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Nearly Tight Low Stretch Spanning Trees
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Abstract

We prove that any graphG with n points has a distributionT over spanning trees such that for any edge(u, v)
the expected stretchET∼T [dT (u, v)/dG(u, v)] is bounded byÕ(log n). Our result is obtained via a new approach
of building “highways” between portals and a new strong diameter probabilistic decomposition theorem.

1 Introduction

Let G = (V,E) be a finite graph. For any subgraphH = (V ′, E′) of G let dH be the induced shortest path metric
with respect toH . In particular, for any edge(u, v) ∈ E and any spanning treeT of G, dT (u, v) denotes the shortest
path distance betweenu andv in T .

Given a distributionT over spanning trees ofG, let stretchT (u, v) = ET∼T
[

dT (u,v)
dG(u,v)

]

and letstretchT (G) =

max(u,v)∈E stretchT (u, v). Let stretch(n) = maxG=(V,E)||V |=n infT {stretchT (G)}.
Initial results were obtained by Alon, Karp, Peleg and West [2] showing that

Ω(logn) = stretch(n) = exp(O(
√
logn log logn)). The upper bound was significantly improved toO((log n)2 log logn)

by Elkin, Emek, Spielman and Teng [10]1. For the class of Series-Parallel graphs Emek and Peleg [11] obtained a
bound ofΘ(logn). The main result of this paper is a new upper bound onstretch(n) that is tight up to polylogarithmic
factors2.

Theorem 1.
stretch(n) = O

(

logn · log logn · (log log logn)3
)

Remark 1. For ease of presentation we first show a slightly weaker boundof

stretch(n) = O
(

logn · (log logn)2 · log log log n
)

,

and prove the tighter bound inAppendix B

Our result may be applied to improve the running time of the Spielman and Teng [16] solver for sparse symmetric
diagonally dominant linear systems.
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1In fact these result apply to a similar notion,avg − stretch(n) = maxG=(V,E)||V |=n infT { 1
|E|

P

(u,v)∈E
dT (u,v)
dG(u,v)

} which is equivalent

up to a constant factor tostretch(n).
2[9] announcedstretch(n) = O((logn)2), but this claim was subsequently withdrawn by the authors
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1.1 Techniques

We extend the star-decomposition technique of Elkinet. al.[10]. A star-decomposition of a graph is a partition of the
vertices into clusters that are connected into a star: a central cluster is connected to every other cluster by a single
edge. As in [10] given a subgraph over a clusterX , the central clusterX0 is formed by cutting a ball with radius
r0 around a centerx0 and the remaining clustersX1, X2, . . . , which are called cones, are formed iteratively. Let
Yj = X \ ⋃

0≤k≤j Xk. The coneXj is created by choosing an edge(yj , xj) such thatyj ∈ X0, xj ∈ Yj−1 and
definingXj as the cone with radiusrj aroundxj from the clusterYj−1, as all the points whose distance tox0 going
through the edge(xj , yj) does not increase too much relatively to the shortest path distance, formallyXj = {x ∈
Yj−1 | dX(x0, yj)+dX(yj , xj)+dYj−1(xj , x)−dX(x0, x) ≤ rj}. Let radx0(X) = maxx∈X d(x0, x), then typically
the radius of the central ball is chosen so thatr0 ≈ radx0(X)/c for a constantc. An important parameter of a star-
decomposition is the radius of the cone. We say that the star-decomposition has parameterǫ if for any j ≥ 1, the
radiusrj of the coneXj is at mostǫ · radx0(X).

Applying star-decompositions in a recursive manner induces a spanning treeT . For a pointu denote byX(i) the
cluster that containsu in theith recursive invocation of the hierarchical star-decomposition algorithm.

TheO(log2 n log logn) bound of [10] is obtained by choosingǫ ≈ 1/ logn and showing:

1. O(1) radius stretch. For any clusterX induced by the recursive invocation of the hierarchical star-decomposition
algorithm, and anyz ∈ X , dT (x0, z) = O(radx0(X)).

2. O((log n · log logn)/ǫ) decomposition stretch. For any edge(u, v),
∑

i Pr[(u, v) is separated when star-decomposingX(i)] · diam(X(i)) = O(log n log logn)/ǫ.

Combining these two properties yields their result, noticing that if the end points of an edge(u, v) fall into different
clusters in the partitioning ofX(i) thendT (u, v) can be bounded bydT (u, x0) + dT (v, x0) = O(diam(X(i))).

Good radius stretch is obtained by observing that in each recursive application of the star partition the radius of a
cluster is stretched by at most1 + 1/ logn, and since there areO(log n) scales the total radius stretch is a constant.
Good decomposition stretch is obtained by using a version ofthe decomposition of [4, 8].

Better radius stretch. In our scheme we perform a star-decomposition with a parameter ǫ ≈ 1/ log logn, this
significantly improves the decomposition stretch, by a factor of ≈ logn/ log logn. A naive attempt to bound the
radius stretch, by1 + 1/ log logn in each scale, will result in super logarithmic radius stretch over all scales.

We introduce a new approach to bound the radius stretch. We arrange all the points ofX in a queueQ =
(z1, z2, . . . , zn), and bound the distancedT (x0, zi) as a function ofi by building “highways” –low stretch paths.
Roughly speaking, we obtain a bound ofdT (x0, zi) = O(log log i) · radx0(X). The core observation is that by
choosing where to build the first cone and passing this information into the recursion, one can obtain a shortest path
“highway” betweenx0 and the first pointz1, such that the distance betweenx0 andz1 in the tree will beexactlythe
original distance in the graph. The challenge is to use this observation to maintain “highways” – low stretch paths –
betweenx0 andall the points. Specifically, we obtain

1. O(log logn) radius stretch. For any clusterX , and anyz ∈ X , dT (x0, z) = O(log log n)radx0(X).

Better decomposition stretch. A relaxation of the spanning tree problem suggested by Bartal [3] is to consider a
distribution of dominating tree metrics (in fact of ultrametrics) that do not necessarily span the graph. This relaxation
has proven applicable for approximation algorithms, online problems and has contributed to recent solutions for the
spanning tree problem (i.e. [10]). Initially O(log2 n) approximation was obtained in [3] based on the truncated
exponential distribution approach of [14]. This bounded was subsequently improved toO(log n log logn) in [4] and
[8]. Finally an optimalO(log n) approximation was obtained by [12] based on the cutting scheme of [7]. Subsequently
anO(log n) bound was also obtained using a truncated exponential distribution approach [5, 1].

However, all previous schemes that obtained the optimalO(log n) bound for the metric problem were insufficient
for the spanning tree problem. Given a graphG = (X,E), a sequencex1, x2, . . . of cluster centers and a sequence
r1, r2, . . . of radiuses we can define a weak diameter decomposition by definingWi = BX(xi, ri) \

⋃

j<i Wj . We
can define a strong diameter decomposition by definingCi = BX\

S

j<i Cj
(xi, ri). Observe that in a strong diameter
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decomposition, for any nonempty clusterCi, we have thatxi ∈ Ci andCi is a connected component ofG, this
may not be the case for weak diameter decompositions. Indeedthe techniques of [12, 5, 1] provide a weak diameter
decomposition. It was not clear how to extend these results to strong diameter decompositions that are necessary for
star-decompositions. We show how to obtain a strong diameter hierarchical decomposition theorem that obtains an
optimal bound in the following sense:

2. O(log n log(1/ǫ)/ǫ) decomposition stretch.For any edge(u, v),
∑

i Pr[(u, v) is separated when star-decomposingX(i)] · diam(X(i)) = O(log n log(1/ǫ)/ǫ).

As in [5, 1], our decomposition is based on the truncated exponential distribution with a parameter depending on
the local growth rate of the space. The main technical difficulty arises since the spacechangesafter each cluster is
cut (the metric is derived from a graph, and some nodes and edges are removed at every cut). The idea is to define
the local growth rate with respect to the current metric, andto show two things: that the expected sum of all growth
rates (which are random variables) over all the scales telescopes ton, and that the probability to be cut is appropriately
bounded in each scale. Dealing with the randomly changing graph raises some additional subtleties in the proof. Our
strong diameter hierarchical decomposition theorem may beof independent interest.

1.2 Applications

One of the main applications of low stretch spanning trees issolving sparse symmetric diagonally dominant linear
systems of equations. This approach was suggested by Boman and Hendrickson [6] and later improved by Spielman
and Teng [16]. Spielman and Teng showed an algorithm that for such ann-by-n matrixA with m non-zero entries and
ann-dimensional vectorb, if ǫ > 0 is the precision of the solution then the algorithm findsx′ such that‖x−x′‖A ≤ ǫ

whereAx = b, and the running time isO
(

m
(

logO(1) m+ log(1/ǫ)
)

+ n · avg− stretch(n) · log(1/ǫ)
)

. Improv-

ing the bound requires improvement of the second element, and we improve it by roughly an additionalO(log logn)
factor over [10]. Actually, if the running time of our construction is reduced, we can obtain anO(log n) improvement.
For planar graphs we obtainO(n · log2 n). See details inCorollary 6.

