
Parameterized Proof Complexity∗

Stefan Dantchev, Barnaby Martin, and Stefan Szeider

Department of Computer Science
Durham University, Durham, England, UK

[s.s.dantchev,b.d.martin,stefan.szeider]@durham.ac.uk

Abstract

We propose a proof-theoretic approach for gaining evi-
dence that certain parameterized problems are not fixed-
parameter tractable. We consider proofs that witness that
a given propositional CNF formula cannot be satisfied by
a truth assignment that sets at most k variables to true,
considering k as the parameter (we call such a formula a
parameterized contradiction). One could separate the pa-
rameterized complexity classes FPT and W[2] by showing
that there is no fpt-bounded parameterized proof system,
i.e., that there is no proof system that admits proofs of size
f(k)nO(1) where f is a computable function and n repre-
sents the size of the propositional formula.

By way of a first step, we introduce the system of pa-
rameterized tree-like resolution, and show that this system
is not fpt-bounded. Indeed we give a general result on the
size of shortest tree-like resolution proofs of parameterized
contradictions that uniformly encode first-order principles
over a universe of size n. We establish a dichotomy the-
orem that splits the exponential case of Riis’s Complexity
Gap Theorem into two sub-cases, one that admits proofs of
size f(k)nO(1) and one that does not.

We also discuss how the set of parameterized contradic-
tions may be embedded into the set of (ordinary) contradic-
tions by the addition of new axioms. When embedded into
general (DAG-like) resolution, we demonstrate that the pi-
geonhole principle has a proof of size 2kn2. This contrasts
with the case of tree-like resolution where the embedded pi-
geonhole principle falls into the “non-FPT” category of our
dichotomy.

1 Introduction

In recent years parameterized complexity and fixed-
parameter algorithms have become an important branch of
algorithm design and analysis; hundreds of research papers

∗Research supported by Engineering and Physical Sciences Research
Council, UK, Projects EP/C526120/1 and EP/E001394/1.

have been published in the area (see, e.g., the references
given in [2, 6, 8, 11]). In parameterized complexity one con-
siders computational problems in a two-dimensional set-
ting: the first dimension is the usual input size n, the second
dimension is a positive integer k, the parameter. A prob-
lem is fixed-parameter tractable if it can be solved in time
f(k)nO(1) where f denotes a computable, possibly expo-
nential, function. Several NP-hard problems have natural
parameterizations that admit fixed-parameter tractability.
For example, given a graph with n vertices, one can check
in time O(1.273k + nk) (and polynomial space) whether
the graph has a vertex cover of size at most k [3]. On the
other hand, several parameterized problems such as CLIQUE

(has a given graph a clique of size at least k?) are believed
to be not fixed-parameter tractable. BOUNDED CNF SAT-
ISFIABILITY is a further problem that is believed to be not
fixed-parameter tractable (and which will play a special role
in the sequel): given a propositional formula in conjunctive
normal form, is there a satisfying truth assignment that sets
at most k variables to true?

Parameterized complexity offers also a completeness
theory. Numerous parameterized problems that appear to
be not fixed-parameter tractable have been classified as be-
ing complete under fpt-reductions for complexity classes of
the so-called weft hierarchy W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · .
For example, CLIQUE and BOUNDED CNF SATISFIABILITY

are complete for the first two levels of the weft hierarchy,
respectively. We will outline the basic notions of parame-
terized complexity in Section 2.1; for an in-depth treatment
of parameterized complexity classes and fpt-reduction we
refer the reader to Flum and Grohe’s monograph [8].

It is widely believed that problems that are hard for the
weft hierarchy are not fixed-parameter tractable. Up to now
there are mainly three types of evidence:

1. Accumulative evidence: numerous problems are
known which are hard or complete for classes of the
weft hierarchy, and for which no fixed-parameter al-
gorithm has been found in spite of considerable ef-
forts [2].

48th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/07 $25.00 © 2007 IEEE
DOI 10.1109/FOCS.2007.53

150

48th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/07 $25.00 © 2007 IEEE
DOI 10.1109/FOCS.2007.53

150

2. k-step Halting Problems for non-deterministic Turing
machines are complete for the classes W[1] (single-
tape) and W[2] (multi-tape) [8]. A Turing machine is
such an opaque and generic object that it does not ap-
pear reasonable that we should be able to decide if a
given Turing machine on a given input has some ac-
cepting path without looking at the paths.

3. If a problem that is hard for a class of the weft hierar-
chy turns out to be fixed-parameter tractable, then the
Exponential Time Hypothesis (ETH) fails, i.e., there is
a 2o(n) time algorithm for the n-variable 3-SAT prob-
lem [9]. ETH is closely related to the parameterized
complexity class M[1] which lies between FPT and
W[1] (see [8]).

We propose a new approach for gaining further evidence
that certain parameterized problems are not fixed-parameter
tractable. We generalize concepts of proof complexity to the
two-dimensional setting of parameterized complexity. This
allows us to formulate a parameterized version of the pro-
gram of Cook and Reckhow [4]. Their program attempts to
gain evidence for NP �= co-NP, and in turn for P �= NP, by
showing that propositional proof systems are not polynomi-
ally bounded. We introduce the concept of parameterized
proof systems; in our program, lower bounds for the length
of proofs in these new systems yield evidence that certain
parameterized problems are not fixed-parameter tractable.

In propositional proof complexity one usually constructs
a sequence of tautologies (or contradictions), and shows
that the sequence requires proofs (or refutations) of super-
polynomial size in the proof system under consideration.
In the scenario of contradictions and refutations, such se-
quences of propositional formulas frequently encode a first-
order (FO) sentence (such as the pigeon hole principle)
where the n-th formula of the sequence states that the FO
sentence has no model of size n. S. Riis [13] established a
meta-theorem that exactly pinpoints under which circum-
stances a given FO sentence gives rise to a sequence of
propositional formulas that have polynomial-sized refuta-
tions in the system of tree-like resolution. Namely, if the
sequence has not tree-like resolution refutations of polyno-
mial size, then shortest tree-like resolution refutations have
size at least 2εn for a positive constant ε that only depends
on the FO sentence. Hence there is a gap between two pos-
sible proof complexities. The case of exponential size pre-
vails exactly when the FO sentence has no finite but some
infinite model.

