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Abstract

We show that there is a polynomial-time approximation
scheme for computing Nash equilibria in anonymous games
with any fixed number of strategies (a very broad and im-
portant class of games), extending the two-strategy result
of [16]. The approximation guarantee follows from a prob-
abilistic result of more general interest: The distribution of
the sum ofn independent unit vectors with values ranging
over{e1, . . . , ek}, whereei is the unit vector along dimen-
sioni of thek-dimensional Euclidean space, can be approx-
imated by the distribution of the sum of another set of inde-
pendent unit vectors whose probabilities of obtaining each
value are multiples of 1z for some integerz, and so that
the variational distance of the two distributions is at mostǫ,
whereǫ is bounded by an inverse polynomial inz and a
function ofk, but with no dependence onn. Our probabilis-
tic result specifies the construction of a surprisingly sparse
ǫ-cover — under the total variation distance — of the set of
distributions of sums of independent unit vectors, which is
of interest on its own right.

1 Introduction

The recent results implying that the Nash equilibrium
is an intractable problem [19], even in the two-player
case [11], have directed the interest of researchers towards
algorithms or complexity results for special cases [25, 34,
1, 28, 18] and approximation algorithms [32, 31, 20, 24, 21,
10, 39, 18], and the following has emerged as the main open
question in the area of equilibrium computation:Is there a
PTAS for the Nash equilibrium?1
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1It is shown in [12] that an FPTAS is no more likely than an exact

solution.

In this paper we make progress on this problem, focusing
on a very broad and common class of games calledanony-
mous games[7, 8]. A game is anonymous if the utility
of each player depends not on exactly which other player
chooses which strategy; instead, it only depends on the
numberof other players that play each strategy (that is, it is
a symmetric function of the strategies played by other play-
ers). Anonymous games are a much more general class than
the symmetric games (known to be solvable in polynomial
time when the number of strategies is fixed [35]), in which
all players are identical. Many problems of interest in com-
putational game theory, such as congestion games, partici-
pation games, voting games, and certain markets and auc-
tions, are anonymous. Anonymous games have also been
used for modeling certain social phenomena [8]. Since in
anonymous games a player’s utility depends on theparti-
tion of the remaining players into strategies, such games are
a rare case of multiplayer games that have a polynomially
succinct representation — as long as the number of strate-
gies is fixed. Our main result is a PTAS for such games.
(However, it should be noted that it is not known whether
this special case of the Nash equilibrium problem is PPAD-
complete, and so even an exact algorithm may be possible.)

Our PTAS extends to several generalizations of anony-
mous games, for example the case in which there are a few
typesof players, and the utilities depend on how many play-
ersof each typeplay each strategy; and to the case in which
we haveextended families(disjoint graphical games of con-
stant degree and with up to logarithmically many players,
each with a utility depending in arbitrary, possibly non-
anonymous, ways on their neighbors, in addition to their
anonymous, possibly typed, interest on everybody else). Es-
sentially any further extension leads to intractability.

Algorithmic Game Theory aspires to understand the In-
ternet and the markets it encompasses and creates, and
therefore it should focus onmulti-playergames. We believe
that our PTAS is a positive algorithmic result spanning a
vast expanse in this space. However, because of the tremen-
dous analytical difficulties detailed below, our algorithmis
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not practical (as we shall see, the number of strategies ap-
pears, exponentially, in the exponent of the running time).
It could be, of course, the precursor of more practical algo-
rithms (in fact, such an algorithm for the two-strategy case
has been recently proposed [15]). But, more importantly,
our algorithm should be seen as compelling computational
evidence that there are very extensive and important classes
of common games which are free of the negative implica-
tions of the complexity result in [19].

The basic idea of our algorithm is extremely simple and
intuitive (and in fact it had been noted in the past [29]):
Since we are looking for mixed strategies (probability dis-
tributions, one for each player, on the set of strategies) that
are in equilibrium, we restrict our search to probability dis-
tributions assigning to the strategies probabilities thatare
multiples of a fixed fraction, call it1z , wherez is a large
enough natural number. We call this processdiscretization.
We can then consider each discrete probability distribution
as a separate strategy and look for (approximate)pureequi-
libria in the resulting game (the utilities of the new game can
be computed via dynamic programming). The challenge
is to prove that any mixed Nash equilibrium of the origi-
nal game has to be close to some approximate pure Nash
equilibrium of the resulting game. For general games this
is not very hard to see (even though it had apparently es-
caped the attention of the researchers who first suggested
the discretization method [29]), and this observation yields

aNO(log log N
ǫ ) quasi-PTAS for computing Nash equilibria

in games in which all players have a fixed number of strate-
gies, whereN is the size of the input (Theorem 4.2; note

that this complements theNO(logN/ǫ2) quasi-PTAS of [32]
for games with a fixed number ofplayers). We also point
out that the discretization method gives the first algorithm
for tree-like graphical games with a fixed number of strate-
gies (for trees, an initial attempt by [30] in the two-strategy
case was found to have flaws in [23], while in the latter pa-
per a polynomial-time algorithm for graphical games with
two strategies onpathsandcycleswas developed). Our al-
gorithm applies to all graphical games with a fixed number
of strategies whose graph is of bounded degree and loga-
rithmically bounded treewidth.

The discretization method requires polynomial time in
the case of anonymous games, because in this case the
search space is no longer the set of alln-tuples of discrete
distributions, wheren is the number of players (this is ex-
ponential inn); instead, via dynamic programming (see the
proof of Theorem 2.2), it can be reduced to the set of all
the ordered partitions ofn into ℓ = O((z + 1)k−1) parts,
whereℓ is the number of discrete probability distributions
defined above, which is polynomial inn, if k, the number
of strategies, andz, the discretization, are fixed.

