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Abstract

In this paper we show a reduction from the Unique Games problem to the problem of approximating
MAX-CUT to within a factor ofαGW + ε, for all ε > 0; hereαGW ≈ .878567 denotes the approxima-
tion ratio achieved by the Goemans-Williamson algorithm [26]. This implies that if the Unique Games
Conjecture of Khot [37] holds then the Goemans-Williamson approximation algorithm is optimal. Our
result indicates that the geometric nature of the Goemans-Williamson algorithm might be intrinsic to the
MAX-CUT problem.

Our reduction relies on a theorem we call Majority Is Stablest. This was introduced as a conjecture
in the original version of this paper, and was subsequently confirmed in [45]. A stronger version of
this conjecture called Plurality Is Stablest is still open, although [45] contains a proof of an asymptotic
version of it.

Our techniques extend to several other two-variable constraint satisfaction problems. In particular,
subject to the Unique Games Conjecture, we show tight or nearly tight hardness results for MAX-2SAT,
MAX- q-CUT, and MAX-2LIN(q).

For MAX-2SAT we show approximation hardness up to a factor of roughly.943. This nearly matches
the .940 approximation algorithm of Lewin, Livnat, and Zwick [41]. Furthermore, we show that our
.943... factor is actually tight for a slightly restricted version of MAX-2SAT. For MAX-q-CUT we show
a hardness factor which asymptotically (for largeq) matches the approximation factor achieved by Frieze
and Jerrum [25], namely1− 1/q + 2(ln q)/q2.

For MAX-2LIN(q) we show hardness of distinguishing between instances which are(1−ε)-satisfiable
and those which are not even, roughly,(q−ε/2)-satisfiable. These parameters almost match those achieved
by the recent algorithm of Charikar, Makarychev, and Makarychev [10]. The hardness result holds even
for instances in which all equations are of the formxi − xj = c. At a more qualitative level, this result
also implies that1− ε vs.ε hardness for MAX-2LIN(q) is equivalentto the Unique Games Conjecture.
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1 Introduction

The main result in this paper is a bound on the approximability of the MAX-CUT problem which matches
the approximation ratio achieved by the well-known Goemans-Williamson algorithm [26]. The proof of this
hardness result relies on theUnique Games Conjectureof Khot [37]. We also rely critically on a theorem
we callMajority Is Stablest, which was introduced as a conjecture in the original version of this paper. For
the convenience of the reader we will now briefly describe these two tools; formal statements appear in
Sections 3 and 4.

Unique Games Conjecture (roughly): Given a bipartite graphG, a large constant size set of labels[M ],
and a permutation of[M ] written on each edge, consider the problem of trying to find a labeling of the
vertices ofG from [M ] so that each edge permutation is ‘satisfied;’ i.e., is consistent with the labeling. The
conjecture is that ifM is a large enough constant then it is NP-hard to distinguish instances which are 99%
satisfiable from instances which are 1% satisfiable.

Majority Is Stablest Theorem (roughly): Let f be a boolean function which is equally often0 or 1.
Suppose the stringx is picked uniformly at random and the stringy is formed by flipping each bit ofx
independently with probabilityη; we call Pr[f(x) = f(y)] the noise stabilityof f . The theorem states
that among allf in which each coordinate haso(1) ‘influence,’ the Majority function has the highest noise
stability, up to an additiveo(1).

We add in passing that the name Majority Is Stablest is a bit of a misnomer in that almost all balanced
boolean (weighted) threshold functions are equally noise stable (see Theorem 5). We also note that the
Majority Is Stablest theorem has interesting applications outside of this work — to the economic theory
of social choice [34] for example — and has already proven useful for other PCP-based inapproximability
results [14]. In Section 6.3 we mention interesting generalizations of the Majority Is Stablest theorem for
q-ary functions,q > 2, which are relevant for hardness of approximation and are not resolved in full.

Despite the fact that our hardness result for MAX-CUT relies on the unproven Unique Games Conjec-
ture, we feel it is interesting for several reasons. First, in our opinion it is remarkable that the Unique Games
Conjecture should yield atight hardness of approximation ratio for MAX-CUT, and that indeed the best
factor should be the peculiar numberαGW. It is intriguing that the precise quantityαGW should arise from a
noise stability property of the Majority function, and certainly there was previously little evidence to suggest
that the Goemans-Williamson algorithm might be optimal.

Another reason we believe our result is interesting is related to this last point. Since the Goemans-
Williamson algorithm was published a decade ago there has been no algorithmic progress on approximating
MAX-CUT. Since H̊astad’s classic inapproximability paper [32] from two years later there has been no
progress on the hardness of approximating MAX-CUT, except for the creation of a better reduction gad-
get [55]. As one of the most natural and simple problems to have resisted matching approximability bounds,
we feel MAX-CUT deserves further investigation and analysis. In particular, we think that regardless of the
truth of the Unique Games Conjecture, this paper gives interesting insight into the geometric nature of MAX-
CUT. Indeed, insights we have gleaned from studying the MAX-CUT problem in this light have motivated
us to give new positive approximation results for variants of other 2-variable CSPs such as MAX-2SAT; see
Section 9.

Finally, instead of viewing our result as relying on the unproven Unique Games Conjecture, we can
view it as being an investigation into the truth of UGC. Indeed our hardness results for both MAX-CUT
and for two-variable linear equations moduloq provide explicit parameters for which the Unique Games
Conjecture, if true, must hold. (Note that both problems are Unique Games themselves.) Thus our work
gives a target for algorithmic attacks on the Unique Games Conjecture, which if passed will refute it.
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Indeed, works subsequent to the original version of this paper have provided approximation algorithms
for the Unique Games problem [54, 29, 10] improving on Khot’s original algorithm [37]. In particular,
in [10] Charikar, Makarychev, and Makarychev gave a semidefinite programming-based approximation
algorithm for Unique Games whose approximation factor nearly matches our hardness bound for MAX-
2LIN(q). The current situation is therefore that any improvement in the approximation factors for either
MAX-CUT or for the more general MAX-2LIN(q) will refute the Unique Games Conjecture.

1.1 Overview of the paper

In Section 2 we describe the MAX-CUT problem and discuss its history. We then state the Unique Games
Conjecture in Section 3 and discuss very recent algorithm results for the problem. The Majority Is Stablest
problem is discussed in Section 4, along with its generalization toq-ary domains,q ≥ 2. We discuss the
geometric aspects of MAX-CUT and their connection with Majority Is Stablest result and the Goemans-
Williamson approximation algorithm in Section 5. Our main results are stated in Section 6. Section 7 is
devoted to some technical definitions, preliminaries, and Fourier analytic formulas. In Section 8 we prove
our main theorem on the hardness of approximating MAX-CUT, based on the Unique Games Conjecture.
In Section 9 we investigate the approximability of other binary 2-CSPs, such as MAX-2SAT. In Section 10
we prove some special cases of the Majority Is Stablest theorem that are of independent interest, with proofs
simpler than those in [45]. Finally, Section 11 is devoted to extending our techniques to theq-ary domain; we
prove some results about noise stability in this domain and then prove our Unique Games-hardness results
for MAX- q-CUT and MAX-2LIN(q) and MAX-q-CUT.

2 About MAX-CUT

The MAX-CUT problem is a classic and simple combinatorial optimization problem: Given a graphG, find
the size of the largest cut inG. By a cut we mean a partition of the vertices ofG into two sets; the size of the
cut is the number of edges with one vertex on either side of the partition. One can also consider a weighted
version of the problem in which each edge is assigned a nonnegative weight and the goal is to cut as much
weight as possible.

MAX-CUT is NP-complete (indeed, it is one of Karp’s original NP-complete problems [36]) and so
it is of interest to try to find polynomial time approximation algorithms. For maximization problems such
as MAX-CUT we say an algorithm gives anα-approximation if it always returns an answer which is at
leastα times the optimal value; we also often relax this definition to allow randomized algorithms which
in expectation giveα-approximations. Crescenzi, Silvestri, and Trevisan [11] have shown that the weighted
and unweighted versions of MAX-CUT have equal optimal approximation factors (up to an additiveo(1))
and so we pass freely between the two problems in this paper.

The trivial randomized algorithm for MAX-CUT — put each vertex on either side of the partition in-
dependently with equal probability — is a1/2-approximation, and this algorithm is easy to derandom-
ize; Sahni and Gonzalez [48] gave the first1/2-approximation algorithm in 1976. Following this some
(1/2 + o(1))-approximation algorithms were given, but no real progress was made until the breakthrough
1994 paper of Goemans and Williamson [26]. This remarkable work used semidefinite programming to
achieve anαGW-approximation algorithm, where the constantαGW ≈ .878567 is the trigonometric quantity

αGW = min
0<θ<π

θ/π

(1− cos θ)/2
.

The minimizing choice ofθ here is the solution ofθ = tan(θ/2), namelyθ∗ ≈ 2.33 ≈ 134◦, andαGW =
2

π sin θ∗ . The geometric nature of Goemans and Williamson’s algorithm might be considered surprising, but
as we shall see, this geometry seems to be an inherent part of the MAX-CUT problem.
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On the hardness of approximation side, MAX-CUT was proved MAX-SNP hard [47] and Bellare, Gol-
dreich, and Sudan [2] explicitly showed that it was NP-hard to approximate MAX-CUT to any factor higher
than83/84. The hardness factor was improved to16/17 ≈ .941176 by Håstad [32] via a reduction from
MAX-3LIN using a gadget of Trevisan, Sorkin, Sudan, and Williamson [55]. This stands as the current best
hardness result.

Despite much effort and many improvements in the approximation guarantees of other semidefinite pro-
gramming based algorithms, no one has been able to improve on the algorithm of Goemans and Williamson.
Although the true approximation ratio of Goemans-Williamson was proved to be not more thanαGW [35, 19]
and the integrality gap of their semidefinite relaxation was also proved to beαGW [19], there appears on the
face of it to be plenty of possibilities for improvement. Adding triangle constraints and other valid con-
straints to the semidefinite program has been suggested, alternate rounding schemes have been proposed,
and local modification heuristics that work for special graphs have been proven (see, e.g., [26, 18, 17, 35,
56, 16, 19]). And of course, perhaps a completely different algorithm altogether can perform better. Sev-
eral papers have either explicitly ([17]) or implicitly ([19]) given the problem of improving onαGW as an
important research goal.

However, in this paper we show that approximating MAX-CUT to within any factor larger thanαGW will
in fact overturn the Unique Games Conjecture.

3 About the Unique Games Conjecture

MAX-CUT belongs to the class of constraint satisfaction problems on 2 variables (2-CSPs). In ak-CSP we
are given a set of variables and a set of constraints, where each constraint depends on exactlyk variables.
The goal is to find an assignment to the variables so as to maximize the number of constraints satisfied. In
the case of MAX-CUT, the vertices serve as variables and the edges as constraints. Every constraint says
that two certain variables should receive different boolean values.

Proving inapproximability results for ak-CSP is equivalent to constructing ak-query PCP with a specific
acceptance predicate. Usually the so-called Label Cover problem is a starting point for any PCP construc-
tion. Label Cover is a 2-CSP where the variables range over a large (non-boolean) domain. Usually, inap-
proximability results for boolean CSPs are obtained by encoding assignments to Label Cover variables via
a binary code and then running PCP tests on the (supposed) encodings. This approach has been immensely
successful in proving inapproximability results fork-CSPs withk ≥ 3 (see for example [32, 49, 30]). How-
ever the approach gets stuck in the case of 2-CSPs. We seem to have no techniques for constructing boolean
2-query PCPs and the bottleneck seems to be the lack of an appropriate PCP ‘outer verifier.’

Khot suggested the Unique Games Conjecture in [37] as a possible direction for proving inapproxima-
bility results for some important 2-CSPs, such as Min-2SAT-Deletion, Vertex Cover, Graph-Min-Bisection
and MAX-CUT. This conjecture asserts the hardness of the ‘Unique Label Cover’ problem:

Definition 1. The Unique Label Cover problem,L(V,W,E, [M ], {σv,w}(v,w)∈E) is defined as follows:
Given is a bipartite graph with left side verticesV , right side verticesW , and a set of edgesE. The goal
is to assign one ‘label’ to every vertex of the graph, where[M ] is the set of allowed labels. The labeling is
supposed to satisfy certain constraints given by bijective mapsσv,w : [M ] → [M ]. There is one such map
for every edge(v, w) ∈ E. A labeling ‘satisfies’ an edge(v, w) if

σv,w(label(w)) = label(v).

The optimum OPT of the unique label cover problem is defined to be the maximum fraction of edges satisfied
by any labeling.
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The Unique Label Cover problem is a special case of the Label Cover problem. It can also be stated
in terms of 2-Prover-1-Round Games, but the Label Cover formulation is easier to work with. The Unique
Games Conjecture asserts that this problem is hard:

Unique Games Conjecture:For anyη, γ > 0, there exists a constantM = M(η, γ) such that it is NP-hard
to distinguish whether the Unique Label Cover problem with label set of sizeM has optimum at least1− η
or at mostγ.

The Unique Games Conjectures asserts the existence of a powerful outer verifier that makes only2
queries (albeit over a large alphabet) and has a very specific acceptance predicate: for every answer to the
first query, there is exactly one answer to the second query for which the verifier would accept, and vice
versa. Once we have such a powerful outer verifier, we can possibly construct a suitable inner verifier and
prove the desired inapproximability results. Typically, though, the inner verifier will need to rely on rather
deep theorems about the Fourier spectrum of boolean functions, e.g. the theorem of Bourgain [7] or of
Friedgut [22].

The Unique Games Conjecture was used in [37] to show that Min-2SAT-Deletion is NP-hard to ap-
proximate within any constant factor. The inner verifier is based on a test proposed by Håstad [31] and on
Bourgain’s theorem. It is also implicit in this paper that the Unique Games Conjecture with an additional
‘expansion-like’ condition on the underlying bipartite graph of the Label Cover problem would imply that
Graph-Min-Bisection is NP-hard to approximate within any constant factor. Khot and Regev [38] showed
that the conjecture implies that Vertex Cover is NP-hard to approximate within any factor less than2. The in-
ner verifier in their paper is based on Friedgut’s theorem and is inspired by the work of Dinur and Safra [15]
that showed 1.36 hardness for Vertex Cover. In the present paper we continue this line of research, showing
an inner verifier that together with the Unique Games Conjecture yields a tight hardness result for MAX-
CUT. Our inner verifier relies critically on the Majority Is Stablest theorem.

