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Abstract

We show that 2-tag systems efficiently simulate Turing
machines. As a corollary we find that the small universal
Turing machines of Rogozhin, Minsky and others simulate
Turing machines in polynomial time. This is an exponen-
tial improvement on the previously known simulation time
overhead and improves a forty year old result in the area of
small universal Turing machines.

1 Introduction

It has been an open question for forty years as to whether
the smallest known universal Turing machines (UTMs) are
efficient simulators of Turing machines. This question is
intimately related to a problem regarding the computational
complexity of 2-tag systems.

Shannon [24] was the first to consider the question of
finding the smallest possible UTM, where size is the num-
ber of states and symbols. Early attempts [6, 27] gave small
UTMs that efficiently (in polynomial time) simulate Turing
machines.

In the early 1960s Cocke and Minsky [2] showed that
2-tag systems simulate Turing machines, but in an expo-
nentially slow fashion. Minsky [15] found a small 7-state,
4-symbol UTM that simulates 2-tag systems in polynomial
time. So this small UTM simulates Turing machines via the
following sequence of simulations

Turing machine �→ 2-tag system �→ small UTM (1)

where A �→ B denotes that A is simulated by B. Later Ro-
gozhin [23] and others [1, 8, 22] used Minsky’s technique of
simulation via (1) to find small UTMs for a range of state-
symbol pairs (see Figure 1). All of these small UTMs ef-
ficiently simulate 2-tag systems. However since the 2-tag
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simulation of Turing machines is exponentially slow it has
remained an open problem as to whether these UTMs can
be made to run in polynomial time.

For our result we replace (1) with the following sequence
of simulations

Turing machine �→ cyclic tag system

�→ 2-tag system �→ small UTM

Specifically, in this paper we show that 2-tag systems effi-
ciently simulate cyclic tag systems. In a recent paper [16]
we have shown that cyclic tag systems efficiently simulate
Turing machines. Thus the present paper provides an im-
portant piece of the puzzle as far as the computational com-
plexity of small UTMs and 2-tag systems are concerned.
Our main results states:

Theorem 1 Given a single tape deterministic Turing ma-
chine M that computes in time t then there is a 2-tag sys-
tem TM that simulates the computation of M and computes
in polynomial time O(t4(log t)2).

This immediately gives the following interesting result.

Corollary 1 The small UTMs of Minsky, Rogozhin and oth-
ers [1, 8, 15, 22, 23] are polynomial time, O(t8(log t)4),
simulators of Turing machines.

Before our result it was entirely plausible that there
was an exponential trade-off between UTM program size
complexity, and time/space complexity; the smallest UTMs
seemed to be exponentially slow. However our result shows
there is currently little evidence for such a claim.

Early examples of efficient small UTMs were found by
Ikeno and Watanabe [6, 27]. Prior to the present paper the
smallest known polynomial time UTMs were to be found
in [17]. However these efficient machines are not as small
as those of Rogozhin et al., hence the present paper rep-
resents a significant size improvement when considering
small polynomial time UTMs. This improvement is illus-
trated in Figure 1.
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There are numerous other applications of Theorem 1.
The technique of simulation via 2-tag systems is at the core
of many results in the broad survey by Margenstern [14];
our result exponentially improves the time overheads in
many [10, 11, 12, 13, 21] of these constructions. For
another example, Levin and Venkatesan [9, 25] used the
small 8-state, 5-symbol, polynomial time UTM of Watan-
abe’s [27] to show the average case NP-completeness of a
graph colouring problem. Our construction gives polyno-
mial time UTMs that are significantly smaller than Watan-
abe’s and thus improves (lowers) the number of colours in
their construction.

