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Sketching and Streaming Entropy

via Approximation Theory

Nicholas J. A. Harvey∗ Jelani Nelson† Krzysztof Onak‡

Abstract

We conclude a sequence of work by giving near-optimal sketching and streaming algorithms
for estimating Shannon entropy in the most general streaming model, with arbitrary inser-
tions and deletions. This improves on prior results that obtain suboptimal space bounds
in the general model, and near-optimal bounds in the insertion-only model without sketch-
ing. Our high-level approach is simple: we give algorithms to estimate Renyi and Tsallis
entropy, and use them to extrapolate an estimate of Shannon entropy. The accuracy of
our estimates is proven using approximation theory arguments and extremal properties of
Chebyshev polynomials, a technique which may be useful for other problems. Our work also
yields the best-known and near-optimal additive approximations for entropy, and hence also
for conditional entropy and mutual information.

1 Introduction

Streaming algorithms have attracted much attention in several computer science communities,
notably theory, databases, and networking. Many algorithmic problems in this model are now
well-understood, for example, the problem of estimating frequency moments [1, 2, 10, 18, 32, 35].
More recently, several researchers have studied the problem of estimating the empirical entropy
of a stream [3, 6, 7, 12, 13, 37].

Motivation. There are two key motivations for studying entropy. The first is that it is a
fundamentally important quantity with useful algebraic properties (chain rule, etc.). The second
stems from several practical applications in computer networking, such as network anomaly
detection. Let us consider a concrete example. One form of malicious activity on the internet
is port scanning, in which attackers probe target machines, trying to find open ports which
could be leveraged for further attacks. In contrast, typical internet traffic is directed to a small
number of heavily used ports for web traffic, email delivery, etc. Consequently, when a port
scanning attack is underway, there is a significant change in the distribution of port numbers in
the packets being delivered. It has been shown that measuring the entropy of the distribution
of port numbers provides an effective means to detect such attacks. See Lakhina et al. [19] and
Xu et al. [36] for further information about such problems and methods for their solution.
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Our Techniques. In this paper, we give an algorithm for estimating empirical Shannon entropy
while using a nearly optimal amount of space. Our algorithm is actually a sketching algorithm,
not just a streaming algorithm, and it applies to general streams which allow insertions and
deletions of elements. One attractive aspect of our work is its clean high-level approach: we
reduce the entropy estimation problem to the well-studied frequency moment problem. More
concretely, we give algorithms for estimating other notions of entropy, Rényi and Tsallis entropy,
which are closely related to frequency moments. The link to Shannon entropy is established by
proving bounds on the rate at which these other entropies converge toward Shannon entropy.
Remarkably, it seems that such an analysis was not previously known.

There are several technical obstacles that arise with this approach. Unfortunately, it does
not seem that the optimal amount of space can be obtained while using just a single estimate of
Rényi or Tsallis entropy. We overcome this obstacle by using several estimates, together with
approximation theory arguments and certain infrequently-used extremal properties of Chebyshev
polynomials. To our knowledge, this is the first use of such techniques in the context of streaming
algorithms, and it seems likely that these techniques could be applicable to many other problems.

Such arguments yield good algorithms for additively estimating entropy, but obtaining a
good multiplicative approximation is more difficult when the entropy is very small. In such a
scenario, there is necessarily a very heavy element, and the task that one must solve is to estimate
the moment of all elements excluding this heavy element. This task has become known as the
residual moment estimation problem, and it is emerging as a useful building block for other
streaming problems [3, 5, 10]. To estimate the αth residual moment for α ∈ (0, 2], we show that
Õ(ε−2 logm) bits of space suffice with a random oracle and Õ(ε−2 log2 m) bits without. This
compares with existing algorithms that use O(ε−2 log2 m) bits for α = 2 [11], and O(ε−2 logm)
for α = 1 [10]. No non-trivial algorithms were previously known for α 6∈ {1, 2}. Though, the
previously known algorithms were more general in ways unrelated to the needs of our work: they
can remove the k heaviest elements without requiring that they are sufficiently heavy.

Multiplicative Entropy Estimation. Let us now state the performance of these algorithms
more explicitly. We focus exclusively on single-pass algorithms unless otherwise noted. The first
algorithms for approximating entropy in the streaming model are due to Guha et al. [13]; they
achieved O(ε−2 + log n) words of space but assumed a randomly ordered stream. Chakrabarti,
Do Ba and Muthukrishnan [7] then gave an algorithm for worst-case ordered streams us-
ing O(ε−2 log2 m) words of space, but required two passes over the input. The algorithm of
Chakrabarti, Cormode and McGregor [6] uses O(ε−2 logm) words of space to give a multiplica-
tive 1 + ε approximation, although their algorithm cannot produce sketches and only applies to
insertion-only streams. In contrast, the algorithm of Bhuvanagiri and Ganguly [3] provides a
sketch and can handle deletions but requires roughly Õ(ε−3 log4m) words1.

Our work focuses primarily in the strict turnstile model (defined in Section 2), which allows
deletions. Our algorithm for multiplicatively estimating Shannon entropy uses Õ(ε−2 logm)
words of space. These bounds are nearly-optimal in terms of the dependence on ε, since there
is an Ω̃(ε−2) lower bound even for insertion-only streams. Our algorithms assume access to
a random oracle. This assumption can be removed through the use of Nisan’s pseudorandom
generator [23], increasing the space bounds by a factor of O(logm).

Additive Entropy Estimation. Additive approximations of entropy are also useful, as they
directly yield additive approximations of conditional entropy and mutual information, which
cannot be approximated multiplicatively in small space [17]. Chakrabarti et al. noted that since

1A recent, yet unpublished improvement by the same authors [4] improves this to Õ(ε−3 log3
m) words.
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Shannon entropy is bounded above by logm, a multiplicative (1 + (ε/ logm)) approximation
yields an additive ε-approximation. In this way, the work of Chakrabarti et al. [6] and Bhuvana-
giri and Ganguly [3] yield additive ε approximations using O(ε−2 log3m) and Õ(ε−3 log7 m)
words of space respectively. Our algorithm yields an additive ε approximation using only
Õ(ε−2 logm) words of space. In particular, our space bounds for multiplicative and additive
approximation differ by only log logm factors. Zhao et al. [37] give practical methods for addi-
tively estimating the so-called entropy norm of a stream. Their algorithm can be viewed as a
special case of ours since it interpolates Shannon entropy using two estimates of Tsallis entropy,
although this interpretation was seemingly unknown to those authors.

Other Information Statistics. We also give algorithms for approximating Rényi [26] and
Tsallis [33] entropy. Rényi entropy plays an important role in expanders [15], pseudorandom
generators, quantum computation [34, 38], and ecology [22, 27]. Tsallis entropy is a important
quantity in physics that generalizes Boltzmann-Gibbs entropy, and also plays a role in the
quantum context. Rényi and Tsallis entropy are both parameterized by a scalar α ≥ 0. The
efficiency of our estimation algorithms depends on α, and is stated precisely in Section 5.

A preliminary version of this work appeared in the IEEE Information Theory Workshop [14].

2 Preliminaries

Let A = (A1, . . . , An) ∈ Z
n be a vector initialized as ~0 which is modified by a stream of m

updates. Each update is of the form (i, v), where i ∈ [n] and v ∈ {−M, . . . ,M}, and causes
the change Ai ← Ai + v. For simplicity in stating bounds, we henceforth assume m ≥ n and
M = 1; the latter can be simulated by increasing m by a factor of M and representing an update
(i, v) with |v| separate updates (though in actuality our algorithm can perform all |v| updates
simultaneously in the time it takes to do one update). The vector A gives rise to a probability
distribution x = (x1, . . . , xn) with xi = |Ai|/ ‖A‖1. Thus for each i either xi = 0 or xi ≥ 1/m.

In the strict turnstile model, we assume Ai ≥ 0 for all i ∈ [n] at the end of the stream. In the
general update model we make no such assumption. For the remainder of this paper, we assume
the strict turnstile model and assume access to a random oracle, unless stated otherwise. Our
algorithms also extend to the general update model, typically increasing bounds by a factor of
O(logm). As remarked above, the random oracle can be removed, using [23], while increasing
the space by another O(logm) factor. When giving bounds, we often use the following tilde
notation: we say f(m, ε) = Õ(g(m, ε)) if f(m, ε) = O(g(m, ε)(log logm+ log(1/ε))O(1)).

We now define some functions commonly used in future sections. The αth norm of a vector is
denoted ‖·‖α. We define the αth moment as Fα =

∑n
i=1|Ai|

α = ‖A‖αα. We define the αth Rényi
entropy as Hα = log(‖x‖αα)/(1 − α) and the αth Tsallis entropy as Tα = (1 − ‖x‖αα)/(α − 1).
Shannon entropy H = H1 is defined by H = −

∑n
i=1 xi log xi. A straightforward application of

l’Hôpital’s rule shows that H = limα→1Hα = limα→1 Tα. It will often be convenient to focus on
the quantity α− 1 instead of α itself. Thus, we often write H(a) = H1+a and T (a) = T1+a.

