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Abstract 

We show that quantum circuits cannot be made fault­
tolerant against a depolarizing noise level of 8 = (6 -
2../2)/ 7 ~ 45%, thereby improving on a previous bound 
of 50% (due to Raworov f 18) ). More precisely, the circuit 
model for which we prove this bound contains perfect gates 
from the Clifford group (CNOT, Hadamard, S, X, Y. Z) 
and arbitrary additional one-qubit gates that are subject to 
depolarizing noise 0. We prove that this set of gates can­
not be universal for arbitrary (even classical) computation, 
from which the upper bound on the noise threshold for fault­
tolerant quantum computation follows. 

1 Introduction 

In the past decade. quantum computing has attracted 
much attention because of its ability to efficiently solve 
problems for which no efficient classical algorithms are 
known. Significant research efforts are dedicated co phys­
ically realizing quancum computers. A fundamental prob­
lem is to cope with noise, which creates major difficulties 
in st0ring and operating on quantum states rel iably. A key 
advance was the realization that quantum error correcting 
codes [21, 24] exist and fault-toleram quantum computa­
cion [22) is possible for a number of reasonable error mod­
els. Subsequent results have improved on the first fault­
tolerant schemes, proving better and better bounds on the 
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noise tolerable in quantum computation (e.g. [6, 3]). Re­
cent results suggest that fault-tolerant quantum computation 
is possible with gates that have as much as 3% of depolar­
izing errors [ 12). but there is ·no rigorous proof so far. 

In this paper we will concentrate on the opposite cask of 
proving that, for certain noise levels, quantum computation 
is impossible. Our main result is as follows: Let CLIFFORD 
be the set of all (noiseless) Cl ifford gates 

(

1000) 
I 0 1 0 0 

CNOT2 = O O O l 

0 0 1 0 

(I) 

-i ) s = ( ~ ~ ) . 
The Gouesman-Knill Theorem says that this set of gates 
can be efficiently simulated classically (see also [I)), so 
they are probably not universal for quantum computation. 
On the other hand, it is known that CLIFFORD together 
with any other one-qubit gate, not generated by the gates 
in CLIFFORD, form a universal set of gates for quantum 
computation [23, 14]. We show however, that such ad­
ditional one-qubit gates should not be too noisy. More 
precisely, let CLIFFORD• be CLIFFORD augmented with 
arbitrary one-qubit gates with depolarizing error at least 
fJ = (6 - 2../2)/7 ~ 45%. Then this set of gates is no 
longer capable of computing arbitrary functions and thus is 
not universal. In other words, fault-tolerant quantum com­
putation cannot be performed if there is this level of noise. 
Additionally we show that, among all one-qubit gates that 
augment CLIFFORD, the so-called 1T / 8-gate (see end of Sec­
tion 3) is the type of gate that requires the most noise to ren­
der it incapable of universal quantum computation by our 
approach. That is, for other augmenting gates (e.g., 1T / 16-
gates), our approach will yield stronger bounds on the tol­
erable level. Our resultS also yield a simple proof that not 
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all classical functions can be computed using Clifford gates 
(complementing results in [I)). In particular. in Corollary 
I, we show that a boolean function which can be computed 
by Clifford c ircuits can be wriHcn as the parity of a subset 
of input bits. 

The main idea of our approach is as follows. Assume 
we have a Clifford circuit C with 11 classical input bits 
x = x1, . .. , Xn and one dedicated output qubit that, when 
measured in the computational basis, yields the output of 
the computation of C on x. Suppose now that the input is 
partitioned over two parties, Alice and Bob, such that Alice 
has k bits of x and Bob has n - k bits. We first show how 
Alice, with the help of Bob, can compute the value of C on 
x with just a single classical bit of communication (Lemma 
I). From this it follows that Clifford c ircuits can al the very 
best compute only those functions that require for any par­
tition or the inputs a single bit of communication, and it is 
well known that 111any fum.;tions require more cban one bit 
or communication. Next, we show in Lemma 2 how prob­
abilistic mixtures of Clifford gates can be used to simulate 
any single qubit unitary gate, that has noise 0(~ 45%). The 
proof of our Lemma relies on solving an optimization prob­
lem related to the Clifford polytope, defined as the convex 
hull of the set C s JR3

X
3 of Clifford rotation matrices in 

JR3 . Here, the matrices C are essentially the one-qubit Clif­
ford gates in Bloch sphere representation. 

Combining Lemmas 1 and 2, we get that all circuits with 
CLIFFORD*-gates and with respect to any distribution of the 
inputs can be computed by Alice and Bob with a single bit 
of communication (Lemma 3). Using the fact that there are 
functions which require communication more than one bit, 
we get our main result (Theorem I ): The set of gates in 
CLIFFORD" cannot be universal. We also generalize our 
result to the case that the inputs are quantum states. 

