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Abstract () An orthogonal decompositioi = fsx + fpsa Of @
vector f in a Hilbert space into its orthogonal pro-
Combinatorics, like computer science, often has to deal jection fy, onto a subspac® (which represents the
with large objects of unspecified (or unusable) structure. “structured” objects), plus its orthogonal projection
One powerful way to deal with such an arbitrary object s to fpsa ONnto the orthogonal compleme¥it- of V' (which
decompose it into more usable components. In particular, represents the “pseudorandom” objects).

it has proven profitable to decompose such objects into a . ,

structureccomponent, @seudo-randornomponent, and a (i) A thresholdingf = fu. + fpsa Of @ vectorf, where
smallcomponent (i.e. an error term); in many cases it is the [ is expressed in terms of some bazsis.“. > Un (e.g.“
structured component which then dominates. We illustrate @ Fourierbasis)ag = 3=, ;. ¢;v;, the “structured

this philosophy in a number of model cases. componentfsi, := > ;1> Civi contains the contri-
bution of the large coefficients, and the “pseudoran-

dom” componentf,sq := ZMQ < Civ; contains the
contribution of the small coefficients. Here > 0

is a thresholding parameter which one is at liberty to
choose.

1. Introduction

In many situations in combinatorics, one has to deal with
an object of large complexity or entropy - such as a graph  Indeed, many of the decompositions we discuss here can
on N vertices, a function oV points, etc., withV large. be viewed as variants or perturbations of these two simple
We are often interested in the worst-case behaviour of suchdecompositions. More advanced examples of decomposi-
objects; equivalently, we are interested in obtainingltesu tions include the Szemerédi regularity lemma for graphs
which apply toall objects in a certain class, as opposed to (and hypergraphs), as well as variatigicture theoremse-
results for almost all objects (in particular, random orrave lating to the Gowers uniformity norms, used for instance in
age case behaviour) or for very specially structured object [16], [18]. Some decompositions from classical analysis,
The difficulty here is that the spectrum of behaviour of an most notably thespectral decompositionf a self-adjoint
arbitrary large object can be very broad. At one extreme, operator into orthogonal subspaces associated with the pur
one has vengtructuredobjects, such as complete bipartite point, singular continuous, and absolutely continuousspe
graphs, or functions with periodicity, linear or polynomia trum, also have a similar spirit to the structure-randoranes
phases, or other algebraic structure. At the other extremedichtomy.
are pseudorandonobjects, which mimic the behaviour of The advantage of utilising such a decomposition is that
random objects in certain key statistics (e.g. their carrel one can use different techniques to handle the structured
tions with other objects, or with themselves, may be close component and the pseudorandom component (as well as
to those expected of random objects). the error component, if it is present). Broadly speaking,

Fortunately, there is a fundamental phenomenon thatthe structured component is often handled by algebraic or
one often has aichotomybetween structure and pseudo- geometric tools, or by reduction to a “lower complexity”
randomness, in that given a reasonable notion of structureproblem than the original problem, whilst the contribution
(or pseudorandomness), there often exists a dual notion obf the pseudorandom and error components is shown to be
pseudorandomness (or structure) such that an arbitrary obnegligible by using inequalities from analysis (which can
ject can be decomposed into a structured component andange from the humble Cauchy-Schwarz inequality to other,
a pseudorandom component (possibly with a small error).much more advanced, inequalities). A particularly notable
Here are two simple examples of such decompositions:  use of this type of decomposition occurs in the many dif-
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ferent proofs of Szemerédi's theorem|[24]; see é.d. [30] fo tured and vectors which have low correlation (or more pre-
further discussion. cisely, small inner product) to all vectors # aspseudo-

In order to make the above general strategy more con-random More precisely, giverf € H, we say thatf is
crete, one of course needs to specify more precisely what(M, K )-structuredfor somelM/, K > 0 if one has a decom-
“structure” and “pseudorandomness” means. There is noposition
single such definition of these concepts, of course; it de- f= Z CiV;
pends on the application. In some cases, it is obvious what 1<i<M
the definition .o.f one of these concepts |s,_but then one hasWith v € Sande; € [~K, K] forall 1 <i < M. We
to do a non-trivial amount of work to describe the dual con- . )

: : also say thatf is e-pseudorandonfior somee > 0 if we
cept in some useful manner. We remark ttatnputational :

. . _have|(f,v)g| < eforallv € S. Itis helpful to keep some
notions of structure and randomness do seem to fall |ntomodel examples in mind:
this framework, but thus far all the applications of this di- P _ ' .
chotomy have focused on much simpler notions of structureExample2.1 (Fourier structure)Let F; be a Hamming
and pseudorandomness, such as those associated to ReegHbe; we identify the finite field, with {0, 1} in the usual
Muller codes. manner. We lef] be the2™-dimensional space of functions

In these notes we give some illustrative examples of this / : F3 — R, endowed with the inner product
structure-randomness dichotomy. While these examples are 1
somewhat apstract and gener_ali in nature, thgy should.by no (f.9)m = on Z f(x)g(z),
means be viewed as the definitive expressions of this di- z€Fy
chotomy; in many applications one needs to modify the ba-
sic arguments given here in a number of ways. On the other@nd letS be the space afharacters
hand, the core ideas in these arguments (such as a reliance "

i S::{ef:geFQ}v
on energy-increment or energy-decrement methods) appear
to pe fa|rly“un|versal. The”emphaS|s here will bg onillus- \\hare for eacly € F2, e, is the functionee (z) := (—1)<.
tratm_g the _nuts-and-bolts of structure theorems; wevéea Informally, a structured functiorf is then one which can
the discussion of the more advanced structure theorems ange expressed in terms of a small number (€X1)) char-

their applications to other papers. _ acters, whereas a pseudorandom funciomould be one
One major topic we will not be discussing here (though |, 0<a Fourier coefficients

it is lurking underneath the surface) is the role of ergodic

theory in all of these decompositions; we refer the reader f(g) = (fee)m (1)

to [30Q] for further discussion. Similarly, the recent ergnd

theoretic approaches to hypergraph regularity, remonal, a are all small.

property testing in[31]/[3] will not be discussed here,in 0 Eyample2.2 (Reed-Muller structure)Let H be as in the
der to prevent the exposition from becoming too unfocused.previOus example, and let < k& < n. We now let
The lecture notes here also have some intersection with theg _ Si(F%) be the space of Reed-Muller Coc(esl)P(m)’

author's earlier article [27]. whereP : F — F, is any polynomial of: variables with
coefficients and degree at mdstFor k = 1, this gives the

2. Structure and randomness in a Hilbert space  same notions of structure and pseudorandomness as the pre-
vious example, but as we increasgwe enlarge the class

Let us first begin with a simple case, in which the objects of structur_ed functiqns and shrink the _class of pseudoran-

one is studying lies in some real finite-dimensional Hilbert dom functions. For instance, the functiam, ..., z,) —

spaceH, and the concept of structure is captured by some (—1)==i<s<»***J would be considered highly pseudoran-

known setS of “basic structured objects”. This setting is dom whenk = 1 but highly structured fok > 2.

