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Abstract

We establish the exact threshold for the reconstruction problem for a binary asymmetric channel on
the b-ary tree, provided that the asymmetry is sufficiently small. This is the first exact reconstruction
threshold obtained in roughly a decade. We discuss the implications of our result for Glauber dynamics,
phylogenetic reconstruction, and so-called “replica symmetry breaking” in spin glasses and random
satisfiability problems.
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1 Introduction

Let

M =
1

2

[(
1 + θ 1 − θ
1 − θ 1 + θ

)
+ δ

(
−1 1
−1 1

)]
, (1)

be a binary asymmetric channel with second eigenvalueθ andTb be a completeb-ary tree. The “reconstruc-
tion problem” is the problem of determining the state of the root, given the distribution of the Markov chain
on leveln of the tree, asn gets larger and larger (a precise definition is given below).For the symmetric
binary channel (δ = 0), it was known since 1995 that the reconstruction problem issolvable if and only if
bθ2 > 1. For all other channels, it was also known and easy to prove that bθ2 > 1 implies solvability, but
exact non-solvabilityresults were not known. Here we show that this bound is tight provided thatM is close
enough to symmetric—i.e., we show that the reconstruction problem forM onT is not solvable ifbθ2 ≤ 1
and|δ| is sufficiently small.

The reconstruction problem is intimately related to mixingof Glauber dynamics and to phylogenetic re-
construction. Moreover, it was recently claimed that the reconstruction problem corresponds to the “replica
symmetry broken” solution of the spin glass on the tree. replica symmetry breaking is a central notion
in the statistical physics theory of spin glasses and randomsatisfiability problems. We discuss potential
applications of our results in these different areas.

1.1 Definitions and Main Result

Let T = (V,E, ρ) be a treeT with nodesV , edgesE and rootρ ∈ V . We direct all edges away from the
root, so that ife = (x, y) thenx is on the path connectingρ to y. Letd(·, ·) denote the graph-metric distance
on T , andLn = {v ∈ V : d(ρ, v) = n} be the nth level of the tree. Forx ∈ V ande = (y, z) ∈ E, we
denote|x| = d(ρ, x), d(x, (y, z)) = max{d(x, y), d(x, z)}, and|e| = d(ρ, e). Theb-ary tree is the infinite
rooted tree where each vertex has exactlyb children.

A Markov chain on the treeT is a probability measure defined on the state spaceCV , whereC is a finite
set. Assume first thatT is finite and, for each edgee of T , let Me = (Me

i,j)i,j∈C be a stochastic matrix. In
this case the probability measure defined by(Me : e ∈ E) onT is given by

µℓ(σ) = 1{σ(ρ)=ℓ}

∏

(x,y)∈E

M
(x,y)
σ(x),σ(y). (2)

In other words, the root stateσ(ρ) satisfiesσ(ρ) = ℓ and then each vertex iteratively chooses its state from
the one of its parent by an application of the Markov transition rule given byMe (and all such applications
are independent). We can define the measureµℓ on an infinite tree as well, by Kolmogorov’s extension
theorem, but we will not need chains on infinite trees in this paper (see [8] for basic properties of Markov
chains on trees).

Instead, for an infinite treeT , we letTn = (Vn, En, ρ), whereVn = {x ∈ V : d(x, ρ) ≤ n}, En = {e ∈
E : d(e, ρ) ≤ n} and defineµn

ℓ by (2) forTn. We are particularly interested in the distribution of the states
σ(x) for x ∈ Ln, the set of leaves inTn. This distribution, denoted byµn

k , is the projection ofµn
k on CLn

given by
µn

k(σ) =
∑

σ̄

{µn
k(σ) : σ|Ln = σ}. (3)

Recall that for distributionsµ andν on the same spaceΩ the total variation distance betweenµ andν is

DV (µ, ν) =
1

2

∑

σ∈Ω

|µ(σ) − ν(σ)|. (4)
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Definition 1 (Reconstructibility) The reconstruction problem for the infinite treeT and (Me : e ∈ E) is
solvableif there existi, j ∈ C for which

lim inf
n→∞

DV (µn
i , µn

j ) > 0. (5)

WhenMe = M for all e, we say that the reconstruction problem is solvable forT andM .