But proving in this case that the approximation is valid
turns out to be a deep problem. One has to establish a proba-

bilistic lemma stating that, given a multinomial-sum distri-
bution (the sum ofk-dimensional unit vector-valued inde-
pendent but not necessarily identically distributed random
variables), the probabilities can be rounded to multiples of
1
z so that the variational distance between the resulting dis-
tribution and the original one depends only onz (and in fact
this dependence is inversely polynomial), and on the dimen-
sionk (in an arbitrary way; the bound we can prove is expo-
nential, and we suspect it is necessary). This probabilistic
lemma for the case of two strategies (i.e., for binomial-sum
distributions) was proved in [16] by clustering the variables
into three classes, depending on how large their expecta-
tion is, and then using results from the probability litera-
ture [4, 5, 37] to approximate each component binomial-
sum distribution (both the original and the rounded one) by
Poisson or shifted Poisson distributions (depending on the
cluster), and finally rounding the probabilities so that the
approximations are close.

In the multinomial case, however, no useful approxima-
tions are known; see, e.g., [2] for some obstacles in extend-
ing the existent methods to the multinomial case. Another
reason that makes the binomial case easy is that it is essen-
tially one-dimensional: in the multinomial case on the other
hand, watching the balls in one bin, so to speak, provides
small information about the distribution of the remaining
balls in the other bins, because the random vectors are not
identically distributed. Our proof is very involved and indi-
rect, resorting to an alternative sampling of each random
vector by funneling a ball down a probabilistic decision
tree withk − 1 leaves (k is the dimension, or number of
strategies), ending up eventually with a binary choice at the
leaves. This choice can now be discretized similarly to the
binomial case — albeit with much more effort. The decision
tree topologies become the clusters for the approximation,
and their number (exponential ink) appears in the variation
distance via a union bound, and, hence, in the exponent of
the running time. We believe that this probabilistic lemma
(Theorem 2.1), and its proof, represent an advance of some
substance in the state of the art in this area of applied prob-
ability.

Our result can be interpreted as constructing a surpris-
ingly sparse cover of the set of multinomial-sum distribu-
tions under the total variation distance. Covers of metric
spaces have been considered in the literature of approxima-
tion algorithms, but we know of no non-trivial result work-
ing for the total variation distance or producing a cover
of the required sparsity to achieve a polynomial-time ap-
proximation scheme for the Nash equilibrium in anony-
mous games. To show the value of our result in another
context, we exhibit a family of non-convex optimization
problems arising in economics that can be approximated by
means of our probabilistic lemma and for which no effi-
cient algorithm was known before. An application of our



result for this family of non-convex optimization problems
is a PTAS for finding threat points in repeated anonymous
games. These results are discussed in Section 5.

In the balance of this section we provide the necessary
definitions. In the next section we describe the basics of
the main result, including the algorithm and an overview of
the proof. The main part of the proof of the probabilistic
lemma is in Section 3, while in Section 4 we explore the ap-
plication of our method to broad generalizations of anony-
mous games, as well as general (non-anonymous) games
and graphical games. In Section 5 we present the applica-
tion of our result to certain types of non-convex optimiza-
tion problems. We conclude with a discussion of problems
that remain open.

1.1 Definitions and Notation

An anonymous gameis a tripleG = (n, k, {up
i }) where

[n] = {1, . . . , n}, n ≥ 2, is the set of players,[k] =
{1, . . . , k}, k ≥ 2, is the set of strategies, andup

i with
p ∈ [n] andi ∈ [k] is the utility of playerp when she plays
strategyi, a function mapping the set of partitionsΠk

n−1 =

{(x1, . . . , xk) : xi ∈ N0 for all i ∈ [k],
∑k

i=1 xi = n − 1}
to the interval[0, 1]. 2 Our working assumptions are that
n is large andk is fixed; notice that, in this case, anony-
mous games aresuccinctly representable[35], in the sense
that their representation requires specifyingO(nk) num-
bers, as opposed to thenkn numbers required for general
games (arguably, succinct games are the only multiplayer
games that are computationally meaningful, see [35] for
an extensive discussion of this point). The convex hull of
the setΠk

n−1 will be denoted by∆k
n−1 = {(x1, . . . , xk) :

xi ≥ 0 for all i ∈ [k],
∑k

i=1 xi = n− 1}.
A pure strategy profilein such a game is a mapping

S from [n] to [k]. A pure strategy profileS is an ǫ-
approximate pure Nash equilibrium, whereǫ ≥ 0, if, for
all p ∈ [n], up

S(p)(x[S, p]) + ǫ ≥ up
i (x[S, p]) for all i ∈ [k],

wherex[S, p] ∈ Πk
n−1 is the partition(x1, . . . , xk) such that

xi is the number of playersq ∈ [n]− {p} with S(q) = i.
A mixed strategy profileis a set ofn distributions{δp ∈

∆k}p∈[n], where by∆k we denote the(k− 1)-dimensional
simplex, or, equivalently, the set of distributions over[k].
A mixed strategy profile is anǫ-Nash equilibriumif, for all
p ∈ [n] andj, j′ ∈ [k],

Eδ1,...,δnu
p
j (x) > Eδ1,...,δnu

p
j′(x) + ǫ ⇒ δp(j

′) = 0,

wherex is drawn fromΠk
n−1 by drawingn − 1 random

samples from[k] independently according to the distribu-
tionsδq, q 6= p, and forming the induced partition.

Similarly, a mixed strategy profile is anǫ-approximate
Nash equilibrium if, for all p ∈ [n] and j ∈ [k],

2In the literature on Nash approximation, utilities are usually normal-
ized in this way so that the approximation error is additive.

Eδ1,...,δnu
p
i (x)+ǫ ≥ Eδ1,...,δnu

p
j (x), wherei is drawn from

[k] according toδp andx is drawn fromΠk
n−1 as above,

by drawingn − 1 random samples from[k] independently
according to the distributionsδq, q 6= p, and forming the
induced partition.

Clearly, anǫ-Nash equilibrium is also anǫ-approximate
Nash equilibrium, but the converse is not true in general
(for an extensive discussion, see [19]). All our positive ap-
proximation results are for the stronger notion of theǫ-Nash
equilibrium.

