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Abstract

In this paper we show a reduction from the Unique Games problem to the problem of approximating
MAX-CUT to within a factor ofagw + ¢, for all e > 0; hereagy ~ .878567 denotes the approxima-
tion ratio achieved by the Goemans-Williamson algorithni [26]. This implies that if the Unique Games
Conjecture of Khot![37] holds then the Goemans-Williamson approximation algorithm is optimal. Our
result indicates that the geometric nature of the Goemans-Williamson algorithm might be intrinsic to the
MAX-CUT problem.

Our reduction relies on a theorem we call Majority Is Stablest. This was introduced as a conjecture
in the original version of this paper, and was subsequently confirmed in [45]. A stronger version of
this conjecture called Plurality Is Stablest is still open, although [45] contains a proof of an asymptotic
version of it.

Our techniques extend to several other two-variable constraint satisfaction problems. In particular,
subject to the Unique Games Conjecture, we show tight or nearly tight hardness results for MAX-2SAT,
MAX- ¢-CUT, and MAX-2LIN(g).

For MAX-2SAT we show approximation hardness up to a factor of roughlly. This nearly matches
the .940 approximation algorithm of Lewin, Livnat, and Zwick [41]. Furthermore, we show that our
.943... factor is actually tight for a slightly restricted version of MAX-2SAT. For MAXEUT we show
a hardness factor which asymptotically (for largenatches the approximation factor achieved by Frieze
and Jerrum([25], namely — 1/q + 2(Inq) /q>.

For MAX-2LIN(¢) we show hardness of distinguishing between instances whigh-aeg-satisfiable
and those which are not even, rouglly, /2)-satisfiable. These parameters almost match those achieved
by the recent algorithm of Charikar, Makarychev, and Makarychev [10]. The hardness result holds even
for instances in which all equations are of the farm- z; = c. At a more qualitative level, this result
also implies thal — ¢ vs. e hardness for MAX-2LIN¢) is equivalentto the Unique Games Conjecture.
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1 Introduction

The main result in this paper is a bound on the approximability of the MAX-CUT problem which matches
the approximation ratio achieved by the well-known Goemans-Williamson algofitim [26]. The proof of this
hardness result relies on thimique Games Conjectu Khot [37]. We also rely critically on a theorem

we callMajority Is Stablestwhich was introduced as a conjecture in the original version of this paper. For
the convenience of the reader we will now briefly describe these two tools; formal statements appear in
Section$ B and 4.

Unique Games Conjecture (roughly): Given a bipartite graply, a large constant size set of labglg],

and a permutation of)/] written on each edge, consider the problem of trying to find a labeling of the
vertices ofG from [M] so that each edge permutation is ‘satisfied;’ i.e., is consistent with the labeling. The
conjecture is that if\/ is a large enough constant then it is NP-hard to distinguish instances which are 99%
satisfiable from instances which are 1% satisfiable.

Majority Is Stablest Theorem (roughly): Let f be a boolean function which is equally oftéror 1.
Suppose the string is picked uniformly at random and the stringis formed by flipping each bit of
independently with probability); we call Pr[f(z) = f(y)] the noise stabilityof f. The theorem states
that among allf in which each coordinate hagl) ‘influence,’” the Majority function has the highest noise
stability, up to an additive(1).

We add in passing that the name Majority Is Stablest is a bit of a misnomer in that almost all balanced
boolean (weighted) threshold functions are equally noise stable (see THeorem 5). We also note that the
Majority Is Stablest theorem has interesting applications outside of this work — to the economic theory
of social choice([34] for example — and has already proven useful for other PCP-based inapproximability
results [14]. In Sectiop 6|3 we mention interesting generalizations of the Majority Is Stablest theorem for
g-ary functionsg > 2, which are relevant for hardness of approximation and are not resolved in full.

Despite the fact that our hardness result for MAX-CUT relies on the unproven Uniqgue Games Conjec-
ture, we feel it is interesting for several reasons. First, in our opinion it is remarkable that the Unique Games
Conjecture should yield aight hardness of approximation ratio for MAX-CUT, and that indeed the best
factor should be the peculiar numhey,,. It is intriguing that the precise guantity,, should arise from a
noise stability property of the Majority function, and certainly there was previously little evidence to suggest
that the Goemans-Williamson algorithm might be optimal.

Another reason we believe our result is interesting is related to this last point. Since the Goemans-
Williamson algorithm was published a decade ago there has been no algorithmic progress on approximating
MAX-CUT. Since Hastad’s classic inapproximability papér [32] from two years later there has been no
progress on the hardness of approximating MAX-CUT, except for the creation of a better reduction gad-
get [55]. As one of the most natural and simple problems to have resisted matching approximability bounds,
we feel MAX-CUT deserves further investigation and analysis. In particular, we think that regardless of the
truth of the Unique Games Conjecture, this paper gives interesting insight into the geometric nature of MAX-
CUT. Indeed, insights we have gleaned from studying the MAX-CUT problem in this light have motivated
us to give new positive approximation results for variants of other 2-variable CSPs such as MAX-2SAT; see
Sectior 9.

Finally, instead of viewing our result as relying on the unproven Unique Games Conjecture, we can
view it as being an investigation into the truth of UGC. Indeed our hardness results for both MAX-CUT
and for two-variable linear equations modujgrovide explicit parameters for which the Uniqgue Games
Conjecture, if true, must hold. (Note that both problems are Unique Games themselves.) Thus our work
gives a target for algorithmic attacks on the Unique Games Conjecture, which if passed will refute it.
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Indeed, works subsequent to the original version of this paper have provided approximation algorithms
for the Unique Games problern [54,129,] 10] improving on Khot's original algorithm [37]. In particular,
in [10] Charikar, Makarychev, and Makarychev gave a semidefinite programming-based approximation
algorithm for Unique Games whose approximation factor nearly matches our hardness bound for MAX-
2LIN(g). The current situation is therefore that any improvement in the approximation factors for either
MAX-CUT or for the more general MAX-2LIN{) will refute the Unique Games Conjecture.

1.1 Overview of the paper

In Sectior] 2 we describe the MAX-CUT problem and discuss its history. We then state the Unique Games
Conjecture in Section| 3 and discuss very recent algorithm results for the problem. The Majority Is Stablest
problem is discussed in Sectiph 4, along with its generalizatiopdrny domainsg > 2. We discuss the
geometric aspects of MAX-CUT and their connection with Majority Is Stablest result and the Goemans-
Williamson approximation algorithm in Sectipf 5. Our main results are stated in Seftion 6. $ection 7 is
devoted to some technical definitions, preliminaries, and Fourier analytic formulas. In $gction 8 we prove
our main theorem on the hardness of approximating MAX-CUT, based on the Unique Games Conjecture.
In Sectior]  we investigate the approximability of other binary 2-CSPs, such as MAX-2SAT. In §egtion 10
we prove some special cases of the Majority Is Stablest theorem that are of independent interest, with proofs
simpler than those in[45]. Finally, Section| 11 is devoted to extending our techniquesgtahdomain; we

prove some results about noise stability in this domain and then prove our Unique Games-hardness results
for MAX- ¢g-CUT and MAX-2LIN(¢) and MAX-¢g-CUT.

2 About MAX-CUT

The MAX-CUT problem is a classic and simple combinatorial optimization problem: Given a gdintd
the size of the largest cut {d. By a cut we mean a patrtition of the vertice®fnto two sets; the size of the
cut is the number of edges with one vertex on either side of the partition. One can also consider a weighted
version of the problem in which each edge is assignhed a nonnegative weight and the goal is to cut as much
weight as possible.

MAX-CUT is NP-complete (indeed, it is one of Karp’s original NP-complete problems [36]) and so
it is of interest to try to find polynomial time approximation algorithms. For maximization problems such
as MAX-CUT we say an algorithm gives arrapproximation if it always returns an answer which is at
leasta times the optimal value; we also often relax this definition to allow randomized algorithms which
in expectation givex-approximations. Crescenzi, Silvestri, and Trevisan [11] have shown that the weighted
and unweighted versions of MAX-CUT have equal optimal approximation factors (up to an additjye
and so we pass freely between the two problems in this paper.

The trivial randomized algorithm for MAX-CUT — put each vertex on either side of the partition in-
dependently with equal probability — is I§2-approximation, and this algorithm is easy to derandom-
ize; Sahni and Gonzalez [48] gave the fitgR-approximation algorithm in 1976. Following this some
(1/2 + o(1))-approximation algorithms were given, but no real progress was made until the breakthrough
1994 paper of Goemans and Williamsonli[26]. This remarkable work used semidefinite programming to
achieve amgy-approximation algorithm, where the constagf, ~ .878567 is the trigonometric quantity

0/m

dow = b (1 —cosf)/2

The minimizing choice of here is the solution &f = tan(6/2), namelyd* ~ 2.33 ~ 134°, andagy =
ﬁ The geometric nature of Goemans and Williamson'’s algorithm might be considered surprising, but
as we shall see, this geometry seems to be an inherent part of the MAX-CUT problem.
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On the hardness of approximation side, MAX-CUT was proved MAX-SNP hard [47] and Bellare, Gol-
dreich, and Sudan]2] explicitly showed that it was NP-hard to approximate MAX-CUT to any factor higher
than83/84. The hardness factor was improvedi®y17 ~ .941176 by Hastad[[32] via a reduction from
MAX-3LIN using a gadget of Trevisan, Sorkin, Sudan, and Williams$on [55]. This stands as the current best
hardness result.

Despite much effort and many improvements in the approximation guarantees of other semidefinite pro-
gramming based algorithms, no one has been able to improve on the algorithm of Goemans and Williamson.
Although the true approximation ratio of Goemans-Williamson was proved to be not more4h{30,/19]
and the integrality gap of their semidefinite relaxation was also proved 4@ pfL9], there appears on the
face of it to be plenty of possibilities for improvement. Adding triangle constraints and other valid con-
straints to the semidefinite program has been suggested, alternate rounding schemes have been proposed,
and local modification heuristics that work for special graphs have been proven (seg, elg., [[26/ 18, 17, 35,
56,[16,19]). And of course, perhaps a completely different algorithm altogether can perform better. Sev-
eral papers have either explicitly ([17]) or implicitly ([19]) given the problem of improvingxgp as an
important research goal.

However, in this paper we show that approximating MAX-CUT to within any factor largerdggnvill
in fact overturn the Uniqgue Games Conjecture.

3 About the Unigue Games Conjecture

MAX-CUT belongs to the class of constraint satisfaction problems on 2 variables (2-CSP&)}d8R we

are given a set of variables and a set of constraints, where each constraint depends ot exaictbtes.

The goal is to find an assignment to the variables so as to maximize the number of constraints satisfied. In
the case of MAX-CUT, the vertices serve as variables and the edges as constraints. Every constraint says
that two certain variables should receive different boolean values.

Proving inapproximability results for/a CSP is equivalent to constructingaquery PCP with a specific
acceptance predicate. Usually the so-called Label Cover problem is a starting point for any PCP construc-
tion. Label Cover is a 2-CSP where the variables range over a large (hon-boolean) domain. Usually, inap-
proximability results for boolean CSPs are obtained by encoding assignments to Label Cover variables via
a binary code and then running PCP tests on the (supposed) encodings. This approach has been immensely
successful in proving inapproximability results fICSPs withk > 3 (see for example [32, 49, B0O]). How-
ever the approach gets stuck in the case of 2-CSPs. We seem to have no technigues for constructing boolean
2-query PCPs and the bottleneck seems to be the lack of an appropriate PCP ‘outer verifier.’

Khot suggested the Unique Games Conjecturée_in [37] as a possible direction for proving inapproxima-
bility results for some important 2-CSPs, such as Min-2SAT-Deletion, Vertex Cover, Graph-Min-Bisection
and MAX-CUT. This conjecture asserts the hardness of the ‘Unique Label Cover’ problem:

Definition 1. The Unique Label Cover problent;(V, W, E, [M], {0y w}(ww)cr) IS defined as follows:
Given is a bipartite graph with left side vertic&3 right side verticedV, and a set of edgeE. The goal

is to assign one ‘label’ to every vertex of the graph, wh@rg is the set of allowed labels. The labeling is
supposed to satisfy certain constraints given by bijective mgps: [M]| — [M]. There is one such map
for every edgév, w) € E. A labeling ‘satisfies’ an edg@, w) if

ovw(label(w)) = label(v).

The optimum OPT of the unique label cover problem is defined to be the maximum fraction of edges satisfied
by any labeling.



