened
linear programming (LP) relaxation and the dynamic pro-
gram approach for recursively computing it. Section 3 pro-
vides the description of our rounding procedure, which,
given a fractional schedule for the strengthened LP on k
machines, produces an integral schedule on O(k2) ma-
chines. Finally, in Section 4 we establish an integrality gap
of Ω(log n

log log n) for the natural LP.

2 Linear Programming Formulations

In this section we define the linear programs, starting with
the “natural” time-indexed LP-formulation for the problem.
This formulation can be used for both discrete and continu-
ous inputs.

Let L denote the set of all the left endpoints of the job in-
tervals. For each job j ∈ J , for each job interval I ∈ I(j),
we define a variable x(I, j) indicating whether j is sched-
uled on interval I . Our constraints guarantee that every job
is scheduled and that the number of jobs scheduled at each
point of time does not exceed the number of available ma-
chines. The linear programming formulation (LP1) is as
follows.

min z

s.t. ∑
I∈I(j)

x(I, j) = 1 ∀j ∈ J (1)

∑
j∈J

∑
I∈I(j):t∈I

x(I, j) ≤ z ∀t ∈ L (2)

x(I, j) ≥ 0 ∀j ∈ J, I ∈ I(j)

The number of machines we need for the fractional schedule
is k = �z�.

Note: In the case of continuous input, the number of vari-
ables in (LP1) is unbounded. The same problem arises in
other linear programs presented in this section. In the Ap-
pendix we show how to resolve this issue, making the run-
ning time of our algorithms polynomial at the cost of losing
only a constant in the approximation factor.

Unfortunately, the integrality gap of (LP1) is Ω(log n
log log n), as

shown in Section 4, even for k = 1 and discrete input (with
polynomially many intervals). Our next step is strength-

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)

0272-5428/04 $20.00 © 2004 IEEE

ening (LP1) for the case where OPT = 1 by adding valid
inequalities.

I p

j’j j’

j

jdr dr

Figure 1. Interval I is a forbidden interval of
job j

Consider the case where the input is continuous and OPT =
1. Let j ∈ J be any job and let I ∈ I(j) be one of its
intervals. Suppose there is some other job j′ ∈ J , whose
time window is completely contained in I , i.e., [rj′ , dj′] ⊆
I . Since the optimal solution can use only one machine
and all the jobs are scheduled, job j cannot be scheduled on
interval I in the optimal solution. We call such an interval
I a forbidden interval of job j (see Figure 1). All the other
job intervals of job j are called allowed intervals.

In the linear program, we can either set apriori the values
x(I, j), where I is a forbidden interval of job j, to 0, or,
alternatively, add the following set of valid inequalities:

x(I, j) +
∑

I′∈I(j′): I′⊆I

x(I ′, j′) ≤ 1

∀j, j′ ∈ J,∀I ∈ I(j) (3)

Note that if I is a forbidden interval of job j, then for some
job j′,

∑
I′∈I(j′): I′⊆I x(I ′, j′) = 1, and thus the value of

x(I, j) is going to be 0 in the LP-solution.

We now turn our attention to the scenario where the optimal
solution uses multiple machines. Obviously, Inequality (3)
is not valid anymore. Indeed, suppose interval I is a forbid-
den interval of some job j, I ∈ I(j), and let j′ be some job
whose window is contained in I . Suppose now the optimal
solution uses two machines. Then, job j can be scheduled
on interval I on one machine and job j′ can be scheduled
inside its window on the other machine, thus (3) does not
hold anymore. Now let T be any time interval containing
the window of job j′ ∈ J . We know that we need at least
one machine to accommodate jobs whose windows are con-
tained in T . Therefore, we can schedule at most one job on
an interval that contains T . So for the case of two machines,
we can add the corresponding inequality for every interval
T that contains some job window. This idea extends to ar-
bitrary number of machines.

For each time interval T (not necessarily belonging to any
job), we define a function m(T) which is, intuitively, a
lower bound on the number of machines needed to accom-

modate all the jobs whose window is contained in T . We
compute the value of m(T) recursively by the means of dy-
namic programming, going from smallest to largest inter-
vals.

