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Abstract

We establish the exact threshold for the reconstructioblpro for a binary asymmetric channel on
the b-ary tree, provided that the asymmetry is sufficiently smahhis is the first exact reconstruction
threshold obtained in roughly a decade. We discuss theéatpins of our result for Glauber dynamics,
phylogenetic reconstruction, and so-called “replica swimnbreaking” in spin glasses and random
satisfiability problems.
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1 Introduction

Let
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be a binary asymmetric channel with second eigenvékared7;, be a completé-ary tree. The “reconstruc-
tion problem” is the problem of determining the state of thety given the distribution of the Markov chain
on leveln of the tree, as gets larger and larger (a precise definition is given beldvgr. the symmetric
binary channel{ = 0), it was known since 1995 that the reconstruction problesoigable if and only if
b9? > 1. For all other channels, it was also known and easy to praaeht > 1 implies solvability, but
exact non-solvabilityesults were not known. Here we show that this bound is tightided thatM/ is close
enough to symmetric—i.e., we show that the reconstructioblpm for A/ onT is not solvable ih§? < 1
and|J| is sufficiently small.

The reconstruction problem is intimately related to mixaigslauber dynamics and to phylogenetic re-
construction. Moreover, it was recently claimed that trenstruction problem corresponds to the “replica
symmetry broken” solution of the spin glass on the tree. icaptymmetry breaking is a central notion
in the statistical physics theory of spin glasses and randatisfiability problems. We discuss potential
applications of our results in these different areas.

1.1 Definitions and Main Result

LetT = (V, E, p) be a treel’ with nodesV, edgesE and rootp € V. We direct all edges away from the
root, so that ife = (z, y) thenz is on the path connectingto y. Letd(-, -) denote the graph-metric distance
onT,andL, = {v € V : d(p,v) = n} be the n'" level of the tree. For: € V ande = (y, z) € E, we
denote|x| = d(p, z), d(z, (y,2)) = max{d(z,y),d(z, z)}, and|e| = d(p,e). Theb-ary tree is the infinite
rooted tree where each vertex has exaktildren.

A Markov chain on the tre@ is a probability measure defined on the state sgaGevhereC is a finite
set. Assume first thal is finite and, for each edgeof 7', let M“ = (M, ); jec be a stochastic matrix. In
this case the probability measure defined by* : e € FE) onT is given by

o (@)
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In other words, the root statg(p) satisfiess(p) = ¢ and then each vertex iteratively chooses its state from
the one of its parent by an application of the Markov traasitiule given byM € (and all such applications
are independent). We can define the meaguyren an infinite tree as well, by Kolmogorov’s extension
theorem, but we will not need chains on infinite trees in tlipay (see 8] for basic properties of Markov
chains on trees).

Instead, for an infinite tre@, we letT,, = (V,,, By, p), whereV,, = {z € V : d(z,p) < n},E, = {e €
E : d(e,p) < n}and defingz} by @) for T,,. We are particularly interested in the distribution of thetes
o(x) for z € L,, the set of leaves iff;,. This distribution, denoted by}, is the projection ofi; on Cln
given by

pi(o) =Y {m(@) :7|L, = o}. 3)
Recall that for distributiong andr on the same spade the total variation distance betwegrandv is
1
Dy(p.v) =5 > |n(@) = v(o). @
oef



Definition 1 (Reconstructibility) The reconstruction problem for the infinite trédeand (M€ : e € E) is
solvableif there existi, 7 € C for which

liminf Dy (', ) > 0. (5)
WhenM¢ = M for all e, we say that the reconstruction problem is solvablefand M.

We will be mostly interested in binary channels, i.e., tiois matrices on the state spafe}. In this case,
the definition above says that the reconstruction problesolisble if

lim inf Dy (p'}, ) > 0. (6)
n—oo
Our main result is the following:

Theorem 1 (Main Result) For all b > 2, there exists @, > 0 such that for all|¢| < ¢y, the reconstruction
problem forM on theb-ary treeT}, is not solvable ibf? < 1.