Algorithmic results for Unique Label Cover. It is natural to ask how the functionM(η, γ) in the Unique
Games Conjecture can behave. Lower bounds onM are obtained by giving algorithms for Unique Label
Cover. Several very recent results have provided such algorithms. Most relevant for this paper is the algo-
rithm of [10], which has the following behavior for Unique Label instances with label set of sizeq: For any
constantη > 0, on instances with optimum1− η it satisfies roughly a(1/q)η/(2−3η) fraction of edges, up to
lower order powers ofq. Also, forη = 1/ log q, it seems to satisfy anΩ(1) fraction of edges (at the present
time the final version of [10] has not yet appeared).

4 About the Majority Is Stablest problem

To state the Majority Is Stablest problem, we need some definitions. For convenience we regard the boolean
values as−1 and1 rather than0 and1. Thus a boolean function is a mapf : {−1, 1}n → {−1, 1}. We will
often generalize to the case of functionsf : {−1, 1}n → R. In all of what follows we consider the set of
strings{−1, 1}n to be a probability space under the uniform distribution.

First we recall the well-known notion of ‘influence’, introduced to computer science in [3] and studied
even earlier in economics.

Definition 2. Letf : {−1, 1}n → R. Then theinfluence ofxi onf is defined by

Infi(f) = E
(x1,...,xi−1,xi+1,...,xn)

[Varxi [f ]] .
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(Note that forf : {−1, 1}n → {−1, 1},

Infi(f) = Pr
x∈{−1,1}n

[f(x) 6= f(x1, . . . ,−xi, . . . xn)].)

Instead of pickingx at random, flipping one bit, and seeing if this changes the value off , we can instead
flip a constant fraction (in expectation) of the bits. This leads to the study of ‘noise sensitivity,’ pioneered in
computer science by [33, 32, 4].

Definition 3. Letf : {−1, 1}n → R and let−1 ≤ ρ ≤ 1. Thenoise stability off atρ is defined as follows:
Let x be a uniformly random string in{−1, 1}n and lety be a ‘ρ-correlated’ copy; i.e., pick each bityi

independently so thatE[xiyi] = ρ. Then the noise stability is defined to be

Sρ(f) = Ex,y[f(x)f(y)].

(Note that forf : {−1, 1}n → {−1, 1} we haveSρ(f) = 2 Prx,y[f(x) = f(y)]− 1.)

We may now state the Majority Is Stablest theorem. This result was presented as a strongly-believed con-
jecture in the original version of this paper. It has recently been proved in [45]. Informally, the theorem says
that among all balanced boolean functions with small influences, the Majority function has the highest noise
stability. Note that the assumption of small influences is necessary since the ‘dictator’ functionf(x) = xi

provably has the highest noise stability among all balanced boolean functions, for everyρ. Note that whenn
tends to infinity, the noise stability atρ of then-bit Majority function approaches(1− 2

π arccos ρ) (this fact
was stated in a paper of Gulibaud from the 1960’s [28] and is ultimately derived from the Central Limit theo-
rem plus a result from an 1890’s paper of Sheppard [51]). Thus we have the formal statement of the theorem:

Majority Is Stablest theorem: Fix ρ ∈ [0, 1). Then for anyε > 0 there is a small enoughδ = δ(ε, ρ) > 0
such that iff : {−1, 1}n → [−1, 1] is any function satisfyingE[f ] = 0 andInfi(f) ≤ δ for all i = 1 . . . n,
then

Sρ(f) ≤ 1− 2
π arccos ρ + ε.

In the remainder of this section, we shall describe why the Majority Is Stablest theorem is relevant for
MAX-CUT inner verifiers.

As described in the previous section, inapproximability results for many problems are obtained by con-
structing a tailor-made PCP; usually, the PCP is obtained by composing an ‘outer verifier’ (almost always
a Label Cover problem) with an ‘inner verifier’. As mentioned the outer verifier for our reduction is the
Unique Label Cover problem. As for the inner verifier, it is always application-specific and its acceptance
predicate is tailor-made for the problem at hand, in our case MAX-CUT.

A codeword testis an essential submodule of an inner verifier. It is a probabilistic procedure for checking
whether a given string is a codeword of an error-correcting code, most commonly the ‘Long Code’ (see [2]).

Definition 4. The Long Code over domain[n] is a binary code in which the message space is in fact the set
of truth tables of boolean functionsf : {−1, 1}n → {−1, 1}. The codeword encoding the ‘message’i ∈ [n]
is given by theith dictator function; i.e., the functionf(x1, x2, . . . , xn) = xi.

A codeword test for the Long Code can often be extended to a full-fledged inner verifier. So in the
following, we will focus only on a Long Code test. The choice of the test is determined by the problem at
hand, in our case MAX-CUT. The test must read two bits from a Long Code and accept if and only if the
values read are distinct. Note that a legal Long Code word, i.e. a dictator, is the truth table of a boolean
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function in which one coordinate has influence1. Let us say that a functionf is far from being a Long
Codeif all the coordinates haveo(1) influences (note that this is not a standard notion of being far from a
codeword, but rather a notion tailored for our proof technique).

We expect the following from a codeword test: a correct Long Code word passes the test with probability
c (called the ‘completeness’ parameter of the test) whereas any function far from being a Long Code passes
the test with probability at mosts (called the ‘soundness’ parameter). Once we construct a full-fledged inner
verifier, the ratios/c will be the inapproximability factor for MAX-CUT.

The Long Code test. As mentioned before, our Long Code test will need to take a boolean function
f : {−1, 1}n → {−1, 1}, pick two inputsx andy, and check thatf(x) 6= f(y). In fact our test will be
precisely a ‘noise stability’ test for some fixed noise rateρ; i.e.,x will be chosen uniformly at random and
y will be formed by flipping each bit ofx independently with probability12 −

1
2ρ. Hereρ will be a value

between−1 and0, and thereforey is ahighlynoisy version ofx, or alternatively, a moderately noisy version
of −x. Thus (at least for legal Long Code words) we expectf(x) to be quiteanticorrelatedwith f(y); i.e.,
it should pass the test with relatively high probability. Recalling Definition 3, we see that the probability a
given functionf passes our test is precisely1

2 −
1
2Sρ(f).

A legal Long Code word, i.e. a dictator function, has noise stability preciselyρ and thus the completeness
of the Long Code test isc = 1

2−
1
2ρ. The crucial aspect of our test is the analysis of the soundness parameter.

This is where the Majority Is Stablest theorem comes in. Supposef : {−1, 1}n → {−1, 1} is any
function that is far from being a Long Code word. By a simple trick (see Proposition 7.4) we can show that
the Majority Is Stablest theorem (which is stated only forρ ≥ 0) implies that forρ < 0 the noise stability of
f atρ is at least1− 2

π arccos ρ (a negative number). Hence it follows that functions that are far from being
a Long Code pass the test with probabilityat mosts = 1

2 −
1
2(1− 2

π arccos ρ) = (arccos ρ)/π.
Choosingρ < 0 as we please, this leads to an inapproximability ratio of

s

c
= min

−1<ρ<0

(arccos ρ)/π
1
2 −

1
2ρ

= min
0≤θ≤π

θ/π

(1− cos θ)/2
= αGW,

precisely the Goemans-Williamson constant.

4.1 History of the Majority Is Stablest problem

There has been a long line of work in the analysis of boolean functions studying the noise sensitivity
of functions and the associated Fourier-theoretic quantities (some examples, roughly in chronological or-
der: [33, 8, 52, 23, 53, 9, 22, 4, 6, 7, 24, 34, 44, 46, 13]). Building on the intuition gathered from this past
work, we were motivated to make the Majority Is Stablest conjecture in the originial version of the paper.
We discuss these relevant previous results below.

The Majority and weighted majority (or balanced threshold) functions have always played an important
role in the study of noise sensitivity of boolean functions. This family of functions is, in a sense, the set of all
“uniformly noise-stable” functions. In [4], it is shown that a family of monotone functions is asymptotically
noise sensitive if and only if it is asymptotically orthogonal to the family of balanced threshold functions;
by asymptotically noise sensitive functions it is meant those that haveSρ(f) = o(1) for any constantρ.

Stated in terms of Fourier coefficients (see Section 7.2), the Majority Is Stablest theorem says that among
all ‘non-junta-like’ functions, the one which has most Fourier mass on the lower levels is the Majority
function. This is becauseSρ(f) is a just a weighted sum of the squared Fourier coefficients off , where
coefficients at levelk have weightρk. Some strong evidence in favor of the Majority Is Stablest theorem
was given by Bourgain [7], who showed that non-junta functionsf have their Fourier tails

∑
|S|>k f̂(S)2
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lower-bounded byk−1/2−o(1). As Bourgain noted, the Majority function has precisely this tail decay and
thus his theorem is ‘basically’ optimal. In other words, Majority has the ‘least’ Fourier weight on higher
levels and therefore the ‘most’ Fourier weight on lower levels.

The expressionS−1/3(f) played a central role in a Fourier-theoretic approach to the Condorcet Paradox
and Arrow’s Theorem given by Kalai [34]. This expression determines the probability of an “irrational out-
come” in a certain voting scheme. Much of [34] is devoted to the study ofS−1/3(f) and in particular, it is
conjectured there (Conjecture 5.1) that for ‘transitive’ functions, which have the property that all influences
are the same, the sum

∑
|S|≤k f̂(S)2 is maximized by the Majority function for allk. Although this conjec-

ture turns out to be false [45], the corollaries of the conjecture in [34] are implied by the fact that Majority
is the stablest transitive function, and this is a consequence of the Majority Is Stablest theorem.

Finally, in [46] it was shown that Majority is essentially the maximizer for another noise stability prob-
lem, namely maximizing thekth norm ofTρf , whereTρ is the Bonami-Beckner operator (see Section 7)
among balanced functionsf for largek andn = ∞.

In the original version of this paper, when Majority Is Stablest was still a conjecture, some special cases
of the problem were proven. Since these proofs are much simpler than those in [45], and since the proofs
have already proven to be of independent interest (see [42] for use of all three), we have included these
partial results in Section 10.

4.2 Generalizations to theq-ary domain

Our methods can also be used to obtain hardness results for constraint satisfaction problems over variables
ranging over larger domains[q]. In theq-ary regime we need a multi-valued analogue of the Majority Is
Stablest theorem. Before we can formulate the appropriate analogue, we need to specify what we mean by
‘q-ary functions’ and also to define the notions of noise stability and influences for them.

The obvious generalization of a boolean function to theq-ary regime would be a function of the form
f : [q]n → [q]. However, as we did for boolean functions, we will consider a continuous relaxation of the
range. Specifically, define

∆q = {(x1, . . . , xq) ∈ [0, 1]q :
∑

xi = 1},

which can be thought of as the space of probability distributions over[q]. We will consider functions
f : [q]n → ∆q; this generalizes functionsf : [q]n → [q] if we identify the elementsa ∈ [q] in f ’s range
with the points(0, . . . , 0, 1, 0, . . . , 0) ∈ ∆q.

Definition 5. Let− 1
q−1 ≤ ρ ≤ 1 and letx andy be[q]n-valued random variables. We say thatx andy are

a ρ-correlated pairif x is uniformly distributed on[q]n, andy is formed fromx by choosing eachyi so that
Pr[yi = a] = δ{xi=a}ρ + 1−ρ

q for eacha, independently for eachi. Note that for0 ≤ ρ ≤ 1, it is equivalent
to say that each coordinateyi is independently chosen to bexi with probabilityρ and is a uniformly random
element of[q] otherwise.

Definition 6. Letf : [q]n → ∆q and let− 1
q−1 ≤ ρ ≤ 1. Thenoise stability off atρ is defined to be

Sρ(f) = E
x,y

[〈f(x), f(y)〉],

wherex andy are aρ-correlated pair. Equivalently, we may define the noise stability of functionsg : [q]n →
R via

Sρ(g) = E
x,y

[g(x)g(y)]

and then denoting byf i theith coordinate projection off , we haveSρ(f) =
∑n

i=1 Sρ(f i).
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We remark that whenf ’s range is simply[q] (as embedded in∆q), the quantitySρ(f) is simply the
probability thatf(x) = f(y) whenx andy are aρ-correlated pair.

The definition of influences is very similar to that in the boolean case:

Definition 7. Letf : [q]n → ∆q. For 1 ≤ i ≤ n, theinfluence of theith coordinate onf is defined to be

Infi(f) = E
x1,...,xi−1,xi+1,...,xn

[Varxi [f(x1, . . . , xn)]],

whereVar[f ] denotesE[〈f, f〉]− 〈E[f ],E[f ]〉.

We say thatf : [q]n → ∆q is ‘balanced’ ifE[f i] = 1/q for eachi. The most obvious generalization
of the Majority function to theq-ary domain is the Plurality function, which on inputx ∈ [q]n outputs the
most common value forxi (tie-breaking is unimportant). It is natural to ask whether a “Plurality Is Stablest”
theorem holds. This question is still open, and we present it as a conjecture. For this purpose, define

PlurStab(q, ρ) = lim
n→∞

Sρ(Pluralityn,q).

The limit in the formula above indeed exists, and there appears to be no closed formula for it; however we
provide an exact description of it in Theorem 8 in Section 6.

Plurality Is Stablest Conjecture. Fix q ≥ 2 and− 1
q−1 ≤ ρ ≤ 1. Then for anyε > 0 there is a small

enoughδ = δ(ε, ρ, q) such that iff : [q]n → [q] is any balancedq-ary function withInfi(f) ≤ δ for all
i = 1 . . . n, then

Sρ(f) ≤ PlurStab(q, ρ) + ε

Note that in the caseq = 2, Sheppard’s formula givesPlurStab(2, ρ) = 1 − 2
π arccos ρ, which is the

noise stability of Majority; there is also a closed formula forq = 3 ([27, 12]). For large values ofq we give
asymptotics which hold up to a1 + oq(1) factor in Section 6. For the reader’s convenience, we remark here
that

PlurStab(q, ρ) = Θ̃
(
(1/q)(1−ρ)/(1+ρ)

)
.

Although we don’t have Plurality Is Stablest, a result of [45] generalizing Majority Is Stablest serves
us almost equally well. This result bounds the stability of a function in terms of the behavior of correlated
Gaussians. To state it, we need one more definition:

Definition 8. Letµ ∈ [0, 1] andρ ∈ [0, 1]. LetX andY denote normal random variables with mean0 and

covariance matrix
(

1 ρ
ρ 1

)
. We define

Λρ(µ) = Pr[X ≥ t andY ≥ t],

wheret is chosen so thatPr[X ≥ t] = µ.