The idea that a noisy 1-qubit gate can be simulated by a 
probabilistic mixture of Clifford appeared first in Virmani 
e1 al. [26]. The approach we take here though is an exten­
sion to quantum fault tolerant computation of the work by 
Brassard et al [ 4), where they exhibit an upper bound on the 
noise threshold for classical fault tolerant computation, us­
ing lower bounds on quantum communication complexity 
and the non-local CHSH correlation. 

We want to point out that section 3 can be read inde­
pendently of the preceding section. It shows that gates 
from CLIFFORD", together with all stabilizer operations and 
classical co-processing are classically simulatable and thus 
probably not quantum-universal. 

1.1 Related work 

There are only a few other results concerning the lim­
its of faul t-tolerant computation. These are not all strictly 
comparable to each other and our result; nevertheless, we 
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review them and make some comparisons. See the intro­
duct ion of [ 18] for some remarks that motivate the analysis 
of 1hresholds for faul I-tolerant quantum computation. 

The first results on upper bounds or the threshold deco­
herence rate were obtained by showing that quantum com­
puters with faulty gates can be simulated efficiently on a 
classical computer. The lirsl to prove one of these results 
were Aharonov and Ben-Or [2], with the value 97% for the 
noise. Later Harrow and Nielsen [ 11] showed that if 74% 
of depolarizing noise is applied to each output qubit of each 
gate, then (faulty) two-qubit gates cannot produce entangle­
ment. They concluded that circuits containing only one- and 
two-qubit gates with depolarizing noise at least 74% can be 
simulated efficiently on a c lassical computer. 

An improvement of this is due to Virmani e1 al. [26] 
who show that the set consisting of CNOT with depolarizing 
noise at least 67% and arbitrary 1-qubit gates is efficiently 
simulatable classically. In this paper they also introduce the 
interesting idea that sufficiently noisy 1-qubit gates can be 
simulated by Clifford gates; we build on and extend this 
idea in this paper. We note however, that their strongest 
results are for a restricted class of gates (ones which are di­
agonal in the computational basis) and dephasing or worst­
case noise. They prove that ( v'2-1 )/ v'2 ~ 29% dephasing 
noise is enough to make these diagonal gates a mixture or 
Clifford operations1• We extend their results by consider­
ing all 1-qubit gates. Note also that dephasing noise is only 
symmetric around the z-axis, which is natural when con­
sideri ng diagonal gates. Our noise bounds are with respect 
to depolarizing noise, which is symmetric in all directions, 
and hence appropriate when considering arbitrary one-qubit 
unitaries. 

Note that all these results do not exclude the possibility 
that quantum circuits with high noise can still do universal 
classical computations; our results imply this. 

The only prior result of this latter type is due to Razborov 
( 18], where a 50% upper bound on the noise threshold 
for depolarizing noise on qubits for circuits with two-qubit 
gates is obtained (and a weaker bound for k-qubit gates). 
The argument in [18) is essentially that, at this noise level, 
any superlogarithmic-depth quantum circuit (with constant 
error rate per qubit per time step) will be overwhelmed 
by the noise and produce a statistically meaningless out­
come. Thus, under the complexity theoretic assumption 
BQP # QNC1 , there are sets in BQP which can be 
computed with this noise level. We nme that it is shown 
in (8] that in fact log-depth quantum circuits can perform 
interesting feats, including eflicient integer factorization 
(if combined by classical polynomial-time pre- and post­
processing). Our error model is in most respects weaker 
than that or [ 18] (since our qubit errors are only occurring 
at the completion of non-CLIFFORD gates) and our bound of 

1They define dephasing nobe a~ p .... l/2(p + ZpZ). 
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:::: 45% is below 50%. In fairness, there is a sense in which 
the bound in [ 18) is stronger: it permits arbitrary (noisy) 
two-qubit gates; whereas. our only two-qubit gates arc (per­
fect) CNOT gates. 

Finally, we note that our work is related to, and partly 
stimulated by, the circle of ideas surrounding measurement­
based quantum computation that was largely initiated by 
[10, 17). 

2 Preliminaries and notation 

Eij is the all-zero matrix, except t:Or the entry i,j which 
is equal to 1. We also write + for + l and - for -1. For 
matrices A, B E JR3 >< 3 we define the inner product (A, B) 
as: 

(A, B) = tr( ATB) = L aijb;3 . 

1.jE{l ,2.31 

The following fact is used repeatedly: (A, BC} 
(BT A, C) for A,B ,C E JR3>< 3. 

By A• we denote the conjugate transpose of matrix A. 
An n -qubit state (or density matrix) p is a matrix p E 

C 2" x'l" with the properties tr(p) = 1. p = p• (Hermiticity) 
and p is positive semi-definite. An n-qubit operation (or 
gate) is a unitary matrix u E C 2" x 2" I i.e., u· u = ll. For 
such n-qubit state p and n-qubit operation U the application 
of U to p results in the state U pU •. 