1.2 Previous Results

The study of the reconstruction problem began in the sea®ii3[9] when the problem was introduced
in terms of the extremality of the free Gibbs measure on the. tin [9] it is shown that the reconstruction
problem for the binary symmetric channel (equatidn (1) wler 0) on the binary tree is solvable when
2602 > 1. This in fact follows from a previous workT12] which impli¢sat for any Markov chain/, the
reconstruction problem on theary tree is solvable 56> > 1 whered is the second largest eigenvalue of
M in absolute value.

Proving non-reconstructibility turned out to be harder. id/lcoupling arguments easily yield non-
reconstruction, these arguments are typically not tighthafural way to try to prove non-reconstructibility
is to analyze recursions 1) in terms of random variables efalinose values is the expectation of the chain
at a vertex, given the state at the leaves of the subtree hgl@in terms of ratios of such probabilities,
or 3) in terms of log-likelihood ratios of such probabilgie Such recursions were analyzed for a closely
related model in[]3]. Both the reconstruction model and tleleh analyzed i3] deal with the correlation
between the:!"-level and the root. However, while in the reconstructiooljyem, the two random variables
are generated according to the Markov model on the treE] ilg3nodes at level are set to have an i.i.d.
distribution and the root has the conditional distributibas induced.

In spite of this important difference, the two models areselg related. In particular, ih][3] it is shown
that for the binary tree, the correlation between levahd the root decays if and only3#? < 1. Building
on the techniques df][3] it was finally shown [d [2] that theaestruction problem for the binary symmetric
channel is solvable if and only #? > 1. This result was later reproven in various way<d 58,710, 1, 15]

The elegance of the threshobd? = 1 raised the hope that it is the threshold for reconstructmm f
general channels. However, previous attempts to generafiy of the proofs to other channels have failed.
Moreover in [18] it was shown that for asymmetric binary ahels and for symmetric channels on large
alphabets the reconstruction problem is solvable in cabesaht? < 1. In fact [18] contains an example of
a channel satisfying = 0 for which the reconstruction problem is solvable. On theeptiand, in[[2D,11] it
is shown that the threshold? = 1 is the threshold for two variants of the reconstruction peoh “census
reconstruction” and “robust reconstruction”.

The results above led some to believe that “reconstructioniike its siblings “census reconstruction”
and “robust reconstruction” is an extremely sensitive propand that the threshol#? = 1 is tight only
for the binary symmetric channel. This conceptual pictues wshaken by recent results in the theoretical
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physics literature[T17] where using variational princgpldeveloped in the context of “replica symmetry
breaking” it is suggested that the boubt} = 1 is tight for symmetric channels dhand (maybe)t letters.

In TheorenTdl we give the first tight threshold for the recargtton problem for channels other than
binary symmetric channels. We show that for asymmetric ©bBrthat are close to symmetric, the Kesten-
Stigum boundbg? = 1 is tight for reconstruction. Our proof builds on ideas frdf[®,[5,[22] and is
extremely simple. In addition to giving a new result for tleymmetric channel, our proof also provides a
much simpler proof of the previously known result for thedsinsymmetricchannel.

1.3 The Reconstruction Problem in Mixing, Phylogeny and Relicas

Mixing of Markov Chains.  One of the main themes at the intersection of statisticasiolyand theoretical
computer science in recent years has been the study of damebetween spatial and temporal mixing. It
is widely accepted that spatial mixing and temporal mixifiglynamics go hand in hand though this was
proven only in restricted settings.

In particular, the spatial mixing condition is usually s@tin terms of uniqueness of Gibbs measures.
However, as shown i [1] , this spatial condition is too strorin particular, it is shown in[J1] that the
spectral gap of continuous-time Glauber dynamics for timg Isiodel with no external field and no boundary
conditions on theb-ary tree is€2(1) wheneverbf? < 1. This should be compared with the uniqueness
condition on the tree given bj9 < 1. In [15] this result is extended to the log Sobolev constam{I5]
it is also shown that for measures on trees, a super-lineayd# point-to-set correlations implies 1)
spectral gap for the Glauber dynamics with free boundarylitioms.