We will often need to approximate frequency moments, for which we use the following:

Fact 2.1 (Indyk [16], Li [20], [21]). There is an algorithm for multiplicative approximation of
Fα for any α ∈ (0, 2]. The algorithm needs O(ε−2 logm) bits of space in the general update

model, and O
(

( |α−1|
ε2

+ 1
ε

)

logm
)

bits of space in the strict turnstile model.

For any function a 7→ f(a), we denote its kth derivative with respect to a by f (k)(a).
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3 Estimating Shannon Entropy

3.1 Overview

We begin by describing a general algorithm for computing an additive approximation to Shannon
entropy. The remainder of this paper describes and analyzes various details and incarnations of
this algorithm, including extensions to give a multiplicative approximation in Section 3.4. We
assume that m, the length of the stream, is known in advance. Computing ‖A‖1 is trivial since
we assume the strict turnstile model at present.

Algorithm 1. Our algorithm for additively approximating empirical Shannon entropy.

Choose error parameter ε̃ and k points {y0, . . . , yk}
Process the entire stream:
For each i, compute F̃1+yi , a (1 + ε̃)-approximation of the frequency moment F1+yi

For each i, compute H̃(yi) = − log(F̃1+yi/||A||
1+yi
1 )/yi and T̃ (yi) =

(

1− F̃1+yi/||A||
1+yi
1

)

/yi
Return an estimate of H(0) or T (0) by interpolation using the points H̃(yi) or T̃ (yi)

3.2 One-point Interpolation

The easiest implementation of this algorithm is to set k = 0, and estimate Shannon entropy H
using a single estimate of Rényi entropy H(y0). We choose y0 = Θ̃(ε/(log n logm)) and ε̃ = ε·y0.
By Fact 2.1, the space required is Õ(ε−3 log n logm) words. The following argument shows this
gives an additive O(ε) approximation. With constant probability, F̃1+y0 = (1± ε̃)F1+y0 . Then

H̃(y0) =
−1

y0
log
( F̃1+y0

||A||1+y0
1

)

=
−1

y0
log
(

(1±O(ε̃))

n
∑

i=1

x1+y0
i

)

= H(y0)±O
( ε̃

y0

)

= H ±O(ε).

(3.1)
The last equality follows from the following theorem, which bounds the rate of convergence of
Rényi entropy towards Shannon entropy. A proof is given in Appendix A.1.

Theorem 3.1. Let x ∈ R
n be a probability distribution whose smallest positive value is at least

1/m, where m ≥ n. Let 0 < ε < 1 be arbitrary. Define µ = ε/(4 logm), ν = ε/(4 log n logm),
α = 1 + µ/

(

16 log(1/µ)
)

, and β = 1 + ν/
(

16 log(1/ν)
)

. Then

1 ≤
H1

Hα
≤ 1 + ε and 0 ≤ H1 −Hβ ≤ ε.

3.3 Multi-point Interpolation

The algorithm of Section 3.2 is limited by the following tradeoff: if we choose the point y0
to be close to 0, the accuracy increases, but the space usage also increases. In this section,
we avoid that tradeoff by interpolating with multiple points. This allows us to obtain good
accuracy without taking the points too close to 0. We formalize this using approximation
theory arguments and properties of Chebyshev polynomials.

The algorithm estimates the Tsallis entropy with error parameter ε̃ = ε/(12(k + 1)3 logm)
using points y0, y1, . . . , yk, chosen as follows. First, the number of points is k = log(1/ε) +
log logm. Their values are chosen to be an affine transformation of the extrema of the kth

Chebyshev polynomial. Formally, set ℓ = 1/(2(k + 1) logm) and define the map f : R→ R by

f(y) =
(k2 ℓ) · y − ℓ · (k2 + 1)

2k2 + 1
, then define yi = f

(

cos(iπ/k)
)

. (3.2)
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The correctness of this algorithm is proven in Section 3.3.2. Let us now analyze the space
requirements. Computing the estimate F̃1+yi uses only Õ(ε̃−2/ logm) words of space by Fact 2.1
since |yi| ≤ 1/(2(k+1) logm) for each i. By our choice of k = Õ(1) and ε̃, the total space required
is Õ(ε−2 logm) words.

We argue correctness of this algorithm in Section 3.3.2. Before doing so, we must mention
some properties of Chebyshev polynomials.

3.3.1 Chebyshev Polynomials

Our algorithm exploits certain extremal properties of Chebyshev polynomials. For a basic
introduction to Chebyshev polynomials we refer the reader to [24, 25, 28]. A thorough treatment
of these objects can be found in [29]. We now present the background relevant for our purposes.

Definition 3.2. The set Pk consists of all polynomials of degree at most k with real coefficients.
The Chebyshev polynomial of degree k, Pk(x), is defined by the recurrence

Pk(x) =











1, k = 0

x, k = 1

2xPk−1(x)− Pk−2(x), k ≥ 2

and satisfies |Pk(x)| ≤ 1 for all x ∈ [−1, 1]. The value |Pk(x)| equals 1 for exactly k + 1 values
of x in [−1, 1]; specifically, Pk(ηj,k) = (−1)j for 0 ≤ j ≤ k, where ηj,k = cos(jπ/k). The set Ck
is defined as the set of all polynomials p ∈ Pk satisfying max0≤j≤k |p(ηj,k)| ≤ 1.

Fact 3.3 (Extremal Growth Property). If p ∈ Ck and |t| ≥ 1, then |p(t)| ≤ |Pk(t)|.

Proof. See [29, Ex. 1.5.11] or Rogosinski [30]. �

Fact 3.3 states that all polynomials which are bounded on certain “critical points” of the
interval I = [−1, 1] cannot grow faster than Chebyshev polynomials once leaving I.

3.3.2 Correctness

To analyze our algorithm, let us first suppose that our algorithm could exactly compute the
Tsallis entropies T (yi) for 0 ≤ i ≤ k. Let p be the degree-k polynomial obtained by interpolating
at the chosen points, i.e., p(yi) = T (yi) for 0 ≤ i ≤ k. The algorithm uses p(0) as its estimate
for T (0). We analyze the accuracy of this estimate using the following fact. Recall that the
notation g(k) denotes the kth derivative of a function g.

Fact 3.4 (Phillips and Taylor [25], Theorem 4.2). Let y0, y1, . . . , yk be points in the interval
[a, b]. Let g : R → R be such that g(1), . . . , g(k) exist and are continuous on [a, b], and g(k+1)

exists on (a, b). Then, for every y ∈ [a, b], there exists ξy ∈ (a, b) such that

g(y) − p(y) =

(

k
∏

i=0

(y − yi)

)

g(k+1)(ξy)

(k + 1)!

where p(y) is the degree-k polynomial obtained by interpolating the points (yi, g(yi)), 0 ≤ i ≤ k.

To apply this fact, a bound on |T (k+1)(y)| is needed. It suffices to consider the interval
[−ℓ, 0), since the map f defined in Eq. (3.2) sends −1 7→ −ℓ and 1 7→ −ℓ/(2k2 + 1), and hence
Eq. (3.2) shows that yi ∈ [−ℓ, 0) for all i. Since ℓ = 1/(2(k + 1) logm), it follows from the
following lemma that

|T (k+1)(yi)| ≤
4 logk+1(m)H

k + 2
∀ 0 ≤ i ≤ k. (3.3)

5



Lemma 3.5. Let ε be in (0, 1/2]. Then, |T (k)(− ε
(k+1) logm)| ≤ 4 logk(m)H/(k + 1).

By Fact 3.4 and Eq. (3.3), we have

|T (0) − p(0)| ≤ |ℓ|k+1 ·
4 logk+1(m)H

(k + 1)! (k + 2)

=
1

2k+1 logk+1(m)
·
4 logk+1(m)H

(k + 1)! (k + 2)

≤
2ε

(k + 1)! (k + 2)
≤

ε

2
, (3.4)

since 2k = (logm)/ε and H ≤ logm. This demonstrates that our algorithm computes a good
approximation of T (0) = H, under the assumption that the values T (yi) can be computed
exactly. The remainder of this section explains how to remove this assumption.

Algorithm 1 does not compute the exact values T (yi), it only computes approximations. The
accuracy of these approximations can be determined as follows. Then

T̃ (yi) =
1− F̃1+yi/||A||

1+yi
1

yi
≤ T (yi) − ε̃ ·

∑n
j=1 x

1+yi
j

yi
. (3.5)

Now recall that xj ≥ 1/m for each i and yi ≥ −ℓ, so that xyii ≤ mℓ = m1/2(k+1) logm < 2. Thus
∑n

j=1 x
1+yi
j ≤ 2

∑n
j=1 xj = 2. Since ε̃/ℓ = ε/(6k2), we have

T (yi) ≤ T̃ (yi) ≤ T (yi) + ε/(3k2). (3.6)

Now let p̃(x) be the degree-k polynomial defined by p̃(yi) = T̃ (yi) for all 0 ≤ i ≤ k. Then
Eq. (3.6) shows that r(x) = p(x)− p̃(x) is a polynomial of degree at most k satisfying |r(yi)| ≤
ε/(3k2) for all 0 ≤ i ≤ k.