2.1 Bloch-vector representation 

In our funher analysis it will be convenient to use the 
Bloch-sphere representation of 1-qubit states and 1-qubit 
operations. which we review now (see e.g. Section 4.2 and 
Chapter 8 in [15)). 

For r E R3 definer· q = r:rX + ryY + rzZ, where 
q = (X, Y, Z) is the vector of Pauli matrices 

( 
0 1 ) ( 0 - i ) ( 1 0 ) x = l 0 y = 0 z = 0 -1 . 

Then, all 1-qubit density matrices p can be uniquely written 
in the form 

H+r·<! l + r.,X+rvY+rzZ 
p= 2 = 2 ' 

where r E IR3 and llrll = Jri + r~ + r; $ 1. We call r 
the Bloch vector of p. 

For n E JR3 with llnll = 1 and 8 E lR we define 

Un(8) = exp(-i8n · (f/2) = cos(0/2)Il - isin(8/2)n · (!. 

We first note that Un(8)Un(O)* = I, i.e., Un(O) is unitary. 
Second, let the result of the quantum operation U0 (8) ap­
plied to state p = 1/2 + r · <1/ 2 be p' = Un(8)"pUn(O) = 

Proceedings of the 47th Annual IEEE Symposium 
on Foundations of Computer Science (FOCS'06) 
0·7695·2720-5/06 s20.oo © 2oos IEEE 

ll/2 + r' · (! /2. Then r' is the image of rotating r around n 
by an angle 0. Third, all 1-qubit unitaries U can be wrillen 
as 

U = U.,(O) 

with n E IR3 , () E !R and llnll = l (ignoring an unimportant 
phase fac1or a E C with !al = l). 

Thus, one-qubi1 states and unitaries are isomorphic 10 
vectors ,resp., rotations in JR3 . The set of all rotations in 
JR3 is the group S0(3).2 We introduce some notation re­
flecting this isomorphism. For unitary U E c2 x 2 we let 
Ru E S0(3) be the corresponding rotalion matrix. We 
get a reverse operation (up to phase factors). by fixing one 
mapping f : 80(3) ~ c2x2 with the property that for all 
unitary U E C2 x 2 it holds f (Ru) = aU for some a E C, 
lal = 1. We then write UR= f(R). 

This can be extended Lo probabilistic mixtures of quan­
tum operations. Let {p;} be a probability distribution, 
i.e., L i p, = l and 0 :::; Pi t and let U; E c 2 x 2 be 
a 1-qubit unitary with corresponding Bloch representation 
R; e JR3x3. Then the quantum operation E in which each 
U; is applied with probability p 1 has Bloch-representation 
Re= L;P;R;. 

2.2 Noise 

There are several models of noise considered in the lit­
erature. The most common one, which we consider coo, is 
depolarizing noise. A 1-qubit state p to which depolarizing 
noise p is applied, becomes 

(1 - p)p + p!/2. 

Thus, with probability 1 - p the state is not changed and 
with probability p the state is replaced with the completely 
mixed state. 

IL is not hard to see that applying depolarizing noise p 
to p = 1/2 + r · a /2 yields p' = ll/2 + r' · "/2, with 
r' = (1 - p)r. So, this noise shrinks the Bloch vector of a 
state to (1 - p) of its original length. 

We say that a 1-qubitgate implements the unitary U with 
noise p if it transforms states p into 

(1 - p)U pU• + pl/2. (2) 

This quantum operation can be seen as a two-stage process, 
in which first U and then depolarizing noise is applied. Let 
Ru E JR3 x 3 be the rotation matrix corresponding to the 
unitary U. Then this noisy quantum operation has Bloch­
representation (1 - p)Ru, i.e., it rotates a Bloch vector and 
scales it by a factor 1 - p. 

For 1-qubit gates and depolarizing noise, the two rep­
resentations are (up to unimportant global phase factors) 
equivalent. (See Section 8.3 in (15) for more details.) 

2This group will play a prominent role in !he proof of Lemma 2, where 
~ome more notation can be found. 
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2.3 Clifford group 

The (n-qubit) Clifford group contains all unirary opera­
tions that can be written as a product of tensor products of 
S, H and C N 0'1' (see Eq. (I)). The Clifford group con­
tains also all Pauli operators X , Y, Z. We let CLIFFORD be 
the set of all Clifford gates. Let CLIFFORD" be the set of 
gates consisting of CLIFFORD and arbitrary 1-qubit gates 
which have depolarizing noise at least e = (6 - 2./2)/7. 