The minimum communication cost spanning treeproblem introduced in [13], in which one is given a weighted
graphG = (V,E,w) and a matrixA = axy | x, y ∈ V , the objective is to find a spanning tree minimizingc(T ) =
∑

x,y∈V axy · dT (x, y). [15] showed anO(2
√
logn·log logn) approximation ratio based on [2], and [10] improved to

O(log2 n · log logn). Our results can be used to obtainO(log n · log logn(log log logn)3) approximation ratio.
See [10] for details about more applications.

1.3 Structure of the Paper

In Section 2we describe a star-decomposition framework, that for any unweightedn point graphG induces a tree
such thatdiam(T ) ≤ O(diam(G) · log log n). In Section 3we describe a distribution on star-partitions that fol-
lows the framework ofSection 2. We analyze the expected stretch of an edge and prove the bound of stretch(n) =
O(

(

logn · (log logn)2 · log log logn
)

. In Appendix Awe discuss briefly how to extend the result for weighted graphs.
In Appendix Bwe show the tighter result stated inTheorem 1.

2 Highways

Let G = (V,E) be a finite graph. For anyX ⊆ V let dX : X2 → R+ be the shortest path metric induced by the
subgraph onX . Let diam(X) = maxy,z∈X{dX(y, z)}. Forx ∈ X let radx(X) = maxy∈X dX(x, y), we omit the
subscript when clear from context (note thatdiam(X)/2 ≤ rad(X) ≤ diam(X)). For anyx ∈ X andr ≥ 0 let
BX,d(x, r) = {y ∈ X | dX(x, y) ≤ r}. Let c = 216 be a constant. We use the uppercase letterQ to denote aqueue,
a sequence of points. Given a pointx not in the queue we say that we enqueuex intoQ meaning that we addx as the
last element of the sequence and given a queueQ, the dequeue operation removes and returns the first elementof the
sequence.
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Definition 1 (cone metric3). Given a graphG = (V,E), subsetsY ⊂ X ⊆ V , pointsx ∈ X \ Y , y ∈ Y define the
cone-metricρ = ρ(X,Y, x, y) : Y 2 → R+ asρ(u, v) = |(dX(x, u)− dY (y, u))− (dX(x, v) − dY (y, v))|.

Note that a ballBY,ρ(y, r) in the cone-metricρ = ρ(X,Y, x, y) is the set of all pointsz ∈ Y such thatdX(x, y) +
dY (y, z)− dX(x, z) ≤ r.

Hierarchical-Star-Partition algorithm. SeeFigure 1for the algorithm. Given an unweighted graphG = (V,E),
create a spanning treeT = (V,E′) by choosing somex0 ∈ V , lettingQ be an arbitrary ordering ofV \ {x0} and
calling: hierarchical-star-partition(V, x0, Q).

T = hierarchical-star-partition(X,x0, Q):

1. If radx0(X) ≤ 16c returnBFS(X).

2. (X0, . . . , Xm, (y1, x1), . . . , (ym, xm), Q0, Q1, . . . , Qm) = star-partition(X,x0, Q);

3. For eachi ∈ [0, . . . ,m]:

4. Ti = hierarchical-star-partition(Xi, xi, Qi);

5. LetT be the tree formed by connectingT0 with Ti using edge(yi, xi) for eachi ∈ [1, . . . , m];

Figure 1:hierarchical-star-partition algorithm

Star-Partition algorithm. SeeFigure 2for ourstar-partition algorithm. We highlight the main differences
of our algorithm from that of [10]. In addition toX, x0 it receives as input an ordering of the points inX , implemented
as a queue data structure and denoted byQ. In addition to returning a star decompositionX0, X1, . . . , Xm it returns
for each0 ≤ j ≤ m an ordering of the points inXj , implemented as a queue data structure and denoted byQj.

Since as noted above the trivial radius bound (loosing(1 + ǫ) in every scale) does not work anymore we attempt
to directly bounddT (x0, z) for all z ∈ X . The arrangement ofX \ {x0} in a queueQ = (z1, . . . , zn−1) determines
“how hard” we try to give a tight bound for the pointzi - roughly speaking the smaller value ofi means the harder we
try to give a better bound ondT (x0, zi). The star partition algorithm therefore changes to try hardest for the first point
z1, and indeed by choosing the first portal edge(y1, x1) on a shortest path toz1 and keepingz1, y1 in the head of the
recursive queues we obtain a “highway” fromx0 to z1, i.e. preserving the original distance. Surprisingly, this small
change is enough to give a good bound ondT (x0, zi) for all i > 1, and we obtaindT (x0, zi) = O(log log i)radx0(X).
The intuition is that since every cluster contains less points,zi advances in the recursive queues, and when it becomes
the first we get a “highway” to it. For this intuition to work one must delicately define the ordering of the queues
Q0, . . . , Qm for the clustersX0, . . . , Xm created by the star partition algorithm. The main difficultyis definingQ0,
as the portalsyj play a dual part - we need to maintain their original positionin Q and also make sure that the tree
distance to them is small enough: as it determines the distance fromx0 to all the points inXj .

Supposezi ∈ Yj for somei > 1. By Claim 2there is an inherent loss of a1+ǫ factor due to star-partition algorithm.
Hence it is not sufficient for the inductive argument to simply obtain a bound ofdT (x0, yj) = O(log log i)radx0(X0)
in the ballX0 and dT (xj , zi) = O(log log i)radxj

(Xj) in the coneXj . We must “gain” inductively either in
dT (x0, yj) (the ball part of the path) or indT (xj , zi) (the cone part of the path). This is done by choosing the queues
in the following manner: Given a star decompositionX0, X1, . . . , Xm we create the queueQj for j > 0 simply as the
restriction ofQ onXj \ {xj}. The queueQ0 is the created by first adding eitherz1 or the portaly1 which is chosen
on a shortest path toz1, thus making sure the distance fromx0 to z1 is preserved in the recursion. Then interleaving
three different queuesQ(ball)

0 , Q
(fat)
0 , Q

(reg)
0 .

• Q
(ball)
0 is the restriction ofQ onX0. This queue provides the required bound ondT (x0, zi) whenzi ∈ X0.

• Q
(reg)
0 is a queue of portalsyj ordered by the minimal point ofQ that their conesXj contains. When a cone

contains relatively few point we “gain” in the cone part of the path tozi. This queue guarantees that for any
zi ∈ Xj the “central ball” part of the path tozi is not stretched too much.

3In fact, the cone-metric is a pseudo-metric.
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• Q
(fat)
0 is a queue of portalsyj that lead to cones that contain “many” points relative to theorderingQ of the

points inXj . When a cone is “fat” we cannot gain in the cone part, this queue guarantees that we gain in the
ball part.

The exact way these three queues are created is detailed in Line5 of Figure 2.

(X0, . . . , Xm, (y1, x1), . . . , (ym, xm), Q0, Q1, . . . , Qm) = star-partition(X,x0, Q):

1. Letj = 2; Denote the (ordered) elements ofQ by Q = (z1, z2, . . . , zk); Let ǫ = ǫ(X) ∈ (0, 1
170c

];

2. Creating the ball X0:

(a) Chooser0 uniformly at random from the interval[1/(16c), 1/(8c)];

(b) LetX0 = B(x0, r0 · radx0(X)); Let Y0 = X \X0;

3. Creating the first cone X1:

(a) If z1 ∈ Y0 let z = z1 otherwise letz ∈ Y0 be an arbitrary point. Let(y1, x1) be an edge such that
y1 ∈ X0, x1 ∈ Y0 anddX(x0, z) = dX(x0, y1) + dX(y1, x1) + dY0(x1, z) (i.e. an edge on a
shortest path fromx0 to z);

(b) Letρ = ρ(X,Y0, x0, x1) be the cone-metric;

(c) Chooser1 uniformly at random from the interval[ǫ/4, ǫ/2];

(d) LetX1 = B(Y0,ρ)(x1, r1 · radx0(X)); Let Y1 = Y0 \X1;

4. Creating the remaining cones X2, . . . , Xm:

(a) WhileYj−1 6= ∅ :

i. Let (xj , yj , rj) = cone-cut(X,x0, X0, Yj−1, ǫ); (has the property thatrj ≤ ǫ/2)

ii. Let ρ = ρ(Yj−1 ∪X0, Yj−1, x0, xj);

iii. Let Xj = B(Yj−1 ,ρ)(xj , rj · radx0(X)); Yj = Yj−1 \Xj ;

iv. Let j = j + 1;

5. Creating the queues Q
(ball)
0 , Q

(fat)
0 , Q

(reg)
0 , Q1, . . . , Qm:

(a) Fori = 1, . . . , |X| − 1 :

i. If zi ∈ X0 then enqueuezi intoQ
(ball)
0 ;

ii. Otherwise letℓ ≥ 1 be such thatzi ∈ Xℓ:

• If zi 6= xℓ then enqueuezi intoQℓ.

