
Arithmetic Circuits: A Chasm at Depth Four

Manindra Agrawal
Indian Institute of Technology, Kanpur∗

V Vinay
Geodesic Information Systems Ltd, Bangalore, and

Chennai Mathematical Institute, Chennai

August 12, 2008

Abstract

We show that proving exponential lower bounds
on depth four arithmetic circuits imply exponen-
tial lower bounds for unrestricted depth arith-
metic circuits. In other words, for exponential
sized circuits additional depth beyond four does
not help.

We then show that a complete black-box de-
randomization of Identity Testing problem for
depth four circuits with multiplication gates of
small fanin implies a nearly complete derandom-
ization of general Identity Testing.

1 Introduction

The permanent, by virtue of being complete for
#P [21], occupies a central position in the study
of the complexity of counting problems. Its illus-
trious sibling, the determinant is comparatively
easy, being complete for GapL, a complexity
class housed within NC2 [4, 19, 24].

∗This research was partially supported by J. C. Bose
fellowship FLW/DST/CS/20060225

The difference between the computation com-
plexity of the permanent and the determinant
has been among the most intriguing mathemati-
cal questions of our times. While we know deter-
minant is easy, it has been difficult to prove any
non-trivial lower bounds against the permanent.

In reality, a variety of lower bounds have
been proved in restricted settings. Jerrum and
Snir [8], and more recently improved by Raz and
Yehudayoff [16], show that any monotone circuit
computing the permanent requires exponential
size. Nisan and Wigderson [14] show that any
depth three circuit computing 2dth symmetric
polynomial requires (n

4d)Ω(d) size. Shpilka and
Wigderson [18] show that any depth three cir-
cuit computing the permanent and determinant
over the rationals requires quadratic size. Grig-
oriev and Razborov [6, 7] show that any depth
three arithmetic circuit over a finite field com-
puting the permanent or the determinant re-
quires exponential size. Raz [15] shows every
multilinear forumla computing permanent and
determinant requires superpolynomial size. All
of these proofs already require mathematical in-
tricate machinery.

Another path to potential lower bounds was
discovered by Kabanets and Impagliazzo [9].
Ever since they showed a remarkable connec-
tion between efficient polynomial identity testing
(PIT) and arithmetic ciruit lower bounds, iden-
tity testing has invited closer scrutiny. For ex-
ample, Kayal and Saxena [12] and Saxena [17],
Karnin and Shpilka [11] show how certain re-
stricted depth three circuits have determinis-
tic polynomial time identity tester. Also, Dvir,
Shpilka, and Yehudayoff [5] show how the Ka-
banets and Impagliazzo results can be extended
to bounded-depth circuits.

Interestingly, a number of the above results
are restricted to depth three circuits. Why not
four or five or six? The reason, and we show it in
this paper, is that crossing the chasm at depth
four is as hard as the general case!

Depth Four Chasm: If a polynomial
P (x1, ..., xn) of degree d with d = O(n) can
be computed by an arithmetic circuit of size
2o(d+d log n

d
), it can also be computed by a depth

four arithmetic circuit of size 2o(d+d log n
d

) with
multiplication gates of fanin o(d).

Notice that polynomial P can trivially be com-
puted by an arithmetic circuit of size 2O(d+d log n

d
)

(and depth two). The main result have implica-
tions to identity testing as well.

Identity Testing Chasm: If there is a
complete black-box derandomization of Identity
Testing for depth four circuits with multiplica-
tion gates of small fanin, then the general Iden-
tity Testing problem can be deterministically
solved in nO(log n) time.