In the present paper, the phrase “small UTMs” refers to
Turing machines that obey the standard definitions. Re-
cently Cook [3] has found universal machines that are
smaller than those discussed in the present paper. Cook’s
machines simulate the cellular automaton Rule 110, which
Cook showed to be universal via an impressive simulation.
However Cook’s UTMs are generalisations of standard Tur-
ing machines: their blank tape consists of an infinitely re-
peated word to the left and another to the right. Intuitively,
this change of definition makes quite a difference, espe-
cially since Cook encodes a (possibly universal) program in
one of these repeated words. It should be noted that Cook’s
UTMs are exponentially slow; in a recent paper [16] we
have improved their simulation time overhead to polyno-
mial.

1.1 Preliminaries

Let N = {0, 1, 2, . . .}, Σ denote a finite alphabet, and ε
denote the empty word. The function ‖ ‖ : Σ∗ × Σ∗ → N

is written as ‖w1, w2‖ and gives the number of occurrences
of the word w2 in w1. For example ‖1101001, 01‖ = 2. All
logs are to the base 2. Throughout the paper a and # are
constant symbols, and x, xi ∈ {0, 1}.

2 2-tag systems

Tag systems where introducted by Post [20], and 2-tag
systems were shown to be universal by Cocke and Min-
sky [2].

Definition 1 (2-tag system) A tag system consists of a fi-
nite alphabet of symbols Σ, a finite set of rules R : Σ → Σ∗

and a deletion number β ∈ N, β � 1. For a 2-tag system
β = 2.

The 2-tag systems we consider are deterministic (or equiv-
alently, monogenic [4, 26]). The computation of a 2-tag
system acts on a data word w = σ1σ2 . . . σl. The entire
configuration is given by w. In a computation step, the sym-
bols σ1σ2 are deleted and if there is a rule for σ1, i.e. a rule
of the form σ1 → σl+1 . . . σl+c, then the word σl+1 . . . σl+c

is appended. We write w1 � w2 when the data word (con-
figuration) w2 is obtained from w1 via a single computation
step:

σ1σ2σ3 . . . σl � σ3 . . . σlσl+1 . . . σl+c

where σ1 → σl+1 . . . σl+c ∈ R. A 2-tag system completes
its computation if (i) |w| < β, or (ii) it enters a repeat-
ing sequence of configurations, or (iii) there is no rule for
the leftmost symbol. The complexity measures of time and
space are defined in the obvious way. Given a word w, we
use the term round to describe �|w|/2� computation steps
that traverse w exactly once [4, 26].

We often write 2-tag symbols in pairs. The second (even
numbered) symbol is dotted to distinguish it from the first.
In the sequel we encode binary symbols in the following
way, 1 is encoded as 11̇ and 0 as 00̇. Also a single pair of
symbols is distinguished by being ‘barred’: 0̄ ˙̄0 or 1̄ ˙̄1. So an

example encoding of the word 11010 is 1̄ ˙̄111̇00̇11̇00̇.

Lemma 1 Let w = x̄0 ˙̄x0x1x2 . . . xl ∈ {0̄ ˙̄0, 1̄ ˙̄1}{0, 1}∗.
Then there is a 2-tag system T that tests whether |w| is odd
or even in exactly �|w|/2	 + 1 timesteps.

Proof The 2-tag system has 6 rules, R = {x̄ → x̄
1

˙̄x
1
, x →

ε, x̄
1

→ x
2
} where x ∈ {0, 1}. Initially T reads the left-

most symbol x̄0 of w. After one round, if the read symbol
is dotted then the output is the single symbol ˙̄x

1
signifying

that |w| is odd. Otherwise the output is x
2

signifying that |w|
is even.

We define the parity of a word to be odd if the read sym-
bol is undotted and even if the read symbol is dotted.

Despite its simplicity, the proof idea of Lemma 1 con-
stitutes one of the main ingredients of Cocke and Min-
sky’s (exponentially slow) 2-tag simulation of Turing ma-
chines [2]. The 2-tag system data word encodes an arbi-
trary TM configuration as two unary numbers. The left side
of the tape is encoded as one unary number, the right side
as another. Their simulation makes use of repeated tests for
oddness and evenness of data word length. Also doubling
and halving of data word length is used to read and write to
the simulated tape.