MOO theorem: Fix q ≥ 2 andρ ∈ [0, 1). Then for anyε > 0 there is a small enoughδ = δ(ε, ρ, q) > 0
such that iff : [q]n → [0, 1] is any function satisfyingE[f ] = µ andInfi(f) ≤ δ for all i = 1 . . . n, then

Sρ(f) ≤ Λρ(µ) + ε.

As a result we have that the noise stability of any balancedf : [q]n → ∆q is essentially at most
qΛρ(1/q). We give the asymptotics of this quantity in Section 6 and they are extremely close to those of
PlurStabρ(q); in particular, they are the same up to a constant multiplicative factor.
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5 On the geometry of MAX-CUT

We shall now try to explain (non-rigorously) the connection between the Majority Is Stablest theorem and the
geometric picture that arises from the Goemans-Williamson algorithm. But before going further, let us first
note that the approximation ratio achieved by Goemans-Williamson arises as the solution of a trigonometric
minimization problem, which in turn originates from a geometric setting. To obtain a matching inapprox-
imability constant, it seems essential to introduce some similar geometric structure. Such a structure is
present in the construction of our Long Code test, although it is only implicit in the actual proofs.

For the purposes of the following explanation, let us consider then-dimensional discrete cube{−1, 1}n

as a subset of then-dimensional Euclidean unit sphere (we normalize the Euclidean norm accordingly). The
Majority Is Stablest theorem essentially states that the discrete cube is a good approximation of the sphere
in a certain sense.

The Goemans-Williamson algorithm. We start with a brief description of how the approximation ratio
αGW arises in the Goemans-Williamson algorithm. To find a large cut in a given graphG = (V,E) with n
vertices, the Goemans-Williamson algorithm embeds the graph in the unit sphere ofRn, identifying each
vertexv ∈ V with a unit vectorxv on the sphere. The embedding is selected such that the sum∑

(u,v)∈E

1
2
− 1

2
〈xu,xv〉, (1)

involving the inner products of vectors associated with the endpoints of edges ofG, is maximized. The
maximum sum bounds from above the size of the maximum cut, since the size of every cut can be realized
by associating all the vertices from one side of the cut with an arbitrary pointx on the sphere, and associating
all other vertices with−x.

Once the embedding is set, a cut inG is obtained by choosing a random hyperplane through the origin
and partitioning the vertices according to the side of the hyperplane on which their associated vectors fall.
For an edge(u, v) in G, the probability thatu andv lie on opposite sides of the random cut is proportional
to the angle betweenxu andxv. More precisely, lettingρ = 〈xu,xv〉 denote the inner product between the
vectors associated withu andv, the probability that the edge(u, v) is cut is(arccos ρ)/π.

The approximation ratioαGW of the Goemans-Williamson algorithm is obtained by noting that

αGW = min
−1≤ρ≤1

(arccos ρ)/π
1
2 −

1
2ρ

≈ .878567 (2)

is the smallest ratio possible between the probability of an edge being cut and its contribution to (1). Hence
the expected size of the cut obtained by the Goemans-Williamson algorithm is at least anαGW-fraction of (1),
and therefore it is also at least anαGW-fraction of the maximum cut inG.

Cutting the sphere. In [19], Feige and Schechtman considered the graphGρ whose vertices are all the
vectors on the unit sphere and in which two vertices are connected by an edge inGρ iff their inner prod-
uct is roughlyρ (we do not get into the precise details). It is shown in [19] that in this graph the largest
cut is obtained by any hyperplane through the origin. (To state this rigorously one should define appro-
priate measures etc., but let us remain at a simplistic level for this discussion.) Such a hyperplane cuts an
(arccos ρ)/π-fraction of the edges in the graph.

Restricting to the cube. We would like to consider an edge-weighted graphHρ which is, in a non-rigorous
sense, the graph induced byGρ on the discrete hypercube. For two vectorsx,y on the discrete cube, we

10



define the weight of the edge(x,y) to be

Pr[X = x andY = y],

whereX andY areρ-correlated random elements of the discrete cube. The graphHρ resemblesGρ in the
sense that almost all the edge-weight inHρ is concentrated on edges(x,y) for which 〈x,y〉 ≈ ρ; we call
such edgestypical edges. Let us examine how goodHρ is as an ‘approximation’ of the graphGρ.

Note that the structure ofHρ is very reminiscent of our Long Code test, mentioned above. To make the
similarity even clearer, note that a cutC in Hρ immediately defines a boolean functionfC over the discrete
cube. It is easy to observe that the size ofC (namely the sum of weights of the edges that are cut) is exactly
the noise stability offC — i.e., the acceptance probability of the Long Code test with parameterρ when
applied tofC .

The size of the cut. So how large can the size ofC be? IfC is determined by a random hyperplane, then a
typical edge is cut with probability about(arccos ρ)/π. The expected size of such a cut is therefore roughly
the same as the weight of the maximal cut inGρ (when the total weight of the edges inGρ is normalized to
1).

There are, however, cuts inHρ whose weight is larger than(arccos ρ)/π. For example, one can partition
the vertices inHρ according to their first coordinate, taking one side of the cutC to be the set of vectors
in the discrete cube whose first coordinate is1 and the other side ofC to be the set of vectors whose first
coordinate is−1; note that this is the cut defined by the hyperplane which is perpendicular to the first
coordinate. When interpreted as a function,C corresponds to the functionfC(x) = x1; i.e., it is a correct
Long Code word. One can easily observe that the size ofC is 1

2 −
1
2ρ — i.e., it is exactly the completeness

of the Long Code test with parameterρ.

The Majority Is Stablest theorem comes in. The size of one-coordinate cuts inHρ is larger than the best
cuts achievable inGρ. The Majority Is Stablest theorem implies, however, that essentially those are the only
special cases, and that all other cuts inHρ are no larger than the maximum cut inGρ. That is, it implies that
unlessfC depends significantly on one of the coordinates, then the size ofC is at most(arccos ρ)/π + ε.
Stated formally, Proposition 7.4 in Section 7.3 says the following.

Proposition For anyρ ∈ (−1, 0] and anyε > 0 there is a small enoughδ = δ(ε, ρ) > 0 such that ifC is a
cut inHρ such thatInfi(fC) ≤ δ for everyi, then the size ofC is at most(arccos ρ)/π + ε

6 Our results

In this section we formally state our main results.

6.1 Hardness for MAX-CUT and 2-bit CSPs

Our main result regarding MAX-CUT is the following:

Theorem 1. Assume the Unique Games Conjecture. Then for every constant−1 < ρ < 0 andε > 0, it is
NP-hard to distinguish instances of MAX-CUT that are at least(1

2 −
1
2ρ)-satisfiable from instances that are

at most((arccos ρ)/π + ε)-satisfiable. In particular, choosingρ = ρ∗, where

ρ∗ = argmin
−1<ρ<0

(arccos ρ)/π
1
2 −

1
2ρ

≈ −.689,

implies that it is NP-hard to approximate MAX-CUT to within any factor greater than the Goemans-
Williamson constantαGW ≈ .878567.
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Recall that the main result of Goemans and Williamson [26] is an algorithm which, given instances of
MAX-CUT with fractional optimum at least12 −

1
2ρ (whereρ ≤ ρ∗), outputs a solution with value at least

(arccos ρ)/π − ε (whereε > 0 can be an arbitrarily small constant). Thus our Unique Games-hardness
theorem precisely matches the algorithmic guarantee of Goemans and Williamson forall −1 < ρ ≤ ρ∗. For
ρ very close to−1, by considering the Taylor expansionarccos ρ = π/2 − ρ − ρ3/6 − · · · , we have the
following corollary:

Corollary 2. Assume the Unique Games Conjecture. Then for all sufficiently smallη > 0, it is NP-hard
to distinguish instances of MAX-CUT that are at least(1 − η)-satisfiable from instances that are at most
(1− (2/π)

√
η)-satisfiable.

We prove Theorem 1 in Section 8.

In Section 9 we apply our techniques for other 2-bit CSPs besides MAX-CUT. In particular we prove:

Theorem 3. Assume the Unique Games Conjecture. Then it is NP-hard to approximate MAX-2SAT to within
any factor greater thanβ, where

β = min
π
2
≤θ≤π

2 + (2/π)θ
3− cos θ

≈ .943.

The proof of Theorem 3 actually implies that MAX-2SAT is hard to approximate to within any factor
greater thanβ, even if restricted to instances where each variable appears equally often positively and
negatively (see Section 9 for more details). We show that for this restricted problem, called Balanced-
MAX-2SAT, the approximation boundβ is tight; i.e., itcanbe approximated to within any factor smaller
thanβ:

Theorem 4. Balanced-MAX-2SAT is polynomial-time approximable to within any factor smaller thanβ.

6.2 Special cases of the Majority Is Stablest theorem

Some special cases of the Majority Is Stablest theorem are of independent interest.

First, it should be noted that the Majority function is not a ‘unique’ optimizer, in the sense that every
weighted threshold that does not depend largely on any one coordinate is equally noise-stable:

Theorem 5. Let f : {−1, 1}n → {−1, 1} be any balanced threshold function, namely of the formf(x) =
sgn(a1x1 + · · · anxn). Letδ = maxi {Infi(f)}. Then for allρ ∈ [−1, 1],

Sρ(f) = 1− 2
π arccos ρ±O(δ(1− |ρ|)−3/2).

It is also of interest to consider the case whereρ tends to zero. It is easy to see that in this case the
Majority Is Stablest theorem implies that the weight of a Boolean function on the first level of its Fourier
transform is essentially bounded by2/π. We give an easy and direct proof of this fact:

Theorem 6. Supposef : {−1, 1}n → [−1, 1] satisfiesInfi(f) ≤ δ for all i. Then∑
|S|=1

f̂(S)2 ≤ 2
π + Cδ ,

whereC = 2(1−
√

2/π).
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We also can give a direct proof of an improved version of Theorem 6 which depends on the mean of
f ; as the mean becomes small enough, this result approaches a result of Talagrand [53] (which states that
for every functionf : {−1, 1}n → {−1, 1} with Pr[f = 1] = p ≤ 1/2 it holds that

∑
|S|=1 f̂(S)2 ≤

O(p2 log(1/p))):

Theorem 7. Let φ be the Gaussian density function andΦ be the Gaussian distribution function. Let
U(x) = φ(Φ−1(x)) : [0, 1] → [0, 1/

√
2π] denote the so-called ‘Gaussian isoperimetric function.’

Supposef : {−1, 1}n → [−1, 1] satisfiesInfi(f) ≤ δ for all i. Lettingµ = 1
2 + 1

2E[f ], we have∑
|S|=1

f̂(S)2 ≤ 4 (U(µ) + ε)2 ,

where the error termε is given by

ε = max{1,
√
|Φ−1(µ)|} ·O(

√
δ).

This theorem is sharp up to the error term, as can be observed by considering restrictions symmetric
threshold functions with various thresholds (see, e.g., [43] or [42] for explicit computations). Note that for
x small,U(x) ∼ x

√
2 ln(1/x); this is why our result is comparable with Talagrand’s.

6.3 Larger domains: q-ary functions

In this section we state our results forq-ary functions and forq-ary constraint satisfaction problems. We
will be concerned with two such 2-CSPs. The first is MAX-q-CUT, the problem of partitioning a graph
into q parts so as to maximize the number of edges between parts. The second is is MAX-2LIN(q): Given
an integerq ≥ 2, the MAX-2LIN(q) problem is to maximize the number of satisfied equations in a given
system of linear equations moduloq, where exactly two variables appear in each equation. See Section 11.1
for formal definitions.

Stability estimates. Our hardness results are based in part on the following analysis of the noise stability
of q-ary functions, as discussed in Section 4. We first obtain an exact analytic expression for the noise
stability of the plurality function.

Theorem 8. Fix q and− 1
q−1 ≤ ρ ≤ 1. Then

lim
n→∞

Sρ(Pluralityn) = qI(q, ρ),

whereI(q, ρ) is defined as follows: Let(U1, V1) . . . , (Uq, Vq) be a set ofq i.i.d. normal vectors with mean0

and covariance matrix
(

1 ρ
ρ 1

)
; then

I(q, ρ) = Pr[U1 = max
1≤i≤q

Ui, V1 = max
1≤i≤q

Vi].

Further, the quantityI(q, ρ) is precisely equal the key quantity calledI(ρ) (with q = k) in Frieze and
Jerrum’s paper on MAX-q-CUT [25] (see also [12]).

As a corollary of Theorem 8, and a result of de Klerk et al. [12] (see also [25]) which gives the asymptotics
of I(q, ρ), we obtain the following:

Corollary 9. For every fixed0 ≤ ρ < 1, we have

PlurStab(q, ρ) ∼
( 1

q − 1

)(1−ρ)/(1+ρ)
(4π ln(q − 1))−ρ/(1+ρ) Γ(1/(1 + ρ))2

(1− ρ2)1/2
, (3)

where the∼ indicates that the ratio of the two sides is1 asq →∞, andΓ is the gamma function.
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Since we do not have the Plurality Is Stablest conjecture we cannot actually use Corollary 9 in our hard-
ness results. Instead we use the MOO theorem which is stated in terms of the functionΛρ(µ) (recall Defi-
nition 8); therefore we need bounds on its asymptotics. Slightly improving the estimate from Lemma 11.1
of [12], we have:

Proposition 6.1. Denote byφ the Gaussian density functionφ(x) = 1√
2π

e−x2/2, and letN(x) =
∫∞
x φ

denote the Gaussian tail probability function. For any0 ≤ µ < 1/2, let t > 0 be the number such that
N(t) = µ. Then for all0 ≤ ρ ≤ 1,

Λρ(µ) ≤ (1 + ρ) · φ(t)
t

·N
(
t
√

1−ρ
1+ρ

)
. (4)

Note that in the caseµ = 1/2, Λρ(1/2) = 1
2(1 − 2

π arccos ρ), and the caseµ > 1/2 can be easily
reduced to the caseµ < 1/2. Also, it is relatively easy to see that the right hand side of (4) becomes a lower
bound onΛρ(µ) if the (1 + ρ) factor is removed.

In fact, we are mainly interested in the case whereµ → 0 (t → ∞). In this case, it turns out that (4)
holds as an equality up to a1 + oµ(1) factor (even ifρ is a function ofµ). This yields the following:

Corollary 10. Letµ → 0 and lett = t(µ) be defined as in Proposition 6.1. Then the following holds:

1. For anyρ = ρ(µ), 0 < ρ < 1,

Λρ(µ)
µ→0∼ (1 + ρ) · µ ·N

(
t
√

1−ρ
1+ρ

)
(where by ‘∼’ we mean that the ratio between the two sides tends to one).