• If yℓ /∈ Q
(reg)
0 then enqueueyℓ intoQ

(reg)
0 .

• If |Xℓ ∩ {z1, . . . , zi}| >
√
i andyℓ /∈ Q

(fat)
0 then enqueueyℓ intoQ

(fat)
0 .

6. Creating the queue Q0:

(a) DenoteQ(ball)
0 = z11 , . . . , z

1
m1

, Q(fat)
0 = z21 , . . . , z

2
m2

, Q(reg)
0 = z31 , . . . , z

3
m3

.

(b) CreateQ0 by interleaving the three queuesQ(ball)
0 , Q

(fat)
0 , Q

(reg)
0 such that:

• If z1 ∈ X0 thenz1 is the first element ofQ0. Otherwisey1 is the first element ofQ0.

• For anyx ∈ X, ℓ ∈ {1, 2, 3}, 1 ≤ i ≤ n if x = zℓi thenx is in the first3i elements ofQ0.

Figure 2:star-partition algorithm

2.1 Bounding the radius stretch

In this part we show that the radius stretch induced by thehierarchical-star-partition algorithm is at
mostO(log logn).
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The following two claims imply that thestar-partition algorithm on a clusterX induces a partition onX
and that radial distances are stretched by a most1 + ǫ. These claims are essentially proven in [10] we provide a proof
for completeness.

Claim 1. For any graphX , x0 ∈ X , j > 0 let Yj−1 ⊆ X be the unassigned points ofX after creatingj clusters
X0, . . . , Xj−1 using thestar-partition algorithm, then for anyz ∈ Yj−1 all the shortest paths fromz to x0 are
fully contained inYj−1 ∪X0, in particular

dYj−1∪X0(x0, z) = dX(x0, z).

Proof. Let ∆ = radx0(X). LetPz,x0 be a shortest path and assume by contradiction thatPz,x0 * Yj−1 ∪X0, so let
1 ≤ i ≤ j − 1 be the minimali such that there existsu ∈ Pz,x0 andu ∈ Xi. Let xi be the portal to the coneXi. By
Definition 1sinceu ∈ Xi it must be that in the metricd′ = dX0∪Yi−1

d′(u, x0) + ri ·∆ ≥ d′(u, xi) + d′(xi, x0).

Sinceu lies on a shortest path fromz to x0, the minimality ofi suggests that this shortest path is fully contained in
Yi−1 ∪X0 thusd′(z, x0) = d′(z, u) + d′(u, x0), and conclude that

d′(z, x0) + ri ·∆ = d′(z, u) + d′(u, x0) + ri ·∆ ≥ d′(z, u) + d′(u, xi) + d′(xi, x0) ≥ d′(z, xi) + d′(xi, x0),

hencez should be inXi, contradiction.

Claim 2. Let (X0, . . . , Xm, (y1, x1), . . . , (ym, xm), Q0, Q1, . . . , Qm) = star-partition(X, x0, Q) then for
any1 ≤ j ≤ m

radx0(X0) + d(yj , xj) + radxj
(Xj) ≤ (1 + ǫ)radx0(X),

Proof. Let ∆ = radx0(X). Let β be such thatradx0(X0) = β ·∆, let d′ = dX0∪Yj−1 , letxj be the portal ofXj and
ρ = ρ(X0 ∪ Yj−1, Yj−1, x0, xj) be the cone-metric. Takez ∈ Xj as the farthest point fromxj (with respect tod′),
take any shortest pathPxj ,z fromxj to z and separate it into consecutive segmentsxj = u0, v0, u1, v1, . . . , uk, vk = z
such that for any0 ≤ i ≤ k, ρ(ui, vi) = 0, i.e.

d′(x0, ui)− d′(xj , ui) = d′(x0, vi)− d′(xj , vi)

and(vi, ui+1) ∈ E (note that it could be thatui = vi). The definition of cone-metric suggests thatk ≤ ri · ∆, as
otherwisez /∈ BYj−1,ρ(xj , rj ·∆) = Xj .

SincePxj ,z is a shortest path we have for all0 ≤ i ≤ k thatd′(xj , ui) + d′(ui, vi) = d′(xj , vi), therefore

k
∑

i=0

d′(x0, vi) =

k
∑

i=0

(d′(x0, ui) + d′(ui, vi)). (1)

Claim 1suggests thatdX(x0, z) = d′(x0, z), hence

∆ ≥ dX(x0, z) = d′(x0, z) = d′(x0, vk)

=
k−1
∑

i=0

(d′(x0, ui) + d′(ui, vi)− d(x0, vi)) + d′(x0, uk) + d′(uk, vk)

≥
k−1
∑

i=0

(d′(x0, ui) + d′(ui, vi)− (d′(x0, ui+1) + d′(vi, ui+1))) + d′(x0, uk) + d′(uk, vk)

= d′(x0, u0)− d′(x0, uk) +
k−1
∑

i=0

(d′(ui, vi)− 1) + d′(x0, uk) + d′(uk, vk)

= (β∆+ 1)− k +

k
∑

i=0

d′(ui, vi)

6



The second line follows from (1), the third from the fact thatd′(x0, vi) ≤ d′(x0, ui+1) + d′(ui+1, vi), the fourth since
the sum telescopes andd′(vi, ui+1) = 1, and the fifth sinced′(x0, u0) = d′(x0, xj) = d′(x0, yj) + d′(yj , xj) =
radx0(X0) + 1 = β∆+ 1.

Therefore

radxj
(Xj) = d′(xj , z) =

k
∑

i=0

d′(ui, vi) +

k−1
∑

i=0

d′(vi, ui+1) ≤ (∆− β∆+ k − 1) + k ≤ (1− β)∆ + 2rj∆− 1,

(recall thatk ≤ rj∆). And now sincerj ≤ ǫ/2,

radx0(X0) + d(yj , xj) + radxj
(Xj) ≤ β∆+ 1 + (1− β)∆ + ǫ∆− 1 = (1 + ǫ)∆.

Corollary 3. For any0 ≤ j ≤ m, radxj
(Xj) < (1 − 1

20c)radx0(X)

Proof. The corollary is immediate forX0 by the construction, forj > 0: as radx0(X0) ≥ radx0(X)/(16c) and
ǫ ≤ 1/(170c) usingClaim 2

radxj
(Xj) < (1 + ǫ)radx0(X)− radx0(X0) ≤ (1− 1/(20c))radx0(X).

Lemma 4. LetX ⊆ V be a connected component ofG(V,E). Letx0 ∈ X andQ = (z1, . . . , z|X|−1) be any ordering
ofX\{x0}. LetT be any spanning tree ofG returned by the algorithmhierarchical-star-partition(X, x0, Q)
with parameterǫ = ǫ(X) = 1

170c log log(|X|) , then

dT (x0, zi) ≤







dX(x0, zi) i = 1
i · radx0(X) 1 < i < c

c · log log i · radx0(X) otherwise

(wherec = 216)

Proof. The proof is by induction on the radius ofX . In the base case whenradx0(X) ≤ 16c create a breadth first tree
centered inx0, and since in such a tree for everyz ∈ X , dX(x0, z) = dT (x0, z) the claim holds. Now we turn to the
inductive step. Note thatCorollary 3guarantees that for allj = 0, . . . ,m we have0 ≤ radxj

(Xj) < radx0(X).
The main idea of the proof is to consider a single applicationof the star-partition algorithm, partitioningX into

X0, X1, . . . , Xm. Assuming thatzi ∈ Xj the path betweenx0 to zi will be the path going through the edge(yj , xj).
Then use the induction hypothesis on the sub-pathx0, yj in X0 and the sub pathxj , zi in Xj . Since byClaim 2 the
radius may increase by a factor of at most1+ ǫ, we need to “gain” in one of the two sub paths. This “gain” willoccur
since our construction guarantees that either the positionof zi in the queue ofXj will improve or the position ofyj in
X0 will improve, thus the induction hypothesis will give the required bounds.

There are three main cases to consider, wheni = 1, i < c andi ≥ c. The casei = 1 is simple. The case1 < i < c
subdivides into three more cases:

1. The first case iszi ∈ X0. This case is relatively straightforward.

2. The second case is that the firsti points of the queue are all inX1. Here we gain in the central ball because the
portaly1 leading toX1 will be the first element inQ0.

3. The remaining case is that not all of the firsti points are inX1, then there are at mosti−1 points in the coneXj

amongz1, . . . , zi, so by the construction ofQj, we gain just enough in the cone (because the bound that needs

to be shown is weak - linear ini) andQ(reg)
0 guarantees that we do not lose too much in the central ball.