2 The Main Result

Thetotal variation distancebetween two distributionsP
andQ over a finite setA is

||P−Q||TV =
1

2

∑

α∈A
|P(α) −Q(α)|.

Similarly, if X andY are two random variables ranging
over a finite set, their total variation distance, denoted

||X − Y ||TV,

is defined as the total variation distance between their dis-
tributions. The bulk of the paper is dedicated to proving the
following result, generalizing the one-dimensional (k = 2)
case established in [16].

Theorem 2.1 Let {pi ∈ ∆k}i∈[n], and let{Xi ∈ Rk}i∈[n]

be a set of independentk-dimensional random unit vectors
such that, for alli ∈ [n], ℓ ∈ [k], Pr[Xi = eℓ] = pi,ℓ,
whereeℓ ∈ Rk is the unit vector along dimensionℓ; also,
let z > 0 be an integer. Then there exists another set of
probability vectors{p̂i ∈ ∆k}i∈[n] such that

1. |p̂i,ℓ − pi,ℓ| = O
(
1
z

)
, for all i ∈ [n], ℓ ∈ [k];

2. p̂i,ℓ is an integer multiple of12k
1
z , for all i ∈ [n], ℓ ∈

[k];

3. if pi,ℓ = 0, thenp̂i,ℓ = 0, for all i ∈ [n], ℓ ∈ [k];

4. if {X̂i ∈ Rk}i∈[n] is a set of independent random

unit vectors such thatPr[X̂i = eℓ] = p̂i,ℓ, for all
i ∈ [n], ℓ ∈ [k], then

∣∣∣∣∣

∣∣∣∣∣
∑

i

Xi −
∑

i

X̂i

∣∣∣∣∣

∣∣∣∣∣
TV

= O

(
f(k)

log z

z1/5

)
(1)

and, moreover, for allj ∈ [n],
∣∣∣∣∣∣

∣∣∣∣∣∣

∑

i6=j

Xi −
∑

i6=j

X̂i

∣∣∣∣∣∣

∣∣∣∣∣∣
TV

= O

(
f(k)

log z

z1/5

)
, (2)

wheref(k) is an exponential function ofk estimated
in the proof.



In other words, there is a way to quantize any set ofn in-
dependent random vectors into another set ofn indepen-
dent random vectors, whose probabilities of obtaining each
value are integer multiples ofǫ ∈ [0, 1], so that the total
variation distance between the distribution of the sum of
the vectors before and after the quantization is bounded by
O(f(k)2k/6ǫ1/6). The important, and perhaps surprising,
aspect of this bound is the lack of dependence on the num-
bern of random vectors. From this, the main result of this
section follows.

Theorem 2.2 There is a PTAS for the mixed Nash equilib-
rium problem for anonymous games with a constant number
of strategies.

Proof: Consider a mixed Nash equilibrium(p1, . . . , pn).
We claim that the mixed strategy profile(p̂1, . . . , p̂n) speci-

fied by Theorem 2.1 constitutes aO
(
f(k)z−

1
6

)
-Nash equi-

librium. Indeed, for every playeri ∈ [n] and every pure
strategym ∈ [k] for that player, let us track down the
change in the expected utility of the player for playing
strategym when the distribution overΠk

n−1 defined by
the {pj}j 6=i is replaced by the distribution defined by the
{p̂j}j 6=i. It is not hard to see that the absolute change is
bounded by the total variation distance between the distribu-
tions of the random vectors

∑
j 6=i Xj and

∑
j 6=i X̂j , where

{Xj}j 6=i are independent random vectors distributed ac-
cording to the distributions{pj}j 6=i and, similarly,{X̂j}j 6=i

are independent random vectors distributed according to the
distributions{p̂j}j 6=i. 3 Hence, by Theorem 2.1, the change
in the utility of the player is at mostO(f(k)z−

1
6 ), which

implies that thêpi’s constitute anO(f(k)z−
1
6 )-Nash equi-

librium of the game. If we takez = (f(k)/ǫ)
6, this is a

δ-Nash equilibrium, forδ = O(ǫ).
From the previous discussion it follows that there ex-

ists a mixed strategy profile{p̂i}i which is of the very spe-
cial kind described by Property 2 in the statement of The-
orem 2.1 and constitutes aδ-Nash equilibrium of the given
game, if we choosez = (f(k)/ǫ)6. The problem is, of
course, that we do not know such a mixed strategy profile
and, moreover, we cannot afford to do exhaustive search
over all mixed strategy profiles satisfying Property 2, since
there is an exponential number of those. We do instead the
following search which is guaranteed to find aδ-Nash equi-
librium.

Notice that there are at most(2kz)k = 2k
2

(f(k)/ǫ)
6k
=:

K “quantized” mixed strategies with each probability be-
ing a multiple of 1

2k
1
z , z = (f(k)/ǫ)

6. Let K be the set
of such quantized mixed strategies. We start our algorithm
by guessing the partition of the numbern of players into
quantized mixed strategies; letθ = {θσ}σ∈K be the parti-
tion, whereθσ represents the number of players choosing

3To establish this bound we use the fact that all utilities liein [0, 1].

the discretized mixed strategyσ ∈ K. Now we only need
to determine if there exists an assignment of mixed strate-
gies to the players in[n], with θσ of them playing mixed
strategyσ ∈ K, so that the corresponding mixed strategy
profile is aδ-Nash equilibrium. To answer this question
it is enough to solve the followingmax-flowproblem. Let
us consider the bipartite graph([n],K, E) with edge setE
defined as follows:(i, σ) ∈ E, for i ∈ [n] andσ ∈ K,
if θσ > 0 andσ is a δ-best response for playeri, if the
partition of the other players into the mixed strategies in
K is the partitionθ, with one unit subtracted fromθσ. 4

