
ar
X

iv
:0

70
7.

42
69

v2
  [

m
at

h.
C

O
]  

3 
A

ug
 2

00
7

Structure and randomness in combinatorics

Terence Tao
Department of Mathematics, UCLA

405 Hilgard Ave, Los Angeles CA 90095
tao@math.ucla.edu

Abstract

Combinatorics, like computer science, often has to deal
with large objects of unspecified (or unusable) structure.
One powerful way to deal with such an arbitrary object is to
decompose it into more usable components. In particular,
it has proven profitable to decompose such objects into a
structuredcomponent, apseudo-randomcomponent, and a
smallcomponent (i.e. an error term); in many cases it is the
structured component which then dominates. We illustrate
this philosophy in a number of model cases.

1. Introduction

In many situations in combinatorics, one has to deal with
an object of large complexity or entropy - such as a graph
on N vertices, a function onN points, etc., withN large.
We are often interested in the worst-case behaviour of such
objects; equivalently, we are interested in obtaining results
which apply toall objects in a certain class, as opposed to
results for almost all objects (in particular, random or aver-
age case behaviour) or for very specially structured objects.
The difficulty here is that the spectrum of behaviour of an
arbitrary large object can be very broad. At one extreme,
one has verystructuredobjects, such as complete bipartite
graphs, or functions with periodicity, linear or polynomial
phases, or other algebraic structure. At the other extreme
arepseudorandomobjects, which mimic the behaviour of
random objects in certain key statistics (e.g. their correla-
tions with other objects, or with themselves, may be close
to those expected of random objects).

Fortunately, there is a fundamental phenomenon that
one often has adichotomybetween structure and pseudo-
randomness, in that given a reasonable notion of structure
(or pseudorandomness), there often exists a dual notion of
pseudorandomness (or structure) such that an arbitrary ob-
ject can be decomposed into a structured component and
a pseudorandom component (possibly with a small error).
Here are two simple examples of such decompositions:

(i) An orthogonal decompositionf = fstr + fpsd of a
vector f in a Hilbert space into its orthogonal pro-
jection fstr onto a subspaceV (which represents the
“structured” objects), plus its orthogonal projection
fpsd onto the orthogonal complementV ⊥ of V (which
represents the “pseudorandom” objects).

(ii) A thresholdingf = fstr + fpsd of a vectorf , where
f is expressed in terms of some basisv1, . . . , vn (e.g.
a Fourier basis) asf =

∑

1≤i≤n civi, the “structured”
componentfstr :=

∑

i:|ci|≥λ civi contains the contri-
bution of the large coefficients, and the “pseudoran-
dom” componentfpsd :=

∑

i:|ci|<λ civi contains the
contribution of the small coefficients. Hereλ > 0
is a thresholding parameter which one is at liberty to
choose.

Indeed, many of the decompositions we discuss here can
be viewed as variants or perturbations of these two simple
decompositions. More advanced examples of decomposi-
tions include the Szemerédi regularity lemma for graphs
(and hypergraphs), as well as variousstructure theoremsre-
lating to the Gowers uniformity norms, used for instance in
[16], [18]. Some decompositions from classical analysis,
most notably thespectral decompositionof a self-adjoint
operator into orthogonal subspaces associated with the pure
point, singular continuous, and absolutely continuous spec-
trum, also have a similar spirit to the structure-randomness
dichtomy.

The advantage of utilising such a decomposition is that
one can use different techniques to handle the structured
component and the pseudorandom component (as well as
the error component, if it is present). Broadly speaking,
the structured component is often handled by algebraic or
geometric tools, or by reduction to a “lower complexity”
problem than the original problem, whilst the contribution
of the pseudorandom and error components is shown to be
negligible by using inequalities from analysis (which can
range from the humble Cauchy-Schwarz inequality to other,
much more advanced, inequalities). A particularly notable
use of this type of decomposition occurs in the many dif-
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ferent proofs of Szemerédi’s theorem [24]; see e.g. [30] for
further discussion.

In order to make the above general strategy more con-
crete, one of course needs to specify more precisely what
“structure” and “pseudorandomness” means. There is no
single such definition of these concepts, of course; it de-
pends on the application. In some cases, it is obvious what
the definition of one of these concepts is, but then one has
to do a non-trivial amount of work to describe the dual con-
cept in some useful manner. We remark thatcomputational
notions of structure and randomness do seem to fall into
this framework, but thus far all the applications of this di-
chotomy have focused on much simpler notions of structure
and pseudorandomness, such as those associated to Reed-
Muller codes.

In these notes we give some illustrative examples of this
structure-randomness dichotomy. While these examples are
somewhat abstract and general in nature, they should by no
means be viewed as the definitive expressions of this di-
chotomy; in many applications one needs to modify the ba-
sic arguments given here in a number of ways. On the other
hand, the core ideas in these arguments (such as a reliance
on energy-increment or energy-decrement methods) appear
to be fairly universal. The emphasis here will be on illus-
trating the “nuts-and-bolts” of structure theorems; we leave
the discussion of the more advanced structure theorems and
their applications to other papers.

One major topic we will not be discussing here (though
it is lurking underneath the surface) is the role of ergodic
theory in all of these decompositions; we refer the reader
to [30] for further discussion. Similarly, the recent ergodic-
theoretic approaches to hypergraph regularity, removal, and
property testing in [31], [3] will not be discussed here, in or-
der to prevent the exposition from becoming too unfocused.
The lecture notes here also have some intersection with the
author’s earlier article [27].

2. Structure and randomness in a Hilbert space

Let us first begin with a simple case, in which the objects
one is studying lies in some real finite-dimensional Hilbert
spaceH , and the concept of structure is captured by some
known setS of “basic structured objects”. This setting is
already strong enough to establish the Szemerédi regularity
lemma, as well as variants such as Green’s arithmetic reg-
ularity lemma. One should think of the dimension ofH as
being extremely large; in particular, we do not want any of
our quantitative estimates to depend on this dimension.

More precisely, let us designate a finite collectionS ⊂
H of “basic structured” vectors of bounded length; we as-
sume for concreteness that‖v‖H ≤ 1 for all v ∈ S. We
would like to view elements ofH which can be “efficiently
represented” as linear combinations of vectors inS asstruc-

tured, and vectors which have low correlation (or more pre-
cisely, small inner product) to all vectors inS aspseudo-
random. More precisely, givenf ∈ H , we say thatf is
(M,K)-structuredfor someM,K > 0 if one has a decom-
position

f =
∑

1≤i≤M

civi

with vi ∈ S andci ∈ [−K,K] for all 1 ≤ i ≤ M . We
also say thatf is ε-pseudorandomfor someε > 0 if we
have|〈f, v〉H | ≤ ε for all v ∈ S. It is helpful to keep some
model examples in mind:

Example2.1 (Fourier structure). Let Fn
2 be a Hamming

cube; we identify the finite fieldF2 with {0, 1} in the usual
manner. We letH be the2n-dimensional space of functions
f : Fn

2 → R, endowed with the inner product

〈f, g〉H :=
1

2n

∑

x∈F
n
2

f(x)g(x),

and letS be the space ofcharacters,

S := {eξ : ξ ∈ F
n
2},

where for eachξ ∈ F
n
2 , eξ is the functioneξ(x) := (−1)x·ξ.

Informally, a structured functionf is then one which can
be expressed in terms of a small number (e.g.O(1)) char-
acters, whereas a pseudorandom functionf would be one
whose Fourier coefficients

f̂(ξ) := 〈f, eξ〉H (1)

are all small.

Example2.2 (Reed-Muller structure). Let H be as in the
previous example, and let1 ≤ k ≤ n. We now let
S = Sk(F

n
2 ) be the space of Reed-Muller codes(−1)P (x),

whereP : Fn
2 → F2 is any polynomial ofn variables with

coefficients and degree at mostk. Fork = 1, this gives the
same notions of structure and pseudorandomness as the pre-
vious example, but as we increasek, we enlarge the class
of structured functions and shrink the class of pseudoran-
dom functions. For instance, the function(x1, . . . , xn) 7→
(−1)

P

1≤i<j≤n
xixj would be considered highly pseudoran-

dom whenk = 1 but highly structured fork ≥ 2.