The interesting case is wheni ≥ c, this last case also subdivides into three more cases:
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1. One first is thatzi ∈ X0. Again. this case is relatively straightforward and uses the construction ofQ(ball)
0 .

2. The second case is thatzi ∈ Xj andXj is a “thin” cone - contains less than
√
i of the firsti points. Here we

gain in the cone because the position ofzi in Qj is at most
√
i andQ(reg)

0 guarantees that we do not lose too
much in the central ball.

3. The third case is thatzi ∈ Xj andXj is a “fat” cone - contains more than
√
i of the firsti points. Here we gain

in the central ball, using the construction ofQ
(fat)
0 andClaim 5to show that the portalyj leading to the cone is

in position≤ i9/10 in Q0.

We continue with the formal proof of the lemma, according to the three main cases.

Case 1: In this casei = 1. Note thatz1 ∈ X0 ∪ X1. If z1 ∈ X0 then by the constructionz1 is going to be the
first in Q0 therefore by the induction hypothesis onX0 it follows thatdT (x0, z1) ≤ dX(x0, z1). If on the other hand
z1 ∈ X1, then again from the construction the pointy1, which was chosen such thaty1, x1 are on a shortest path from
x0 to z1, will be the first inQ0, andz1 will be the first inX1, so by inductiondT (x0, z1) = dT (x0, y1)+dT (y1, x1)+
dT (x1, z1) ≤ dX(x0, y1) + dX(y1, x1) + dX(x1, z1) = dX(x0, z1).

Case 2: The second case to consider is when1 < i < c.

1. First assume thatzi ∈ X0. Thenzi will be at mosti in the ordering ofQ(ball)
0 and hence at most3i in the

ordering ofQ0. By the induction hypothesis onX0 : dT (x0, zi) ≤ c log log(3i) · radx0(X0) ≤ i · radx0(X),
using thatradx0(X0) ≤ radx0(X)/(8c), and thatlog log(3i) ≤ 2i.

2. Now assume that{z1, . . . , zi} ⊆ X1. As y1 is the first inQ0, by the induction hypothesis onX0 andX1 we
have thatdT (x0, y1) ≤ dX(x0, y1) ≤ radx0(X0) anddT (x1, zi) ≤ i · radx1(X1), so

dT (x0, zi) ≤ dT (x0, y1) + dT (y1, x1) + dT (x1, zi)

≤ radx0(X0) + i · radx1(X1) + dX(y1, x1)

≤ i(radx0(X0) + dX(y1, x1) + radx1(X1))− (i − 1)radx0(X0)

≤ i(1 + ǫ)radx0(X)− (i− 1)radx0(X)/(16c)

≤ i · radx0(X) + i · radx0(X)/(170c)− i · radx0(X)/(32c)

≤ i · radx0(X).

In the fourth inequality usingClaim 2and thatradx0(X0) ≥ radx0(X)/(16c) (note that by the stop condition
of hierarchical-star-partitionradx0(X) ≥ 16c, soradx0(X0) ≥ 1) and in the fifth thati− 1 ≥ i/2.

3. Now assume thatzi ∈ Xj where not all ofz1, . . . , zi are inXj (note thatz1 ∈ X0 ∪ X1, therefore there is no
case for{z1, . . . , zi} ⊆ Xj wherej > 1). First note thatzi must be at most thei − 1 element inQj . By the

insert sequence toQ(reg)
0 we have thatyj is at most the3i element inQ0. Using the induction hypothesis onX0

andXj we get that

dT (x0, zi) ≤ dT (x0, yj) + dT (yj , xj) + dT (xj , zi)

≤ c log log(3i) · radx0(X0) + (i− 1) · radxj
(Xj) + dX(yj , xj)

≤ (i− 1)(radx0(X0) + dX(yj , xj) + radxj
(Xj)) + 5c · radx0(X0)

≤ (i− 1)(1 + ǫ)radx0(X) + 5c · radx0(X)/(8c)

≤ i · radx0(X)− radx0(X) + (i − 1) · radx0(X)/(170c) + 5radx0(X)/8

≤ i · radx0(X).

The third inequality follows sincelog log(3i) ≤ log log(3c) ≤ 5. The fourth usingClaim 2and thatradx0(X0) ≤
radx0(X)/(8c).
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Case 3: In the third casei ≥ c.

1. First assume thatzi ∈ X0. Thenzi will be at mosti in the ordering ofQ(ball)
0 , hence at most3i in the ordering

of Q0. By the induction hypothesis onX0 we get that

dT (x0, zi) ≤ c log log(3i) · radx0(X0) ≤ 2c log log i · radx0(X0) ≤ c log log i · radx0(X) .

using that fori ≥ c, 3i < i2.

2. Next assume thatzi ∈ Xj such that|Xj ∩ {z1, . . . , zi}| ≤
√
i, thenzi will be at most the

√
i in Qj, andyj will

be at most thei-th in Q
(reg)
0 and hence at most3i in the ordering ofQ0. By the induction hypothesis onX0 and

Xj:

dT (x0, zi) ≤ dT (x0, yj) + dT (yj , xj) + dT (xj , zi)

≤ c log log(3i) · radx0(X0) + c log log(
√
i) · radxj

(Xj) + dX(yj , xj)

≤ c(log log i + 1) · radx0(X0) + c(log log i− 1) · radxj
(Xj) + dX(yj , xj)

≤ c(log log i − 1)
(

radx0(X0) + dX(yj , xj) + radxj
(Xj)

)

+ 2c · radx0(X0)

≤ c(log log i − 1)(1 + ǫ)radx0(X) + radx0(X)/4

≤ c log log i · radx0(X) + c log log i · radx0(X)/(170c log log i)− c · radx0(X) + radx0(X)/4

≤ c log log i · radx0(X),

the fifth inequality usingClaim 2and thatradx0(X0) ≤ radx0(X)/(8c), the sixth thatǫ ≤ 1/(170c log log i).

3. The last subcase is wherezi ∈ Xj such that|Xj ∩ {z1, . . . , zi}| >
√
i, thenzi will be at most thei in Qj and

by Claim 5yj will be at most thei9/10 in Q0. Now by the induction hypothesis, fort ≥ 2

dT (x0, zi) ≤ dT (x0, yj) + dX(yj , xj) + dT (xj , zi)

≤ c log log i9/10 · radx0(X0) + c log log i · radxj
(Xj) + dX(yj , xj)

≤ c log log i(radx0(X0) + dX(yj , xj) + radxj
(Xj)) + c log(9/10) · radx0(X0)

≤ c log log i · radx0(X) + ǫ · c log log i · radx0(X)− c · radx0(X0)/10

≤ c log log i · radx0(X) + radx0(X)/170− radx0(X)/160

≤ c log log i · radx0(X),

the fourth inequality usingClaim 2and the fifth thatradx0(X0) ≥ radx0(X)/(16c) andǫ ≤ 1/(170c log log i).

The following claim shows that a portalyj leading to a pointzi that belongs to a “fat” cone will be located in an
improved position in the queue of the central ballQ0.

Claim 5. For anyi ≥ 216, if zi ∈ Xj such that|Xj ∩ {z1, . . . , zi}| >
√
i thenyj will be at position at mosti9/10 in

Q0.

Proof. We will show thatyj will be in the first(3/2)i2/3 + 1 elements ofQ(fat)
0 . Sincei ≥ 216 it follows thatyj will

be in the first3 · ((3/2)i2/3 + 1) < i9/10 elements ofQ0.

Let yi1 , . . . , yis with i1 < i2 < · · · < is be a set ofs points that were inserted intoQ(fat)
0 before considering the

point zi, we need to show thats ≤ (3/2)i2/3. Let zi′1 , . . . , zi′s be the set of points inQ such thatyik was inserted
becausezi′

k
∈ Xik andXik was a “fat” cone,i.e. |Xik ∩ {z1, . . . , zi′

k
}| ≥

√

i′k. Let Aik = Xik ∩ {z1, . . . , zi′
k
}

denote the set that causedyik to enterQ(fat)
0 , and note that|Aik | ≥

√

i′k ≥
√
k. For any1 ≤ k < ℓ ≤ s we have that

Aik ∩Aiℓ = ∅, since we do not insert a pointyiℓ that already appear inQ(fat)
0 , which impliesXik ∩Xiℓ = ∅. Note that
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all the setsAik contain points fromz1, . . . , zi, so we have that
∑s

k=1 |Aik | ≤ i. Hence
∑s

k=1

√
k ≤ ∑s

k=1 |Aik | ≤ i.
We also bound the sum from below

s
∑

k=1

√
k ≥

∫ s

1

√
xdx = [(2/3)x3/2]s1 ≥ (2/3)s3/2,

thereforei ≥ (2/3)s3/2 or s ≤ (3/2)i2/3.