For intervals T of length 0, set m(T) = 0. Given a time
interval T , let J(T) be the set of jobs whose time window
is completely contained in T . The value of m(T) is defined
to be �z�, where z is the optimal solution to linear program
LP3(T), which is defined as follows:

min z

s.t. ∑
I∈I(j)

x(I, j) = 1 ∀j ∈ J(T) (4)

∑
j∈J(T)

∑
I∈I(j):t∈I

x(I, j) ≤ z ∀t ∈ T (5)

∑
j∈J(T)

∑
I∈I(j):T ′⊆I

x(I, j) ≤ z − m(T ′)

∀T ′ ⊂ T (6)

x(I, j) ≥ 0
∀j ∈ J(T), I ∈ I(j)

The first two sets of constraints are similar to those of (LP1),
except they are applied to the time interval T and subset
J(T) of jobs. The third set of constraints models Con-
straint (3) for the case of multiple machines. Suppose we
are given some interval T ′ ⊂ T . As T ′ is smaller than T ,
we know the value of m(T ′) from the dynamic program-
ming table, and this value is a lower bound on the number of
machines needed to accommodate jobs whose windows are
contained in T ′. Therefore, we have at most z−m(T ′) ma-
chines available for scheduling jobs on intervals that contain
T ′. The third set of constraints ensures that the total num-
ber of jobs scheduled on intervals which contain T ′ does
not exceed z − m(T ′).

Note that Constraints (5) can be omitted, since they are a
special case of Constraints (6), for intervals T ′ of length 0.

3 The Rounding Procedure

In this section we show that, given a fractional solution to
(LP3(T)) which uses k = m(T) machines, we can find an
integral solution using at most O(k2) machines. The round-
ing will proceed iteratively: at each step we will identify
a subset of jobs that can be scheduled on O(k) machines,
such that the remaining jobs will have a feasible fractional
solution on at most k − 1 machines. Thus, all jobs will get
scheduled on O(k2) machines.

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)

0272-5428/04 $20.00 © 2004 IEEE

Suppose we are given a solution to the linear program
(LP3(T)) for some time interval T and let T be some col-
lection of disjoint sub-intervals of T , such that for each
T ′ ∈ T , m(T ′) < m(T). We partition the set J(T) of
jobs into two subsets, J ′ and J ′′, where j ∈ J ′′ iff its win-
dow is completely contained in one of the intervals of T
and j ∈ J ′ otherwise. We say that T is good with respect
to the LP-solution if for each job j ∈ J ′, and each interval
I ∈ I(j) where x(I, j) > 0, I overlaps with at most two
intervals belonging to T .

We will show that if the optimal solution cost of (LP3(T))
is z and T is good with respect to the solution, then
we can schedule the jobs J ′ on at most O(k) machines
where k = �z�. Before we formalize this argument, let us
define PROCEDURE PARTITION, which receives as input an
interval T , a set J(T) of jobs, a solution to (LP3(T)), and
it produces a collection T of sub-intervals of T which is
good with respect to the LP-solution.

PROCEDURE PARTITION

Input: Time interval T , set of jobs J(T) whose win-
dows are contained in T , and a solution to (LP3(T)).
Start with T = ∅ and set t to be the left endpoint of T .
While there are jobs j ∈ J(T), such that the right end-
point of some interval I ∈ I(j) lies to the right of t and
x(I, j) > 0, do:

1. If no job j exists such that one of its intervals I ∈
I(j) contains t and x(I, j) > 0, then move t to the
right till the above condition holds.

2. Among all the job intervals I that contain time point
t, such that for some j ∈ J , I ∈ I(j) and x(I, j) >
0, choose the interval with rightmost right endpoint
and denote this endpoint by t′.

3. Add time interval [t, t′] to T and set t := t′.

Let J ′′ ⊂ J(T) denote the set of jobs whose windows
are contained in one of the intervals of T , and let J ′ =
J(T) \ J ′′.

Claim 1 Given time interval T , let T be the collection of
sub-intervals of T produced by PROCEDURE PARTITION.
Then the intervals in T are disjoint, and for each T ′ ∈ T ,
m(T ′) < m(T).

Proof: The disjointness of the intervals follows easily by
the definition of PROCEDURE PARTITION. Suppose now
that for some T ′ ∈ T , m(T ′) = m(T). Then there is some
job j ∈ J(T) and its interval I ∈ I(j) which defined the
interval T ′, so I contains T ′ and x(I, j) > 0. But this

would violate Constraint (6) of (LP3(T)).