Thus our results not only give the exact threshold for recansbility. They also yield an exact thresh-
old for mixing of Glauber dynamics on the tree for Ising madeith a small external field. The details are
omitted from this extended abstract.

Phylogenetic Reconstruction. Phylogenetic reconstruction is a major task of systematilogy [6]. It
was recently shown iri]4] that for binary symmetric chanpelso called CFN models in evolutionary bi-
ology, the sampling efficiency of phylogenetic reconsinucis determined by the reconstruction threshold.
Thus if for all edges of the tree it holds th24? > 1 the tree can be recovered efficiently fraiflog n)
samples. 1262 < 1, then [19] implies that*(!) samples are needed. In fact, the proof of the lower bound
in [19] implies the lower bouna*(!) whenever the reconstruction problenmeigoonentiallyunsolvable. In
other words, ilim inf,_ Dy (i, u") = exp(—£(r)) then a lower bound of*(!) holds for phylogenetic
reconstruction.

Thus, our results here imply**(!) lower bounds for phylogenetic reconstruction for asymetnan-
nels such thaed? < 1 and|s| < dp. The details are omitted from this extended abstract. liaisinal
to conjecture that this is tight and that2$? > 1 then phylogenetic reconstruction may be achieved with
O(logn) sequences.

Replica Symmetry Breaking. The replica and cavity methods were invented in the themaefihysics
literature to solve Ising spin glass problems on the coregigaph—the so-called Sherrington-Kirkpatrick
model. These methods, while not mathematically rigoroed,tb numerous predictions on the spin glass
and other models on dense graphs, a few of which were proveg years later. When applied to random
satisfiability problems, which turn out to be equivalent tluteé spin glasses—i.e., spin glasses on sparse
random graphs—these methods led to the empirically bestitiighs for solving random satisfiability prob-

lems [16[21].

A central concept in this theory is the notion of a “glassyg@iaf the spin glass measure. In the glassy



phase, the distribution on the random graphs decomposesainéxponential number of “lumps”. One of
the standard techniques for determining the glassy phaga iseplica symmetry breaking”. Moreover,
there are certain glassy phases for which the replica symirhegaking is relatively simple—those which
are said to have “one-step replica symmetry breaking”; dahdre in which the replica symmetry breaking
is more complicated—those with so-called “full replica syetry breaking”.

In a recent papef]17] it is claimed that the parameters fachvh “glassy phase occurs” are exactly the
same as the parameters for which the reconstruction prableat solvable. More formally, for determining
if the glassy phase occurs for rand@t- 1)-regular graphs and Gibbs measures with some parameters, on
needs to check if the reconstruction problem fordfey tree and associated parameters is solvable or not.

Furthermore, it is claimed i [17] that the reconstructisalpem determines the type of glassy phase as
follows. Mezard and Montanari predict that one-step repdigmmetry breaking occurs exactly when when
the Kesten-Stigum bound is not equal to the reconstructbomd; otherwise full replica symmetry breaking
occurs.

Thus our results proved here, in conjunction with the thizalkphysics predictions of[17], suggest the
existence of two types of glassy phases for spin systemsmolona graphs. It is an interesting challenge to
state these predictions in a rigorous mathematical way@ptbtve or disprove them.

2 Preliminaries and General Result

For convenience, we sometimes write the channel

ot ot
M:<1 et 5_>'
1—¢ €

Note first that the stationary distribution= (7, 7_) of M is given by

7T_1—5_ 1 ) - et _1+ 5
T 1—6e T2 201-6) 16 2 20-6)
In particular, this expression implies that the statiordisgribution depends only on the ratig(1 — 6). Or
put differently, each two of the parameters, 6 andd determine the third one uniquely. Note also that
0
f=c —et Ty = —
g g, e T4 1-0
Without loss of generality, we assume throughout that> 7, or equivalently that > 0. (Note thaty can
be made negative by inverting the role-pfand—.) Below, we will use the notation

7r_/+E7T_7T;1, A=n_, — L

2.1 General Trees

In this section, we state our Theorem in a more general gethiamely, we consider general rooted trees
where different edges are equipped with different tramsithatrices—all having the same stationary distri-
butionm = (74, 7_). In other words, we consider a general infinite rooted free (V, E') equipped with a
functiond : E — [—1, 1] such that the edgeof the tree is equipped with the matix © with 6(M€) = 6(e)
and the stationary distribution @f/€ is (74, 7_).