Note that to defineE expected payoff computations are re-
quired. By straightforward dynamic programming, the ex-
pected utility of playeri for playing pure strategys ∈ [k]
given the mixed strategies of the other players can be com-
puted withO(knk) operations on numbers with at most
b(n, z, k) := ⌈1+n(k+log2 z)+log2(1/umin)⌉ bits, where
umin is the smallest non-zero payoff value of the game.5 To
conclude the construction of the max-flow instance we add
a source nodeu connected to all the left hand side nodes and
a sink nodev connected to all the right hand side nodes. We
set the capacity of the edge(σ, v) equal toθσ, for all σ ∈ K,
and the capacity of all other edges equal to1. If the max-
flow from u to v has valuen then there is a way to assign
discretized mixed strategies to the players so thatθσ of them
play mixed strategyσ ∈ K and the resulting mixed strategy
profile is aδ-Nash equilibrium (details omitted). There are
at most(n+1)K−1 possible guesses forθ; hence, the search
takes overall time

O
(
(nKk2nkb(n, z, k) + p(n+K + 2)) · (n+ 1)K−1

)
,

wherep(n + K + 2) is the time needed to find an inte-
gral maximum flow in a graph withn + K + 2 nodes and
edge-weights encoded with at most⌈log2 n⌉ bits. Hence,
the overall time is

n
O

“

2k
2
( f(k)

ǫ )
6k

”

· log2(1/umin).

�

Remark: Theorem 2.1 can be interpreted as constructing a
sparse cover of the set of distributions of sums of indepen-
dent random unit vectors under the total variation distance.
We know of no non-trivial results working for this distance
or achieving the same sparsity.

4For our discussion, a mixed strategyσ of playeri is aδ-best response
to a set of mixed strategies for the other players iff the expected payoff of
playeri for playing any pure strategys in the support ofσ is no more than
δ worse than her expected payoff for playing any pure strategys′.

5To compute a bound on the number of bits required for the expected
utility computations, note that the expected utility is positive, cannot ex-
ceed1, and its smallest possible non-zero value is at least( 1

2k
1

z
)numin,

since the mixed strategies of all players are from the setK.



2.1 Discussion of Proof Techniques

Observe that, from a technical perspective, thek > 2
case of Theorem 2.1 is inherently different than thek = 2
case, which was shown in [16] (Theorem 3.1). Indeed,
when k = 2, knowledge of the number of players who
selected their first strategy determines the whole partition
of the number of players into strategies; therefore, in this
case the probabilistic experiment is in some senseone-
dimensional. On the other hand, whenk > 2, knowledge
of the number of “balls in a bin”, that is the number of
players who selected a particular strategy, does not provide
full information about the number of balls in the other bins.
This complication would be quite benign if the vectorsXi

were identically distributed, since in this case the number
of balls in a bin would at least characterize precisely the
probability distribution of the number of balls in the other
bins (as a multinomial distribution with one bin less and the
bin-probabilities appropriately renormalized). But, in our
case, the vectorsXi are not identically distributed. Hence,
already fork = 3 the problem is fundamentally more in-
volved than in thek = 2 case.

Indeed, it turns out that obtaining the result for thek = 2
case is easier. Here is the intuition: If the expectation of
everyXi at the first bin was small, their sum would be dis-
tributed like a Poisson distribution (marginally at that bin);
if the expectation of everyXi was large, the sum would be
distributed like a (discretized) Normal distribution.6 So, to
establish the result we can do the following (see [16] for
details): First, we cluster theXi’s into those with small and
those with large expectation at the first bin, and then we
discretize theXi’s separately in the two clusters in such a
way that the sum of their expectations (within each clus-
ter) is preserved to within the discretization accuracy. To
show the closeness in total variation distance between the
sum of theXi’s before and after the discretization, we com-
pare instead the Poisson or Normal distributions (depend-
ing on the cluster) which approximate the sum of theXi’s:
For the “small cluster”, we compare the Poisson distribu-
tions approximating the sum of theXi’s before and after the
discretization. For the “large cluster”, we compare the Nor-
mals approximating the sum of theXi’s before and after the
discretization.

One would imagine that a similar technique, i.e., approx-
imating by a multidimensional Poisson or Normal distribu-
tion, would work for thek > 2 case. Comparing a sum of
multinomial random variables to a multidimensional Pois-
son or Normal distribution is a little harder in many dimen-
sions (see the discussion in [2]), but almost optimal bounds

6Comparing, in terms of variational distance, a sum of independent
Bernoulli random variables to a Poisson or a Normal distribution is an
important problem in probability theory. The approximations we use are
obtained by applications ofStein’s method[3, 4, 37].

are known for both the multidimensional Poisson [2, 38]
and the multidimensional Normal [6, 26] approximations.
Nevertheless, these results by themselves are not sufficient
for our setting: Approximating by a multidimensional Nor-
mal performs very poorly at the coordinates where the vec-
tors have small expectations, and approximating by a multi-
dimensional Poisson fails at the coordinates where the vec-
tors have large expectations. And in our case, it could very
well be that the sum of theXi’s is distributed like a mul-
tidimensional Poisson distribution in a subset of the coor-
dinates and like a multidimensional Normal in the comple-
ment (those coordinates where theXi’s have respectively
small or large expectations). What we really need, instead,
is a multidimensional approximation result that combines
the multidimensional Poisson and Normal approximations
in the same picture; and such a result is not known.