Corollary 6. For any weighted graphG = (V,E) denote by|V | = n and|E| = m, invokinghierarchical-star-partition
algorithm onG where instar partition algorithm we use the
ImpConeDecompose(G,BS(x0, r0 · rad(X)), rad(X)/ log logn, log logn,m) of [10], then we get a single span-
ning treeT such that

1

m

∑

(u,v)∈E

dT (u, v)

dG(u, v)
≤ O(log n · (log logn)3).

The running time isO(m log n) if G is unweighted andO(m log n+ n log2 n) if G is weighted.

Proof. Since our algorithm works in a similar manner to the [10] algorithm, we can use their partitioning method
ImpConeDecompose, which has a a running time ofO(m) if G is unweighted andO(m+n logn) if G is weighted.
The only difference is that in the first iteration (j = 1), instead of picking an arbitrary portalx1 we pick the nodex1

that is first on a shortest path fromx0 to the first in the queueQ. The average stretch of their cone cutting method is
roughlyO(log n · log logn · 1/ǫ) (recall thatǫ = 1/ log logn), and since the radius of our spanning tree increases by
O(log logn), the corollary follows. It remains to see that our running time is no worse than [10], and indeed it is easy
to see that adding the queues increase the run time only by a constant factor.

3 Strong Diameter Probabilistic Partitions

(x, y, r) = cone cut(X,x0, X0, Y, ǫ):

• Let p ∈ Y be the point minimizing |X|

|B(Y,dY )(z, ǫ · radx0(X)/16)| over allz ∈ Y ; Let χ denote that

minimum;

• Let (y, x) be an edge such thatx ∈ Y , y ∈ X0 anddX(x0, y)+dX(y, x)+dY (x, p) = dX(x0, p) (i.e.
y andx lie on some shortest path betweenx0 andp);

• Chooser ∈ [ǫ/4, ǫ/2] according to the following random process:

– Divide the interval[ǫ/4, ǫ/2] intoN = ⌈2 log χ⌉ equal length intervalsS1, . . . , SN ; Let h = 1;

– LOOP: Toss a fair coin; If it turns out head andh < N then leth = h+ 1 and goto LOOP;

– Chooser uniformly at random from the intervalSh.

• Return(x, y, r).

Figure 3:cone-cut algorithm

Consider a graphG = (V,E), a connected clusterX ⊆ V , x0 ∈ X and let∆ = radx0(X). Fix some edge
(u, v) ∈ E. Let X(i) = X(i)(u) be a random variable that indicates which cluster containsu in the i-th step of the
hierarchical application of the star-partition algorithm4. In a similar manner letx(i)

0 be the random variable indicating

the center of the clusterX(i), and whenX(i) is partitioned denote the central ball asX
(i)
0 and cones asX(i)

1 , . . .X
(i)
m

wherem is a random variable depending onX(i). Let Ej(X(i), u, v) be the event thatu, v ∈ X(i) and in the star-

partition of the clusterX(i) with centerx(i)
0 into X

(i)
0 , . . . , X

(i)
m , u ∈ X

(i)
j , v /∈ X

(i)
j . Let E(X(i), u, v) be the event

that∃ 0 ≤ j ≤ m such thatEj(X(i), u, v). Some notation:

4We abuse notation and think ofX(i) as a function to subsets ofX (instead ofR). We also refer toX(i) as an event.
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EX(i) [f(X(i))] will stand for
∑

X′ Pr[X(i) = X ′]f(X ′).

Let T be the support of the distribution over spanning trees induced by the hierarchical star partition algorithm.
Let T (i) ⊆ T be the set of spanning trees for which eventE(X(i), u, v) occurs.

E[dT (u, v)] ≤
∑

i≥1

∑

T∈T (i)

Pr[T ] · dT (u, v)

≤
∑

i≥1

EX(i)

[

Pr[E(X(i), u, v)] max
T∈T (i)

{dT (u, v)}
]

≤ O(log logn)
∑

i≥1

EX(i)

[

Pr[E(X(i), u, v)] · rad
x
(i)
0
(X(i))

]

.

The last inequality holds since for anyT ∈ T (i), dT (u, v) ≤ dT (u, x
(i)
0 ) + dT (x0, v) ≤ 2rad

x
(i)
0
(T ) and using

Lemma 4we get thatrad
x
(i)
0
(T ) ≤ O(log logn · rad

x
(i)
0
(X(i))).

In what follows we boundEX(i)

[

Pr[E(X(i), u, v)] · rad
x
(i)
0
(X(i))

]

. Letǫ = 1
170c·log log |X| andk = 20c(ln(1/ǫ)+

5). The main lemma to prove is the following

Lemma 7. For any graphG = (V,E), any edge(u, v) ∈ E, any connected clusterX(i) ⊆ V we have that

EX(i)

[

Pr[E(X(i), u, v)] · rad
x
(i)
0
(X(i))

]

≤ C · d(u, v)/ǫ ·
(

EX(i) [log |X(i)|]− EX(i+k) [log |X(i+k)|]
)

.

whereC is a universal constant.

Once this lemma is proved, a telescopic sum argument yields that

E[dT (u, v)] ≤ O(log logn)
∑

i≥1

EX(i)

[

Pr[E(X(i), u, v)] · radx0(X
(i))

]

≤ O(log logn) · d(u, v)/ǫ
k
∑

i=1

EX(i) [log |X(i)|]

≤ O(log n · log logn) · d(u, v) · log(1/ǫ)/ǫ
= O(log n · (log logn)2 · log log logn) · d(u, v) .

As we stated in the introduction, the algorithm ofFigure 3and proof ofLemma 7are based on the truncated
exponential distribution approach of [5, 1]. The main technical difficulty arises since the spacechangesafter each
cluster is cut. Dealing with the randomly changing graph raises some additional subtleties in the proof.

We begin with some definitions and an informal description ofthe algorithm and the proof idea. Fix the edge
(u, v) ∈ E, a scalei andX = X(i). Let Y ⊆ X be a random variable indicating that there exists0 < j ≤ m such
thatY = Yj−1 in the star partition ofX . Define the local growth rate aroundx ∈ Y with respect toY as

χ(X,Y, x) =
|X |

|BY,dY
(x, ǫ∆/16)|

The algorithm for the partition is as follows: Choose a radius for the central ball aroundx0 from a uniform
distribution in a range of size≈ ∆/c. The centerx1 is chosen on a shortest path toz1, the first point in the queue, and
then the radius for the cone is again sampled from a uniform distribution in a range of size≈ ǫ∆. For j > 1 thejth
centerxj is chosen on a shortest path to the pointpj ∈ Yj−1 minimizingχj = χ(X,Yj−1, pj), and then the radius of
the cone is chosen from a truncated exponential distribution, with parameterχj .

Denote the event thatY = Yj−1 andu ∈ Xj asZj(X,Y, u), and letZ(X,Y, u) be the event that∃ 0 ≤ j < m
such thatZj(X,Y, u). Note that fixingYj−1 determines deterministicallypj and therefore alsoxj andχj . Similarly
let Zj(X,Y ) be the event thatY = Yj−1 andZ(X,Y ) the event that∃ 0 ≤ j < m such thatZj(X,Y ). Let N(j)
be the random variable that is the number of partitionsS1, . . . , SN(j) of the interval[ǫ/4, ǫ/2] for thejth cone. Let
0 ≤ h(j) ≤ N(j) be the random variable that is the index of the intervalSh(j) from which the radiusrj is uniformly
chosen forXj . Some more notation:
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EY⊆X [f(Y )] will stand for
∑

Y⊆X Pr[Z(X,Y )] · f(Y ) (we writeEY whenX is implicit).

EY⊆X,j [f(Y )] will stand for
∑

Y⊆X Pr[Zj(X,Y )] · f(Y ) (we writeEY,j whenX is implicit).

EY⊆X,u[f(Y )] will stand for
∑

Y ⊆X Pr[Z(X,Y, u)] · f(Y ) (we writeEY,u whenX is implicit).

We divide the eventE(X,u, v) into three cases (by symmetry we can define all these events with respect tou).

• The first is the event thatu falls into one of the first two clusters (the central ballX0 or the first coneX1). This
event is denoted byG(X,u).

• The second is the event thatu is contained in clusterXj for somej > 1, such that the cone distance between
u and the centerxj is in the last intervali.e. that ρ(xj , u)/∆ ∈ SN(j). This event is denoted byF(X,u).
We partition the eventF(X,u) using the different values ofj: For anyj > 1 let Fj(X,u) be the event that
ρ(xj , u)/∆ ∈ SN(j), and note thatF(X,u) is simply that there existsj > 1 such thatFj(X,u) and also
u ∈ Xj.

• The third is the completion of the first two events, that the clusterXj containingu hasj > 1 andρ(xj , u)/∆ /∈
SN(j).