In this general setting the notion of degree is extended ¢onibtion of branching number In [[7],
Furstenberg introduced the Hausdorff dimension of a tresen,.Lyons[[1B[-14] showed that many proba-
bilistic properties of the tree are determined by this nunwfgich he named the branching number. For our
purposes it is best to define the branching number via cutsets
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Definition 2 (Cutsets) A cutsetS for a tree7 rooted atp, is a finite set of vertices separatipgrom co. In
other words, a finite sef is a cutset if every infinite self avoiding path frgnmtersectsS. Anantichain or
minimal cutseis a cutset that does not have any proper subset which is atsisat.

Definition 3 (Branching Number) Consider a rooted tre@ = (V, E, p) equipped with an edge function
0: E — [—1,1]. For each vertex € V we define

nwy = ] 6.

e€path(p,z)

wherepath(p, x) is the set of edges on the unique path betweamd = in 7. The branching number
br(7,0) of (7,0) is defined as

cutsets S

br(7,0) = inf {)\ >0: inf Y pa)a = 0} .
zeSs

In our main result we show

Theorem 2 (Reconstructibility on General Trees)Let0 < 6y < 1. Then there exist§, > 0 such that,
for all distributions 7 = (7, 7_) with max{|d(m, 0p)|,|d(7, —00)|} < Jp and for all trees(7,0) with
sup, |0(e)| < 6y andbr(7,0) < 1, the reconstruction problem is not solvable.

It is easy to see that the conditions of Theof@m 2 holdifdf 0(e) = 6 for all e andbd? < 1.

2.2 Magnetization

Let T" be a finite tree rooted at with edge functiord. Let o be the leaf states generated by the Markov
chain on(T', ) with stationary distributior{r_, 7_). We denote by, ES. (resp.P,E;, andPr, Er) the
probability/expectation operators with respect to the sneaon the leaves @f obtained by conditioning
the root to bet (resp. —, and stationary). With a slight abuse of notation, we alsevit;[+ | o] for the
probability that the state at the the rootBifs + given stater at the leaves. The main random variable we
consider is theveighted magnetization of the root

X =72t [m_Pr[+|o] — niPr[—|o]].
Note that the weights are chosen to guarantee
Er[X]=7"'[r_my —m 7] =0,

while the factorr ! is such thatX | < 1 with probability 1.

Note that for any random variable depending only on the l&dgs,f = f(o), we havemIEJTr[f] +
n_E7[f] = E7[f], so that in particular

T EAX] + 7 E7[X] =Er[X] =0,  m:EHX?] +7_E;[X?] = Ep[X?).

We define the following analogues of the Edwards-Andersderguarameter for spin glasses on trees rooted
atx
T =Er[X%, zy=ELX?, 1-=E;[X%



Figure 1: Afinite tre€l".

Now suppose7 is an infinite tree rooted at with edge functiod. LetT,, = (V,,, E,, x,), Where
Vo ={u eV :du,p) <n}, B, ={e € E :d(e,p) <n}, andx, is identified withp. It is not hard to see
that non-reconstructibility o, #) is equivalent in our notation to

limsup z,, = 0.
n—oo

(Note that the total variation distance is monotone in theets. Therefore the limit goes to 0 with the levels
if and only if there exists a sequence of cutsets for whiclo@sjto 0.)
2.3 Expectations

Fix a stationary distributiomr = (7, 7_). LetT = (V, E) be a finite tree rooted at with edge function
{6(f), f € E} and weighted magnetization at the ro6t Lety be a child ofz and7” be the subtree df’
rooted aty. LetY be the weighted magnetization at the rooff6f See Figurgll. Denote lythe leaf states
of T' and leto’ be the restriction of to the leaves of”. Assume the channel an= (z, y) is given by

1—et et 1[/146 1—96 -1 1
SR — —
M _<1—5_ 5_>_2[<1—9 140) PO\ )|
We collect in the next lemmas a number of useful identities.