In this paper we show a meta-theorem regarding the
complexity of parameterized tree-like resolution. To this
aim we consider parameterized contradictions which are
pairs (F , k) where F is a propositional formula in CNF
and k is an integer, such that F cannot be satisfied by a
truth assignment that sets at most k variables to true. Pa-

rameterized contradictions form a co-W[2]-complete lan-
guage. Hence FPT = co-W[2] = W[2] implies that there is
a proof system that admits proofs of size at most f(k)nO(1)

for parameterized contradictions (F , k) where n represents
the size of F . We call such a (hypothetical) proof system
fpt-bounded.

In this paper we consider the relatively weak system
of tree-like resolution. A parameterized tree-like resolu-
tion refutation for a parameterized contradiction (F , k) has
built-in access to all clauses with more than k negated
variables as additional axioms. We show a meta-theorem
that classifies exactly the complexity of parameterized tree-
like resolution refutations for parameterized contradictions.
Our theorem allows a refined view of the exponential case
of Riis’s Theorem: Consider the sequence 〈Cψ,n〉n∈N of
propositional formulas generated from a FO sentence ψ that
has no finite but some infinite model. For a positive in-
teger k we get a sequence of parameterized contradictions
〈(Cψ,n, k)〉n∈N. We show that exactly one of the following
two cases holds (and provide a criterion that decides which
one).

2a. (Cψ,n, k) has a parameterized tree-like resolution refu-
tation of size βknα for some constants α and β which
depend on ψ only.

2b. There exists a constant γ, 0 < γ ≤ 1, such that for
every n > k, every parameterized tree-like resolution
refutation of (Cψ,n, k) is of size at least nk

γ

.

We establish the upper bound βknα via certain boolean
decision trees. For the lower bound nk

γ

we use a game-
theoretic argument.

We provide examples of FO sentences for each of the
above categories. In particular, the examples for the nk

γ

case (Examples 15 and 16) show that parameterized tree-
like resolution is not fpt-bounded.

As discussed, a parameterized tree-like resolution refu-
tation for the parameterized contradiction (F , k) has access
to all clauses with more than k negated variables as addi-
tional axioms. However, these axioms are not considered
to be a part of the input parameterized contradiction; rather
they are thought of as belonging to the resolution system
itself (whence the “parameterized” in “parameterized tree-
like resolution”). In the final section of the paper, we con-
sider how such axioms could be introduced to a parame-
terized contradiction, thus creating an ordinary contradic-
tion ripe for an ordinary proof system. In this manner, we
can embed the set of parameterized contradictions into the
set of (ordinary) contradictions. Given a proof system, and
considering the parameter to be preserved, this embedding
itself gives rise to a parameterized proof system. The em-
bedding we consider is well-behaved, in that it preserves
the complexity gap of parameterized tree-like resolution. In

151151

particular, the pigeonhole principle remains “hard” – in cat-
egory (2b) – when embedded in tree-like resolution. How-
ever, when considered with general (DAG-like) resolution,
the embedded pigeonhole principle has refutations of size
2kn2.

Owing to space limitations some technical proofs are
omitted. Full proofs and further examples can be found in a
technical report [5].

2 Preliminaries

2.1 Fixed-parameter Tractability

In the following let Σ denote an arbitrary but fixed finite
alphabet. A parameterized language is a set L ⊆ Σ∗ × N

where N denotes the set of positive integers. If (I, k) is in
a parameterized language L, then we call I the main part
and k the parameter. We identify a parameterized language
with the decision problem “(I, k) ∈ L?” and will therefore
synonymously use the terms parameterized problem and pa-
rameterized language. A parameterized problem L is called
fixed-parameter tractable if membership of (I, k) in L can
be deterministically decided in time

f(k)|I|O(1) (1)

where f denotes a computable function. FPT denotes the
class of all fixed-parameter tractable decision problems; al-
gorithms that achieve the time complexity (1) are called
fixed-parameter algorithms. The key point of this definition
is that the exponential growth is confined to the parameter
only, in contrast to running times of the form

|I|O(f(k)). (2)

There is theoretical evidence that parameterized problems
like CLIQUE are not fixed-parameter tractable. This evi-
dence is provided via a completeness theory which is sim-
ilar to the theory of NP-completeness. This complete-
ness theory is based on the following notion of reductions:
Let L1 ∈ Σ∗1 × N and L2 ∈ Σ∗2 × N be parameterized
problems. An fpt-reduction from L1 to L2 is a mapping
R : Σ∗1 × N → Σ∗2 × N such that

1. (I, k) ∈ L1 if and only if R(I, k) ∈ L2.

2. R is computable by a fixed-parameter algorithm, i.e.,
there is a computable function f such that R(I, k) can
be computed in time f(k)|I|O(1).

3. There is a computable function g such that whenever
R(I, k) = (I ′, k′), then k′ ≤ g(k).

A parameterized complexity class C is the equivalence class
of a parameterized problem under fpt-reductions. It is easy

to see that FPT is closed under fpt-reductions, thus FPT is
a parameterized complexity class. Parameterized problems
appear to have several degrees of intractability, as mani-
fested by the weft hierarchy. The classes W[t] of this hi-
erarchy form a chain

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP

where all inclusions are assumed to be proper. Here XP de-
notes the class of problems solvable in time O(|I|f(k)); it is
known that FPT �= XP [6]. Each class W[t] is defined as the
equivalence class of a certain canonical weighted satisfia-
bility problem for decision circuits. For W[2] the canonical
problem is equivalent to the following satisfiability prob-
lem:

WEIGHTED CNF SATISFIABILITY

Instance: A propositional formula F in conjunc-
tive normal form (CNF), and a positive integer k.

Parameter: k.

Question: Can F be satisfied by a truth assign-
ment τ that sets exactly k variables to true? (k is
the weight of τ .)

Note that if the clauses of the CNF formula are re-
quired to contain at most three literals, we get the W[1]-
complete problem WEIGHTED 3-CNF SATISFIABILITY. Let
BOUNDED CNF SATISFIABILITY denote the problem ob-
tained from WEIGHTED CNF SATISFIABILITY by allowing
truth assignments of weight at most k. It is easy to see that
this relaxation does not change the parameterized complex-
ity of the problem since BOUNDED CNF SATISFIABILITY

contains the W[2]-complete problem HITTING SET [6] as a
special case.