For a state with Bloch vector r we get: 

s (~n + rx x + ry y + r, z) s· = 
2 2 2 2 

~n - ?"y x + rx y + r, z 
2 2 2 2 

Lee Rs be the Bloch representation of S. Then Rs rotates 
Bloch vectors around the z-axis by 1r /2. Jn particular, the 
x-axis is mapped to -y and y to x. For the Hadamard-gates 
we similarly have 

So the Bloch representation RH of H negates the y­
coordinate of a Bloch vector and swaps the x and z­
coordinates, i.e., it is a rotation by r. around the axis 
1/./2(1, 0, 1). 

We define C as the set of matrices which can be generated 
from Rs and RH. A C E C is called a Cli.fford (rotation) 
matrix. It is not hard co see that C contains exactly those 
rotations which map axes to axes (or their opposite). Those 
C have in each row and column exactly one non-zero entry, 
which must be either +l or - 1, and det(C) = 1. Note that 
C, being isomorphic to the l -qubit Clifford group, is a group 
under matrix multiplication. Examples of Clifford matrices 
are 

(1 0 0) (1 
0 l 0 ' 0 
0 0 1 0 

0 
-1 
0 

~ ) , ( ~ 
-1 0 

2.4 Communication complexity 

0 
0 

- 1 

The setting for this is the following: Assume two sep­
arated parties, Alice and Bob, where Alice is given x E 
{O, l}m" and Bob y E {O, l}m'" want to compute f(x, y) 
forsomefixedfunctionf: {O,l}m" x{O,l}rno-. {0,1}. 
We wane that at least one party learns the result f (x, y). In 
order to achieve this they can corrununicate bits, accord­
ing to a predefined protocol. The deterministic communica­
tion complexity C1(n) off is the smallest number c such 
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that each protocol which always computes the correct re­
sult, needs at least c bits of communication for at least one 
input x,yE {O,l}n. 

!t is well-known that there are functions f where C1(n) 
is n, for example the inner product function (see [13]). 
The above can be extended to randomized communication, 
where the parties are additionally provided with a source 
which sends a sequence of random bits to Alice and the 
same sequence to Bob. The final result only has to be cor­
rect with some probability 1 - E for E < 1/2. The minimum 
number of bits needed to be communicated such t11at the 
output is correct with probability ar least 1 - t is denoted by 
Cj(n). However, also in this randomized setting there are 
"hard" functions. For example, it is known that the inner 
product function has randomized corrununication complex­
ity n - O(log(l/.5) ), if the outputs have to be correct with 
probability at least 1/2 - o {see also (13]). 

For functions f : {O, l}n -. {O, 1} which depend only 
on one input string and any S ~ { 1, ... , n} let C1(n, S) be 
the communication complexity off if the bits with indices 
in Sare given to Alice and all others to Bob. As in (13] we 
then define the worst-case partition communication com­
plexity as C1(n) = maxss;{ t, ... ,n} C1(n,S). In (25) this is 
called symmetric communication complexity. 

3 The power of Clifford circuits 

We are now ready to explain the idea of simulating Clif­
ford circuits. 

Lemma I. Let f : {o , l}n --+ {O, l} be a function that is 
computable with unbounded error3 by a quantum circuit C 
that uses only gates from CLIFFORD, anci/las initialized to 
ID) and one single-qubit measurement in the computational 
basis, which detennines the outpur. Then the deterministic 
communication complexity C1(n) is at most one bit. 

Proof We begin by noting that each qubit can be repre­
sented by two shares: a classical share consisting of two 
bits, and a quantum share consisting of one qubit . When 
the classical share is ab and the quantum share Jt/I}, then the 
logical qubit that the shares encode is xo. zbJt/J). 

Assuming that a set of qubits is encoded in this man­
ner, the operations H, S, and CNOT can be applied to the 
logical qubits by separately performing operations on the 
shares that encode them (i.e., the logical qubits do not have 
to be reconstructed). The reason why this works is because 
for any Clifford operation C = H, S, CNOT~ and any ten­
sor product of Pauli operators P1 there is a tensor product of 
Pauli operators P2 with C P 1 = P2C. For example, to apply 
H to a logical qubit, the two bits that make up its classical 

3Tbat means. that the output is only correct with probability striclly 
greatenhan 1 /2. 
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share are swapped and H is applied to its quantum share. 
This works correctly because 

H X 0 H HZb H HI?./>) 
za XbHl-it>) 
(-1)"/\b Xb za H ll/J), 

and ( -1 )at'b is an irrelevant global phase. 

(3) 

To apply S to a logical qubit, the b-pan of the classical 
share is updated to b := a$b and Sis applied to its quantum 
share. This case can be verified by noting that 

ia xaszazblv'>) 
i a xa zaEllb SJ'ifJ), 

where we noce thac i" is a global phase. 

(4) 

To simulate the application of CNOT~ gate4 on two log­
ical qubits, with classical shares a 1b1 and a2b2, we update 
a2 := a1 Ea a2, b1 :=bi (B b2 and CNOT~ is applied to the 
two quantum shares. In this case, we omic the details but 
note that the correctness can be verified using the identities 

CNOT~(X ® /) 

CNOT~(I ® X) 

CNOT~(Z ®I) 

CNOT~(I ® Z) 

(X ® X)CNOT~ 

(I ® X)CNOT~ 

(Z ® I)CNOT~ 

(Z ® Z)CNOTi. 