We will be mostly interested in binary channels, i.e., transition matrices on the state space{±}. In this case,
the definition above says that the reconstruction problem issolvable if

lim inf
n→∞

DV (µn
+, µn

−) > 0. (6)

Our main result is the following:

Theorem 1 (Main Result) For all b ≥ 2, there exists aδ0 > 0 such that for all|δ| ≤ δ0, the reconstruction
problem forM on theb-ary treeTb is not solvable ifbθ2 ≤ 1.

1.2 Previous Results

The study of the reconstruction problem began in the seventies [23, 9] when the problem was introduced
in terms of the extremality of the free Gibbs measure on the tree. In [9] it is shown that the reconstruction
problem for the binary symmetric channel (equation (1) where δ = 0) on the binary tree is solvable when
2θ2 > 1. This in fact follows from a previous work [12] which impliesthat for any Markov chainM , the
reconstruction problem on theb-ary tree is solvable ifbθ2 > 1 whereθ is the second largest eigenvalue of
M in absolute value.

Proving non-reconstructibility turned out to be harder. While coupling arguments easily yield non-
reconstruction, these arguments are typically not tight. Anatural way to try to prove non-reconstructibility
is to analyze recursions 1) in terms of random variables eachof whose values is the expectation of the chain
at a vertex, given the state at the leaves of the subtree belowit, 2) in terms of ratios of such probabilities,
or 3) in terms of log-likelihood ratios of such probabilities. Such recursions were analyzed for a closely
related model in [3]. Both the reconstruction model and the model analyzed in [3] deal with the correlation
between thenth-level and the root. However, while in the reconstruction problem, the two random variables
are generated according to the Markov model on the tree, in [3] the nodes at leveln are set to have an i.i.d.
distribution and the root has the conditional distributionthus induced.

In spite of this important difference, the two models are closely related. In particular, in [3] it is shown
that for the binary tree, the correlation between leveln and the root decays if and only if2θ2 ≤ 1. Building
on the techniques of [3] it was finally shown in [2] that the reconstruction problem for the binary symmetric
channel is solvable if and only if2θ2 > 1. This result was later reproven in various ways [5, 10, 1, 15].

The elegance of the thresholdbθ2 = 1 raised the hope that it is the threshold for reconstruction for
general channels. However, previous attempts to generalize any of the proofs to other channels have failed.
Moreover in [18] it was shown that for asymmetric binary channels and for symmetric channels on large
alphabets the reconstruction problem is solvable in cases wherebθ2 < 1. In fact [18] contains an example of
a channel satisfyingθ = 0 for which the reconstruction problem is solvable. On the other hand, in [20, 11] it
is shown that the thresholdbθ2 = 1 is the threshold for two variants of the reconstruction problem, “census
reconstruction” and “robust reconstruction”.

The results above led some to believe that “reconstruction”unlike its siblings “census reconstruction”
and “robust reconstruction” is an extremely sensitive property and that the thresholdbθ2 = 1 is tight only
for the binary symmetric channel. This conceptual picture was shaken by recent results in the theoretical
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physics literature [17] where using variational principles developed in the context of “replica symmetry
breaking” it is suggested that the boundbθ2 = 1 is tight for symmetric channels on3 and (maybe)4 letters.

In Theorem 1 we give the first tight threshold for the reconstruction problem for channels other than
binary symmetric channels. We show that for asymmetric channels that are close to symmetric, the Kesten-
Stigum boundbθ2 = 1 is tight for reconstruction. Our proof builds on ideas from [3, 2, 5, 22] and is
extremely simple. In addition to giving a new result for the asymmetric channel, our proof also provides a
much simpler proof of the previously known result for the binary symmetricchannel.

1.3 The Reconstruction Problem in Mixing, Phylogeny and Replicas

Mixing of Markov Chains. One of the main themes at the intersection of statistical physics and theoretical
computer science in recent years has been the study of connections between spatial and temporal mixing. It
is widely accepted that spatial mixing and temporal mixing of dynamics go hand in hand though this was
proven only in restricted settings.

In particular, the spatial mixing condition is usually stated in terms of uniqueness of Gibbs measures.
However, as shown in [1] , this spatial condition is too strong. In particular, it is shown in [1] that the
spectral gap of continuous-time Glauber dynamics for the Ising model with no external field and no boundary
conditions on theb-ary tree isΩ(1) wheneverbθ2 < 1. This should be compared with the uniqueness
condition on the tree given bybθ < 1. In [15] this result is extended to the log Sobolev constant.In [15]
it is also shown that for measures on trees, a super-linear decay of point-to-set correlations implies anΩ(1)
spectral gap for the Glauber dynamics with free boundary conditions.