We wish to point out that the Boolean set-
ting behaves quite differently as compared to
the arithmetic setting due to the existence of
two additional axioms: (1) fg + g = g and (2)

g2 = g. These axioms result in strong cancella-
tive properties and they actually demonstrate
that degree in a Boolean setting is not a “nat-
ural” primary resource in the sense that it can
be traded for time. For example, insisting on
polynomial size and polynomial degree circuits
puts the languages in LOGCFL but if the con-
straint on degree is removed, one captures all of
P. Intuitively, degree is not a very good resource
measure as we may get small sized circuits for a
language if we lift the constraint on its degree.
In contrast, in arithmetic settings higher degree
terms can never cancel lower degree ones and it
follows that given a circuit to compute a degree
d polynomial it can be replaced by another cir-
cuit whose all intermediate polynomials are of
degree ≤ d at the cost of polyonmial increase in
size [22].

This is not to mean that depth reduction re-
sults such as ours are not possible in Boolean
settings. Indeed, Valiant[23] shows how mono-
tone circuit of size n and depth O(log n) can be
converted to a depth three monotone circuit of
size 2O(n/ log log n).

2 The Chasm at Depth Four

It is easy to see that depth four circuits are more
powerful than depth three. For example, con-
sider the problem of computing determinant over
a finite field F . We know, by [7], that depth
three circuits computing determinant over F re-
quire exponential size. We now observe that de-
terminant over F can be computed by depth four
arithmetic circuits of size 2o(n).

We will start with a problem well know to
be computationally equivalent to the determi-
nant: matrix powering [3]. Matrix powering is
the problem of powering an n× n matrix to the

2

nth power, where each entry of the matrix is ei-
ther −1, 0, or 1.

The proof is simple. We break the matrix
chain of n matrices into

√
n equal sections. In

each section, we can compute the ijth entry of
the resulting matrix as a sum of products; each
product being a multiplication of

√
n entries. It

is easy to see that the number of such prod-
ucts, and hence the fan-in into the plus gate,
is bounded by n

√
n.

At the end of this phase, we are left with
√
n

matrices; one for each section. The ijth entry of
the resulting matrix, can similarly be written as
sum of products. Again, a product would be

√
n

long and the sum would be over all possible n
√

n

products.
Overall, this results in a depth 4 circuit of size

nO(
√

n) for matrix powering, and hence for the
determinant.

Theorem 2.1 The determinant of a n× n ma-
trix with integer n bit entries can be computed by
depth 4 arithmetic circuits of size nO(

√
n).

We now generalize the above observation to
any arithmetic circuit of subexponential size. In
this paper, we use subexponential size to mean
circuits of size 2o(n).

Let P (x1, . . . , xn) be a polynomial of total de-
gree d. We restrict our attention to the case
when d = O(n)1. P can be written as sum
of at most

(
n+d

d

)
products. Hence it can al-

ways be computed by a depth two circuit of size
2O(d+d log n

d
) because:

1If the degree is ω(n) then the bounds we get are
weaker, and in any case the permanent has sublinear de-
gree.

Lemma 2.2 For any n and k(n) such that
k(n) = O(n):(

n+ k(n)
k(n)

)
= 2O(k(n)+k(n) log n

k(n)
)
.

Proof . If k(n) = Θ(n), then
(n+k(n)

k(n)

)
≤

2n+k(n) = 2O(k(n)). If k(n) = o(n) then, using
Stirling’s formula for factorial:(
n+ k(n)
k(n)

)
=

(n+ k(n))!
n!k(n)!

= O

(
(n+ k(n))n+k(n)

nnk(n)k(n)

)

= O

((
1 +

k(n)
n

)n

·
(

1 +
n

k(n)

)k(n)
)

= O

(
ek(n) ·

(
2
n

k(n)

)k(n)
)

= 2O(k(n)+k(n) log n
k(n)

)
.

�

Let P be computed by arithmetic circuit C of
size M with M = 2o(d+d log n

d
). We can assume,

without loss of generality, that all the interme-
diate polynomials computed inside the circuit C
have degree bounded by d [22]. In [20, 2] it is
shown that C can be transformed to a circuit D
of degree d, size MO(1) and depth O(log d) with
multiplication gates of fan-in two. We do a care-
ful analysis of the transformation in [2] to obtain
a circuit D with more structural properties. In
particular, we will be interested in getting good
bounds on the degree of the gates.