Example2.3 (Product structure). Let V be a set of|V | = n
vertices, and letH be then2-dimensional space of functions
f : V × V → R, endowed with the inner product

〈f, g〉H :=
1

n2

∑

v,w∈V

f(v, w)g(v, w).

Note that any graphG = (V,E) can be identified with an
element ofH , namely the indicator function1E : V ×V →
{0, 1} of the set of edges. We letS be the collection of



tensor products(v, w) 7→ 1A(v)1B(w), whereA,B are
subsets ofV . Observe that1E will be quite structured if
G is a complete bipartite graph, or the union of a bounded
number of such graphs. At the other extreme, ifG is an
ε-regular graph of some edge density0 < δ < 1 for some
0 < ε < 1, in the sense that the number of edges between
A andB differs from δ|A||B| by at mostε|A||B| when-
everA,B ⊂ V with |A|, |B| ≥ εn, then1E − δ will be
O(ε)-pseudorandom.

We are interested in obtaining quantative answers to the
following general problem: given an arbitrary bounded el-
ementf of the Hilbert spaceH (let us say‖f‖H ≤ 1 for
concreteness), can we obtain a decomposition

f = fstr + fpsd + ferr (2)

wherefstr is a structured vector,fpsd is a pseudorandom
vector, andferr is some small error?

One obvious “qualitative” decomposition arises from us-
ing the vector spacespan(S) spanned by the basic struc-
tured vectorsS. If we let fstr be the orthogonal projection
from f to this vector space, and setfpsd := f − fstr and
ferr := 0, then we have perfect control on the pseudoran-
dom and error components:fpsd is 0-pseudorandom and
ferr has norm0. On the other hand, the only control onfstr
we have is the qualitative bound that it is(K,M)-structured
for some finiteK,M < ∞. In the three examples given
above, the vectorsS in fact span all ofH , and this decom-
position is in fact trivial!

We would thus like to perform a tradeoff, increasing our
control of the structured component at the expense of wors-
ening our control on the pseudorandom and error compo-
nents. We can see how to achieve this by recalling how
the orthogonal projection off to span(S) is actually con-
structed; it is the vectorv in span(S) which minimises the
“energy”‖f − v‖2H of the residualf − v. The key point is
that if v ∈ span(S) is such thatf − v has a non-zero inner
product with a vectorw ∈ S, then it is possible to movev
in the directionw to decrease the energy‖f − v‖2H . We can
make this latter point more quantitative:

Lemma 2.4 (Lack of pseudorandomness implies energy
decrement). Let H,S be as above. Letf ∈ H be a vec-
tor with ‖f‖2H ≤ 1, such thatf is not ε-pseudorandom
for some0 < ε ≤ 1. Then there existsv ∈ S and
c ∈ [−1/ε, 1/ε] such that|〈f, v〉| ≥ ε and‖f − cv‖2H ≤
‖f‖2H − ε2.

Proof. By hypothesis, we can findv ∈ S be such that
|〈f, v〉| ≥ ε, thus by Cauchy-Schwarz and hypothesis on
S

1 ≥ ‖v‖H ≥ |〈f, v〉| ≥ ε.

We then setc := 〈f, v〉/‖v‖2H (i.e. cv is the orthogonal
projection off to the span ofv). The claim then follows
from Pythagoras’ theorem.

If we iterate this by a straightforward greedy algorithm
argument we now obtain

Corollary 2.5 (Non-orthogonal weak structure theorem).
LetH,S be as above. Letf ∈ H be such that‖f‖H ≤ 1,
and let 0 < ε ≤ 1. Then there exists a decomposi-
tion (2) such thatfstr is (1/ε2, 1/ε)-structured,fpsd is ε-
pseudorandom, andferr is zero.

Proof. We perform the following algorithm.

• Step 0. Initialisefstr := 0, ferr := 0, andfpsd := f .
Observe that‖fpsd‖2H ≤ 1.

• Step 1. Iffpsd is ε-pseudorandom thenSTOP. Oth-
erwise, by Lemma 2.4, we can findv ∈ S and c ∈
[−1/ε, 1/ε] such that‖fpsd − cv‖2H ≤ ‖fpsd‖2H − ε2.

• Step 2. Replacefpsd by fpsd − cv and replacefstr by
fstr + cv. Now return to Step 1.

It is clear that the “energy”‖fpsd‖2H decreases by at least
ε2 with each iteration of this algorithm, and thus this al-
gorithm terminates after at most1/ε2 such iterations. The
claim then follows.

Corollary 2.5 is not very useful in applications, because
the control on the structure offstr are relatively poor com-
pared to the pseudorandomness offpsd (or vice versa). One
can do substantially better here, by allowing the error term
ferr to be non-zero. More precisely, we have

Theorem 2.6 (Strong structure theorem). Let H,S be as
above, letε > 0, and letF : Z

+ → R
+ be an arbi-

trary function. Letf ∈ H be such that‖f‖H ≤ 1. Then
we can find an integerM = OF,ε(1) and a decomposi-
tion (2) wherefstr is (M,M)-structured,fpsd is 1/F (M)-
pseudorandom, andferr has norm at mostε.

Here and in the sequel, we use subscripts in theO()
asymptotic notation to denote that the implied constant de-
pends on the subscripts. For instance,OF,ε(1) denotes a
quantity bounded byCF,ε, for some quantityCF,ε depend-
ing only onF andε. Note that the pseudorandomness of
fpsd can be of arbitrarily high quality compared to the com-
plexity of fstr, since we can chooseF to be whatever we
please; the cost of doing so, of course, is that the upper
bound onM becomes worse whenF is more rapidly grow-
ing.

To prove Theorem 2.6, we first need a variant of Corol-
lary 2.5 which gives some orthogonality betweenfstr and
fpsd, at the cost of worsening the complexity bound onfstr.

Lemma 2.7(Orthogonal weak structure theorem). LetH,S
be as above. Letf ∈ H be such that‖f‖H ≤ 1, and let
0 < ε ≤ 1. Then there exists a decomposition(2) such that
fstr is (1/ε2, Oε(1))-structured,fpsd is ε-pseudorandom,
ferr is zero, and〈fstr, fpsd〉H = 0.



Proof. We perform a slightly different iteration to that in
Corollary 2.5, where we insert an additional orthogonalisa-
tion step within the iteration to a subspaceV :

• Step 0. InitialiseV := {0} andferr := 0.

• Step 1. Setfstr to be the orthogonal projection off to
V , andfpsd := f − fstr.

• Step 2. Iffpsd is ε-pseudorandom thenSTOP. Oth-
erwise, by Lemma 2.4, we can findv ∈ S and
c ∈ [−1/ε, 1/ε] such that|〈fpsd, v〉H | ≥ ε and
‖fpsd − cv‖2H ≤ ‖fpsd‖2H − ε2.

• Step 3. ReplaceV by span(V ∪ {v}), and return to
Step 1.

Note that at each stage,‖fpsd‖H is the minimum dis-
tance fromf to V . Because of this, we see that‖fpsd‖2H
decreases by at leastε2 with each iteration, and so this al-
gorithm terminates in at most1/ε2 steps.