Let P : R → R be the Chebyshev polynomial of degree k, and let Q(y) = P
(

f−1(y)
)

be an
affine transformation of P . Then the polynomial r′(y) = (3k2/ε) · r(y) satisfies |r′(yi)| ≤ |Q(yi)|
for all 0 ≤ i ≤ k. Thus Fact 3.3 implies that |r′(0)| ≤ |Q(0)|. By definition of Q, Q(0) =
P (f−1(0)) = P (1 + 1/k2). The following lemma shows that this is at most e2.

Lemma 3.6. Let P be the kth Chebyshev polynomial, k ≥ 1, and let x = 1 + k−c. Then

|Pk(x)| ≤
k
∏

j=1

(

1 +
2j

kc

)

≤ e2k
2−c

.

Thus |r′(0)| ≤ e2 and |r(0)| ≤ ε/2 since k ≥ 2. To conclude, we have shown |p(0) − p̃(0)| =
|r(0)| ≤ ε/2. Combining with Eq. (3.4) via the triangle inequality shows |p̃(0)−H| ≤ ε.

3.4 Multiplicative Approximation of Shannon Entropy

We now discuss how to extend the multi-point interpolation algorithm to obtain a multiplicative
approximation of Shannon entropy. The main tool that we require is a multiplicative estimate of
Tsallis entropy, rather than the additive estimates used above. Section 5 shows that the required
multiplicative estimates can be efficiently computed; Section 4 provides tools for doing this.

The modifications to the multi-point interpolation algorithm are as follows. We set the
number of interpolation points to be k = max{5, log(1/ε)}, then argue as in Eq. (3.4) to
have |T (0) − p(0)| ≤ εH/2, where p is the interpolated polynomial of degree k. We then
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use Algorithm 1, but we compute T̃ (yi) to be a (1 + ε̃)-multiplicative estimation of T (yi) in-
stead of an ε̃-additive estimation by using Theorem 5.6. By arguing as in Eq. (3.6), we have
T (yi) ≤ T̃ (yi) ≤ T (yi) + εT (yi)/(3k

2) ≤ T (yi) + 4εH/(3k2). The final inequality follows from
Lemma 3.5 with k = 0. From this point, the argument remains identical as Section 3.3.2 to show
that |p(0)− p̃(0)| ≤ 4εe2H/(3k2) < εH/2, yielding |p̃(0) −H| ≤ εH by the triangle inequality.

4 Estimating Residual Moments

To multiplicatively approximate Shannon entropy, the algorithm of Section 3.4 requires a mul-
tiplicative approximation of Tsallis entropy. Section 5 shows that the required quantities can
be computed. The main tool needed is an efficient algorithm for estimating residual moments.
That is the topic of the present section.

Define the residual αth moment to be F res
α :=

∑n
i=2 |Ai|

α = Fα−|A1|
α, where we reorder the

items such that |A1| ≥ |A2| ≥ . . . ≥ |An|. In this section, we present two efficient algorithms to
compute a 1 + ε multiplicative approximation to F res

α for α ∈ (0, 2]. These algorithms succeed
with constant probability under the assumption that a heavy hitter exists, say |A1| ≥

4
5 ‖A‖1.

The algorithm of Section 4.2 is valid only in the strict turnstile model. Its space usage has
a complicated dependence on α; for the primary range of interest, α ∈ [1/3, 1), the bound is
O((ε−1/α+ε−2(1−α)+ log n) logm). The algorithm of Section 4.3 is valid in the general update
model and uses Õ(ε−2 logm) bits of space.

4.1 Finding a Heavy Element

A subroutine that is needed for both of our algorithms is to detect whether a heavy hitter exists
(|Ai| ≥

4
5 ‖A‖1) and to find the identity of that element. We will describe a procedure for doing

so in the general update model. We use the following result, which essentially follows from the
count-min sketch [8]. For completeness, a self-contained proof is given in Appendix A.5.

Fact 4.1. Let w ∈ R
n
+ be a weight vector on n elements so that

∑

iwi = 1. There exists a
family H of hash functions mapping the n elements to O(1/ε) bins with |H| = nO(1) such that
a random h ∈ H satisfies the following two properties with probability at least 15/16.
(1) If wi ≥ 1/2 then the weight of elements that collide with element i is at most ε ·

∑

j 6=iwj .
(2) If maxiwi < 1/2 then the weight of elements hashing to each bin is at most 3/4.

We use the hash function from Fact 4.1 with ε = 1/10 to partition the elements into bins,
and for each bin maintain a counter of the net L1 weight that hash to it. If there is a heavy
hitter, then the net weight in its bin is more than 4/5 − ε(1/5) > 3/4. Conversely, if there is a
bin with at least 3/4 of the weight then Fact 4.1 implies then there is a heavy element.

We determine the identity of the heavy element via a group-testing type of argument: we
maintain ⌈log2 n⌉ counters, of which the ith counts the number of elements which have their ith

bit set. Thus, if there is heavy element, we can determine its ith bit by checking whether the
fraction of elements with their ith bit is at least 3/5.

4.2 Bucketing Algorithm

In this section, we describe an algorithm for estimating F res
α that works only in the strict turnstile

model. The algorithm has several cases, depending on the value of α.

Case 1: α = 1. This is the simplest case for our algorithm. We use the hash function from
Fact 4.1 to partition the elements into bins, and for each bin maintain a count of the number
of elements that hash to it. If there is a bin with more than 3/4 elements at the end of the
procedure, then there is a heavy element, and it suffices to return the total number of elements
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in the other bins. Otherwise, we announce that there is no heavy hitter. The correctness follows
from Fact 4.1, and the space required is O

(

1
ε logm

)

bits.

Case 2: α = (0, 13) ∪ (1, 2]. Again, we use the hash function from Fact 4.1 to partition the
elements into bins. For each bin, we maintain a count of the number of elements, and a sketch
of the αth moment using Fact 2.1. The counts allow us to detect if there is a heavy hitter, as
in Case 1. If so, we combine the moment sketches of all bins other than the one containing the
heavy hitter; this gives a good estimate with constant probability. By Fact 2.1, we need only

O
(

1
ε ·
(

|α−1|
ε2

+ 1
ε

)

logm+ 1
ε logm

)

= O
((

|α−1|
ε3

+ 1
ε2

)

logm
)

bits.

Case 3: α = [13 , 1). This is the most interesting case. This idea is to keep just one sketch of
the αth moment for the entire stream. At the end, we estimate F res

α by artificially appending
deletions to the stream which almost entirely remove the heavy hitter from the sketch.

The algorithm computes four quantities in parallel. First, F̃ res
1 = (1 ± ε′)F res

1 with error
parameter ε′ = ε1/α, using the above algorithm with α = 1. Second, F̃α = (1 ± ε)Fα using
Fact 2.1. Third, F1, which is trivial in the strict turnstile model. Lastly, we determine the
identity of the heavy hitter as in Section 4.1.

Now we explain how to estimate F res
α . The key observation is that F1 − F̃ res

1 is a very
good approximation to A1 (assume this is the heavy hitter). So if we delete the heavy hitter
(F1 − F̃ res

1 ) times, then there are at most A1 ≤ ε′F res
1 remaining occurrences. Define F̃ res

α to
be the value of F̃α after processing these deletions. Clearly F res

α ≥ (F res
1 )α, by concavity of the

function y 7→ yα. On the other hand, the remaining occurrences of the heavy hitter contribute
at most (ε′F res

1 )α. Hence, the remaining occurrences of the heavy hitter inflate F res
α by a factor

of at most 1 + (ε′ ·F res
1 )α/(F res

1 )α = 1+ ε. Thus F̃ res
α = (1+O(ε))F res

α , as desired. The number
of bits of space used by this algorithm is at most

O
(

1
ε′ logm+

(

1−α
ε2

+ 1
ε

)

logm+ log n logm
)

= O
(

(

1
ε1/α

+ 1−α
ε2

+ log n
)

logm
)

.

4.3 Geometric Mean Algorithm

This section describes an algorithm for estimating F res
α in the general update model. At a high

level, the algorithm uses a hash function to partition the stream elements into two substreams,
then separately estimates the moment Fα for the substreams. The estimate for the substream
which does not contain the heavy hitter yields a good estimate of F res

α . We improve accuracy of
this estimator by averaging many independent trials. Detailed description and analysis follow.

We use Li’s geometric mean estimator [21] for estimating Fα since it is unbiased (its being
unbiased will be useful later). The geometric mean estimator is defined as follows. Let k and
α be parameters. We let y = R · A, where A is the vector representing the stream and R is a
k × n matrix whose entries are i.i.d. samples from an α-stable distribution. Define

F̃α =

∏k
j=1 |yj|

α/k

[ 2πΓ(
α
k )Γ(1−

1
k ) sin(

πα
2k )]

k
.

The space required to compute this estimator is easily seen to be O(k · logm) bits. Li analyzed
the variance of F̃α as k →∞, however for our purposes we are only interested in the case k = 3
and henceforth restrict to only this case (one can show F̃α has unbounded variance for k < 3).
Building on Li’s analysis, we show the following result.

Lemma 4.2. There exists an absolute constant CGM such that Var
[

F̃α

]

≤ CGM · E
[

F̃α

]2
.
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Let r denote the number of independent trials. For each j ∈ [r], the algorithm picks a function
hj : [n]→ {0, 1} uniformly at random. For j ∈ [r] and l ∈ {0, 1}, define Fα,j,l =

∑

i:hj(i)=l |Ai|
α.