The circuit D we construct will be a strictly
alternating circuit of size S = MO(1), where M
is the size of the original circuit. The addition
gates of D have unbounded fan-in, while multi-
plication gates of D have fan-in bounded by 6.

3

The degree of polynomials computed at each
gate satisfies the following properties:

• the output gate degree is d,

• degree of any child of an addition gate is the
same as the degree of the gate,

• all children of a multiplication gate have de-
gree at most half of the degree of the gate.

It follows that the depth of the circuit D is at
most 2 log d. We now indicate how to construct
such a circuit.

Construction

As a first step, we ensure the C is a layered cir-
cuit with alternating levels of plus and mult
gates. Also, we will ensure the fan-in at every
multiplication gate is 2. Finally, we rearrange
the children of the multiplication gate so that
the degree of the left child is smaller than or
equal to the degree of the right child.

A proof tree rooted at gate g of circuit C is a
subcircuit obtained as follows:

• start with the subcircuit in C that has gate
g at the top and computes the polynomial
associated with gate g,

• for every addition gate in this subcircuit, re-
tain only one input to the gate while delet-
ing the remaining input lines,

• for any multiplicate gate in the subcircuit,
retain both the inputs to it.

It is easy to see that a proof tree rooted at g
computes a monomial of the polynomial com-
puted at g and this polynomial equals the sum
of all such monomials.

For every gate g in C, define [g] to stand for
the polynomial computed at gate g. For every

pair of gates g and h in C, let [g, h] =
∑

T p(T, h)
where T runs over all the proof trees rooted at
g in which h occurs in the rightmost path of the
tree, and p(T, h) denotes the polynomial com-
puted by the proof tree T when gate h is replaced
by constant 1. If h does not occur in the right-
most path of any proof tree at g then [g, h] is
the zero polynomial. Gates of circuit D will be
[g], [g, h], and [xi] for gates g and h of C and
variables xi ([xi] represent the variable xi). The
connections between these gates are described
below.

It is easy to see that [g] =
∑n

i=1[g, xi][xi].
Also, if g is a plus gate with children

g1, . . . , gk, then [g, h] =
∑k

i=1[gi, h].
Let g be a mult gate with children gL and gR

as left and right children respectively. Then, if
the right most path from g to h has only plus
gates then [g, h] = [gL]. Otherwise, for a fixed
right most path from g to h, there must exist
a unique intermediate mult gate, say p (with
children pL and pR) along the right most path
connecting g and h such that

deg(pR) ≤ 1
2

(deg(g) + deg(h)) ≤ deg(p).

Of course, several right most paths could exist
between g and h and we have no way of pin-
pointing only them. Therefore we sum over all
possible gates p, satisfying the above condition.
Then, [g, h] =

∑
p[g, p][pL][pR, h].

Let us now analyze the three terms in the
product. Clearly, deg([g]) = deg(g) and
deg([g, h]) = deg(g)− deg(h).

1. deg([g, p]) = deg(g) − deg(p) ≤ 1
2(deg(g) −

deg(h)).

2. deg([pL]) ≤ deg(p) ≤ 1
2deg(g). Again,

deg(pL) ≤ deg(pL) + deg(pR) − deg(h) ≤
deg(g)− deg(h).

4

3. deg([pR, h]) = deg(pR) − deg(h) ≤
1
2(deg(g)− deg(h)).

We want all the children of [g, h] to be at most
half its degree, deg([g, h]). The problem is with
the child [pL], whose degree need not be bounded
above by 1

2deg([g, h]). To get around this, we ap-
ply the depth reduction algorithm once more to
[pL]. We have [pL] =

∑n
i=1[pL, xi][xi] and pL is a

plus gate. Let pL =
∑

j p
j
L with each pj

L being
a mult gate. Then, [pL, xi] =

∑
j [p

j
L, xi]. Ap-

plying the above analysis on [pj
L, xi], we get that

[pj
L, xi] =

∑
q[pj

L, q][qL][qR, xi] for certain gates q,
qL and qR (qL and qR are children of q and de-
gree of q satisfies the bounds as above). By our
analysis, for the troublesome left child we now
have deg(qL) ≤ 1

2pL ≤ 1
2deg([g, h]). Of course,

the bound holds easily for the q and qR as well
and therefore, we have:

[g, h] =
∑

p

n∑
i=1

∑
j

∑
q

[g, p][pj
L, q][qL][qR, xi][xi][pR, h]

where p, q satisfy the appropriate degree con-
straints. This completes the description of cir-
cuit D.