already strong enough to establish the Szemerédi regulari Example2.3 (Product structure)Let V be a set of V| = n

lemma, as well as variants such as Green’s arithmetic reg-vertices, and lelf be then?-dimensional space of functions
ularity lemma. One should think of the dimensioniéfas f:V xV — R, endowed with the inner product

being extremely large; in particular, we do not want any of )
our quantitative estimates to depend on this dimension. -

More precisely, let us designate a finite collecti®nc SRS n? Z fo,w)glv,w).
H of “basic structured” vectors of bounded length; we as-
sume for concreteness thiat||y < 1 forallv € S. We Note that any grapl = (V, E)) can be identified with an
would like to view elements aoff which can be “efficiently ~ element ofi, namely the indicator functiohg : V x V —
represented” as linear combinations of vectorsS asstruc- {0,1} of the set of edges. We Ie&¥ be the collection of

v,weV



tensor productgv, w) — 14(v)1p(w), where A, B are If we iterate this by a straightforward greedy algorithm
subsets of’. Observe that g will be quite structured if  argument we now obtain
G is a complete bipartite graph, or the union of a bounded
number of such graphs. At the other extreme(rifs an
e-regular graph of some edge density< § < 1 for some
0 < e < 1, in the sense that the number of edges between
A and B differs from | A||B| by at moste|A||B| when-
everA, B C V with |A],|B] > en, thenlg — § will be
O(e)-pseudorandom. Proof. We perform the following algorithm.
We are interested in obtaining quantative answers to the
following general problem: given an arbitrary bounded el-
ementf of the Hilbert space? (let us say||f||lz < 1 for

Corollary 2.5 (Non-orthogonal weak structure theorem)
Let H, S be as above. Lef € H be such thaf| f||z < 1,
and let0 < ¢ < 1. Then there exists a decomposi-
tion @) such thatfs, is (1/2,1/¢)-structured, fpsq IS e-
pseudorandom, ani.,. is zero.

e Step 0. Initialisefs, := 0, ferr := 0, @and fpsq :== f.
Observe thall fosall% < 1.

concreteness), can we obtain a decomposition o Step 1. If fysq is e-pseudorandom the8TOP. Oth-
erwise, by Lemm& 214, we can finde S andc €
f = Jor t Josa ¥+ for @) [~1/2,1/¢] such that| fsa — colly < [ fysallfr — <>

where f, is a structured vectorf,. iS a pseudorandom
vector, andf.,, is some small error?

One obvious “qualitative” decomposition arises from us-
ing the vector spacepan(S) spanned by the basic struc- Itis clear that the “energyil f,sa||3; decreases by at least
tured vectorsS. If we let fi;, be the orthogonal projection £2? with each iteration of this algorithm, and thus this al-
from f to this vector space, and sl = f — fsr and gorithm terminates after at mosfs? such iterations. The
ferr := 0, then we have perfect control on the pseudoran- claim then follows. O
dom and error componentg,sq is 0-pseudorandom and
ferr has norm0. On the other hand, the only control ¢,
we have is the qualitative bound that i &, M )-structured
for some finite K, M < oo. In the three examples given
above, the vectorS in fact span all ofH, and this decom-
position is in fact trivial!

We would thus like to perform a tradeoff, increasing our Theorem 2.6 (Strong structure theorem).et H, S be as
control of the structured component at the expense of wors-gpove, let: > 0, and letF : Z+ — R™T be an arbi-
ening our control on the pseudorandom and error compo-trary function. Letf € H be such that|f||z < 1. Then
nents. We can see how to achieve this by recalling howwe can find an integef/ = Or.(1) and a decomposi-
the orthogonal projection of to span(S) is actually con-  tion @) where ., is (M, M)-structured,f,sq is 1/F(M)-
structed,; it is the vectaor in span(S) which minimises the pseudorandom, anfl... has norm at most.

“energy” || f — v||% of the residualf — v. The key point is ) S

that if v € span(9) is such thatf — v has a non-zero inner Here and in the sequel, we use subscripts in kg
product with a vectom € S, then it is possible to move asymptotic notation to denote that the implied constant de-
in the directionw to decrease the energjy — v||2,. We can ~ Pends on the subscripts. For instanCg;. (1) denotes a

make this latter point more quantitative: quantity bounded by’r ., for some quantity’r,. depend-
ing only on F" ande. Note that the pseudorandomness of

Lemma 2.4 (Lack of pseudorandomness implies energy ¢, can be of arbitrarily high quality compared to the com-
decrement) Let H, S be as above. Lef € H be avec-  plexity of f.,, since we can choosE to be whatever we

tor with [|f||Z, < 1, such thatf is not e-pseudorandom  please; the cost of doing so, of course, is that the upper
for some0 < ¢ < 1. Then there exists € S and  pound onl becomes worse whef is more rapidly grow-

c € [-1/e,1/¢] such that/(f,v)| > e and | f — cv|% < ing.

1% — €. To prove Theorern 216, we first need a variant of Corol-

Proof. By hypothesis, we can find € S be such that lary[25 which gives some orthogonality betwegpn and
|(f,v)| > &, thus by Cauchy-Schwarz and hypothesis on /psd, at the cost of worsening the complexity boundfon.
S

e Step 2. Replacg,sq by fpsa — cv and replacefy, by
fstr + cv. Now return to Step 1.

Corollary[Z.5 is not very useful in applications, because
the control on the structure gf;, are relatively poor com-
pared to the pseudorandomnesgqf; (or vice versa). One
can do substantially better here, by allowing the error term
ferr 10 be non-zero. More precisely, we have

Lemma 2.7(Orthogonal weak structure theorenhet H, S
L2 [Jollr = [(f, )] = e be as above. Lef € H be such that|f||z < 1, and let
We then set := (f,v)/||v]|% (i.e. cv is the orthogonal 0 < e < 1. Then there exists a decompositi@) such that
projection of f to the span ob). The claim then follows  fi, is (1/€2, O.(1))-structured, f,sq is e-pseudorandom,
from Pythagoras’ theorem. O ferr 1S zero, and fsir, fpsa)u = 0.



Proof. We perform a slightly different iteration to that in  theorem we see that the quantity;||% is decreasing, and
Corollary[2.5, where we insert an additional orthogonalisa varies betweefi and1. By the pigeonhole principle, we can
tion step within the iteration to a subspdce thusfindl <i < 1/e2+1suchthat|fi_1||% - fill% < &%
. o o by Pythagoras’ theorem, this implies thifs, il < e.
e Step 0. InitialiseV” := {0} and fo, := 0. If We then Setfrr = fur0 + - + fotrits foud = fir
e Step 1. Seff. to be the orthogonal projection gfto ferr := fstr,i» @AM := M;_1, we obtain the claim. [

Vl andfpsd = f - fstr- . . .
Remark2.8. By tweaking the above argument a little bit,
e Step 2. If fysa iS e-pseudorandom theBTOP. Oth- one can also ensure that the quantifigs fpsd, ferr in The-
erwise, by Lemmd 2l4, we can find € S and orem2.6 are orthogonal to each other. We leave the details
¢ € [-1/e,1/e] such that|(fpsda,v)r| > ¢ and to the reader.