Lemma 1. BOUNDED CNF SATISFIABILITY is complete for
the class W[2] under fpt-reductions.

The related problem BOUNDED 3-CNF SATISFIABILITY is
actually fixed-parameter tractable; this explains why our
study concerns W[2] and not W[1].

As in classical complexity theory, we can define for a
parameterized complexity class C the complementary com-
plexity class co-C = {L : L ∈ C } where L = (Σ∗×N)\L
for a parameterized problem L ⊆ Σ∗ × N. Clearly FPT =
co-FPT. It is easy to see that if C is closed under fpt-
reductions, then so is co-C. Thus, in particular, each class
W[t] of the weft hierarchy gives rise to a parameterized
complexity class co-W[t].

152152

2.2 Parameterized Proof Systems

Definition 2. Let L ⊆ Σ∗ × N be a parameterized lan-
guage. A parameterized proof system for L is an onto map-
ping Γ : (Σ∗1 × N)→ L for some alphabet Σ1 where Γ can
be computed by a fixed-parameter algorithm.

We say that Γ is fpt-bounded if there exist computable
functions f and g such that for every (I, k) ∈ L there
is (I ′, k′) ∈ Σ∗1 × N with Γ(I ′, k′) ≤ (I, k), |I ′| =
f(k)|I|O(1), and k′ ≤ g(k).

Note that the problems of the classes W[t] of the weft
hierarchy have fpt-bounded proof systems since the yes-
instances of these problems have small witnesses. Consider,
for example, the W[2]-complete problem L = BOUNDED

CNF SATISFIABILITY. Let SF,τ,k denote a string over some
alphabet Σ1 that encodes a CNF formula F together with a
satisfying truth assignment τ of weight ≤ k for F . A proof
system Γ for L can now be defined by setting Γ(w, k) =
(F , k) if w = SF,τ,k, and otherwise Γ(w, k) = (F0, k0)
for some fixed (F0, k0) ∈ L. Evidently, Γ is fpt-bounded.

However, the situation is different for the classes
co-W[t]; specifically, in this case, for co-W[2]. We can wit-
ness that a CNF formula with n variables has no satisfying
assignment of weight ≤ k by listing all O(k · nk) assign-
ments of weight ≤ k, then checking that none is satisfying.
However, this listing requires too much space and appar-
ently we cannot use it for the construction of an fpt-bounded
proof system.

Lemma 3. Let C be a parameterized complexity class and
let L be a co-C-complete parameterized problem. If there
is no fpt-bounded parameterized proof system for L, then
C �= FPT.

This result follows by a standard argument in which
the computation of a Turing machine is considered as a
proof. In view of this lemma we suggest a program à la
Cook-Reckhow for gaining evidence that the complexity
classes from the weft hierarchy are distinct from FPT. This
program consists of showing that particular parameterized
proof systems are not fpt-bounded. For such an approach
we would start with a weak system such as a parameter-
ized version of tree-like resolution. The consideration of
stronger systems is left for future research.

2.3 From First-Order to Propositional
Logic

Next we describe a translation of a FO sentence to a se-
quence of propositional CNF formulas. We use the lan-
guage of FO logic with equality but with neither function
nor constant symbols. We omit functions and constants only

for the sake of a clearer exposition; note that we may simu-
late constants in a single FO sentence with added outermost
existential quantification on new variables replacing those
constants. We assume that the FO sentence is given as a
conjunction of FO sentences, each of which is in prenex
normal form; thus, we need only explain the translation of
a single FO sentence in prenex normal form. The case of a
purely universal sentence is easy – a sentence ψ of the form

∀x1, . . . , xk F(x1, . . . , xk)

where F is quantifier-free, is translated into a sequence
of propositional formulas in CNF 〈Cψ,n〉n∈N, of which
the n-th member Cψ,n is constructed as follows. Let
[n] = {1, 2, . . . , n}. For instantiations x1, . . . , xk ∈ [n],
we can consider F(x1, . . . , xk) to be a propositional for-
mula over propositional variables of two different kinds:
R(xi1 , . . . , xip), where R is a p-ary predicate symbol, and
(xi = xj). We transform F into CNF and then take the
union of all such CNF formulas for (x1, . . . , xk) ranging
over [n]k. The variables of the form (xi = xj) evaluate
to either true or false, thus we are left with variables of the
form R(xi1 , . . . , xip) only.

The general case, a sentence ψ of the form

∀x1∃y1∀x2∃y2 . . . ∀xk∃yk F(x1, . . . , xk, y1, . . . , yk),

can be reduced to the previous case by Skolemization. We
introduce Skolem relations Si(x1, . . . , xi, yi) for 1 ≤ i ≤
k. Si(x1, . . . , xi, yi) witnesses yi for any given x1, . . . , xi,
so we need to add Skolem clauses stating that such a witness
always exists, i.e.,

n∨
yi=1

Si(x1, . . . , xi, yi) for all (x1, . . . , xi) ∈ [n]i .

The original sentence can be transformed into the following
purely universal sentence

∀x1, . . . xk, y1, . . . yk

k∨
i=1

¬Si(x1, . . . xi, yi) ∨
F(x1, . . . xk, y1, . . . yk).

By construction it is clear that, for FO sentences ψ, the CNF
formula Cψ,n is satisfiable if and only if ψ has a model
of size n. Thus satisfiability questions on the sequence
〈Cψ,n〉n∈N relate to questions on the existence of non-empty
finite models for ψ.

Remark 4. Note that the size of Cψ,n with respect to some
reasonable encoding is polynomial in n.

Example 5. We consider (the negation of) the pigeonhole
principle. Let ψPHP be the conjunction of the following.

∀x∃yR(x, y)
∃y∀x¬R(x, y)
∀x∀w∀y ¬R(x, y) ∨ ¬R(w, y) ∨ x = w.

153153

We translate this to the conjunction of the following univer-
sal clauses

∀x∀y ¬S2(x, y) ∨R(x, y)
∀y∀x ¬S1(y) ∨ ¬R(x, y)
∀x∀y∀w ¬R(x, y) ∨ ¬R(w, y) ∨ x = w

together with the Skolem clauses

∀x∃yS2(x, y)
∃yS1(y).