This is the αth moment for the lth substream during the jth trial.
For each j and l, our algorithm computes an estimate F̃α,j,l of Fα,j,l using the geometric

mean estimator. We also run in parallel the algorithm of Section 4.1 to discover which i ∈ [n] is
the heavy hitter; henceforth assume i = 1. Our overall estimate for F res

α is then

F̃ res
α =

2

r

r
∑

j=1

F̃α,j,1−hj(1)

The space used by our algorithm is simply the space required for r geometric mean estimators
and the one heavy hitter algorithm. The latter uses Õ(ε−1 log n) bits of space [8, Theorem 7].
Thus the total space required is Õ(r logm+ ε−1 log n) bits.

We now sketch an analysis of the algorithm; a formal argument is given in Appendix A.4.
The natural analysis would be to show that, for each item, the fraction of trials in which the
item doesn’t collide with the heavy hitter is concentrated around 1/2. A union bound over all
items would require choosing the number of trials to be Ω( 1

ε2
log n). We obtain a significantly

smaller number of trials by using a different analysis. Instead of using a concentration bound
for each item, we observe that items with roughly the same weight (i.e., the value of |Ai|) are
essentially equivalent for the purposes of this analysis. So we partition the items into classes
such that all items in the a class have the same weight, up to a (1 + ε) factor. We then apply
concentration bounds for each class, rather than separately for each item. The number of classes
is only R = O(1ε logm), and a union bound over classes only requires Θ( 1

ε2
logR) trials.

As argued, the space usage of this algorithm is Õ(r logm+ ε−1 log n) = Õ(ε−2 logm) bits.

5 Estimation of Rényi and Tsallis Entropy

This section summarizes our algorithms for estimating Rényi and Tsallis entropy. These al-
gorithms are used as subroutines for estimating Shannon entropy in Section 3, and may be of
independent interest.

The techniques we use for both the entropies are almost identical. In particular, to compute
additive approximation of Tα or Hα, it suffices to compute a sufficiently precise multiplicative
approximation of the α-th moment. Due to space constraints, we present proofs of all lemmas
and theorems from this section in the appendix.

Theorem 5.1. There is an algorithm that computes an additive ε-approximation of Rényi

entropy in O
(

logm
|1−α|·ε2

)

bits of space for any α ∈ (0, 1) ∪ (1, 2].

Theorem 5.2. There is an algorithm for additive approximation of Tsallis entropy Tα using

• O
(

n2(1−α) logm
(1−α)ε2

)

bits, for α ∈ (0, 1).

• O
(

logm
(α−1)ε2

)

bits, for α ∈ (1, 2].

In order to obtain a multiplicative approximation of Tsallis and Rényi entropy, we must
prove a few facts. The next lemma says that if there is no heavy element in the empirical
distribution, then Tsallis entropy is at least a constant.

9



Lemma 5.3. Let x1, x2, . . . , xn be values in [0, 1] of total sum 1. There exists a positive
constant C such that if xi ≤ 5/6 for all i then, for α ∈ (0, 1) ∪ (1, 2],

∣

∣

∣1−

n
∑

i=1

xαi

∣

∣

∣ ≥ C · |α− 1|.

Corollary 5.4. There exists a constant C such that if the probability of each element is at
most 5/6, then the Tsallis entropy is at least C for any α ∈ (0, 1) ∪ (1, 2].

Proof. We have

Tα =
1−

∑n
i=1 x

α

α− 1
=
|1−

∑n
i=1 x

α
i |

|α− 1|
≥ C.

�

We now show how to deal with the case when there is an element of large probability. It
turns out that in this case we can obtain a multiplicative approximation of Tsallis entropy by
combining two residual moments.

Lemma 5.5. There is a positive constant C such that if there is an element i of probability
xi ≥ 2/3, then the sum of a multiplicative (1 + C · |1 − α| · ε)-approximation to 1 − xi and
a multiplicative (1 + C · |1 − α| · ε)-approximation to

∑

j 6=i x
α
j gives a multiplicative (1 + ε)-

approximation to |1−
∑

i x
α
i |, for any α ∈ (0, 1) ∪ (1, 2].

We these collect those facts in the following theorem.

Theorem 5.6. There is a streaming algorithm for multiplicative (1 + ε)-approximation of
Tsallis entropy for any α ∈ (0, 1) ∪ (1, 2] using Õ

(

logm/(|1− α|ε2)
)

bits of space.

The next lemma shows that we can handle the logarithm that appears in the definition of
Rényi entropy.

Lemma 5.7. It suffices to have a multiplicative (1 + ε)-approximation to t − 1, where t ∈
(4/9,∞) to compute a multiplicative (1 + C · ε) approximation to log(t), for some constant C.

We now have all necessary facts to estimate Rényi entropy for α ∈ (0, 2].

Theorem 5.8. There is a streaming algorithm for multiplicative (1 + ε)-approximation of
Rényi entropy for any α ∈ (0, 1)∪ (1, 2]. The algorithm uses Õ

(

logm/(|1 − α|ε2)
)

bits of space.

In fact, Theorem 5.8 is tight in the sense that (1+ ε)-multiplicative approximation of Hα for
α > 2 requires polynomial space, as seen in the following theorem.

Theorem 5.9. For any α > 2, any randomized one-pass streaming algorithm which (1 + ε)-
approximates Hα(X) requires Ω(n1−2/α−2ε−γ(ε+1/α)) bits of space for arbitrary constant γ > 0.

Tsallis entropy can be efficiently approximated both multiplicatively and additively also for
α > 2, but we omit a proof of that fact in this version of the paper.

6 Modifications for General Update Streams

The algorithms described in Section 3 and Section 5 are for the strict turnstile model. They can
be extended to work in the general updates model with a few modifications.

First, we cannot efficiently and exactly compute ‖A‖1 = F1 in the general update model.
However, a (1 + ε)-multiplicative approximation can be computed in O(ε−2 logm) bits of space
by Fact 2.1. In Section 3.2 and Section 3.3, the value of ‖A‖1 is used as a normalization factor to
scale the estimate of Fα to an estimate of

∑n
i=1 x

α
i . (See, e.g., Eq. (3.1) and Eq. (3.5).) However,

F̃α

(F̃1)α
=

(1± ε) · Fα
(

(1± ε) · F1

)α =
(

1±O(ε)
)

·
Fα

Fα
1

,
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so the fact that F1 can only be approximated in the general update model affects the analysis
only by increasing the constant factor that multiplies ε. A similar modification must also be
applied to all algorithms in Section 5; we omit the details.

Next, the multiplicative algorithm Section 3.4 needs to compute a multiplicative estimate of
T (yi) using Theorem 5.6. In the general updates model, a weaker result than Theorem 5.6 holds:
we obtain a multiplicative (1+ε)-approximation of Tsallis entropy for any α ∈ (0, 1)∪(1, 2] using
Õ
(

logm/(|1 − α| · ε)2
)

bits of space. The proof is identical to the argument in Appendix A.6,
except that the the moment estimator of Fact 2.1 uses more space, and we must use the residual
moment algorithm of Section 4.3 instead of Section 4.2. Similar modifications must be made to
Theorem 5.1, Theorem 5.2 and Theorem 5.8, with a commensurate increase in the space bounds.

7 Future Research

We hope that the techniques from approximation theory that we introduce may be useful for
streaming and sketching other functions. For instance, consider the following function Gα,k(x) =
∑

i x
α
i (log n)

k, where k ∈ N and α ∈ [0,∞). One can show that

lim
β→α

Gα,k(x)−Gβ,k(x)

α− β
= Gβ,k+1(x).

Note that Gα,0(x) is the α
th moment of x, and one can attempt to estimate Gα,k+1 by computing

Gβ,k for β = α and β close to α. It is not unlikely that our techniques can be generalized to
estimation of functions Gα,k for α ∈ (0, 2]. Can one also use our techniques for approximation
of other classes of functions?
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A Proofs

A.1 Proofs from Section 3.2

Recall that x ∈ R
n is a distribution whose smallest positive value is at least 1/m. The key

technical lemma needed is as follows.

Lemma A.1. Let α > 1, let ξ = ξ(α) denote 4(α− 1)H1(x), and let

e(α) = 2
(

ξ log n + ξ log(1/ξ)
)

.

Assume that ξ(α) < 1/4. Then Hα ≤ H1 ≤ Hα + e(α).

We require the following basic results.

Claim A.2. The following inequalities follow from convexity.

• Let 0 < y ≤ 1. Then ey < 1 + 2y.

• Let y > 0. Then 1− y ≤ log(1/y).

• Let 0 ≤ y ≤ 1/2. Then 1/(1 − y) ≤ 1 + 2y.

Claim A.3. Let 1 ≤ a ≤ b and let x ∈ R
n. Then ‖x‖b ≤ ‖x‖a ≤ n1/a−1/b ‖x‖b.

Claim A.4. If 0 ≤ α ≤ β then Hα ≥ Hβ

Claim A.5. If α > 1 then log
(

1/ ‖x‖α
)

< (α− 1) ·H1.