The Unique Label Cover problem is a special case of the Label Cover problem. It can also be stated
in terms of 2-Prover-1-Round Games, but the Label Cover formulation is easier to work with. The Unique
Games Conjecture asserts that this problem is hard:

Unique Games Conjecture:For anyn, v > 0, there exists a constat’ = M (n, ) such thatitis NP-hard
to distinguish whether the Unique Label Cover problem with label set ofigibas optimum at leadt —
or at mosty.

The Unique Games Conjectures asserts the existence of a powerful outer verifier that makes only
gueries (albeit over a large alphabet) and has a very specific acceptance predicate: for every answer to the
first query, there is exactly one answer to the second query for which the verifier would accept, and vice
versa. Once we have such a powerful outer verifier, we can possibly construct a suitable inner verifier and
prove the desired inapproximability results. Typically, though, the inner verifier will need to rely on rather
deep theorems about the Fourier spectrum of boolean functions, e.g. the theorem of Bourgain [7] or of
Friedgut [22].

The Unique Games Conjecture was used_if [37] to show that Min-2SAT-Deletion is NP-hard to ap-
proximate within any constant factor. The inner verifier is based on a test proposeastadH31] and on
Bourgain’s theorem. It is also implicit in this paper that the Unique Games Conjecture with an additional
‘expansion-like’ condition on the underlying bipartite graph of the Label Cover problem would imply that
Graph-Min-Bisection is NP-hard to approximate within any constant factor. Khot and Regev [38] showed
that the conjecture implies that Vertex Cover is NP-hard to approximate within any factor le&s tranin-
ner verifier in their paper is based on Friedgut’s theorem and is inspired by the work of Dinur and Safra [15]
that showed 1.36 hardness for Vertex Cover. In the present paper we continue this line of research, showing
an inner verifier that together with the Unique Games Conjecture yields a tight hardness result for MAX-
CUT. Our inner verifier relies critically on the Majority Is Stablest theorem.

Algorithmic results for Unique Label Cover. Itis natural to ask how the functial/ (n, ) in the Unique

Games Conjecture can behave. Lower boundd/bare obtained by giving algorithms for Unique Label
Cover. Several very recent results have provided such algorithms. Most relevant for this paper is the algo-
rithm of [10], which has the following behavior for Unique Label instances with label set ofjsizer any
constant; > 0, on instances with optimurh— 7 it satisfies roughly &1 /¢)"/ (=3 fraction of edges, up to

lower order powers of. Also, forn = 1/ log g, it seems to satisfy af?(1) fraction of edges (at the present

time the final version of [10] has not yet appeared).

4 About the Majority Is Stablest problem

To state the Majority Is Stablest problem, we need some definitions. For convenience we regard the boolean
values as-1 and1 rather thard and1. Thus a boolean function is a mgp {—1,1}" — {—1,1}. We will
often generalize to the case of functiofis{—1,1}" — R. In all of what follows we consider the set of
strings{—1, 1}" to be a probability space under the uniform distribution.

First we recall the well-known notion of ‘influence’, introduced to computer science in [3] and studied
even earlier in economics.

Definition 2. Let f: {—1,1}" — R. Then thanfluence ofz; on f is defined by

Inf;(f) = E [Varg,[f]] -

(1,0 @i~ 1,4 15005 Tn)



(Note that forf: {—1,1}" — {—1,1},

Inf;(f)= Pr [f(z)# flx1,...,—Ti ... xn)].)

ze{-1,1}"

Instead of pickinge at random, flipping one bit, and seeing if this changes the valfewé can instead
flip a constant fraction (in expectation) of the bits. This leads to the study of ‘noise sensitivity, pioneered in
computer science by [38, 32, 4].

Definition 3. Letf: {—1,1}" — Randlet—1 < p < 1. Thenoise stability off atp is defined as follows:
Let = be a uniformly random string ig—1,1}™ and lety be a ‘p-correlated’ copy; i.e., pick each bij;
independently so th@[x;y;] = p. Then the noise stability is defined to be

Sp(f) = Eay[f (2) ()]
(Note that forf: {—1,1}" — {—1,1} we haveS,(f) = 2Pr,4[f(z) = f(y)] — 1.)

We may now state the Majority Is Stablest theorem. This result was presented as a strongly-believed con-
jecture in the original version of this paper. It has recently been provédlin [45]. Informally, the theorem says
that among all balanced boolean functions with small influences, the Majority function has the highest noise
stability. Note that the assumption of small influences is necessary since the ‘dictator’ fufictios: z;
provably has the highest noise stability among all balanced boolean functions, fopeiate that whem
tends to infinity, the noise stability atof then-bit Majority function approached — % arccos p) (this fact
was stated in a paper of Gulibaud from the 1960’s [28] and is ultimately derived from the Central Limit theo-
rem plus a result from an 1890’s paper of Sheppard [51]). Thus we have the formal statement of the theorem:

Majority Is Stablest theorem: Fix p € [0,1). Then for any > 0 there is a small enough = (¢, p) > 0
such that iff : {—1,1}" — [—1, 1] is any function satisfyin®[f] = 0 andInf;(f) < dforalli=1...n,
then

Sp(f) <1— 2arccosp+e.

In the remainder of this section, we shall describe why the Majority Is Stablest theorem is relevant for
MAX-CUT inner verifiers.

As described in the previous section, inapproximability results for many problems are obtained by con-
structing a tailor-made PCP; usually, the PCP is obtained by composing an ‘outer verifier’ (almost always
a Label Cover problem) with an ‘inner verifier'. As mentioned the outer verifier for our reduction is the
Unique Label Cover problem. As for the inner verifier, it is always application-specific and its acceptance
predicate is tailor-made for the problem at hand, in our case MAX-CUT.

A codeword tess an essential submodule of an inner verifier. Itis a probabilistic procedure for checking
whether a given string is a codeword of an error-correcting code, most commonly the ‘Long Codel (see [2]).

Definition 4. The Long Code over domajn] is a binary code in which the message space is in fact the set
of truth tables of boolean functionfs: {—1,1}" — {—1, 1}. The codeword encoding the ‘message’ [n]
is given by theth dictator function; i.e., the functiofi(z1, z2, ..., z,) = ;.

A codeword test for the Long Code can often be extended to a full-fledged inner verifier. So in the
following, we will focus only on a Long Code test. The choice of the test is determined by the problem at
hand, in our case MAX-CUT. The test must read two bits from a Long Code and accept if and only if the
values read are distinct. Note that a legal Long Code word, i.e. a dictator, is the truth table of a boolean
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function in which one coordinate has influente Let us say that a functioff is far from being a Long
Codeif all the coordinates have(1) influences (note that this is not a standard notion of being far from a
codeword, but rather a notion tailored for our proof technique).

We expect the following from a codeword test: a correct Long Code word passes the test with probability
c (called the ‘completeness’ parameter of the test) whereas any function far from being a Long Code passes
the test with probability at most(called the ‘soundness’ parameter). Once we construct a full-fledged inner
verifier, the ratias/c will be the inapproximability factor for MAX-CUT.

The Long Code test. As mentioned before, our Long Code test will need to take a boolean function
f:{-1,1}" — {—1,1}, pick two inputsz andy, and check thaf (z) # f(y). In fact our test will be
precisely a ‘noise stability’ test for some fixed noise ratée., z will be chosen uniformly at random and
y will be formed by flipping each bit ot independently with probability} — %p. Herep will be a value
between-1 and0, and therefore is ahighly noisy version oft, or alternatively, a moderately noisy version
of —x. Thus (at least for legal Long Code words) we expgat) to be quiteanticorrelatedwith f(y); i.e.,
it should pass the test with relatively high probability. Recalling Definition 3, we see that the probability a
given functionf passes our test is preciséjy— %Sp(f).
Alegal Long Code word, i.e. a dictator function, has noise stability precisahd thus the completeness
of the Long Code testis= %— %p. The crucial aspect of our test is the analysis of the soundness parameter.
This is where the Majority Is Stablest theorem comes in. Supgose-1,1}" — {—1,1} is any
function that is far from being a Long Code word. By a simple trick (see Propogitipn 7.4) we can show that
the Majority Is Stablest theorem (which is stated onlydor 0) implies that forp < 0 the noise stability of
f atpis atleastl — %arccosp (a negative number). Hence it follows that functions that are far from being
a Long Code pass the test with probabititymosts = 1 — (1 — 2 arccos p) = (arccos p) /7.

Choosingp < 0 as we please, this leads to an inapproximability ratio of

s . (arccosp)/m , 0/m
- = min ———— = min ——————— =«
¢ -l<p<0 2 —1p 0<6<r (1 —cosh)/2 e

precisely the Goemans-Williamson constant.

4.1 History of the Majority Is Stablest problem

There has been a long line of work in the analysis of boolean functions studying the noise sensitivity
of functions and the associated Fourier-theoretic quantities (some examples, roughly in chronological or-
der: [33,/8[52] 23, 53,19, 22| 4,16,7,124) B4, 44,46, 13]). Building on the intuition gathered from this past

work, we were motivated to make the Majority Is Stablest conjecture in the originial version of the paper.

We discuss these relevant previous results below.

The Majority and weighted majority (or balanced threshold) functions have always played an important
role in the study of noise sensitivity of boolean functions. This family of functions is, in a sense, the set of all
“uniformly noise-stable” functions. In[4], it is shown that a family of monotone functions is asymptotically
noise sensitive if and only if it is asymptotically orthogonal to the family of balanced threshold functions;
by asymptotically noise sensitive functions it is meant those that®igy® = o(1) for any constanp.

Stated in terms of Fourier coefficients (see Sedtioh 7.2), the Majority Is Stablest theorem says that among
all ‘non-junta-like’ functions, the one which has most Fourier mass on the lower levels is the Majority
function. This is becaus®,(f) is a just a weighted sum of the squared Fourier coefficients, efhere
coefficients at levek have weighto*. Some strong evidence in favor of the Majority Is Stablest theorem
was given by Bourgairi[7], who showed that non-junta functigrisave their Fourier ta”£|5|>k F(9)?
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lower-bounded by:~1/2-°(1), As Bourgain noted, the Majority function has precisely this tail decay and
thus his theorem is ‘basically’ optimal. In other words, Majority has the ‘least’ Fourier weight on higher
levels and therefore the ‘most’ Fourier weight on lower levels.

The expressiof_; /3(f) played a central role in a Fourier-theoretic approach to the Condorcet Paradox
and Arrow’s Theorem given by Kaléi[34]. This expression determines the probability of an “irrational out-
come” in a certain voting scheme. Much pf [34] is devoted to the study ¢f;(f) and in particular, it is
conjectured there (Conjecture 5.1) that for ‘transitive’ functions, which have the property that all influences
are the same, the SuE|S|§k f(S)2 is maximized by the Majority function for alk. Although this conjec-
ture turns out to be falsé [45], the corollaries of the conjecture in [34] are implied by the fact that Majority
is the stablest transitive function, and this is a consequence of the Majority Is Stablest theorem.

Finally, in [46] it was shown that Majority is essentially the maximizer for another noise stability prob-
lem, namely maximizing théth norm of 7}, f, whereT), is the Bonami-Beckner operator (see Secfipn 7)
among balanced functionfsfor largek andn = oo.

In the original version of this paper, when Majority Is Stablest was still a conjecture, some special cases
of the problem were proven. Since these proofs are much simpler than thoseé in [45], and since the proofs
have already proven to be of independent interest (see [42] for use of all three), we have included these
partial results in Sectidn 10.

4.2 Generalizations to theg-ary domain

Our methods can also be used to obtain hardness results for constraint satisfaction problems over variables
ranging over larger domairig]. In the g-ary regime we need a multi-valued analogue of the Majority Is
Stablest theorem. Before we can formulate the appropriate analogue, we need to specify what we mean by
‘g-ary functions’ and also to define the notions of noise stability and influences for them.

The obvious generalization of a boolean function to ¢kery regime would be a function of the form
f:[g]™ — [q]. However, as we did for boolean functions, we will consider a continuous relaxation of the
range. Specifically, define

Ay ={(z1,...,2¢) €[0,1]7: > x; =1},

which can be thought of as the space of probability distributions gyer We will consider functions
f g™ — Ay this generalizes functions : [¢]" — [q] if we identify the elements € [¢] in f's range
with the points(0,...,0,1,0,...,0) € A,.

Definition 5. Let—%1 < p < 1 and letz andy be[g|"-valued random variables. We say thaandy are
a p-correlated paiif = is uniformly distributed orig]™, andy is formed fromz by choosing each; so that
Prly; = a] = dfz,—a}p + 1%’) for eacha, independently for each Note that for) < p < 1, itis equivalent
to say that each coordinatg is independently chosen to bewith probability p and is a uniformly random
element ofg] otherwise.