Suppose the algorithm terminates inM steps for some
M ≤ 1/ε2. Then we have constructed a nested flag

{0} = V0 ⊂ V1 ⊂ . . . ⊂ VM

of subspaces, where eachVi is formed fromVi−1 by adjoin-
ing a vectorvi in S. Furthermore, by construction we have
|〈fi, vi〉| ≥ ε for some vectorfi of norm at most1 which is
orthogonal toVi−1. Because of this, we see thatvi makes
an angle ofΘε(1) with Vi−1. As a consequence of this and
the Gram-Schmidt orthogonalisation process, we see that
v1, . . . , vi is a well-conditioned basis ofVi, in the sense that
any vectorw ∈ Wi can be expressed as a linear combination
of v1, . . . , vi with coefficients of sizeOε,i(‖w‖H). In par-
ticular, sincefstr has norm at most1 (by Pythagoras’ theo-
rem) and lies inVM , we see thatfstr is a linear combination
of v1, . . . , vM with coefficients of sizeOM,ε(1) = Oε(1),
and the claim follows.

We can now iterate the above lemma and use a pigeon-
holing argument to obtain the strong structure theorem.

Proof of Theorem 2.6.We first observe that it suffices to
prove a weakened version of Theorem 2.6 in whichfstr is
(OM,ε(1), OM,ε(1))-structured rather than(M,M) struc-
tured. This is because one can then recover the original
version of Theorem 2.6 by makingF more rapidly grow-
ing, and redefiningM ; we leave the details to the reader.
Also, by increasingF if necessary we may assume thatF
is integer-valued andF (M) > M for all M .

We now recursively defineM0 := 1 and Mi :=
F (Mi−1) for all i ≥ 1. We then recursively define
f0, f1, . . . by settingf0 := f , and then for eachi ≥ 1
using Lemma 2.7 to decomposefi−1 = fstr,i + fi where
fstr,i is (OMi

(1), OMi
(1))-structured, andfi is 1/Mi-

pseudorandom and orthogonal tofstr,i. From Pythagoras’

theorem we see that the quantity‖fi‖2H is decreasing, and
varies between0 and1. By the pigeonhole principle, we can
thus find1 ≤ i ≤ 1/ε2+1 such that‖fi−1‖2H−‖fi‖2H ≤ ε2;
by Pythagoras’ theorem, this implies that‖fstr,i‖H ≤ ε.
If we then setfstr := fstr,0 + . . . + fstr,i−1, fpsd := fi,
ferr := fstr,i, andM := Mi−1, we obtain the claim.

Remark2.8. By tweaking the above argument a little bit,
one can also ensure that the quantitiesfstr, fpsd, ferr in The-
orem 2.6 are orthogonal to each other. We leave the details
to the reader.

Remark2.9. The boundOF,ε(1) on M in Theorem 2.6 is
quite poor in practice; roughly speaking, it is obtained by
iteratingF aboutO(1/ε2) times. Thus for instance ifF is
of exponential growth (which is typical in applications),M
can be tower-exponential size inε. These excessively large
values ofM unfortunately seem to be necessary in many
cases, see e.g. [8] for a discussion in the case of the Sze-
merédi regularity lemma, which can be deduced as a conse-
quence of Theorem 2.6.

To illustrate how the strong regularity lemma works in
practice, we use it to deduce the arithmetic regularity lemma
of Green [13] (applied in the model case of the Hamming
cubeFn

2 ). Let A be a subset ofFn
2 , and let1A : Fn

2 →
{0, 1} be the indicator function. IfV is an affine subspace
(overF2) of Fn

2 , we say thatA is ε-regular in V for some
0 < ε < 1 if we have

|Ex∈V (1A(x) − δV )eξ(x)| ≤ ε

for all characterseξ, whereEx∈V f(x) :=
1

|V |

∑

x∈V f(x)

denotes the average value off on V , and δV :=
Ex∈V 1A(x) = |A ∩ V |/|V | denotes the density ofA in
V . The following result is analogous to the celebrated Sze-
merédi regularity lemma:

Lemma 2.10(Arithmetic regularity lemma). [13] Let A ⊂
F

n
2 and 0 < ε ≤ 1. Then there exists a subspaceV of

codimensiond = Oε(1) such thatA is ε-regular on all but
ε2d of the translates ofV .

Proof. It will suffice to establish the claim with the weaker
claim thatA is O(ε1/4)-regular on all butO(

√
ε2d) of the

translates ofV , since one can simply shrinkε to obtain the
original version of Lemma 2.10.

We apply Theorem 2.6 to the setting in Example 2.1,
with f := 1A, andF to be chosen later. This gives us an
integerM = OF,ε(1) and a decomposition

1A = fstr + fpsd + ferr (3)

where fstr is (M,M)-structured, fpsd is 1/F (M)-
pseudorandom, and‖ferr‖H ≤ ε. The functionfstr is a
combination of at mostM characters, and thus there exists



a subspaceV ⊂ F
n
2 of codimensiond ≤ M such thatfstr

is constant on all translates ofV .
We have

Ex∈Fn
2
|ferr(x)|2 ≤ ε = ε2d|V |/|Fn

2 |.

DividingF
n
2 into2d translatesy+V of V , we thus conclude

that we must have

Ex∈y+V |ferr(x)|2 ≤
√
ε (4)

on all but at most
√
ε2d of the translatesy + V .

Let y + V be such that (4) holds, and letδy+V be the
average ofA ony + V . The functionfstr equals a constant
value ony + V , call it cy+V . Averaging (3) ony + V we
obtain

δy+V = cy+V +Ex∈y+V fpsd(x) +Ex∈y+V ferr(x).

Since fpsd(x) is 1/F (M)-pseudorandom, some simple
Fourier analysis (expressing1y+V as an average of char-
acters) shows that

|Ex∈y+V fpsd(x)| ≤
2n

|V |F (M)
≤ 2M

F (M)

while from (4) and Cauchy-Schwarz we have

|Ex∈y+V ferr(x)| ≤ ε1/4

and thus

δy+V = cy+V +O

(

2M

F (M)

)

+O(ε1/4).

By (3) we therefore have

1A(x)−δy+V = fpsd(x)+ferr(x)+O

(

2M

F (M)

)

+O(ε1/4).

Now let eξ be an arbitrary character. By arguing as before
we have

|Ex∈y+V fpsd(x)eξ(x)| ≤
2M

F (M)

and

|Ex∈y+V ferr(x)eξ(x)| ≤ ε1/4

and thus

Ex∈y+V (1A(x)− δy+V )eξ(x) = O

(

2M

F (M)

)

+O(ε1/4).

If we now setF (M) := ε−1/42M we obtain the claim.

For some applications of this lemma, see [13]. A de-
composition in a similar spirit can also be found in [5], [15].
The weak structure theorem for Reed-Muller codes was also
employed in [18], [14] (under the name of aKoopman-von
Neumann type theorem).

Now we obtain the Szemerédi regularity lemma itself.
Recall that ifG = (V,E) is a graph andA,B are non-
empty disjoint subsets ofV , we say that the pair(A,B) is
ε-regular if for any A′ ⊂ A,B′ ⊂ B with |A′| ≥ ε|A| and
|B′| ≥ ε|B|, the number of edges betweenA′ andB′ differs
fromδA,B|A′||B′| by at mostε|A′||B′|, whereδA,B = |E∩
(A×B)|/|A||B| is the edge density betweenA andB.

Lemma 2.11(Szemerédi regularity lemma). [24] Let 0 <
ε < 1 andm ≥ 1. Then ifG = (V,E) is a graph with
|V | = n sufficiently large depending onε andm, then there
exists a partitionV = V0 ∪ V1 ∪ . . .∪ Vm′ withm ≤ m′ ≤
Oε,m(1) such that|V0| ≤ εn, |V1| = . . . = |Vm′ |, and
such that all but at mostε(m′)2 of the pairs(Vi, Vj) for
1 ≤ i < j ≤ m′ areε-regular.

Proof. It will suffice to establish the weaker claim that
|V0| = O(εn), and all but at mostO(

√
ε(m′)2) of the pairs

(Vi, Vj) areO(ε1/12)-regular. We can also assume without
loss of generality thatε is small.