Our approach instead is very indirect. We define an al-
ternative way of sampling the vectorsXi which consists of
performing a random walk on a binary decision tree and
performing a probabilistic choice between two strategies
at the leaves of the tree (Sections 3.1 and 3.2). The ran-
dom vectors are then clustered so that, within a cluster, all
vectors share the same decision tree (Section 3.3), and the
rounding, performed separately for every cluster, consists
of discretizing the probabilities for the probabilistic experi-
ments at the leaves of the tree (Section 3.4). The rounding
is done in such a way that, if all vectorsXi were to end
up at the same leaf after walking on the decision tree, then
the one-dimensional result described above would apply for
the (binary) probabilistic choice that the vectors are facing
at the leaf. However, the random walks will not all end up
at the same leaf with high probability. To remedy this, we
define a coupling between the random walks of the original
and the discretized vectors for which, in the typical case,
the probabilistic experiments that the original vectors will
run at every leaf of the tree are very “similar” to the experi-
ments that the discretized vectors will run. That is, our cou-
pling guarantees that, with high probability over the random
walks, the total variation distance between the choices (as
random variables) that are to be made by the original vec-
tors at every leaf of the decision tree and the choices (again
as random variables) that are to be made by the discretized
vectors is very small. The coupling of the random walks is
defined in Section 3.5, and a quantification of the similar-
ity of the leaf experiments under this coupling is given in
Section 3.6.

For a discussion about why naive approaches such as
rounding to the closest discrete distributionor randomized
roundingdo not appear useful, even for thek = 2 case, see
Section 3.1 of [16].



3 Proof of Theorem 2.1

3.1 The Trickle-down Process

Consider the mixed strategypi of player i. The crux
of our argument is an alternative way to sample from this
distribution, based on the so-calledtrickle-down process,
defined next.

TDP — Trickle-Down Process
Input: (S, p), whereS = {i1, . . . , im} ⊆ [k] is a set of
strategies andp a probability distributionp(ij) > 0 : j =
1, . . . ,m. We assume that the elements ofS are ordered
i1, . . . , im in such a way that (a)p(i2) is the largest of the
p(ij)’s and (b) for2 6= j < j′ 6= 2, p(ij) ≤ p(ij′). That
is, the largest probability is second, and, other than that,the
probabilities are sorted in non-decreasing order (ties broken
lexicographically).

if |S| ≤ 2 stop;
elseapply thepartition and double operation:

1. letℓ∗ < m be the (unique) index such that∑
ℓ<ℓ∗ p(iℓ) ≤ 1

2 and
∑

ℓ>ℓ∗ p(iℓ) <
1
2 ;

2. Define the sets
SL = {iℓ : ℓ ≤ ℓ∗} andSR = {iℓ : ℓ ≥ ℓ∗}

3. Define the probability distributionpL such that, for
all ℓ < ℓ∗, pL(iℓ) = 2p(iℓ). Also, let t := 1 −∑ℓ∗−1

ℓ=1 pL(iℓ); if t = 0, then removeℓ∗ from SL, oth-
erwise setpL(iℓ∗) = t. Similarly, define the probabil-
ity distribution pR such thatpR(iℓ) = 2p(iℓ), for all
ℓ > ℓ∗ andpR(iℓ∗) = 1−∑m

ℓ∗+1 pR(iℓ). Notice that,
because of the way we have ordered the strategies in
S, iℓ∗ is neither the first nor the last element ofS in
our ordering, and hence2 ≤ |SL|, |SR| < |S|.

4. callTDP(SL, pL); call TDP(SR, pR);

That is, TDP splits the support of the mixed strategy of
a player into a tree of finer and finer sets of strategies, with
all leaves having just two strategies. At each level the two
sets in which the set of strategies is split overlap in at most
one strategy (whose probability mass is divided between its
two copies). The two sets then have probabilities adding up
to 1/2, but then the probabilities are multiplied by2, so that
each node of the tree represents a distribution.

3.2 The Alternative Sampling of Xi

Let pi be the mixed strategy of playeri, andSi be its
support.7 The execution ofTDP(Si, pi) defines a rooted

7In this section and the following two sections we assume that|Si| >
1; if not, we setbpi = pi, and all claims we make in Sections 3.5 and 3.6
are trivially satisfied.

binary treeTi with node setVi and set of leaves∂Ti. Each
nodev ∈ Vi is identified with a pair(Sv, pi,v), whereSv ⊆
[k] is a set of strategies andpi,v is a distribution overSv.
Based on this tree, we define the following alternative way
to sampleXi:

SAMPLING Xi

1. (Stage 1) Perform a random walk from the root of the
treeTi to the leaves, where, at every non-leaf node, the
left or right child is chosen with probability1/2; let
Φi ∈ ∂Ti be the (random) leaf chosen by the random
walk;

2. (Stage 2) Let (S, p) be the label assigned to the leaf
Φi, whereS = {ℓ1, ℓ2}; setXi = eℓ1 , with probability
p(ℓ1), andXi = eℓ2 , with probabilityp(ℓ2).

The following lemma, whose straightforward proof we
omit, states that this is indeed an alternative sampling of the
mixed strategy of playeri.

Lemma 3.1 For all i ∈ [n], the processSAMPLING Xi out-
putsXi = eℓ with probabilitypi,ℓ, for all ℓ ∈ [k].

3.3 Clustering the Random Vectors

We use the processTDP to cluster the random vectors of
the set{Xi}i∈[n]. We define a cell for every possible tree
structure. In particular, for someα > 0 to be determined
later in the proof,

Definition 3.2 (Cell Definition) Two vectorsXi and Xj

belong to the same cell if

• there exists a tree isomorphismfi,j : Vi → Vj between
the treesTi andTj such that, for allu ∈ Vi, v ∈ Vj , if
fi,j(u) = v, thenSu = Sv, and in fact the elements of
Su andSv are ordered the same way bypi,u andpj,v.

• if u ∈ ∂Ti, v = fi,j(u) ∈ ∂Tj, andℓ∗ ∈ Su = Sv is
the strategy with the smallest probability mass for both
pi,u andpj,v, then eitherpi,u(ℓ∗), pj,v(ℓ∗) ≤ ⌊zα⌋

z or

pi,u(ℓ
∗), pj,v(ℓ∗) > ⌊zα⌋

z ; the leaf is calledType A
leaf in the first case,Type B leafin the second case.

It is easy to see that the total number of cells is bounded
by a function ofk only, estimated in the following claim;
the proof of the claim is postponed to Appendix A.