2. If 0 < ρ < 1 is fixed, then

Λρ(µ)
µ→0∼ µ2/(1+ρ)(4π ln(1/µ))−ρ/(1+ρ) (1 + ρ)3/2

(1− ρ)1/2
.

3. For any fixed0 < η < 1,
qΛ1−η(1/q) ≤ (1/q)η/(2−η) .

4. For anyλ = λ(q) ∈ (0, 1), let ρ = 1− λ
ln q . Then

qΛρ(1/q) ≤ 1−
√

2/π ·
√

λ + oλ→0(1) + oq→∞(1).

Part 2 of Corollary 10 is due de Klerk et al. [12]. It implies thatqΛρ(1/q) andPlurStabρ(q) have
the same asymptotics asq tends to infinity, up to a small multiplicative constant. The other statements of
Corollary 10 are proven in Section 11.3.

Hardness Results. We now move to stating our hardness results forq-ary domains. For MAX-q-CUT we
show that assuming the Unique Games Conjecture, it is impossible to essentially improve on the approxi-
mation ratios for MAX-q-CUT achieved by Frieze and Jerrum [25] by more than an additiveε.

Theorem 11. Assume the Unique Games Conjecture. Then for everyε > 0 it is NP-hard to distinguish
(1 − ε)-satisfiable instances of MAX-q-CUT from instances that are at most(1 − 1/q + (2 ln q)/q2 +
O(ln ln q)/q2)-satisfiable.

Our hardness result for MAX-2LIN(q) is formulated in terms ofΛq(µ), discussed above.
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Theorem 12. Assume the Unique Games Conjecture. Then for everyq ≥ 2, ρ ∈ [0, 1] andε > 0, given an
instance of MAX-2LIN(q), it is NP-hard to distinguish between the case where it is at least(ρ+ 1

q (1−ρ)−ε)-
satisfiable and the case where it is at most(qΛρ(1

q ) + ε)-satisfiable. Furthermore, this holds even for
instances in which all equations are of the formxi − xj = c.

Using the asymptotics ofΛρ(µ) given above in Corollary 10, we have:

Corollary 13. Assume the Unique Games Conjecture. Then for every fixedη > 0 there existsq0 = q0(η)
such that for every fixedq > q0 the following holds. Given an instance of MAX-2LIN(q), it is NP-hard to
distinguish between the case where the instance is at least(1 − η)-satisfiable and the case where it is at
most(1/q)η/(2−η)-satisfiable.

Corollary 14. Assume the Unique Games Conjecture, and letλ = λ(q) ∈ (0, 1). Given an instance of MAX-
2LIN(q), it is NP-hard to distinguish between the case where the instance is at least(1 − λ

ln q )-satisfiable
and the case where it is at mosts-satisfiable, where

s = 1−
√

2/π ·
√

λ + oλ→0(1) + oq→∞(1).

Note that MAX-2LIN(q) is itself essentially an instance of Unique Label Cover, except for the fact that
the variable/equation structure need not be bipartite. But in fact, it is easy to observe that the “non-bipartite”
version of the Unique Games Conjecture is equivalent to the usual Unique Games Conjecture [39] (up to
a factor of2 in the soundness). Hence Theorem 12 and its corollaries may be viewed as concerning the
allowable parameter tradeoffs in the Unique Games Conjecture. In particular, Corollary 13 implies:

Corollary 15. The Unique Games Conjecture holds if and only if it holds as follows: For everyη > 0 and
label set sizeq (sufficiently large as a function ofη), it is NP-hard to distinguish whether the Unique Label
Cover problem with label set sizeq has optimum at least1− η or at most(1/q)η/(2−η).

(The factor of2 lost in soundness from passing to a bipartite version can be absorbed since the soundness
obtained in the proof of Corollary 13 is actually stronger by a factor of(log q)Ω(1).)

Recently, a result of Charikar, Makarychev, and Makarychev [10] showed that the parameters in Corol-
lary 15 are almost optimal. They give an algorithm for Unique Label Cover with label set sizeq that, given
an instance with optimum(1− η), outputs an assignment which satisfies at least a(1/q)η/(2−3η)-fraction of
the constraints.

7 Definitions and technical preliminaries

In this section we give some definitions and make some technical observations concerning the Majority Is
Stablest theorem, reducing it to a form which is useful for our MAX-CUT reduction.

7.1 MAX-CUT and MAX-2SAT

For the majority of this paper we will be concerned with the MAX-CUT problem; we will also later consider
the MAX-2SAT problem. We give the formal definitions of these problems below.

Definition 9 (MAX-CUT). Given an undirected graphG = (V,E), the MAX-CUT problem is that of
finding a partitionC = (V1, V2) which maximizes the size of the set(V1×V2)∩E. Given a weight-function
w : E → R+, the weighted MAX-CUT problem is that of maximizing∑

e∈(V1×V2)∩E

w(e).
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Definition 10 (MAX-2SAT). An instance of the MAX-2SAT problem is a set of boolean variables and a
set of disjunctions over (exactly) two literals each, where a literal is either a variable or its negation. The
problem is to assign the variables so that the number of satisfied literals is maximized. Given a nonnegative
weight function over the set of disjunctions, the weighted MAX-2SAT problem is that of maximizing the sum
of weights of satisfied disjunctions.

As we noted earlier, [11] implies that the achievable approximation ratios for the weighted versions of
the above two problems are the same, up to an additiveo(1), as the approximation ratios of the respective
non-weighted versions. Hence in this paper we freely work with the weighted version.

7.2 Analytic notions

In this paper we treat the bit TRUE as−1 and the bit FALSE as1; we consider functionsf : {−1, 1}n → R
and say a function isboolean-valuedif its range is{−1, 1}. The domain{−1, 1}n is viewed as a probability
space under the uniform measure and the set of all functionsf : {−1, 1}n → R as an inner product space
under〈f, g〉 = E[fg]. The associated norm in this space is given by‖f‖2 =

√
E[f2].

Fourier expansion. For S ⊆ [n], let χS denote the parity function onS, χS(x) =
∏

i∈S xi. It is well
known that the set of all such functions forms an orthonormal basis for our inner product space and thus
every functionf : {−1, 1}n → R can be expressed as

f =
∑

S⊆[n]

f̂(S)χS .

Here the real quantitieŝf(S) = 〈f, χS〉 are called theFourier coefficientsof f and the above is called
the Fourier expansionof f . Plancherel’s identitystates that〈f, g〉 =

∑
S f̂(S)ĝ(S) and in particular,

‖f‖2
2 =

∑
S f̂(S)2. Thus iff is boolean-valued then

∑
S f̂(S)2 = 1, and iff : {−1, 1}n → [−1, 1] then∑

S f̂(S)2 ≤ 1. We speak off ’s squared Fourier coefficients asweights, and we speak of the setsS being
stratified intolevelsaccording to|S|. So for example, by theweight off at level 1we mean

∑
|S|=1 f̂(S)2.

The Bonami-Beckner operator. For anyρ ∈ [−1, 1] we define theBonami-Beckner operatorTρ, a linear
operator on the space of functions{−1, 1}n → R, by Tρ(f)(x) = E[f(y)]; where each coordinateyi of
y is independently chosen to bexi with probability 1

2 + 1
2ρ and−xi with probability 1

2 −
1
2ρ. It is easy

to check thatTρ(f) =
∑

S ρ|S|f̂(S)χS . It is also easy to verify the following relation betweenTρ and the
noise stability (see Definition 3).

Proposition 7.1. Letf : {−1, 1}n → R andρ ∈ [−1, 1]. Then

Sρ(f) = 〈f, Tρf〉 =
∑

S⊆[n]

ρ|S|f̂(S)2.

The following identity is a well-known one, giving a Fourier analytic formula for the influences of a coordi-
nate on a function (see Definition 2).

Proposition 7.2. Letf : {−1, 1}n → R. Then for everyi ∈ [n],

Infi(f) =
∑
S3i

f̂(S)2. (5)

Once we have the Fourier analytic formula for the influence, we can consider the contribution to the
influence of characters of bounded size.
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Definition 11. Letf : {−1, 1}n → R, and leti ∈ [n]. Thek-degree influence of coordinatei onf is defined
by

Inf≤k
i (f) =

∑
S3i
|S|≤k

f̂(S)2.

7.3 Different forms of the Majority Is Stablest theorem

Recall the Majority Is Stablest theorem (proved in [45]):

Majority Is Stablest theorem: Fix ρ ∈ [0, 1). Then for anyε > 0 there is a small enoughδ = δ(ε, ρ) > 0
such that iff : {−1, 1}n → [−1, 1] is any function satisfying

E[f ] = 0, and

Infi(f) ≤ δ for all i = 1 . . . n,

then
Sρ(f) ≤ 1− 2

π arccos ρ + ε.

In the MAX-CUT reduction we need a slightly altered version of the Majority Is Stablest theorem. First,
we can replace influences by low-degree influences:

Proposition 7.3. The Majority Is Stablest theorem remains true if the assumption thatInfi(f) ≤ δ for all i

is replaced by the assumption thatInf≤k′

i (f) ≤ δ′, whereδ′ andk′ are universal functions ofε andρ.

Proof. Fix ρ < 1 andε > 0. Chooseγ such thatρk(1−(1−γ)2k) < ε/4 for all k. Let δ be chosen such that
if Infi(g) ≤ δ for all i thenSρ(g) ≤ 1− 2

π arccos ρ+ε/4. Chooseδ′ = δ/2 andk′ such that(1−γ)2k′ < δ′.

Let f be a function satisfyingInf≤k′

i (f) ≤ δ′ and letg = T1−γf . Note that

Infi(g) ≤
∑

S:i∈S,|S|≤k′

f̂(S)2 + (1− γ)2k′
∑

S:i∈S,|S|≤k′

f̂(S)2 < δ′ + δ′ = δ

for all i.
It now follows thatSρ(g) ≤ 1− 2

π arccos ρ + ε/4 and therefore

Sρ(f) = Sρ(g) +
∑
S

(ρ|S|(1− (1− γ)|S|))f̂(S)2 < 1− 2
π arccos ρ + 3ε/4.

Second, we need to treat the case of negativeρ:

Proposition 7.4. The Majority Is Stablest theorem is true ‘in reverse’ forρ ∈ (−1, 0]. That is,Sρ(f) ≥
1− 2

π arccos ρ− ε, and furthermore, the assumptionE[f ] = 0 becomes unnecessary.

Proof. Let f : {−1, 1}n → [−1, 1] satisfyInfi(f) ≤ δ for all i. Let g be the odd part off , g(x) = (f(x)−
f(−x))/2 =

∑
|S| odd f̂(S)xS . ThenE[g] = 0, Infi(g) ≤ Infi(f) for all i, andSρ(f) ≥ Sρ(g) = −S−ρ(g),

which exceeds−(1− 2
π arccos ρ + ε) by the Majority Is Stablest theorem applied tog.

Combining the above two propositions we get the result that will be used in our reduction from Unique
Label Cover to 2-bit CSPs:
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Proposition 7.5. Fix ρ ∈ (−1, 0]. Then for anyε > 0 there is a small enoughδ = δ(ε, ρ) > 0 and a large
enoughk = k(ε, ρ) such that iff : {−1, 1}n → [−1, 1] is any function satisfying

Inf≤k
i (f) ≤ δ for all i = 1 . . . n,

then
Sρ(f) ≥ 1− 2

π arccos ρ− ε.

8 Reduction from Unique Label Cover to MAX-CUT

In this section we prove Theorem 1.

8.1 The PCP

We construct a PCP that reads two bits from the proof and accepts if and only if the two bits are unequal.
The completeness and soundness arec ands respectively. This implies that MAX-CUT is NP-hard to ap-
proximate within any factor greater thans/c. The reduction from the PCP to MAX-CUT is straightforward
and can be considered standard: Let the bits in the proof be vertices of a graph and the tests of the verifier be
the edges of the graph. The{−1, 1} assignment to bits in the proof corresponds to a partition of the graph
into two parts and the tests for which the verifier accepts correspond to the edges cut by this partition.

The completeness and soundness properties of the PCP rely on the Unique Games Conjecture and the
Majority Is Stablest theorem. The Unique Label Cover instance given by the Unique Games Conjecture
serves as the PCP outer verifier. The soundness of the Long Code-based inner verifier is implied by the
Majority Is Stablest theorem.

Before we explain the PCP test, we need some notation. Forx ∈ {−1, 1}M and a bijectionσ : [M ] →
[M ], let x ◦ σ denote the string(xσ(1), xσ(2), . . . , xσ(M)). For x, µ ∈ {−1, 1}M , let xµ denote theM -bit
string that is the coordinatewise product ofx andµ.

The PCP verifier is given the Unique Label Cover instanceL(V,W,E, [M ], {σv,w}(v,w)∈E) given by
the Unique Games Conjecture. Using a result from [38] we may assume the bipartite graph is regular on the
V side, so that choosing a uniformly random vertexv ∈ V and a random neighborw of v yields a uniformly
random edge(u,w). We assume that the Unique Label Cover instance is either(1−η)-satisfiable or at most
γ-satisfiable, where we will choose the values ofη andγ to be sufficiently small later. The verifier expects
as a proof the Long Code of the label of every vertexw ∈ W . The verifier is parameterized byρ ∈ (−1, 0).

The PCP verifier for MAX-CUT with parameter −1 < ρ < 0

• Pick a vertexv ∈ V at random and two of its neighborsw,w′ ∈ W at random. Letσ = σv,w and
σ′ = σv,w′ be the respective bijections for edges(v, w) and(v, w′).

• Let fw andfw′ be the supposed Long Codes of the labels ofw andw′ respectively.

• Pickx ∈ {−1, 1}M at random.

• Pickµ ∈ {−1, 1}M by choosing each coordinate independently to be1 with probability 1
2 + 1

2ρ < 1
2

and−1 with probability 1
2 −

1
2ρ > 1

2 .

• Accept iff
fw(x ◦ σ) 6= fw′((x ◦ σ′)µ).
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8.2 Completeness

It is easy to see that the completeness of the verifier is at least(1 − 2η)(1
2 −

1
2ρ). Assume that the Label

Cover instance has a labeling that satisfies a1−η fraction of edges. Take this labeling and encode the labels
via Long Codes. We will show that the verifier accepts with probability at least(1− 2η)(1

2 −
1
2ρ).