3 Cyclic tag systems

Cyclic tag systems were introduced by Cook [3].

Definition 2 (cyclic tag system [3]) A cyclic tag system
C = αp−1, αp−2, . . . , α0 is a list of binary words αm ∈
{0, 1}∗ called appendants.

A configuration of a cyclic tag system consists of (i) a
marker that points to a single appendant αm in C, and (ii) a
word w = x0x1 . . . xl ∈ {0, 1}∗. We call w the data word.
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Intuitively the list C is a program with the marker pointing
to instruction αm. At the initial configuration the marker
points to appendant α0 and w is the binary input word.

Definition 3 (computation step of a cyclic tag system) A
computation step is deterministic and acts on a configura-
tion in one of two ways:

• If x0 = 0 then x0 is deleted and the marker moves to
appendant α(m+1 mod p).

• If x0 = 1 then x0 is deleted, the word αm is appended
onto the right end of w, and the marker moves to ap-
pendant α(m+1 mod p).

A cyclic tag system completes its computation if (i) the
data word is the empty word, or (ii) it enters a forever re-
peating sequence of configurations. The complexity mea-
sures of time and space are defined in the obvious way.

Example (cyclic tag system computation) Let C =
00, 010, 11 be a cyclic tag system with input word 011. Be-
low we give the first four steps of the computation. In each
configuration C is given on the left with the marked appen-
dant highlighted in bold font.

000000, 010, 11 011 � 00,010010010, 11 11
� 00, 010,111111 1010 � 000000, 011, 11 01011
� 00,011011011, 11 1011 � . . .

We write an arbitrary single step of a cyclic tag system com-
putation as

α0, . . . , αm−1,αmαmαm, αm+1, . . . , αp−1 x0x1 . . . xl

�α0, . . . , αm,αm+1αm+1αm+1, . . . , αp−1 x1. . . xlxl+1. . . xl+c

(2)

where x ∈ {0, 1}, and as usual if x0 = 0 then
xl+1 . . . xl+c = ε, otherwise if x0 = 1 then xl+1 . . . xl+c =
αm ∈ {0, 1}c, c ∈ N.

Cook [3] used the universality of cyclic tag systems
to show that Rule 110, a binary one-dimensional cellular
automaton, is universal. Recently we have improved on
Cook’s work by showing that cyclic tag systems simulate
Turing machines in polynomial time:

Theorem 2 ([16]) Let M be a single-tape deterministic
Turing machine that computes in time t. Then there is a
cyclic tag system CM that simulates the computation of M
in time O(t3 log t).

In order to calculate this upper bound we substitute space
bounds for time bounds whenever possible in the analysis.

4 2-tag systems efficiently simulate cyclic tag
systems

In this section we prove Theorem 1.

4.1 Encoding

Cyclic tag systems use a binary alphabet and program
control is determined by the read symbol and the value of
the program instruction marker. On the one hand 2-tag sys-
tems seem more general than cyclic tag systems as an arbi-
trary constant (independent of input length) sized alphabet
is permitted. On the other hand 2-tag systems seem more
restricted in that program control is determined solely by
the read symbol.

Because of this restriction we use a large number of
symbols in our construction. The number of such sym-
bols is a constant that is independent of input length, but
is dependent on our simulation algorithm and the size of
the simulated cyclic tag system program. In our encoding
we decorate symbols with dots (ẋ, ẍ), bars (x̄) and under-
indexes (x

j
). These decorations are used for algorithm con-

trol flow.

Definition 4 (2-tag input encoding) The cyclic tag system
input data word w = x0x1 . . . xn ∈ {0, 1}∗ is encoded as
the 2-tag data word

ŵ = x̄
1
0 ˙̄x

1
0 x

1
1ẋ

1
1 x

1
2ẋ

1
2 . . . x

1
nẋ

1
n a

1
ȧ
1

a
1
ȧ
1

. . . a
1
ȧ
1

where the number of aȧ pairs in ŵ is ‖ŵ, aȧ‖ = 2�log(n+1)�

and the extra whitespace between symbol pairs is for human
readability purposes only.