The probability of the first event can be bounded simply by theinverse of the range from which the radius is drawn,
so we obtain probability at most≈ d(u,v)

ǫ∆ .
For the second event we note that reaching the tail of the exponential distribution requires thatN − 1 fair coin

tosses turned out head, which is bounded by≈ 1
2N ≈ 1

χ2
j

, then since we choose uniformly from the last interval,

the probability that we separateu, v is ≈ logχj ·d(u,v)
ǫ∆χ2

j

≤ d(u,v)
ǫ∆χj

. Since the parameterχj is a random variable which

depends on the previous cone cuts, the proof becomes a bit more involved as we need to give a different bound for
every possibleY = Yj−1. We show that for every star-partition

∑

j>1 χ
−1
j ≤ 1, hence this also holds in expectation

and the second event probability is bounded by≈ d(u,v)
ǫ∆ . This is shown inClaim 8

Bounding the third event relies on the memoryless property of the exponential distribution. The major technical
difficulty is that the bound we show depends on the parameterχ. Hence we can only show the bound given some
subspaceY from which we cut the next cone. The bound on the probability obtained here is≈ logχ·d(u,v)

ǫ∆ . This is
shown inClaim 9.

The last step is to sum over all scalesi, and use a telescopic sum argument on the expectation of the values of the
logχ showing that they sum toO(log(1/ǫ) · log n). This is shown in the proof ofLemma 7.

Claim 8. For any clusterX ⊆ V , edgeu, v ∈ X , (u, v) ∈ E, we have

Pr[F(X,u) ∧ E(X,u, v)] ≤ 48d(u, v)/(ǫ∆) .

Proof. Note that we can only bound the probability of event such asEj(X,u, v) given that someY = Yj−1 is fixed
i.e. that eventZj(X,Y ) occurred (because the parametersxj andχj that govern the next cone creation are random
variables depending onY . So fix someY = Yj−1 and note that indeedpj , xj andχj = χ(X,Y, pj) are determined
deterministically.

Pr[F(X,u) ∧ E(X,u, v)]

= Pr[∃j > 1,Fj(X,u) ∧ Ej(X,u, v)]

≤
∑

j≥2

Pr[Ej(X,u, v) | Fj(X,u)]

=
∑

j≥2

∑

Y⊆X

Pr[Zj(X,Y )] · Pr[Ej(X,u, v) | Fj(X,u) ∧ Zj(X,Y )]

=
∑

j≥2

EY,j [Pr[Ej(X,u, v) | Fj(X,u)]]
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The first equation holds since the probability to be cut by a cluster whose radius is “large” is the probability that some
clusterXj with large radius separatesu, v. The first inequality holds by the union bound and the second equation since
for every eventA and pairwise disjoint eventsB1, . . . , Bℓ with

∑ℓ
i=1 Pr[Bi] = 1 it holds thatPr[A] =

∑ℓ
i=1 Pr[Bi] ·

Pr[A | Bi]. Here the eventsB areZj(X,Y ) which are disjoint for different subgraphsY . Note that eventsFj(X,u)
andZj(X,Y ) tell us nothing of the radius of the next coneXj , therefore the probability ofEj(X,u, v) given the
subspaceYj−1 and thatρ(xj , u)/∆ ∈ SN(j) (whereρ = ρ(X,Y ∪X0, d

′, x0, xj) is the cone metric), is the probability
thath(j) = N(j) (recall that the random variableh(j) is the index of the intervalSh(j) from which the radius is
uniformly chosen forXj) and that the uniform choice in the intervalSN(j) hits the place that separatesu, v. To bound
the first one

Pr[h(j) = N(j)] = 2−(N(j)−1) ≤ 2−2 logχj+2 = 4/χ2,

and the probability of the second event isd(u,v)∆|SN(j)| . Note that|SN(j)| = ǫ
4⌈2 logχj⌉ ≥ ǫ

8 logχj+4 ≥ min{1, 1
logχj

} · ǫ
12 .

These two events are independent, hence

Pr[F(X,u) ∧ E(X,u, v)] ≤ 48d(u, v)

ǫ ·∆
∑

j≥1

EY,j

[

max

{

1

χ2
j

,
logχj

χ2
j

}]

≤ 48d(u, v)

ǫ ·∆
∑

j≥1

EY,j[χ
−1
j ]

For anyȲ = (Ȳ1, Ȳ2, . . . , Ȳn) ⊂ Xn let Z(Ȳ ) be the event
∧

1≤j≤n Z(X, Ȳj , j) (whereȲj is thejth component
of Ȳ ). Observe that for anyj andY ⊂ X we havePr[Z(X,Y, j)] =

∑

Ȳ⊂Xn,Ȳj=Y Pr[Z(Ȳ )]. Therefore

∑

j>1

EY,j [χ
−1
j ] =

∑

j>1

∑

Y ⊆X

Pr[Z(X,Y, j)] · χ−1
j

=
∑

j≥1

∑

Ȳ ⊂Xn

Pr[Z(Ȳ )] · χ−1
j

=
∑

Ȳ ⊂Xn

Pr[Z(Ȳ )]
∑

j≥1

χ−1
j

Now it is enough to show that for anyX0, X1, . . . , Xm that may occur in the start-partition algorithm (i.e.
Pr[Z(Ȳ )] > 0, given thatȲj = X\⋃ℓ<j Xℓ) we have

∑m
j=1 χ

−1
j ≤ 1. This holds because for any2 ≤ ℓ < j ≤ m we

have thatBYℓ,dYℓ
(pℓ, ǫ∆/16) ⊆ Xℓ, andYj ∩Xℓ = ∅, i.e.BYℓ,dYℓ

(pi, ǫ∆/16)∩BYj ,dYj
(pj , ǫ∆/16) = ∅. Therefore

m
∑

j=1

χ−1
j ≤ |X |−1

m
∑

j=1

BYj ,dj
(pj , ǫ∆/16) ≤ 1.

Claim 9. For any clusterX ⊆ V , edgeu, v ∈ X , (u, v) ∈ E, subgraphY ⊂ X we have

Pr[E(X,u, v) ∧ ¬F(X,u) | ¬G(X,u) ∧ Z(X,Y, u)] ≤ 12d(u, v)max{1, logχ(X,Y, u)}/(ǫ ·∆)

Proof. If d(u, v) ≥ ǫ · ∆/12 the the claim is trivial, so assume it is smaller. Letj > 1 be such that the next cone to
be cut isXj (the value ofj is not relevant, we fix it in order to simplify the notation), and recall that fixingY = Yj−1

determines deterministicallypj , xj andχj . Let ρ = ρ(X0 ∪ Y, Y, x0, xj) be the appropriate cone metric onY by
which the next cone is cut.

Pr[E(X,u, v) ∧ ¬F(X,u) | Z(X,Y, u)] ≤ Pr[Ej(X,u, v) ∧ ¬Fj(X,u) | Z(X,Y, u) ∧ Z(X,Y )]

≤ Pr[Ej(X,u, v) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(X,Y, u) ∧ Z(X,Y )]

≤ Pr[Ej(X,u, v) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(X,Y )]

Pr[Z(X,Y, u) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(X,Y )]

13



The first inequality holds since eventZ(X,Y, u) implies thatu ∈ Xj so the eventsE(X,u, v) andEj(X,u, v) are
equivalent (the same holds for¬F(X,u)), and becauseZ(X,Y, u) ⊆ Z(X,Y ). The second is by the definition of
F(X,u) (given thatu ∈ Xj it cannot be thatρ(xj , u)/∆ falls in the intervalSN(j)), and since for any eventsA,B,
Pr[A ∧B] ≤ Pr[A | B]. The third is by Bayes rule and sinceEj(X,u, v) ∧ Z(X,Y, u) = Ej(X,u, v). Let ℓ be such
thatρ(xj , u)/∆ ∈ Sℓ.

First we bound the denominator, noting that there is no priorinformation given about the distribution for the next
choice of radius. Sinceℓ < N(j) we can boundPr[Z(X,Y, u) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(X,Y )] ≥ 2−ℓ, since with
this probability the radius for the coneXj will be chosen fromSm ·∆ with m > ℓ so it will large enough to contain

u. The numeratorPr[Ej(X,u, v) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(X,Y )] can be bounded by 1
2ℓ−1 · 1

2 · d(u,v)
∆|Sℓ| , which is

the probability that we reach theℓ-th interval, not continue to the next one (note that the nextinterval exists because
ℓ < N(j)) and when choosingrj uniformly fromSℓ, it happens to be the place that separatesu, v. The probability

for the first event is2−(ℓ−1), the second is1/2, and the third isd(u,v)∆|Sℓ| . Since|Sℓ| ≥ min{1, 1
log χj

} · ǫ
12 it follows that

Pr[Ej(X,u, v) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(X,Y )] ≤ 12d(u,v)max{1,logχj}
ǫ·∆·2ℓ . We conclude that

Pr[E(X,u, v) ∧ ¬F(X,u) | Z(X,Y, u)] ≤ 12d(u, v)max{1, logχj}
ǫ ·∆ .