By introducing dummy plus gates in the cir-
cuit, we can ensure that plus and mult gates
alternate in D. Thus we get a fan-in 6 multi-
plication circuit D with depth at most 2 log d (of
which at most log d layers are of mult gates) and
size MO(1). All the properties that we had listed
of circuit D are satisfied. Let S be the size of
the circuit D, S = MO(1).

We construct a depth 4 circuit E from D.
Choose any ` such that ` ≤ d+d log n

d
log S and ` =

ω(1). Set t = 1
2 log6 `. Cut the circuit D in two

halves: the top one has exactly t mult layers

with the last layer being of mult gates and the
rest of layers belong to the bottom half. Let g1,
. . ., gk (k ≤ S) be the output gates in the bot-
tom layer. We can view the top layer as com-
puting a polynomial in k new variables, say, y1,
. . ., yk. Let this polyonmial be P0(y1, . . . , yk).
Let the polynomial computed at the gate gi be
Pi(x1, . . . , xn) for 1 ≤ i ≤ k. The polynomial
computed by the circuit D equals

P0(P1(x1, . . . , xn), . . . , Pk(x1, . . . , xn)).

We now obtain an upper bound on the degrees
of all these polynomials. Since the top layer has
exactly t mult layers and each mult gate has
fanin bounded by 6, the degree of P0 is bounded
by 6t. Since the degree goes down by at least a
factor of two across mult layers, the degree of
Pi is bounded by d

2t for 1 ≤ i ≤ k.
Express each Pi, 0 ≤ i ≤ k as a sum of prod-

ucts, thus each requiring a depth two circuit to
compute. Patching together these circuits, we
get a depth four circuit computing the polyno-
mial computed by D. Let this circuit be E. Let
us calculate the size of E.

Lemma 2.3 Polynomial P0 can be written as a
sum of at most

(
S+6t

6t

)
products, each of fanin

≤ 6t. Polynomials Pi, 1 ≤ i ≤ k, can be written

as a sum of at most
(n+ d

2t
d
2t

)
products, each of

fanin ≤ d
2t .

Proof . The number of monomials on n vari-
ables and degree k is

(
n+k

k

)
. The lemma now fol-

lows from the degree bound on each polynomial
and the number of variables they are defined on.

�

5

Therefore, the size of circuit E is bounded by(
S + 6t

6t

)
+ S ·

(
n+ d

2t

d
2t

)
=

(
S +
√
`√

`

)
+ S ·

(
n+ d

`δ

d
`δ

)
(δ = 1

2 log6 2)

≤ (2S)
√

` + S · 2O(d
`δ

+ d

`δ
(log n

d
+log `δ))

(since
√
` ≤ S and d

`δ
= o(n))

= 2O(
√

(d+d log n
d

) log S) + S · 2o(d+d log n
d

)

= 2o(d+d log n
d

).

Therefore, we have the following theorem.

Theorem 2.4 Let P (x1, . . . , xn) be a polyno-
mial of degree d = O(n) over the field F . If there
exists an arithmetic circuit of size 2o(d+d log n

d
) for

P then there exists a depth 4 arithmetic circuit of
size 2o(d+d log n

d
) for P . Further, the fanin of sec-

ond layer mult gates is bounded by `(n) where
` is any sufficiently slowly growing function in
ω(1) and the fanin of bottom layer mult gates
is bounded by o(d).