Claim 2 Let T be the output of PROCEDURE PARTITION

applied to interval T and subset J(T) of jobs. Then, T is
good with respect to the LP-solution.

Proof: Assume for contradiction that there is some job in-
terval I ∈ I(j), j ∈ J ′, which overlaps with three intervals
T1, T2, T3 ∈ T , and x(I, j) > 0. Assume w.l.o.g. that T2

lies to the right of T1 and T3 lies to the right of T2. Inter-
val I contains the left endpoint of T2, but its right endpoint
lies strictly to the right to that of T2. This is impossible, be-
cause then T2 would have been defined differently by PRO-
CEDURE PARTITION.

Theorem 1 Suppose we are given a feasible solution to
(LP3(T)) on k = m(T) machines, a collection T of disjoint
sub-intervals of T , and a corresponding subset J ′ ⊂ J(T)
of jobs, and assume that T is good with respect to the LP-
solution. Then we can schedule all the jobs in J ′ on αk
machines in polynomial time, for some constant α.
Before proving the above theorem, we show that it leads to
an O(OPT)-approximation.

Theorem 2 Suppose we are given a solution to (LP3(T))
on job set J(T) on k machines. Then we can schedule all
the jobs on αk2 = αm2(T) machines for some constant α.

Proof: The proof is by induction on m(T). The base case is
where m(T) = 1. We perform PROCEDURE PARTITION on
the input and obtain subsets J ′, J ′′ of jobs and a collection
of time intervals T . We claim that J ′′ = ∅ and thus J ′ = J .
Assume otherwise. Then there is some job j ∈ J ′′, such
that for some interval T ′ ∈ T , the window of j is contained
in T ′. Then m(T ′) = 1. But there must be some interval I
of some job j′, I ∈ I(j′), which defined T ′, and such that
x(I, j′) > 0. But then Constraint (6) of (LP3(T)) does not
hold for T ′. Since J = J ′, and T is good with respect to
the LP solution, by Theorem 1, we can schedule all the jobs
on α machines.

Now consider the case where m(T) > 1. After perform-
ing PROCEDURE PARTITION, we obtain subsets J ′, J ′′ of
jobs and collection T of intervals. As T is good with re-
spect to the LP solution, by Theorem 1, we can sched-
ule all the jobs in J ′ on αm(T) machines. We sched-
ule the jobs in J ′′ separately, as follows. For each inter-
val T ′ ∈ T , we solve the problem recursively for T ′ and
the jobs in J ′′ whose windows are contained in T ′ (recall
that m(T ′) < m(T))). By the inductive hypothesis, for
each such sub-problem, we obtain a schedule of all the jobs
whose window is contained in T ′ on at most α(m(T)− 1)2

machines. As the intervals in T are disjoint, we can sched-
ule all the jobs in J ′′ on α(m(T) − 1)2 machines. In total
we use αm(T) + α(m(T)− 1)2 ≤ α(m(T))2 machines.

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)

0272-5428/04 $20.00 © 2004 IEEE

Corollary 1 There is an O(
√

log n/ log log n)-
approximation algorithm for machine scheduling.

Proof: Let z be the value of the optimal fractional solution.
If �z� = k ≤

√
log n/ log log n, then following Theorem 2,

we have an O(k)-approximation. If k ≥
√

log n/ log log n,
then a randomized rounding of the fractional solution can
be applied. The expected number of machines used by the
randomized rounding procedure is O(k·

√
log n/ log log n),

yielding the desired result.

3.1 Proof of Theorem 1

Suppose we have a feasible solution to (LP3(T)) that uses
k = �z� machines, a collection T of disjoint sub-intervals
of T , a subset J ′ ⊂ J(T) of jobs, and assume also that
T is good with respect to the LP-solution. We show how
to schedule all the jobs in J ′ on αk machines, for some
constant α. Recall that J ′ consists only of such jobs whose
window is not contained in any one of the intervals T ′ ∈ T .

We divide all the jobs into a number of types and schedule
each type separately on O(k) machines. We first describe
the job types and give some intuition as to how the jobs
corresponding to these types are scheduled. We provide a
formal description of the algorithms later.

Given a time interval I and a time point t, we say that I
crosses t, if the left endpoint of I lies strictly to the left of
t and the right endpoint of I lies strictly to the right of t.
Recall that k = m(T).