Thus our results not only give the exact threshold for reconstructibility. They also yield an exact thresh-
old for mixing of Glauber dynamics on the tree for Ising models with a small external field. The details are
omitted from this extended abstract.

Phylogenetic Reconstruction. Phylogenetic reconstruction is a major task of systematic biology [6]. It
was recently shown in [4] that for binary symmetric channels, also called CFN models in evolutionary bi-
ology, the sampling efficiency of phylogenetic reconstruction is determined by the reconstruction threshold.
Thus if for all edges of the tree it holds that2θ2 > 1 the tree can be recovered efficiently fromO(log n)
samples. If2θ2 < 1, then [19] implies thatnΩ(1) samples are needed. In fact, the proof of the lower bound
in [19] implies the lower boundnΩ(1) whenever the reconstruction problem isexponentiallyunsolvable. In
other words, iflim infr→∞ DV (µr

+, µr
−) = exp(−Ω(r)) then a lower bound ofnΩ(1) holds for phylogenetic

reconstruction.

Thus, our results here implynΩ(1) lower bounds for phylogenetic reconstruction for asymmetric chan-
nels such that2θ2 < 1 and |δ| < δ0. The details are omitted from this extended abstract. It is natural
to conjecture that this is tight and that if2θ2 > 1 then phylogenetic reconstruction may be achieved with
O(log n) sequences.

Replica Symmetry Breaking. The replica and cavity methods were invented in the theoretical physics
literature to solve Ising spin glass problems on the complete graph—the so-called Sherrington-Kirkpatrick
model. These methods, while not mathematically rigorous, led to numerous predictions on the spin glass
and other models on dense graphs, a few of which were proved many years later. When applied to random
satisfiability problems, which turn out to be equivalent to dilute spin glasses—i.e., spin glasses on sparse
random graphs—these methods led to the empirically best algorithms for solving random satisfiability prob-
lems [16, 21].

A central concept in this theory is the notion of a “glassy phase” of the spin glass measure. In the glassy
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phase, the distribution on the random graphs decomposes into an exponential number of “lumps”. One of
the standard techniques for determining the glassy phase isvia “replica symmetry breaking”. Moreover,
there are certain glassy phases for which the replica symmetry breaking is relatively simple—those which
are said to have “one-step replica symmetry breaking”; and others in which the replica symmetry breaking
is more complicated—those with so-called “full replica symmetry breaking”.

In a recent paper [17] it is claimed that the parameters for which a “glassy phase occurs” are exactly the
same as the parameters for which the reconstruction problemis not solvable. More formally, for determining
if the glassy phase occurs for random(b+1)-regular graphs and Gibbs measures with some parameters, one
needs to check if the reconstruction problem for theb-ary tree and associated parameters is solvable or not.

Furthermore, it is claimed in [17] that the reconstruction problem determines the type of glassy phase as
follows. Mezard and Montanari predict that one-step replica symmetry breaking occurs exactly when when
the Kesten-Stigum bound is not equal to the reconstruction bound; otherwise full replica symmetry breaking
occurs.

Thus our results proved here, in conjunction with the theoretical physics predictions of [17], suggest the
existence of two types of glassy phases for spin systems on random graphs. It is an interesting challenge to
state these predictions in a rigorous mathematical way and to prove or disprove them.

2 Preliminaries and General Result

For convenience, we sometimes write the channel

M =

(
1 − ε+ ε+

1 − ε− ε−

)
.

Note first that the stationary distributionπ = (π+, π−) of M is given by

π+ =
1 − ε−

1 − θ
=

1

2
− δ

2(1 − θ)
, π− =

ε+

1 − θ
=

1

2
+

δ

2(1 − θ)
.

In particular, this expression implies that the stationarydistribution depends only on the ratioδ/(1 − θ). Or
put differently, each two of the parametersπ+, δ andθ determine the third one uniquely. Note also that

θ = ε− − ε+, π− − π+ =
δ

1 − θ
.