(5) 

We first describe a probabilistic communication protocol 
for f. Alice operates on the classical shares while Bob op­
erates on the quantum shares. The initial shares are easy to 
construct: for each of Alice's input qubits Ix;), Alice sets 
her classical share to a j := Xj,bj := 0 and Bob sets his 
quantum share to JO); for each of Bob's input bits Y;. Alice 
sets her classical share to a; = bj := 0 and Bob sets his 
quantum share to IYJ). In this manner, Alice and Bob can 
simulate the execution of circuit Con input lx)Jy)IO ... 0) 
without any communication to obtain the shares of the out­
put qubits of C. For Bob to obtain the measured output 
qubit, Alice sends the first bit of her classical share, a 1, to 
Bob, who applies xa• to his quantum share and measures 
it (Alice need not send b1 , the second bit of the classical 
share, since Bob is performing a measurement in the com­
putational basis). 

Finally, lo obtain a derenninisric communication proto­
col for f, we note that Bob need not actually manipulate 
quantum information; rather, he can simulate his quantum 
registers and his operations with high enough precision on 
a classical computer. Then, upon receipt of the classical 
bit from Alice, he can exactly determine the output proba­
bilities of his measurement to determine which outcome is 
more likely. 0 

4control qubi1 I, 1arge1 qubil 2 
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The next Corollary characterizes exactly all functions 
computable by Clifford circuits. From Lemma I we get that 
this set is very limited and far from being universal. 

Corolla1-y 1. Allfuncrions f : {0, 1 }'1 - {O, 1} which can 
be computed by a Clifford circuir, can be wrirten in the form 

f(x 1 .. • :i: .. ) = c© ffixj, 
jES 

where S ~ [n] is a subser of the input bits nor depending on 
rhe inpur bits and c E {O, 1 }. 

Proof It is clear that all functions f of this form can be 
computed by a Clifford circuit. We now also prove the re-
verse. 

Let f: {O, l }" __, {0, 1} be a function which can be 
computed by a Clifford circuit C. Then we can simulate 
this circuit as in Lemma I , where we give Alice the whole 
input, i.e. , mA = n and ms = 0. 

Inspecting the proof of Lemma l we see that in each 
step Alice always updates her a ;'s and b;'s by computing 
the parity of two bits. So, the final bit she sends over, say 
a i , is just the parity of some of the input bits. Thus we 
can write a; = EBjeS Xj, for some S ~ [n]. Bob initial­
izes all his quantum bits to JO), so he starts with the state 
11/1°) = IO ... 0). Further, Bob just applies the circuit C to 
his state and measures the i-th qubit of xa• Cl'lf>o) in the 
computational basis. 

It is known that the probability for measuring l in a Clif­
ford circuits is either 0, 1/2 or 1 (see [15) page 463). It 
cannot be 1 /2 in our case, because that would mean that the 
circuit does not compute f. So, measuring the i-th bit of 
Cl'ifJ0} yields a bit c E {O, l} with certainty. But this means 
that j(x) = c EB a; = c EB EBjeS x;. 0 

We mention that Aaronson and Gottesman proved [ l ] 
that there is a log-space machine which transforms a Clif­
ford circuit C into a classical circuit C' consisting only of 
CNOT and NOT gates, with the propeny that C accepts the 
all zero state JO)®n iff C' accepts the (classical) all zero in­
put. Our corollary extends this slightly: For every Clifford 
circuit C computing a boolean function, there is an equiv­
alent (for classical inputs) classical circuit which uses only 
NOT- and CNOT-gates. Using the result from (1) we see 
that we can compute the bit c in the proof of Corollary 1 in 
log-space and it is also clear that the circuit Alice uses to 
compute a ; can be computed in log-space. 

Remark I. It is straightforward to extend Lemma l to func­
tions with m output bits, if the communication complexity 
of the function is also higher than m, resulting in a scheme 
that uses m bits of communication. 
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4 Simulating unitaries 

We want to extend Lemma l, by replacing CLIFl'ORD 
with CLIFFORD*. To do that we fi rst show how one can 
simulate arbitrary 1-qubit gates with depolarizing noise {J = 
(6 - 2./2)/7 with a probabilistic mixture of Clifford oper­
ations. 

Lemma 2. Let U be a 1-qubit unitary and Eu be the fol­
lowing noisy version of it 

p ...... Eu (p) = (1 - e)u pu· + 01;2, 

for any p E C2 x 2 . Then there is n probability distribllfion 
{Pc} over C such that for all p E C2 x 2 we hnve 

Eu (p) = L pcUcpU(; 
cec 

and Uc is a Clifford operation corresponding to the Clifford 
rotation matrix C. 