2 2 2
1 fpsa = collfy < [l fosallr — <. Remark2.9. The boundOr (1) on M in Theoreni 2 is
e Step 3. Replac& by span(V U {v}), and returnto ~ quite poor in practice; roughly speaking, it is obtained by
Step 1. iterating F aboutO(1/?) times. Thus for instance i is

_ . ) of exponential growth (which is typical in applicationg},
Note that at each stagg/psal/x is the minimum dis-  ¢an pe tower-exponential sizedn These excessively large

tance fromf to V. Because of this, we see thafi.allz;  values of M unfortunately seem to be necessary in many
decreases by at least with eac? iteration, and so this al-  ¢ases, see e.gl[8] for a discussion in the case of the Sze-
gorithm terminates in at mosy'e” steps. merédi regularity lemma, which can be deduced as a conse-

Suppose the algorithm terminatesin steps for some  quence of Theore2.6.

M < 1/¢2. Then we have constructed a nested fla ) ) )
sl g To illustrate how the strong regularity lemma works in

{0}=VhycWViC...CVy practice, we use it to deduce the arithmetic regularity lemm
) o of Green[[13] (applied in the model case of the Hamming
of subspaces, where eakhis formed fromV;_, by adjoin- cubeF?). Let A be a subset oF%, and letl, : F} —

ing a vectom; in S. Furthermore, by construction we have (o 1} pe the indicator function. ¥/ is an affine subspace

|(fi, vi)| = € for some vectoyf; of norm at most which is (overF5) of F3, we say thatd is e-regularin V for some
orthogonal toV;_;. Because of this, we see thgtmakes 0 < ¢ < 1ifwe have

an angle 0©.(1) with V;_;. As a consequence of this and

the Gram-Schmidt orthogonalisation process, we see that |Ezev(la(x) —dv)ee(x)| <e

v1,...,v; is awell-conditioned basis df;, in the sense that

any vectorw € W; can be expressed as a linear combination for all characterg,, whereE,cy f(z) := ‘71| Y owev f(@)

of vq, ..., v; with coefficients of sizeD. ;(||w| ). In par- denotes the average value ¢f on V, and éy :=
ticular, sincef,;, has norm at most (by Pythagoras’theo- E,cy14(z) = |A N V|/|V]| denotes the density of in
rem) and lies iry;, we see thaf, is a linear combination V. The following result is analogous to the celebrated Sze-
of vy,..., vy with coefficients of sized; (1) = O (1), merédi regularity lemma:

and the claim follows. O

Lemma 2.10(Arithmetic regularity lemma)[13] Let A C
We can now iterate the above lemma and use a pigeon¥} and0 < ¢ < 1. Then there exists a subspateof

holing argument to obtain the strong structure theorem. codimensionl = O, (1) such thatA is e-regular on all but

d
Proof of Theorernh 216We first observe that it suffices to =27 of the translates of’.

prove a weakened version of Theorem 2.6 in whigh is Proof. It will suffice to establish the claim with the weaker
(Oare(1), O e(1))-structured rather tha@ll, M) struc-  claim thatA is O(c!/4)-regular on all buD(,/z2%) of the

version of Theorerh 216 by making more rapidly grow- original version of Lemm&2.10.

ing, and redefiningl/; we leave the details to the reader. We apply Theorem 216 to the setting in Example] 2.1,
Also, by increasing” if necessary we may assume tiét  with £ .= 1,, andF to be chosen later. This gives us an

is integer-valued and'(M) > M for all M. integerM = O (1) and a decomposition
We now recursively definely := 1 and M; :=
F(M;—,) for all ¢ > 1. We then recursively define La = fotr + fosd + forr (3)

fo, f1,--. by settingfy := f, and then for each > 1

using Lemma2]7 to decompoge 1 = fur . + f; where where fg, is (M, M)-structured, fpsq is 1/F(M)-
fstri 18 (O, (1), Ong, (1))-structured, andf; is 1/M;- pseudorandom, anfilfe;;||z < e. The functionfy, is a
pseudorandom and orthogonalfg, ;. From Pythagoras’ combination of at mosd/ characters, and thus there exists



a subspac® C F% of codimensiond < M such thatfs,
is constant on all translates ©f.
We have

Em€F§‘|fcrr(I)|2 S £ = 52d|v|/|F721|

Dividing F% into 2¢ translateg + V' of V, we thus conclude
that we must have

Em€y+V|fcrr(x)|2 < \/E (4)

on all but at most/=2¢ of the translateg + V.

Let y + V be such that{4) holds, and 18}, be the
average ofd ony + V. The functionfy, equals a constant
value ony + V, call it ¢, . Averaging[(8) ony + V' we
obtain

Oy+v = Cytv + Ereytv fpsd () + Breyrv ferr (2).

Since fpsa(z) is 1/F(M)-pseudorandom, some simple
Fourier analysis (expressirg,, as an average of char-
acters) shows that

21\1

F(M)

277.
[VIF(M)

|Em€y+prsd(I)| < <

while from (4) and Cauchy-Schwarz we have

|Em€y+errr($)| < 51/4

and thus
Syrv = Ccyrv + O 2" +0(e'/4).
y+ y+ F(M)

By (@) we therefore have

La(2) =0y v = fosd(T)+ fore ()40 2 +0(eM4).
y+ ps err F(M)

Now letes be an arbitrary character. By arguing as before
we have

oM
|Esey+v fosd()ee(x)| < 70D
and
|Eoeytvfor()ee(z)| < e'/4
and thus
oM
E.cyrv(la(z) — dyqv)ec(z) = O (m) + OV,

If we now setF'(M) := £~ 1/42M we obtain the claim. O

For some applications of this lemma, seel[13]. A de-
composition in a similar spirit can also be found[in [5],/[15]
The weak structure theorem for Reed-Muller codes was also
employed in[[18],[[14] (under the name oKaopman-von
Neumann type theorém

Now we obtain the Szemerédi regularity lemma itself.
Recall that ifG = (V, FE) is a graph and4, B are non-
empty disjoint subsets df, we say that the pait4, B) is
e-regularif forany A’ ¢ A, B’ C B with |A’| > ¢|A| and
|B'| > ¢|B|, the number of edges betwedhandB’ differs
fromda pg|A’||B’| by at most|A’||B’|, whered4 5 = |EN
(A x B)|/|A||B] is the edge density betweehand B.

Lemma 2.11(Szemerédi regularity lemma)24] Let 0 <

e < landm > 1. ThenifG = (V, E) is a graph with
|V | = n sufficiently large depending earandm, then there
exists a partitiont” = Vo UVL U... UV, withm < m/ <

Oc,m(1) such that|Vy| < en, V1] = ... = |V, and
such that all but at most(m’)? of the pairs(V;, V;) for

1<i<j<m aree-regular.