For multilinear polynomials, we have the fol-
lowing corollary.

Corollary 2.5 Let P (x1, . . . , xn) be a multilin-
ear polynomial of over the field F . If there ex-
ists an arithmetic circuit of size 2o(n) for P , then
there exists a depth 4 arithmetic circuit of size
2o(n) for P .

When the multilinear polynomial is special-
ized to the permanent we get,

Corollary 2.6 If every depth 4 arithmetic cir-
cuit for Permanent require exponential size, then
every arithmetic circuit for Permanent requires
exponential size.

3 Black-box Derandomization
of Identity Testing

An arithmetic circuit of size n is a low degree
circuit if the polynomial computed by the cir-
cuit has degree ≤ n. Low degree Identity Testing
is the problem of testing if a given low degree
circuit is zero. In this section, we relate the
black-box derandomization of depth four Iden-
tity Testing to low degree Identity Testing. A
black-box derandomization of low degree Iden-
tity Testing problem can be defined as follows
(it is a restriction of the definition given in [1] to
low degree circuits).

Definition 3.1 Let F be a field. Let C be a class
of low degree arithmetic circuits over F . Func-
tion f : N 7→ (F [y])∗ is a s(n)-pseudorandom
generator against class C of arithmetic circuits if

• f(n) = (pn
1 (y), pn

2 (y), . . . , pn
n(y)), pn

j (y) ∈
F [y] is computable in time polynomial in
s(n) and each pn

j is of degree bounded by
s(n).

• For any arithmetic circuit C ∈ C of
size n computing a polynomial of n vari-
ables over F , C(x1, x2, . . . , xn) = 0 iff
C(pn

1 (y), pn
2 (y), . . . , pn

n(y)) = 0.

Given an s(n)-pseudorandom generator f
against C, one can solve the Identity Testing
problem (for circuits from the class C) determin-
istically in time sO(1)(n) by simply plugging in
the polynomial pn

j for xj and evaluating the re-
sulting (univariate) polynomial. A complete de-
randomization is obtained when s(n) is a poly-
nomial in n. We call such generators optimal
pseudorandom generators.

Remark. The above definition of pseudoran-
dom generators, at a first glace, may appear

6

different from the one in boolean settings.
Borrowing from boolean settings, one can
define a s(n)-hitting set generator against
arithmetic circuits via function g : N×N 7→
F ∗, g(n, t) = (at

1, a
t
2, . . . , a

t
n) such that for

any circuit C of size n on n inputs, C com-
putes a non-zero polyonmial iff there exists
a t, 1 ≤ t ≤ s(n) such that C(at

1, . . . , a
t
n) 6=

0. It is, however, straightforward to see
that the two definitions are equivalent: let
pn

i (y) be the polyonmial of degree ≤ s(n)
such that pn

i (t) = at
i for all 1 ≤ t ≤

s(n). This gives a pseudorandom genera-
tor of our definition. Conversely, let f be
a s(n)-pseudorandom generator of our def-
inition. Define g(n, t) = (pn

1 (t), . . . , pn
n(t))

for 1 ≤ t ≤ 1 + ns(n). Then g is a
(1+ns(n))-hitting set generator. (If for cir-
cuit C of degree n, C(pn

1 (y), . . . , pn
n(y)) 6= 0

then C(g(n, t)) 6= 0 for some t ≤ 1 + ns(n)
since C(pn

1 (y), . . . , pn
n(y)) is a non-zero poly-

nomial of degree ≤ n · s(n).

Theorem 3.2 Consider the class of depth 4
arithmetic circuits over F with fanin of second
layer mult gates bounded by O(`(n)) (for any
unbounded function `) and the fanin of bottom
layer mult gates bounded by O(log n). If there
is an optimal pseudorandom generator against
this class of circuits then the low degree Identity
Testing problem over F can be solved determin-
istically in time nO(log n).