We apply Theorem 2.6 to the setting in Example 2.3 with
f := 1E andF to be chosen later. This gives us an integer
M = OF,ε(1) and a decomposition

1E = fstr + fpsd + ferr (5)

where fstr is (M,M)-structured, fpsd is 1/F (M)-
pseudorandom, and‖ferr‖H ≤ ε. The functionfstr is a
combination of at mostM tensor products of indicator func-
tions1Ai×Bi

. The setsAi andBi partitionV into at most
22M sets, which we shall refer to asatoms. If |V | is suffi-
ciently large depending onM , m andε, we can then parti-
tion V = V0 ∪ . . . ∪ Vm′ with m ≤ m′ ≤ (m + 22M )/ε,
|V0| = O(εn), |V1| = . . . = |Vm′ |, and such that eachVi for
1 ≤ i ≤ m′ is entirely contained within an atom. In particu-
lar fstr is constant onVi×Vj for all 1 ≤ i < j ≤ m′. Since
ε is small, we also have|Vi| = Θ(n/m′) for 1 ≤ i ≤ m.

We have

E(v,w)∈V×V |ferr(v, w)|2 ≤ ε

and in particular

E1≤i<j≤m′E(v,w)∈Vi×Vj
|ferr(v, w)|2 = O(ε).

Then we have

E(v,w)∈Vi×Vj
|ferr(v, w)|2 ≤

√
ε (6)

for all butO(
√
ε(m′)2) pairs(i, j).



Let (i, j) be such that (6) holds. OnVi×Vj , fstr is equal
to a constant valuecij . Also, from the pseudorandomness
of fpsd we have

|
∑

(v,w)∈A′×B′

fpsd(v, w)| ≤
n2

F (M)

= Om,ε,M

( |Vi||Vj |
F (M)

)

for all A′ ⊂ Vi andB′ ⊂ Vj . By arguing very similarly
to the proof of Lemma 2.10, we can conclude that the edge
densityδij of E onVi × Vj is

δij = cij +O(ε1/4) +Om,ε,M

(

1

F (M)

)

and that

|
∑

(v,w)∈A′×B′

(1E(v, w)−δij)| =
(

O(ε1/4)

+Om,ε,M

(

1

F (M)

)

)

|Vi||Vj |

for all A′ ⊂ Vi andB′ ⊂ Vj . This implies that the pair
(Vi, Vj) is O(ε1/12) + Om,ε,M (1/F (M)1/3)-regular. The
claim now follows by choosingF to be a sufficiently rapidly
growing function ofM , which depends also onm andε.

Similar methods can yield an alternate proof of the regu-
larity lemma for hypergraphs [11], [12], [21], [22]; see [29].
To oversimplify enormously, one works on higher product
spaces such asV × V × V , and uses partial tensor prod-
ucts such as(v1, v2, v3) 7→ 1A(v1)1E(v2, v3) as the struc-
tured objects. The lower-order functions such as1E(v2, v3)
which appear in the structured component are then decom-
posed again by another application of structure theorems
(e.g. for1E(v2, v3), one would use the ordinary Szemerédi
regularity lemma). The ability to arbitrarily select the var-
ious functionsF appearing in these structure theorems be-
comes crucial in order to obtain a satisfactory hypergraph
regularity lemma.

See also [1] for another graph regularity lemma involv-
ing an arbitrary functionF which is very similar in spirit to
Theorem 2.6. In the opposite direction, if one applies the
weak structure theorem (Corollary 2.5) to the product set-
ting (Example 2.3) one obtains a “weak regularity lemma”
very close to that in [6].

3. Structure and randomness in a measure
space

We have seen that the Hilbert space model for separat-
ing structure from randomness is satisfactory for many ap-
plications. However, there are times when the “L2” type

of control given by this model is insufficient. A typical
example arises when one wants to decompose a function
f : X → R on a probability space(X,X, µ) into struc-
tured and pseudorandom pieces, plus a small error. Using
the Hilbert space model (withH = L2(X)), one can con-
trol theL2 norm of (say) the structured componentfstr by
that of the original functionf , indeed the construction in
Theorem 2.6 ensures thatfstr is an orthogonal projection of
f onto a subspace generated by some vectors inS. How-
ever, in many applications one also wants to control theL∞

norm of the structured part by that off , and if f is non-
negative one often also wishesfstr to be non-negative also.
More generally, one would like acomparison principle: if
f, g are two functions such thatf dominatesg pointwise
(i.e. |g(x)| ≤ f(x)), andfstr andgstr are the corresponding
structured components, we would likefstr to dominategstr.
One cannot deduce these facts purely from the knowledge
that fstr is an orthogonal projection off . If however we
have the stronger property thatfstr is aconditional expec-
tation of f , then we can achieve the above objectives. This
turns out to be important when establishing structure theo-
rems forsparseobjects, for which purelyL2 methods are
inadequate; this was in particular a key point in the recent
proof [16] that the primes contained arbitrarily long arith-
metic progressions.

In this section we fix the probability space(X,X, µ),
thusX is aσ-algebra on the setX , andµ : X → [0, 1] is a
probability measure, i.e. a countably additive non-negative
measure. In many applications one can assume that theσ-
algebraX is finite, in which case it can be identified with a
finite partitionX = A1 ∪ . . .∪Ak of X into atoms(so that
X consists of all sets which can be expressed as the union
of atoms).

Example3.1 (Uniform distribution). If X is a finite set,
X = 2X is the power set ofX , andµ(E) := |E|/|X |
for all E ⊂ X (i.e. µ is uniform probability measure on
X), then(X,X, µ) is a probability space, and the atoms are
just singleton sets.

We recall the concepts of afactor and ofconditional ex-
pectation, which will be fundamental to our analysis.

Definition 3.2 (Factor). A factor of (X,X, µ) is a triplet
Y = (Y,Y, π), whereY is a set,Y is a σ-algebra, and
π : X → Y is a measurable map. IfY is a factor, we let
BY := {π−1(E) : E ∈ Y} be the sub-σ-algebra ofX
formed by pulling backY by π. A function f : X → R

is said to beY-measurableif it is measurable with respect
to BY. If f ∈ L2(X,X, µ), we letE(f |Y ) = E(f |BY )
be the orthogonal projection off to the closed subspace
L2(X,BY , µ) of L2(X,X, µ) consisting ofY-measurable
functions. IfY = (Y,Y, π) andY

′ = (Y ′,Y′, π′) are
two factors, we letY ∨Y

′ denote the factor(Y × Y ′,Y⊗
Y

′, π ⊕ π′).



Example3.3 (Colourings). Let X be a finite set, which we
give the uniform distribution as in Example 3.1. Suppose
we colour this set using some finitepaletteY by introduc-
ing a mapπ : X → Y . If we endowY with the discrete
σ-algebraY = 2Y , then(Y,Y, π) is a factor of(X,X, µ).
Theσ-algebraBY is then generated by thecolour classes
π−1(y) of the colouringπ. The expectationE(f |Y ) of
a functionf : X → R is then given by the formula
E(f |Y )(x) := Ex′∈π−1(π(x))f(x

′) for all x ∈ X , where
π−1(π(x)) is the colour class thatx lies in.

In the previous section, the concept of structure was rep-
resented by a setS of vectors. In this section, we shall
instead represent structure by a collectionS of factors. We
say that a factorY hascomplexityat mostM if it is the
join Y = Y1 ∨ . . . ∨ Ym of m factors fromS for some
0 ≤ m ≤ M . We also say that a functionf ∈ L2(X)
is ε-pseudorandomif we have‖E(f |Y)‖L2(X) ≤ ε for all
Y ∈ S. We have an analogue of Lemma 2.4:

Lemma 3.4(Lack of pseudorandomness implies energy in-
crement). Let(X,X, µ) andS be as above. Letf ∈ L2(X)
be such thatf − E(f |Y) is not ε-pseudorandom for some
0 < ε ≤ 1 and some factorY. Then there existsY′ ∈ S
such that‖E(f |Y ∨Y

′)‖2L2(X) ≥ ‖E(f |Y)‖2L2(X) + ε2.