With probability at least1 − 2η, both the edges(v, w) and(v, w′) are satisfied by the labeling. Let the
labels ofv, w,w′ bei, j, j′ ∈ [M ] respectively, so that by the acceptance conditionσ(j) = i = σ′(j′). The
functionsfw, fw′ are the Long Codes ofj, j′ respectively. Hence

fw(x ◦ σ) = xσ(j) = xi, fw′((x ◦ σ′)µ) = xσ′(j′)µj′ = xiµj′

Thus the two bits are unequal (and the test accepts) iffµj′ = −1 which happens with probability12 −
1
2ρ.

8.3 Soundness

We prove soundness in the contrapositive direction, as is usual in PCP proofs: Assume that some supposed
Long Codesfw cause the PCP verifier to accept with probability at least(arccos ρ)/π + ε. We use Fourier
methods to “list-decode” the Long Codes and extract a labeling for the Unique Label Cover instance that
satisfies someγ′ = γ′(ε, ρ) fraction of its edges. Since this constant does not depend on the Label Cover
label set sizeM , we can takeM large enough in the Unique Games Conjecture to get soundnessγ < γ′, as
required.

We first analyze the probability of acceptance for the PCP verifier by arithmetizing it as follows:

Pr[acc] = E
v,w,w′,x,µ

[
1
2
− 1

2
fw(x ◦ σ)fw′((xµ) ◦ σ′)

]
((xµ) ◦ σ′ has the same distrib. as(x ◦ σ′)µ)

=
1
2
− 1

2
· E

v,x,µ

[
E

w,w′
[fw(x ◦ σ)fw′((xµ) ◦ σ′)]

]
=

1
2
− 1

2
· E

v,x,µ

[
E
w

[fw(x ◦ σ)] · E
w′

[fw′((xµ) ◦ σ′)]
]

(using independence ofw andw′)

=
1
2
− 1

2
· E

v,x,µ
[gv(x)gv(xµ)] (where we definegv(z) = E

w∼v
[fw(z ◦ σv,w)])

=
1
2
− 1

2
·E

v
[Sρ(gv)]. (6)

(The reader may think ofgv as “polling” v’s neighborsw on its labeling.) Now if Pr[acc] ≥ (arccos ρ)/π+ε,
then for at least anε/2 fraction ofv ∈ V ,

Sρ(gv) ≤ 1− 2
π arccos ρ− ε.

We say that such a vertexv is “good”. For every goodv, we apply the Majority Is Stablest theorem in
the guise of Proposition 7.5 to conclude thatgv has at least one coordinate, sayj, with k-degree influence
at leastδ. We shall give the labelj to v. In this way, all goodv ∈ V are labeled. For a goodv, since
Inf≤k

j (gv) ≥ δ, we have

δ ≤
∑
S3j
|S|≤k

ĝv(S)2 =
∑
S3j
|S|≤k

E
w

[f̂w(σ−1(S))]2 ≤
∑
S3j
|S|≤k

E
w

[f̂w(σ−1(S))2] = E
w

[
Inf≤k

σ−1(j)
(fw)

]
. (7)

For everyw ∈ W , define the set of candidate labels forw to be

Cand[w] = {i ∈ [M ] : Inf≤k
i (fw) ≥ δ/2}.
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Since
∑

i Inf≤k
i (fw) ≤ k, we conclude that|Cand[w]| ≤ 2k/δ. Inequality (7) implies that for every goodv,

at least aδ/2 fraction of neighborsw of v haveInf≤k

σ−1
v,w(j)

(f) ≥ δ/2, and thereforeσ−1(j) ∈ Cand[w]. Now

we label each vertexw ∈ W by choosing a random element of Cand[w] (or any label if this set is empty). It
follows that among the set of edges adjacent to good verticesv, at least a(δ/2)(δ/2k)-fraction are satisfied
in expectation. Thus it follows that there is labeling for all vertices which satisfies aγ′ = (ε/2)(δ/2)(δ/2k)
fraction of all edges. This completes the proof of soundness.

8.4 Completion of the proof of Theorem 1

We have just shown how to reduce Unique Label Cover instances to MAX-CUT instances with completeness
(1
2 −

1
2ρ)(1− 2η) and soundness(arccos ρ)/π + ε, whereη andε can be made arbitrarily small. The main

statement of Theorem 1 follows by slightly modifyingρ to move the completeness correction(1− 2η) into
the soundness correctionε. This result implies a hardness of approximation factor of

arccos(ρ)/π
1
2 −

1
2ρ

+ ε

for any constant−1 < ρ < 0 and ε > 0; choosingρ = ρ∗ as stated in the theorem yields the desired
hardness factorαGW + ε.

9 Other 2-bit CSPs

The same method used to prove hardness of approximation for MAX-CUT can be used to give improved
hardness of approximation for another important 2-bit CSP, namely MAX-2SAT. Recall that the input to a
MAX-2SAT problem is a collection of clauses, i.e. disjunctions, of at most 2 variables; the goal is to find an
assignment that satisfies as many clauses as possible.

The natural inner verifier test for MAX-2SAT is this: With probability1/2 testfw(x◦σ)∨fw′((x◦σ′)µ);
with probability1/2 test−fw(x ◦ σ) ∨−fw′((x ◦ σ′)µ). It is easy to check that this leads to an acceptance
probability of 3

4 −
1
4Sρ(gv) in place of (6). The dictator passes this test with probability3

4 −
1
4ρ; the

Majority Is Stablest theorem implies that no function with small low-degree influences can pass this test
with probability exceeding34 −

1
4(1− 2

π arccos ρ) + ε. This leads to a hardness of approximation ration of

β = min
−1<ρ<0

3
4 −

1
4(1− 2

π arccos ρ)
3
4 −

1
4ρ

≈ .943943. (8)

This is our Theorem 3.
Note thatβ is smaller than the best unconditional hardness factor known for MAX-2SAT,21/22 ≈

.954545, due to H̊astad [32] (using the gadget of Bellare, Goldreich, and Sudan [2]); as well, the best
algorithm known for MAX-2SAT, due to Lewin, Livnat, and Zwick [41], achieves an approximation ratio
of .9401 which is close to and smaller thanβ.

Our methodology does not seem to improve the hardness factors for other 2-bit CSPs beyondαGW.
Consider the MAX-2ConjSAT problem, in which the input is a collection ofconjunctionsof (at most) 2
variables and the goal is to satisfy as many conjunctions as possible. The natural inner verifier test is this:
With probability1/2 testfw(x◦σ)∧fw′((x◦σ′)µ); with probability1/2 test−fw(x◦σ)∧−fw′((x◦σ′)µ).
This leads to an acceptance probability of1

4 −
1
4Sρ(gv). By the Majority Is Stablest theorem, we get the

same hardness of approximation for MAX-2ConjSAT as we do for MAX-CUT,αGW, since(1
4 −

1
4(1 −

2
π arccos ρ))/(1

4 −
1
4ρ) = ((arccos ρ)/π)/(1

2 −
1
2ρ). In some sense this may not be surprising since the best

algorithm known for this problem ([41] again) already achieves an approximation ratio of .8740, which is
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nearlyαGW. In fact, the same paper achieves .8740 even for the most general problem, MAX-2CSP in which
arbitrary 2-bit constraints are allowed.

Motivated by these results we are led to conjecture that MAX-2SATis polynomial-time approximable to
within any factor less thanβ and that MAX-2CSP, MAX-DICUT, MAX-2ConjSAT, etc. are all polynomial-
time approximable to within any factor less thanαGW. We will now show that these boundsare achievable
for a slight weakening of the problems.

Definition 12. Given a 2-bit CSP, by itsbalancedversion we mean the problem with the restriction that
every input instance{C1, . . . , Cm} has the following property: for eachi = 1 . . . n, the expected number
of constraints satisfied whenxi is set to1 and the other variables are set uniformly at random is equal to
the expected number of constraints satisfied whenxi is set to−1 and the other variables are set uniformly
at random.

As an example, Balanced-MAX-2SAT is the MAX-2SAT problem with the additional constraint that
each variable appears positively and negatively in equally many clauses (in the weighted case, with equal
total weight).

We contend that the balanced versions of 2-bit CSPs ought to be equally hard as their general versions;
the intuition is that if more constraints are expected to be satisfied ifxi is set to, say,1 rather than−1, it
is a “free hint” that thexi should be set to TRUE. Note that the reductions we suggest from Unique Label
Cover to MAX-2SAT, MAX-2ConjSAT, etc. produce balanced instances, and thus we get the same hardness
of approximation bounds,β andαGW, for the balanced problems (conditional on the two conjectures).

We can prove unconditionally that Balanced-MAX-2SAT is polynomial-time approximable to within
any factor less thanβ, and that MAX-2CSP, MAX-DICUT, MAX-2ConjSAT, MAX-2LIN, etc. are all
polynomial-time approximable to within any factor less thanαGW. By way of illustration, we prove Theo-
rem 4:

Proof. The algorithm is essentially the same as that used by Goemans-Williamson. The input is a collection
of clausesC of the form(y ∨ z), wherey = rixi andz = rjxj for some variablesxi andxj and signs
ri andrj . Arithmetizing each clause with−1 ∨ −1 = 1, −1 ∨ 1 = 1, 1 ∨ −1 = 1, 1 ∨ 1 = 0, we get
3
4 −

1
4y − 1

4z − 1
4y · z. Thus we have the objective function

OBJ =
∑

C=(y∨z)

3
4 −

1
4y − 1

4z − 1
4y · z.

The condition that the instance is balanced is precisely equivalent to the condition that the linear terms
cancel out. (This holds true by definition for all balanced 2-bit CSP problems.) Thus in fact

OBJ =
∑

C=(y∨z)

3
4 −

1
4y · z.

Hence the optimum value of the Balanced-MAX-2SAT instance is

OPT = max OBJ subject toxi ∈ {−1, 1} for all i.

Following Goemans-Williamson we directly relax this to a semidefinite program by replacingxi with a
high-dimensional vectorvi, subject tovi · vi = 1, and solving; in polynomial time we can find a solution
{vi} which achievesSDP− ε, whereSDP denotes the optimal value of the semidefinite program. We now
round by pickingr to be a random Gaussian vector and settingxi = sgn(r · vi). Recalling from [26] that
this givesE[xi · xj ] = 1− 2

π arccos(vi · vj), we have for any clause(y ∨ z) = (rixi ∨ rjxj),

E[34 −
1
4(rixi) · (rjxj)] = 3

4 −
1
4(1− 2

π arccos(rivi · rjvj)) ≥ β(3
4 −

1
4(rivi · rjvj)),
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where we have used the definition ofβ and the fact that it is unchanged if we letρ range over[−1, 1]. It
follows thatE[OBJ] ≥ βSDP ≥ βOPT and the proof is complete.

10 Special cases of the Majority Is Stablest theorem

In this section we describe special cases of the Majority Is Stablest theorem which are of particular interest,
and have elementary proofs.

We will need the following versions of the Central Limit Theorem with error bounds: the first is a
multidimensional version from [5, Corollary 16.3]; the second is the (non-uniform) version of the Berry-
Esseen theorem [20]:

Theorem 16. LetX1, . . . ,Xn be independent random variables taking values inRk satisfying:

• E[Xj ] = 0, j = 1 . . . n;

• n−1
∑n

j=1 Cov(Xj) = V , whereCov denotes the variance-covariance matrix;

• λ is the smallest eigenvalue ofV , Λ is the largest eigenvalue ofV ;

• ρ3 = n−1
∑n

j=1 E[|Xj |3] < ∞.

Let Qn denote the distribution ofn−1/2(X1 + · · · + Xn), let Φ0,V denote the distribution of thek-
dimensional Gaussian with mean 0 and variance-covariance matrixV , and letη = Cλ−3/2ρ3n

−1/2, where
C is a certain universal constant.

Then for any Borel setA,
|Qn(A)− Φ0,V (A)| ≤ η + B(A),

whereB(A) is the following measure of the boundary ofA: B(A) = 2 supy∈Rk Φ0,V ((∂A)η′ + y), where

η′ = Λ1/2η and(∂A)η′ denotes the set of points within distanceη′ of the topological boundary ofA.

Theorem 17. (Berry-Esseen) LetX1, . . . , Xn be a sequence of independent random variables satisfying
E[Xj ] = 0 for all j, (

∑n
j=1 E[X2

j ])1/2 = σ, and
∑n

j=1 E[|Xj |3] = ρ3. LetQ = σ−1(X1 + · · ·+ Xn), let
F denote the cumulative distribution function ofQ, F (x) = Pr[Q ≤ x], and letΦ denote the cumulative
distribution function of a standard normal random variable. Then

sup
x

(1 + |x|3)|F (x)− Φ(x)| ≤ O(ρ3/σ3).

In particular, if A is any interval inR, |Pr[Q ∈ A]− Pr[N(0, 1) ∈ A]| ≤ O(ρ3/σ3).

10.1 Weighted majorities

In this subsection we prove Theorem 5, which makes the point that the majority function is not unique as a
noise stability maximizer, in the sense that all weighted majority functions with small influences have the
same noise stability, i.e.,1− 2

π arccos ρ.

Theorem 5 follows from the following two propositions.

Proposition 10.1. Let f : {−1, 1}n → {−1, 1} be any balanced threshold function,f(x) = sgn(a1x1 +
· · · anxn)1, where

∑
a2

i = 1. Letδ = max{|ai|}. Then for allρ ∈ [−1, 1],

Sρ(f) = 1− 2
π arccos ρ±O(δ(1− |ρ|)−3/2).

1Without loss of generality we assume the linear form is never 0.

22



Proposition 10.2. Let f : {−1, 1}n → {−1, 1} be any balanced threshold function,f(x) = sgn(a1x1 +
· · · anxn), where

∑
a2

i = 1. Letδ = max{|ai|}. Thenmaxi {Infi(f)} ≥ Ω(δ).

We prove the two propositions below.

Proof of Proposition 10.1.Sincef is antisymmetric, we only need to prove the result forρ ∈ [0, 1]. Let x
andy beρ-correlated uniformly random strings, letXj = ajxj , Yj = ajyj , andXj = (Xj , Yj) ∈ R2. Let
Qn denote the distribution ofX1 + · · ·+Xn = n−1/2(

√
nX1 + · · ·+

√
nXn). SinceSρ(f) = 2 Pr[f(x) =

f(y)]− 1, we are interested in computing2Qn(A++ ∪A−−)− 1, whereA++ denotes the positive quadrant
of R2 andA−− denotes the opposite quadrant.