Proof . Let f be an optimal pseudorandom gen-
erator against the class of depth 4 circuits over
F defined above. It was shown in [1] that such a
pseudorandom generator yields a family of multi-
linear polynomials {qm}m≥1 such that qm is over
m variables, is computable in time 2O(m), and re-
quires depth 4 circuits of size 2Ω(m), with fanins

of second and bottom layer mult gates bounded
by O(`(2m)) and O(m) respectively, to compute.
By Theorem 2.4, polynomial qm requires expo-
nential sized circuits (of any depth) to compute.
Now, we can construct an algorithm that deran-
domizes low degree Identity Testing over F in
time nO(log n) using the polynomial q as shown
by the lemma below. �

Lemma 3.3 Let {qm}m≥1 be a multilinear poly-
nomial family over F computable in exponential
time and that cannot be computed by subexpo-
nential sized arithmetic circuits. Then the low
degree Identity Testing problem over F can be
solved in time nO(log n).

Proof . The proof is along the lines of the
proof of Lemma 7.6 in [9]. Let C be any cir-
cuit over F of size n computing a polynomial
of degree ≤ n. We wish to test if C compute
the zero polynomial. Let S1, S2, . . ., Sn be
subsets of [1, c log n] (for a suitable constant c)
such that |Si| = d log n (for a suitable d < c)
and |Si ∩ Sj | ≤ log n (for i 6= j). This fam-
ily of sets is the Nisan-Wigderson design [13]
and can be efficiently constructed. For a tu-
ple of variables (x1, x2, . . . , xc log n), denote by
(x1, x2, . . . , xc log n)Si the tuple obtained by re-
taining only those variables whose indices occur
in Si (the variables are always arranged in in-
creasing order of index). Without loss of general-
ity, we can assume that C has n inputs z1, . . ., zn.
Replace zi by pi = qd log n(x1, x2, . . . , xc log n)Si

for each i. We now claim that if C is zero after
substitution then it is zero without substitution
as well.

Suppose not. So C(z1, . . . , zn) 6= 0 and
C(p1, . . . , pn) = 0. Then there must exist an
index j such that C(p1, . . . , pj , zj+1, . . . , zn) = 0
and C(p1, . . . , pj−1, zj , . . . , zn) 6= 0. Randomly

7

fix values of variables zj+1, . . ., zn as well as xi’s
not occuring in the polynomial pj in the last cir-
cuit. The circuit will still compute a non-zero
polynomial with high probability. Fix value to
the above variables that keep the circuit non-
zero. Now replace each pi, i < j, by a sum of
product form. Since all but log n variables of pi

are fixed, the size of this form is bounded by n.
After replacement, we get a circuit of size ≤ n2

over variables (x1, . . . , xc log n)Sj and zj that is
non-zero but becomes zero on substituting zj by
pj . Hence zj − pj divides the polynomial com-
puted by the new circuit. We now use the mul-
tivariate polynomial factorization algorithm [10]
to compute this factor. The circuit computing
the factor has size ne for some constant e in-
dependent of d. This gives us a circuit of size
ne + n2 that computes polynomial pj which is
qd log n. Choosing a suitable d yields a contradic-
tion on the hardness of qd log n.

Therefore, if C was non-zero to start with,
it continues to be non-zero even after the sub-
stitution. Now express C as sum of products
using brute-force. Since C after substitution
computes a degree O(n log n) polyonmial over
O(log n) variables, it will have at most nO(log n)

terms. This gives an nO(log n) time algorithm for
testing if C is a zero. �

Theorem 3.2 is suboptimal. It is an interesting
open question to improve it to obtain polynomial
time algorithm instead of nO(log n).

References

[1] M. Agrawal. Proving lower bounds via
pesudo-random generators. In Proceedings
of the FST&TCS, pages 96–105, 2005.

[2] E. Allender, J. Jiao, M. Mahajan, and
V Vinay. Non-commutative arithmetic
circuits: Depth reduction and size lower
bounds. Theoretical Computer Science,
209:47–86, 1998.

[3] S. A. Cook. A Taxonomy of Problems with
Fast Parallel Algorithms. Information and
Control 64(1-3):2–21, 1985.