Proof. log
(

1/ ‖x‖α
)

= α−1
α Hα(x) < (α− 1) ·Hα(x) ≤ (α− 1) ·H1(x). �

Claim A.6. Let y = (y1, . . . , yn) and z = (z1, . . . , zn) be probability distributions such that
‖y − z‖1 ≤ 1/2. Then

|H1(y)−H1(z)| ≤ ‖y − z‖1 · log
( n

‖y − z‖1

)

.

Proof. See Cover and Thomas [9, 16.3.2]. �

Proof (of Lemma A.1). The first inequality follows from Claim A.4 so we focus on the second
one. Define f(α) = log ‖x‖αα and g(α) = 1− α, so that Hα = f(α)/g(α). The derivatives are

f ′(α) =

∑n
i=1x

α
i log xi

‖x‖αα
and g′(α) = − 1,

so limα→1 f
′(α)/g′(α) exists and equals H(x). Since limα→1 f(α) = limα→1 g(α) = 0, l’Hôpital’s

rule implies that limα→1Hα = H(x). A stronger version of L’Hôpital’s rule is as follows.

Claim A.7. Let f : R → R and g : R → R be differentiable functions such that the following
limits exist

lim
α→1

f(α) = 0, lim
α→1

g(α) = 0, and lim
α→1

f ′(α)/g′(α) = L.

Let ε and δ be such that |α − 1| < δ implies that |f ′(α)/g′(α) − L| < ε. Then |α − 1| < δ also
implies that |f(α)/g(α) − L| < ε.
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Proof. See Rudin [31, p.109]. ✷

Thus, to prove our lemma, it suffices to show that |f ′(α)/g′(α) −H1| < e(α). (In fact, we
actually need |f ′(β)/g′(β) − H1| < e(α) for all β ∈ (1, α], but this follows by monotonicity of
e(β) for β ∈ (1, α].)

A key concept in this proof is the “perturbed” probability distribution x(α), defined by
x(α)i = xαi / ‖x‖

α
α. We have the following relationship.

f ′(α)

g′(α)
=

∑n
i=1x

α
i log(1/xi)

‖x‖αα

=

∑n
i=1x

α
i

(

log(1/xi) + log ‖x‖α − log ‖x‖α
)

‖x‖αα

=

(

∑n
i=1x

α
i log(‖x‖α /xi)

)

−
(

∑n
i=1x

α
i log ‖x‖α

)

‖x‖αα

=
1

α

n
∑

i=1

xαi
‖x‖αα

log

(

‖x‖αα
xαi

)

− log ‖x‖α

=
H1

(

x(α)
)

α
+ log(1/ ‖x‖α)

In summary, we have shown that

∣

∣

∣

∣

∣

f ′(α)

g′(α)
−

H1

(

x(α)
)

α

∣

∣

∣

∣

∣

≤ log(1/ ‖x‖α) ≤ (α− 1) ·H1(x), (A.1)

the last inequality following from Claim A.5. To use this bound, we observe that:

∣

∣

∣

∣

f ′(α)

g′(α)
−H1

(

x(α)
)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f ′(α)

g′(α)
−

H1

(

x(α)
)

α
+

(

1

α
− 1

)

H1

(

x(α)
)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

f ′(α)

g′(α)
−

H1

(

x(α)
)

α

∣

∣

∣

∣

∣

+ |1/α − 1| ·H1

(

x(α)
)

We now substitute Eq. (A.1) into this expression, and use |1/α− 1| ≤ α− 1 (valid since α ≥ 1).
This yields:

∣

∣

∣

∣

f ′(α)

g′(α)
−H1

(

x(α)
)

∣

∣

∣

∣

≤ (α− 1) ·H1(x) + (α− 1) ·H1

(

x(α)
)

(A.2)

Recall that our goal is to analyze |f ′(α)/g′(α) − H1(x)|. We do this by showing that
H1

(

x(α)
)

≈ H1(x), and that the right-hand side of Eq. (A.2) is at most e(α). This is done
using Claim A.6; the key step is bounding ‖x− x(α)‖1.

Claim A.8. Suppose that 1 < α ≤ 1 + 1/(2 log n). Then 1/ ‖x‖αα < 1 + 3(α − 1)H1(x).

Proof. From Claim A.3 and ‖x‖1 = 1, we obtain 1/ ‖x‖α ≤ n1−1/α < nα−1. Our hypothesis on
α implies that

α · log(1/ ‖x‖α) < α · (α− 1) log n < 2 · (α− 1) log n ≤ 1. (A.3)
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Thus
1

‖x‖αα
= eα log(1/‖x‖α) < 1 + 2 · α log(1/ ‖x‖α) < 1 + 3(α − 1)H1(x).

The first inequality is from Claim A.2 and Eq. (A.3), and the second from Claim A.5. ✷

Recall that ξ = 4(α − 1)H1(x).

Claim A.9. ‖x− x(α)‖1 ≤ ξ.

Proof. To avoid the absolute values, we shall split the sum defining ‖x− x(α)‖1 into two cases.
For that purpose, let S = { i : x(α)i ≥ xi }. Then

‖x− x(α)‖1 =
∑

i∈S

(

x(α)i − xi
)

+
∑

i 6∈S

(

xi − x(α)i
)

=
∑

i∈S

xi ·

(

xα−1
i

‖x‖αα
− 1

)

+
∑

i 6∈S

xi ·

(

1−
xα−1
i

‖x‖αα

)

The first sum is upper-bounded using xα−1
i ≤ 1 and

∑

i∈S xi ≤ 1. The second sum is upper-
bounded using ‖x‖αα ≤ 1 and 1− xα−1

i ≤ log
(

1/xα−1
i

)

(see Claim A.2).

≤

(

1

‖x‖αα
− 1

)

+ (α− 1)
∑

i 6∈S

xi log(1/xi)

≤ 3(α− 1)H1(x) + (α− 1)H1(x),

using Claim A.8. This completes the proof. ✷

Thus, by our assumption that ξ(α) < 1/4, by Claim A.6, by Claim A.9, and by the fact that
x 7→ x log(1/x) is monotonically increasing for x ∈ (0, 1/4), we obtain that

|H1(x)−H1(x(α))| ≤ ξ log n+ ξ log(1/ξ).

Now we assemble the error bounds. Our result from Eq. (A.2) yields

∣

∣

∣

∣

f ′(α)

g′(α)
−H1(x)

∣

∣

∣

∣

≤

∣

∣

∣

∣

f ′(α)

g′(α)
−H1(x(α))

∣

∣

∣

∣

+ |H1(x)−H1(x(α))|

≤
(

(α− 1)H1(x) + (α− 1)H1(x(α))
)

+ |H1(x)−H1(x(α))|

≤ 2(α − 1)H1(x) + α · |H1(x)−H1(x(α))|

≤ 2
(

ξ log n+ ξ log(1/ξ)
)

This completes the proof. �

We now use Lemma A.1 to show that Hα ≈ H1, if α is sufficiently small.

Proof (of Theorem 3.1). First we focus on the multiplicative approximation. The lower bound
is immediate from Claim A.4, so we show the upper-bound. For an arbitrary µ ∈ (0, 1), we have

µ2 <
µ

2 log(1/µ)
< µ;
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this follows since µ log(1/µ) < 1/2 for all µ. Let µ̃ = µ/
(

2 log(1/µ)
)

. Then

µ̃ log(1/µ̃) < µ.

This follows since µ2 < µ̃ =⇒ 1/µ̃ < 1/µ2 =⇒ log(1/µ̃) < 2 log(1/µ).
The hypotheses of Theorem 3.1 give α = 1 + µ̃/8. Hence,

e(α) = 8(α − 1)H1

[

log n + log
(

1/
(

4(α− 1)H1

)

)]

≤ µ̃H1

[

log n + log
(

2/(µ̃H1)
)

]

Since H1 ≥ (logm)/m for any distribution satisfying our hypotheses, this is at most

≤ µ̃H1

(

log n + log(1/µ̃) + logm
)

≤ (logm)µH1 < (ε/2)H1,

since our hypotheses give µ = ε/(4 logm). Applying Lemma A.1, we obtain that

H1 −Hα ≤ (ε/2)H1

=⇒ (1− ε/2)H1 ≤ Hα

=⇒
H1

Hα
≤

1

1− ε/2
≤ 1 + ε,

the last inequality following from Claim A.2. This establishes the multiplicative approximation.
Let us now consider the above argument, replacing µ with ν = ε/(4 log n logm). We obtain

e(α) ≤ (logm)νH1 ≤ ε/4,

since H1 ≤ log n. Thus, the additive approximation follows directly. �

A.2 Proofs from Section 3.3

Our first task is to prove Lemma 3.5. We require a definition and two preliminary technical
results. For any integer k ≥ 0 and real number a ≥ −1, define

Gk(a) =

n
∑

i=1

x1+a
i logk(xi),

so G0(a) = F1+a/||A||
1+a
1 . Note that G

(1)
k (a) = Gk+1(a) for k ≥ 0, and T (a) = (1−G0(a))/a.

Claim A.10. The kth derivative of the Tsallis entropy has the following expression.

T (k)(a) =
(−1)k k!