Without loss of generality, we assume throughout thatπ− ≥ π+ or equivalently thatδ ≥ 0. (Note thatδ can
be made negative by inverting the role of+ and−.) Below, we will use the notation

π−/+ ≡ π−π−1
+ , ∆ ≡ π−/+ − 1.

2.1 General Trees

In this section, we state our Theorem in a more general setting. Namely, we consider general rooted trees
where different edges are equipped with different transition matrices—all having the same stationary distri-
butionπ = (π+, π−). In other words, we consider a general infinite rooted treeT = (V,E) equipped with a
functionθ : E → [−1, 1] such that the edgee of the tree is equipped with the matrixMe with θ(Me) = θ(e)
and the stationary distribution ofMe is (π+, π−).

In this general setting the notion of degree is extended to the notion ofbranching number. In [7],
Furstenberg introduced the Hausdorff dimension of a tree. Later, Lyons [13, 14] showed that many proba-
bilistic properties of the tree are determined by this number which he named the branching number. For our
purposes it is best to define the branching number via cutsets.
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Definition 2 (Cutsets) A cutsetS for a treeT rooted atρ, is a finite set of vertices separatingρ from∞. In
other words, a finite setS is a cutset if every infinite self avoiding path fromρ intersectsS. Anantichain or
minimal cutsetis a cutset that does not have any proper subset which is also acutset.

Definition 3 (Branching Number) Consider a rooted treeT = (V,E, ρ) equipped with an edge function
θ : E → [−1, 1]. For each vertexv ∈ V we define

η(x) =
∏

e∈path(ρ,x)

θ2(e),

wherepath(ρ, x) is the set of edges on the unique path betweenρ and x in T . The branching number
br(T , θ) of (T , θ) is defined as

br(T , θ) = inf

{
λ > 0 : inf

cutsets S

∑

x∈S

η(x)λ−|x| = 0

}
.

In our main result we show

Theorem 2 (Reconstructibility on General Trees)Let 0 ≤ θ0 < 1. Then there existsδ0 > 0 such that,
for all distributions π = (π+, π−) with max{|δ(π, θ0)|, |δ(π,−θ0)|} < δ0 and for all trees(T , θ) with
supe |θ(e)| ≤ θ0 andbr(T , θ) ≤ 1, the reconstruction problem is not solvable.

It is easy to see that the conditions of Theorem 2 hold forTb if θ(e) = θ for all e andbθ2 ≤ 1.

2.2 Magnetization

Let T be a finite tree rooted atx with edge functionθ. Let σ be the leaf states generated by the Markov
chain on(T, θ) with stationary distribution(π+, π−). We denote byP+

T , E+
T (resp.P−

T , E−
T , andPT , ET ) the

probability/expectation operators with respect to the measure on the leaves ofT obtained by conditioning
the root to be+ (resp.−, and stationary). With a slight abuse of notation, we also write PT [+ |σ] for the
probability that the state at the the root ofT is + given stateσ at the leaves. The main random variable we
consider is theweighted magnetization of the root

X = π−1
− [π−PT [+ |σ] − π+PT [− |σ]] .

Note that the weights are chosen to guarantee

ET [X] = π−1
− [π−π+ − π+π−] = 0,

while the factorπ−1
− is such that|X| ≤ 1 with probability1.

Note that for any random variable depending only on the leaf states,f = f(σ), we haveπ+E
+
T [f ] +

π−E
−
T [f ] = ET [f ], so that in particular

π+E
+
T [X] + π−E

−
T [X] = ET [X] = 0, π+E

+
T [X2] + π−E

−
T [X2] = ET [X2].

We define the following analogues of the Edwards-Anderson order parameter for spin glasses on trees rooted
atx

x̄ = ET [X2], x̄+ = E
+
T [X2], x̄− = E

−
T [X2].
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x

T ′

ey

Figure 1: A finite treeT .

Now supposeT is an infinite tree rooted atρ with edge functionθ. Let Tn = (Vn, En, xn), where
Vn = {u ∈ V : d(u, ρ) ≤ n}, En = {e ∈ E : d(e, ρ) ≤ n}, andxn is identified withρ. It is not hard to see
that non-reconstructibility on(T, θ) is equivalent in our notation to

lim sup
n→∞

x̄n = 0.

(Note that the total variation distance is monotone in the cutsets. Therefore the limit goes to 0 with the levels
if and only if there exists a sequence of cutsets for which it goes to 0.)