Definition 6. Let f : [¢]* — A, and Iet—q%1 < p < 1. Thenoise stability off atp is defined to be

Se(£) = E[(f(@), fW))]

wherez andy are ap-correlated pair. Equivalently, we may define the noise stability of functjorig]” —
R via

z,yY

and then denoting by’ theith coordinate projection of , we haveS,(f) = > | S,(f?).



We remark that wherf’s range is simply{¢] (as embedded id\,), the quantityS,(f) is simply the
probability thatf (z) = f(y) whenx andy are ap-correlated pair.
The definition of influences is very similar to that in the boolean case:

Definition 7. Let f : [¢|" — A,. For1 < i < n, theinfluence of theth coordinate ory is defined to be

Infi(f) = E [Va’rxi [f(xlv s 7‘7:71)“7

whereVar[f] denotesg[(f, )] — (E[/]. E[f]).

We say thatf : [¢]* — A, is ‘balanced’ ifE[f] = 1/q for eachi. The most obvious generalization
of the Majority function to thej-ary domain is the Plurality function, which on inpute [¢]™ outputs the
most common value far; (tie-breaking is unimportant). It is natural to ask whether a “Plurality Is Stablest”
theorem holds. This question is still open, and we present it as a conjecture. For this purpose, define

PlurStaliq, p) = lim S,(Plurality,, ).

The limit in the formula above indeed exists, and there appears to be no closed formula for it; however we
provide an exact description of it in Theorgin 8 in Secfipn 6.

Plurality Is Stablest Conjecture. Fix g > 2 and—%1 < p < 1. Then for any > 0 there is a small
enoughd = d(e, p, q) such that iff : [¢|™ — [q] is any balanced-ary function withInf;(f) < ¢ for all
i=1...n,then

Sp(f) < PlurStab(q, p) + €

Note that in the case = 2, Sheppard’s formula giveBlurStab(2,p) = 1 — %arccos p, which is the
noise stability of Majority; there is also a closed formulados 3 ([27,/12]). For large values af we give
asymptotics which hold up tol+ o,(1) factor in Sectiorﬂi. For the reader’s convenience, we remark here
that

PlurStab(q, p) = © ((1/q)(17p)/(1+p)) .

Although we don’t have Plurality Is Stablest, a result/of/[45] generalizing Majority Is Stablest serves
us almost equally well. This result bounds the stability of a function in terms of the behavior of correlated
Gaussians. To state it, we need one more definition:

Definition 8. Letyu € [0,1] andp € [0,1]. Let X andY denote normal random variables with me@&and
covariance matrix(; ’f). We define

A,(p) =Pr[X > tandY >,
wheret is chosen so thar[X > ] = u.

MOO theorem: Fix ¢ > 2 andp € [0,1). Then for any > 0 there is a small enough = d(¢, p,q) > 0
such that iff : [¢]* — [0, 1] is any function satisfying[f] = p andInf;(f) < dforalli =1...n, then

Sp(f) < Ap(p) +e.

As a result we have that the noise stability of any balanfed [¢]" — A, is essentially at most
qA,(1/q). We give the asymptotics of this quantity in Sec@n 6 and they are extremely close to those of
PlurStab,(q); in particular, they are the same up to a constant multiplicative factor.
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5 Onthe geometry of MAX-CUT

We shall now try to explain (non-rigorously) the connection between the Majority Is Stablest theorem and the
geometric picture that arises from the Goemans-Williamson algorithm. But before going further, let us first
note that the approximation ratio achieved by Goemans-Williamson arises as the solution of a trigonometric
minimization problem, which in turn originates from a geometric setting. To obtain a matching inapprox-
imability constant, it seems essential to introduce some similar geometric structure. Such a structure is
present in the construction of our Long Code test, although it is only implicit in the actual proofs.

For the purposes of the following explanation, let us considenttlanensional discrete cule-1, 1}"
as a subset of the-dimensional Euclidean unit sphere (we normalize the Euclidean norm accordingly). The
Majority Is Stablest theorem essentially states that the discrete cube is a good approximation of the sphere
in a certain sense.

The Goemans-Williamson algorithm. We start with a brief description of how the approximation ratio
agw arises in the Goemans-Williamson algorithm. To find a large cut in a given graph(V, E') with n
vertices, the Goemans-Williamson algorithm embeds the graph in the unit sphife identifying each
vertexv € V with a unit vectorx,, on the sphere. The embedding is selected such that the sum

Z 1 - *<Xu,XU>, (1)

(u,v)EE

N —

involving the inner products of vectors associated with the endpoints of edgésisfmaximized. The
maximum sum bounds from above the size of the maximum cut, since the size of every cut can be realized
by associating all the vertices from one side of the cut with an arbitrary gaintthe sphere, and associating

all other vertices with-x.

Once the embedding is set, a cutihis obtained by choosing a random hyperplane through the origin
and patrtitioning the vertices according to the side of the hyperplane on which their associated vectors fall.
For an edgéu, v) in G, the probability that: andv lie on opposite sides of the random cut is proportional
to the angle betweex,, andx,. More precisely, letting = (x,, x,,) denote the inner product between the
vectors associated withandv, the probability that the edde:, v) is cut is(arccos p) /7.

The approximation ratiag,, of the Goemans-Williamson algorithm is obtained by noting that

Qow = min 7(&“?081” U™ o 878567 @)
—1<p<1 5 — Ep
is the smallest ratio possible between the probability of an edge being cut and its contribytion to (1). Hence
the expected size of the cut obtained by the Goemans-Williamson algorithm is at leagtfaction of [1),

and therefore it is also at least ag,-fraction of the maximum cut id.

Cutting the sphere. In [19], Feige and Schechtman considered the gi@phvhose vertices are all the
vectors on the unit sphere and in which two vertices are connected by an edgefirtheir inner prod-

uct is roughlyp (we do not get into the precise details). It is shownlin [19] that in this graph the largest
cut is obtained by any hyperplane through the origin. (To state this rigorously one should define appro-
priate measures etc., but let us remain at a simplistic level for this discussion.) Such a hyperplane cuts an
(arccos p) /m-fraction of the edges in the graph.

Restricting to the cube. We would like to consider an edge-weighted gra&plwhich is, in a non-rigorous
sense, the graph induced b¥, on the discrete hypercube. For two vectars on the discrete cube, we

10



define the weight of the edd&, y) to be
Pr[X =xandY =y],

whereX andY arep-correlated random elements of the discrete cube. The diaplesemblegy, in the
sense that almost all the edge-weighiHp is concentrated on edgés, y) for which (x,y) ~ p; we call
such edgesypical edgesLet us examine how gooH,, is as an ‘approximation’ of the graph,,.

Note that the structure af, is very reminiscent of our Long Code test, mentioned above. To make the
similarity even clearer, note that a alitin ,, immediately defines a boolean functign over the discrete
cube. Itis easy to observe that the siz&ofnamely the sum of weights of the edges that are cut) is exactly
the noise stability offc — i.e., the acceptance probability of the Long Code test with pararpetdren
applied tofc.

The size of the cut. So how large can the size 6fbe? IfC is determined by a random hyperplane, then a
typical edge is cut with probability abo(irccos p) /7. The expected size of such a cut is therefore roughly
the same as the weight of the maximal cuGlp (when the total weight of the edgesd¥, is normalized to
1).

There are, however, cuts fif, whose weight is larger thap@rccos p) /7. For example, one can partition
the vertices inf, according to their first coordinate, taking one side of the@ub be the set of vectors
in the discrete cube whose first coordinaté ind the other side af' to be the set of vectors whose first
coordinate is—1; note that this is the cut defined by the hyperplane which is perpendicular to the first
coordinate. When interpreted as a functiGhcorresponds to the functiofy:(x) = z1; i.e., it is a correct
Long Code word. One can easily observe that the size Bf% — %p —i.e., itis exactly the completeness
of the Long Code test with parameter

The Majority Is Stablest theorem comes in. The size of one-coordinate cutsif), is larger than the best
cuts achievable iGr,. The Majority Is Stablest theorem implies, however, that essentially those are the only
special cases, and that all other cut¢lipnare no larger than the maximum cutéh,. That is, it implies that
unlessf- depends significantly on one of the coordinates, then the sizgisfat most(arccos p) /7 + €.
Stated formally, Propositidn 7.4 in Section|7.3 says the following.

Proposition For anyp € (—1,0] and anye > 0 there is a small enough = §(¢, p) > 0 such thatifC' is a
cutin H, such thatinf;(fc) < ¢ for everyi, then the size of' is at most(arccos p)/m + €

6 Our results

In this section we formally state our main results.

6.1 Hardness for MAX-CUT and 2-bit CSPs

Our main result regarding MAX-CUT is the following:

Theorem 1. Assume the Unique Games Conjecture. Then for every constaft p < 0 ande > 0, itis
NP-hard to distinguish instances of MAX-CUT that are at légst- 3 p)-satisfiable from instances that are
at most((arccos p) /7 + €)-satisfiable. In particular, choosing = p*, where

(arccos p)/m

* .
p = argmin —y—

~ —.689,

implies that it is NP-hard to approximate MAX-CUT to within any factor greater than the Goemans-
Williamson constantygy ~ .878567.
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Recall that the main result of Goemans and Williamson [26] is an algorithm which, given instances of
MAX-CUT with fractional optimum at Ieas§ — %p (wherep < p*), outputs a solution with value at least
(arccos p)/m — € (Wheree > 0 can be an arbitrarily small constant). Thus our Unique Games-hardness
theorem precisely matches the algorithmic guarantee of Goemans and Williamsadinfor< p < p*. For
p very close to—1, by considering the Taylor expansianccos p = 7/2 — p — p3/6 — - - -, we have the
following corollary:

Corollary 2. Assume the Unique Games Conjecture. Then for all sufficiently gmall0, it is NP-hard
to distinguish instances of MAX-CUT that are at le@st- n)-satisfiable from instances that are at most

(1 —(2/m)/n)-satisfiable.
We prove Theorein|1 in Sectiph 8.

In Sectior] @ we apply our techniques for other 2-bit CSPs besides MAX-CUT. In particular we prove:

Theorem 3. Assume the Unique Games Conjecture. Then it is NP-hard to approximate MAX-2SAT to within
any factor greater tha, where

5= min 24 (2/m)0

~ .943.
T<9<r 3 —cosl

The proof of Theorer|3 actually implies that MAX-2SAT is hard to approximate to within any factor
greater thans, even if restricted to instances where each variable appears equally often positively and
negatively (see Sectidr] 9 for more details). We show that for this restricted problem, called Balanced-
MAX-2SAT, the approximation boung is tight; i.e., itcanbe approximated to within any factor smaller
thang:

Theorem 4. Balanced-MAX-2SAT is polynomial-time approximable to within any factor smallerithan

6.2 Special cases of the Majority Is Stablest theorem

Some special cases of the Majority Is Stablest theorem are of independent interest.

First, it should be noted that the Majority function is not a ‘unique’ optimizer, in the sense that every
weighted threshold that does not depend largely on any one coordinate is equally noise-stable:

Theorem 5. Let f : {—1,1}" — {—1,1} be any balanced threshold function, namely of the fg@fm) =
sgn(aizy + - - - apxy). Letd = max; {Inf;(f)}. Thenforallp € [-1,1],

Sp(f) =1 — 2arccos p+ O(5(1 — |p|)~3/?).

™

It is also of interest to consider the case wherends to zero. It is easy to see that in this case the
Majority Is Stablest theorem implies that the weight of a Boolean function on the first level of its Fourier
transform is essentially bounded Byr. We give an easy and direct proof of this fact:

Theorem 6. Supposef : {—1,1}" — [—1, 1] satisfiednf;(f) < § for all . Then

> f(9)P<2+0s,

1S|=1
whereC' = 2(1 — /2/m).
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We also can give a direct proof of an improved version of Thegrem 6 which depends on the mean of
f; as the mean becomes small enough, this result approaches a result of Talagrand [53] (WhICh states that
for every functionf : {—1,1}" — {-1,1} with Pr[f = 1] = p < 1/2 it holds that} ¢ _ Lf(8)?

O(p® log(1/p))):

Theorem 7. Let ¢ be the Gaussian density function amdbe the Gaussian distribution function. Let

U(z) = ¢(®@ (z)) : [0,1] — [0,1/+/27] denote the so-called ‘Gaussian isoperimetric function.
Supposef : {—1,1}" — [—1, 1] satisfiednf;(f) < ¢ for all . Lettingu = 3 + 1E[f], we have

S F(8)? <4(U) + o7,

|S|=1

where the error term is given by

e = max{1, /|2~ ()|} - O(V?)

This theorem is sharp up to the error term, as can be observed by considering restrictions symmetric
threshold functions with various thresholds (see, €.al, [43].dr [42] for explicit computations). Note that for
x small,U(x) ~ x+/21n(1/z); this is why our result is comparable with Talagrand’s.