Claim 3.3 Any tree resulting from TDP has at mostk − 1
leaves, and the total number of cells is bounded byg(k) =

kk
2

2k−12kk!.



3.4 Discretization within a Cell

Recall that our goal is to “discretize” the probabilities in
the distribution of theXi’s. We will do this separately in
every cell of our clustering. In particular, supposing that
{Xi}i∈I is the set of vectors falling in a particular cell, for
some index setI, we will define a set of “discretized” vec-
tors{X̂i}i∈I in such a way that, forh(k) = k2k, and for all
j ∈ I,

∣∣∣∣∣

∣∣∣∣∣
∑

i∈I
Xi −

∑

i∈I
X̂i

∣∣∣∣∣

∣∣∣∣∣
TV

= O(h(k) log z · z−1/5); (3)

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

i∈I\{j}
Xi −

∑

i∈I\{j}
X̂i

∣∣∣∣∣∣

∣∣∣∣∣∣
TV

= O(h(k) log z · z−1/5).

(4)

We establish these bounds in Section 3.5. Using the bound
on the number of cells in Claim 3.3, an easy application of
the coupling lemma implies the bounds shown in (1) and (2)
for f(k) := h(k) · g(k), thus concluding the proof of The-
orem 2.1.

We shall henceforth concentrate on a particular cell con-
taining the vectors{Xi}i∈I , for someI ⊆ [n]. Since the
trees{Ti}i∈I are isomorphic, for notational convenience
we shall denote all those trees byT . To define the vec-
tors{X̂i}i∈I we must provide, for alli ∈ I, a distribution
p̂i : [k] → [0, 1] such thatPr[X̂i = eℓ] = p̂i(ℓ), for all
ℓ ∈ [k]. To do this, we assign to all{X̂i}i∈I the treeT and
then, for every leafv ∈ ∂T andi ∈ I, define a distribution
p̂i,v over the two-element ordered setSv, by the ROUND-
ING process below. Then the distribution̂pi is implicitly
defined aŝpi(ℓ) =

∑
v∈∂T :ℓ∈Sv

2−depthT (v)p̂i,v(ℓ).

ROUNDING: for all v ∈ ∂T with Sv = {ℓ1, ℓ2}, ℓ1, ℓ2 ∈ [k]
do the following

1. find a set of probabilities{pi,ℓ1}i∈I with the following
properties

• for all i ∈ I, |pi,ℓ1 − pi,v(ℓ1)| ≤ 1
z ;

• for all i ∈ I, pi,ℓ1 is an integer multiple of1z ;

•
∣∣∑

i∈I pi,ℓ1 −
∑

i∈I pi,v(ℓ1)
∣∣ ≤ 1

z ;

2. for all i ∈ I, setp̂i,v(ℓ1) := pi,ℓ1 , p̂i,v(ℓ2) := 1−pi,ℓ1;

Finding the set of probabilities required by Step 1 of the
ROUNDING process is straightforward and the details are
omitted (see [16], Section 3.3 for a way to do so). It is
now easy to check that the set of probability vectors{p̂i}i∈I
satisfies Properties 1, 2 and 3 of Theorem 2.1.

3.5 Coupling within a Cell

We are now coming to the main part of the proof: Show-
ing that the variational distance between the original and the
discretized distribution within a cell depends only onz and
k. We will only argue that our discretization satisfies (3);
the proof of (4) is identical.

Before proceeding let us introduce some notation.
Specifically,

• let Φi ∈ ∂T be the leaf chosen by Stage 1 of the pro-
cess SAMPLING Xi andΦ̂i ∈ ∂T the leaf chosen by
Stage 1 of SAMPLING X̂i;

• let Φ = (Φi)i∈I and letG denote the distribution of

Φ; similarly, let Φ̂ = (Φ̂i)i∈I and letĜ denote the
distribution ofΦ̂.

Moreover, for allv ∈ ∂T , with Sv = {ℓ1, ℓ2} and ordering
(ℓ1, ℓ2),

• let Iv ⊆ I be the (random) index set such thati ∈ Iv
iff i ∈ I ∧ Φi = v and, similarly, letÎv ⊆ I be the
(random) index set such thati ∈ Îv iff i ∈ I ∧ Φ̂i = v;

• let Jv,1,Jv,2 ⊆ Iv be the (random) index sets such
i ∈ Jv,1 iff i ∈ Iv ∧ Xi = eℓ1 and i ∈ Jv,2 iff
i ∈ Iv ∧ Xi = eℓ2 ;

• let Tv,1 = |Jv,1|, Tv,2 = |Jv,2| and letFv denote the
distribution ofTv,1;

• let T := ((Tv,1, Tv,2))v∈∂T and letF denote the dis-
tribution ofT ;

• let Ĵv,1, Ĵv,2, T̂v,1, T̂v,2, T̂ , F̂v, F̂ be defined similarly.

The following is easy to see; we postpone its proof to
the appendix.

Claim 3.4 For all θ ∈ (∂T )I , G(θ) = Ĝ(θ).

SinceG andĜ are the same distribution we will hence-
forth denote that distribution byG. The following lemma is
sufficient to conclude the proof of Theorem 2.1.

Lemma 3.5 There exists a value ofα, used in the definition
of the cells, such that, for allv ∈ ∂T ,

G

(
θ :

||Fv(·|Φ = θ)−F̂v(·|Φ̂ = θ)||TV ≤ O
(

2k log z
z1/5

))

≥ 1− 4

z1/3
, (5)

whereFv(·|Φ) denotes the conditional probability distribu-
tion ofTv,1 givenΦ and, similarly,F̂v(·|Φ̂) denotes the con-
ditional probability distribution ofT̂v,1 givenΦ̂.