2.3 Expectations

Fix a stationary distributionπ = (π+, π−). Let T = (V,E) be a finite tree rooted atx with edge function
{θ(f), f ∈ E} and weighted magnetization at the rootX. Let y be a child ofx andT ′ be the subtree ofT
rooted aty. LetY be the weighted magnetization at the root ofT ′. See Figure 1. Denote byσ the leaf states
of T and letσ′ be the restriction ofσ to the leaves ofT ′. Assume the channel one = (x, y) is given by

Me =

(
1 − ε+ ε+

1 − ε− ε−

)
=

1

2

[(
1 + θ 1 − θ
1 − θ 1 + θ

)
+ δ

(
−1 1
−1 1

)]
.

We collect in the next lemmas a number of useful identities.

Lemma 1 (Radon-Nikodym Derivative) The following hold:

dP
+
T

dPT
= 1 + π−/+X,

dP
−
T

dPT
= 1 − X,

E
+
T [X] = π−/+ET [X2], E

−
T [X] = −ET [X2].

Proof: Note that

X = π−1
− [π−PT [+ |σ] − π+PT [− |σ]] = π−1

− [PT [+ |σ] − π+] = π−1
−/+

[
PT [+ |σ]

π+
− 1

]
,

so that
dP

+
T

dPT
=

PT [+ |σ]

π+
= 1 + π−/+X.
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Likewise,
dP

−
T

dPT
=

PT [− |σ]

π−
= 1 − X.

Then, it follows that

E
+
T [X] = ET

[
X

(
1 + π−/+X

)]
= π−/+ET [X2],

and similarly forE−
T [X]. �

Lemma 2 (Child Magnetization) We have,

E
+
T [Y ] = θE

+
T ′[Y ], E

−
T [Y ] = θE

−
T ′[Y ],

and

E
+
T [Y 2] = (1 − θ)ET ′[Y 2] + θE

+
T ′[Y

2], E
−
T [Y 2] = (1 − θ)ET ′ [Y 2] + θE

−
T ′[Y

2].

Proof: By the Markov property, we have

E
+
T [Y ] = (1 − ε+)E+

T ′ [Y ] + ε+
E
−
T ′ [Y ] =

[
(1 − ε+) − ε+ π+

π−

]
E

+
T ′ [Y ] =

[
(1 − ε+) − (1 − ε−)

]
E

+
T ′ [Y ]

= θE
+
T ′[Y ],

and similarly forE−
T [Y ].

Also,

E
+
T [Y 2] = (1 − ε+)E+

T ′ [Y
2] + ε+

E
−
T ′ [Y

2] = (1 − ε+)E+
T ′ [Y

2] +
ε+

π−
(ET ′ [Y 2] − π+E

+
T ′ [Y

2])

= θE
+
T ′ [Y

2] + (1 − θ)ET ′[Y 2],

where we have used the calculation above. A similar expression holds forE−
T [Y 2]. �

3 Tree Operations

To derive moment recursions, the basic graph operation we perform is the followingAdd-Mergeoperation.
Fix a stationary distributionπ = (π+, π−). Let T ′ (resp.T ′′) be a finite tree rooted aty (resp.z) with edge
function θ′ (resp. θ′′), leaf stateσ′ (resp. σ′′), and weighted magnetization at the rootY (resp. Z). Now
add an edgee = (ŷ, z) with edge valueθ(e) = θ to T ′′ to obtain a new treêT . Then mergêT with T ′ by
identifying y = ŷ to obtain a new treeT . To avoid ambiguities, we denote byx the root ofT andX the
magnetization of the root ofT (where we identify the edge function onT with those onT ′, T ′′, ande). We
let σ = (σ′, σ′′) be the leaf state ofT . See Figure 2. Let alsôY be the magnetization of the root on̂T .
Assume

Me =

(
1 − ε+ ε+

1 − ε− ε−

)
.

We first analyze the effect of adding an edge and merging subtrees on the magnetization variable.

Lemma 3 (Adding an Edge) With the notation above, we have

Ŷ = θZ.
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x, y, ŷ

T ′′

T ′

σ′

z

σ′′

e

Figure 2: TreeT after theAdd-Mergeof T ′ andT ′′. The dashed subtree iŝT .