Definition: The job types are defined as follows:

Type 1: Denote by IC the intervals which cross the
boundaries of the intervals in T . A job j is defined as a
job of type 1 if

∑
I∈I(j)

⋂ IC

x(I, j) ≥ 0.2.

The idea of scheduling jobs of this type on O(k) machines
is to find a matching between the jobs and the boundaries of
the intervals in T . The LP-solution gives a fractional match-
ing where for each job of type 1 at least a fraction 0.2 of the
job is scheduled. Therefore, the integral matching gives a
schedule of jobs of type 1, where on each boundary of an
interval in T , at most 5k jobs are scheduled. As the inter-
vals of the jobs that have non-zero values in the LP-solution
overlap with at most two intervals in T , the maximum num-
ber of jobs running at any time t is at most 10k.

Type 2: An interval I belonging to job j is called large, if
it is completely contained in an interval T ′ ∈ T whose size
is at most 2pj . Let IL denote the set of the large intervals.
Jobs of type 2 are all the jobs j which are not of type 1, and
for which the following property holds:

∑
I∈I(j)

⋂ IL

x(I, j) ≥ 0.2.

In order to schedule jobs of type 2, observe that in the LP-
solution, for each interval T ∈ T , the sum of x(I, j) where
I is a large sub-interval of T and j ∈ J ′, is at most 2k.
We perform a matching between jobs of type 2 and the in-
tervals in T to determine the schedule of these jobs on 10k
machines.

Type 3: For each job j, let T d(j) denote the interval in T
that contains its deadline dj . Job j is of type 3, if it does not
belong to any of the previous types, and

∑
I∈I(j),I⊆T d(j)

x(I, j) ≥ 0.2.

Each job j of type 3 is going to be scheduled inside the
interval T d(j). Consider some interval T ′ ∈ T and the
subset of type 3 jobs j whose deadline belongs to T ′. As
the release dates of these jobs are outside T ′, this can be
viewed as scheduling jobs with identical release dates. We
solve this problem approximately and use the LP-solution
to bound the number of machines we use.

Type 4: For each job j, let T r(j) denote the interval in T
that contains its release time rj . Job j is of type 4, if it does
not belong to any of the previous types, and

∑
I∈I(j),I⊆T r(j)

x(I, j) ≥ 0.2.

The scheduling is performed similarly to the scheduling of
the jobs belonging to type 3.

Type 5: This type contains all the other jobs. Note that for
each job j of this type, the sum of fractions x(I, j) for inter-
vals I , such that I is not large, does not cross any boundary
of intervals in T , and the interval T ′ ∈ T which contains I
does not contain the release date or the deadline of j, is at
least 0.2. The LP-solution ensures that all the jobs of this
type can be (fractionally) scheduled inside intervals T ∈ T
(i.e., without crossing their boundaries), even if we shrink
the job windows so that their release dates and deadlines
coincide with boundaries of intervals in T , using 5k ma-
chines. This allows us to schedule all the jobs of type 5 on
O(k) machines.

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)

0272-5428/04 $20.00 © 2004 IEEE

3.1.1 The Schedule

In the final schedule, jobs of each type are scheduled sepa-
rately. We now provide a formal description of the sched-
ules of each type, and prove that O(k) machines suffice for
scheduling each type.

Type 1: Recall that job j belongs to type 1 iff

∑
I∈I(j)

⋂ IC

x(I, j) ≥ 0.2

where IC is the set of intervals crossing an endpoint of an
interval in T . We claim that we can schedule all the jobs of
type 1 on at most 10k machines.

Construct a directed bipartite graph G = (V,U,E), where
V is the set of jobs of type 1 and U is the set of boundaries
of the intervals of T . There is an edge (j, b) of capacity
1 from j ∈ V to b ∈ U if and only if there is an interval
I ∈ I(j) that crosses the boundary b and x(I, j) > 0. Add
a source vertex s and an edge (s, j) of capacity 1 for each
j ∈ V . Add a sink vertex t and an edge (b, t) of capacity 5k
for each b ∈ U .

The solution to the linear program defines a feasible flow in
this graph of value at least |V |, as follows. For each j ∈ V
and b ∈ U , let I(j, b) be the subset of intervals I(j)

⋂ IC

that cross a boundary b. Set the flow value on the edge (j, b)
to be: ∑

I∈I(j,b)

x(I, j)

∑
I∈I(j)

⋂ IC

x(I, j)
.