Lemma 1 (Radon-Nikodym Derivative) The following hold:

L I ¢ ®r 1 x
APy A qpy ’
Ef[X]=n_/ Er[X?],  Ez[X]=-Er[X’].

Proof: Note that

X = 7= r_Prl+ |o] — miBr{— |o]] = 77} [Prlt | o] — i) = 77 [

Pri+]o]
=7, Ti_l}7

T+

so that
dPf _ Pr[+]o]

d]PT T+




Likewise,
dP, _ Pr[—| o]
dPr T

=1-X.

Then, it follows that
Ef[X]=Er [X (1+7_,.X)] =7_, Er[X?],
and similarly forE,.[X]. &
Lemma 2 (Child Magnetization) We have,
EflY] = 0ELY],  Ep[v]=¢E;[Y],
and
EF[Y? = (1 - 0)Ep[Y?] +6EL[Y?,  Ep[Y? = (1-60)Er[Y?] +6EL[Y?).

Proof: By the Markov property, we have

EflY] = (1-eDELIY]+e BLlY) = |(1—e") =" 5| BLIY] = [1 - %) - (1 — )] EL[Y]
= HEC—Z":’ [Y]v
and similarly forE.[Y].

Also,
EF[Y? = (1-eNELY?] + e En[Y? = (1 -e")Ef[Y?] + ;(Er [Y?] — 7 E5 V7))
= OEL[Y?]+ (1 - 0)Ep[Y?],

where we have used the calculation above. A similar expnessolds forE, [Y?2]. B

3 Tree Operations

To derive moment recursions, the basic graph operation werpeis the followingAdd-Mergeoperation.
Fix a stationary distributionr = (7, 7_). LetT” (resp.T") be a finite tree rooted at (resp.z) with edge
function @’ (resp. 0”), leaf states’ (resp. o), and weighted magnetization at the raét(resp. Z). Now
add an edge = (4, z) with edge valué(e) = 6 to 7" to obtain a new tred. Then mergdl’ with 7"’ by
identifying y = g to obtain a new tred’. To avoid ambiguities, we denote hythe root of I" and X the
magnetization of the root &f (where we identify the edge function @with those onl”, 7", ande). We
let o = (0/,0") be the leaf state of. See Figurgl2. Let alst be the magnetization of the root dn

Assume
e — 1—et et
l—e™ e )7
We first analyze the effect of adding an edge and mergingesehn the magnetization variable.

Lemma 3 (Adding an Edge) With the notation above, we have

Y =62



/
ag

Figure 2: Tre€l after theAdd-Mergeof 7 andT”. The dashed subtree &

Proof: Note that by Bayes’ rule, the Markov property, and Lentina 1,

l/]

> Pzlylo Prlo” 7]
Y = 7y nyTizmr Z L

'Y:+7_ 7TPY 'Y:+7_ ]P)j—\‘l:o-”]
Prolo”] { Profo” | +] Pw[aw—q
T 1—¢&7 4 &7
o 2| Prolo]
= 1 > (=) (lt+m 2Z)+7(1-2)],
'Y:+7_

where we have useB; (0] = Pr«[0”]. We now compute the expression in square brackets. We have

1-&7 &7
(1—5’7)(1+7r_/+Z)+5’Y(1—Z)=1+7T_Z{ ——].
T+ m_
Fory = 4, we get
1—¢t + 1 —¢t - _ t
g—i:uwﬁ g—q:uwﬂgg]:i
T4 T 1—e~ 1—e- T4

A similar calculation for the- case gives foty = +, —

(1-e")(1+ 77_/+Z) +e7(1-2)=1+ 7977_77;1Z.
Plugging above give¥ = 7. &
Lemma 4 (Merging Subtrees) With the notation above, we have

Y +Y +AYY

X —.