Proof: Note that by Bayes’ rule, the Markov property, and Lemma 1,

Ŷ = π+

∑

γ=+,−

γ
P

T̂
[γ |σ′′]

πγ
= π+

∑

γ=+,−

γ
P

T̂
[σ′′ | γ]

PT̂ [σ′′]

= π+
PT ′′ [σ′′]

PT̂ [σ′′]

∑

γ=+,−

γ

[
(1 − εγ)

PT ′′ [σ′′ |+]

PT ′′ [σ′′]
+ εγ PT ′′ [σ′ | −]

PT ′′ [σ′′]

]

= π+

∑

γ=+,−

γ
[
(1 − εγ)

(
1 + π−/+Z

)
+ εγ (1 − Z)

]
,

where we have usedP
T̂
[σ′′] = PT ′′ [σ′′]. We now compute the expression in square brackets. We have

(1 − εγ)
(
1 + π−/+Z

)
+ εγ (1 − Z) = 1 + π−Z

[
1 − εγ

π+
− εγ

π−

]
.

Forγ = +, we get

1 − ε+

π+
− ε+

π−
= (1 − θ)

[
1 − ε+

1 − ε−
− 1

]
= (1 − θ)

[
ε− − ε+

1 − ε−

]
=

θ

π+
.

A similar calculation for the− case gives forγ = +,−

(1 − εγ)
(
1 + π−/+Z

)
+ εγ (1 − Z) = 1 + γθπ−π−1

γ Z.

Plugging above giveŝY = θZ. �

Lemma 4 (Merging Subtrees) With the notation above, we have

X =
Y + Ŷ + ∆Y Ŷ

1 + π−/+Y Ŷ
.

The same expression holds for a generalT̂ .
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Proof: By Bayes’ rule, the Markov property, and Lemma 1, we have

X = π+

∑

γ=+,−

γ
PT [γ |σ]

πγ
= π+

∑

γ=+,−

γ
PT [σ | γ]

PT [σ]
= π+

PT ′ [σ′]PT̂ [σ′′]

PT [σ]

∑

γ=+,−

γ
PT ′ [σ′ | γ]

PT ′ [σ′]

PT̂ [σ′′ | γ]

PT̂ [σ′′]

= π+
PT ′ [σ′]PT̂ [σ′′]

PT [σ]

∑

γ=+,−

γ
[
1 + γπ−π−1

γ (Y + Ŷ ) + (π−π−1
γ )2Y Ŷ

]
.

Similarly, we have

PT [σ]

PT ′ [σ′]PT̂ [σ′′]
=

1

PT ′ [σ′]PT̂ [σ′′]

∑

γ=+,−

πγ
PT [σ | γ] =

∑

γ=+,−

πγ

[
1 + γπ−π−1

γ (Y + Ŷ ) + (π−π−1
γ )2Y Ŷ

]
.

Note that
∑

γ=+,−

γ
[
1 + γπ−π−1

γ (Y + Ŷ ) + (π−π−1
γ )2Y Ŷ

]
= π−1

+ (Y + Ŷ ) + π−2
+ (π− − π+)Y Ŷ ,

where we have used

π2
− − π2

+ = (π− − π+)(π− + π+) = π− − π+.

Similarly, ∑

γ=+,−

πγ

[
1 + γπ−π−1

γ (Y + Ŷ ) + (π−π−1
γ )2Y Ŷ

]
= 1 + π−π−1

+ Y Ŷ .

The result follows.�

4 Symmetric Channels On Regular Trees

As a warm-up, we start by analyzing the binary symmetric channel on the infiniteb-ary tree. Our proof is
arguably the simplest proof to date of this result. The same proof structure will be used in the general case.

Theorem 3 (Symmetric Channel. See [2, 5, 10, 20, 11, 1, 15].)Let M be a transition matrix withδ = 0
andbθ2 ≤ 1. LetT be the infiniteb-ary tree. Then, the reconstruction problem on(T ,M) is not solvable.