6.3 Larger domains: g-ary functions

In this section we state our results fgiary functions and fog-ary constraint satisfaction problems. We
will be concerned with two such 2-CSPs. The first is MRCUT, the problem of partitioning a graph
into ¢ parts so as to maximize the number of edges between parts. The second is is MAX)2IGNEN

an integerg > 2, the MAX-2LIN(g) problem is to maximize the number of satisfied equations in a given
system of linear equations modujpwhere exactly two variables appear in each equation. See Sectipn 11.1
for formal definitions.

Stability estimates. Our hardness results are based in part on the following analysis of the noise stability
of g-ary functions, as discussed in Sectjgn 4. We first obtain an exact analytic expression for the noise
stability of the plurality function.

Theorem 8. Fix g and— -1 < p < 1. Then
q

lim S,(Plurality,) = ¢I(q, p),

n—oo
wherel(q, p) is defined as follows: Let/1, V1) ..., (U,, V,) be a set of; i.i.d. normal vectors with meaf
and covariance matri><; ’f) , then

I(q,p) = Pr[U; = max U;, Vi = max Vj].

1<i<q 1<i<q

Further, the quantityl(q, p) is precisely equal the key quantity callédp) (with ¢ = k) in Frieze and
Jerrum’s paper on MAX-CUT [25] (see alsol[12]).

As a corollary of Theorein|8, and a result of de Klerk etlall [12] (see also [25]) which gives the asymptotics
of I(q, p), we obtain the following:

Corollary 9. For every fixed) < p < 1, we have

1-p)/(1+
PlurStab(q, p) ~ (LY Pt

- (arn(q — 1))/ DAL ©

(=7

where the~ indicates that the ratio of the two sidesliasq¢ — oo, andI' is the gamma function.
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Since we do not have the Plurality Is Stablest conjecture we cannot actually use Céiollary 9 in our hard-
ness results. Instead we use the MOO theorem which is stated in terms of the fungtigr(recall Defi-
nition[8); therefore we need bounds on its asymptotics. Slightly improving the estimate from Lemma 11.1
of [12], we have:

Proposition 6.1. Denote byy the Gaussian density functiaf(z) = \/%6*12/2, and letN(z) = [ ¢

denote the Gaussian tail probability function. For aly< p < 1/2, lett > 0 be the number such that
N(t) = p. Thenforallo < p <1,

Ap(p) < (1 +p)- @MH/E) (4)

Note that in the casp = 1/2, A,(1/2) = 3(1 — 2 arccosp), and the casg. > 1/2 can be easily
reduced to the cage< 1/2. Also, itis relatively easy to see that the right hand sid¢ Jof (4) becomes a lower
bound onA (1) if the (1 + p) factor is removed.

In fact, we are mainly interested in the case where> 0 (¢ — o0). In this case, it turns out thdt|(4)
holds as an equality up tola+ o, (1) factor (even ifp is a function ofy). This yields the following:

Corollary 10. Lety — 0 and lett = ¢(u) be defined as in Propositign 6.1. Then the following holds:

1. Foranyp = p(p),0 < p <1,

—0 -
Ap() "R () N (1 12)
(where by ~’ we mean that the ratio between the two sides tends to one).

2. If 0 < p < lisfixed, then

~0 ~ 1+ p)/?
Ap(p) "7 P 0 (4 In(1/p)) p/(ler)El_p;l/Q’

3. Forany fixed < n < 1,
ghiy(1/g) < (1/q)"77.

4. ForanyA = A(gq) € (0,1), letp =1 — 2. Then

gh(1/q) <1—=+/2/m - VA4 0xr0(1) + 0goo(1).

Part 2 of Corollaryf 10 is due de Klerk et al._[12]. It implies thgt,(1/¢q) and PlurStab,(q) have
the same asymptotics agends to infinity, up to a small multiplicative constant. The other statements of

Corollary[10 are proven in Sectipn IJL.3.

Hardness Results. We now move to stating our hardness resultsfary domains. For MAXg-CUT we
show that assuming the Uniqgue Games Conjecture, it is impossible to essentially improve on the approxi-
mation ratios for MAX¢-CUT achieved by Frieze and Jerrum][25] by more than an additive

Theorem 11. Assume the Unique Games Conjecture. Then for every0 it is NP-hard to distinguish
(1 — e)-satisfiable instances of MAXCUT from instances that are at mogt — 1/q + (2Ingq)/¢* +
O(Inln q)/q?)-satisfiable.

Our hardness result for MAX-2LINJ is formulated in terms o\, (1), discussed above.
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Theorem 12. Assume the Unique Games Conjecture. Then for every, p € [0,1] ande > 0, given an
instance of MAX-2LINY), itis NP-hard to distinguish between the case where it is at I@as%(l —p)—€)-
satisfiable and the case where it is at m()@Ap(%) + ¢)-satisfiable. Furthermore, this holds even for
instances in which all equations are of the fosn— z; = c.

Using the asymptotics af (1) given above in Corollary 10, we have:

Corollary 13. Assume the Unique Games Conjecture. Then for everyfixed) there existsjy = qo(n)
such that for every fixed > qq the following holds. Given an instance of MAX-2L4IN(it is NP-hard to
distinguish between the case where the instance is at (@¢astn)-satisfiable and the case where it is at
most(1/q)"/ 2~ -satisfiable.

Corollary 14. Assume the Unique Games Conjecture, and letA(q) € (0,1). Given an instance of MAX-
2LIN(g), it is NP-hard to distinguish between the case where the instance is at(lleas{niq)-satisfiable
and the case where it is at mossatisfiable, where

s=1— /27 VA+0r-0(1) + 0gol(1).

Note that MAX-2LIN(g) is itself essentially an instance of Unique Label Cover, except for the fact that
the variable/equation structure need not be bipartite. But in fact, it is easy to observe that the “non-bipartite”
version of the Unique Games Conjecture is equivalent to the usual Unique Games Conjecture [39] (up to
a factor of2 in the soundness). Hence Theorem 12 and its corollaries may be viewed as concerning the
allowable parameter tradeoffs in the Unique Games Conjecture. In particular, Cdrollary 13 implies:

Corollary 15. The Uniqgue Games Conjecture holds if and only if it holds as follows: For eyeryd and
label set sizg (sufficiently large as a function @), it is NP-hard to distinguish whether the Unique Label
Cover problem with label set sizehas optimum at least — 7 or at most(1/¢)"/ (2=,

(The factor of2 lost in soundness from passing to a bipartite version can be absorbed since the soundness
obtained in the proof of Corolla3 is actually stronger by a factdtaf ¢)**(!) )

Recently, a result of Charikar, Makarychev, and Makarychev [10] showed that the parameters in Corol-
lary[15 are almost optimal. They give an algorithm for Unique Label Cover with label sej Hize, given
an instance with optimurfil — n), outputs an assignment which satisfies at legsy q)"/(>~3")-fraction of
the constraints.

7 Definitions and technical preliminaries

In this section we give some definitions and make some technical observations concerning the Majority Is
Stablest theorem, reducing it to a form which is useful for our MAX-CUT reduction.

7.1 MAX-CUT and MAX-2SAT

For the majority of this paper we will be concerned with the MAX-CUT problem; we will also later consider
the MAX-2SAT problem. We give the formal definitions of these problems below.

Definition 9 (MAX-CUT). Given an undirected graply = (V, E), the MAX-CUT problem is that of
finding a partitionC = (V1, V) which maximizes the size of the g€t x V5) N E. Given a weight-function
w: E — RT, the weighted MAX-CUT problem is that of maximizing



Definition 10 (MAX-2SAT). An instance of the MAX-2SAT problem is a set of boolean variables and a
set of disjunctions over (exactly) two literals each, where a literal is either a variable or its negation. The
problem is to assign the variables so that the number of satisfied literals is maximized. Given a honnegative
weight function over the set of disjunctions, the weighted MAX-2SAT problem is that of maximizing the sum
of weights of satisfied disjunctions.

As we noted earlier [11] implies that the achievable approximation ratios for the weighted versions of
the above two problems are the same, up to an addifivVg as the approximation ratios of the respective
non-weighted versions. Hence in this paper we freely work with the weighted version.

7.2 Analytic notions

In this paper we treat the bit TRUE adl and the bit FALSE a$; we consider functiong: {—1,1}" — R
and say a function iBoolean-valuedf its range is{—1,1}. The domain{—1, 1}" is viewed as a probability
space under the uniform measure and the set of all funcfieqs-1,1}" — R as an inner product space
under(f, g) = E[fg]. The associated norm in this space is given| i} = \/E[f?].

Fourier expansion. For S C [n], let x5 denote the parity function of, xs(z) = [[;cqxi. Itis well
known that the set of all such functions forms an orthonormal basis for our inner product space and thus
every functionf : {—1,1}" — R can be expressed as

F=Y f(S)xs.

SC[n]

Here the real quantitief(S) = (f, xs) are called thé=ourier coefficientof f and the above is called
the Fourier expansiorof f. Plancherel’'s identitystates thatff,g) = > ¢ f(5)g(S) and in particular,
1113 = Sg £(S)?. Thus if f is boolean-valued thelr s f(S)? = 1, and if f : {~1,1}" — [~1,1] then
Yos f‘(S)2 < 1. We speak off’s squared Fourier coefficients a®ights and we speak of the sefsbeing
stratified intolevelsaccording td.S|. So for example, by theveight of f at level 1we meanZlSl:1 f(S)Q.

The Bonami-Beckner operator. For anyp € [—1, 1] we define thdonami-Beckner operatdf,, a linear

operator on the space of functiofis1,1}" — R, by 7,(f)(z) = E[f(y)]; where each coordinatg of

y is independently chosen to hg with probability% + %p and —z; with probability% — %p. It is easy

to check thatf},(f) = > ¢ p'S‘f(S)XS. It is also easy to verify the following relation betwe&pnand the
noise stability (see Definitign 3).

Proposition 7.1. Let f: {—1,1}" — Randp € [-1,1]. Then
Sp(f) = (£ Tof) = D p1f(9),
SC[n]

The following identity is a well-known one, giving a Fourier analytic formula for the influences of a coordi-
nate on a function (see Definitih 2).

Proposition 7.2. Let f: {—1,1}" — R. Then for every € [n],
Inf;(f) = > f(5)?. (5)
53i

Once we have the Fourier analytic formula for the influence, we can consider the contribution to the
influence of characters of bounded size.
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Definition 11. Let f: {—1,1}" — R, and leti € [n]. Thek-degree influence of coordinaten f is defined

by
mf=F(f) = > £(9)°
S>i
1S|<k

7.3 Different forms of the Majority Is Stablest theorem

Recall the Majority Is Stablest theorem (proved.inl [45]):

Majority Is Stablest theorem: Fix p € [0,1). Then for any > 0 there is a small enough = (¢, p) > 0
such thatiff : {—1,1}" — [—1, 1] is any function satisfying

E[f] = 0, and

Inf;(f) <dforalli=1...n

then
Sp(f) <1— 2arccosp+e.

In the MAX-CUT reduction we need a slightly altered version of the Majority Is Stablest theorem. First,
we can replace influences by low-degree influences:

Proposition 7.3. The Majority Is Stablest theorem remains true if the assumptionitiiatf) < ¢ for all i
is replaced by the assumption tﬁa]ff’“'(f) < ¢, whered’ andk’ are universal functions afand p.

Proof. Fix p < 1 ande > 0. Choosey such thap” (1 — (1 —+)%) < ¢/4 for all k. Lets be chosen such that
if Inf;(g) < 6 for all i thenS,(g) < 1— 2 arccos p+¢€/4. Choosey’ = §/2 andk’ such that 1 —y)2 < ¥

Let f be a function satisfyingnffk'(f) < ¢"and letg = T1_- f. Note that
Infi(g) < > fP+A-0* Y f(8)P<d+d=3
S:i€sS,|S|<k S:€S,| S| <k

for all 4.
It now follows thatS,(g) < 1 — 2 arccos p + ¢/4 and therefore

Sp(f) =Su(g) + Z(PIS|(1 — (1= f8)? <1 - %arccosp + 3¢/4.

Second, we need to treat the case of negative

Proposition 7.4. The Majority Is Stablest theorem is true ‘in reverse’ forc (—1,0]. Thatis,S,(f) >
1-— % arccos p — €, and furthermore, the assumpti@j /] = 0 becomes unnecessary.