For x, y ∈ [n]we now considerR(x, y), S2(x, y) and S1(y)
to be propositional variables. CψPHP,n is therefore the system
of clauses

¬S2(x, y) ∨R(x, y), ¬S1(y) ∨ ¬R(x, y) and
¬R(x, y) ∨ ¬R(w, y), for x, y, w ∈ [n], w �= x,

together with the Skolem clauses

n∨
i=1

S2(x, i), for x ∈ [n], and
n∨
i=1

S1(i).

2.4 Parameterized Tree-like Resolution

A literal is either a propositional variable or the negation of
a propositional variable. A clause is a disjunction of liter-
als (and a propositional variable can appear only once in a
clause). A set of clauses is a conjunction, i.e., it is satisfiable
if there exists a truth assignment satisfying simultaneously
all the clauses. Resolution is a proof system designed to
refute a given set of clauses, i.e., to prove that it is unsatis-
fiable. This is done by means of a single derivation rule

C ∨ v ¬v ∨D
C ∨D ,

which we use to obtain a new clause from two already exist-
ing ones. The goal is to derive the empty clause – resolution
is known to be sound and complete, i.e., we can derive the
empty clause from the initial clauses if and only if the initial
set of clauses was unsatisfiable.

In this paper, we shall work with a restricted version of
resolution, namely tree-like resolution. In tree-like resolu-
tion we are not allowed to reuse any clause that has already
been derived, i.e., we need to derive a clause as many times
as we use it (this, of course, does not apply to the initial
clauses). In other words, a tree-like resolution refutation
can be viewed as a binary tree whose nodes are labeled
with clauses. Every leaf is labeled with one of the origi-
nal clauses, every clause at an internal node is obtained by
a resolution step from the clauses at its two children nodes,
and the root of the tree is labeled with the empty clause. We
measure the size of a tree-like resolution refutation by the
number of nodes.

It is not hard to see that a tree-like resolution refutation
of a given set of clauses is equivalent to a boolean deci-
sion tree solving the search problem for that set of clauses.
The search problem for an unsatisfiable set of clauses is
defined as follows (see, e.g., Krajı́ček’s book [10]): given
a truth assignment, find a clause which is falsified under
the assignment. A boolean decision tree solves the search
problem by querying values of propositional variables and
then branching on the answer. Without loss of generality,
we may assume that no propositional variable is questioned
twice on the same branch and that a branch of the tree is
closed as soon as a falsified clause is found, under the partial
assignment – conjunction of facts – obtained so far along
that branch. When a branch is thus closed we say that an
elementary contradiction has been obtained. Note that we
consider a node of the decision tree to be labeled by the con-
junction of facts thus far obtained together with the propo-
sitional variable there questioned. This is analogous to a
node in a tree-like resolution refutation being labeled with
its clause together with the variable just resolved. Given
the equivalence between tree-like resolution refutations and
boolean decision trees, we shall concentrate on the latter.
Whenever we need to show that there is a certain tree-like
resolution refutation of some unsatisfiable set of clauses, we
shall construct a boolean decision tree for the correspond-
ing search problem. On the other hand, whenever we claim
a tree-like resolution lower bound, we shall prove it by an
adversary argument against any boolean decision tree which
solves the search problem.

We give working definitions of parameterized contradic-
tion and parameterized tree-like resolution, which we shall
use to state and prove the complexity gap for parameterized
tree-like resolution.

Definition 6. A parameterized contradiction is a pair (F , k)
where F is a propositional CNF formula and k is a positive
integer such that F has no satisfying assignment of weight
at most k.

Example 7. Let us consider an undirected graph G =
(V,E) that does not have a vertex cover of size ≤ k. We in-
troduce a propositional variable pv for every vertex v ∈ V .
Then the pair

(∧
{u,v}∈E(pu ∨ pv), k

)

is a parameterized contradiction.

Let PARAMETERIZED CONTRADICTIONS be the lan-
guage of parameterized contradictions. Note that PA-
RAMETERIZED CONTRADICTIONS is the complement of
BOUNDED CNF SATISFIABILITY and, as such, is co-W[2]-
complete under fpt-reductions.

We can now define a parameterized version of tree-like
resolution. As we have already explained, we shall give the
definition in terms of boolean decision trees.

154154

Definition 8. Given a parameterized contradiction P =
(F , k), a parameterized boolean decision tree is a deci-
sion tree that queries values of propositional variables and
branches on the answers; a branch of the tree is closed as
soon as (1) or (2) happens:

(1) an elementary contradiction is reached, i.e., the par-
tial assignment obtained along the branch falsifies F;

(2) the partial assignment obtained along the branch has
more than k propositional variables set to true, i.e., has
weight > k.

The fact that we can close branches by criterion (2) is
equivalent to our having, built-in as axioms, all clauses of
more than k negated variables. This represents the differ-
ence between parameterized boolean decision trees and (or-
dinary) boolean decision trees; hence also the difference
between parameterized tree-like resolution and (ordinary)
tree-like resolution.

3 Complexity Gap for Parameterized Tree-
like Resolution

We first recall the complexity gap theorem for tree-like res-
olution proven by Riis [13].

Theorem 9. Given a FO sentence ψ which fails in all finite
models, consider its translation into a sequence of proposi-
tional CNF contradictions 〈Cψ,n〉n∈N. Then either 1 or 2
holds:

1. Cψ,n has polynomial-size in n tree-like resolution refu-
tations.

2. There exists a positive constant ε such that for every n,
every tree-like resolution refutation of Cψ,n is of size at
least 2εn.

Furthermore, 2 holds if and only if ψ has an infinite model.

In the parameterized setting, one can hope that the sec-
ond case above, the hard one, splits into two subcases. This
is indeed true as we shall prove the following complexity
gap theorem for parameterized tree-like resolution:

Theorem 10. Given a FO sentence ψ, which fails in all
finite models but holds in some infinite model, consider the
sequence of parameterized contradictions 〈Dψ,n,k〉n∈N =
〈(Cψ,n, k)〉n∈N where 〈Cψ,n〉n∈N is the translation of ψ al-
ready defined. Then either 2a or 2b holds:

2a. Dψ,n,k has a parameterized tree-like resolution refu-
tation of size βknα for some constants α and β which
depend on ψ only.

2b. There exists a constant γ, 0 < γ ≤ 1, such that for
every n > k, every parameterized tree-like resolution
refutation of Dψ,n,k is of size at least nk

γ

.