Proof. It will suffice to establish the weaker claim that
[Vo| = O(en), and all but at mos®(y/(m’)?) of the pairs
(V;,V;) areO(e'/'?)-regular. We can also assume without
loss of generality that is small.

We apply Theorem 216 to the setting in Exaniplé 2.3 with
f := 1g andF to be chosen later. This gives us an integer
M = Op.(1) and a decomposition

()

where fy, is (M, M)-structured, fpsa is 1/F(M)-
pseudorandom, anfilfe;;||r < e. The functionfy, is a
combination of at most/ tensor products of indicator func-
tions1y,xp,. The setsd; and B, partition V' into at most
22M sets, which we shall refer to asoms If |V| is suffi-
ciently large depending o/, m ande, we can then parti-
tionV = Vo U... UV, withm < m/ < (m+ 22M) /e,
[Vo| = O(en), |[Vi| = ... = |Vin|, and such that eadh for
1 < i < m'is entirely contained within an atom. In particu-
lar fs. is constantofV; x V; forall 1 <14 < j <m/. Since
¢ is small, we also havg/;| = ©(n/m’) for1 <i < m.

We have

1E - .fstr +fpsd +.fcrr

E(v,w)evxv|fer(v,w)]? < e
and in particular
Eicicj<m Ewwev,xv; | fer(v,w)[> = O(e).
Then we have
E(v,u)evixv; | ferr (v, w)[? < VE

for all butO(y/e(m’)?) pairs(i, j).

(6)



Let (¢, j) be such thaf{6) holds. O x V;, f. is equal
to a constant value;;. Also, from the pseudorandomness
of fpsa We have

DY

(v,w)€A’xX B’

fPSd(v’ ’U})| S F(]\/[)

Vil V3]
F(M)
forall A" ¢ V; andB’ C V;. By arguing very similarly

= Om,s,M <

of control given by this model is insufficient. A typical
example arises when one wants to decompose a function
f : X — R on a probability spaceX, X, u) into struc-
tured and pseudorandom pieces, plus a small error. Using
the Hilbert space model (withf = L?(X)), one can con-

trol the L2 norm of (say) the structured componefiyt. by

that of the original functiory, indeed the construction in
Theoreni 2.6 ensures that, is an orthogonal projection of

f onto a subspace generated by some vectofs iirlow-
ever, in many applications one also wants to controliiffe

to the proof of Lemm&2.10, we can conclude that the edgenorm of the structured part by that ¢f and if f is non-

densitys;; of E onV; x V; is

1
o 1/4 -
513 Cij + O(E ) + Om_’57M (F(]\/f))
and that

Y (e,w)=dy)| = (0
(v,w)€A’x B’

1

+ et (s VIV

forall A” C V; andB’ C V;. This implies that the pair
(Vi, V;) is O(e/12) + Oy e (1) F(M)/3)-regular. The
claim now follows by choosing’ to be a sufficiently rapidly
growing function of M, which depends also om ande.
([l

Similar methods can yield an alternate proof of the regu-
larity lemma for hypergraphs[11], [12], [21], [22]; see [29
To oversimplify enormously, one works on higher product
spaces such a8 x V x V, and uses partial tensor prod-
ucts such agvy, va,v3) — 14(v1)1g(ve,v3) as the struc-
tured objects. The lower-order functions such gévs, v3)

negative one often also wishgs, to be non-negative also.
More generally, one would like @mparison principleif

f, g are two functions such that dominatesy pointwise
(i.e.|g(z)| < f(x)), andfs, andgs:, are the corresponding
structured components, we would likg, to dominateyy,.

One cannot deduce these facts purely from the knowledge
that f, is an orthogonal projection of. If however we
have the stronger property thA, is aconditional expec-
tation of f, then we can achieve the above objectives. This
turns out to be important when establishing structure theo-
rems forsparseobjects, for which purely.? methods are
inadequate; this was in particular a key point in the recent
proof [16] that the primes contained arbitrarily long arith
metic progressions.

In this section we fix the probability spa¢e&, X, ),
thusX is ac-algebra on the seX’, andy : X — [0,1]is a
probability measure, i.e. a countably additive hon-negati
measure. In many applications one can assume that-the
algebraX is finite, in which case it can be identified with a
finite partitionX = A; U...U A of X into atoms(so that
X consists of all sets which can be expressed as the union
of atoms).

which appear in the structured component are then decomexample3.1 (Uniform distribution) If X is a finite set,
posed again by another application of structure theoremsx — 92X is the power set of(, andu(E) := |E|/|X]

(e.g. forlg(ve, v3), one would use the ordinary Szemerédi
regularity lemma). The ability to arbitrarily select therva
ious functionsF' appearing in these structure theorems be-

comes crucial in order to obtain a satisfactory hypergraph

regularity lemma.
See also[[11] for another graph regularity lemma involv-
ing an arbitrary functior¥” which is very similar in spirit to

forall E C X (i.e. u is uniform probability measure on
X), then(X, X, u) is a probability space, and the atoms are
just singleton sets.

We recall the concepts offactor and ofconditional ex-
pectation which will be fundamental to our analysis.

Definition 3.2 (Factor) A factor of (X, X, u) is a triplet

Theoren{2.6. In the opposite direction, if one applies the y — (v, Y, ), whereY is a set,Y is ao-algebra, and
weak structure theorem (Corolldry P.5) to the product set- - . ¥ _, y is a measurable map. ¥ is a factor, we let

ting (Exampld_2.B) one obtains a “weak regularity lemma”
very close to that in 6].

3. Structure and randomness in a measure
space

We have seen that the Hilbert space model for separatfunctions. IfY = (Y,Y,7) andY’

By = {m"Y(E) : E € Y} be the subr-algebra ofX
formed by pulling backY by =. A functionf : X — R

is said to beY-measurabléf it is measurable with respect
to By. If f € L?*(X,X,p), we letE(f|Y) = E(f|By)
be the orthogonal projection gf to the closed subspace
L?(X, By, u) of L?(X, X, 1) consisting ofY-measurable
Y'Y, ') are

ing structure from randomness is satisfactory for many ap-two factors, we letY vV'Y" denote the factofy x Y', Y ®

plications. However, there are times when tH&™ type

Y' ).



Example3.3 (Colourings) Let X be a finite set, which we
give the uniform distribution as in Examfdle B.1. Suppose
we colour this set using some finitgaletteY” by introduc-
ingamapr : X — Y. If we endowY with the discrete
o-algebray = 2¥, then(Y, Y, n) is a factor of( X, X, u).
The o-algebra3y is then generated by theolour classes
7~ 1(y) of the colouringw. The expectatioE(f|Y) of

a functionf : X — R is then given by the formula
E(f|Y)(7) = Epcr1(z(nf(@') foral z € X, where
7~ 1(m(z)) is the colour class that lies in.