We shall apply Theorem 16. We haveE[Xj ] = 0 for all j. We haveCov(
√

nXj) = na2
i

[
1 ρ
ρ 1

]
, and

thusV = n−1
∑

Cov(
√

nXj) =
[

1 ρ
ρ 1

]
. The eigenvalues ofV areλ = 1 − ρ andΛ = 1 + ρ. Since

|
√

nXj | is
√

2n |ai| with probability 1,ρ3 = n−1
∑

E[|
√

nXj |3] = 23/2n1/2
∑
|ai|3 ≤ 23/2n1/2δ. Thus

η = O(1)δ(1− ρ)−3/2 andη′ = (1 + ρ)1/2η = O(η).
It is well known (see, e.g., [1, 26.3.19]) thatΦ0,V (A++) = Φ0,V (A−−) = 1/2 − (1/2π) arccos(ρ),

and it is easy to check thatB(A++ ∪ A−−) = O(η′). Thus by Theorem 16 we getQn(A++ ∪ A−−) =
1− (arccos ρ)/π ±O(η) and the theorem follows.

Proof of Proposition 10.2.Let C be the constant hidden in theO(·) in the final part of the Berry-Esseen
theorem, Theorem 17. For simplicity, we assume thatC is a positive integer. We prove Proposition 10.2
first in the case where

1− 100C2δ2 ≥ 1/4, (9)

namely whereδ is smaller than some constant.
We may assume without loss of generality thatδ = a1 ≥ a2 ≥ · · · ≥ an ≥ 0. LettingXi denote the

random variableaixi, we will prove thatInf1(f) ≥ Ω(δ) by proving that

Pr[|X2 + · · ·+ Xn| ≤ δ] ≥ Ω(δ). (10)

Let m = 100C2 + 2. We will split into two cases, depending on the magnitude ofam. In either case,
we shall apply the Berry-Esseen theorem to the sequenceXm, . . . , Xn. We have

σ = (
n∑

j=m

E[Xj ]2)1/2 = (
n∑

j=m

a2
j )

1/2 ≥ (1− (m− 2)δ2)1/2 ≥ (1− 100C2δ2)1/2 ≥ 1/2,

where we have used (9). We also haveρ3 =
∑n

j=m E[|Xj |3] ≤
∑n

j=m amE[X2
j ] = amσ2, so the error term

in the conclusion of the theorem,O(ρ3/σ3), is at mostCam/σ ≤ 2Cam.

Case 1:am ≤ 1
10C δ. In this case, by the Berry-Esseen theorem we have that

Pr[Xm + · · ·+ Xn ∈ [0, δ]] ≥ Φ([0, δ])− 2Cam ≥ δφ(δ)− δ/5 ≥ .04δ,

where we have used the fact thatφ(δ) ≥ .24 for δ ≤ 1. On the other hand, sincea2, . . . , am−1 are all at
mostδ, it is easy to fix particular signsyi ∈ {−1, 1} such that

∑m−1
i=2 aiyi ∈ [−δ, 0]. These signs occur with

probability2−m+2, which is at least2−100C2
. Thus with probability at least.04 · 2−100C2

δ = Ω(δ) both
events occur, and|X2 + · · ·+ Xn| ≤ δ as desired.
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Case 2:am ≥ 1
10C δ. In this case, we apply the Berry-Esseen theorem to the interval[−10Cδ, 10Cδ] and

merely use the fact thatam ≤ δ. We conclude that

Pr[Xm + · · ·+ Xn ∈ [−10Cδ, 10Cδ]] ≥ Φ([−10Cδ, 10Cδ])− 2Cδ

≥ 20Cδ · φ(10Cδ)− 2Cδ ≥ 20Cδ · 1√
2π

(1− (10Cδ)2/2)− 2Cδ ≥ 4Cδ,

where we have used (9) in the last step to infer1 − (10Cδ)2/2 ≥ 5/8. GivenXm + · · · + Xn = t ∈
[−10Cδ, 10Cδ], it is easy to choose particular signsy2, . . . , ym−1 such thatt +

∑m−1
i=2 aiyi ∈ [−δ, δ]. This

uses the fact that eachai is at least 1
10C δ and hence

∑m−1
i=2 ai ≥ 100C2 1

10C δ ≥ 10Cδ; it also uses the fact

that eachai is at mostδ. Once again, these signs occur forx2, . . . , xm−1 with probability at least2−100C2
.

Thus|X2 + · · ·+ Xn| ≤ δ happens with probability at least4C2−100C2
δ = Ω(δ), as desired.

Let us now deal with the case where1− 100C2δ2 < 1
4 , namely whereδ >

√
3

20C . Letm be the first index
for which |am| ≤ c

C5
, wherec is a small enough global constant to be chosen later. If such anm does not

exist, we setm = n + 1.
We prove below that

Pr[|
n∑

i=m

Xi| ≤ δ] ≥ Pr[|
n∑

i=m

Xi| ≤
√

3
20C

] > Ω(1). (11)

Since by the choice ofm it must be bounded from above by a global constant, (11) implies (10) by arguments
similar to those used in case 1 above, and thus completes the proof.

If
√
|
∑n

m a2
i | ≤

√
3

40C , (11) follows immediately from Chernoff’s inequality. Otherwise, we use the
Berry-Esseen theorem to obtain that

Pr[|
n∑

i=m

Xi| ≤
√

3
20C

] ≥ Pr

 |∑n
i=m Xi|√∑n

i=m a2
i

≤
√

3
20C


≥ Pr

[
|N(0, 1)| ≤

√
3

20C

]
− C ·

( n∑
i=m

|a3
i |

)
·
(40C√

3

)3
(using Berry-Esseen)

≥ Ω(
1
C

)− Ω(C4) · c

C5

(since
∑n

m |ai|3 ≤ am ·
∑n

m |ai|2 ≤ |am|)

≥ Ω
( 1

C5

)
(for c small enough.)

This completes the proof.

10.2 Bounds for the weight on the first level

Applying the Majority Is Stablest theorem for extremely smallρ, it follows that functions with small influ-
ences have no more weight at level 1 than Majority has, viz.,2

π (up too(1)). This fact, stated in Theorem 6,
has a very elementary proof which also provides a better bound on the additive term corresponding to the
maximal influence:
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Proof of Theorem 6.Let ` denote the linear part off , `(x) =
∑n

i=1 f̂({i})xi. We have that|f̂({i})| ≤
Infi(f) ≤ δ for all i. Now

∑
|S|=1 f̂(S)2 = ‖`‖2

2 and

‖`‖2
2 = 〈f, `〉

≤ ‖f‖∞‖`‖1

≤ ‖`‖1.

Since all of`’s coefficients are small, smaller thanδ, we expect̀ to behave like a Gaussian with mean
zero and standard deviation‖`‖2; such a Gaussian hasL1-norm equal to

√
2/π‖`‖2. Several error bounds

on the Central Limit Theorem exist to this effect; the sharpest is a result of König, Scḧutt, and Tomczak-
Jaegermann [40] which implies that‖`‖1 ≤

√
2/π‖`‖2 + (C/2)δ. Thus

‖`‖2
2 ≤

√
2/π‖`‖2 + (C/2)δ,

hence‖`‖2 ≤
√

1/2π +
√

1/2π + Cδ/2 and therefore‖`‖2
2 ≤ 2/π + Cδ.

In the following we improve the bound on the weight of the first level for not necessarily balanced
functions with low influences. This result should be compared to the following theorem of Talagrand [53]:

Theorem 18. (Talagrand) Supposef : {−1, 1}n → {−1, 1} satisfiesPr[f = 1] = p ≤ 1/2. Then∑
|S|=1

f̂(S)2 ≤ O(p2 log(1/p)).

Proof. It will be more convenient to work with the[0, 1] valued-functiong = 1
2 + 1

2f and prove that∑
|S|=1 ĝ(S)2 ≤

(
U(µ) + max{1,

√
|Φ−1(µ)|}O(

√
δ)

)2
. Note thatµ = E[g]. We will assume without

loss of generality thatµ ≥ 1/2 (otherwise look at12 −
1
2f ).

Let τ denote(
∑

|S|=1 ĝ(S)2)1/2. As in the proof of Theorem 6, we let` be the linear part ofg and
we know that all of̀ ’s coefficients are at mostδ/2. The functionL = `/τ =

∑
S ĝ(S)χS/τ is a sum of

independent random variablesXS = ĝ(S)χS/τ . ClearlyE[XS ] = 0 for all S. Moreover,
∑

S E[X2
S ] = 1

and
∑

S E[X3
S ] ≤ maxS |XS | ≤ δ/(2τ).

Now τ2 = 〈g, `〉 and thereforeτ = 〈g, L〉. We will show below that

τ = 〈g, L〉 ≤ U(µ) + max{1, |Φ−1(µ)|}O(δ/τ). (12)

Multiplying by τ implies that(
τ − U(µ)

2

)2

≤ U2(µ)/4 + max{1, |Φ−1(µ)|}O(δ).

which in turn implies that
τ ≤ U(µ) + max{1,

√
|Φ−1(µ)|}O(

√
δ)

Finally, we will conclude that

τ2 ≤
(
U(µ) + max{1,

√
|Φ−1(µ)|}O(

√
δ)

)2
.

We now prove (12). Lett be a number such thatPr[L > t] = µ. Sinceg is a [0, 1] valued-function it
follows that〈g, L〉 ≤ E[1L>tL].
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Letting F denote the cumulative distribution function ofL, the Berry-Esseen theorem implies that
supx(1 + |x|3)|F (x)− Φ(x)| ≤ O(δ/τ). In particular,|Pr[L > t]− Pr[N(0, 1) > t]| ≤ O(δ/(τ(1 + t3))
and hence

|µ− Φ(−t)| ≤ O

(
δ

τ(1 + t3)

)
(13)

Note that the functionU satisfies

U ′(x) = φ′(Φ−1(x)) · ((Φ−1(x))′) = −Φ−1(x)φ(Φ−1(x))
1

φ(Φ−1(x))
= −Φ−1(x).

ThereforeU ′′(x) = −1/φ(Φ−1(x)) = −1/U(x). It follows thatU is concave.
We now estimateU(µ)− φ(t). SinceU ′ is a monotone function, it follows that

|U(µ)− φ(t)| = |U(Φ(−t))− U(µ)| ≤ |Φ(−t)− µ|max{|U ′(Φ(−t))|, |U ′(µ)|} (14)

≤ max{|t|,Φ−1(µ)}O(δ/(τ(1 + t3))) ≤ max{1, |Φ−1(µ)|}O(δ/τ).

Further,

〈g, L〉 ≤ E[1L>tL] = tPr[L > t] +
∫ ∞

t
Pr[L > x] dx

= tPr[L > t] +
∫ ∞

t
Pr[N(0, 1) > x] dx +

∫ ∞

t
(F (x)− Φ(x)) dx

= tµ− tΦ(−t) + φ(t) +
∫ ∞

t
(F (x)− Φ(x)) dx

≤ φ(t) + |t| · |µ− Φ(−t)|+
∫ ∞

t
|F (x)− Φ(x)| dx

≤ φ(t) +
|t|

1 + |t|3
O(δ/τ) + O(δ/τ)

∫ ∞

t
1/(1 + |x|3) dx ((13) and Berry-Esseen)

= φ(t) + O

(
δ

τ(1 + t2)

)
(by (14))

≤ U(µ) + max{1, |Φ−1(µ)|}O(δ/τ).

which proves (12) as needed.

11 Constraint satisfaction problems over[q]

So far in this paper we have mostly focused on 2-CSPs in which the variables are binary — i.e., take values
in the alphabet{−1, 1}. The exception is the Unique Label Cover problem, which can be thought of as a
2-CSP where the set of values a variable can take is very large. In this section we develop our techniques for
2-CSPs over large alphabets; specifically, the alphabet[q] = {1, 2, . . . , q} for q ≥ 2. We will be concerned
in particular with the MAX-2LIN(q) and MAX-q-CUT (i.e. Approximate Graphq-Coloring) problems, and
we will mostly be interested in the asymptotics whenq →∞.

11.1 Γ-MAX-2LIN( q) and MAX- q-CUT

The MAX-q-CUT problem is a natural generalization of MAX-CUT; its formal definition is as follows:

Definition 13 (MAX- q-CUT). Given a weighted graphG = (V,W ) whereW : V × V → R+, theMAX-
q-CUT problem is that of finding a partition ofV into q setsV1, . . . , Vq in such a way as to maximize the
weight of edges between the different parts,

∑
i6=j

∑
v∈Vi,w∈Vj

W (v, w).
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The MAX-2LIN(q) problem is defined as follows:

Definition 14 (MAX-2LIN( q)). Given a system ofm linear equations modq each having at most2 vari-
ables, along with nonnegative weightsw1, . . . , wm for these equations, theMAX-2LIN( q) problem is to find
an assignment to the variables maximizing the total weight of satisfied equations.

Observe that the MAX-2-CUT problem can be viewed as a special case of the MAX-2LIN(2) problem,
by associating the vertices with variables and the edges with equationsxu − xv = 1. However for largerq,
MAX- q-CUT is more naturally viewed as a special case of the problem of finding assignments for 2-variable
linear inequationsmodq.

The best approximation algorithm for MAX-q-CUT was obtained by Frieze and Jerrum in [25]; this
paper gives a(1− 1/q + 2(ln q)/q2)-approximation. As for the approximability of MAX-2LIN(q), the best
algorithm known was given very recently by Charikar, Makarychev, and Makarychev in [10], as discussed in
Subsection 6.3 (their algorithm is actually for the more general problem of not-necessarily-bipartite Unique
Label Cover with label sizeq). When the optimal fraction of satisfiable constraints is1−η, their semidefinite
programming algorithm produces a solution satisfying about a fraction(1/q)η/(2−3η). The best known NP-
hardness results come from a recent work of Feige and Reichman [21]. They show that it is NP-hard to
approximate MAX-2LIN(q) to within a factor of1/qβ for some universal constantβ > 0; however this
hardness is located at a gap ofε vs.ε/qβ. In particular, given an instance with optimum fraction1−η, Feige
and Reichman can only show that it is NP-hard to find a solution with value1−Cη for some relatively small
constantC > 1. Thus with current knowledge, given a(1− η)-satisfiable instance, we don’t know whether
one can satisfy almost all the constraints in polynomial time, or whether it is impossible to go beyond a very
small fraction of them.