Note that by the definition of type 1, the value of the flow
on edge (j, b) is at most

5 ·
∑

I∈I(j,b)

x(I, j),

and the total amount of flow leaving j is exactly 1. Since
the total fraction of intervals scheduled at each time point is
at most k, and the flow on edge (j, b) is at most

5 ·
∑

I∈I(j,b)

x(I, j)

the total flow entering each b ∈ U is at most 5k.

Therefore, there is an integral flow of value |V |. This flow
defines a schedule of jobs of type 1 as follows: for each
such job j, there is a unique boundary b, such that the flow
on edge (j, b) is 1. By the construction of the network, there

is an interval I ∈ I(j, b) ⊆ I(j), such that x(I, j) > 0. We
say that j is scheduled on boundary b.

The number of machines used in such a schedule is at most
10k. Since each job interval I ∈ I(j) with x(I, j) > 0
overlaps with at most two intervals in T , at any point t
inside some interval T ′ ∈ T , the jobs that run at time t
are either scheduled on the left or on the right boundary of
T ′. Therefore, the number number of jobs scheduled at any
such point is at most 10k.

Type 2: Recall that type 2 jobs are all the jobs j which are
not of type 1, and for which the following property holds:

∑
I∈I(j)

⋂ IL

x(I, j) ≥ 0.2.

Note that in the fractional solution, for each interval T ′ ∈
T , the sum of x(I, j) where I is a large sub-interval T ′ is at
most 2k.

We show how to schedule all the jobs of type 2 on 10k ma-
chines. This is done in a similar fashion to type 1. We build
a directed bipartite graph G = (V, T , E), where V is the set
of all the jobs of type 2. There is an edge (j, T ′) of capacity
1 if and only if job j has a large interval in T ′ ∈ T . Add
a source vertex s and an edge (s, j) of capacity 1 for each
j ∈ V . Add a sink vertex t and an edge (T ′, t) of capacity
10k for each T ′ ∈ T . The value of the maximum flow in
this network is exactly |V |. A fractional flow of this value
is obtained as follows: for each j ∈ V , T ′ ∈ T , set the flow
on edge (j, T ′) to be

∑
I∈I(j)

⋂ IL,I⊆T ′
x(I, j)

∑
I∈I(j)

⋂ IL

x(I, j)
.

Note that by the definition of type 2, this value is at most

5 ·
∑

I∈I(j)
⋂

IL,I⊆T ′
x(I, j)

and the total flow leaving j is 1. Since in the solution to the
linear program, for each interval T ′ ∈ T , the total fraction
of all the large intervals inside T ′ is at most 2k, the value of
flow entering T ′ is at most 10k.

Therefore, there is an integral flow of value |V |. For each
job j of type 2, there is exactly one T ′ ∈ T such that there
is a flow on edge (j, T ′). We schedule j in this interval.
In each interval T ′, we thus schedule at most 10k jobs (note
that each such job has at least one interval in T ′). We sched-
ule these 10k jobs on 10k different machines. Observe that

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)

0272-5428/04 $20.00 © 2004 IEEE

the intervals belonging to T ′, T ′′ ∈ T are disjoint, and thus
we need 10k machines in all.

Type 3: Recall that a job j is of type 3, if it does not be-
long to any of the previous types, and

∑
I∈I(j),I⊆T d(j)

x(I, j) ≥ 0.2

where T d(j) denotes the interval in T that contains dj .

Consider some T ′ ∈ T that starts at time ST ′ and finishes
at time FT ′ . Let Jd(T ′) be the set of all jobs of type 3
whose deadline is inside T ′. We show how to schedule all
these jobs on 10k machines. Once again since the intervals
T ′ ∈ T are disjoint, we can use the same 10k machines for
all jobs of type 3.

For each job j, define tj = dj − pj . We build a new frac-
tional schedule x′ of jobs in Jd(T ′) in T ′. For each job
j ∈ Jd(T ′), for each I ∈ I(j), I ⊆ T ′, define

x′(I, j) =
x(I, j)∑

I′∈I(j),I′⊆T ′
x(I ′, j)

.

Note that by the definition of type 3 jobs, x′(I, j) ≤
5x(I, j). This new fractional solution has the following
properties:

• The sum of fractions of intervals that cross any time
point t is at most 5k.