Proof. By hypothesis we have

‖E(f −E(f |Y)|Y′)‖2L2(X) ≥ ε2

for someY′ ∈ S. By Pythagoras’ theorem, this implies that

‖E(f −E(f |Y)|Y ∨Y
′)‖2L2(X) ≥ ε2.

By Pythagoras’ theorem again, the left-hand side is
‖E(f |Y∨Y

′)‖2L2(X)−‖E(f |Y)‖2L2(X), and the claim fol-
lows.

We then obtain an analogue of Lemma 2.7:

Lemma 3.5 (Weak structure theorem). Let (X,X, µ) and
S be as above. Letf ∈ L2(X) be such that‖f‖L2(X) ≤ 1,
let Y be a factor, and let0 < ε ≤ 1. Then there exists a
decompositionf = fstr+ fpsd, wherefstr = E(f |Y∨Y

′)
for some factorY′ of complexity at most1/ε2, andfpsd is
ε-pseudorandom.

Proof. We construct factorsY1,Y2, . . . ,Ym ∈ S by the
following algorithm:

• Step 0: Initialisem = 0.

• Step 1: WriteY′ := Y1 ∨ . . .∨Ym, fstr := E(f |Y∨
Y

′), andfpsd := f − fstr.

• Step 2: Iffpsd is ε-pseudorandom thenSTOP. Oth-
erwise, by Lemma 3.4 we can findYm+1 ∈ S such
that ‖E(f |Y ∨ Y

′ ∨ Ym+1)‖2L2(X) ≥ ‖E(f |Y ∨
Y

′)‖2L2(X) + ε2.

• Step 3: Incrementm tom+ 1 and return to Step 1.

Since the “energy”‖fstr‖2L2(X) ranges between0 and1 (by

the hypothesis‖f‖L2(X) ≤ 1) and increments byε2 at each
stage, we see that this algorithm terminates in at most1/ε2

steps. The claim follows.

Iterating this we obtain an analogue of Theorem 2.6:

Theorem 3.6 (Strong structure theorem). Let (X,X, µ)
and S be as above. Letf ∈ L2(X) be such that
‖f‖L2(X) ≤ 1, let ε > 0, and letF : Z

+ → R
+ be

an arbitrary function. Then we can find an integerM =
OF,ε(1) and a decomposition(2) wherefstr = E(f |Y) for
some factorY of complexity at mostM , fpsd is 1/F (M)-
pseudorandom, andferr has norm at mostε.

Proof. Without loss of generality we may assumeF (M) ≥
2M . Also, it will suffice to allowY to have complexity
O(M) rather thanM .

We recursively defineM0 := 1 andMi := F (Mi−1)
2

for all i ≥ 1. We then recursively define factors
Y0,Y1,Y2, . . . by settingY0 to be the trivial factor, and
then for eachi ≥ 1 using Lemma 2.7 to find a factor
Y

′
i of complexity at mostMi such thatf − E(f |Yi−1 ∨

Y
′
i) is 1/F (Mi−1)-pseudorandom, and then settingYi :=

Yi−1 ∨ Y
′
i. By Pythagoras’ theorem and the hypothesis

‖f‖L2(X) ≤ 1, the energy‖E(f |Yi)‖2L2(X) is increas-
ing in i, and is bounded between0 and 1. By the pi-
geonhole principle, we can thus find1 ≤ i ≤ 1/ε2 + 1
such that‖E(f |Yi)‖2L2(X) − ‖E(f |Yi−1)‖2L2(X) ≤ ε2;
by Pythagoras’ theorem, this implies that‖E(f |Yi) −
E(f |Yi−1)‖L2(X) ≤ ε. If we then setfstr := E(f |Yi−1),
fpsd := f −E(f |Yi), ferr := E(f |Yi)−E(f |Yi−1), and
M := Mi−1, we obtain the claim.

This theorem can be used to give alternate proofs of
Lemma 2.10 and Lemma 2.11; we leave this as an exer-
cise to the reader (but see [25] for a proof of Lemma 2.11
essentially relying on Theorem 3.6).

As mentioned earlier, the key advantage of these types
of structure theorems is that the structured componentfstr
is now obtained as a conditional expectation of the original
functionf rather than merely an orthogonal projection, and
so one has good “L1” and “L∞” control onfstr rather than
just L2 control. In particular, these structure theorems are
good for controllingsparsely supported functionsf (such
as the normalised indicator function of a sparse set), by ob-
taining a densely supported functionfstr which models the
behaviour off in some key respects. Let us give a sim-
plified “sparse structure theorem” which is too restrictive
for real applications, but which serves to illustrate the main
concept.

Theorem 3.7(Sparse structure theorem, toy version). Let
0 < ε < 1, let F : Z+ → R

+ be a function, and letN



be an integer parameter. Let(X,X, µ) andS be as above,
and depending onN . Let ν ∈ L1(X) be a non-negative
function (also depending onN ) with the property that for
everyM ≥ 0, we have the “pseudorandomness” property

‖E(ν|Y)‖L∞(X) ≤ 1 + oM (1) (7)

for all factorsY of complexity at mostM , whereoM (1)
is a quantity which goes to zero asN goes to infinity for
any fixedM . Let f : X → R (which also depends onN )
obey the pointwise estimate0 ≤ f(x) ≤ ν(x) for all x ∈
X . Then, ifN is sufficiently large depending onF andε,
we can find an integerM = OF,ε(1) and a decomposition
(2) wherefstr = E(f |Y) for some factorY of complexity
at mostM , fpsd is 1/F (M)-pseudorandom, andferr has
norm at mostε. Furthermore, we have

0 ≤ fstr(x) ≤ 1 + oF,ε(1) (8)

and
∫

X

fstr dµ =

∫

X

f dµ. (9)

An example to keep in mind is whereX = {1, . . . , N}
with the uniform probability measureµ, S consists of the
σ-algebras generated by a single discrete interval{n ∈ Z :
a ≤ n ≤ b} for 1 ≤ a ≤ b ≤ N , andν being the function
ν(x) = logN1A(x), whereA is a randomly chosen subset
of {1, . . . , N} with ¶(x ∈ A) = 1

logN for all 1 ≤ x ≤ N ;
one can then verify (7) with high probability using tools
such as Chernoff’s inequality. Observe thatν is bounded in
L1(X) uniformly in N , but is unbounded inL2(X). Very
roughly speaking, the above theorem states that any dense
subsetB of A can be effectively “modelled” in some sense
by a dense subset of{1, . . . , N}, normalised by a factor of

1
logN ; this can be seen by applying the above theorem to the
functionf := logN1B(x).

Proof. We run the proof of Lemma 3.5 and Theorem
3.6 again. Observe that we no longer have the bound
‖f‖L2(X) ≤ 1. However, from (7) and the pointwise bound
0 ≤ f ≤ ν we know that

‖E(f |Y)‖L2(X) ≤ ‖E(ν|Y)‖L2(X)

≤ ‖E(ν|Y)‖L∞(X)

≤ 1 + oM (1)

for all Y of complexity at mostM . In particular, forN
large enough depending onM we have

‖E(f |Y)‖2L2(X) ≤ 2 (10)

(say). This allows us to obtain an analogue of Lemma 3.5
as before (with slightly worse constants), assuming thatN
is sufficiently large depending onε, by repeating the proof

more or less verbatim. One can then repeat the proof of
Theorem 3.6, again using (10), to obtain the desired decom-
position. The claim (8) follows immediately from (7), and
(9) follows since

∫

X E(f |Y) dµ =
∫

X f dµ for any factor
Y.