Proof: Consider again the setup of Section 3. Note first that, by Lemmas 1, 2 and 3, we have

ET̂ [Ŷ 2] = E
+

T̂
[Ŷ ] = θE

+

T̂
[Z] = θ2

E
+
T ′′ [Z] = θ2

ET ′′ [Z2], (7)

where we have used the fact thatπ−/+ = 1 whenδ = 0 (although note that it is not needed). In other words,
adding an edge to the root of a tree and re-rooting at the new vertex has the effect of multiplying the second
moment of the magnetization byθ2. Now consider theAdd-Mergeoperation defined in Section 3. Using the
expansion

1

1 + r
= 1 − r +

r2

1 + r
, (8)

the inequality|X| ≤ 1, and Lemma 4, we get

X = Y + Ŷ − Y Ŷ (Y + Ŷ ) + Y 2Ŷ 2X ≤ Y + Ŷ − Y Ŷ (Y + Ŷ ) + Y 2Ŷ 2. (9)

Note that from Lemmas 1 and 2, we have

E
+
T [X] = x̄, E

+
T [Y ] = E

+
T [Y 2] = ȳ, E

+
T [Ŷ ] = E

+
T [Ŷ 2] = θ2z̄,
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where we have used thatȳ+ = ȳ− = ȳ andz̄+ = z̄− = z̄ by symmetry. TakingE+
T on both sides of (9), we

get

x̄ ≤ ȳ + θ2z̄ − θ2ȳz̄ − θ2ȳz̄ + θ2ȳz̄ = ȳ + θ2z̄ − θ2ȳz̄.

Now, letTn = (Vn, En, xn) be as in Section 2.2. Repeating theAdd-Mergeoperation(b − 1) times, we
finally have by induction

x̄n ≤ bθ2x̄n−1 − (b − 1)θ4x̄2
n−1.

Indeed, note that for0 < a < b,

(aθ2x̄n−1 − (a − 1)θ4x̄2
n−1) + θ2x̄n−1 − θ2(aθ2x̄n−1 − (a − 1)θ4x̄2

n−1)x̄n−1 ≤ (a + 1)θ2x̄n−1 − aθ4x̄2
n−1,

and the first step of the induction is given by (7). This concludes the proof.�

5 Roughly Symmetric Channels on General Trees

We now tackle the general case. We start by analyzing theAdd-Mergeoperation.

Proposition 1 (Basic Inequality) Consider the setup of Section 3. Assume|θ| < 1. Then, there is a
δ0(|θ|) > 0 depending only on|θ| such that

x̄ ≤ ȳ + θ2z̄,

wheneverδ (on e) is less thanδ0(|θ|).

Proof: The proof is similar to that in the symmetric case. By expansion (8), inequality|X| ≤ 1, and
Lemma 4, we have

X ≤ Y + Ŷ + ∆Y Ŷ − π−/+Y Ŷ (Y + Ŷ + ∆Y Ŷ ) + π2
−/+Y 2Ŷ 2. (10)

Let ρ′ = (ȳ)−1ȳ+ andρ′′ = (z̄)−1z̄+. Then, by Lemmas 1 and 2, we have

E
+
T [X] = π−/+x̄, E

+
T [Y ] = π−/+ȳ, E

+
T [Y 2] = ȳρ′,

E
+
T [Ŷ ] = π−/+θ2z̄, E

+
T [Ŷ 2] = θ2z̄[(1 − θ) + θρ′′].

Takingπ−1
−/+E

+
T on both sides of (10), we get

x̄ ≤ ȳ + θ2z̄ + ∆π−/+θ2ȳz̄

−π−/+θ2ȳz̄ρ′ − π−/+θ2ȳz̄[(1 − θ) + θρ′′] − ∆θ2ȳz̄ρ′[(1 − θ) + θρ′′]

+π−/+θ2ȳz̄ρ′[(1 − θ) + θρ′′]

≤ ȳ + θ2z̄ − π−/+θ2ȳz̄[A− ∆B],

where

A = ρ′ + (1 − ρ′)[(1 − θ) + θρ′′],
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and

B = 1 − π−1
−/+ρ′[(1 − θ) + θρ′′].

Note that[(1 − θ) + θρ′′] ≥ 0 by Lemma 2. SoB ≤ 1 and it suffices to haveA ≥ ∆. Note also thatA
is multilinear in(ρ′, ρ′′). Therefore, to minimizeA, we only need to consider extreme cases in(ρ′, ρ′′). By
π+y+ + π−y− = y it follows that0 ≤ ρ′ ≤ π−1

+ . The same holds forρ′′. At ρ′ = 0, we have

A = 1 − θ[1 − ρ′′] ≥
{

1 − θ, if θ ≥ 0,
1 − π−/+|θ|, if θ ≤ 0,

where we have used

1 − π−1
+ = −π−/+.