(

1−G0(a)
)

ak+1
−





k
∑

j=1

(−1)k−j k!Gj(a)

ak−j+1j!
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Proof. The proof is by induction, the case k = 0 being trivial. So assume k ≥ 1. Taking the
derivative of the expression for T (k)(a) above, we obtain:

T (k+1)(a)

=





k
∑

j=1

k!(k − j + 1)(−1)(k+1)−jGj(a)

a(k+1)−j+1j!
+

k!(−1)k−jGj+1(a)

ak−j+1j!





+
(−1)k+1(k + 1)!(G0(a)− 1)

ak+2
+

(−1)kk!G1(a)

ak+1

=





k
∑

j=1

k!(−1)(k+1)−jGj(a)

a(k+1)−j+1(j − 1)!

(

1 +
k − j + 1

j

)



+
Gk+1(a)

a
+

(−1)k+1(k + 1)!(G0(a)− 1)

ak+2

=





k+1
∑

j=1

(k + 1)!(−1)(k+1)−jGj(a)

a(k+1)−j+1j!



+
(−1)k+1(k + 1)!(G0(a)− 1)

ak+2

as claimed. �

Claim A.11. Define Sk(a) = ak+1T (k)(a). Then, for 1 ≤ j ≤ k + 1,

S
(j)
k (a) =

j−1
∑

i=0

(

j − 1

i

)

k!

(k − j + i+ 1)!
ak−j+i+1Gk+1+i(a)

In particular, for 1 ≤ j ≤ k, we have

lim
a→0

S
(j)
k (a) = 0 and lim

a→0
S
(k+1)
k (a) = k!Gk+1(0) so that lim

a→0
T (k)(a) =

Gk+1(0)

k + 1
.

Proof. We prove the claim by induction on j. First, note

Sk(a) = (−1)kk!(1−G0(a))−





k
∑

j=1

aj(−1)k−jk!Gj(a)

j!





so that

S
(1)
k (a) = (−1)k−1k!G1(a)−





k
∑

j=1

−
a(j+1)−1(−1)k−(j+1)k!Gj+1(a)

((j + 1)− 1)!
+

aj−1(−1)k−jk!Gj(a)

(j − 1)!





= akGk+1(a)

Thus, the base case holds. For the inductive step with 2 ≤ j ≤ k + 1, we have

S
(j)
k (a) =

∂

∂a

(

j−2
∑

i=0

(

j − 2

i

)

k!

(k − j + i+ 2)!
ak−j+i+2Gk+1+i(a)

)

=

j−2
∑

i=0

(

(

j − 2

i

)

k!

(k − j + i+ 1)!
ak−j+i+1Gk+1+i(a)

+

(

j − 2

i

)

k!

(k − j + (i+ 1) + 1)!
ak−j+(i+1)+1Gk+1+(i+1)(a)

)

=

j−1
∑

i=0

(

j − 1

i

)

k!

(k − j + i+ 1)!
ak−j+i+1Gk+1+i(a)
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The final equality holds since
(j−2

0

)

=
(j−1

0

)

= 1,
(j−2
j−2

)

=
(j−1
j−1

)

= 1, and by Pascal’s formula
(

j−2
i

)

+
(

j−2
i+1

)

=
(

j−1
i+1

)

for 0 ≤ i ≤ j − 3.
For 1 ≤ j ≤ k, every term in the above sum is well-defined for a = 0 and contains a power

of a which is at least 1, so lima→0 S
(j)
k (a) = 0. When j = k + 1, all terms but the first term

contain a power of a which is at least 1, and the first term is k!Gk+1(a), so lima→0 S
(k+1)
k (a) =

k!Gk+1(0). The claim on lima→0 T (k)(a) thus follows by writing T (k)(a) = Sk(a)/a
k+1 then

applying l’Hôpital’s rule k + 1 times. �

Proof (of Lemma 3.5). We will first show that

∣

∣

∣

∣

T (k)

(

−
ε

(k + 1) logm

)

−
Gk+1(0)

k + 1

∣

∣

∣

∣

≤
6ε logk(m)H(x)

k + 1

Let Sk(a) = ak+1T (k)(a) and note T (k)(a) = Sk(a)/a
k+1. By Claim A.10, lima→0 Sk(a) =

0. Furthermore, lima→0 S
(j)
k = 0 for all 1 ≤ j ≤ k by Claim A.11. Thus, when analyzing

lima→0 S
(j)
k (a)/(ak+1)(j) for 0 ≤ j ≤ k, both the numerator and denominator approach 0 and

we can apply l’Hôpital’s rule (here (ak+1)(j) denotes the jth derivative of the function ak+1).
By k + 1 applications of l’Hôpital’s rule, we can thus say that T (k)(a) converges to its limit

at least as quickly as S
(k+1)
k (a)/(ak+1)(k+1) = S

(k+1)
k (a)/(k + 1)! does (using Claim A.7). We

note that Gj(a) is nonnegative for j even and nonpositive otherwise. Thus, for negative a, each

term in the summand of the expression for S
(k+1)
k (a) in Claim A.11 is nonnegative for odd k

and nonpositive for even k. As the analyses for even and odd k are nearly identical, we focus

below on odd k, in which case every term in the summand is nonnegative. For odd k, S
(k+2)
k (a)

is nonpositive so that S
(k+1)
k (a) is monotonically decreasing. Thus, it suffices to show that

S
(k+1)
k (−ε/((k + 1) logm))/(k + 1)! is not much larger than its limit.

S
(k+1)
k

(

− ε
(k+1) logm

)

(k + 1)!
=

∑k
i=0

(k
i

)

k!
i!

(

− ε
(k+1) logm

)i
Gk+1+i

(

− ε
(k+1) logm

)

(k + 1)!

≤
1 + 2ε

k + 1

k
∑

i=0

(

k

i

)(

ε

(k + 1) logm

)i

|Gk+1+i(0)|

≤
1 + 2ε

k + 1

k
∑

i=0

ki
(

ε

(k + 1) logm

)i

|Gk+1+i(0)|

≤
1 + 2ε

k + 1

k
∑

i=0

(

ε

logm

)i

|Gk+1+i(0)|

≤
1 + 2ε

k + 1

k
∑

i=0

εi|Gk+1(0)|

≤
(1 + 2ε)|Gk+1(0)|

k + 1
+

1 + 2ε

k + 1

k
∑

i=1

εi|Gk+1(0)|

≤
(1 + 2ε)|Gk+1(0)|

k + 1
+

2

k + 1

k
∑

i=1

εi logk(m)H(x)
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≤
|Gk+1(0)|

k + 1
+

6ε logk(m)H(x)

k + 1

The first inequality holds since xi ≥ 1/m for each i, so that x
−ε/((k+1) logm)
i ≤ mε/((k+1) logm) ≤

mε/ logm ≤ eε ≤ 1 + 2ε for ε ≤ 1/2. The final inequality above holds since ε ≤ 1/2.
The lemma follows since |Gk+1(0)| ≤ logk(m)H(x). �

Proof (of Lemma 3.6). Let Pj denote the jth Chebyshev polynomial. We will prove for all
j ≥ 1 that

Pj−1(x) ≤ Pj(x) ≤ Pj−1(x)

(

1 +
2j

kc

)

.

For the first inequality, we observe Pj−1 ∈ Cj , so we apply Fact 3.3 together with the fact that
Pj(y) is strictly positive for y > 1 for all j.

For the second inequality, we induct on j. For the sake of the proof define P−1(x) = 1 so
that the inductive hypothesis holds at the base case d = 0. For the inductive step with j ≥ 1,
we use the recurrence definition of Pj(x) and we have

Pj+1(x) = Pj(x)

(

1 +
2

kc

)

+ (Pj(x)− Pj−1(x))

≤ Pj(x)

(

1 +
2

kc

)

+ Pj−1(x)
2j

kc

≤ Pj(x)

(

1 +
2

kc

)

+ Pj(x)
2j

kc

= Pj(x)

(

1 +
2(j + 1)

kc

)

�

A.3 Proofs from Section 4

Fact A.12. For any real z > 0, Γ(z + 1) = zΓ(z).

Fact A.13. For any real z ≥ 0, sin(z) ≤ z.

Fact A.14 (Euler’s Reflection Formula). For any real z, Γ(z)Γ(1 − z) = π/ sin(πz).

Definition A.15. The function V : R+ → R is defined by

V (α) =

[

2
πΓ(

2α
3 )Γ(13) sin(

πα
3 )
]3

[

2
πΓ(

α
3 )Γ(

2
3 ) sin(

πα
6 )
]6 − 1

Lemma A.16.

lim
α→0

V (α) =
Γ
(

1
3

)3

Γ
(

2
3

)6

Proof. Define u(α) = Γ(2α/3)(πα/3) = Γ(2α/3)(2α/3)(π/2) = Γ((2α/3)+1)(π/2) by Fact A.12.
By the continuity of Γ(·) on R+, limα→0 u(α) = Γ(1)π/2 = π/2. Define f(α) = Γ(2α/3) sin(πα/3).
Then f(α) ≤ u(α) for all α ≥ 0 by Fact A.13, and thus limα→0 f(α) ≤ π/2. Now define
ℓδ(α) = Γ(2α/3)(1−δ)(πα/3). By the definition of the derivative and the fact that the derivative
of sin(α) evaluated at α = 1 is 1, it follows that ∀δ > 0 ∃ε > 0 s.t. 0 ≤ α < ε⇒ sin(α) ≥ (1−δ)α.
Thus, ∀δ > 0 ∃ε > 0 s.t. 0 ≤ α < ε⇒ ℓδ(α) ≤ f(α), and so ∀δ > 0 we have that limα→0 f(α) ≥
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limα→0 ℓδ(α) = (1 − δ)π/2. Thus, limα→0 f(α) ≥ π/2, implying limα→0 f(α) = π/2. Similarly
we can define g(α) = Γ(α/3) sin(πα/6) and show limα→0 g(α) = π/2.