Remark3.8. In applications, one does not quite have the
property (7); instead, one can boundE(ν|Y) by 1+ oM (1)
outside of a small exceptional set, which has measureo(1)
with respect toµ andν. In such cases it is still possible
to obtain a structure theorem similar to Theorem 3.7; see
[16, Theorem 8.1], [26, Theorem 3.9], or [34, Theorem 4.7].
These structure theorems have played an indispensable role
in establishing the existence of patterns (such as arithmetic
progressions) inside sparse sets such as the prime numbers,
by viewing them as dense subsets of sparse pseudorandom
sets (such as thealmost primenumbers), and then appeal-
ing to a sparse structure theorem to model the original set
by a much denser set, to which one can apply deep theorems
(such as Szemerédi’s theorem [24]) to detect the desired pat-
tern.

The reader may observe one slight difference between
the concept of pseudorandomness discussed here, and the
concept in the previous section. Here, a functionfpsd
is considered pseudorandom if its conditional expectations
E(fpsd|Y) are small for various structuredY. In the pre-
vious section, a functionfpsd is considered pseudorandom
if its correlations〈fpsd, g〉H were small for various struc-
turedg. However, it is possible to relate the two notions
of pseudorandomness by the simple device of using a struc-
tured functiong to generate a structured factorYg. In mea-
sure theory, this is usually done by taking the level sets
g−1([a, b]) of g and seeing whatσ-algebra they generate.
In many quantitative applications, though, it is too expen-
sive to takeall of these the level sets, and so instead one
only takes a finite number of these level sets to create the
relevant factor. The following lemma illustrates this con-
struction:

Lemma 3.9(Correlation with a function implies non-trivial
projection). Let (X,X, µ) be a probability space. Letf ∈
L1(X) and g ∈ L2(X) be such that‖f‖L1(X) ≤ 1 and
‖g‖L2(X) ≤ 1. Letε > 0 and0 ≤ α < 1, and letY be the
factorY = (R,Y, g), whereY is theσ-algebra generated
by the intervals[(n + α)ε, (n + 1 + α)ε) for n ∈ Z. Then
we have

‖E(f |Y)‖L2(X) ≥ |〈f, g〉L2(X)| − ε.

Proof. Observe that the atoms ofBY are generated by level
setsg−1([(n+ α)ε, (n+ 1+ α)ε)), and on these level sets
g fluctuates by at mostε. Thus

‖g −E(g|Y)‖L∞(X) ≤ ε.



Since‖f‖L1(X) ≤ 1, we conclude

∣

∣〈f, g〉L2(X) − 〈f,E(g|Y)〉L2(X)

∣

∣ ≤ ε.

On the other hand, by Cauchy-Schwarz and the hypothesis
‖g‖L2(X) ≤ 1 we have

|〈f,E(g|Y)〉L2(X)| = |〈E(f |Y), g〉L2(X)|
≤ ‖E(f |Y)‖L2(X).

The claim follows.

This type of lemma is relied upon in the above-
mentioned papers [16], [26], [34] to convert pseudorandom-
ness in the conditional expectation sense to pseudorandom-
ness in the correlation sense. In applications it is also conve-
nient to randomise the shift parameterα in order to average
away all boundary effects; see e.g. [32, Lemma 3.6].

4. Structure and randomness via uniformity
norms

In the preceding sections, we specified the notion of
structure (either via a setS of vectors, or a collectionS
of factors), which then created a dual notion of pseudoran-
domness for which one had a structure theorem. Such de-
compositions give excellent control on the structured com-
ponentfstr of the function, but the control on the pseudo-
random partfpsd can be rather weak. There is an opposing
approach, in which one first specifies the notion of pseudo-
randomness one would like to have forfpsd, and then works
as hard as one can to obtain a useful corresponding notion
of structure. In this approach, the pseudorandom compo-
nentfpsd is easy to dispose of, but then all the difficulty
gets shifted to getting an adequate control on the structured
component.

A particularly useful family of notions of pseudo-
randomness arises from theGowers uniformity norms
‖f‖Ud(G). These norms can be defined on any finite ad-
ditive groupG, and for complex-valued functionsf : G →
C, but for simplicity let us restrict attention to a Hamming
cubeG = F

n
2 and to real-valued functionsf : Fn

2 → R.
(For more general groups and complex-valued functions,
see [33]. For applications to graphs and hypergraphs, one
can use the closely relatedGowers box norms; see [11],
[12], [20], [26], [30], [33].) In that case, the uniformity
norm‖f‖Ud(Fn

2
) can be defined ford ≥ 1 by the formula

‖f‖2dUd(Fn
2
) := EL:Fd

2
→F

n
2

∏

a∈F
d
2

f(L(a))

whereL ranges over all affine-linear maps fromFd
2 to F

n
2

(not necessarily injective). For instance, we have

‖f‖U1(Fn
2
) = |Ex,h∈F

n
2
f(x)f(x+ h)|1/2

= |Ex∈F
n
2
f(x)|

‖f‖U2(Fn
2
) = |Ex,h,k∈F

n
2
f(x)f(x+ h)f(x+ k)

× f(x+ h+ k)|1/4

= |Eh∈F
n
2
|Ex∈F

n
2
f(x)f(x + h)|2|1/4

‖f‖U3(Fn
2
) = |Ex,h1,h2,h3∈Fn

2
f(x)f(x+ h1)f(x+ h2)

× f(x+ h3)f(x+ h1 + h2)f(x+ h1 + h3)

× f(x+ h2 + h3)f(x+ h1 + h2 + h3)|1/8.

It is possible to show that the norms‖‖Ud(Fn
2
) are indeed a

norm ford ≥ 2, and a semi-norm ford = 1; see e.g. [33].
These norms are also monotone ind:

0 ≤ ‖f‖U1(Fn
2
) ≤ ‖f‖U2(Fn

2
) ≤ ‖f‖U3(Fn

2
) ≤ . . . ≤ ‖f‖L∞(Fn

2
).

(11)
Thed = 2 norm is related to the Fourier coefficientŝf(ξ)
defined in (1) by the important (and easily verified) identity

‖f‖U2(Fn
2
) = (

∑

ξ∈F
n
2

|f̂(ξ)|4)1/4. (12)

More generally, the uniformity norms‖f‖Ud(Fn
2
) for d ≥ 1

are related to Reed-Muller codes of orderd − 1 (although
this is partly conjectural ford ≥ 4), but the relationship
cannot be encapsulated in an identity as elegant as (12) once
d ≥ 3. We will return to this point shortly.

Let us informally call a functionf : F
n
2 → R pseu-

dorandom of orderd − 1 if ‖f‖Ud(Fn
2
) is small; thus for

instance functions with smallU2 norm arelinearly pseu-
dorandom(or Fourier-pseudorandom, functions with small
U3 norm arequadratically pseudorandom, and so forth. It
turns out that functions which are pseudorandom to a suit-
able order become negligible for the purpose of various
multilinear correlations (and the higher the order of pseudo-
randomness, the more complex the multilinear correlations
that become negligible). This can be demonstrated by re-
peated application of the Cauchy-Schwarz inequality. We
give a simple instance of this:

Lemma 4.1 (Generalised von Neumann theorem). Let
T1, T2 : F

2
n → F

n
2 be invertible linear transformations such

thatT1 − T2 is also invertible. Then for anyf, g, h : F2
n →

[−1, 1] we have

|Ex,r∈F
n
2
f(x)g(x+ T1r)h(x + T2r)| ≤ ‖f‖U2(Fn

2
).

Proof. By changing variablesr′ := T2r if necessary we
may assume thatT2 is the identity mapI. We rewrite the
left-hand side as

|Ex∈F
n
2
h(x)Er∈F

n
2
f(x− r)g(x+ (T1 − I)r)|



and then use Cauchy-Schwarz to bound this from above by

(Ex∈Fn
2
|Er∈Fn

2
f(x− r)g(x + (T1 − I)r)|2)1/2

which one can rewrite as

|Ex,r,r′∈Fn
2
f(x−r)f(x−r′)g(x+(T1−I)r)g(x+(T1−I)r′)|1/2;

applying the change of variables(y, s, h) := (x + (T1 −
I)r, T1r, r − r′), this can be rewritten as

|Ey,h∈Fn
2
g(y)g(y+(T1−I)h)Es∈Fn

2
f(y+s)f(y+s+h)|1/2;

applying Cauchy-Schwarz, again, one can bound this by

∣

∣Ey,h∈F
n
2
|Es∈F

n
2
f(y + s)f(y + s+ h)|2

∣

∣

1/4
.