• Each j ∈ Jd(T ′) is scheduled completely at sub-
intervals of T ′ that start before or at tj .

We now show a greedy schedule of job set Jd(T ′) on 10k
machines, in interval T ′. We proceed from left to right on
all the 10k machines simultaneously, using the following
greedy rule: whenever any machine becomes idle, schedule
any available job j ∈ Jd(T ′) that has minimal tj .

We claim that all the jobs in Jd(T ′) are scheduled in the
end of this procedure. Suppose this is not the case, and let
j be the job with minimal tj that the procedure does not
schedule. Let B be the set of all the jobs that are scheduled
by the greedy procedure at intervals that start before or at
time tj . By the definition of greedy algorithm,

• All the 10k machines are busy during the time interval
[ST ′ , tj].

• The set of jobs that are scheduled at intervals that start
before or at time tj is exactly B (because j is the first
job that we were unable to schedule).

Let Z5k denote the sum of lengths of 5k longest jobs from
B. Then ∑

j′∈B

pj′ > Z5k + 5k(tj − ST ′).

We show, using the fractional solution, that this is not true,
thus getting a contradiction.

We now bound ∑
j′∈B

pj′

using the new fractional solution. As already mentioned,
all the jobs in B must be completely scheduled at intervals
starting before or at time tj in the fractional solution. Given
an interval I ∈ I(j′), the volume of the interval is defined to
be x′(I, j′)pj′ . The sum of lengths of jobs in B equals ex-
actly the total volume of their intervals, which is at most the
total volume of intervals belonging to jobs from B that fin-
ish before time tj plus the total volume of intervals crossing
the time point tj . The former is bounded by 5k(tj − ST ′),
and the latter is at most Z5k. Therefore,

∑
j′∈B

pj′ ≤ Z5k + 5k(tj − ST ′)

which is a contradiction.

Thus, all the jobs in Jd(T ′) are scheduled by the greedy
procedure inside T ′ on 10k machines.

Type 4: This type is defined exactly like type 3, only with
respect to the release dates of jobs. As in type 3, all jobs of
this type can be scheduled on 10k machines.

Type 5: All the other jobs. Let G be the set of all the
intervals I ∈ I(j), j ∈ J , such that I does not cross bound-
aries of any interval in T , and if I ⊆ T ′ ∈ T , then T ′ does
not contain the release date or the deadline of j and further
length of T ′ is more than twice the length of I . Note that
each job j of type 5, in the fractional solution, has

∑
I∈I(j)

⋂
G

x(I, j) ≥ 0.2.

Furthermore, if I ∈ I(j) and I ∈ G, then job j can be
scheduled anywhere inside the interval T ′ ∈ T that contains
I .

We divide the jobs of this type into size classes. Ji contains
all jobs j of type 5 such that 2i−1 < pj ≤ 2i. For each
interval T ′ and for each i, let X(T ′, i) be the total fraction
of intervals of size (2i−1, 2i], that belong to set G and that
are contained in T ′.

We are going to schedule at most �5X(T ′, i)� jobs from Ji

inside T ′.

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)

0272-5428/04 $20.00 © 2004 IEEE

Claim 3 Each interval T ′ can accommodate, on 22k ma-
chines, �5X(T ′, i)� jobs of size 2i, simultaneously for all
i.

Proof: In the solution to the linear program, the total vol-
ume of intervals scheduled in T ′ is at least

∑
i X(T ′, i) ·

2i−1. Therefore, the length of interval T ′ is at least
1
k

∑
i X(T ′, i) · 2i−1. Interval T ′ on 10k machines has

enough space to accommodate �5X(T ′, i)� jobs of size 2i

simultaneously for all i (we allow here to break a job and
schedule parts of it on different machines). In order to ac-
commodate in this fashion �5X(T ′, i)� jobs for each i, we
need one additional machine. (Note that X(T ′, i) > 0 only
for such job sizes that are at most half the length of the inter-
val). Finally, in order to schedule jobs that are broken, we
need additional 10k+1 machines. In total, we can schedule
all these jobs on 20k + 2 machines inside the interval T ′.

All we have to decide now is for each job size, which job
is scheduled in which block. Consider a set of jobs Ji. We
want to assign all the jobs in Ji to blocks, such that:

• Job j can only be assigned to a block that is completely
contained in j’s window.

• At most �5X(T ′, i)� jobs are assigned to each each
interval T ′ ∈ T .