A special case of the MAX-2LIN(q) problem which seems somewhat easier algorithmically occurs when
all the equations in the instance are of the formxi − xj = cij .

Definition 15 (Γ-MAX-2LIN( q)). Γ-MAX-2LIN( q) is the special case of MAX-2LIN(q) in which each
equation is of the formxi − xj = cij .

Our hardness results hold even forΓ-MAX-2LIN( q). TheΓ notation is essentially from H̊astad [32];
we use it because our results actually hold equally well for the problem of satisfying equations of the form
xix

−1
j = cij over any fixed abelian groupΓ of orderq, not justZq.

11.2 Analytic notions

We would like to generalize our notions of noise stability, influences, and Fourier expansions toq-ary func-
tions,f : [q]n → [q]. Some of the definitions below were already given in Subsection 4.2, but we repeat
them here for clarity and convenience.

The way we treat the finite set[q] in the domain and in the range ofq-ary functions will be different.
In the domain,[q] and [q]n will be treated simply as finite probability spaces under the uniform measure,
with no extra structure. In the range, we would like to embed[q] into a larger space. Recall that for boolean
function we identified the range with the two points−1, 1 ∈ R and then considered relaxed functions taking
values in their convex hull. In theq-ary case we identify the elements of[q] with the standard basis vectors
in Rq. A relaxedq-ary function will thus map[q]n into the simplex which is the convex hull of these vectors.

Definition 16. Let ∆q denote the(q − 1)-dimensional simplex naturally embedded inRq; i.e., the convex
hull of theq standard basis vectors. We call functionsf : [q]n → ∆q relaxedq-ary functions.

We will also define the notion of a balanced function:
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Definition 17. A functionf : [q]n → [q] is called balancedif it obtains each valuei ∈ [q] in its range
equally often. A relaxed functionf : [q]n → ∆q is calledbalancedif E[f(x)] = (1/q, . . . , 1/q).

Since a relaxedq-ary functionf maps[q]n into Rq, it can be viewed as a vectorf = (f1, . . . , fq) of
real-valued functions over[q]n. We define the noise stability both for real-valued and∆q-valued functions.

Definition 18. Let− 1
q−1 ≤ ρ ≤ 1 and letx andy be[q]n-valued random variables. We say thatx andy are

a ρ-correlated pairif x is uniformly distributed on[q]n, andy is formed fromx by choosing eachyi so that
Pr[yi = a] = δ{xi=a}ρ + 1−ρ

q for eacha, independently for eachi. Note that for0 ≤ ρ ≤ 1, it is equivalent
to say that each coordinateyi is independently chosen to bexi with probabilityρ and is a uniformly random
element of[q] otherwise.

Definition 19. Letf : [q]n → ∆q and let− 1
q−1 ≤ ρ ≤ 1. Thenoise stability off atρ is defined to be

Sρ(f) = E
x,y

[〈f(x), f(y)〉],

wherex andy are aρ-correlated pair. Equivalently, we may define the noise stability of functionsg : [q]n →
R via

Sρ(g) = E
x,y

[g(x)g(y)]

and then denoting byf i theith coordinate projection off , we haveSρ(f) =
∑n

i=1 Sρ(f i).

We remark that whenf ’s range is simply[q] (as embedded in∆q), the quantitySρ(f) is simply the
probability thatf(x) = f(y) whenx andy are aρ-correlated pair. For example, the noise stability atρ of a
dictator functionf : [q]n → [q] is equal toρ + 1

q (1− ρ).

The definition of influences is very similar to that in the boolean case:

Definition 20. Letf : [q]n → ∆q. For 1 ≤ i ≤ n, theinfluence of theith coordinate onf is defined to be

Infi(f) = E
x1,...,xi−1,xi+1,...,xn

[Varxi [f
i(x1, . . . , xn)]],

whereVar[f ] denotesE[〈f, f〉]− 〈E[f ],E[f ]〉.

The spaceX of all functionsf : [q]n → Rd (we use eitherd = q or d = 1) is an inner product space
with inner product

〈f, g〉 = Ex[〈f(x), g(x)〉]

and associated norm denoted‖ · ‖. Givenx ∈ [q]n, write xS for {xi : i ∈ S}. It is well known thatX can
be written as an orthogonal sum of spacesX = ⊕S⊂[n]XS , whereXS denotes the space of all functions
f : [q]n → Rd such that

• f(x) depends only onxS for all x, and

• f is orthogonal to all functions in the spacesXS′ for S′ ( S.

Thus we can write anyf : [q]n → Rq as

f(x) =
∑

S⊂[n]

fS(x), (15)
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wherefS(x) is the projection off onto the spaceXS . Parseval’s identity holds for this expansion:

‖f‖2
2 =

∑
S⊆[n]

‖fS‖2
2.

For− 1
q−1 ≤ ρ ≤ 1 we can define the Bonami-Beckner onX in the obvious way,Tρ(f)(x) = Ey[f(y)],

wherey is ρ-correlated tox. We have that iff : [q]n → ∆q thenTρf also has range∆q, and that iff
is balanced then so too isTρf . We also have thatSρ(f) = 〈f, Tρf〉. The formula for noise stability from
Proposition 7.1 holds in this setting:

Sρ(f) =
∑

S⊆[n]

ρ|S|‖fS‖2
2; (16)

this follows from the following easy proposition, familiar from the boolean case:

Proposition 11.1.
Tρ(f) =

∑
S⊆[n]

ρ|S|fS .

Proof. It is easy to see that for eachx, (Tρf)(x) is a polynomial inρ. Therefore it suffices to prove the
claim for0 ≤ ρ ≤ 1. Clearly,Tρ is linear and therefore it suffices to show that iff ∈ XS thenTρf = ρ|S|f .
From the definition of the spaceXS it follows that for every subsetS′ ( S and for every vector of valuesz
of size|S′| it holds thatE[f(y) | yS′ = z] = 0. Now for 0 ≤ ρ ≤ 1,

Tρf(x) =
∑
S′⊆S

ρ|S
′|(1− ρ)|S|−|S

′| ·E[f(y) | yS′ = xS′ ] = ρ|S|f(x),

as needed.

In a similar fashion, it is easy to verify that a formula similar to (5) holds in theq-ary case:

Infi(f) =
∑
S3i

‖fS‖2
2.

Finally, we define low-degree influences as in Definition 11:

Proposition 11.2. Letf : [q]n → Rd andk ≥ 1. Then we define

Inf≤k
i (f) =

∑
S3i
|S|≤k

‖fS‖2
2.

11.3 Stability estimates

In this subsection we analyze the plurality function and give estimates onΛρ(µ), proving Theorem 8, Propo-
sition 6.1, and Corollary 10. We also prove some other estimates onΛρ(µ) for very smallρ parameters that
are required for our MAX-q-CUT reduction. We begin with the proof of Theorem 8.

Proof of Theorem 8.Suppose we choosex ∈ [q]n at random and lety be aρ-correlated copy ofx. For
eachi ∈ [q], let ui denote the number of coordinates inx taking the valuei, and letvi denote the number
of coordinates ofy taking the valuei. We wish the to apply the multidimensional Central Limit Theorem
(specifically, Theorem 16) to calculate the stability of plurality, which is given by

qPr
[
u1 ≥ max

1≤i≤q
ui and v1 ≥ max

1≤i≤q
vi

]
= qPr

[
n−

∑
i≥2ui ≥ max

2≤i≤q
ui and n−

∑
i≥2vi ≥ max

2≤i≤q
vi

]
.
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Let us define the following vectors inRq−1: let e2, . . . , eq denote theq − 1 unit vectors, letr denote the
vector (1/q, . . . , 1/q), let r1 denote the0 vector, and letri = ei − r for i = 2 . . . q. Consider random
variables(Xi,Yi) taking values inR2q−2 where

Pr[(Xi,Yi) = (ra, rb)] =
ρ

q
δ{a=b} +

1− ρ

q2
. (17)

Note that(u2, . . . , uq, v2, . . . , vq) = nr +
∑n

i=1(Xi,Yi) where(Xi,Yi) are the i.i.d. random variables
given in (17) and that the vectors(Xi, Yi) have mean0. Writing A for the(q− 1)× (q− 1) matrix given by
Ai,j = δ{i=j}/q − 1/q2, the covariance matrixV of (Xi,Yi) is given by

V =
(

1 ρ
ρ 1

)
⊗A =

(
A ρA
ρA A

)
.

Thus the eigenvalues ofV are1/q, 1/q2, ρ/q andρ/q2. Finally, the third norm of(Xi,Yi) is at most4. We
may thus apply Theorem 16 to obtain:

lim
n→∞

Pr
[
u1 ≥ max

1≤i≤q
ui and v1 ≥ max

1≤i≤q
vi

]
= Pr

[
−

∑q
i=2Ni ≥ max

2≤i≤q
Ni and −

∑q
i=2Mi ≥ max

2≤i≤q
Mi

]
where(Ni,Mi)

q
i=2 is a normal vector with covariance matrixV . Letting N1 = −

∑q
i=2 Ni andM1 =

−
∑q

i=2 Mi we see that(N1, . . . , Nq,M1, . . . ,Mq) is a zero mean normal vector with covariance matrix(
1 ρ
ρ 1

)
⊗B, whereB is theq×q matrix given byBi,j = δ{i=j}/q−1/q2. Finally, let(U1, V1), . . . , (Uq, Vq)

be a collection of i.i.d. mean zero normal vectors inR2, where(Ui, Vi) has the covariance matrix
(

1 ρ
ρ 1

)
. It

is then easy to see that(Nq, . . . , Nq,Mq, . . . ,Mq) has the same covariance matrix as the normal vector

√
q

q − 1

U1 −
1
q

q∑
j=1

Uj , . . . , Uq −
1
q

q∑
j=1

Uj , V1 −
1
q

q∑
j=1

Vj , . . . , Uq −
1
q

q∑
j=1

Vj

 .

Since both vectors are normal, they have the same distribution. Hence the stability of Plurality is given by

qPr
[
M1 = max

1≤j≤q
Mj and N1 = max

j
Nj

]
= qPr

[
U1 = max

1≤j≤q
Uj and V1 = max

j
Vj

]
,

and this completes the proof of Theorem 8.

Let us now move to discussing estimates ofΛρ(µ), proving Proposition 6.1.

Proof of Proposition 6.1.The proof of Lemma 11.1 in [12] gives

Λρ(µ) =
1

2π
√

1− ρ2 · t2
exp

(
− t2

1 + ρ

) ∞∫
0

∞∫
0

exp(−g(u, v)) du dv, (18)

where

g(u, v) =
u + v

1 + ρ
+

(u− v)2 + 2(1− ρ)uv

2(1− ρ2)t2
.

Since the range of integration isu, v ≥ 0 we haveg(u, v) ≥ h(u, v), where

h(u, v) =
u + v

1 + ρ
+

(u− v)2

2(1− ρ2)t2
.
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We can therefore replaceg by h in the integral and get

∞∫
0

∞∫
0

exp(−g(u, v)) du dv ≤
∞∫
0

∞∫
0

exp(−h(u, v)) du dv (19)

=
√

2π(1 + ρ)
√

1− ρ2 · t · exp
(

1− ρ

1 + ρ
· t2

2

)
·N

(
t
√

1−ρ
1+ρ

)
, (20)

where the integral computation follows straightforwardly after the change of variablesr = u+v, s = u−v.
Combining (18) and (19) completes the proof.

Proposition 6.1 leads to the asymptotic estimates stated in Corollary 10:

Proof of Corollary 10.Part 1 follows simply from the well-known fact thatN(t) ∼ φ(t)/t ast →∞. As a
side note, it is simple to see from its definition thatµ ·N(t

√
(1− ρ)/(1 + ρ)) is a lower bound onΛρ(µ).

Part 2 of the Corollary is Lemma 11.1 of de Klerk et al. [12]. Parts 3 and 4 follow straightforwardly from
Part 1; the bound written in Part 3 actually neglects an additional negative power ofln q for simplicity.

Finally, our hardness result for MAX-q-CUT requires the following more careful analysis ofΛρ(µ) in
the case thatρ is very small:

Proposition 11.3. Letµ > 0 be small and let0 < ρ ≤ 1
ln3(1/µ)

. Then

Λρ(µ) ≤ µ
(
µ + ρ · 2µ ln(1/µ) · (1 + O( ln ln(1/µ)

ln(1/µ) + ln ln(1/ρ)
ln(1/µ) ))

)
.

Proof. Recall thatΛρ(µ) = Pr[X ≥ t, X ′ ≥ t], whereX is a standard Gaussian,X ′ = ρX +
√

1− ρ2 Y
with Y an independent standard Gaussian, andt = N−1(µ). (We use the functionsφ andN from Proposi-
tion 6.1.) The probability thatX ≥ t is µ, so we need to show that

Pr[X ′ ≥ t | X ≥ t] ≤ µ + ρ · 2µ ln(1/µ) · (1 + O( ln ln(1/µ)
ln(1/µ) + ln ln(1/ρ)

ln(1/µ) )). (21)

Let us first estimate
Pr[X ′ ≥ t | X = t(1 + α)],

for 1/ ln(1/µ) ≤ α ≤ ln(1/ρ). We have

Pr[X ′ ≥ t | X = t(1 + α)] = Pr[ρX +
√

1− ρ2 Y ≥ t | X = t(1 + α)]

≤ Pr[Y ≥ (t− ρt(1 + α))/
√

1− ρ2]
≤ Pr[Y ≥ t− ρt(1 + 2α)],

where we have used thatρ ≤ 1/ ln(1/µ) ≤ α. Now Pr[Y ≥ t − β] ≤ Pr[Y ≥ t] + βφ(t − β) =
µ + βφ(t − β). We can upper-boundφ(t − β) by expanding its definition and using the well-known fact
φ(t) ≤ tN(t) + O(1/t2) along withN(t) = µ. With our particularβ = ρt(1 + 2α) we get that

φ(t− β) ≤ tµ(1 + O(1/ ln(1/µ))),

where this also usesα ≤ log(1/ρ) andρ ≤ 1/ ln3(1/µ). We thus conclude that

Pr[X ′ ≥ t | X = t(1 + α)] ≤ µ + ρ · 2µ ln(1/µ) · (1 + O(α)), (22)

where we have also usedt ≤
√

2 ln(1/µ) andα ≥ 1/ ln(1/µ).
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Our next task is to estimatePr[X ≥ t(1 + α) | X ≥ t]. This is quite straightforward usingN(x) ∼
φ(x)/x andN(t) = µ; the result is that

Pr[X ≥ t(1 + α) | X ≥ t] ≤ (Cµ2 ln(1/µ))α (23)

for some universal constantC < ∞ (where we usedα ≥ 1/ ln(1/µ)).