At ρ′ = π−1
+ , we have

A = π−1
+ + (1 − π−1

+ )[1 − θ[1 − ρ′′]] = 1 + θπ−/+[1 − ρ′′] ≥
{

1 − π2
−/+θ, if θ ≥ 0,

1 − π−/+|θ|, if θ ≤ 0.

Sinceπ−/+ ≥ 1 by assumption, it follows that

A ≥ 1 − π2
−/+|θ|.

At δ = 0, this bound is strictly positive and moreover∆ = 0. Therefore, by continuity inδ of ∆ and the
bound above, the result follows.�

Proposition 2 (Induction Step) Let T be a finite tree rooted atx with edge functionθ. Letw1, . . . , wα be
the children ofx in T and denote byea the edge connectingx to wa. Let θ0 = max{|θ(e1)|, . . . , |θ(eα)|}
and assume that on each edgeea, δ ≤ δ0(θ0), whereδ0 is defined in Proposition 1. Then

x̄ ≤
α∑

a=1

θ(ea)
2w̄a.

Proof: As noted in the proof of Theorem 3, adding an edgee to the root of a tree and re-rooting at the new
vertex has the effect of multiplying the second moment of themagnetization byθ2(e). The result follows
by applying Proposition 1(α − 1) times.�

Proof of Theorem 2: It suffices to show that for allε > 0 there is anN large enough so that̄xn ≤ ε,
∀n ≥ N . Fix ε > 0. By definition of the branching number, there exists a cutsetS of T such that

∑

u∈S

η(u) ≤ ε.

Assume w.l.o.g. thatS is actually an antichain and letN be such thatS is in TN . It is enough to show that

x̄n ≤
∑

u∈S

η(u), ∀ n ≥ N.

Fix n ≥ N . Applying Proposition 2 repeatedly from the root ofTn down toS, it is clear that

x̄n ≤
∑

u∈S

η(u)ETn(u)[U
2] ≤

∑

u∈S

η(u),

whereTn(u) is the subtree ofTn rooted atu andU is the magnetization atu onTn(u) (with |U | ≤ 1). This
concludes the proof.�
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[17] M. Mézard A. Montanari. Reconstruction on trees and the spin glass transition, 2006. Preprint.

13



[18] E. Mossel. Reconstruction on trees: beating the secondeigenvalue.Ann. Appl. Probab., 11(1):285–
300, 2001.

[19] E. Mossel. Survey: Information flow on trees. In J. Nestril and P. Winkler, editors,Graphs, Morphisms
and Statistical Physics. DIMACS series in discrete mathematics and theoretical computer science,
pages 155–170. Amer. Math. Soc., 2004.

[20] E. Mossel and Y. Peres. Information flow on trees.Ann. Appl. Probab., 13(3):817–844, 2003.
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A Lower bound on δ0

Lemma 5 (Bound onδ0) Letδ0 be as in Propostion 1. Let0 ≤ θ0 < 1. Then,δ0(θ0) can be set as large as
δ̄ = (1 − θ0)β(θ0), whereβ(θ0) is the smallest root of

(1 − θ0) − (4 + 2θ0)β + (3 − θ0)β
2 = 0.

In particular, if θ0 = 1/
√

b (as in theb-ary case),̄δ ≈ 0.016 whenb = 2 and δ̄ ≈ 1/3 whenb is large.

Proof: Let

φ =
δ

1 − θ0
.

Then (letting|θ| = θ0)

π−/+ =
1 + φ

1 − φ
.

From the proof of Proposition 1, we seek the largest value ofδ ≥ 0 such that

(1 − π2
−/+θ0) − (π−/+ − 1) ≥ 0.

Multiplying by (1 − φ)2 and rearranging, we get

2(1 − φ)2 − (1 + φ)(1 − φ) − θ0(1 + φ)2 = (1 − θ0) − (4 + 2θ0)φ + (3 − θ0)φ
2.

This expression is positive atφ = 0 and remains positive until it reaches its smallest root inφ.

Whenθ0 = 0, the polynomial above reduces to

1 − 4φ + 3φ2 = (1 − 3φ)(1 − φ),

which has its smallest root at1/3. The special caseb = 2 in the statement of the lemma can be computed
numerically.�
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