But this is equal to‖f‖U2(Fn
2
), and the claim follows.

For a more systematic study of such “generalised von
Neumann theorems”, including some weighted versions,
see Appendices B and C of [19].

In view of these generalised von Neumann theorems, it
is of interest to locate conditions which would force a Gow-
ers uniformity norm‖f‖Ud(Fn

2
) to be small. We first give

a “soft” characterisation of this smallness, which at first
glance seems too trivial to be of any use, but is in fact pow-
erful enough to establish Szemerédi’s theorem (see [28]) as
well as the Green-Tao theorem [16]. It relies on the obvious
identity

‖f‖2dUd(Fn
2
) = 〈f,Df〉L2(Fn

2
)

where thedual functionDf of f is defined as

Df(x) := EL:Fd
2
→F

n
2
;L(0)=x

∏

a∈F
d
2
\{0}

f(L(a)). (13)

As a consequence, we have

Lemma 4.2 (Dual characterisation of pseudorandomness).
Let S denote the set of all dual functionsDF with
‖F‖L∞(Fn

2
) ≤ 1. Then if f : F

n
2 → [−1, 1] is such

that ‖f‖Ud(Fn
2
) ≥ ε for some0 < ε ≤ 1, then we have

〈f, g〉 ≥ ε2
d

for someg ∈ S.

In the converse direction, one can use theCauchy-
Schwarz-Gowers inequality(see e.g. [10], [16], [19],
[33]) to show that if〈f, g〉 ≥ ε for someg ∈ S, then
‖f‖Ud(Fn

2
) ≥ ε.

The above lemma gives a “soft” way to detect pseudo-
randomness, but is somewhat unsatisfying due to the rather
non-explicit description of the “structured” setS. To inves-
tigate pseudorandomness further, observe that we have the
recursive identity

‖f‖2dUd(Fn
2
) = Eh∈F

n
2
‖ffh‖2

d−1

Ud−1(Fn
2
) (14)

(which, incidentally, can be used to quickly deduce the
monotonicity (11)). From this identity and induction we
quickly deduce the modulation symmetry

‖fg‖Ud(Fn
2
) = ‖f‖Ud(Fn

2
) (15)

wheneverg ∈ Sd−1(F
n
2 ) is a Reed-Muller code of order

at mostd − 1. In particular, we see that‖g‖Ud(Fn
2
) = 1

for such codes; thus a code of orderd − 1 or less is defi-
nitely not pseudorandom of orderd. A bit more generally,
by combining (15) with (11) we see that

|〈f, g〉L2(Fn
2
)| = ‖fg‖U1(Fn

2
) ≤ ‖fg‖Ud(Fn

2
) = ‖f‖Ud(Fn

2
).

In particular, any function which has a large correlation with
a Reed-Muller codeg ∈ Sd−1(F

n
2 ) is not pseudorandom of

orderd. It is conjectured that the converse is also true:

Conjecture 4.3(Gowers inverse conjecture forFn
2 ). If d ≥

1 and ε > 0 then there existsδ > 0 with the following
property: given anyn ≥ 1 and anyf : F

n
2 → [−1, 1]

with ‖f‖Ud(Fn
2
) ≥ ε, there exists a Reed-Muller codeg ∈

Sd−1(F
n
2 ) of order at mostd− 1 such that|〈f, g〉L2(Fn

2
)| ≥

δ.

This conjecture, if true, would allow one to apply the ma-
chinery of previous sections and then decompose a bounded
function f : F

n
2 → [−1, 1] (or a function dominated by

a suitably pseudorandom functionν) into a functionfstr
which was built out of a controlled number of Reed-Muller
codes of order at mostd − 1, a functionfpsd which was
pseudorandom of orderd, and a small error. See for in-
stance [14] for further discussion.

The Gowers inverse conjecture is trivial to verify ford =
1. For d = 2 the claim follows quickly from the identity
(12) and the Plancherel identity

‖f‖2L2(Fn
2
) =

∑

ξ∈F
n
2

|f̂(ξ)|2.

The conjecture ford = 3 was first established by Samorod-
nitsky [23], using ideas from [9] (see also [17], [33] for
related results). The conjecture ford > 3 remains open; a
key difficulty here is that there are a huge number of Reed-
Muller codes (about2Ω(nd−1) or so, compared to the di-
mension2n of L2(Fn

2 )) and so we definitely do not have
the type of orthogonality that one enjoys in the Fourier case
d = 2. For related reasons, we do not expect any identity
of the form (12) ford > 3 which would allow the very few
Reed-Muller codes which correlate withf to dominate the
enormous number of Reed-Muller codes which do not in
the right-hand side.

However, we can present some evidence for it here in the
“99%-structured” case whenε is very close to1. Let us first
handle the case whenε = 1:



Proposition 4.4 (100%-structured inverse theorem). Sup-
posed ≥ 1 andf : Fn

2 → [−1, 1] is such that‖f‖Ud(Fn
2
) =

1. Thenf is a Reed-Muller code of order at mostd− 1.

Proof. We induct ond. The cased = 1 is obvious. Now
suppose thatd ≥ 2 and that the claim has already been
proven ford − 1. If ‖f‖Ud(Fn

2
) = 1, then from (14) we

have
Eh∈F

n
2
‖ffh‖2

d−1

Ud−1(Fn
2
) = 1.

On the other hand, from (11) we have‖ffh‖Ud−1(Fn
2
) ≤ 1

for all h. This forces‖ffh‖Ud−1(Fn
2
) = 1 for all h. By

induction hypothesis,ffh must therefore be a Reed-Muller
code of order at mostd− 2 for all h. Thus for everyh there
exists a polynomialPh : Fn

2 → F2 of degree at mostd− 2
such that

f(x+ h) = f(x)(−1)Ph(x)

for all x, h ∈ F
n
2 . From this one can quickly establish by

induction that for every0 ≤ m ≤ n, the functionf is a
Reed-Muller code of degree at mostd − 1 onF

m
2 (viewed

as a subspace ofFn
2 ), and the claim follows.

To handle the case whenε is very close to1 is trickier
(we can no longer afford an induction on dimension, as was
done in the above proof). We first need a rigidity result.

Proposition 4.5(Rigidity of Reed-Muller codes). For every
d ≥ 1 there existsε > 0 with the following property: if
n ≥ 1 andf ∈ Sd−1(F

n
2 ) is a Reed-Muller code of order

at mostd− 1 such thatEx∈F
n
2
f(x) ≥ 1− ε, thenf ≡ 1.

Proof. We again induct ond. The cased = 1 is obvious, so
supposed ≥ 2 and that the claim has already been proven
for d−1. If Ex∈F

n
2
f(x) ≥ 1−ε, thenEx∈F

n
2
|1−f(x)| ≤ ε.

Using the crude bound|1 − ffh| = O(|1 − f |+ |1 − fh|)
we conclude thatEx∈Fn

2
|1− ffh(x)| ≤ O(ε), and thus

Ex∈Fn
2
ffh(x) ≥ 1−O(ε)

for everyh ∈ F
n
2 . But ffh is a Reed-Muller code of order

d − 2, thus by induction hypothesis we haveffh ≡ 1 for
all h if ε is small enough. This forcesf to be constant; but
sincef takes values in{−1,+1} and has average at least
1− ε, we havef ≡ 1 as desired forε small enough.