Setδ = A( ln ln(1/µ)
ln(1/µ) + ln ln(1/ρ)

ln(1/µ) ) andK = B ln(1/ρ)
ln(1/µ) > 1, whereA andB are large universal constants

to be chosen later. They will be chosen so thatδ < K (this is possible becauseρ ≤ 1/ ln3(1/µ)). Write
γ = Pr[(1 + δ)t ≤ X ≤ (1 + K)t | X ≥ t]. We estimate

Pr[X ′ ≥ t | X ≥ t] ≤ (1− γ) Pr[X ′ ≥ t | t ≤ X ≤ t(1 + δ)]
+ γ Pr[X ′ ≥ t | (1 + δ)t ≤ X ≤ (1 + K)t]
+ Pr[X > (1 + K)t | X ≥ t].

Since it’s clear thatPr[X ′ ≥ t | X ∈ [a, b]] ≤ Pr[X ′ ≥ t | X = b], we can use (22) to bound the sum of
the first two terms by

µ + ρ · 2µ ln(1/µ)(1 + O(δ)) + γ ·O(Kρ · µ ln(1/µ)).

The third term, and alsoγ, are bounded using (23). This gives an overall bound of

Pr[X ′ ≥ t | X ≥ t] ≤ µ+ρ·2µ ln(1/µ)(1+O(δ))+(Cµ2 ln(1/µ))δ ·O(Kρ·µ ln(1/µ))+(Cµ2 ln(1/µ))K .

It is now relatively easy to check that we can takeA andB large enough so that the above quantity is bounded
as in (21), completing the proof. (One can takeA so that the third term above is smaller thanB · ρµ ln ln 1

ρ ,
and then takeB large enough so that bothK > δ and the last term is smaller thanρ · µ ln(1/µ) · δ.)

Proposition 11.3 leads to alower boundon the stability of aq-ary function with noiseρ = − 1
q−1 .

Proposition 11.4. For anyq ≥ 2 there is a small enoughδ = δ(q) > 0, such that any functionf : [q]n →
∆q with Infi(f) ≤ δ for all i = 1, . . . , n satisfies

S− 1
q−1

(f) ≥ 1/q − (2 ln q)/q2 − C · (ln ln q)/q2,

whereC < ∞ is a universal constant.

Proof. Let f i : [q]n → [0, 1] denote theith coordinate function off , and letµi = E[f i]. Then

S− 1
q−1

(f i) = ‖f i
∅‖

2
2 − 1

q−1

∑
|S|=1

‖f i
S‖2

2 + ( 1
q−1)2

∑
|S|=2

‖f i
S‖2

2 − · · ·

≥ ‖f i
∅‖

2
2 − 1

q−1

∑
|S|=1

‖f i
S‖2

2 − ( 1
q−1)2

∑
|S|=2

‖f i
S‖2

2 − · · ·

= 2µ2
i − S 1

q−1
(f i).

Choosingδ to be small enough as function ofq, we obtain from the MOO theorem thatS 1
q−1

(f i) ≤
Λ 1

q−1
(µi) + ε, whereε is, say,1/q3. It thus suffices to prove that

q∑
i=1

[
2µ2

i − Λ 1
q−1

(µi)
]+

≥ 1/q − (2 ln q)/q2 −O(ln ln q)/q2. (24)
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(Here the notationx+ meansx if x ≥ 0, 0 otherwise.) We prove this using Proposition 11.3 and the fact
that

∑
µi = 1. We will first carry out the estimates assuming that allµi’s satisfy 1

q−1 ≤
1

ln3(1/µi)
.

Suppose thatµi ≥ (1/q)1/10 for somei. Proposition 11.3 implies in this case thatΛ 1
q−1

(µi) ≤ µ2
i +

O(µ1/10) and so theith summand already contributes at least.5µ2
i ≥ .5(1/q)1/5 to the sum in (24), and so

the inequality there holds. We may therefore assume that allµi’s are at most(1/q)1/10. With this in hand,
Proposition 11.3 tells us thatΛ 1

q−1
(µi) ≤ F (µi), where

F (µi) = µ2
i +

1
q − 1

· 2µ2
i ln(1/µi) · (1 + C ln ln q

ln q )

andC < ∞ is some universal constant. Thus
q∑

i=1

[
2µ2

i − Λ 1
q−1

(µi)
]+

≥
q∑

i=1

(2µ2
i − F (µi)). (25)

It’s not hard to check that2µ2
i −F (µi) is a convex function ofµi so long asµi is at most a certain universal

constant smaller than 1 (which it is whenq is sufficiently large, since allµi’s are at most(1/q)1/10). Using∑q
i=1 µi = 1 we conclude that the right side of (25) is minimized when allµi’s are equal to1/q, in which

case it equals1/q − (2 ln q)/q2 −O(ln ln q)/q2; thus (24) is verified.

Finally, we consider the possibility that not allµi’s satisfy 1
q−1 ≤ 1

ln3(1/µi)
. In this case, some of

the term-by-term inequalities going into (25) may no longer hold. For such inequalities, though, the left-
hand side term is always nonnegative and the right-hand side term is exponentially small in a power ofq.
Hence (25) still holds up to an additive term exponentially small inq, which is negligible; thus the argument
above is unaffected.

11.4 Hardness results for MAX-q-CUT and Γ-MAX-2LIN( q)

This section is devoted to the proofs of Theorems 11 and 12. The proofs are similar to that of Theorem 1 in
Section 8, so we omit some details.

As a preliminary technical step, we need the analogue of Proposition 7.3 for the MOO theorem and for
Proposition 11.4.

Proposition 11.5.Both the MOO theorem and Proposition 11.4 remain true if the assumption thatInfi(f) ≤
δ for all i is replaced by the assumption thatInf≤k′

i (f) ≤ δ′, whereδ′ andk′ are universal functions ofε
andρ.

Proof. (Sketch.) The proof is essentially the same as that of Proposition 7.3; one requires the following
facts: ∑

i

Inf≤k
i (f) ≤ k,

∑
|S|>k

‖(T1−γf)S‖2
2 ≤ (1− γ)2k,

which indeed hold forq-ary functionsf : [q]n → [0, 1], as can easily be seen from the facts in Subsection 7.2.

We will also need to define theq-ary analogue of the Long Code:

Definition 21 (q-ary Long Code). The q-ary Long Code of an elementi ∈ [M ] is the q-ary function
f : [q]M → [q] defined byf(x) = xi.
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Hardness of MAX-q-CUT. We now begin the reduction from Unique Label Cover to MAX-q-CUT. As
mentioned, the reduction is similar to the one in Section 8; the main difference is that we useq-ary Long
Codes and we fixρ to be− 1

q−1 . As in Section 8, we start with a given instanceL(V,W,E, [M ], {σv,w}) of
Unique Label Cover, and construct an instance of MAX-q-CUT, presented here as a PCP verifier:

The PCP verifier for MAX- q-CUT

• Pick a vertexv ∈ V at random and two of its neighborsw,w′ ∈ W at random. Letσ = σv,w and
σ′ = σv,w′ be the respective bijections for edges(v, w) and(v, w′).

• Let fw andfw′ be the supposedq-ary Long Codes of the labels ofw andw′ respectively.

• Pick(x, y) ∈ [q]M to be a(− 1
q−1)-correlated pair; in other words, pickx ∈ [q]M uniformly at random

and formy by choosing eachyi independently to be a uniformly random element of[q] \ {xi}.

• Accept iff
fw(x ◦ σ) 6= fw′(y ◦ σ′).

Completeness. If the Unique Label Cover instance has a(1 − η)-satisfying assignment, then the PCP
verifier accepts the Long Code encoding of this assignment with probability at least1− 2η. This is because
whenever the PCP verifier chooses edges(v, w) and(v, w′) that are properly labeled, the verifier accepts
with probability 1. The Unique Games Conjecture allows us to takeη to be an arbitrarily small positive
constant.

Soundness. Our goal is to show that if the PCP verifier accepts with probability exceeding1 − 1/q +
(2 ln q)/q2 + O(ln ln q)/q2, then we can derive an assignment for the Unique Label Cover instance that
satisfies at least someγ′ = γ′(q) fraction of its edges, independent of the label set sizeM .

As in Section 8, we analyze the soundness by writing the success probability of the PCP in terms of
the noise stability of certain averages of thefw’s. (We view these supposed Long Codesfw : [q]n → [q]
as having the relaxed range∆q.) If the noise stability is large, the MOO theorem implies the existence of
influential coordinates, which in turn are used to derive an assignment for the Unique Label Cover instance.

The probability that the PCP verifier accepts is given by

Pr[acc] = E
v,w,w′,x,y

[
1− 〈fw(x ◦ σ), fw′(y ◦ σ′)〉

]
= 1− E

v,x,y

[
E

w,w′
[〈fw(x ◦ σ), fw′(y ◦ σ′)〉]

]
= 1− E

v,x,y

[
〈E

w
[fw(x ◦ σ)],E

w′
[fw′(y ◦ σ′)]〉

]
(using independence ofw andw′)

= 1− E
v,x,y

[
〈gv(x), gv(y)〉

]
(where we definegv(z) = E

w∼v
[fw(z ◦ σv,w)])

= 1−E
v

[
S− 1

q−1
(gv)

]
.

We now proceed as in the proof of Theorem 1, using Proposition 11.4 in place of the Majority Is Stablest
theorem. In particular, writingε = (ln ln q)/q2, we have that ifPr[acc] ≥ 1 − 1/q + (2 ln q)/q2 + (C +
1) · (ln ln q)/q2 then there is someε/2 fraction of “good”v’s with S− 1

q−1
(gv) ≤ 1/q − (2 ln q)/q2 − (C +

1/2) · (ln ln q)/q2. By Proposition 11.4 suchgv ’s must have large low-degree influential coordinates, which
we can use as Label Cover labels for theirv’s.
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The remainder of the soundness proof is just as it is in the proof of Theorem 1 in Section 8. The only
difference arises in the analogue of (7) and is essentially notational; we replace this line with:

δ ≤
∑
S3j
|S|≤k

‖(gv)S‖2
2 =

∑
S3j
|S|≤k

‖E
w

[(fw)σ−1(S)]‖2
2 ≤

∑
S3j
|S|≤k

E
w

[‖(fw)σ−1(S)‖2
2] = E

w

[
Inf≤k

σ−1(j)
(fw)

]
.

With this proof of soundness in hand, the proof of Theorem 11 is now complete.

Hardness of MAX-2LIN( q). We move on to our hardness result forΓ-MAX-2LIN( q) and the proof of
Theorem 12. The proof is very similar to the one we gave for MAX-q-CUT; the only new technique is the
use of the old PCP trick offolding.

Definition 22 (Additive folding). Let f : [q]M → [q], where the[q] in the domain is viewed asZq, the
integers modq. We say thatf is foldedif for everyc ∈ Zq andx ∈ (Zq)M it holds thatf(x+(c, c, . . . , c)) =
f(x) + c.

Our PCP verifier forΓ-MAX-2LIN( q) will be able to assume that all the supposedq-ary Long Codesfw

with which it works are folded. This can be done by only making queriesfw(x) whenx1 = 0, and simulating
other queries using the assumption that the function is folded. In other words, to queryfw(x1, . . . , xn) the
verifier instead queriesf(0, x2−x1, . . . , xn−x1) and computes the valuef(0, x2−x1, . . . , xn−x1)−x1.
Note that Long Code functions (dictators) are folded, and that a foldedq-ary functions must be balanced.

We now give our verifier forΓ-MAX-2LIN( q), parameterized by0 < ρ < 1. Given an instance of
Unique Label Cover, it proceeds as follows:

The PCP verifier for Γ-MAX-2LIN( q) with parameter 0 < ρ < 1

• Pick a vertexv ∈ V at random and two of its neighborsw,w′ ∈ W at random. Letσ = σv,w and
σ′ = σv,w′ be the respective bijections for edges(v, w) and(v, w′).

• Let fw andfw′ be thefoldedsupposedq-ary Long Codes of the labels ofw andw′ respectively.

• Pick (x, y) ∈ [q]M to be aρ-correlated pair.

• Accept iff fw(x ◦ σ) = fw′(y ◦ σ′); i.e., iff fw(x ◦ σ)− fw′(y ◦ σ′) = 0.

This verifier indeed yields a distribution over 2-variable linear equations modq of the form “xi−xj = c”;
note that since the verifier ensures the functionsfw are folded, the acceptance predicatesfw(x◦σ)−fw′(y ◦
σ′) = 0 will really be of the form(fw(x′)− x′1)− (fw′(y′)− y′1) = 0.

Analysis of this PCP verifier’s completeness and soundness proceeds very much as it did in the previous
proofs. The completeness is at least(1 − 2η) times the noise stability atρ of a q-ary Long Code function;
i.e., (1 − 2η)(ρ + 1

q (1 − ρ)). Soundness is again analyzed by arithmetizing the PCP verifier’s acceptance
probability, which in this case yields

Pr[acc] = E
v
[Sρ(gv)].

The functionsgv : [q]M → ∆q are balanced, being the averages of folded and thus balancedfw’s. Hence
their q projection functions(gv)i : [q]M → [0, 1] all have mean equal to1q . We may thus use the MOO

theorem directly (instead of Proposition 11.4) and bound soundness byqΛρ(1
q ) + ε. This completes the

proof of Theorem 12.
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[40] H. König, C. Scḧutt, and N. Tomczak-Jaegermann. Projection constants of symmetric spaces and
variants of Khintchine’s inequality.J. Reine Agnew. Math., 511:1–42, 1999.

[41] M. Lewin, D. Livnat, and U. Zwick. Improved rounding techniques for the MAX-2SAT and MAX-
DICUT problems. InProc. 9th Ann. IPCO, pages 67–82, 2002.

[42] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing linear threshold functions.
Manuscript.

[43] E. Mossel. Lecture notes for Stat206A, Sept. 8, 2005.
http://www.stat.berkeley.edu/∼mossel/teach/206af05/scribes/sep8.ps.

[44] E. Mossel and R. O’Donnell. On the noise sensitivity of monotone functions. In B. Chauvin, P. Flajolet,
D. Gardy, and A. Mokkadem, editors,Trends in Mathematics: Mathematics and Computer Science II.
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