Note that the solution to the linear program implies a fea-
sible fractional solution to this problem: for each j, and T ′

such that T ′ is contained in j’s window, the fraction of j
assigned to T ′ is 5 times the total fraction of intervals be-
longing to j inside block T ′ in the fractional solution. It is
easy to see that an integral solution to the problem above
can be obtained by the earliest deadline greedy assignment
of jobs to blocks.

Finally, each job that is assigned to an interval T ′ can be
scheduled anywhere inside the interval. Therefore, we can
use the schedule from Claim 3 to accommodate all the jobs.

4 Integrality Gap

We show in this section that the integrality gap of the
“natural” linear program (LP1) presented in Section 2 is
Ω(log n

log log n). In fact, the proof of the integrality gap holds
for discrete input as well. The set of jobs J is the union of
N subsets J1, . . . , JN , N to be specified later.

For each i, 1 ≤ i ≤ N , for each j ∈ Ji, the process-
ing time is pj = (2N)i−1, and the window size is ex-
actly N times the processing time, i.e., dj − rj = Npj .

For the sake of convenience, we divide the time window
of job j into N non-overlapping intervals of size pj , de-
noted by I1(j), . . . , IN (j). Note that for all r, 1 ≤ r ≤ N ,
Ir(j) ∈ I(j). We refer to these intervals as special job
intervals.

The job subsets Ji are defined recursively. The set JN

consists of only a single job whose processing time is
(2N)N−1, its release date is 0, and its deadline is N ·
(2N)N−1.

In order to define job set Ji, for 1 ≤ i < N , consider job
j ∈ Ji+1, and one of its special intervals Ir(j), 1 ≤ r ≤ N .
The size of the interval is pj = (2N)i. There are two jobs
j′, j′′ ∈ Ji that correspond to this interval. The release
date of j′ is at the beginning of interval Ir(j) and its dead-
line is in the middle of Ir(j). The release date of j′′ is in
the middle of Ir(j), and its deadline is at the end of Ir(j).
Therefore, the window sizes of both jobs are N · (2N)i−1.
Their processing times are (2N)i−1.

The fractional solution to the scheduling problem uses a
single machine, and it is defined as follows. For each job
j ∈ J , each one of its special intervals receives a fraction
1
N . Since each job has N special intervals, all the jobs are
scheduled. Observe that special intervals of different jobs
can overlap only if they belong to different subsets Ji, Ji′ ,
i = i′. As the number of subsets is N , this is a feasible
fractional schedule on a single machine.

It is easy to see that the construction has the following use-
ful property. For each job j ∈ Ji, for 1 < i ≤ N , for any
interval I ∈ I(j) in which job j is scheduled, there is a
job j′ ∈ Ji−1 whose time window is completely contained
in I . This property guarantees that any integral solution
uses at least N machines. Finally, note that the input size is
n = O((2N)N), and therefore the integrality gap is at least
N = Ω(log n

log log n).

We remark that the above construction can be used to prove
the same lower bound on the integrality gap in the case
of discrete input. For each job j ∈ J , let the interval
set I(j) contain only the special intervals, i.e., I(j) =
{I1(j), . . . , Ir(j)}.

Acknowledgements

We thank the anonymous referees whose valuable com-
ments have helped improve our presentation. In particular,
we would like to thank one of the referees for suggesting a
more efficient and elegant proof of Theorem 3.

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)

0272-5428/04 $20.00 © 2004 IEEE

References

[1] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and
B. Schieber, A unified approach to approximating re-
source allocation and scheduling. Journal of the ACM,
48:1069-1090, 2001.

[2] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Ap-
proximating the throughput of multiple machines in
real-time scheduling. Proceedings of the 31st Annual
ACM Symposium on Theory of Computing, pp. 622–
631, 1999.

[3] P. Berman and B. DasGupta. Improvements in
throughout maximization for real-time scheduling.
Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing, pp. 680–68, 2000.

[4] J. Chuzhoy and J. Naor. New hardness results for con-
gestion minimization and machine scheduling. Pro-
ceedings of the 36th Annual ACM Symposium on The-
ory of Computing, pp. 28–34, 2004.

[5] J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Approxima-
tion algorithms for the job interval selection problem
and related scheduling problems. Proceedings of the
42nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 348–356, 2001.