Furthermore, 2b holds if and only if ψ has an infinite model
whose induced hypergraph has no finite dominating set.

By proving that Case 2b can be attained (see Examples
15 and 16), and bearing in mind Remark 4, we derive the
following as a corollary.

Corollary 11. Parameterized tree-like resolution is not fpt-
bounded.

If we could prove that no parameterized proof system for
PARAMETERIZED CONTRADICTIONS is fpt-bounded, then
we would have derived W[2] �= FPT.

Before we prove Theorem 10, we need to give some def-
initions. For a model M , let |M | denote the universe of
M . Given a model M of a FO sentence ψ, either finite or
infinite, the hypergraph induced by the model M has the
elements of |M | as vertices and as hyperedges those sets
{y1, . . . yl} such that (y1, . . . , yl) appears as a tuple in some
relation. (Recall that there are two kinds of relations – the
extensional R relations which are present in the original
FO sentence, and the S relations that we introduce when
Skolemizing the sentence – both give rise to hyperedges.)
A set of vertices is independent if it contains no hyperedge
as a subset. Given a setX of vertices, a vertex y /∈ X , and a
set A such that X ∪ {y} ⊆ A ⊆ |M |, we say that y is A-in-
dependent from X if and only if (i) there is no self-loop {y}
at y, and (ii) there is no hyperedge E ⊆ A which contains y
and intersects withX . We say that y is independent fromX
if y is |M |-independent from X; otherwise we say that X
dominates y. Finally, a dominating set is a set X of vertices
that dominates every other vertex of the hypergraph.

3.1 Case 2a of Theorem 10

We provide an overview of the proof method. We begin by
describing the method involved in the proof of Case 1 of
Theorem 9, before suggesting how this can be amended for
Case 2a of Theorem 10. Whilst we do not allow constants
in our signatures, we do refer to those elements that have
been questioned in the decision tree as constants.

For Case 1 of Theorem 9, we construct a certain deci-
sion tree to refute the FO sentence ψ. The questions of the
decision tree fall into two categories: I) boolean questions
on the truth of (extensional) relations R on the already wit-
nessed constants, and II) questions that ask for a witness to
already witnessed constants in Skolem relations S. In the
latter case the potential witness may be one of the already
witnessed constants, or it may be a new constant. The im-
portant point is that this decision tree is finite – of height
h and never involving more than m constants – for, if it
were not, it would imply the existence of an infinite model
for ψ. It is relatively straightforward to turn this FO deci-
sion tree into a boolean decision tree, for each propositional

155155

Cψ,n, of size at most (max{m,n})h, i.e., polynomial in n
as claimed.

For Case 2a of Theorem 10, we construct a certain differ-
ent decision tree to refute the FO sentence ψ in a parameter-
ized setting. This decision tree adds new constants in pairs,
under the additional assumption that the second new con-
stant is independent from both the first new constant and the
set of constants already witnessed. We are able to demon-
strate that this tree is finite – of height h and never involving
more than m constants – so long as all models of ψ have a
finite dominating set. Again, we are able to turn this into a
parameterized boolean decision tree, for each propositional
Dψ,n,k, of size at most (mabh)knh, where a is the maxi-
mum arity of any relation of ψ and b is the number of rela-
tions of ψ (including Skolem relations in both cases). The
result follows.
We conclude this section with an example of Case 2a of
Theorem 10. This specimen provides a somewhat trivial in-
stance, having, as it does, parameterized tree-like resolution
refutations not just polynomial in n, but actually indepen-
dent of n. There are examples for Case 2a which are non-
trivial insofar as there the size of a smallest parameterized
tree-like refutation depends on n (see [5]).

Example 12. We consider the (negation of the) least number
principle for total orders. Let ψLNP1 be the conjunction of
the following.

∀x ¬R(x, x) (antireflexivity)
∀x∀y ¬R(x, y) ∨ ¬R(y, x) (antisymmetry)

∀x∀y∀z ¬R(x, y) ∨ ¬R(y, z) ∨R(x, z) (transitivity)
∀x∀yR(x, y) ∨R(y, x) (totality)
∀y∃x R(x, y) (no least element)

All models of ψLNP1 have a dominating set of size 1;
moreover, every element of the model constitutes such
a dominating set. It is straightforward to verify that
〈DψLNP1 ,n,k〉n∈N has parameterized tree-like resolution
refutations of size 2k, independent from n.

3.2 Case 2b of Theorem 10

We now turn our attention to proving Case 2b of Theo-
rem 10. Our argument will be facilitated by a game based
on those described by Pudlák [12] and Riis [13] in which
Prover (female) plays against Adversary (male). In this
game, a strategy for Prover gives rise to a parameterized
boolean decision tree on a set of clauses. Prover questions
the propositional variables that label the nodes of the tree
and Adversary attempts to answer these so as neither to vi-
olate any specific clause nor to have conceded that more
than k variables are true (�), for in either of these situations
Prover is deemed the winner. Of course, assuming the set
of clauses was unsatisfiable, Adversary is destined to lose:

the question is how large he can make the tree in the pro-
cess of losing. Note that each branch of the tree corresponds
to a play of this game, hence each parameterized decision
tree corresponds to a Prover strategy. We will be concerned
with Adversary strategies that perform well over all Prover
strategies, and hence induce a lower bound on all parame-
terized decision trees and, consequently, all parameterized
tree-like resolution refutations.

When considering a certain Prover strategy – a parame-
terized decision tree – we will actually consider only a cer-
tain subtree in which the missing branches correspond to
places where Adversary has simply given up, already con-
ceding the imminent violation of a clause. In this way, there
are two types of non-leaf nodes in this subtree, those of out-
degree 1 in which Adversary’s decision was forced (because
he conceded defeat on the alternative valuation) and those of
out-degree 2 in which he is happy to continue on either out-
come. In the latter case, we may consider that he has given
Prover a free choice as to the value of the relevant variable.
The free choice nodes play a vital role in ensuring the large
size of this subtree, which in turn places a lower bound on
the size of the parameterized decision tree of which it is a
subset.