In the previous section, the concept of structure was rep-
resented by a sef of vectors. In this section, we shall
instead represent structure by a collecti®of factors We
say that a factolY hascomplexityat mostM if it is the
joinY =Y;Vv...vY,, of mfactors fromS for some
0 < m < M. We also say that a functiofi € L?(X)
is e-pseudorandorif we have||E(f|Y)||z2x) < e for all
Y € S. We have an analogue of Lemial2.4:

Lemma 3.4(Lack of pseudorandomness implies energy in-
crement) Let (X, X, ) andS be as above. Left € L?(X)

be such thaff — E(f|Y) is note-pseudorandom for some
0 < ¢ < 1 and some factolY. Then there exist¥’ € S
such thal| E(/[Y v Y')|3: x, = IB(Y)32x, + <>

Proof. By hypothesis we have
[E(f —E(f/IY)Y)[[2x) > €

forsomeY’ € S. By Pythagoras’ theorem, this implies that

IE(f —EFYIY VY)|Ta(x) 2 €2

By Pythagoras’ theorem again, the left-hand side is
IE(F[YVY')[Z2x)— [E(fIY)]72(x). and the claim fol-
lows. O

We then obtain an analogue of Lemmal2.7:

Lemma 3.5 (Weak structure theorem) et (X, X, ) and
S be as above. Lef € L?(X) be such thaf| f|| 2(x) < 1,
let’ Y be a factor, and leb < ¢ < 1. Then there exists a
decompositiotf = fsx + fpsa, Wherefo, = E(f|[Y VY')
for some factofY’ of complexity at most/<2, and fpsq is
e-pseudorandom.

Proof. We construct factor¥;, Yo, ..
following algorithm:

Y, € Shythe

e Step O: Initialisen = 0.

o Step1: WriteY' : =Y 1 V...VY,, fstr := E(f[Y V
Y'), andfpsd := f — fetr-

o Step 2: If fysa IS e-pseudorandom theBTOP. Oth-
erwise, by Lemm&3l4 we can find,,,.; € S such
that [E(/[Y VY’V Yoit) 320y, 2 IE(IY V
Y22 (x) + €%

e Step 3: Increment: tom + 1 and return to Step 1.

Since the “energyl| fstrH%z(X) ranges betweetandl (by

the hypothesi§ f|| .2(x) < 1) and increments by* at each
stage, we see that this algorithm terminates in at mast
steps. The claim follows. O

Iterating this we obtain an analogue of Theofen 2.6:

Theorem 3.6 (Strong structure theorem)let (X, X, u)

and S be as above. Leff € L?(X) be such that
I flleexy < 1, lete > 0, and letF : Zt — R* be

an arbitrary function. Then we can find an integef =

Or.(1) and a decompositio®) wheref.,, = E(f[Y) for

some factofY of complexity at most, fpsq is 1/F(M)-

pseudorandom, anfi.,, has norm at most.

Proof. Without loss of generality we may assufiéM) >
2M. Also, it will suffice to allowY to have complexity
O(M) rather than\/.

We recursively definéd/y := 1 andM; := F(M;_1)?
for all i+ > 1. We then recursively define factors
Yo,Y:1,Yo,... by settingY, to be the trivial factor, and
then for eachi > 1 using Lemmd_2]7 to find a factor
Y of complexity at mostV/; such thatf — E(f|Y;—1 V
Y!)is 1/F(M;_1)-pseudorandom, and then settilig :=
Y;_1 VY, By Pythagoras’ theorem and the hypothesis
[ fllz2x) < 1, the energyl|E(f|Y,)[|72x, is increas-
ing in 4, and is bounded betwednand 1. By the pi-
geonhole principle, we can thus find< i < 1/¢2 +1
such that| E(f[Y:)[I72(x) = IB(fIYi-1)lIZ2(x) < €%
by Pythagoras’' theorem, this implies thgE(f|Y;) —
E(f|Yi-1)llz2(x) < €. If we then setfs;, := E(f[Y;_1),
= f = E(f[Y)), ferr = E(f[Y;) —E(f[Yi-1), and

O

fpsd
M: i_1, we obtain the claim.

This theorem can be used to give alternate proofs of
Lemmal2.ID and Lemnia_2]11; we leave this as an exer-
cise to the reader (but s€e [25] for a proof of Lenimal2.11
essentially relying on Theorem 3.6).

As mentioned earlier, the key advantage of these types
of structure theorems is that the structured comporignt
is now obtained as a conditional expectation of the original
function f rather than merely an orthogonal projection, and
s0 one has goodZ'” and “L>°” control on f., rather than
just L2 control. In particular, these structure theorems are
good for controllingsparsely supported functions(such
as the normalised indicator function of a sparse set), by ob-
taining a densely supported functign, which models the
behaviour off in some key respects. Let us give a sim-
plified “sparse structure theorem” which is too restrictive
for real applications, but which serves to illustrate therma
concept.

Theorem 3.7(Sparse structure theorem, toy versiohgt
0<e<l,letF:Z" — R* be a function, and lefv



be an integer parameter. LéX, X, 1) andS be as above,
and depending oiN. Letr € L!'(X) be a non-negative
function (also depending o) with the property that for
everyM > 0, we have the “pseudorandomness” property

(7)

for all factorsY of complexity at mosd/, whereo,, (1)
is a quantity which goes to zero @6 goes to infinity for
any fixedM. Let f : X — R (which also depends oN)
obey the pointwise estimate< f(z) < v(x) forall x €
X. Then, ifN is sufficiently large depending ofi and ¢,
we can find an integed! = Op (1) and a decomposition
(@) where fs., = E(f|Y) for some factorY of complexity
at mostM, fpsa is 1/F(M)-pseudorandom, ang.,, has
norm at most. Furthermore, we have

IE@[Y)][Le(x) < 1+ onm(1)

0 < fsr(®) < 14 o0p(1)

/sttrdu=/xfdu~

An example to keep in mind is wheé = {1,..., N}
with the uniform probability measure, S consists of the
o-algebras generated by a single discrete intefuat Z :
a<n<b}forl <a<b< N,andv being the function
v(z) =log N14(z), whereA is a randomly chosen subset
of {1,...,N} with §(z € A) = 15 forall1 <z < N;
one can then verify{{7) with hi h probability using tools
such as Chernoff’s inequality. Observe thds bounded in
L'(X) uniformly in N, but is unbounded i.?(X). Very
roughly speaking, the above theorem states that any dens
subsetB of A can be effectively “modelled” in some sense
by a dense subset §1, ..., N}, normalised by a factor of

(8)

and

(9)

log
functionf :=log N1p(x).