Now,

V (α) =

[

2
πΓ
(

1
3

)

f(α)
]3

[

2
πΓ
(

2
3

)

g(α)
]6

Thus limα→0 V (α) = Γ(1/3)3/Γ(2/3)6 as claimed. �

Proof (of Lemma 4.2). Li shows in [21] that the variance of the geometric mean estimator
with k = 3 is V (α)F 2

α . As Γ(z) and sin(z) are continuous for z ∈ R+, so is V (α). Furthermore
Lemma A.16 shows that limα→0 V (α) exists (and equals (Γ(1/3)3/Γ(2/3)6)−1). We define V (0)
to be this limit. Thus V (α) is continuous on [0, 2], and the extreme value theorem implies there
exists a constant CGM such that V (α) ≤ CGM on [0, 2]. �

A.4 Detailed Analysis of Geometric Mean Residual Moments Algorithm

Formally, define R =
⌈

log1+ ε
c1

m
⌉

, and let Iz =
{

i : (1 + ε
c1
)z ≤ |Ai| < (1 + ε

c1
)z+1

}

for 0 ≤

z ≤ R. Let z∗ satisfy (1 + ε
c1
)z

∗
≤ |A1| < (1 + ε

c1
)z

∗+1. For 1 ≤ j ≤ r and 0 ≤ z ≤ R, define

Xj,z =
∑

i∈Iz
1hj(i)6=hj(1). We now analyze the jth trial.

Claim A.17. E
[

2 · Fα,j,1−hj(1)

]

=
(

1 +O(ε)
)

· F res
α .

Proof. We have

E
[

2 · Fα,j,1−hj(1)

]

= 2 · E

[

∑

i

|Ai|
α · 1hj(i)6=hj(1)

]

= 2 ·
∑

z

E

[

∑

i∈Iz

|Ai|
α · 1hj(i)6=hj(1)

]

= 2 ·
∑

z

E

[

∑

i∈Iz

(

(1± ε)(1 + ε)z
)α
· 1hj(i)6=hj(1)

]

= (1± ε)α ·
∑

z

(1 + ε)zα E [ 2Xj,z ] .

Clearly E [ 2 ·Xj,z ] is |Iz| − 1 if z = z∗ and |Iz| otherwise. Thus

∑

z

(1 + ε)zα E [ 2 ·Xj,z ] =
∑

i≥2

(

(1± ε)|Ai|
)α

= (1± ε)α · F res
α .

Since α < 2, (1± ε)α = 1±O(ε), so this shows the desired result. �

We now show concentration for Xz := 1
r

∑

1≤j≤r Xj,z. By independence of the hj ’s, Chernoff

bounds show that Xz = (1±ε) E [Xz ] with probability at least 1−exp(−Θ(ε2r)). This quantity
is at least 1− 1

8(R+1) if we choose r = c2
⌈

ε−2(log log ||A||1 + log(c3/ε))
⌉

. The good event is the

event that, for all z, Xz = (1± ε) E [Xz ]; a union bound shows that this occurs with probability
at least 7/8. So suppose that the good event occurs. Then a calculation analogous to Claim A.17
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shows that

∑

j

2

r
· Fα,j,1−hj(1) = (1± ε)α ·

∑

z

(1 + ε)zα · 2Xz

= (1± ε)α ·
∑

z

(1 + ε)zα · (1± ε) E [ 2Xz ]

=
(

1±O(ε)
)

· F res
α . (A.4)

Recall that F̃ res
α =

∑r
j=1

2
r F̃α,j,1−hj(1). Since the geometric mean estimator is unbiased, we

also have that

E
[

F̃ res
α

]

= E





∑

j

2

r
Fα,j,1−hj(1)



 . (A.5)

We conclude the analysis by showing that the random variable F̃ res
α is concentrated. By

Lemma 4.2 applied to each substream, and properties of variance, we have

Var
[

F̃ res
α

]

=
4

r2

r
∑

j=1

Var
[

F̃α,j,1−hj(1)

]

≤
4CGM

r
· E
[

F̃α,j,1−hj(1)

]2
≤

CGM

r
· E
[

F̃ res
α

]2
.

Chebyshev’s inequality therefore shows that

Pr
[

F̃ res
α = (1± ε) E

[

F̃ res
α

] ]

≥ 1−
Var

[

F̃ res
α

]

(ε · E
[

F̃ res
α

]

)2
≥ 1−

CGM

ε2 r
> 6/7,

by appropriate choice of constants. This event and the good event both occur with probability
at least 3/4. When this holds, we have

F̃ res
α = (1± ε) E

[

F̃ res
α

]

= (1± ε) E





∑

j

2

r
Fα,j,1−hj(1)



 =
(

1±O(ε)
)

· F res
α ,

by Eq. (A.5) and Eq. (A.4).

A.5 Proofs from Section 4.2

Proof (of Fact 4.1). Let B = ⌈20/ε⌉ be the number of bins. Let H be a pairwise independent
family of hash functions, each function mapping [n] to [B]. Standard constructions yield such a
family with |H| = nO(1). We will let h be a randomly chosen hash function from H.

For notational simplicity, suppose that x1 = maxi xi. Let Ei,j be the indicator variable for the
event that h(i) = j, so that E [ Ei,j ] = 1/B and Var [ Ei,j ] < 1/B. Let Xj be the random variable
denoting the weight of the items that hash to bin j, i.e., Xj =

∑

i xi · Ei,j. Since
∑

i xi = 1, we
have E [Xj ] = 1/B and Var [Xj ] < ‖x‖

2
2 /B.

Suppose that x1 ≥ 1/2. Let Y be the fraction of mass that hashes to x1’s bin, excluding x1
itself. That is, Y =

∑

i≥2 xi · Ei,h(1). Note that E [Y ] = (
∑

i≥2 xi)/B < (ε/20) · (
∑

i≥2 xi). By
Markov’s inequality,

Pr
[

Y ≥ ε · (
∑

i≥2xi)
]

≤ Pr [Y ≥ 16E [Y ] ] ≤ 1/16.
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Suppose that x1 < 1/2. This implies, by convexity, that ‖x‖22 < 1/2. Let β =
√

2/3 < 5/6.
Then

Pr [ |Xj − 1/B| ≥ β ] ≤
Var [Xj ]

β2
<

3

4B
.

Thus, by a union bound,

Pr [∃j such that Xj ≥ β + 1/B ] ≤
3

4
.

Suppose we want to test if x1 ≥ 1/2 by checking if there’s a bin of mass at least 5/6. As
argued above, the failure probability of one hash function is at most 3/4. If we choose ten
independent hash functions and check that all of them have a bin of at least 5/6, then the
failure probability decreases to less than 1/16. �

A.6 Proofs from Section 5

Proof (of Theorem 5.1). Let mi be the number of times the i-th element appears in the
stream. Recall that m is the length of the stream. By computing a (1 + ε′)-approximation to
the αth moment (as in Fact 2.1) and dividing by ||A||α1 , we get a multiplicative approximation
to Fα/||A||

α
1 = ||x||αα. We can thus compute the value

1

1− α
log

(

(1± ε′)

n
∑

i=1

xαi

)

=
1

1− α
log

(

n
∑

i=1

xαi

)

+
log(1± ε′)

1− α
= Hα(X)±

ε′

1− α
.

Setting ε′ = ε · |1− α|, we obtain an additive approximation algorithm using

O

((

|1− α|

ε2 · |α− 1|2
+

1

ε · |α− 1|

)

logm

)

= O(logm/(|1− α| · ε2))

bits, as claimed. �

Proof (of Theorem 5.2). If α ∈ (0, 1), then because the function xα is concave, we get by
Jensen’s inequality

n
∑

i=1

xi
α ≤ n ·

(

1

n

)α

= n1−α.