The subword aȧ aȧ . . . aȧ is used as a counter and its
value ‖ŵ, aȧ‖ is used extensively in our algorithms below.

An arbitrary (not necessarily input) cyclic data word is
encoded as in Definition 4 except that the counter is ‘em-
bedded’ in w. Specifically if w = x0x1 . . . xl then

ŵ = x̄
j
0 ˙̄x

j
0 x

j
1ẋ

j
1 . . . x

j
iẋ

j
i a

j
ȧ
j

. . . a
j
ȧ
j

x
j

i+1ẋ
j

i+1 . . . x
j

lẋ
j

l (3)

for some i ∈ {0, . . . , l} and j ∈ N. As above, the counter
value is the next power of 2 strictly greater than l

‖ŵ, aȧ‖ = 2�log(l+1)� (4)

This encoding is computable in logspace.

4.2 The simulation

We wish to show that there is a 2-tag system that sim-
ulates an arbitrary single step of a cyclic tag system com-
putation, as defined in Equation (2). We decompose Equa-
tion (2) into three conceptual steps: (i) if x0 = 1 then sim-
ulate the rule x0 → αm by appending αm = xl+1 . . . xl+c,
(ii) set x1 to be the new read symbol and delete x0, (iii) in-
crement the program marker m so that the next appendant
is α(m+1 mod p).
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We begin by giving a simulation of (ii). Informally
speaking, Lemma 2 states that there is a 2-tag system that
(efficiently) moves the ‘bar’ forward by one symbol pair.
The main difficulty is in distinguishing x

1
1ẋ

1
1 from the other

unbarred symbol pairs x
2 2ẋ2 2, . . . , x

l
lẋ

l
l.

Lemma 2 Given a word of the form

ŵ = x̄
1
0 ˙̄x

1
0 x

1
1ẋ

1
1 . . . x

1
iẋ
1

i a
1
ȧ
1

. . . a
1
ȧ
1

x
1

i+1ẋ
1

i+1 . . . x
1

lẋ
1

l

where ‖ŵ, aȧ‖ = 2�log(l+1)�, then there is a 2-tag system T
that computes

x̄
6 1 ˙̄x

6 1 . . . x
6 iẋ6 i a

6
ȧ
6

. . . a
6
ȧ
6

x
6 i+1ẋ6 i+1 . . . x

6 lẋ6 l

in time O(l log l).

Proof idea There are 5 stages to the 2-tag algorithm. We
let ŵ0 = ŵ and let ŵk denote the output of the kth iteration
of the 5 stages.

In Stages 1 to 3 of iteration k we compute
�‖ŵk−1, xẋ‖/2�, by marking every second pair of xẋ sym-
bols (we mark the even numbered pairs). Then in Stages 4
and 5 we halve ‖ŵk−1, aȧ‖ by marking every second pair
of aȧ symbols (again we mark the even numbered pairs).
We then return to Stage 1 and iterate until ‖ŵk, aȧ‖ = 1:
the counter has an odd value for the first time and we detect
this. The number of fully completed iterations, and final
value for k, is k = log ‖ŵ, aȧ‖. At this point x1ẋ1 is the
only pair of unmarked xẋ symbols in ŵ, and so x1ẋ1 is
isolated (unique) from the other symbol pairs in ŵ. We
delete x̄0 ˙̄x0. The uniqueness of x1ẋ1 enables the rule
x1 → x̄1 ˙̄x1 to be executed successfully.

Proof details As usual let x ∈ {0, 1}. Here we specify
2-tag rules, and take the reader through a single (the first)
iteration of these rules.