Lemma 3.5 states roughly that, for allv ∈ ∂T , with
probability at least1 − 4

z1/3 over the choices made by
Stage 1 of processes{SAMPLING Xi}i∈I and{SAMPLING

X̂i}i∈I — assuming that these processes are coupled to
make the same decisions in Stage 1 — the total variation
distance between the conditional distribution ofTv,1 and

T̂v,1 is bounded byO
(

2k log z
z1/5

)
. The following lemma,

whose proof is provided in the appendix, concludes the
proof of the main theorem.

Lemma 3.6 (5) implies

||F − F̂ ||TV ≤ O

(
k
2k log z

z1/5

)
. (6)

Note that (6) easily implies (3)

3.6 Proof of Lemma 3.5

To conclude the proof of Theorem 2.1, it remains to show
Lemma 3.5. Roughly speaking, the proof consists of show-
ing that, with high probability over the random walks per-
formed in Stage 1 of SAMPLING, the one-dimensional ex-
periment occurring at a particular leafv of the tree is simi-
lar in both the original and the discretized distribution. The
similarity is quantified by Lemmas 3.10 and 3.11 for leaves
of type A and B respectively. Then, Lemmas 3.7, 3.8 and
3.9 establish that, if the experiments are sufficiently similar,
they can be coupled so that their outcomes agree with high
probability.

More precisely, letv ∈ ∂T , Sv = {ℓ1, ℓ2}, and suppose
the ordering(ℓ1, ℓ2). Also, let us denoteℓ∗v = ℓ1 and define
the following functions

• µv(θ) :=
∑

i:θi=v pi,v(ℓ
∗
v);

• µ̂v(θ̂) :=
∑

i:θ̂i=v p̂i,v(ℓ
∗
v).

Note that the random variableµv(Φ) represents the total
probability mass that is placed on the strategyℓ∗v after the
Stage 1 of the SAMPLING process is completed for all vec-
torsXi, i ∈ I. Conditioned on the outcome of Stage 1 of
SAMPLING for the vectors{Xi}i∈I , µv(Φ) is the expected
number of the vectors fromIv that will select strategyℓ∗v in
Stage 2 of SAMPLING. Similarly, conditioned on the out-
come of Stage 1 of SAMPLING for the vectors{X̂i}i∈I ,
µ̂v(Φ̂) is the expected number of the vectors from̂Iv that
will select strategyℓ∗v in Stage 2 of SAMPLING.

Intuitively, if we can couple the choices made by the ran-
dom vectorsXi, i ∈ I, in Stage 1 of SAMPLING with the
choices made by the random vectorsX̂i, i ∈ I, in Stage 1 of
SAMPLING in such a way that, with overwhelming proba-
bility, µv(Φ) andµ̂v(Φ̂) are close, then also the conditional

distributionsFv(·|Φ), F̂v(·|Φ̂) should be close in total vari-
ation distance. The goal of this section is to make this intu-
ition rigorous. We do this in2 steps by showing the follow-
ing.

1. The choices made in Stage 1 of SAMPLING can be cou-
pled so that the absolute difference|µv(Φ)− µ̂v(Φ̂)| is
small with high probability. (Lemmas 3.10 and 3.11.)

2. If the absolute difference|µv(θ)−µ̂v(θ̂)| is sufficiently
small, then so is the total variation distance||Fv(·|Φ =

θ)− F̂v(·|Φ̂ = θ)||TV . (Lemmas 3.7, 3.8, and 3.9.)

We start with Step 2 of the above program. We use dif-
ferent arguments depending on whetherv is a Type A or
Type B leaf. Let∂T = ŁA ⊔ ŁB, where ŁA is the set of
type A leaves of the cell and ŁB the set of type B leaves of
the cell. For some constantβ to be decided later, we show
the following lemmas.

Lemma 3.7 For someθ ∈ (∂T )I andv ∈ ŁA suppose that

|µv(θ)− E [µv(Φ)]| ≤ z(α−1)/2
√

E [µv(Φ)] log z (7)
∣∣∣µ̂v(θ) − E [µ̂v(Φ̂)]

∣∣∣ ≤ z(α−1)/2

√
E [µ̂v(Φ̂)] log z (8)

then

||Fv(·|Φ = θ)− F̂v(·|Φ̂ = θ)||TV ≤ O

( √
log z

z(1−α)/2

)
.

Lemma 3.8 For someθ ∈ (∂T )I andv ∈ ŁB suppose that

nv(θ) := |{i : θi = v}| ≥ zβ, (9)

|µv(θ)− µ̂v(θ)| ≤
1

z
+

√
log z

z

√
|I|, (10)

|nv(θ)− 2−depthT (v)|I|| ≤
√
3 log z

√
2−depthT (v)|I|;

(11)

then

||Fv(·|Φ = θ)− F̂v(·|Φ̂ = θ)||TV

≤ O

(
2

depthT (v)

2

√
log z

z
1+α
2

)
+O

(
2

depthT (v)

2 log z

z
α+β+1

2

)

+O(z−α) +O(z−(α+β−1
2 )).

Lemma 3.9 For someθ ∈ (∂T )I andv ∈ ŁB suppose that

nv(θ) := |{i : θi = v}| ≤ zβ (12)

then

||Fv(·|Φ = θ)− F̂v(·|Φ̂ = θ)||TV ≤ O(z−(1−β)).



The proof of Lemma 3.9 follows from a coupling argument
similar to that used in the proof of Lemma 3.13 in [16]
and is omitted. The proofs of Lemmas 3.7 and 3.8 can
be found respectively in Sections B and C of the appendix.
Lemma 3.7 provides conditions which, if satisfied by some
θ at a leaf of Type A, then the conditional distributions
Fv(·|Φ = θ) andF̂v(·|Φ̂ = θ) are close in total variation
distance. Similarly, Lemmas 3.8 and 3.9 provide conditions
for the leaves of Type B. The following lemmas state that
these conditions are satisfied with high probability. Their
proof is given in Section D of the appendix.