The same expression holds for a gendAi’aI



Proof: By Bayes' rule, the Markov property, and Lemfa 1, we have

_ . Priylo] _ Prio|y] _  Pr[o|Pz[o"] Pri[o’ |7] Pzlo” 1]
r o= +7§_” o +7§_’Y Prlo] " Prlo] w;’_” Prlo]  Palo’]
P[0’ |Px[o” ~ -
= 7T+% _Z: 07 [1 —|—’77T_7T;1(Y—|—Y)+(7T_7T;1)2YY].

-

Similarly, we have

Pr[o] 1 o -1 v —1\2y v
= 7 Prlo|~] = Ty [1+ym_n, (Y +Y)+ (n_m, )°YY|.
Pr [0’ |P2[0"] P[0’ |P2[o”] v:Zr:,— 7;_ 7 [ i 7
Note that
> v {1 +ym_m N Y +Y) + (w_w;l)zYﬂ = (Y +Y) 472 — 7w )YY,
’Y:J"’_

where we have used

Similarly,
S o, [1 + oy (Y + V) + (w_w;l)ZYY] — 1+ YV,
’Y:J"’_

The result follows

4 Symmetric Channels On Regular Trees

As a warm-up, we start by analyzing the binary symmetric oblon the infiniteb-ary tree. Our proof is
arguably the simplest proof to date of this result. The saroefstructure will be used in the general case.

Theorem 3 (Symmetric Channel. Sed [Z]%, 10,120,113 [T] 15L¢t M be a transition matrix with) = 0
andbh? < 1. LetT be the infiniteb-ary tree. Then, the reconstruction problem @, M) is not solvable.

Proof: Consider again the setup of Sectidn 3. Note first that, by Lashbf? andl3, we have
E;[V?] = EX[Y] = 0E2[Z] = 0°E}, (2] = 6°Ep[27), (7)

where we have used the fact that,, = 1 whené = 0 (although note that it is not needed). In other words,
adding an edge to the root of a tree and re-rooting at the neiexvieas the effect of multiplying the second
moment of the magnetization 8. Now consider thé\dd-Mergeoperation defined in Sectifh 3. Using the

expansion

1 1 n r2
JE— —7r
147r 147r

the inequality X | < 1, and Lemm&K, we get

: (8)

X=Y4+Y - YYY 4+Y)+V¥V2X <Y +Y - YY(V +7Y)+Y?V2 9)
Note that from Lemmadd 1 ahdl 2, we have

EfX] =z, EfY]=Ef[Y=y, Ef[Y]=Ef[Y? =0,

10



where we have used that = y_ = yandz, = zZ_ = z by symmetry. Takin@:} on both sides of{9), we
get

T < §+60% — 0%z — 0%z + 0%yz = § + 0%z — 0°yz.
Now, letT,, = (V,,, E,, z,,) be as in Sectioh 2.2. Repeating théd-Mergeoperation(b — 1) times, we
finally have by induction
T, <bO%Z, 1 — (b—1)0%2% .
Indeed, note that fab < a < b,
(a0%,_1 — (a — 1)0'%2 ) 4+ 6°%_1 — 0%*(ab°Tp_1 — (a — 1)0?72_)Zp_1 < (a + 1)0%*F,_1 — ab'Z>_,,

and the first step of the induction is given By (7). This codekithe proofll

5 Roughly Symmetric Channels on General Trees

We now tackle the general case. We start by analyzind\tite Mergeoperation.

Proposition 1 (Basic Inequality) Consider the setup of Secti@h 3. Assufile< 1. Then, there is a
do(|0]) > 0 depending only offf| such that

T <j+ 6%z,
whenevep (one) is less thaniy(|0]).

Proof: The proof is similar to that in the symmetric case. By expamd@), inequality| X| < 1, and
Lemmd3, we have

X<Y+Y +AYY =7 YY(Y +Y +AYY) + 77 V2V (10)
Letp’ = (y) " 'yy andp” = (2)~'z.. Then, by Lemmall 1 afd 2, we have
Er[X]=n_,12, Ef[Y]l=n_,5 EF[Y? =g,
Ef[Y]=n_, 6022, EL[Y? =621 0)+0p").