Let Cψ,n be the propositional translation of some FO sen-
tence ψ which has no finite models, but holds in some infi-
nite model. We formally define the game G(Cψ,n, k) as fol-
lows. At each turn Prover selects a propositional variable
of Cψ,n that she has not questioned before, and Adversary
responds either by answering that the variable is true (�) or
that it is false (⊥), or by allowing Prover a free choice over
those two. The Prover wins if at any point she holds infor-
mation that contradicts a clause of Cψ,n or she holds more
than k variables evaluated true. In this formalism, given a
Prover strategy on her moves, and considering both possi-
bilities on the free choice nodes, we generate a game tree,
the subtree of the parameterized decision tree alluded to in
the previous paragraph.

Henceforth, we consider only the case in which some
model of ψ has no finite dominating set. We will give a
strategy for Adversary in the game G(Cψ,n, k) that guaran-
tees a large game tree for all opposing Prover strategies.

Adversary’s Strategy At any point in the game – node in
the game tree – Adversary will have conceded certain infor-
mation to Prover. He always has in mind two disjoint sets
of already mentioned constants P and Q on which he has
conceded certain information: initially these sets are both
empty. The set Q is to be a (P ∪Q)-independent set whose
members are also (P ∪ Q)-independent from P . In some
sense P is the only set of constants for which Adversary has
actually conceded an interpretation; all he concedes of Q is
that it is a floating set with certain independence properties.
If X is a set of constants, let MX be the class of models

156156

of ψ that are consistent with the information Adversary has
conceded on X . At each point Prover will ask Adversary
a question of the form Ri(c) or Sj(c). The Adversary an-
swers as follows:

I. If all constants of c are in P , then Adversary should
choose some model in MP and answer according to
that.

II. If all constants of c are in P ∪ Q, and there is at least
one from Q, then Adversary should answer false (⊥).

III. If some constant in c is not in P ∪Q then

– if no model in MP satisfies the question, then
Adversary should answer false (⊥), otherwise

– he should give Prover a free choice on the ques-
tion.

In all cases the sets P and Q remain the same, except in
Case III Part 2. If the Prover chooses true (�), then Adver-
sary places all the constants of c in P , possibly removing
some from Q in the process. If the Prover chooses false
(⊥), then Adversary places any constants in c that are not
already in P ∪ Q into Q. It turns out that, in Cases II and
III, the situation never arises in which Adversary is forced
to answer true. In particular, in Case III, it will never be
the case that all models in MP satisfy the question. This
is vital to the success of Adversary’s strategy, and we will
return to it later. We must now prove that this strategy leads
to a large parameterized decision tree; we will need the fol-
lowing lemma.

Lemma 13. Consider any path in the game tree of
G(Cψ,n, k) from the root to a leaf. If there are k or fewer
propositional variables evaluated to true by the leaf, then
every one of the n constants must have appeared in a free
choice node along that path.

Proof. We give a sketch proof of the lemma; for a fuller
explanation, see Riis’s paper [13]. It is important to see
that Adversary plays faithfully according to some (infinite)
models of ψ, because this means that an elementary con-
tradiction can only be reached by the violation of a Skolem
clause. In order to see that Adversary plays so, it becomes
necessary to explain why in Case II of his strategy he never
loses any of his putative models MP and why in Case III
he is never forced to answer true (�).

In Case II, Adversary never loses a model M in MP

because Q can always be chosen to be independent, and
independent from P . Indeed, if such an interpretation is put
on Q in M , then Adversary’s answer is forced to be false
(⊥).

Suppose, in Case III, that Adversary were forced to an-
swer true (�), i.e., all modelsM in MP satisfy the question
Ri(c) or Sj(c). By the floating nature of all elements that

are not in P this would generate a finite dominating set of
P ∪Q onM . Let us dwell on this point further. Let c′ be the
subtuple of c consisting of those constants of the latter that
are not inP∪Q. Some of the constants of c′ could have been
mentioned in questions before, but only in ones for which
Adversary’s response had been forced false. Suppose that
P ∪Q were not a dominating set forM , then there exists an
element x ∈M , independent from P ∪Q. But this element
is such that it can fill the tuple c′ and falsify Ri(c) or Sj(c)
in M (and falsify any questions that previously involved it,
which had already been answered false). This contradicts
the question having been forced true in the first place.

Recalling that we can only reach an elementary contra-
diction by the violation of a Skolem clause, we can now
complete the proof. Let c′ be a constant that never appears
in a free choice node in our game tree. In order to violate a
Skolem clause, Adversary must have denied some S(c, x),
for each of the n constants substituted for x. But that his
denial of S(c, c′) was forced implies a contradiction. Since
c′ is uninterpreted in any of the models in MP , it follows
that S(c, c′′) is false for all c′′ in any model in MP . This
tells us that MP is empty and, consequently, that ψ had no
infinite model.

We are now in a position to argue the key lemma in this
section.

Lemma 14. Let a be the maximum arity of any relation in ψ
and suppose that there are no more than b different relations
in the propositional translation of ψ (including Skolem re-
lations in both cases). Following the strategy that we have
detailed for the game G(Cψ,n, k), and with p and q the car-
dinality of the sets P and Q, respectively, Adversary cannot
lose while both p < k1/ab and p+ q < n.

Proof. Consider the game tree of G(Cψ,n, k). Note that Ad-
versary only answers true in the case that all involved con-
stants are then added to his set P , or, of course, were already
there. Thus, at a certain node in the game tree, the number
of true answers given is trivially bounded by the size of the
set of all possible questions on P , which is certainly bound
by pab. Hence, whilst pab < k, there must be fewer than
k propositional variables evaluated to true. Furthermore, if
p + q < n at this node, then not all of the n constants can
have appeared in a free choice (since constants that have ap-
peared in a free choice are necessarily added to either P or
Q). It follows from the previous lemma that Adversary has
not yet lost.

We are now in a position to settle Case 2b.

Proof of Case 2b, Theorem 10. We aim to provide a lower
bound on the size of any game tree for G(Cψ,n, k). Since
a lower bound on the size of a game tree induces a lower

157157

bound on the size of a parameterized boolean decision tree,
the result follows.