Proposition 4.6(99%-structured inverse theorem). [2] For
everyd ≥ 1 and0 < ε < 1 there exists0 < δ < 1 with the
following property: ifn ≥ 1 andf : Fn

2 → [−1, 1] is such
that ‖f‖Ud(Fn

2
) ≥ 1 − δ, then there exists a Reed-Muller

codeg ∈ Sd−1(F
n
2 ) such that〈f, g〉L2(Fn

2
) ≥ 1− ε.

Proof. We again induct ond. The cased = 1 is obvious, so
supposed ≥ 2 and that the claim has already been proven
for d−1. Fix ε, letδ be a small number (depending ond and
ε) to be chosen later, and supposef : Fn

2 → [−1, 1] is such
that‖f‖Ud(Fn

2
) ≥ 1 − δ. We will useo(1) to denote any

quantity which goes to zero asδ → 0, thus‖f‖Ud(Fn
2
) ≥

1 − o(1). We shall say that a statement is true formost
x ∈ F

n
2 if it is true for a proportion1 − o(1) of values

x ∈ F
n
2 .

Applying (14) we have

Eh∈F
n
2
‖ffh‖Ud(Fn

2
) ≥ 1− o(1)

while from (11) we have‖ffh‖Ud(Fn
2
) ≤ 1. Thus we have

‖ffh‖Ud(Fn
2
) = 1 − o(1) for all h in a subsetH of Fn

2 of
density1 − o(1). Applying the inductive hypothesis, we
conclude that for allh ∈ H there exists a polynomialPh :
F

n
2 → F2 of degree at mostd− 2 such that

Ex∈F
n
2
f(x)f(x + h)(−1)Ph(x) ≥ 1− o(1).

Sincef is bounded in magnitude by1, this implies for each
h ∈ H that

f(x+ h) = f(x)(−1)Ph(x) + o(1) (16)

for mostx. For similar reasons it also implies that|f(x)| =
1 + o(1) for mostx.

Now suppose thath1, h2, h3, h4 ∈ H form anadditive
quadruplein the sense thath1 + h2 = h3 + h4. Then from
(16) we see that

f(x+h1+h2) = f(x)(−1)Ph1
(x)+Ph2

(x+h1)+o(1) (17)

for mostx, and similarly

f(x+ h3 + h4) = f(x)(−1)Ph3
(x)+Ph4

(x+h3) + o(1)

for mostx. Since|f(x)| = 1+o(1) for mostx, we conclude
that

(−1)Ph1
(x)+Ph2

(x+h1)−Ph3
(x)−Ph4

(x+h3) = 1 + o(1)

for mostx. In particular, the average of the left-hand side in
x is 1 − o(1). Applying Lemma 4.5 (and assumingδ small
enough), we conclude that the left-hand side isidentically
1, thus

Ph1
(x) + Ph2

(x+ h1) = Ph3
(x) + Ph4

(x + h3) (18)

for all additive quadruplesh1 + h2 = h3 + h4 in H and all
x.

Now for anyk ∈ F
n
2 , define the quantityQ(k) ∈ F2 by

the formula

Q(k) := Ph1
(0) + Ph2

(h1) (19)

wheneverh1, h2 ∈ H are such thath1+h2 ∈ H . Note that
the existence of such anh1, h2 is guaranteed since mosth
lie in H , and (18) ensures that the right-hand side of (19)
does not depend on the exact choice ofh1, h2 and soQ is
well-defined.



Now letx ∈ F
n
2 andh ∈ H . Then, since most elements

of Fn
2 lie in H , we can findr1, r2, s1, s2 ∈ H such that

r1 + r2 = x ands1 + s2 = x+ h. From (17) we see that

f(y+x) = f(y+r1+r2) = f(y)(−1)Pr1
(y)+Pr2

(y+r1)+o(1)

and

f(y+x+h) = f(y+s1+s2) = f(y)(−1)Ps1
(y)+Ps2

(y+s1)+o(1)

for mosty. Also from (16)

f(y + x+ h) = f(y + x)(−1)Ph(y+x) + o(1)

for mosty. Combining these (and the fact that|f(y)| =
1 + o(1) for mosty) we see that

(−1)Ps1
(y)+Ps2

(y+s1)−Pr1
(y)−Pr2

(y+r1)−Ph(y+x) = 1+o(1)

for mosty. Taking expectations and applying Lemma 4.5
as before, we conclude that

Ps1(y)+Ps2(y+s1)−Pr1(y)−Pr2(y+r1)−Ph(y+x) = 0

for all y. Specialising toy = 0 and applying (19) we con-
clude that

Ph(x) = Q(x+ h)−Q(x) = Qh(x) −Q(x) (20)

for all x ∈ F
n
2 andh ∈ H ; thus we have succesfully “in-

tegrated”Ph(x). We can then extendPh(x) to all h ∈ F
n
2

(not justh ∈ H) by viewing (20) as adefinition. Observe
that if h ∈ F

n
2 , thenh = h1 + h2 for someh1, h2 ∈ H , and

from (20) we have

Ph(x) = Ph1
(x) + Ph2

(x+ h1).

In particular, since the right-hand side is a polynomial of
degree at mostd − 2, the left-hand side is also. Thus we
see thatQh −Q is a polynomial of degree at mostd− 2 for
all h, which easily implies thatQ itself is a polynomial of
degree at mostd− 1. If we then setg(x) := f(x)(−1)Q(x),
then from (16), (20) we see that for everyh ∈ H we have

g(x+ h) = g(x) + o(1)

for mostx. From Fubini’s theorem, we thus conclude that
there exists anx such thatg(x+h) = g(x)+o(1) for mosth,
thusg is almost constant. Since|g(x)| = 1 + o(1) for most
x, we thus conclude the existence of a signǫ ∈ {−1,+1}
such thatg(x) = ǫ+ o(1) for mostx. We conclude that

f(x) = ǫ(−1)Q(x) + o(1)

for mostx, and the claim then follows (assumingδ is small
enough).

Remark4.7. The above argument requires‖f‖Ud(Fn
2
) to be

very close to1 for two reasons. Firstly, one wishes to ex-
ploit the rigidity property; and secondly, we implicitly used
at many occasions the fact that if two properties each hold
1 − o(1) of the time, then they jointly hold1 − o(1) of the
time as well. These two facts break down once we leave
the “99%-structured” world and instead work in a “1%-
structured” world in which various statements are only true
for a proportion at leastε for some smallε. Nevertheless,
the proof of the Gowers inverse conjecture ford = 2 in
[23] has some features in common with the above argument,
giving one hope that the full conjecture could be settled by
some extension of these methods.

Remark4.8. The above result was essentially proven in [2]
(extending an argument in [4] for the linear cased = 2),
using a “majority vote” version of the dual function (13).

5. Concluding remarks

Despite the above results, we still do not have a system-
atic theory of structure and randomness which covers all
possible applications (particularly for “sparse” objects). For
instance, there seem to be analogous structure theorems for
random variables, in which one uses Shannon entropy in-
stead ofL2-based energies in order to measure complexity;
see [25]. In analogy with the ergodic theory literature (e.g.
[7]), there may also be some advantage in pursuingrelative
structure theorems, in which the notions of structure and
randomness are all relative to some existing “known struc-
ture”, such as a reference factorY0 of a probability space
(X,X, µ). Finally, in the iterative algorithms used above to
prove the structure theorems, the additional structures used
at each stage of the iteration were drawn from a fixed stock
of structures (S in the Hilbert space case,S in the measure
space case). In some applications it may be more effective
to adopt a moreadaptiveapproach, in which the stock of
structures one is using varies after each iteration. A simple
example of this approach is in [32], in which the structures
used at each stage of the iteration are adapted to a certain
spatial scale which decreases rapidly with the iteration. I
expect to see several more permutations and refinements of
these sorts of structure theorems developed for future appli-
cations.
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meŕedi’s theorem, preprint.

[29] T. Tao,A variant of the hypergraph removal lemma,
preprint.

[30] T. Tao,The ergodic and combinatorial approaches to
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