Taking w:} _E} on both sides of{10), we get

T < g+0°z+An_, 0%z
—m_y 07520 — m_ 0°5z[(1 — 0) + 0p") — AP*yzp'[(1 - 0) + 0"
+m_ 0°5zp'[(1 = 0) + 0]
y+0°2 — 7, 0%yz[A— AB],

IN

where

A=p' + 1)1 —-0)+6p",
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and
B=1-— 71':}+p/[(1 —0)+0p"].

Note that[(1 — 0) + 6p"] > 0 by Lemmd®. Sd3 < 1 and it suffices to havel > A. Note also thatd
is multilinear in(p’, p”). Therefore, to minimized, we only need to consider extreme case&inp”). By
miyt +7_y~ = yitfollows that0 < o’ < 7;'. The same holds fgr”. At o’ = 0, we have

10, if 0 >0,

- . o
A=1-0[1 0]2{1_77_“;9\, if 9 <0,

where we have used
1- 7'('_‘__1 =—T_/y.
At p' = 7', we have
1—x2,.0, if6>0
—1 -1 /1 /1 _ ) - Y,
= 1— 1—-0[1— =1+46 1—p" > /+
A= b (L[ =001 — ) = 1+ 0r ] p]_{l_ﬂ_/m S

Sincer_,, > 1 by assumption, it follows that
A >1- 7"3/4.‘9’

At § = 0, this bound is strictly positive and moreovar= 0. Therefore, by continuity id of A and the
bound above, the result followll

Proposition 2 (Induction Step) LetT" be a finite tree rooted at with edge functio. Letwy,...,w, be
the children ofx in 7" and denote by, the edge connecting to w,. Letfy = max{|0(e1)|,...,|0(ea)|}
and assume that on each edgg o < dy(6y), whered is defined in Propositiofl 1. Then

2 <Y b(ea) W
a=1

Proof: As noted in the proof of Theorel 3, adding an edde the root of a tree and re-rooting at the new
vertex has the effect of multiplying the second moment ofrtfegnetization by?(e). The result follows
by applying PropositioBllle — 1) times.

Proof of Theorem[2 It suffices to show that for att > 0 there is anN large enough so that, < e,
Vn > N. Fixe > 0. By definition of the branching number, there exists a cutset 7 such that

> nu) <e.

u€es
Assume w.l.0.g. tha$ is actually an antichain and 1&f be such thaf is in Ty. It is enough to show that

fngz:n(u), Vn > N.
uesS
Fix n > N. Applying Propositiol R repeatedly from the rootGf down toS, it is clear that
Tn < Y 0B, [U%] < n(u),
uesS ues

whereT,, (u) is the subtree df}, rooted at: andU is the magnetization aton 7, (u) (with |[U| < 1). This
concludes the proo
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A Lower bound on ¢

Lemma 5 (Bound ondy) Letdy be as in Propostiofl1. L&t < 6y < 1. Then,iy(0y) can be set as large as
§ = (1 —69)B(), wheres(6y) is the smallest root of

(1 —6o) — (4+2600)5 + (3 — 69)° = 0.

In particular, if 6, = 1/+/b (as in theb-ary case)j ~ 0.016 whenb = 2 andd ~ 1/3 whenb is large.

Proof: Let 5
0=1= 0o
Then (letting|6| = 6)
1+¢

From the proof of Propositidd 1, we seek the largest valug ®f0 such that
(1—n%,,600) = (7_jp—1) > 0.
Multiplying by (1 — ¢)? and rearranging, we get
2(1 - ¢)° = (1+ )1~ ¢) — (1 +¢)* = (1 — o) — (4 +200)¢ + (3 — 60)¢".
This expression is positive @t= 0 and remains positive until it reaches its smallest roat.in

Whend, = 0, the polynomial above reduces to

1 —4¢+3¢° = (1 - 39)(1 - ¢),

which has its smallest root &y/3. The special cask = 2 in the statement of the lemma can be computed
numerically.®
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