Consider a game tree for G(Cψ,n, k). Recall that, at any
node in this tree, Adversary has in mind two sets P and Q,
of size p and q, respectively, and, by the previous lemma,
whilst p < k1/ab and p+ q < n, he has not lost. Consider,
therefore, any node in this game tree and the sets P and
Q that Adversary there has in mind. Let S(p, q) be some
monotonic decreasing function that provides a lower bound
on the size of the subtree of the game tree rooted at the
chosen node; whence S(0, 0) is a lower bound on the size
of the game tree itself. In showing that S(p, q) satisfies the
recurrence relation

• S(p, q) ≥ S(p+ a, q) + S(p, q + a) + 1, with

• S(p, q) ≥ 0, when p ≥ k1/ab or p+ q ≥ n,

we are able to derive the following statement.
Let n, k, a and b be positive integers such that (i.) a ≥ 2;

(ii.) n > k; (iii.) n ≥ 7a+ 1; (iv.) k1/ab ≥ (16a2)2; then

S(0, 0) ≥ nk
γ

where γ := 1/16a3b.

The result follows immediately from this statement for suf-
ficiently large k (≥ (16a2)2ab) and n (≥ 7a+1). By noting
that all parameterized boolean decision trees of Case 2b are
of size ≥ 2, we can modify the given γ to one that works
for all n, k ≥ 1. Note that the assumption that (maximum
arity) a ≥ 2 is innocuous – there are no unary FO sentences
ϕ which have no finite models but possess an infinite one,
therefore we would be in neither Case 2a nor Case 2b.

Example 15. We consider the (negation of the) least number
principle for partial orders. Let ψLNP∞ be the conjunction
of the FO clauses given in Example 12 without the fourth
clause (totality). ψLNP∞ has models without a finite dom-
inating set. For example, if Z is the set of integers, then
N × Z under the strict partial ordering

(n, z) ≺ (n′, z′) if and only if n = n′ and z < z′

provides such a model.

Example 16. We return to the sentence ψPHP defined in Ex-
ample 5. This has models without a finite dominating set:
for example the positive integers N, with R(x, y) ⇔ y =
x+ 1, provides such a model.

4 Embedding into Ordinary Proof Systems

Given a parameterized contradiction (F , k)we may attempt
to derive an (ordinary) contradiction F ′ by directly axiom-
atizing the fact that no more than k variables of F may be
set to true. We may then use an ordinary proof system to re-
fute F ′. Considering the parameter preserved, we obtain

from this embedding a new parameterized proof system.
Formally, let PCON and CON be the classes of parameter-
ized contradictions and (ordinary) contradictions, respec-
tively. Let e : PCON → CON be some injection such
that the range of e, and e−1 on that range, are polynomial-
time computable. let Σ1 be some proof alphabet and let
Γ : Σ∗1 → CON be a proof system for CON. It follows that
Γ′ : Σ∗1 × N → PCON given by

Γ′(w, k) :=

⎧⎪⎨
⎪⎩

(F , k) if Γ(w) in range of e

and (F , k) = e−1(Γ(w));
(F⊥, k) otherwise.

is a parameterized proof system (where F⊥ is some fixed
contradiction, say v ∧ ¬v).

Naive embeddings Suppose the variables of F are
v1, . . . , vn; it follows that the size of F is at least n. We
might try to incorporate the set Nk (respectively, N ′

k) of all
clauses involving more than k (respectively, exactly k + 1)
negated variables. Both of these fail – though the latter
less spectacularly – since the function given by (F , k) �→
(F ∪ Nk) (respectively, (F , k) �→ (F ∪ N ′

k)) is not fpt-
bounded. This is because both Nk and N ′

k are of size
≥ nk+1. Consequently all proofs in this proof system fall
into the “hard” category with size at least nk+1.

Embedding using auxiliary variables Another possibil-
ity involves the use of new auxiliary variables qvi,j for
i ∈ [n] and j ∈ [k]. We now add pigeonhole clauses
¬vi ∨

∨k
l=1 qvi,l and ¬qvi,j ∨ ¬qvi′ ,j for i, i′ ∈ [n] (i �= i′)

and j ∈ [k]. Denote this set of clauses by N ′′
k . These

clauses essentially specify a weak pigeonhole principle
from n to k and it is fairly straightforward to see that they
can only be satisfied if no more than k of the variables vi is
true.

This method of auxiliary variables results in a parameter-
ized proof system whose behavior with respect to tree-like
resolution is similar to that of parameterized tree-like res-
olution. Since the clauses N ′

k can be derived from these
axioms in a subtree of size 2k!, the “easy” case (2a) is pre-
served, up to a possible factor of 2k!. Also the “hard” case
(2b) remains via the same proof.

We have not defined a system of parameterized resolu-
tion, but such a definition would be a straightforward gener-
alization. It is not clear what the complexity of the pigeon-
hole principle would be in this system, but we can settle
the complexity of the pigeonhole principle when embedded
into resolution via the method of auxiliary variables. Re-
calling that the pigeonhole principle falls in the “hard” case
(2b) for parameterized tree-like resolution (and also when
embedded into tree-like resolution via the method of auxil-
iary variables), it is perhaps surprising that the pigeonhole

158158

principle falls into the “easy” case (2a) when embedded into
resolution.

Proposition 17. Using the method of auxiliary variables,
there is a resolution refutation of the (negation of the) pi-
geonhole principle of size 2kn2.

Proof. Note that the case k ≥ n is straightforward; assume
that k < n. We recall from Example 5 that the axioms are
F := CψPHP,n =

¬S2(i, j) ∨R(i, j), ¬S1(j) ∨ ¬R(i, j) and
¬R(i, j) ∨ ¬R(i′, j), for i, i′, j ∈ [n], i �= i′,

n∨
j=1

S2(i, j), for i ∈ [n], and
n∨
i=1

S1(i).