Proof Using Section 2.1 the lemma can be reformulated 
equivalently in Bloch representation: For any S E S0(3) 
there is a probability distribution {Pc} over C such that 

(1 -0)S= L:vcC. 
cec 

We will prove this latter statement. Define the Clifford poly· 
rope as P := conv(C), i.e. 

P={s 1s= L: vcC,pc~o.L:vc=l} (6) 
cec cec 

as the convex hull of the 24 Clifford rotation matrices in 
IR3 x 3 . We have to prove 

(1 - O)S E P for any SE 80(3). (7) 

For this we use the fact that the Clifford polytope can be 
alternatively described by its facet description: 

P ={SE JR3 x 3 I (F,S) $ l for all FE F} , (8) 

where 

One can use the software from [9) for computing the facet 
description (8); we will give a proof in the paper version. In 
view of (8), our claim (7) is equivalent to 

(l -O)(F,S)$1 for allS ES0(3), FEF. (9) 
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Let F E F of the form F = C1 BC2 where C1, C2 E C. 
As (F,S) = (CTSC[. B) and Cfscr E S0(3), (9) is 
equivalent to 

(S, R} $ ~ = 2v'2 - I 
1-8 

(10) 

for all B E { 8 1• 82}, S E S0(3). The case B = 8 1 is 

easy Lo handle: For S E S0(3}, (S, 8 1) = L:~=I Sil ::; 

v':3 < 2./2 - I. We now show (10) for B = 8 2 • Write 
SE JR3 x 3 as 

Well-known necessary and su fficient conditions for S E 

S0{3) are 

( 11 ) 

where x denotes the vector product, defined as 

a x b := (a2b3 - a3b2,a3b1 - a1bs,a1~ - a2b1)r. 

Recall that, fora, b, c as in (1 1), a = bx c and b = c x a . 
Using c3 = a1b2 - a2b1, we obtain (B,S) = a.1 - a.2 + 
bi + b2 - a 1 b2 + a2b 1. There fore our task is now to prove 
that the optimum value of the program 

max f := ci1 - a2 + b1 + b2 - <tib2 + a2b1 
s.t. g1 := a~ + ~ + a~ = l 

92 := b~ + b~ + b~ = 1 
93 := a1b1 + a2~ + a3b3 = 0 

(12) 

is at most 2./2 - l; we in fact show that max f = 2 ./2 - 1. 
For this, consider a global maximizer (a, b) to the program 
( 12). Then, the Karush-Kuhn-Tucker conditions have Lo be 
satisfied, since the gradient vectors {V'g;(a, b) Ii = 1, 2, 3} 
are linearly independent; see. e.g .• Theorem 12.1 in (16). 
(Here, the gradient vector V'g;(a,b) consists of the par­
tial derivatives with respect to the six variables a 1 , ••• , b3.) 

That is, there exist scalars .>..1, >.2 , >.3 for which 

\lf(a,b}+ L >.;'Vgi(a,b)=O. 
i=l.2.3 

Equivalenily, considering the partial derivatives first with 
respect to {a1, a2, a.3) and then with respect to (bi, bz, b3) 

+ >.3b = 0 

o. 
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Multiplying the first and the second line by er= (a x b)T 
(recall that c l. a , b) we get 

0 = c1 ( 1 - b2 ) + c2(- l + bi) = c1 - c2 + 0 3 

0 = c1{l + a2 ) + c2{l - a i) = c1 + c2 + b3. 

Adding (resp. subtracting) these equations yields 2c1 
-a3 - b3 and 2c2 = a3 - b3. Squaring these two equations 
and then adding them gives 2a~+ 2b~ = 4c1+4c~. Since the 
rows and columns ins are nonnalized, we get 2 (1 - en = 
4(1 - c~ ) . from which we conclude c~ = 1 and, therefore, 
a3 = b3 = c, = c2 = 0. Thisimpliesai + br = 1 = a~+a~ 
and thus lb1 I = ld2I. Similarly one can establish lad = lb2l­
On the basis of this observation we distinguish three cases. 

I. a, = b2 = 0. Then. la2I = lb1 I = I and f = - 02 + 
bi + a2bi $ 1. 

2. a1 :f: 0 and ai = - b2. From a Tb = 0 wehavea1 (b1 -

a2) = 0, which gives a2 = b,. Then, f = a1 - <L2 + 
a2 - a1 + ai + ~ = L 

3. ai :f: 0 and a 1 = b2. From a Tb = 0 we have a 1 (bi + 
a2) = 0, which gives a2 = -b1. Then, f = a1 - a2 -
a2 + a1 - ar - a~ = 2(a1 - a2) - l, which (under the 
condition ar + a~ = 1) is clearly maximized by CLi = 
- a2 = 1/../2. Therefore, we find max f = 2../2 - I. 