If we compute a multiplicative (1 + (1 − α) · ε · nα−1)-approximation to the αth moment, we
obtain an additive (1 − α) · ε-approximation to (

∑n
i=1 x

α
i ) − 1. This in turn gives an additive

ε-approximation to Tα. By Fact 2.1,

O

((

1− α

((1− α) · ε · nα−1)2
+

1

(1− α) · ε · nα−1

)

logm

)

= O(n2(1−α) logm/((1 − α)ε2))

bits of space suffice to achieve the required approximation to the αth moment.
For α > 1, the value Fα/||A||

α
1 is at most 1, so it suffices to approximate Fα to within

a factor of 1 + (α − 1) · ε. For α ∈ (1, 2], again using Fact 2.1, we can achieve this using
O(logm/((α− 1)ε2)) bits of space. �

Proof (of Lemma 5.3). Consider first α ∈ (0, 1). For x ∈ (0, 5/6],

xα

x
= xα−1 ≥

(

5

6

)α−1

≥ 1 +C1 · (1− α),
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for some positive constant C1. The last equality follows from convexity of (5/6)y as a function
of y. Hence,

n
∑

i=1

xαi ≥

n
∑

i=1

(1 + C1(1− α))xi = 1 + C1(1− α),

and furthermore,
∣

∣

∣

∣

∣

1−
n
∑

i=1

xαi

∣

∣

∣

∣

∣

=

(

n
∑

i=1

xαi

)

− 1 ≥ C1 · (1− α) = C1 · |α− 1|

When α ∈ (1, 2], then for x ∈ (0, 5/6],

xα

x
= xα−1 ≤

(

5

6

)α−1

≤ 1−C2 · (α− 1),

for some positive constant C2. This implies that

n
∑

i=1

xαi ≤
n
∑

i=1

xi(1− C2 · (α− 1)) = 1− C2 · (α− 1),

and
∣

∣

∣

∣

∣

1−
n
∑

i=1

xαi

∣

∣

∣

∣

∣

= 1−
n
∑

i=1

xαi ≥ C2 · (α− 1) = C2 · |α− 1|.

To finish the proof of the lemma, we set C = min{C1, C2}. �

Proof (of Lemma 5.5). We first argue that a multiplicative approximation to |1 − xαi | can be
obtained from a multiplicative approximation to 1 − xi. Let g(y) = 1 − (1 − y)α. Note that
g(1−xi) = 1−xαi . Since 1−xi ∈ [0, 1/3], we restrict the domain of g to [0, 1/3]. The derivative
of g is g′(y) = α(1−y)α−1. Note that g is strictly increasing for α ∈ (0, 1)∪ (1, 2]. For α ∈ (0, 1),
the derivative is in the range [α, 32α]. For α ∈ (1, 2], it always lies in the range [23α,α]. In both
cases, a (1 + 2

3ε)-approximation to y suffices to compute a (1 + ε)-approximation to g(y).
We now consider two cases:

• Assume first that α ∈ (0, 1). For any x ∈ (0, 1/3], we have

xα

x
≥

(

1

3

)α−1

= 31−α ≥ 1 + C1(1− α),

for some positive constant C1. The last inequality follows from the convexity of the function
31−α. This means that if xi < 1, then

∑

j 6=i x
α
j

1− xi
≥

∑

j 6=i xj(1 + C1(1− α))

1− xi
=

(1− xi)(1 + C1(1− α))

1− xi
= 1 + C1(1− α).

Since xi ≤ xαi < 1, we also have
∑

j 6=i x
α
j

1− xαi
≥

∑

j 6=i x
α
j

1− xi
≥ 1 + C1(1− α).

This implies that if we compute a multiplicative 1 + (1− α)ε/D1-approximations to both
1−xαi and

∑

j 6=i x
α
j , for sufficiently large constant D1, we compute a multiplicative (1+ε)-

approximation of (
∑n

j=1 x
α
j )− 1.
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• The case of α ∈ (1, 2] is similar. For any x ∈ (0, 1/3], we have

xα

x
≤

(

1

3

)α−1

≤ 1− C2(α− 1),

for some positive constant C2. Hence,

∑

j 6=i x
α
j

1− xi
≤

∑

j 6=i xj(1− C2(α− 1))

1− xi
=

(1− xi)(1− C2(α− 1))

1− xi
= 1− C2(α− 1),

and because xαi ≤ xi,

∑

j 6=i x
α
j

1− xαi
≤

∑

j 6=i x
α
j

1− xi
≤ 1− C2(α− 1).

This implies that if we compute a multiplicative 1 + (α− 1)ε/D2-approximations to both
1 − xαi and

∑

j 6=i x
α
j , for sufficiently large constant D2, we can compute a multiplicative

(1 + ε)-approximation to 1−
∑n

j=1 x
α
j .

�

Proof (of Theorem 5.6). We run the algorithm of Section 4.1 to find out if there is a very
heavy element. This only requires O(log n) words of space.

If there is no heavy element, then by Lemma 5.3 there is a constant C ∈ (0, 1) such that
|1−

∑

i x
α
i | ≥ C|α− 1|. We want to compute a multiplicative approximation to |1−

∑

i x
α
i |. We

know that the difference between
∑

i x
α
i and 1 is large. Therefore, if we compute a multiplicative

(1+1
2 |α−1|Cε)-approximation to

∑

i x
α
i , we obtain an additive (12 |α−1|Cε

∑

i x
α
i )-approximation

to
∑

i x
α
i . If

∑

i x
α
i ≤ 2, then

1
2 |α− 1|Cε

∑

i x
α
i

|1−
∑

i x
α
i |

≤
|α− 1|Cε

C|α− 1|
= ε.

If
∑

i x
α
i ≥ 2, then

1
2 |α− 1|Cε

∑

i x
α
i

|1−
∑

i x
α
i |

≤
1

2
|α− 1|Cε · 2 ≤ ε.

In either case, we obtain a multiplicative (1 + ε)-approximation to |1 −
∑

i x
α
i |, which in turn

yields a multiplicative approximation to the Tsallis entropy. We now need to bound the amount
of space we use in this case. We use the estimator of Fact 2.1, which uses O(logm/(|α − 1|ε2))
bits in our case.

Let us focus now on the case when there is a heavy element. By Lemma 5.5 it suffices to
approximate F res

1 and F res
α , which we can do using the algorithm of Section 4.2. The number of

bits required is

O

(

logm

ε · |α− 1|

)

+ Õ

(

|α− 1| · logm

(ε · |α− 1|)2

)

= Õ

(

logm

ε2 · |α− 1|

)

.

�

Proof (of Lemma 5.7). For t ∈ [4/9, 1], the derivative of the logarithm function lies in the
range [a, b], where a and b are constants such that 0 < a < b. This implies that in this
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case, a (1 + ε)-approximation to t − 1 gives a 1 + b
aε approximation to log(t). We are given

y ∈ [1− t, (1 + ε)(1− t)], and we can assume that y ∈ [1− t,min{5/9, (1 + ε)(1− t)}]. We have

− log(t) ≤ − log(1− y),

and

− log(1− y)

− log(t)
≤
− log(1− (1 + ε)(1− t))

− log(t)
=
− log(t− ε(1− t))

− log(t)

≤
− log(t) + (− log(t− ε(1 − t)) + log(t))

− log(t)

≤ 1 +
− log(t− ε(1− t)) + log(t)

− log(t)

≤ 1 +
ε(1 − t) ·maxz∈[max{t−ε(1−t),4/9},t](log(z))

′

(1− t) ·minz∈[4/9,1](log(z))′

≤ 1 +
ε(1 − t) ·maxz∈[t,1](log(z))

′

(1− t) ·minz∈[4/9,1](log(z))′

≤ 1 +
ε(1 − t) · b

(1− t) · a
= 1 +

b

a
ε.

Consider now t > 1. We are given y ∈ [t− 1, (1 + ε)(t− 1)], and we have

log(t) ≤ log(y + 1) ≤ log((1 + ε)(t− 1) + 1).

Furthermore,

log((1 + ε)(t− 1) + 1)

log(t)
≤

log(t) + log((1 + ε)(t− 1) + 1)− log(t)

log(t)

= 1 +
log(t+ (t− 1)ε) − log(t)

log(t)

= 1 +

∫ t+(t−1)ε
t (log(z))′dz
∫ t
1 (log(z))

′dz

≤ 1 +
(t− 1)εmaxz∈[t,t+(t−1)ε](log(z))

′

(t− 1)maxz∈[1,t](log(z))′

≤ 1 +
(t− 1)ε

t− 1
= 1 + ε.

Hence, we get a good multiplicative approximation to log(t). �

Proof (of Theorem 5.8). We use the algorithm of Section 4.1 to check if there is a single
element of high frequency. This only requires O(logm) bits of space.

If there is no element of frequency greater than 5/6, then the Rényi entropy for any α is
greater than the min-entropy H∞ = − logmaxi xi ≥ log(6/5). Therefore, in this case it suffices
to run the additive approximation algorithm with ε′ = log(6/5)ε to obtain a sufficiently good

estimate. To run that algorithm, we use O
(

logm
|1−α|ε2

)

bits of space.

Let us consider the other case, when there is an element of frequency at least 2/3. For
α ∈ (1, 2], we have

(

2

3

)2

≤
∑

i

xαi ≤ 1,
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and for α ∈ (0, 1),
∑n

i=1 x
α
i ≥ 1. Therefore, by Lemma 5.7, it suffices to compute a multiplicative

approximation to |1−
∑

i x
α
i |, which we can do by Lemma 5.5. By algorithms from Section 4.3

and Section 4.2, we can compute the multiplicative (1 + Θ(|1 − α|ε))-approximations required
by Lemma 5.5 with the same space complexity as for the approximation of Tsallis entropy (see
the proof of Theorem 5.6). �

Proof (of Theorem 5.9). The proof is nearly identical to that of Theorem 3.1 in [2]. We

need merely observe that if H̃α is a (1 + ε)-approximation to Hα, then mα(1+ε)2(1−α)H̃α is a
multiplicative mαε-approximation to Fα. From here, we set t = cmεn1/α and argue identically
as in [2] via a reduction from t-party disjointness; we omit the details. �
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