In Stage 1 we begin with a word of the form

x̄
1
0 ˙̄x

1
0 x

1
1ẋ

1
1 x

1
2ẋ

1
2 . . . x

1
lẋ
1

l a
1
ȧ
1

a
1
ȧ
1

. . . a
1
ȧ
1

Stage 1 consists of the rules:

{x̄
1
→ x̄

2
˙̄x
2
, x

1
→ x

2
ẋ
2
ẍ
2
, x/1 → x/2 ẋ/2 , a

1
→ a

2
ȧ
2
, a/1 → a/2 ȧ/2 }

as well as a few more rules that are given below. After one
round we have

x̄
2
0 ˙̄x

2
0 x

2
1ẋ

2
1ẍ

2
1 x

2
2ẋ

2
2ẍ

2
2 . . . x

2
lẋ
2

lẍ
2

l a
2
ȧ
2

a
2
ȧ
2

. . . a
2
ȧ
2

(5)

The Stage 2 rules are

{x̄
2
→ x̄

3
˙̄x
3
, x

2
→ x

3
ẋ
3
, ẋ

2
→ x/3 ẋ/3 , ẍ

2
→ ε, x/2 → x/3 ẋ/3 , ẋ/2 → x/3 ẋ/3 ,

a
2
→ a

3
ȧ
3
, ȧ

2
→ a

3
ȧ
3
, a/2 → a/3 ȧ/3 , ȧ/2 → a/3 ȧ/3 }

Continuing from (5), after one round we see that every sec-
ond (even numbered) pair of xẋ is marked

x̄
3
0 ˙̄x

3
0 x

3
1ẋ

3
1 x/3 2ẋ/3 2 x

3
3ẋ

3
3 x/3 4ẋ/3 4 . . . x

3
l−1ẋ

3
l−1 x/3 lẋ/3 l a

3
ȧ
3

a
3
ȧ
3

. . . a
3
ȧ
3

where (for illustration purposes only) we assume that l is
even.

The Stage 3 rules are:

{x̄
3
→ x̄

4
˙̄x
4
, x

3
→ x

4
ẋ
4
, x/3 → x/4 ẋ/4 , a

3
→ a

4
ȧ
4
, a/3 → a/4 ȧ/4 ,

˙̄x
3
→ #x̄

4
˙̄x
4
, ẋ

3
→ x

4
ẋ
4
, ẋ/3 → x/4 ẋ/4 , ȧ

3
→ a

4
ȧ
4
, ȧ/3 → a/4 ȧ/4 }

We enter Stage 3 by reading either a dotted symbol (there
was an odd number of unmarked xẋ pairs in Stage 1) or
undotted symbol (there was an even number of unmarked
xẋ pairs in Stage 1). Stage 3 begins by checking this (in
one step); if the parity is even, that is the 2-tag system is
reading dotted symbols, then a # symbol is appended to
restore the parity to odd after one round. On completion of
Stage 3 we are reading an undotted symbol:

x̄
4
0 ˙̄x

4
0 x

4
1ẋ

4
1 x/4 2ẋ/4 2 x

4
3ẋ

4
3 x/4 4ẋ/4 4 . . . x

4
l−1ẋ

4
l−1 x/4 lẋ/4 l a

4
ȧ
4

a
4
ȧ
4

. . . a
4
ȧ
4

In Stages 4 and 5 of iteration k we halve the value of
the counter (we compute ‖ŵk, aȧ‖ = ‖ŵk−1, aȧ‖/2), in a
similar fashion to Stages 1 to 3. The Stage 4 rules are

{x̄
4
→ x̄

5
˙̄x
5
, x

4
→ x

5
ẋ
5
, x/4 → x/5 ẋ/5 , a

4
→ a

5
ȧ
5
ä
5
, a/4 → a/5 ȧ/5 }

Which after one round gives

x̄
5 0 ˙̄x

5 0 x
5 1ẋ5 1 x/5 2ẋ/5 2 . . . x/5 lẋ/5 l a

5
ȧ
5
ä
5

a
5
ȧ
5
ä
5

. . . a
5
ȧ
5
ä
5

The Stage 5 rules then halve the counter value:

{x̄
5
→ x̄

1
˙̄x
1
, x

5
→ x

1
ẋ
1
, x/5 → x/1 ẋ/1 , ẋ

5
→ x

1
ẋ
1
, ẋ/5 → x/1 ẋ/1 ,

a
5
→ a

1
ȧ
1
, ȧ

5
→ a/1 ȧ/1 , ä

5
→ ε, a/5 → a/1 ȧ/1 , ȧ/5 → a/1 ȧ/1 }

Continuing our computation we get:

x̄
1 0 ˙̄x

1 0 x
1 1ẋ1 1 x/1 2ẋ/1 2 . . . x/1 lẋ/1 l a

1
ȧ
1

a/1 ȧ/1 a
1
ȧ
1

a/1 ȧ/1 . . . a
1
ȧ
1

a/1 ȧ/1
which switches control back to Stage 1.

Each iteration of the 5 stages halves the counter value.
After log ‖ŵ, aȧ‖ iterations the counter has value 1, this
causes the output from Stage 4 to be of odd length for the
first time. This in turn switches parity to even (dotted sym-
bols) during Stage 5, which is detected at the beginning of
Stage 1, by the rules:

{ ˙̄x
1
→ #, ẋ

1
→ x̄

6
˙̄x
6
, ẋ/1 → x

6
ẋ
6
, ȧ

1
→ a

6
ȧ
6
, ȧ/1 → a

6
ȧ
6
}

The first of these rules deletes x0 in one step. The second
of these rules passes the bar forward by one symbol pair,
while 2 of the others unmark the remaining symbols.

x
1′0

ẋ
1′0

x̄
6
1 ˙̄x

6
1 x

6
2ẋ

6
2 x

6
3ẋ

6
3 . . . x

6
lẋ
6

l a
6
ȧ
6

a
6
ȧ
6

. . . a
6
ȧ
6

The # symbol restores the parity to odd so that we read un-
dotted symbols (in subsequent computations in this paper).

If the data word ŵ is in the more general form given by
Equation (3) then the same proof holds; our rules are such
that embedding the counter does not affect parity in a way
that would change the algorithm control flow.
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The following lemma provides much of the mechanics
required for simulation of the appending of a cyclic tag sys-
tem appendant (point (i) from the introductory paragraph of
Section 4.2). Simulating the appending is straightforward,
the main work is in maintaining the equality in Equation (4).

Lemma 3 Given a word of the form

ŵ = 1̄
0

˙̄1
0

x
0 1ẋ0 1 . . . x

0 iẋ0 i a
0
ȧ
0

. . . a
0
ȧ
0

x
0 i+1ẋ0 i+1 . . . x

0 lẋ0 l

where ‖ŵ, aȧ‖ = 2�log(l+1)�, then there is a 2-tag system T
that computes

ˆ̂w = 1̄
8

˙̄1
8

x
8
1ẋ

8
1 . . . x

8
iẋ
8

i a
8
ȧ
8

. . . a
8
ȧ
8

x
8

i+1ẋ
8

i+1 . . . x
8

lẋ
8

l

◦ x
8

l+1ẋ
8

l+1 . . . x
8

l+cẋ
8

l+c

where c � 2�log(l+1)�, ‖ ˆ̂w, aȧ‖ = 2�log(l+c+1)�, and ◦
denotes concatenation. T completes this computation in
time O(l log l).

Proof By applying the rule

{1̄
0
→ x

0
l+1ẋ

0
l+1 . . . x

0
l+cẋ

0
l+c 1̄

1

˙̄1
1
}

to ŵ we get a word denoted ŵ0 that is of a similar form
to ˆ̂w except that ‖ŵ0, aȧ‖ = 2�log(l+1)�, i.e. the counter
has not yet been updated to the correct value of ‖ ˆ̂w, aȧ‖ =
2�log(l+c+1)�. The remainder of the proof is concerned with
updating the counter.