Thus, we have shown that the optimum value of the program 
( 12) is equal to 2 ../2 - l, which concludes the proof. 0 

Lemma3. Letf: {0, 1}"'" x{0,1}"' 0 --+ {O , l}bea 
function and I< a quantum circuit for f with error proba­
bility at most f which uses only gates from CLIFFORD" and 
measurements in the computational basis. Then Cj $ 1. 

Proof. From Lemma I we know how two parties, Alice and 
Bob, can simulate perfect Clifford gates. From Lemma 2 we 
know how they can jointly simulate the other noisy 1-qubit 
gates in CLIFFORD", where they use shared randomness to 
make sure that they always simulate the same Clifford gate. 
Thus, Alice and Bob can just simulate the CLIFFORD• cir­
c uit for f, using one bit o f communication in the end. 0 

We can now prove an upper bound on the noise in fault­
tolerant quantum computation. 

T heorem 1. The set of gates from CLIFFORD together with 
1-qubit gates with depolarizing noise more than B and one 
single-qubit measurement is not sufficient for arbitrary clas­
sical computation. 

Proof. The result follows by Lemma 3 and the fact that 
there are fllnctions with communication complexity greater 
than 1, for any bounded error. 0 
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In rac t we have that none of the functions f with C/ > l 
can be computed by CLIFFORD* circuits with error at most 
c. From Corollary I we also gee that functions computable 
by CLIFFORD• are exactly those which can be written as 
probabilistic mixtures of pariLy functions. 

5 Discussion and extensions 

Best gates Prom the proof of Lemma 2 we see that the 
rotation matrix S which achieves the optimal value, is 

( 

1/../2 - 1/../2 
1/../2. 1/../2 

0 0 
~ ) . 

- 1 

Multiplying from the right by the Clifford-matrix 
diag{l ,-1,-1) we get a rotation around the z-axis 
by rr / 4. The rr /8-gate 

7. = ( exp( -
0
irr/8) O ) 

exp(i11"/8) 

performs a rotation of 7r / 4 around the z-axis. So, the 7r /8-
gate and its symmetric versions arc the ones which need 
the most depolarizing noise to be simulated by gates from 
CLIFFORD. 

Worst case noise In Lemma 2 we asked with how much 
depolarizing noise all 1-qubi t unitary gates are equivalent 
to probabilistic mixtures of Clifford gates. S imilarly to 
(26) one can also ask how much arbitrary noise is needed 
to make every gate a mixcure of Cliffords. More precisely 
what is the value 8 = SUPu esuc2> Pu , where Pu is the infi­
mum of all p such that there is a completely positive trace­
preserving 1-qubit quantum operation Eu with the property 
that the noisy implementation of U 

U' : pt-+ (l - p)U pu• + pEu (p) 

becomes a probabilistic mixture of Clifford operation. 
In this section we will provide some bounds on 0. Lee 

K E SU(2) be any operation that in Bloch representa­
tion maps the state X-eigens tate vx = {1,0,0) to u. = ?a(l, 1, 1). Note that a probabilistic mixture of 1-qubie 
Clifford operations C = Li p;C ; can map v x only into 
the octahedron 0 spanned by vx = {l , 0, 0), Vy = (0, 1, 0) 
and vz = (0,0, 1) and their negatives -vx , -vy,-vz (see 
also [5]). Note that the state of 0 which is closest to u. is 
k(l, l, l) = -?au and their d istance is llu - l /v'3u.l l2 = 
l - 73. The Bloch-state which is furthest away from u. is 
- u . All three of these states lie on a line. With this it is clear 
that the state Unoise which needs the smallest noise p, such 
that (1-p)u+pu.noise is inside the octahedron is - u. and the 
optimal pis~(1-73). T hisimplies21% ~ ~{1- -Ts) $ 0. 
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To get an upper bound, recall Lhat by Lemma 2 for any 
gate U E SU(2) the operation 

U' : p >---> (1 - p)U pU* + vll/2 

is a Clifford operation, if p ;:::: B. Setting 
lu(p) = i(XUpU*X+YUpU•Y+ZUpu•z) and 
noting that for any 1-qubit density matrix it holds Il/2 = 
~ (p + X pX + Y pY + Z pZ) we can rewrite the action of 
U' also as 

3 3 
U': p >--+ (1 - 4P)U pU* + 4PEu(p). 

Thus 8 ~ ~B ::::::: 34%. Note that this is certainly not tight, 
since all gates, apart from the 1T /8-gate (and its symmetric 
versions), need less than B depolarizing noise to make it a 
probabilistic mix of Clifford operations, which implies they 
need less than ~8 worst case noise. However, as foJJows 
from [26]. the worst case noise for the 7T/8-gate(s) is only 
t- ~::::::: 15%. 

We leave it as an interesting open question to determine 
the precise value of e. 