Proof ofLemma 7. Fix anyi ≥ 1 andX(i) = X(i)(u). As described before we partition the eventE(X(i), u, v), given
a fixed clusterX(i) into the three cases.

Pr[E(X(i), u, v)]

= Pr[E(X(i), u, v) ∧ F(X(i), u)] + Pr[E(X(i), u, v) ∧ ¬F(X(i), u)]

= Pr[E(X(i), u, v) ∧ F(X(i), u)] + Pr[E(X(i), u, v) ∧ G(X(i), u)] + Pr[E(X(i), u, v) ∧ ¬F(X(i), u) ∧ ¬G(X(i), u)]

The last equality holds since eventG(X(i), u) implies that¬F(X(i), u). We claim that the following hold:

Pr[E(X(i), u, v) ∧ F(X(i), u) | X(i)] ≤ 48d(u, v)/(ǫ∆) (2)

Pr[E(X(i), u, v) ∧ G(X(i), u) | X(i)] ≤ 5d(u, v)/(ǫ∆) (3)

Pr[E(X(i), u, v) ∧ ¬F(X(i), u) ∧ ¬G(X(i), u) | X(i)] ≤ 12d(u, v)/(ǫ∆) · EY,u[max{1, logχ(X,Y, u)}](4)

(2) holds directly fromClaim 8. (3) since the radius of the central ball is chosen uniformly from interval of length
∆/(16c) ≥ ǫ∆, and for the first cone from interval of lengthǫ∆/4. (4) holds by usingClaim 9and writing

Pr[E(X(i), u, v) ∧ ¬F(X(i), u) ∧ ¬G(X(i), u)] ≤ EY,u

[

Pr[E(X(i), u, v) ∧ ¬F(X(i), u) | ¬G(X(i), u)]
]

≤ 12d(u, v)

ǫ ·∆ EY,u[max{1, logχ(X,Y, u)}]

Combining these three equation yields that forC = 65

Pr[E(X(i), u, v)] ≤ C · d(u, v)/(ǫ∆) · EY,u[max{1, logχ(X,Y, u)}] .

Recall thatk = 20c(ln(1/ǫ)+5), andCorollary 3suggests that for any clusterX and anyj ≥ 0 thatradxj
(Xj) ≤

(1− 1/(20c))radx0(X), hence for any eventX(i+k), given thatX(i) happened

rad(X(i+k)) ≤ (1− 1/(20c))k · rad(X(i)) ≤ ǫ · rad(X(i))/32,

thereforediam(X(i+k)) ≤ ǫ·rad(X(i))/16 and by definitionu ∈ X(i+k), so fixing anyY such that eventZ(X(i), Y, u)
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occurred then ifX(i+k) ⊆ Y alsoX(i+k) ⊆ BY,dY
(u, ǫ · rad(X(i))/16).

EY,u[logχ(X
(i), Y, u)] = log |X(i)| − EY,u[log |BY,dY

(u, ǫ · rad(X(i))/16|]

≤ log |X(i)| − EY,u





∑

X(i+k)⊆Y

Pr[X(i+k) | Z(X(i), Y, u)] · log |X(i+k)|





= log |X(i)| −
∑

X(i+k)⊆X(i)

Pr[X(i+k) | X(i)] · log |X(i+k)|

We conclude that

EX(i)

[

Pr[E(X(i), u, v)]
]

≤ EX(i)



log |X(i)| −
∑

X(i+k)⊆X(i)

Pr[X(i+k) | X(i)] · log |X(i+k)|





= EX(i) [log |X(i)|]−





∑

X(i)

Pr[X(i)]
∑

X(i+k)⊆X(i)

Pr[X(i+k) | X(i)] · log |X(i+k)|





= EX(i) [log |X(i)|]− EX(i+k) log |X(i+k)|
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A Extending to Weighted Graphs

In order for our algorithm to work for general weighted graphs, we will make the following change: After choosing
the pointsxj , yj in the cone-cut algorithm, create an imaginary pointy′j which lies on the edgeyj, xj such that
d(x0, y

′
j) = radx0(X0), then return the pointy′j . Note that then the inequalityradx0(X0) + d(y′j , xj) + radxj

(Xj) ≤
(1 + ǫ)radx0(X) will hold, which is the only place we used the unweighted property ofG. With a slight change to
the algorithm the number of imaginary points added is at mostthe number of edges in the original graphG. This is
because the pointy′j is connected only toyj in the central ballX0, so if in the recursion depth when cutting a cluster

X̂, the edge is cut by the central ballX̂0, then the conêXℓ created will contain only one point -yj = xℓ, so in such a
case it will hold thatradx0(X̂0) + d(yj , y

′
j) + radxℓ

(X̂ℓ) ≤ (1 + ǫ)radx0(X̂), and we will not add another imaginary
point.

The other change to the algorithm is contraction of small edges, following [10]. Let G = (V,E) be the original
graph of sizen. At every recursive step ofhierarchical star partition for a clusterX with ∆ = rad(X)
we contract all edges shorter thanc∆/n for a constantc. Then these small edges will not be cut - it guarantees that
every edge is at risk in at mostO(log n) recursive steps. It remains to show that the radius does not increase - note
that adding back all these edges will increase the radius by at mostc∆, and also note that our inductive proof actually
has a slack ofc′∆ , i.e. if we need to bounddT (x0, zi) by i ·∆ then we actually show thatdT (xo, zi) ≤ i ·∆− c′∆.
Now choosingc < c′ will guarantee that even after expanding back all the edges we contracted the radius bound still
holds. The last issue is the choice of portals in the expandedgraph. If x̂j is the super node in thej-th portal (recall
thaty′j is an added imaginary point), we choosexj ∈ x̂j which is connected to some vertex in̂yj and also lies on the
shortest path fromx0 to zi.
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B Improving the stretch slightly

The factor ofc log log i that was chosen as a bound on the radius increase inLemma 4was actually arbitrary. In fact
we can replace it with almost any other monotone increasing function of i, the position in the queue. In order to
optimize (asymptotically) the stretch, we take a very slowly increasing function ofi, using the following definitions:

Recall thatlog(0) n = n and for any integer1 ≤ t ≤ log∗ n, log(t) n = log
(

log(t−1) n
)

. We uselog∗ n = min{t |
1 ≤ log(t) n < 2}. For any integer1 ≤ t ≤ log∗ n let ϕt(n) =

∏t
k=2 log

(k) n, (whent = 1 let ϕ1(n) = 1).
The following two technical claims are proven inAppendix C.

Claim 10. For any0 ≤ a ≤ 1, i ≥ 4 and integer2 ≤ t ≤ log∗ i,

log(t) (ia) ≤ log(t) i+ (log a)/ϕt−1(i).

Claim 11. For anya ≥ 1, i ≥ 16 and integer2 ≤ t ≤ log∗ i,

log(t)(ai) ≤ log(t) i+ (2 log a)/ log i.

The parameterc that was a constant can now be arbitrary numberc ≥ 218, i.e. it can be a function of|X |. We also
use a different value ofǫ = 1

170c·ϕt(n)
for the star partition. Now the lemma that gives a tighter bound on the radius is

the following:

Lemma 12. Let1 ≤ t ≤ log∗ c be an integer. Let(X, d) be the metric derived from an unweighted graphG = (V,E),
x0 ∈ X andQ = (z1, . . . , z|X|−1) any ordering ofX \ {x0}, also letT be the spanning tree ofG returned by the
algorithmhierarchical-star-partition(X, x0, Q) with parameterǫ = ǫ(X, c, t) = 1

90cϕt(|X|) , then

dT (x0, zi) ≤







d(x0, zi) i = 1
i · radx0(X) 1 < i < c

c · log(t) i · radx0(X) otherwise

Proof. The proof is by induction on the radius ofX . Note thatCorollary 3guarantees that for allj = 0, . . . ,m we
have1 ≤ radxj

(Xj) < radx0(X).

Case 1: The casei = 1 is identical toLemma 4.

Case 2: The second case to consider is when1 < i < c.

1. First assume thatzi ∈ X0. Thenzi will be at mosti in the ordering ofQ(ball)
0 and hence at most3i in the

ordering ofQ0. By the induction hypothesis onX0 : dT (x0, zi) ≤ c log(t)(3i) · radx0(X0) ≤ i · radx0(X),
using thatradx0(X0) ≤ radx0(X)/(4c), and thatlog(t)(3i) ≤ 2i.

2. Next assume that{z1, . . . , zi} ⊆ X1. As y1 is the first inQ0, by the induction hypothesis onX0 andX1 we
have thatdT (x0, y1) ≤ dX(x0, y1) ≤ radx0(X0) anddT (x1, zi) ≤ i · radx1(X1), so

dT (x0, zi) ≤ dT (x0, y1) + dT (y1, x1) + dT (x1, zi)

≤ radx0(X0) + i · radx1(X1) + d(y1, x1)

≤ i(radx0(X0) + d(y1, x1) + radx1(X1))− (i− 1)radx0(X0)

≤ i(1 + ǫ)radx0(X)− (i− 1)radx0(X)/(16c)

≤ i · radx0(X) + i · radx0(X)/(170c)− i · radx0(X)/(32c)

≤ i · radx0(X).