Proof. Let f : {—1,1}" — [—1,1] satisfyInf;(f) < d for all i. Letg be the odd part of g(x) = (f(x) —
£(—2))/2 = g aaaf (S)as. ThenElg] = 0. Infi(g) < Infi(/) for ll i, andS,(f) > 8,(9) = =5-,(s).
which exceeds-(1 — arccos p + €) by the Majority Is Stablest theorem appliedgto O

Combining the above two propositions we get the result that will be used in our reduction from Unique
Label Cover to 2-bit CSPs:
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Proposition 7.5. Fix p € (—1,0]. Then for any > 0 there is a small enough = J(¢, p) > 0 and a large
enoughk = k(e, p) such thatiff : {—1,1}" — [—1, 1] is any function satisfying

Inf=*(f) < dforalli=1...n,

then
Sp(f) > 1— 2 arccosp —e.

8 Reduction from Unique Label Cover to MAX-CUT

In this section we prove Theorgm 1.

8.1 The PCP

We construct a PCP that reads two bits from the proof and accepts if and only if the two bits are unequal.
The completeness and soundnesscaand s respectively. This implies that MAX-CUT is NP-hard to ap-
proximate within any factor greater thajc. The reduction from the PCP to MAX-CUT is straightforward

and can be considered standard: Let the bits in the proof be vertices of a graph and the tests of the verifier be
the edges of the graph. THe-1, 1} assignment to bits in the proof corresponds to a partition of the graph
into two parts and the tests for which the verifier accepts correspond to the edges cut by this partition.

The completeness and soundness properties of the PCP rely on the Unique Games Conjecture and the
Majority Is Stablest theorem. The Unique Label Cover instance given by the Unique Games Conjecture
serves as the PCP outer verifier. The soundness of the Long Code-based inner verifier is implied by the
Majority Is Stablest theorem.

Before we explain the PCP test, we need some notationz Eof —1, 1} and a bijectiorv : [M] —

[M], letz o o denote the stringz,(1), T, (2); - - - To(ar))- FOrz, p € {—1,1}", letzy denote thel/-bit
string that is the coordinatewise productofnd .

The PCP verifier is given the Unique Label Cover instad¢®, W, E, [M], {0y }(v,uw)cr) diven by
the Unique Games Conjecture. Using a result from [38] we may assume the bipartite graph is regular on the
V side, so that choosing a uniformly random vertex V' and a random neighbar of v yields a uniformly
random edgéu, w). We assume that the Unique Label Cover instance is gjther)-satisfiable or at most
~-satisfiable, where we will choose the values)@nd-~ to be sufficiently small later. The verifier expects
as a proof the Long Code of the label of every veriex W. The verifier is parameterized byc (—1,0).

The PCP verifier for MAX-CUT with parameter —1 < p <0

e Pick a vertexv € V' at random and two of its neighbots v’ € W at random. Let = ¢, ,, and
o' = o, be the respective bijections for edgesw) and(v, w').

e Let f,, andf,  be the supposed Long Codes of the labels @hdw’ respectively.
e Pickz € {—1,1}* atrandom.

e Pickp € {—1,1}™ by choosing each coordinate independently td beth probability  + 5p < 1

and—1 with probability} — 2p > 1.

e Accept iff
Jw(@oo)# fu((zo UI)M)'
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8.2 Completeness

It is easy to see that the completeness of the verifier is at (¢ast2n) (3 — 3p). Assume that the Label
Cover instance has a labeling that satisfiés-a; fraction of edges. Take this labeling and encode the labels
via Long Codes. We will show that the verifier accepts with probability at I@asth)(% - %p).

With probability at least — 27, both the edgetv, w) and (v, w') are satisfied by the labeling. Let the
labels ofv, w, w’ bei, j, j' € [M] respectively, so that by the acceptance conditiof) = i = ¢/(j’). The
functionsf,,, f,, are the Long Codes gf ;' respectively. Hence

Ful@oo) = woiy =25y fur((@00")1) = Tor(gryptys = wapty

Thus the two bits are unequal (and the test acceptg)if= —1 which happens with probabilitg — %p.

8.3 Soundness

We prove soundness in the contrapositive direction, as is usual in PCP proofs: Assume that some supposed
Long Codesf,, cause the PCP verifier to accept with probability at Iéasicos p) /7 + ¢. We use Fourier
methods to “list-decode” the Long Codes and extract a labeling for the Unique Label Cover instance that
satisfies some’ = +/(e, p) fraction of its edges. Since this constant does not depend on the Label Cover
label set size\, we can takel/ large enough in the Unique Games Conjecture to get soungnesg, as

required.

We first analyze the probability of acceptance for the PCP verifier by arithmetizing it as follows:

Praci= B [; — S0 0) () o a’)] ((z41) o o' has the same distrib. s o "))
~3-3" B | B a0 (o)
=1 B [13[ fulwe )] Elfurl(an) g’)]] (using independence af andu)
-5 B [0.()gu(a) (where we defing,(2) = B [fu(z 0 0v.)])
— 57 EBile) ©

(The reader may think af, as “polling” v's neighborsw on its labeling.) Now if Placd > (arccos p) /7 +e,
then for at least an/2 fraction ofv € V,

Sp(gw) <1 — Zarccosp —e.

We say that such a vertexis “good”. For every good, we apply the Majority Is Stablest theorem in
the guise of Propositidn 7.5 to conclude thathas at least one coordinate, saywith k-degree influence
at leastd. We shall give the labeJ to v. In this way, all goodv € V are labeled. For a good, since
Infjgk(gv) > §, we have

< @S =Y Bllule (SN < X Bl ()] = B [k (f)] . (@)
53 53j 53
IS|<k [SI<k |S|<k
For everyw € W, define the set of candidate labels foto be

Candw] = {i € [M]: Inf=F(f,) > 6/2}.
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Since) Inf?k(fw) < k, we conclude thatCandw]| < 2k/4. Inequality @’) implies that for every goad
at least @ /2 fraction of neighborsv of v haveInfif1 (j)(f) > §/2, and therefore—!(j) € Candw]. Now

we label each vertew € W by choosing a random element of Cénfl(or any label if this set is empty). It
follows that among the set of edges adjacent to good verticasleast &4 /2)(9/2k)-fraction are satisfied
in expectation. Thus it follows that there is labeling for all vertices which satisfieés=a(e/2)(5/2)(5/2k)
fraction of all edges. This completes the proof of soundness.

8.4 Completion of the proof of Theoreni 1

We have just shown how to reduce Unique Label Cover instances to MAX-CUT instances with completeness
(2 — 1p)(1 — 2n) and soundnes@rccos p) /7 + €, wheren ande can be made arbitrarily small. The main
statement of Theorefj 1 follows by slightly modifyipdo move the completeness correctidn- 27) into

the soundness correctienThis result implies a hardness of approximation factor of

arccos(p)/m
T_1

PRI
for any constant-1 < p < 0 ande > 0; choosingp = p* as stated in the theorem yields the desired
hardness factosgy + €.

9 Other 2-bit CSPs

The same method used to prove hardness of approximation for MAX-CUT can be used to give improved
hardness of approximation for another important 2-bit CSP, namely MAX-2SAT. Recall that the input to a
MAX-2SAT problem is a collection of clauses, i.e. disjunctions, of at most 2 variables; the goal is to find an
assignment that satisfies as many clauses as possible.

The natural inner verifier test for MAX-2SAT is this: With probability2 testf,,(zoc)V fu ((zoo")u);
with probability1/2 test—f,,(z 0 o) V — fur ((x 0 0”) ). It is easy to check that this leads to an acceptance
probability of 2 — 1S,(g,) in place of [§). The dictator passes this test with probabifity 1p; the
Majority Is Stablest theorem implies that no function with small low-degree influences can pass this test
with probability exceeding — (1 — 2 arccos p) + €. This leads to a hardness of approximation ration of

[0

— (1 = 2 arccos p)

p

~ .943943. (8)

G = min 3
—1<p<0 1~

=

This is our Theorernl3.

Note thats is smaller than the best unconditional hardness factor known for MAX-23AR2 ~
.954545, due to Hastad [[32] (using the gadget of Bellare, Goldreich, and Sudan [2]); as well, the best
algorithm known for MAX-2SAT, due to Lewin, Livnat, and Zwick [41], achieves an approximation ratio
of .9401 which is close to and smaller than

Our methodology does not seem to improve the hardness factors for other 2-bit CSPs hgyond
Consider the MAX-2ConjSAT problem, in which the input is a collectiorcohjunctionsof (at most) 2
variables and the goal is to satisfy as many conjunctions as possible. The natural inner verifier test is this:
With probability1/2 testf,,(zoo) A fur ((z0c”)u); with probability1/2 test— f,, (zoo) A— fur (2o’ p).

This leads to an acceptance probability%p# iSp(gv). By the Majority Is Stablest theorem, we get the
same hardness of approximation for MAX-2ConjSAT as we do for MAX-Cbig,, since(: — 1(1 —
2 arccos p))/(§ — 1p) = ((arccos p) /7) /(5 — 3p). In some sense this may not be surprising since the best

4
algorithm known for this problem(([41] again) already achieves an approximation ratio of .8740, which is
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nearlyagy. In fact, the same paper achieves .8740 even for the most general problem, MAX-2CSP in which
arbitrary 2-bit constraints are allowed.

Motivated by these results we are led to conjecture that MAX-284blynomial-time approximable to
within any factor less thag and that MAX-2CSP, MAX-DICUT, MAX-2ConjSAT, etc. are all polynomial-
time approximable to within any factor less thag,. We will now show that these boundse achievable
for a slight weakening of the problems.

Definition 12. Given a 2-bit CSP, by itbalancedversion we mean the problem with the restriction that
every input instancéC', ..., Cy,} has the following property: for each= 1...n, the expected number
of constraints satisfied wher is set tol and the other variables are set uniformly at random is equal to
the expected number of constraints satisfied wihes set to—1 and the other variables are set uniformly
at random.

As an example, Balanced-MAX-2SAT is the MAX-2SAT problem with the additional constraint that
each variable appears positively and negatively in equally many clauses (in the weighted case, with equal
total weight).

We contend that the balanced versions of 2-bit CSPs ought to be equally hard as their general versions;
the intuition is that if more constraints are expected to be satisfiediff set to, sayl rather than-1, it
is a “free hint” that ther; should be set to TRUE. Note that the reductions we suggest from Unique Label
Cover to MAX-2SAT, MAX-2ConjSAT, etc. produce balanced instances, and thus we get the same hardness
of approximation boundgj andag, for the balanced problems (conditional on the two conjectures).

We can prove unconditionally that Balanced-MAX-2SAT is polynomial-time approximable to within
any factor less thaw, and that MAX-2CSP, MAX-DICUT, MAX-2ConjSAT, MAX-2LIN, etc. are all
polynomial-time approximable to within any factor less thay,. By way of illustration, we prove Theo-
rem(4:

Proof. The algorithm is essentially the same as that used by Goemans-Williamson. The input is a collection
of clausesC' of the form(y V z), wherey = r;x; andz = r;x; for some variables; andz; and signs
r; andr;. Arithmetizing each clause with1v -1 =1, -1v1=1,1v-1=1,1Vv1 = 0, we get

3 _1y—1ry—1y. 2 Thus we have the objective function

4 4
OBJ= > 2-
C=(yvz)

=
<
|
=
I\
|
N
<
I

The condition that the instance is balanced is precisely equivalent to the condition that the linear terms
cancel out. (This holds true by definition for all balanced 2-bit CSP problems.) Thus in fact

OBJ= Y 4-

C=(yvz)

Y- 2.

PN

Hence the optimum value of the Balanced-MAX-2SAT instance is
OPT = max OBJ subject tox; € {—1,1} for all 7.

Following Goemans-Williamson we directly relax this to a semidefinite program by replagingth a
high-dimensional vectow;, subject tov; - v; = 1, and solving; in polynomial time we can find a solution
{v;} which achieve§DP — ¢, whereSDP denotes the optimal value of the semidefinite program. We now
round by pickingr to be a random Gaussian vector and setting= sgn(r - v;). Recalling from[[26] that
this givesE|[z; - z;] = 1 — 2 arccos(v; - v;), we have for any clausig/ V z) = (r;z; V rjz;),

E[§ — (rizmi) - (rja)] = § — 1(1 = Z arccos(ryvi - rjv5)) = B(§ — (rivi - 15v5)),
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where we have used the definition @fand the fact that it is unchanged if we jetange ovef—1,1]. It
follows thatE[OBJ] > gSDP > SOPT and the proof is complete.

10 Special cases of the Majority Is Stablest theorem

In this section we describe special cases of the Majority Is Stablest theorem which are of particular interest,
and have elementary proofs.