We let ŵk denote the output of the kth iteration of the 4
stages. The rules for Stages 1 to 4 are of a similar flavour
to those used in the proof of Lemma 2, so we omit them in
favour of a brief overview.

We begin by computing on ŵ0. During Stages 1 and 2
of iteration k, we compute ‖ŵk, aȧ‖ = ‖ŵk−1, aȧ‖/2, by
marking every second pair of aȧ symbols (here we mark the
even numbered pairs). Then in Stages 3 and 4 we compute

‖ŵk, xẋ‖ =
⌊‖ŵk−1, xẋ‖

2

⌋
(6)

by marking every second pair of xẋ symbols (here
we mark the odd numbered pairs). We then re-
turn to Stage 1 and iterate until ‖ŵk, aȧ‖ = 1:
the counter now has an odd value (for the first time) and
we detect this in Stage 3. The number of fully completed
iterations, and final value for k, is k = log ‖ŵ, aȧ‖ =
�log(l + 1)�. An additional stage restores the parity (by in-
troducing an extra # symbol and then deleting it after one
round) so that we are reading undotted symbols. Then ŵk

is of the form

ŵk = 1̄
5

˙̄1
5

x/5 1ẋ/5 1 . . . x/5 iẋ/5 i a
5
ȧ
5

a/5 ȧ/5 . . . a/5 ȧ/5 x/5 i+1ẋ/5 i+1 . . . x/5 lẋ/5 l

◦ x/5 l+1ẋ/5 l+1 . . . x/5 l+cẋ/5 l+c

At this point the number ‖ŵk, xẋ‖ of unmarked xẋ
pairs satisfies 0 � ‖ŵk, xẋ‖ � 1. To see this, note that
‖ŵ0, aȧ‖ = 2�log(l+1)� and c � 2�log(l+1)�. Solving Equa-
tion (6) for k = �log(l + 1)� gives 0 iff

0 � ‖ŵ0, xẋ‖ = l + c < 2�log(l+1)�

and 1 iff

2�log(l+1)� � ‖ŵ0, xẋ‖ = l + c < 2�log(l+c+1)�

There are no other possible values for ‖ŵ0, xẋ‖ thus we
have only to check whether ‖ŵk, xẋ‖ is 0 or 1. To prepare,
in two consecutive rounds we apply the rules

{1̄
5
→ 1̄

6

˙̄1
6
, x

5
→ x

6
ẋ
6
ẍ
6
, x/5 → x/6 ẋ/6 , a

5
→ a

6
ȧ
6
, a/5 → a

6
ȧ
6
}

and

{1̄
6
→ 1̄

7

˙̄1
7
, x

6
→ x

7
ẋ
7
, ẍ

6
→ ε, x/6 → x

7
ẋ
7
, ẋ/6 → x

7
ẋ
7
,

a
6
→ a

7
ȧ
7
, ȧ

6
→ a

7
ȧ
7
, a/6 → a

7
ȧ
7
, ȧ/6 → a

7
ȧ
7
}

These rules have the effect of shifting the parity of the read
head to dotted symbols iff ‖ŵk, xẋ‖ = 1. In addition
these rules unmark all marked symbols, as the marks are
not needed below.