In the fourth inequality using thatradx0(X0) ≥ radx0(X)/(16c), in the fifth thati/(i− 1) ≤ 2.
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3. Now assume thatzi ∈ Xj where not all ofz1, . . . , zi are inXj. This case further subdivides to two main cases,
the second one divides to two subcases (this complication arises sincec is not a constant anymore).

(a) If i ≤ c/4: First note thatzi must be at most thei− 1 element inQj . By the insert sequence toQ(reg)
0 we

have thatyj is at most the3i < c element inQ0. Using the induction hypothesis onX0 andXj we get that

dT (x0, zi) ≤ dT (x0, yj) + dT (yj , xj) + dT (xj , zi)

≤ i · radx0(X0) + (i − 1) · radxj
(Xj) + d(yj , xj)

≤ (i − 1)(radx0(X0) + d(yj , xj) + radxj
(Xj)) + radx0(X0)

≤ (i − 1)(1 + ǫ)radx0(X) + radx0(X)/(8c)

≤ i · radx0(X)− radx0(X) + (i − 1) · radx0(X)/(170c) + radx0(X)/(8c)

≤ i · radx0(X).

(b) Otherwisei > c/4, then there are two cases:

• If |Xj ∩ {z1, . . . , zi}| ≤
√
i thenzi will be at most the

√
i in Qj andyj will be at most the3i in Q0.

Note that forc > 100,
√
i < i/2, and alsolog(t)(3i) < i for all t ≥ 1, hence

dT (x0, zi) ≤ dT (x0, yj) + dT (yj , xj) + dT (xj , zi)

≤ c log(t)(3i) · radx0(X0) + (i/2) · radxj
(Xj) + d(yj , xj)

≤ c · i · radx0(X0) + (i/2) · radx0(X)

≤ i · radx0(X)/8 + (i/2)radx0(X)

≤ i · radx0(X),

using thatradx0(X0) ≤ radx0(X)/(8c).

• If |Xj ∩ {z1, . . . , zi}| >
√
i thenzi will be at most thei-th in Qj and byClaim 5yj will be at most

thei9/10 in Q0. Note thati9/10 < i/2, then by the induction hypothesis

dT (x0, zi) ≤ dT (x0, yj) + dT (yj , xj) + dT (xj , zi)

≤ (i/2) · radx0(X0) + i · radxj
(Xj) + d(yj , xj)

≤ i · (radx0(X0) + d(yj , xj) + ·radxj
(Xj))− (i/2) · radx0(X0)

≤ i · radx0(X) + ǫ · i · radx0(X)− i · radx0(X)/(32c)

≤ i · radx0(X),

using thatradx0(X0) ≥ radx0(X)/(16c).

Case 3: The third case wheni ≥ c:

1. If zi ∈ X0 then it will be at mosti in the ordering ofQ(ball)
0 hence at most3i in the ordering ofQ0. By the

induction hypothesis onX0 we get that

dT (x0, zi) ≤ c log(t)(3i) · radx0(X0) ≤ 2c log(t)(i) · radx0(X0) ≤ c log(t) i · radx0(X),

using that fori ≥ c, 3i < i2 hencelog(t)(3i) ≤ 2 log(t) i for all t.

2. The second case is whenzi ∈ Xj such that|Xj ∩ {z1, . . . , zi}| ≤
√
i, thenzi will be at most the

√
i in Qj , and

yj will be at most thei-th in Q
(reg)
0 and hence at most3i in the ordering ofQ0. By the induction hypothesis on
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X0 andXj , for t ≥ 2 :

dT (x0, zi) ≤ dT (x0, yj) + dT (yj , xj) + dT (xj , zi)

≤ c log(t)(3i) · radx0(X0) + c log(t)(
√
i) · radxj

(Xj) + d(yj , xj)

≤ c(log(t) i+ 4/ log i) · radx0(X0) + c(log(t) i− 1/ϕt−1(i)) · radxj
(Xj) + d(yj , xj)

= c(log(t) i− 1/ϕt−1(i))
(

radx0(X0) + d(yj , xj) + radxj
(Xj)

)

+ c(4/ log i+ 1/ϕt−1(i)) · radx0(X0)

≤ c(log(t) i− 1/ϕt−1(i))(1 + ǫ)radx0(X) + (1/(2 log i) + 1/(8ϕt−1(i)))radx0(X)

≤ c log(t) i · radx0(X) + radx0(X) · log(t) i/(170ϕt(i))− radx0(X)/ϕt−1(i) + 3radx0(X)/(4ϕt−1(i))

≤ c log(t) i · radx0(X) + radx0(X)/(170ϕt−1(i))− radx0(X)/(4ϕt−1(i))

≤ c log(t) i · radx0(X),

the third inequality usingClaim 10andClaim 11. The fifth inequality holds since for everys ≥ 1, log i ≥ ϕs(i),
and soradx0(X)/ log i ≤ radx0(X)/ϕt−1(i), and the sixth becauselog(t) i/ϕt(i) = 1/ϕt−1(i).

In a similar manner, it can shown that the same holds fort = 1.

3. The last case is wherezi ∈ Xj such that|Xj ∩ {z1, . . . , zi}| >
√
i, thenzi will be at most thei in Qj and by

Claim 5yj will be at most thei9/10 in Q0. Now by the induction hypothesis, fort ≥ 2

dT (x0, zi) ≤ dT (x0, yj) + d(yj , xj) + dT (xj , zi)

≤ c log(t) i9/10 · radx0(X0) + c log(t) i · radxj
(Xj) + d(yj , xj)

≤ c log(t) i(radx0(X0) + d(yj , xj) + radxj
(Xj)) + c log(9/10)/ϕt−1(i) · radx0(X0)

≤ c log(t) i · radx0(X) + ǫ · c log(t) i · radx0(X)− c · radx0(X0)/(10ϕt−1(i))

≤ c log(t) i · radx0(X) + radx0(X) · log(t) i/(170ϕt(i))− radx0(X)/(160ϕt−1(i))

≤ c log(t) i · radx0(X),

the third inequality usingClaim 10. In a similar manner, it can shown that the same holds fort = 1.

Proof ofTheorem 1. Take c = 218 log(t) n (recall thatt = (log∗ n)/2 and indeedt ≤ log∗ c). Note that1/ǫ =
O(cϕt(n)) and the parameterk = O(c log(1/ǫ)) = O(c log log logn). The increase in radius israd(T ) ≤ O(c2rad(X)),
and plugging in these parameters toLemma 7implies that the expected stretch for any edge(u, v) ∈ E is bounded by

ET∼T [dT (u, v)] ≤ O
(

c2 · logn · k/ǫ
)

= O(c4 logn · log log logn · ϕt(n))

= O

(

log(1) n · log(2) n · log(3) n · · · log((log∗ n)/2) n ·
(

log((log
∗ n)/2) n

)4

· log(3) n
)
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C Proof of some claims

Proof ofClaim 10. We prove by induction ont. The base case wheret = 2 holds sincelog log (ia) = log(a log i) =
log log i+ log a. Assume the claim holds fort and we prove fort+ 1

log(t+1) (ia) = log
(

log(t) (ia)
)

≤ log
(

log(t) i+ (log a)/ϕt−1(i)
)

= log
(

log(t) i ·
(

1 + (log a)/(ϕt−1(i) · log(t) i)
))

≤ log
(

log(t) i ·
(

2log a/ϕt(i)
))

= log(t+1) i+ (log a)/ϕt(i).

The first inequality uses the induction hypothesis, the lastinequality holds becauselog a ≤ 0, and1 + x ≤ 2x for
x ≤ 0.

Claim 13. For anyc ≥ 0, b ≥ 2 and0 ≤ t ≤ log∗ b

log(t)(b+ c) ≤ (log(t) b) + c.

Proof. By induction ont, for t = 0 it holds since by definitionlog(0)(b+ c) = b+ c. Assume fort− 1 and prove fort

log(t)(b+ c) = log(t−1) (log(b · (1 + c/b)))

≤ log(t−1) (log b+ (c log e)/b)

≤ log(t) b+ (c log e)/b

≤ log(t) b+ c.

We used the induction hypothesis in the second inequality.

Proof ofClaim 11.

log(t)(ai) = log(t−1) (log i+ log a)

= log(t−1) (log i · (1 + (log a)/ log i))

≤ log(t−1)
(

log i · e(log a)/ log i
)

= log(t−2) (log log i+ (log a · log e)/ log i)
≤ log(t) i+ (2 log a)/ log i.

The last inequality we useClaim 13with b = log log i > log e.
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