We will need the following versions of the Central Limit Theorem with error bounds: the first is a
multidimensional version fromi_[5, Corollary 16.3]; the second is the (non-uniform) version of the Berry-
Esseen theorem [20]:

Theorem 16. LetX, ..., X,, be independent random variables taking valueRfrsatisfying:
e EX;]=0,j=1...n;
o n! Z?:l Cov(X;) =V, whereCov denotes the variance-covariance matrix;
¢ ) is the smallest eigenvalue &f, A is the largest eigenvalue 6f;
o« py=n"' LI E[X[ < oo

Let Q,, denote the distribution of~'/2(X; + --- + X,,), let &y denote the distribution of th-
dimensional Gaussian with mean 0 and variance-covariance métrand letn = CA~3/2psn~1/2 where
C'is a certain universal constant.

Then for any Borel sed,

Qn(A) = Pov(A)] < n+ B(A),
where B(A) is the following measure of the boundary4f B(A) = 2sup,cgs Do,y ((0A)" + y), where
n = AY?pand(9A)" denotes the set of points within distang¢ef the topological boundary of.

Theorem 17. (Berry-Esseen) LeX, ..., X,, be a sequence of independent random variables satisfying
E[X;] = 0forall j, 30 E[X?)"? = 0, and}""_, E[|X,[*] = ps. LetQ = o~ 1(X1 +--- + X,,), let

F denote the cumulative distribution function@f F'(z) = Pr[Q < z], and let® denote the cumulative
distribution function of a standard normal random variable. Then

sup(1+ [a]*)| F(2) — ®(2)] < O(ps/a?).
In particular, if A is any interval inR, | Pr[Q € A] — Pr[N(0,1) € A]| < O(p3/c?3).

10.1 Weighted majorities

In this subsection we prove Theor¢in 5, which makes the point that the majority function is not unique as a
noise stability maximizer, in the sense that all weighted majority functions with small influences have the
same noise stability, i.el,— 2 arccos p.

Theorenj b follows from the following two propositions.

Proposition 10.1. Let f : {—1,1}" — {—1,1} be any balanced threshold functiofiiz) = sgn(aix; +
- apzy ff] wherel a? = 1. Letd = max{|a;|}. Thenforallp € [—1,1],

Sp(f) =1— 2 arccosp+ O(5(1 — 1p))=3/2).

lwithout loss of generality we assume the linear form is never 0.
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Proposition 10.2. Let f : {—1,1}" — {—1, 1} be any balanced threshold functiofix) = sgn(a1z; +
- anty), Wwhered~ a? = 1. Lets = max{|a;|}. Thenmax; {Inf;(f)} > Q(9).

We prove the two propositions below.

Proof of Propositiofh 10]1Sincef is antisymmetric, we only need to prove the resultgor [0,1]. Letx
andy be p-correlated uniformly random strings, 1&; = a;z;, Y; = a;y;, andX; = (X;,Y;) € R2. Let
Q. denote the distribution & +- - - +X,, = n~Y2(/n X1+ - -+/n X,). SinceS,(f) = 2Pr[f(z) =
f(y)] — 1, we are interested in computig),, (A UA__) — 1, whereA . denotes the positive quadrant
of R? andA__ denotes the opposite quadrant.

We shall apply Theoreﬂ& We hal$X ;] = 0 for all j. We haveCov(y/n X;) = na? { /1) T ] and

1
|v/n X is v/2n |a;| with probability 1,p3 = n=' S E[|v/n X,[%] = 2320123 |a;|? < 23/2p1/25. Thus
n=0(1)8(1 - p)~3Zandy’ = (1+ p)"/*n = O(n).
It is well known (see, e.g.[ [1, 26.3.19]) thé@b v (A,y) = Pov(A-_) = 1/2 — (1/2m) arccos(p),
and it is easy to check thd@ (A, U A__) = O(r). Thus by Theorerh 16 we g€}, (44 UA__) =
1 — (arccos p) /7 £ O(n) and the theorem follows. O

thusV = n=1 3" Cov(v/nX;) = { ; p ] The eigenvalues of areA = 1 — pandA = 1 + p. Since

Proof of Propositior I0J]2Let C' be the constant hidden in ti(-) in the final part of the Berry-Esseen
theorem, Theorefn 17. For simplicity, we assume tias a positive integer. We prove Proposition 10.2
first in the case where

1 —100C2%6% > 1/4, (9)

namely wheré is smaller than some constant.
We may assume without loss of generality that a1 > as > --- > a, > 0. Letting X; denote the
random variable,z;, we will prove thaflnf; (f) > ©(d) by proving that

Pr[|Xo 4+ -+ X, | < 6] > Q(9). (10)

Let m = 100C? + 2. We will split into two cases, depending on the magnitude,gf In either case,
we shall apply the Berry-Esseen theorem to the sequ&nge. ., X,,. We have

=) _EX;PV2 =D a)? = (1 - (m—2)8)"2 > (1-100C%%)"? > 1/2,
: et
where we have use@(g). We also haye=>""_ E[|X;?] < > [XQ] = a,0?, so the error term

in the conclusion of the theorer®,(p3/03), is at mosCa,, /o < 2Cam

Case l.a,, < 1005 In this case, by the Berry-Esseen theorem we have that
Pr[X,, + -+ X, €10,0]] > ®([0,6]) — 2Cay, > dp(d) — §/5 > .04,

where we have used the fact they) > .24 for § < 1. On the other hand, sinee, ..., a,,_1 are all at
mostd, it is easy to fix particular signg € {—1,1} such thad """, Y asy; € [—6,0]. These signs occur with
probability 2-™+2, which is at lease~1%°C*. Thus with probability at leas4 - 27100C*§ = (§) both
events occur, anfXs + - - - + X,,| < § as desired.

23



Case 2:a,, > ﬁé. In this case, we apply the Berry-Esseen theorem to the interd&iC's, 10C¢] and
merely use the fact that,, < §. We conclude that

Pr[X,, +---+ X, € [-10C4§,1006]] > ®([-10C35,1006]) — 206

> 20C0 - p(10C6) — 2C6 > 2006 - \/%(1 —(1006)2/2) — 206 > 4C5,
where we have use@(9) in the last step to inffer (10C6)%/2 > 5/8. Given X, + + X, =tc¢€
[—10C4,10C4], it is easy to choose particular signs . . . , ym—1 such that + > Yasy; € [—6,0]. This
uses the fact that eaefj is at Ieas%é and henc@i@1 a; > 100021(}06 > 10C'6; it also uses the fact
that eachu; is at mosts. Once again, these signs occur for . . ., z,,,_; with probability at leasp—100C*
Thus|Xs + - - - + X,,| < 8 happens with probability at leas€2~19¢*5 = O(5), as desired.

Let us now deal with the case whelre- 100C?§? < 1, namely wheré > % Letm be the first index
for which |a,,| < % wherec is a small enough global constant to be chosen later. If sueh dnes not
exist, we setn = n + 1.

We prove below that

\ZX<5>Pr\ZX_2\gi]>Q() (11)

Since by the choice of: it must be bounded from above by a global constant, (11) imgliés (10) by arguments
similar to those used in case 1 above, and thus completes the proof.

f/I>n a2l < 400, (17) follows immediately from Chernoff’s inequality. Otherwise, we use the
Berry-Esseen theorem to obtain that

= 20C S g2 20C

i=m i

V3 = 0C :
> -
> Pr |[N(0, )] < 555 (; ) ( 7 ) (using Berry-Esseen)
1 4 C
> —) — .
Qz) - ACYH - 7
(sinced> n Ja;® < am - >0 lail? < laml)
>0 (%) (for ¢ small enough.)
This completes the proof. O

10.2 Bounds for the weight on the first level

Applying the Majority Is Stablest theorem for extremely smalit follows that functions with small influ-

ences have no more weight at level 1 than Majority has, ﬁi(up too(1)). This fact, stated in Theore@ 6,

has a very elementary proof which also provides a better bound on the additive term corresponding to the
maximal influence:
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Proof of Theorerfil6Let ¢ denote the linear part of, £(z) = Y7, f({i})z:. We have thatf({i})| <
Inf;(f) < 6 for all i. Now Yy, £(S)? = [|¢]|3 and

1)z = (f.0
I fllooll€ll1
€]

Since all of¢’s coefficients are small, smaller than we expect/ to behave like a Gaussian with mean
zero and standard deviatidi||»; such a Gaussian hds -norm equal to,/2/7|¢|2. Several error bounds
on the Central Limit Theorem exist to this effect; the sharpest is a resulboigk Sclitt, and Tomczak-
Jaegermann [40] which implies thigt||; < +/2/7||¢||2 + (C/2)d. Thus

14113 < v/2/x|€]l2 + (C/2)6,
hencel|¢||2 < \/1/2m + /1/27 + C§/2 and thereforé|/||3 < 2/7 + C4. O

IN A

In the following we improve the bound on the weight of the first level for not necessarily balanced
functions with low influences. This result should be compared to the following theorem of Talagrand [53]:

Theorem 18. (Talagrand) Supposg¢ : {—1,1}" — {—1,1} satisfiesPr[f = 1] =p < 1/2. Then

> F(8)* < O(p*log(1/p)).

IS]=1

Proof. It will be more convenient to work with th@), 1] valued-functiong = % + %f and prove that

Y5121 9(9)? < (U(u) + max{1, \/|<1>71(u)|}0(\/3))2. Note thaty = E[g]. We will assume without
loss of generality thgt > 1/2 (otherwise look a% — =

Let 7 denote(3" 5, 3(S8)%)Y/2. As in the proof of Theore@G, we létbe the linear part of and
we know that all of’s coefficients are at most/2. The functionl = ¢/7 = 3 4 §(S)xs/7 is a sum of
independent random variablég = §(S)xs/7. ClearlyE[Xs] = 0 for all S. Moreover,Y ¢ E[X?%] = 1
and)_ ¢ E[X3] < maxg|Xg| < d/(27).

Now 72 = (g, ¢) and therefore- = (g, L). We will show below that

7= (g, L) < U(p) + max{L,[®~}(u)[}O(5/7). (12)
Multiplying by 7 implies that

2
<7. _ U(;)) < UQ(,u)/4 + max{1, |¢_1(#)‘}O(5)'

which in turn implies that
7 < U(p) + max{1,/|®=1(u)[}O(V5
Finally, we will conclude that

7 < (U0 + max{1, V2T (0[}O(VE)

We now prove[(1R). Let be a number such th&@r[L > ¢] = . Sinceg is a[0, 1] valued-function it
follows that(g, L) < E[11-¢L].
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Letting ' denote the cumulative distribution function af the Berry-Esseen theorem implies that
sup, (1 + |z|?)|F(z) — ®(x)| < O(§/7). In particular,|Pr[L > t] — Pr[N(0,1) > t]| < O(§/(7(1 + t3))
and hence

= (=) <0 (T(litg)) (13)

Note that the functiol/ satisfies

ThereforelU” (z) = —1/¢(®(z)) = —1/U(z). It follows thatU is concave.
We now estimaté/ (1) — ¢(t). SinceU’ is a monotone function, it follows that

U(p) — o) = [U(@(-t)) — U] < |@(=t) — plmax{|U"(2(-1))], [U"(1)[} (14)
< max{[t], 27N (1)}O(8/(r(1 + %)) < max{1,[®7} ()| }O(5/7).

Further,
(0.L) < B[yl = tPr[L > 1] + /t T PuL > 2] da
— Pl > 1]+ /too PrN(0,1) > o] d + /tOO(F(:v) — ®() de
_ tu—t@(—t)—l—(b(t)—l—/too(F(:c)—@(x))dx

< o)+ [t - [p— (=) + /too |F(2) — ®(x)| dx
i

1+ [¢3

= o0 +0 () by@)
() + max{1, |97 ()] }0(5/).

< ot) +

O(5/7) +O(§/7) /too 1/(1+ |z*)dz  ({@3) and Berry-Esseen

IN

which proves|(IR) as needed. O

11 Constraint satisfaction problems over|g|

So far in this paper we have mostly focused on 2-CSPs in which the variables are binary — i.e., take values
in the alphabe{—1,1}. The exception is the Unique Label Cover problem, which can be thought of as a
2-CSP where the set of values a variable can take is very large. In this section we develop our techniques for
2-CSPs over large alphabets; specifically, the alphibet {1,2,...,¢} for ¢ > 2. We will be concerned

in particular with the MAX-2LINg) and MAX-¢g-CUT (i.e. Approximate Graph-Coloring) problems, and

we will mostly be interested in the asymptotics when> co.