Proof. We run the proof of Lemm&a_3.5 and Theorem
3.8 again. Observe that we no longer have the bound
Il fllz2(x) < 1. However, from[(¥) and the pointwise bound
0 < f < v we know that

IECTY) 200 < IE@Y)Iz20x)
< E@IY)][Lex)
<1+om(1)

for all Y of complexity at mostM. In particular, forNV
large enough depending dd we have

IE(fIY)Z2(x) <2 (10)
(say). This allows us to obtain an analogue of Lenhima 3.5
as before (with slightly worse constants), assuming ffiat

is sufficiently large depending an by repeating the proof

#N; this can be seen by applying the above theorem to the

more or less verbatim. One can then repeat the proof of
Theoreni 3.6, again usinlg [10), to obtain the desired decom-
position. The claim[{8) follows immediately frorl(7), and
(@) follows since, E(f|Y) du = [y f du for any factor

Y. O

Remark3.8. In applications, one does not quite have the
property [T); instead, one can bouB@/|Y) by 1 + 0 (1)
outside of a small exceptional set, which has meas(irg

with respect top, andv. In such cases it is still possible

to obtain a structure theorem similar to Theofflend 3.7; see
[16, Theorem 8.1]/[26, Theorem 3.9], br[34, Theorem 4.7].
These structure theorems have played an indispensable role
in establishing the existence of patterns (such as arifbmet
progressions) inside sparse sets such as the prime numbers,
by viewing them as dense subsets of sparse pseudorandom
sets (such as th@lmost primenumbers), and then appeal-
ing to a sparse structure theorem to model the original set
by a much denser set, to which one can apply deep theorems
(such as Szemerédi's theorem|[24]) to detect the desitted pa
tern.

The reader may observe one slight difference between
the concept of pseudorandomness discussed here, and the
concept in the previous section. Here, a functify
is considered pseudorandom if its conditional expectation
E(fpsa|Y) are small for various structuréd. In the pre-
vious section, a functiotf,sq is considered pseudorandom
if its correlations(fsqa, g) v Were small for various struc-
turedg. However, it is possible to relate the two notions
of pseudorandomness by the simple device of using a struc-
tured functiory to generate a structured fact¥,. In mea-
8ure theory, this is usually done by taking the level sets
g~ *([a, b)) of g and seeing what-algebra they generate.

In many quantitative applications, though, it is too expen-
sive to takeall of these the level sets, and so instead one
only takes a finite number of these level sets to create the
relevant factor. The following lemma illustrates this con-
struction:

Lemma 3.9(Correlation with a function implies non-trivial
projection) Let (X, X, ) be a probability space. Let
L'(X) andg € L*(X) be such thaf|f;:x) < 1 and
llgllz2(xy < 1. Lete > 0and0 < a < 1, and letY be the
factorY = (R,Y,g), whereY is thec-algebra generated
by the intervald(n + a)e, (n + 1 + «)e) forn € Z. Then
we have

IE(fIY)lL2x) > {fr9)L2x)| — €.

Proof. Observe that the atoms Bf are generated by level
setsg~ 1 ([(n + a)e, (n + 1 + a)e)), and on these level sets
g fluctuates by at most Thus

lg —E(g[Y)|zex) <e.



Sincel| f||1(x) < 1, we conclude (not necessarily injective). For instance, we have

[, 9) 2y = (L B(gIY)) 2| < e 1fllor gy = 1B newy f(2) f (2 + D)2
= |Ezery f(2)]
ﬁ|f”U2(F§') = |Eg nkery f(2)f(x 4+ ) f(z + k)
X flz 4 h+ k)[4

On the other hand, by Cauchy-Schwarz and the hypothesi
llgllzzx) < 1 we have

|<f7E(g|Y)>L2(X)| = |<E(f|Y)ag>L2(X)| _ |EheF"|EmeF"f($)f(l' + h)|2|1/4
< IEGTD 0o 1 llusceg) = Bty mnaerg £ @) (@ + ) fa + ha)
The claim follows. O X f(z+ hs)f(x+ h1 + ha) f(z + h1 + h3)

_ o _ X (@ + ho + ha) f (@ + ho + b+ ha)| V5.
This type of lemma is relied upon in the above-

mentioned papers [16], [26]. [34] to convert pseudorandom- It is possible to show that the nori§y« gy are indeed a

ness in the conditional expectation sense to pseudorandomaorm ford > 2, and a semi-norm fad = 1; see e.g.[[33].

ness in the correlation sense. In applicationsitis alss@on These norms are also monotonelin

nient to randomise the shift parametein order to average

away all boundary effects; see elg.][32, Lemma 3.6]. 0 <|fllorey) < Ifllvzey) < [ fllus@Ey) < - < Hf!i)x(Fg)-
) ) ) Thed = 2 norm is related to the Fourier coefficientss)

4. Structure and randomness via uniformity  gefined in [) by the important (and easily verified) identity

norms A

o2y = (D £ (12)

In the preceding sections, we specified the notion of Lery

structure (either via a sef of vectors, or a collectio
of factors), which then created a dual notion of pseudoran-
domness for which one had a structure theorem. Such de
compositions give excellent control on the structured com-
ponentfs, of the function, but the control on the pseudo-
random partf,sq can be rather weak. There is an opposing

approach, in which one first specifies the notion of pseUdo'dorandom of ordexl — 1 if ||f|yya(ry) is small; thus for

randomness one would like to have §ftq, and thenworks . . . 5 .
: . ._instance functions with small'* norm arelinearly pseu-
as hard as one can to obtain a useful corresponding notion . ; .
. dorandom(or Fourier-pseudorandorfunctions with small
of structure. In this approach, the pseudorandom compo-; .
U* norm arequadratically pseudorandonand so forth. It

nentfpsld IS easy tp dispose of, but then all the difficulty turns out that functions which are pseudorandom to a suit-
gets shifted to getting an adequate control on the strutture - ]
able order become negligible for the purpose of various
component. - ) .
A particularlv useful familv of notions of pseudo multilinear correlations (and the higher the order of pseud
randol?nness ar}i/ses trom th@%wers uniformit pnorms randomness, the more complex the multilinear correlations
Y that become negligible). This can be demonstrated by re-

. These norms can be defined on any finite ad- o : )
E{;i'\‘/[:(cr;c))u & and for complex-valued functiorj‘g G peated application of the Cauchy-Schwarz inequality. We
grouptr, P ' give a simple instance of this:

C, but for simplicity let us restrict attention to a Hamming
cubeG = F% and to real-valued functiong : F; — R. Lemma 4.1 (Generalised von Neumann theorenet
(For more general groups and complex-valued functions, Ty, T, : F2 — F# be invertible linear transformations such
see[[38]. For applications to graphs and hypergraphs, onehat7; — T is also invertible. Then for any, g, h : F2 —

More generally, the uniformity normsf ||y« gy ford > 1

are related to Reed-Muller codes of order 1 (although

this is partly conjectural forl > 4), but the relationship
cannot be encapsulated in an identity as elegahtas (12) once
d > 3. We will return to this point shortly.