Different noise models The approach we have taken can 
in principal also be applied to other noise models: For any 
1-qubit noise operation E, with Bloch representation Se we 
can compute the minimum value e such that for all rotations 
R E JR3 x3 the noisy version (1 - B)R + BSt: is inside the 
Clifford polytope P (6). However, the actual optimization 
problems might not be as easy as for depolarizing noise, 
since depolarizing noise with probability p corresponds to 
multiplying with (1 - p) in Bloch-representation. 

In principal, a similar approach might be possible to cal­
culate how well one can approximate arbitrary (unitary) 
gates given a gate set S other than CLIFFORD* under acer­
tain noise model. If S is not universal, this will give new 
noise bounds, too. 

Classical co-processing Theorem I states that fault toler­
ant quantum computing is not possible if we have depolar­
izing noise at least B ::::::: 45% on one qubit gates even if we 
can use perfect gates from CLIFFORD in our fault tolerant 
circuit design. Is this optimal? Could it be that with less 
than B noise on the single qubit gates and perfect gates from 
CLIFFORD still no fault tolerant circuit design is possible. 
We leave this as an open question, but Ben Reichardt [ 19] 
pointed out that when we allow perfect classical computa­
tion in addition to perfect gates from CLIFFORD and perfect 
measurements in the computational basis, for any quantum 
circuit one can build a fault tolerant quantum circuit, that 
tolerates noise less than 8 on single qubit gates. This fault 
tolerent implementation has only a constant factor slow­
down in time. 
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The argument builds upon magic-state distillation, intro­
duced in (5], and goes as follows. Assume we have at our 
disposal noisy 1T /8-gates 'J '1 , with depolarizing noise strictly 
less than 0, i.e. 'J"(p) = (1 - p)'J'p'J'• + pll/2 with '}J < e, 
where 'J' is the perfect 1T /8 gate. Then apply 1 '' to the sec­
ond half of an EPR-pair and measure the observable Z © Z, 
which can be implemented as a measurement in the com­
putation basis with additional gates from CLIFFORD. If the 
outcome is -1 throw away the state and do the experiment 
again. If the outcome is +l, apply a CNOT from the first to 
the second qubit , which gives 

1 ( 1-p l 1-p 1 ) 2 1 + 1 _ p/2 ./2x + 1 _ p/2 ./2Y ® IO)(OI. (13) 

Using the result from [20] an arbitrary supply of qubits in 
the state of the first qubit of(ll3) can be used to distill magic 
states in the H -direction, which together with stabilizer op­
er-ations is surficient for quantum computation. We do not 
know if this also holds for other than the 1T /8-gate. 

Note that this is tight for the 1T /8-gate, since stabilizer 
operations (Cliffords, measurements in the computational 
basis and classical co-processing)cogether with 1T /8-gates 
with depolarizing noise e cam be efficiently simulated clas­
sically, as follows from our Lemma 2 and the Gottesman­
Knill Theorem. 

Allowing some perfect unitaries Our threshold theorem 
says the following. Let f be a function such chat it requires 
more than one bit of communication in order to compute 
it, when the input bits are partitioned over Alice and Bob. 
There is no quantum circuit consisting of perfect Clifford 
operations and single qubit gates with noise B (::::::: 45%) 
that can compute f. We can strengthen this result to allow a 
small amount of perfect single qubits as well. Assume that 
f requires m bits of communication to be computed. There 
is no quantum circuit that uses perfect Clifford operations, s 
perfect single qubit gates, and single qubit gates with noise 
{J that computes /, for 2s + 1 < m. The reason we get 
this strengthening is because in our simulation, Lemmas I 
and 2, Alice sends to Bob whenever he wants to perform a 
perfect single qubit gate on some qubit, her classical share 
a and b of that specific qubiL Bob can now perform the per­
fect qubit gate on that qubit and they proceed as in Lemma I 
and 2. By the end of the simulation Alice has sent 2s+ 1 bits 
to Bob and he will be able to compute f, contradicting that 
the communication complexity off is at least m > 2s + 1. 

Quantum inputs Lemma 1 can actually be extended to 
the case where Alice and Bob get quantum states as inputs 
and they are provided with entanglement. It is no prob­
lem for Bob to start with a quantum state as an input. For 
Alice we do the following. We let her teleport her quan­
tum input to Bob bit by bit, using the standard scheme for 
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teleportation (see e.g. [15]). When Alice tclepons a qubi1, 
which corresponds to 1he i -th input qubit of the circuit C 10 
be simula1ed, she measures two classical bi ts. Now, if she 
does not send these to Bob, but ra ther initia lizes her cq, /J; 
with these bits. A lice and Bob obtain the correct rcpresenia­
tion for qubils of C as in Lemma I. Since the inner product 
func1ion has communication complexity S1(n) even in the 
presence of entanglement (7] we sec that Theorem I is also 
true for quantum inputs. 
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