[6] M. R. Garey and D. S. Johnson. Two processor
scheduling with start times and deadlines, SIAM Jour-
nal on Computing, 6:416–426, 1977.

[7] M. R. Garey and D. S. Johnson. Computers
and Intractability: a Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[8] P. Raghavan and C. D. Thompson. Randomized
rounding: A technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7:365–374,
1987.

[9] F.C.R. Spieksma. On the approximability of an in-
terval scheduling problem. Journal of Scheduling,
2:215–227, 1999.

A Implementing the Algorithms Efficiently

We now focus on efficiently computing an optimal solution
to linear program (LP3(T)). In fact we will modify the orig-
inal problem instance so that the size of the linear program
(and of the dynamic programming table used for its solu-
tion) becomes polynomial, at the cost of losing a constant
factor in its solution value.

Theorem 3 Given an instance of (LP3(T)), we can con-
struct a modified instance in which the total number of job
intervals is polynomially bounded, and the number of ma-
chines in an optimal solution to the new instance, OPT′, is
at most 3 times the number of machines used in an optimal
solution, OPT, to the original instance of (LP3(T)).

Proof: We will prove the above in two steps. In the first step
we will identify a set of jobs D such that all of them can be
scheduled on a single machine. Simultaneously, we will
identify a set of time points P , such that every remaining
job in J \ D, for any feasible schedule, must be scheduled
at an interval which contains at least one point of P . In
the second step we will show that any feasible solution to
the original instance can transformed to a feasible solution
of a modified instance with a factor 2 blowup. Further, all
feasible solutions of the new instance will be feasible for
the original instance as well. Our original proof along the
lines of [2] had |P | = Θ(n2). The following elegant proof
of the first step, suggested by an anonymous referee, gives
|P | = Θ(n).

In the first step, we run a greedy algorithm, that schedules
some of the jobs on one machine. We start at time point
t = 0, and use the following greedy rule: whenever the
machine becomes idle, schedule a job that is going to finish
first among all the available jobs. Let D ⊆ J denote a
subset of jobs scheduled by this algorithm.

Let P be the set of time points containing the endpoints of
all the intervals on which jobs in D are scheduled and the
release dates and deadlines of all the jobs in J \ D. Notice
that for each job j ∈ J\D, for each of its intervals I ∈ I(j),
there is at least one time point t ∈ P that belongs to I
(otherwise the greedy algorithm would have scheduled j on
interval I).

For each job j ∈ J \ D, we redefine the set of intervals
belonging to j as follows: the left endpoint of the interval
becomes the nearest point in P that lies to the left of the

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)

0272-5428/04 $20.00 © 2004 IEEE

original interval and the right endpoint of the interval be-
comes the nearest point in P that lies to the right of the
original interval. Thus, the number of intervals belonging
to j becomes polynomial. As a result, if there was a fea-
sible solution with X jobs being scheduled at any point of
time for the original instance of (LP3(T)), the total num-
ber of jobs from J \ D scheduled at a time point (after the
intervals grow) can be at most 2X .

Putting everything together, 2OPT + 1 machines suffice to
give us a schedule for the new instance.

We can solve (LP3(T)) on the new instance in polynomial
time. Note that in the dynamic programming procedure, we
only need to compute the values m(T ′) of time intervals
T ′ whose endpoints are in P . The values m(T ′) are defined
with respect to the new instance and for time interval T con-
taining all the release dates and deadlines, m(T) ≤ 3OPT
holds. This LP-solution implies a feasible fractional LP
solution to the original instance, where all the intervals
I ∈ I(j) are replaced with their original counterparts, and
thus the number of such intervals for which x(I, j) > 0 is
polynomial. We now perform our LP-rounding procedure
on this instance. The only subtle point to notice is that in our
recursive procedure we will be using solutions of (LP3) for
different intervals T ′ produced by PROCEDURE PARTITION.
However, in our dynamic programming table we only have
solutions of (LP3) for those intervals T ′ (and corresponding
job sets J(T ′)) whose endpoints belong to P , while the in-
tervals produced by PROCEDURE PARTITION might not be
of this type. However, since the release dates and the dead-
lines of all the jobs belong to P , we can use the solution
of (LP3) for the largest sub-interval of T ′ whose endpoints
belong to P , and this solution is a valid solution of (LP3)
for T ′.

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04)

0272-5428/04 $20.00 © 2004 IEEE