11.1 T-MAX-2LIN( ¢) and MAX- ¢-CUT
The MAX-¢-CUT problem is a natural generalization of MAX-CUT; its formal definition is as follows:

Definition 13 (MAX- ¢-CUT). Given a weighted grapty = (V, W) whereW : V x V — R, theMAX-
¢-CUT problem is that of finding a partition df into ¢ setsV, ..., V, in such a way as to maximize the
weight of edges between the different payt,.; 3= ,cv; wev, W (v, w).
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The MAX-2LIN(q) problem is defined as follows:

Definition 14 (MAX-2LIN( q)). Given a system of: linear equations mod each having at most vari-
ables, along with nonnegative weights, . . . , w,, for these equations, tidAX-2LIN( ¢) problem is to find
an assignment to the variables maximizing the total weight of satisfied equations.

Observe that the MAX2-CUT problem can be viewed as a special case of the MAX-22)d(oblem,
by associating the vertices with variables and the edges with equatjonse, = 1. However for larger,
MAX- ¢-CUT is more naturally viewed as a special case of the problem of finding assignments for 2-variable
linearinequationamodg.

The best approximation algorithm for MAX¥-CUT was obtained by Frieze and Jerrumlin![25]; this
paper gives &1 — 1/q + 2(In ¢)/q?)-approximation. As for the approximability of MAX-2LIN§, the best
algorithm known was given very recently by Charikar, Makarychev, and Makarychev in [10], as discussed in
Subsection 6]3 (their algorithm is actually for the more general problem of not-necessarily-bipartite Unique
Label Cover with label sizg). When the optimal fraction of satisfiable constraints-is;, their semidefinite
programming algorithm produces a solution satisfying about a fra¢tigg)”/ (237, The best known NP-
hardness results come from a recent work of Feige and Reichman [21]. They show that it is NP-hard to
approximate MAX-2LINg) to within a factor of1/¢® for some universal constagt > 0; however this
hardness is located at a gapeafs.¢/¢”. In particular, given an instance with optimum fractiba 7, Feige
and Reichman can only show that it is NP-hard to find a solution with vialu€'n for some relatively small
constantC' > 1. Thus with current knowledge, given& — n)-satisfiable instance, we don’t know whether
one can satisfy almost all the constraints in polynomial time, or whether it is impossible to go beyond a very
small fraction of them.

A special case of the MAX-2LINY) problem which seems somewhat easier algorithmically occurs when
all the equations in the instance are of the farm- z; = ¢;;.

Definition 15 (I'-MAX-2LIN( ¢)). I'-MAX-2LIN( q) is the special case of MAX-2LIj(in which each
equation is of the form; — x; = ¢;;.

Our hardness results hold even I#MAX-2LIN( g). TheT notation is essentially from &btad [32];
we use it because our results actually hold equally well for the problem of satisfying equations of the form

— = ci; over any fixed abelian group of orderg, not justZ,.

I'Z‘JZJ

11.2 Analytic notions

We would like to generalize our notions of noise stability, influences, and Fourier expansipasytfunc-
tions, f : [¢]" — [g]. Some of the definitions below were already given in Subseftidn 4.2, but we repeat
them here for clarity and convenience.

The way we treat the finite s¢f] in the domain and in the range gfary functions will be different.
In the domainq] and[q]™ will be treated simply as finite probability spaces under the uniform measure,
with no extra structure. In the range, we would like to emfagihto a larger space. Recall that for boolean
function we identified the range with the two point$, 1 € R and then considered relaxed functions taking
values in their convex hull. In the-ary case we identify the elements[gf with the standard basis vectors
in RY. A relaxedg-ary function will thus magq|™ into the simplex which is the convex hull of these vectors.

Definition 16. Let A, denote thgg — 1)-dimensional simplex naturally embeddedfy, i.e., the convex
hull of theq standard basis vectors. We call functiofis [¢|" — A, relaxedg-ary functions

We will also define the notion of a balanced function:
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Definition 17. A functionf : [¢]" — [¢] is called balancedf it obtains each value € [g] in its range
equally often. A relaxed functiofi: [¢]" — A, is calledbalancedf E[f(x)] = (1/q,...,1/q).

Since a relaxeg-ary function f mapsiq]™ into R?, it can be viewed as a vectgr= (fi,..., f;) of
real-valued functions ovey|”. We define the noise stability both for real-valued @ngvalued functions.

Definition 18. Let—q%1 < p < 1and letz andy beq|"-valued random variables. We say thaandy are
a p-correlated paiif x is uniformly distributed ong]™, andy is formed fromz by choosing each; so that
Prly; = a] = 6gz,—ayp + 1%" for eacha, independently for each Note that for0 < p < 1, itis equivalent
to say that each coordinatg is independently chosen to bewith probability p and is a uniformly random
element ofg] otherwise.

Definition 19. Letf : [¢]* — A, and Iet—ﬁ < p < 1. Thenoise stability off atp is defined to be

Sp(f) = E[(f(2), fw)],

I7y

wherez andy are ap-correlated pair. Equivalently, we may define the noise stability of functorig]” —
R via
Selg) = g[g(w)g(y)]
and then denoting by’ theith coordinate projection of, we haveS,(f) = >"1 | S,(f*).
We remark that wherf’s range is simply{q] (as embedded id\,), the quantityS,(f) is simply the
probability thatf (x) = f(y) whenz andy are ap-correlated pair. For example, the noise stability af a
dictator functionf : [¢]"™ — [q] is equal top + %(1 —p).

The definition of influences is very similar to that in the boolean case:

Definition 20. Let f : [¢]" — A,. For1 < < n, theinfluence of theth coordinate ory is defined to be

Inf;(f) = E [Varg, [f (z1,...,20)]],

T1yeeesTi—1,Li4 1500 Tm

whereVar[f] denoteE[(f, f)] — (E[f], E[f]).

The spaceX of all functionsf : [¢]* — R? (we use eitherl = g ord = 1) is an inner product space
with inner product

(f,9) = Ex[(f (), 9(2))]

and associated norm denotgd||. Givenx € [¢]", write zg for {z; : i € S}. Itis well known thatX can
be written as an orthogonal sum of spacés= ®g[, Xs, WhereXg denotes the space of all functions
I : [q]™ — R9 such that

e f(x) depends only ong for all z, and
e fis orthogonal to all functions in the spac&s. for S” C S.

Thus we can write any : [¢]* — R? as

fl@)=">" fs(x), (15)

SC[n]
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wherefs(x) is the projection off onto the spac& s. Parseval’s identity holds for this expansion:

1713 =" IIfsl3:

SC[n]

For —ﬁ < p < 1 we can define the Bonami-Beckner &nhin the obvious way7,(f)(z) = Ey[f(y)],
wherey is p-correlated tar. We have that iff : [¢]" — A, thenT,f also has rangé\,, and that if f
is balanced then so too i, f. We also have thal,(f) = (f,7,f). The formula for noise stability from
Propositiori 7.]1 holds in this setting:

Se(f) =Y PlIIsli3; (16)
SCln]
this follows from the following easy proposition, familiar from the boolean case:

Proposition 11.1.
T,(f) =Y P¥fs

SC[n]

Proof. It is easy to see that for eaah (7, f)(x) is a polynomial inp. Therefore it suffices to prove the
claim for0 < p < 1. Clearly,T}, is linear and therefore it suffices to show thaf i€ X ¢ thenT,f = plSlf.
From the definition of the spackg it follows that for every subset’ C S and for every vector of values
of size|S’| it holds thatE[f(y) | ys» = 2] = 0. Now for0 < p < 1,

Tpof(z) =Y p¥1(1 = p)SE[f(y) | ys = 25] = pI¥ f(2),
s'Cs
as needed. O

In a similar fashion, it is easy to verify that a formula similar[tp (5) holds inglzey case:
Inf;(f) = > |l fsl3-
S3i

Finally, we define low-degree influences as in Definifioh 11:

Proposition 11.2. Let f : [¢]* — R? andk > 1. Then we define

mf () = Y [Ifsl3

S
[S|<k

11.3 Stability estimates

In this subsection we analyze the plurality function and give estimatés Qr), proving Theorerﬁ]& Propo-
sition[6.1, and Corollary 10. We also prove some other estimatds, gn) for very smallp parameters that
are required for our MAXg-CUT reduction. We begin with the proof of Theorgin 8.

Proof of Theorer|8Suppose we choose € [¢|” at random and ley be ap-correlated copy ofc. For
eachi € [q], letu; denote the number of coordinatesuiniaking the value, and letv; denote the number
of coordinates ofy taking the value. We wish the to apply the multidimensional Central Limit Theorem
(specifically, Theorer 16) to calculate the stability of plurality, which is given by

Pr{ul > max u; andv; > max U} = Pr[n— ol > max u; andn — ) ..,v; > max v;|.
1 T i<i<q = jgigg ] T4 Lizati Z 2<i<q LizaVi 2 2<i<q
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Let us define the following vectors iR?~!: let ey, ..., e, denote the; — 1 unit vectors, let- denote the
vector (1/q,...,1/q), letr; denote the) vector, and let; = e¢; — r for i = 2...¢. Consider random
variables(X;, Y;) taking values irR?¢—2 where

1 _
Pr((Xi, Ys) = (ra, )] = ga{azb} + qJ’. (17)

Note that(us, ..., uq, ve,...,v) = nr+ Y i~ 1(X;,Y;) where(X,;,Y;) are the i.i.d. random variables
given in (17) and that the vectofX;, ;) have mear. Writing A for the (¢ — 1) x (¢ — 1) matrix given by
A;j = b—53/a — 1/¢°, the covariance matrik of (X;,Y;) is given by

_ (L r _ (A pA
V= (p 1) o A= <pA A).
Thus the eigenvalues 6f arel/q, 1/q¢2, p/q andp/q>. Finally, the third norm of X, Y;) is at mostd. We
may thus apply Theorem [L6 to obtain:

lim Pr[u > max u; and  v; > max v} :Pr[— 9 N; > max N; and —>"2 _M; > max M]
1= P 7 1 = 1<i<q 7 2272 [ 9<i<q 1 2172 1= 9 7

n— o0 1<i<q <i<q
where (N;, M;)?_, is a normal vector with covariance matrix. Letting Ny = — 7 , N; and M =
—> 7 , M, we see thatNy,..., Ny, M,..., M,) is a zero mean normal vector with covariance matrix

<; ’f) ® B, whereB is theq x ¢ matrix given byB; j = di—j3/q — 1/¢%. Finally, let(Uy,V4), ..., (U, Vy)

be a collection of i.i.d. mean zero normal vector®ity where(U;, V;) has the covariance matr@ ‘f). It
is then easy to see th@V,, ..., N,, M,, ..., M,) has the same covariance matrix as the normal vector

1< 1< 1< 1<
e L7/ YL /TN /ARl N /70 Rl YN SO /A S
q—1 q= q= q= q=
J= J= J= J=
Since both vectors are normal, they have the same distribution. Hence the stability of Plurality is given by

qPr[Ml = max M; and Ny = maXNJ} = gPr {Ul = max U; andV; = maij],
1<5<q J 1<5<q J

and this completes the proof of Theorgm 8. O
Let us now move to discussing estimates\gf.), proving Propositiof 6]1.

Proof of Propositior 6/1.The proof of Lemma 11.1 in [12] gives

Ap(p) = mexp <_1+p> 0/0/ exp(—g(u,v)) dudv, (18)

where
u+v  (u—2v)2+2(1—pluv

1+p 2(1 — p?)t2
Since the range of integrationisv > 0 we haveg(u,v) > h(u,v), where

g(uv ’U) =

u+tvw (u —v)?
S 1l4p o 2(1—p2)t2

h(u,v)
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We can therefore replageby h in the integral and get

/Oo/exp (u, 0) dudv<//exp h(u, v)) du dv (19)

/ / B 10 t2 /1—p
where the integral computation follows straightforwardly after the change of variabtes+v, s = u —wv.

Combining [18) and (19) completes the proof. O
Propositior) 6.[L leads to the asymptotic estimates stated in Corllary 10:

Proof of Corollary[ 1. Part 1 follows simply from the well-known fact that(t) ~ ¢(t)/t ast — co. As a
side note, it is simple to see from its definition thet N (t1/(1 — p)/(1 + p)) is a lower bound om,(1).
Part 2 of the Corollary is Lemma 11.1 of de Klerk et al.l[12]. Parts 3 and 4 follow straightforwardly from
Part 1; the bound written in Part 3 actually neglects an additional negative polwey fufr simplicity. O

Finally, our hardness result for MAX-CUT requires the following more careful analysis/of(y) in
the case that is very small:

Proposition 11.3. Let > 0 be smalland le6 < p < - 3(1/ ;- Then

Ap() < i (p+ p- 2uIn(1/p0) - (1+ O(GL) 4 nliely)).