Let us informally call a functionf : ¥ — R pseu-

can use the closely relatggowers box normssee [11], [-1,1] we have
[12], [20], [26], [3d], [33].) In that case, the uniformity
norm|| f| 7y can be defined foi > 1 by the formula Bz rery f(2)g(x + Tir)h(z + Tor)| < (| fllo2gry)-
Proof. By changing variables’ := Tyr if necessary we
29 -
[f1Ga@y) == ELps sy H f(L(a)) may assume thak; is the identity map/. We rewrite the
a€Fg left-hand side as

whereL ranges over all affine-linear maps frdf§ to F2 |Ezerp h(2)Erery f(x —r)g(z + (T1 — I)7)]



and then use Cauchy-Schwarz to bound this from above by(which, incidentally, can be used to quickly deduce the

(Every [Erery f(z — 1)g(a + (T1 — I)r)[*)Y/?

which one can rewrite as

monotonicity [11)). From this identity and induction we
quickly deduce the modulation symmetry

||ngUd(Fg) = ||f||Ud(Fg) (15)

By ery f(w—r) f(z—r")g(a+(Ti—D)r)g(a+(T1 =)' )|'*;whenevery € Sq_.(F}) is a Reed-Muller code of order

applying the change of variablés, s, h) :
I)r,Tyr,r — '), this can be rewritten as

(z+ (Th —

By nery9(y)g(y+(Ti—1)h)Esery f(y+s) f (y+s+h)| /2

applying Cauchy-Schwarz, again, one can bound this by

1/4
‘Ey,heF;"|EseF§'f(y +38)fy+s+ h)|2’ / .
But this is equal td| f||2(rz), and the claim follows. [

For a more systematic study of such “generalised von

Neumann theorems”, including some weighted versions,

see Appendices B and C 6f [19].

In view of these generalised von Neumann theorems, it

is of interest to locate conditions which would force a Gow-
ers uniformity norm|| f||yya(gy) to be small. We first give

a “soft” characterisation of this smallness, which at first
glance seems too trivial to be of any use, but is in fact pow-
erful enough to establish Szemerédi's theorem (see [28]) a

at mostd — 1. In particular, we see thdly||y«ry) = 1
for such codes; thus a code of order 1 or less is defi-
nitely not pseudorandom of ordel: A bit more generally,
by combining[[Ib) with[(1l1) we see that

I ez@p | = 1 fallorwy) < 1follvawy) = [ fllvas)-

In particular, any function which has a large correlatiotiwi
a Reed-Muller codg € S;_1(F%) is not pseudorandom of
orderd. It is conjectured that the converse is also true:

Conjecture 4.3(Gowers inverse conjecture fbY;). If d >
1 ande > 0 then there existé > 0 with the following
property: given anyn > 1 and anyf : F§ — [-1,1]
with || flleeg) > €, there exists a Reed-Muller cogec
Sa—1(F%) of order at mostl — 1 such that(f, g) .2 (rz)| >

This conjecture, if true, would allow one to apply the ma-
chinery of previous sections and then decompose a bounded
function f : Fy — [—1,1] (or a function dominated by

well as the Green-Tao theorem [16]. It relies on the obvious g syitably pseudorandom functior) into a function fs,

identity
||f||2Ud(Fg) =({f,Df)r2(wy)
where thedual functionD f of f is defined as

I r@).

a€FZ\{0}

Df(z) == EL:FgaFg;L(o):m (13)

As a consequence, we have

Lemma 4.2 (Dual characterisation of pseudorandomness)
Let S denote the set of all dual function®F with
[FllLery) < 1. Theniff : F3 — [-1,1] is such
thatHfHUd;Fg) > ¢ for some0 < ¢ < 1, then we have
(f,g) >e? forsomeg € S.

In the converse direction, one can use Bauchy-
Schwarz-Gowers inequalitysee e.g. [[10], [[16], [[19],
[33]) to show that if(f,g) > e for someg € S, then
[flvaey) = e

The above lemma gives a “soft” way to detect pseudo-

which was built out of a controlled number of Reed-Muller
codes of order at most — 1, a function f,sq which was
pseudorandom of ordef, and a small error. See for in-
stance([14] for further discussion.

The Gowers inverse conjecture is trivial to verify tbe=
1. Ford = 2 the claim follows quickly from the identity
(@I2) and the Plancherel identity

HfH%%Fg) = Z |f(§)|2

EEFYy

The conjecture fod = 3 was first established by Samorod-
nitsky [23], using ideas from_[9] (see alsio [17], [33] for
related results). The conjecture fér> 3 remains open; a
key difficulty here is that there are a huge number of Reed-
Muller codes (abou2®™*™") or so, compared to the di-
mension2™ of L?(F%)) and so we definitely do not have
the type of orthogonality that one enjoys in the Fourier case
d = 2. For related reasons, we do not expect any identity
of the form [12) ford > 3 which would allow the very few

randomness, but is somewhat unsatisfying due to the ratheReed-Muller codes which correlate withto dominate the

non-explicit description of the “structured” s€t To inves-

enormous number of Reed-Muller codes which do not in

tigate pseudorandomness further, observe that we have théhe right-hand side.

recursive identity

d d—1
Hf”%]d(Fg) = EhngHfthQUd—l(F;) (14)

However, we can present some evidence for it here in the
“99%-structured” case whenis very close td. Let us first
handle the case when= 1:



Proposition 4.4 (100%-structured inverse theorempup-  quantity which goes to zero @s— 0, thus|| f|[yeFy) >

posed > landf : F§ — [—1, 1] is such thal| f|[yary) = 1 — o(1). We shall say that a statement is true foost
1. Thenf is a Reed-Muller code of order at mast- 1. x € Fy if it is true for a proportionl — o(1) of values
€ Fy.
Proof. We induct ond. The casel = _1 is obvious. Now v Apélying {13) we have
suppose thatl > 2 and that the claim has already been
Eroven ford — 1. If HfHUd(Fg) = 1, then from [I4) we EhngHffhllUd(Fg) >1-o0(1)
ave
Ehepg|\ffh|\[2]d;1(m) =1. while from (11) we have{ f fp.||yary) < 1. Thus we have

I f fullue@sy =1 —o(1) forall hin a subset! of F3 of
On the other hand, froni(11) we ha¢ fi||yya-1 (ry) < 1 densityl — o(1). Applying the inductive hypothesis, we

for all n. This forces||f fu|lya-1gy) = 1 for all h. By conclude that for alh € H there exists a polynomia?, :
induction hypothesisf f;, must therefore be a Reed-Muller F} — F, of degree at most — 2 such that

code of order at most — 2 for all h. Thus for every: there

exists a polynomiaP;, : F2 — F, of degree at most — 2 Esery f(2) f(z + h)(=1)F®) > 1 —6(1).
such that
f(z+h) = flz) (-1 Sincef is bounded in magnitude by this implies for each
h € H that
for all z, h € F3. From this one can quickly establish by <
induction that for everny) < m < n, the functionf is a flz+h) = f(@)(=1)PE +o(1) (16)
Reed-Muller code of degree at mast- 1 on F5* (viewed
as a subspace &), and the claim follows. O for mostz. For similar reasons it also implies tHg{(z)| =

1+ o(1) for mostz.