Let V be the set of variables appearing in these axioms. We
now add the auxiliary clauses N ′′

k :=

¬α ∨
k∨
l=1

qα,l and ¬qα,j ∨ ¬qα′,j

for α, α′ ∈ V , α �= α′, and j ∈ [k]. It is worth noting that,
since k < n, the clauses ¬S1(j)∨¬R(i, j) and

∨n
i=1 S1(i)

are not needed for a resolution refutation.
In order to generate a resolution refutation of F∪N ′′

k we
will consider the behavior of some further new variables.
For i ∈ [n] and j ∈ [k], define:

rij ≡
n∨
l=1

qR(i,l),j

It is not hard to see that the variables rij themselves specify
a weak pigeonhole principle from n to k and it is this prop-
erty that we will exploit. Consider the set of clauses F ′′ :=
(¬rij ∨ ¬ri′j) and

∨k
j=1 rij , for i, i′ ∈ [n], i �= i′, and

j ∈ [k]. It is known that there exists a resolution refutation
F ′′ of size 2k such that no clause (other than the axioms)
contains more than one negated variable [1]. We will con-
vert this refutation into one for F∪N ′′

k of size at most 2kn2.
First we will show how to derive any axiom of F ′′ from

F ∪N ′′
k . The axioms ¬rij ∨¬ri′j are already present as n2

different axioms of N ′′
k :

¬rij ∨ ¬ri′j ≡ ∧n
l=1 ¬qR(i,l),j ∨

∧n
l′=1 ¬qR(i′,l′),j

≡ ∧n
l=1

∧n
l′=1(¬qR(i,l),j ∨ ¬qR(i′,l′),j)

The axioms
∨k
j=1 rij ≡

∨k
j=1

∨n
l=1 qR(i,l),j may be gener-

ated only a little more circuitously. The axiom
∨n
j=1R(i, j)

may be derived by resolving
∨n
j=1 S2(i, j) with n instances

of ¬S2(i, j) ∨ R(i, j), i.e., 1 ≤ j ≤ n. Now this can be
resolved with n instances of ¬R(i, j) ∨ ∨k

l=1 qR(i,j),l, i.e.,
1 ≤ j ≤ n.

We now demonstrate how one may simulate a resolution
step on the F ′′ clauses in the F ∪N ′′

k clauses. For this part
it is crucial that the resolution on F ′′ contains no clauses
with more than two negated literals. We will first consider
the simplest case in which one of the clauses to be resolved
is strictly positive and the other contains a single negated
variable, that is they are of the form:

(ri1j1 ∨ ri2j2 ∨ . . . ∨ ritjt) ≡∨n
l=1 qR(i1,l),j1 ∨

∨n
l=1 qR(i2,l),j2 ∨ . . . ∨

∨n
l=1 qR(it,l),jt

and

(¬ri1j1 ∨ ri′2j′2 ∨ . . . ∨ ri′t′ j′t′) ≡∧n
l=1 ¬qR(i1,l),j1 ∨

∨n
l=1 qR(i′2,l),j

′
2
∨. . .∨ ∨n

l=1 qR(i′
t′ ,l),j

′
t′

It is clear that the second of these is equivalent to (and may
be simulated by) the system of n clauses

¬qR(i1,1),j1 ∨
∨n
l=1 qR(i′2,l),j

′
2
∨ . . . ∨ ∨n

l=1 qR(i′
t′ ,l),j

′
t′

...
¬qR(i1,n),j1 ∨

∨n
l=1 qR(i′2,l),j

′
2
∨ . . . ∨ ∨n

l=1 qR(i′
t′ ,l),j

′
t′

It should be clear that even the extreme case, of two negated
literals in each clause, may be simulated by a system of n2

clauses.
Each clause in the resolution refutation of F ′′ may now

be replaced by at most n2 clauses to obtain a refutation of
F ∪N ′′

k , and the result follows.

It may be noted that we could have defined rij :=∨n
l=1 qS2(i,l),j in the proof of the previous proposition. The

reason we have used the qR(i,l),j variables is to show that
the result stands for the more usual encoding of the pigeo-
hole principle, which avoids Skolem relations. However,
our method can be used to demonstrate that any first-order
ψ, without finite models, that translates to a propositional
system involving at least one non-unary Skolem relation,
has a resolution refutation (using the method of auxiliary
variables) of size 2kn2. It is straightforward to show, if ψ
has no finite models and a propositional translation with-
out a non-unary Skolem relation, that ψ also has no infi-
nite models. Therefore, the method of auxiliary variables
has made all of our parameterized contradictions “easy” for
resolution. We note that not all contradictions derive from
first-order principles, and that this method of auxiliary vari-
ables may have more relevance elsewhere.

References

[1] S. R. Buss and T. Pitassi. Resolution and the weak
pigeonhole principle. In CSL ’97: Selected Papers
from the 11th International Workshop on Computer
Science Logic, Lecture Notes in Computer Science
1414, Springer (1998) 149–156

159159

[2] Cesati, M.: Compendium of parameterized
problems. http://bravo.ce.uniroma2.it/home/cesati/
research/compendium.pdf (September 2006)

[3] J. Chen, I. A. Kanj, and G. Xia. Improved param-
eterized upper bounds for vertex cover. In Proceed-
ings of the International Symposium on Mathematical
Foundations of Computer Science (MFCS 2006), Lec-
ture Notes in Computer Science 4162, Springer (2006)
238–249

[4] S. A. Cook and R. A. Reckhow. The relative efficiency
of propositional proof systems. J. Symbolic Logic,
44(1) (1979) 36–50

[5] S. Dantchev and B. Martin and S. Szeider, Parameter-
ized proof complexity: a complexity gap for parame-
terized tree-like resolution. Electronic Colloquium on
Computational Complexity (ECCC), Technical Report
TR07-001 (2007)

[6] Downey, R.G., Fellows, M.R.: Parameterized Com-
plexity. Monographs in Computer Science. Springer
(1999)

[7] Downey, R.G., Fellows, M.R.: Fixed-parameter
tractability and completeness. II. On completeness for

W [1]. Theoretical Computer Science 141(1-2) (1995)
109–131

[8] Flum, J., Grohe, M.: Parameterized Complexity The-
ory. Volume XIV of Texts in Theoretical Computer
Science. An EATCS Series. Springer (2006)

[9] Impagliazzo, R., Paturi, R., Zane, F.: Which problems
have strongly exponential complexity? J. of Computer
and System Sciences 63(4) (2001) 512–530

[10] Krajı́ček, J.: Bounded Arithmetic, Propositional
Logic, and Complexity Theory. Cambridge University
Press, New York, NY, USA (1995)

[11] Niedermeier, R.: Invitation to Fixed-Parameter Algo-
rithms. Oxford Lecture Series in Mathematics and Its
Applications. Oxford University Press (2006)

[12] Pudlák, P.: Proofs as Games. American Mathematical
Monthly, 107(6) (2000) 541–550

[13] Riis, S.: A complexity gap for tree-resolution. Com-
putational Complexity 10(3) (2001) 179–209

160160