We have two cases:
Case 1: If ‖ŵk, xẋ‖ = 0 we do not need to change the
counter value in order to satisfy Equation (4). In this case
we detect ‖ŵk, xẋ‖ = 0 by reading the undotted, barred
symbol 1̄

7
. To complete the computation we apply the rules

{1̄
7
→ 1̄

8

˙̄1
8
, x

7
→ x

8
ẋ
8
, a

7
→ a

8
ȧ
8
}

Case 2: If ‖ŵk, xẋ‖ = 1 we double the counter to satisfy
Equation (4). In this case we detect ‖ŵk, xẋ‖ = 1 by read-
ing the dotted, barred symbol ˙̄1

7
. We then restore odd parity

and double the counter value, by applying the rules

{ ˙̄1
7
→ #1̄

8

˙̄1
8
, ẋ

7
→ x

8
ẋ
8
, ȧ

7
→ a

8
ȧ
8

a
8
ȧ
8
}

4.3 Proof of main result

Theorem 3 Given a cyclic tag system C that computes in
time t(n) on input of length n, where n is at least the
length of C’s longest appendant, then there is a 2-tag sys-
tem TC that simulates the computation of C and computes
in time O(t2(n) log t(n)).

Proof Recall, from the beginning of Section 4.2, the de-
composition of Equation (2) into the conceptual steps (i),
(ii) and (iii).

Lemma 3 provides the algorithm for step (i) for the case
that x̄0 = 1̄. For the other case of x̄0 = 0̄ we skip (i).
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Deciding between the two cases is easily implemented by
setting the parity to even iff x̄0 = 1̄. Also, for Lemma 3 we
insist that n is at least the length of C’s longest appendant
(the constant number of shorter inputs would be padded to
this length).

Lemma 2 provides the algorithm for step (ii).
For step (iii) we introduce a new decoration for 2-tag

symbols. So far, the number q of distinct 2-tag symbols that
we have used is dependent on our algorithm. We now in-
crease this number to pq where, as usual, p is the number of
appendants of C. We create a new symbol set by decorating
each 2-tag symbol y ∈ {x̄, ˙̄x, x, ẋ, ẍ, x/ , ẋ/ , a, ȧ, ä, a/ , ȧ/ , #}
with an integer m for all 0 � m < p. Using this, our en-
coding of an arbitrary cyclic tag system configuration is of
the form

x̄
j

m

0 ˙̄x
j

m

0 x
j

m

1ẋ
j

m

1 . . . x
j

m

iẋ
j

m

i a
j

m

ȧ
j

m

. . . a
j

m

ȧ
j

m

x
j

m

i+1ẋ
j

m

i+1 . . . x
j

m

lẋ
j

m

l

Steps (i) and (ii) are simulated, while ignoring the value
of m. (Note that our 2-tag algorithms are easily concate-
nated by having appropriate j values at the beginning and
end of each algorithm.) Then j is given a value that signals
the completion of steps (i) and (ii). Then step (iii) (incre-
menting the program marker) is simulated by rules of the
form

{x̄
j

m

→ x̄
j

m′

˙̄x
j

m′
, x

j

m

→ x
j

m′
ẋ
j

m′
, a

j

m

→ a
j

m′
ȧ
j

m′
}

where m′ = (m + 1) mod p. Applying these rules for a
given k takes only one round, or O(l) timesteps.

In the time analysis of the computation of TC note that
for an arbitrary timestep of C we have l = O(t(n)).
Therefore via Lemmas 3 and 2, and the present proof,
TC simulates a single step of C’s computation in time
O(t(n) log t(n)).

We get the proof of Theorem 1, our main result, by com-
bining the statements of Theorems 2 and 3. If we com-
bine these Theorems directly we get a time bound that is
higher than that of Theorem 1. To get our tighter bound a
more careful analysis is required where we substitute space
bounds for time bounds whenever possible in the analysis.
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Figure 1. State-symbol plot of small UTMs. The plot shows the polynomial time curve induced by our
previous UTMs [17], the exponential time curve of Minsky, Rogozhin and others [1, 8, 15, 23], and the
non-universal Turing machine curve for which there are no UTMs [5, 7, 18, 19]. The present paper
improves the polynomial time curve so that it coincides with the previous exponential time curve.
Our result shows that a polynomial time UTM exists for each state-symbol pair that is on, above, and
to the right of the new polynomial time curve.
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