To handle the case Whe]jis very close .tol is 'Frickier Now suppose thal:, ho, hs, ha € H form anadditive
(we can no longer afford an induction on dimension, as Was guadruplein the sense that; + ho = hs + ha. Then from

done in the above proof). We first need a rigidity result. (I6) we see that

Proposition 4.5(Rigidity of Reed-Muller codes)For every _  \Pa, (2)+Ph, (24+h1)
d > 1 there exist& > 0 with the following property: if F@thithe) = f(z)(=1)™ ’ +o(l) (A7)
n > 1landf € Sq—1(F3) is a Reed-Muller code of order 5 mostz, and similarly

at mostd — 1 such that®,cry f(r) > 1 — ¢, thenf = 1.

_ Phy(2)+Phy (x+hs
Proof. We again induct od. The casel = 1 is obvious, so f@+hs 4 ha) = f(@)(=1) e '+ o(1)
supposel > 2 and that the claim has already been proven for mostz. Since|f(z)| = 1+0(1) for mostz, we conclude
ford—1. If Emepgf(l') > 1—€,thenE$€F3|1—f($)| <e. that
Using the crude bound — ff,| = O(]1 — f| + |1 — fx])
we conclude thaE,cry |1 — f fn(z)| < O(e), and thus (—1) P (@) 4Py (2h1) =Py (2)=Puy (e4h3) — 1 4 (1)

Eierp ffn(z) > 1-0(e) for mostz. In particular, the average of the left-hand side in
zis1 —o(1). Applying Lemmd4.b (and assumidgmall
for everyh € Fy. But f f; is a Reed-Muller code of order  enough), we conclude that the left-hand sidéntically
d — 2, thus by induction hypothesis we hay¢;, = 1 for 1, thus
all h if  is small enough. This forcefto be constant; but
since f takes values i{—1,+1} and has average at least Py, (z) + Ph,(x + h1) = Py, (x) + P, (xz + h3) (18)

1 — ¢, we havef = 1 as desired fot small enough. [ . )
for all additive quadruples; + ho = hz + hyq in H and all

Proposition 4.6(99%-structured inverse theorem|2] For .

everyd > 1 and0 < ¢ < 1 there exist$) < § < 1 with the Now for anyk € F%, define the quantit@) (k) € F5 by
following property: ifn > 1 and f : F§ — [—1, 1] is such the formula

that || f|lgery) = 1 — 0, then there exists a Reed-Muller

codeg € Sy—1(F%) such that(f, g) r2(ry) > 1 — €. Q(k) == P, (0) + P, (h1) (19)

Proof. We again induct od. The casel = 1 is obvious, so whenever, hy € H are such that; + ho € H. Note that
supposel > 2 and that the claim has already been proven the existence of such &n , h, is guaranteed since moist
ford—1. Fix e, letd be a small number (depending@and lie in H, and [18) ensures that the right-hand side[of (19)
¢) to be chosen later, and suppgseF; — [—1, 1] is such does not depend on the exact choicéofh, and soQ is
that|| fl|aggzy > 1 — 0. We will useo(1) to denote any  well-defined.



Now letz € F3 andh € H. Then, since most elements Remark4.7. The above argument requirg$||ya gz to be

of F% lie in H, we can findry, 72, s1,s2 € H such that
r1 +re = z ands; + ss = x + h. From [1T) we see that

Fly+a) = fly+ritra) = fly)(=1) T @0 4o(1)

and

Flytath) = fly+sitsz) = f(y)(—1) @040 10(1

for mosty. Also from (16)

fly+a+h)=fly+z)(=1)"0+) 1 o(1)

for mosty. Combining these (and the fact thgt(y)| =
1+ o(1) for mosty) we see that

(_1)PS] (y)+P82 (y+51)_P7‘] (y)_PTg (y+Tl)_Ph(y+m) — 1+O(1)

for mosty. Taking expectations and applying Lemmal 4.5

as before, we conclude that

Py, (y)+Ps, (y+51) = Pr, (y) = Pr, (y+71) = Pr(y+2) = 0

for all y. Specialising tgy = 0 and applying[{19) we con-

clude that

Pu(r) = Q(z +h) — Q(z) = Qn(z) — Q(z)

forall z € Fy andh € H; thus we have succesfully “in-

(20)

tegrated”Py, (x). We can then extenff, (z) to allh € F%

(not justh € H) by viewing [20) as alefinition Observe
thatif h € F%, thenh = hy + ho for someh, he € H, and

from (20) we have

Ph(x) = Ph] (1‘) + th (.%' + hl).

~—

In particular, since the right-hand side is a polynomial of

degree at mosi — 2, the left-hand side is also. Thus we

see that), — @ is a polynomial of degree at mast- 2 for

all h, which easily implies thaf) itself is a polynomial of

degree at most — 1. If we then sey(z) := f(x)(—1)9®),
then from [16),[(2D) we see that for evérye H we have

for mostz. From Fubini’s theorem, we thus conclude that

g(z +h) = g(z) +o(1)

there exists am such thay(z+h) = g(z)+o(1) for mosth,

thusg is almost constant. Sinde(x)| = 1 + o(1) for most

x, we thus conclude the existence of a siga {—1,+1}
such thay(z) = € + o(1) for mostz. We conclude that

for mostz, and the claim then follows (assumings small

enough).

f(z) = e(=1)%) +o(1)

O

very close tol for two reasons. Firstly, one wishes to ex-
ploit the rigidity property; and secondly, we implicitly e

at many occasions the fact that if two properties each hold
1 — o(1) of the time, then they jointly hold — o(1) of the
time as well. These two facts break down once we leave
the “99%-structured” world and instead work in a%-
structured” world in which various statements are only true
for a proportion at least for some smalk. Nevertheless,
the proof of the Gowers inverse conjecture fbr= 2 in

[23] has some features in common with the above argument,
giving one hope that the full conjecture could be settled by
some extension of these methods.

Remark4.8. The above result was essentially proveriin [2]
(extending an argument inl[4] for the linear cate= 2),
using a “majority vote” version of the dual functidn {13).

5. Concluding remarks

Despite the above results, we still do not have a system-
atic theory of structure and randomness which covers all
possible applications (particularly for “sparse” objéctor
instance, there seem to be analogous structure theorems for
random variables, in which one uses Shannon entropy in-
stead ofL.2-based energies in order to measure complexity;
see([25]. In analogy with the ergodic theory literature (e.g
[Z]), there may also be some advantage in purstetagive
structure theorems, in which the notions of structure and
randomness are all relative to some existing “known struc-
ture”, such as a reference facfii of a probability space
(X, X, u). Finally, in the iterative algorithms used above to
prove the structure theorems, the additional structured us
at each stage of the iteration were drawn from a fixed stock
of structures § in the Hilbert space casé, in the measure
space case). In some applications it may be more effective
to adopt a moredaptiveapproach, in which the stock of
structures one is using varies after each iteration. A smpl
example of this approach is in [32], in which the structures
used at each stage of the iteration are adapted to a certain
spatial scale which decreases rapidly with the iteration. |
expect to see several more permutations and refinements of
these sorts of structure theorems developed for future-appl
cations.
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