[4] C. Damm. DET=L#l. Technical Report
Informatik-preprint 8, Fachbereich Infor-
matik der Humboldt Universität zu Berlin,
1991.

[5] Z. Dvir, A. Shpilka, A. Yehudayoff.
Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. In Symposium of
Theory of Computing 741–748, 2008.

[6] D. Grigoriev and A. Razborov. An Ex-
ponential Lower Bound for Depth 3 Arith-
metic Circuits. In Symposium on Theory of
Computing 577–582, 1998.

[7] D. Grigoriev and A. Razborov. Exponen-
tial lower bounds for depth 3 arithmetic
circuits in algebras of functions over finite
fields. Applicable Algebra in Engineering,
Communication and Computing, 10(6):467–
487, 2000.

[8] M. Jerrum and M. Snir. Some exact com-
plexity results for straight-line computa-
tions over semirings. J. ACM, 29(3):874–
897, 1982.

[9] Valentine Kabanets and Russell Impagli-
azzo. Derandomizing polyonmial identity
tests means proving circuit lower bounds.
Computational Complexity, 13:1–46, 2004.

8

[10] E. Kaltofen. Factorization of polynomials
given by straight-line programs. In S. Mi-
cali, editor, Randomness and Computation,
375–412. JAI Press, 1989. Volume 5 of Ad-
vances in Computing Research.

[11] Z. S. Karnin, A. Shpilka. Black Box Polyno-
mial Identity Testing of Generalized Depth-
3 Arithmetic Circuits with Bounded Top
Fan-In. In IEEE Conference on Computa-
tional Complexity 280–291, 2008.

[12] Neeraj Kayal and Nitin Saxena. Polynomial
identity testing for depth 3 circuits. Compu-
tational Complexity, 16(2):115–138, 2007.

[13] N. Nisan and A. Wigderson. Hardness
vs. randomness. J. Comput. Sys. Sci.,
49(2):149–167, 1994.

[14] N. Nisan and A. Wigderon. Lower bounds
on arithmetic circuits via partial deriva-
tives. Computational Complexity, 6:217–
234, 1996.

[15] Ran Raz. Multi-linear formulas for per-
manent and determinant and of super-
polynomial size. In Proceedings of Annual
ACM Symposium on the Theory of Comput-
ing, pages 633–641, 2004.

[16] Ran Raz, Amir Yehudayoff. Multilin-
ear Formulas, Maximal-Partition Discrep-
ancy and Mixed-Sources Extractors. ECCC
TR07-085, 2007.

[17] Nitin Saxena. Diagonal Circuit Identity
Testing and Lower Bounds. In Proceed-
ings of the International Colloquium on
Automata, Languages and Programming,
LNCS 5125, pages 60–71, 2008.

[18] A. Shpilka and A. Wigderson. Depth-3
arithmetic formulae over fields of character-
istic zero. In Proceedings of the Conference
on Computational Complexity, pages 79–96,
1999.

[19] S. Toda. Counting problems compu-
tationally equivalent to the determinant.
manuscript, 1991.

[20] L. Valiant, S. Skyum, S. Berkowitz, and
C. Rackoff. Fast parallel computation of
polynnomials using few processors. SIAM
Journal on Computing, 12:641–644, 1983.

[21] L. G. Valiant. The Complexity of Comput-
ing the Permanent. Theor. Comput. Sci.,
8:189–201, 1979.

[22] L. G. Valiant. Negation can be expo-
nentially powerful. Theor. Comput. Sci.,
12:303–314, 1980.

[23] L. G. Valiant. Exponential Lower Bounds
for Restricted Monotone Circuits. In Sym-
posium on Theory of Computing, 110–117,
1983.

[24] V Vinay. Counting auxiliary pushdown au-
tomata and semi-unbounded arithmetic cir-
cuits. In IEEE Proceedings of the Structure
in Complexity Theory Conference, pages
270–284. 1991.

9