Proof. Recall thatA, (1) = Pr[X > ¢, X' > t], whereX is a standard Gaussia, = pX + /1 —p? Y
with Y an independent standard Gaussian,asndN ~! (). (We use the functiong and N from Proposi-
tion[6.].) The probability thak” > ¢ is i, So we need to show that

PriX' >t | X > ] < p+p-2puin(l/p) - (1+ O(UpRGL 4 inClely) (21)

Let us first estimate
Pr(X' >t| X =t(1+ a)],

for1/In(1/p) < a <1In(1/p). We have
PrX'>t| X =t(l+a) = PrpX++1-p2Y >t|X =t(1+a)]

PrlY > (t — pt(1 4+ «))/\/1 — p?]

<
< Pr[Y >t — pt(1+20a)],

where we have used that < 1/In(1/u) < a. Now Pr[Y > ¢ — 8] < Pr]Y > t] + Bo(t — §) =
u~+ Bo(t — 3). We can upper-bound(t — ) by expanding its definition and using the well-known fact
#(t) <tN(t) + O(1/t%) along with N () = . With our particular = pt(1 + 2a) we get that

¢t = B) < tu(l+O(1/In(1/p))),
where this also uses < log(1/p) andp < 1/1n3(1/p). We thus conclude that
PriX' >t | X =t(l4+a)] <p+p-2pn(l/p)- (14 O0(a)), (22)

where we have also used /21n(1/u) anda > 1/1In(1/p).
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Our next task is to estimafer[ X > ¢(1 + «) | X > t]. This is quite straightforward usindy (z) ~
¢(x)/x andN(t) = p; the result is that

PrlX >t(1+a)| X >t < (Cu?ln(1/p))” (23)

for some universal consta6t < co (where we used > 1/1n(1/p)).

Sets = A(hllli’gf%‘)‘) - hf;?l(}ﬁg’)) andK = Bfﬁﬁffi% > 1, whereA and B are large universal constants

to be chosen later. They will be chosen so that K (this is possible becauge< 1/1n®(1/u)). Write
vy=Pr[(14+0)t <X <(1+K)t|X >t]. We estimate

PriX'>t| X>t]<(1—7)Pr[X' >t ]|t < X <t(1+9)]
+yPr[X' >t | (1+6)t < X < (1+K)H
+Pr[X > (1+K)t| X >t

Since it's clear thaPr[X’ >t | X € [a,b]] < Pr[X’ > ¢ | X = b], we can us€ (32) to bound the sum of
the first two terms by

p+p-2pn(1/p) (14 O(5)) + - O(Kp - pln(1/p)).
The third term, and alsg, are bounded using (R3). This gives an overall bound of
PriX' >t X > ] < ptp-2pIn(1/p) (140(6))+(Cp® In(1/))°-O(K p-pu In(1 /1)) +(Cpp® In(1 /1))

Itis now relatively easy to check that we can takand B large enough so that the above quantity is bounded
as in [21), completing the proof. (One can takso that the third term above is smaller than py Inln 2,
and then take3 large enough so that bofki > § and the last term is smaller than pIn(1/p) - 4.) O

Propositio leads tolawer boundon the stability of a-ary function with noisey = — 1.

Proposition 11.4. For anyq > 2 there is a small enough = d(¢) > 0, such that any functiotf : [¢]" —
Aq withInf;(f) < dforalli =1,..., n satisfies

S_1 (f)>1/¢—(2nq)/¢" — C - (Inlnq) /¢’

qg—1
whereC < oo is a universal constant.

Proof. Let f* : [¢]* — [0, 1] denote theth coordinate function of, and letu; = E[f?]. Then

S_ () = 6B -5 D2 M3+ GE? D 7513 -

|S|=1 |S|=2
e [F R S 171 Rl Co S 71
|S|=1 |S|=2

= 2u; - Sqfll(fil

Choosingé to be small enough as function gf we obtain from the MOO theorem thSt 1 (fZ)
Ail(ul) + ¢, wheree is, say,1/q¢>. It thus suffices to prove that
o

S~ (22 A s ()] > 1/a~ 2Ing)/g? —~ O(nng)/g (24)
i=1
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(Here the notatiom™ meansr if = > 0, 0 otherwise.) We prove this using Propositml 3 and the fact

that ~ p; = 1. We will first carry out the estimates assuming thagak satlsfyq 7 < m

Suppose that; > (1/¢)'/19 for somei. Propositior) 11/3 implies in this case thntl () < p? +
O(u!'/1%) and so theth summand already contributes at leagt? > .5(1/¢)'/° to the sum |n[Q]4), and so
the inequality there holds. We may therefore assume that alare at most1/q)'/1°. With this in hand,
Propositio - 3 tells us the\t (Mz) < F(u;), where

1
Fwi) = i} + = - 2 (/i) - (1+ OF)

andC < oo is some universal constant. Thus

Zq: {% (i } zj: (207 — (25)

=1

It's not hard to check thatu? — F'(u;) is a convex function ofi; so long ag.; is at most a certain universal
constant smaller than 1 (which it is wheris sufficiently large, since all;’s are at mos(l/q)l/lo). Using
>4, wi = 1 we conclude that the right side ¢f{25) is minimized when.gl are equal td /¢, in which
case itequals/q — (2Inq)/q*> — O(Inln q)/q?; thus [2%) is verified.

Finally, we consider the possibility that not all’s satisfy 11 < m In this case, some of

the term-by-term inequalities going into {25) may no longer hoId For such inequalities, though, the left-
hand side term is always nonnegative and the right-hand side term is exponentially small in a pgwer of
Hence[(2b) still holds up to an additive term exponentially smajl ihich is negligible; thus the argument
above is unaffected. O

11.4 Hardness results for MAX4-CUT and I'-MAX-2LIN( ¢)

This section is devoted to the proofs of Theoréms 11 and 12. The proofs are similar to that of ThHeorem 1 in
Sectior] 8, so we omit some details.
As a preliminary technical step, we need the analogue of Propositipn 7.3 for the MOO theorem and for

Propositiory 11}4.
Proposition 11.5. Both the MOO theorem and Propositjon 11.4 remain true if the assumptiofithéf) <

o for all 7 is replaced by the assumption tﬁanf?k/(f) < ¢', whered” and k&’ are universal functions of
andp.

Proof. (Sketch.) The proof is essentially the same as that of Propo§itipn 7.3; one requires the following

facts:
3 Infsh
7

Do T sl < (1 =),

|S|>k

which indeed hold fog-ary functionsf : [¢]" — [0, 1], as can easily be seen from the facts in Subselction 7.2.
U

We will also need to define thgary analogue of the Long Code:

Definition 21 (¢-ary Long Code). The g-ary Long Code of an elementc [M] is the g-ary function
I [g™ — [q] defined byf (z) = ;.
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Hardness of MAX-¢-CUT. We now begin the reduction from Unique Label Cover to MAGUT. As
mentioned, the reduction is similar to the one in Sedfion 8; the main difference is that weanseong
Codes and we fiy to be—q%l. Asin Sectio@, we start with a given instan€e/, W, E, [M], {oy }) Of
Unique Label Cover, and construct an instance of M@XUT, presented here as a PCP verifier:

The PCP verifier for MAX- ¢-CUT

e Pick a vertexv € V at random and two of its neighbots v’ € W at random. Let = ¢,,,, and
o' = 0,4 be the respective bijections for edgesw) and(v, w’).

Let f,, and f,, be the supposegtary Long Codes of the labels af andw’ respectively.

Pick (z,y) € [¢]" to be a(—_17)-correlated pair; in other words, piake [¢]*' uniformly at random

and formy by choosing each; independently to be a uniformly random elemenigf\ {x;}.

Accept iff
fu(zoo) # fu(yod).

Completeness. If the Unique Label Cover instance hagh— n)-satisfying assignment, then the PCP
verifier accepts the Long Code encoding of this assignment with probability at lea&y. This is because
whenever the PCP verifier chooses edgesv) and (v, w’) that are properly labeled, the verifier accepts
with probability 1. The Uniqgue Games Conjecture allows us to take be an arbitrarily small positive
constant.

Soundness. Our goal is to show that if the PCP verifier accepts with probability exceetlingl /q +
(2Inq)/q¢*> + O(Inln ¢)/¢?, then we can derive an assignment for the Unique Label Cover instance that
satisfies at least someé = +/(¢) fraction of its edges, independent of the label set 3ize
As in Sectiorf B, we analyze the soundness by writing the success probability of the PCP in terms of
the noise stability of certain averages of thgs. (We view these supposed Long Codgs: [¢]” — [¢]
as having the relaxed rangs,.) If the noise stability is large, the MOO theorem implies the existence of
influential coordinates, which in turn are used to derive an assignment for the Unique Label Cover instance.
The probability that the PCP verifier accepts is given by

Placd= B 1= (fu(o0), fw(yoo)]
~1- B [ B [{fuleoo) fulyoo)]
0,2,y [w,w
=1- E [(E[fw(a: 00),E[fuw(yo a’)])] (using independence af andw’)
0,2,y w w’
=1- B [(g.(x).00(0)) (where we defing, (=) = E [fu(20,.))

We now proceed as in the proof of Theorgim 1, using Proposition 11.4 in place of the Majority Is Stablest
theorem. In particular, writing = (Inln q)/q¢?, we have that ifPrfacd > 1 — 1/q + (2Inq)/q¢*> + (C +
1) - (Inln ¢)/q? then there is some/2 fraction of “good”v’s with S_%(gv) <1/q—(2Inq)/¢* — (C +
=

1/2) - (Inlnq)/q*. By Proposition 11}4 such,’s must have large low-degree influential coordinates, which
we can use as Label Cover labels for thes:
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The remainder of the soundness proof is just as it is in the proof of Thgdrem 1 in Sgction 8. The only
difference arises in the analogue [of (7) and is essentially notational; we replace this line with:

< Z l@)sl3= D" I E((fu)orisl3 < Z 1(Fu)o15) 13 = B |Int3E, ) (£)]

S35
|S\<k |S|<k \S|<k

With this proof of soundness in hand, the proof of Thegrein 11 is now complete.

Hardness of MAX-2LIN(g). We move on to our hardness result IMAX-2LIN( ¢) and the proof of
Theorenj IR. The proof is very similar to the one we gave for MARUT; the only new technique is the
use of the old PCP trick dblding.

Definition 22 (Additive folding). Let f : [¢]* — [q], where the[g] in the domain is viewed a%q, the
integers mod.. We say thaf is foldedif for everyc € Z, andx € (Z,)™ itholds thatf(z+(c,c, ..., c)) =

f(@) +c.

Our PCP verifier fol’-MAX-2LIN( ¢) will be able to assume that all the suppogeaty Long Codeg,
with which it works are folded. This can be done by only making quefij¢s) whenz; = 0, and simulating
other queries using the assumption that the function is folded. In other words, tofjuety . . ., x,) the
verifier instead querieg(0, z2 — x1, ..., x, —x1) and computes the valy&0, o — z1, ..., z, — x1) — 7.
Note that Long Code functions (dictators) are folded, and that a fojegt functions must be balanced.

We now give our verifier fol’-MAX-2LIN( g), parameterized by < p < 1. Given an instance of
Unique Label Cover, it proceeds as follows:

The PCP verifier for '-MAX-2LIN( ¢) with parameter 0 < p < 1

e Pick a vertexv € V' at random and two of its neighbots w' € W at random. Let = ¢, ,, and
o' = o, be the respective bijections for edgesw) and(v, w’).

e Let f,, andf, be thefoldedsupposed-ary Long Codes of the labels af andw’ respectively.
e Pick(z,y) € [¢]™ to be ap-correlated pair.
e Acceptiff f,(zo0o) = fur(yod');ie.,iff fu(zoo)— fur(yoo’)=0.

This verifier indeed yields a distribution over 2-variable linear equationsgwbthe form “z; —z; = c”;
note that since the verifier ensures the functignsre folded, the acceptance predicgfgéroo) — f/(yo
o’) = 0 will really be of the form(f,(z') — z}) — (fw (V') — y}) = 0.
Analysis of this PCP verifier's completeness and soundness proceeds very much as it did in the previous
proofs The completeness is at leét- 27) times the noise stability at of a g-ary Long Code function;
e,(1—-2n)(p+- (1 — p)). Soundness is again analyzed by arithmetizing the PCP verifier's acceptance
probab|llty, wh|ch in this case yields

Prlacq = E[S, (s,

The functionsg, : [¢]* — A, are balanced, being the averages of folded and thus balgit®dHence
their ¢ projection functiongg,)’ : [¢] — [0, 1] all have mean equal t§ We may thus use the MOO

theorem directly (instead of Proposm-l 4) and bound soundneeApb()% + €. This completes the
proof of Theorenp 12.
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