Lemma 3.10 Letv ∈ ŁA. Then

G



θ : |µv(θ)− E [µv(Φ)]| ≤

√
log z

z(1−α)/2

√
E [µv(Φ)]

∧
∣∣∣µ̂v(θ)− E [µ̂v(Φ̂)]

∣∣∣ ≤
√
log z

z(1−α)/2

√
E [µ̂v(Φ̂)]




≥ 1− 4z−1/3. (13)

Lemma 3.11 Letv ∈ ŁB. Then

G

(
θ : |µv(θ) − µ̂v(θ)| ≤ 1+

√
|I| log z

z ∧
|nv(θ)− 2−depthT (v)|I|| ≤ √

3 log z
√
2−depthT (v)|I|

)

≥ 1− 4

z1/2
. (14)

Settingα = 3
5 andβ = 4

5 , combining the above, and
using thatdepthT (v) ≤ k, as implied by Claim 3.3, we
get (5), regardless of whetherv ∈ ŁA or v ∈ ŁB .

4 Extensions

Returning to our algorithm (Theorem 2.2), there are sev-
eral directions in which it can be immediately generalized.
To give an idea of the possibilities, let us define asemi-
anonymous gameto be a game in which

• the players are partitioned into a fixed number oftypes;

• there is another partition of the players into an arbitrary
number of disjoint graphical games (see [29], games in
which a node’s utility depends only on its neighboring
nodes) of sizeO(log n), wheren is the total number of
players, and bounded degree calledextended families;

and the utility of each player depends on (a) his/her own
strategy; (b) the overall number of other players of each
type playing each strategy; and (c) it also depends, in an ar-
bitrary way, on the strategy choices of neighboring nodes in
his/her own extended family. The following result, which is
only indicative of the applicability of our approach, can be
shown by extending the discretization method via dynamic
programming (details omitted):

Theorem 4.1 There is a PTAS for semi-anonymous games
with a fixed number of strategies.

Further generalizations (for example, not bounding the size
of the extended families) lead to PPAD-complete problems.

The discretization approach for the Nash equilibrium
that we employed so far in this paper to anonymous games
with a fixed number of strategies has surprisingly broad ap-
plicability, for example yielding a quasi-PTAS for general
games (proof in Appendix A):

Theorem 4.2 In any normal-form game with a constant
number of strategies per player, anǫ-approximate Nash
equilibrium can be computed in timeNO(log log N

ǫ ), where
N is the description size of the game.

By combining the discretization approach with the tech-
niques of [22] we can find approximate Nash equilibria in
a large class ofgraphical games. It had long been thought
that graphical games on trees with two strategies per player
can be solved in polynomial time [30], until subtle flaws
in the algorithm were discovered [23]. The largest class of
graphical games that are known to have a polynomial-time
algorithm for Nash equilibria is graphical games on a cy-
cle and two strategies per player [23]. The following result
treats a far broader class of games, albeit approximately; its
proof is omitted.

Theorem 4.3 There is PTAS for computing Nash equilib-
ria in graphical games in which each player has a num-
ber of strategies bounded by a constant and the graph has
bounded degree andO(log n) treewidth.

5 An Application to Optimization

We illustrate an interesting application of our method in
non-convex optimization. This application relates nicelyto
the interpretation of our main result (Theorem 2.1) as con-
structing a sparse cover of the set of distributions of sums of
independent unit vectors under the total variation distance.
The minimax optimization problem that we present arises
in the context of solving repeated anonymous games, us-
ing the folk theorem [9], and similar optimization problems
arise naturally in economics whenever secure strategies or
threats are being computed. The optimization problem that
we consider is the following.



Given functionsf1, f2 : {0, 1, . . . , n} → [0, 1] solve
the optimization problem

min
p1,...,pn∈[0,1]

max
k∈{1,2}

{
EXi∼B(pi)

[
fk

(
n∑

i=1

Xi

)]}
,

(15)

where EXi∼B(pi) denotes the expectation over the
joint measure of independent Bernoulli random vari-
ablesXi, i = 1, . . . , n, with expectationspi, i =
1, . . . , n.

We know of no efficient algorithm for solving the above
optimization problem. Nevertheless, our technique gives
rise to a polynomial time approximation scheme. The idea
is to use Theorem 2.1 to show that restricting the search
space from[0, 1]n to {0, ǫ, 2ǫ, . . . , 1}n results in a loss of
at mostO(ǫ1/6) in the value of the optimum. This obser-
vation is complemented by the symmetry of the objective
function with respect to thepi’s; hence, we can search over
the discretized space in timeO(n1/ǫ) rather than(1/ǫ)n.
The proof of the following theorem is given in detail in Ap-
pendix A.

Theorem 5.1 There is a PTAS for solving the non-convex
optimization problem(15).

The algorithm extends to the case that the minimax prob-
lem is replaced by a maximin problem. Moreover, our
method provides polynomial time approximation schemes
for several generalizations of (15), e.g., for the case thatthe
maximum is taken over more than two functions (the case of
one function is trivial), the domain of the functions is mul-
tidimensional (but with a constant number of dimensions),
the functions have several (but constant number of) argu-
ments, etc. Theorem 5.1 implies immediately the following
result.

Corollary 5.2 ([9]) There is a PTAS for computing threat
points in repeated anonymous games with a constant num-
ber of strategies per player.

6 Open Problems

Is there a PTAS for the Nash equilibrium problem? A
major progress in this direction would be to turn the quasi-
PTAS we described in the previous section for the case of a
fixed number of strategies to a true PTAS. This is challeng-
ing, of course, but not hopeless. The exhaustive algorithm
need not be completely exhaustive; a more intelligent search
of the space, possibly in a dynamically varying grid of dis-
cretized probabilities, could possibly bring improvements
in the running time. On the other hand, any constant lower
bound on the approximability would be great progress as

well; we conjecture that such a bound is possible at least for
graphical games.

Obviously, our PTAS is not ready to be implemented and
run; the exponent makes it unrealistic for any reasonableǫ.
(As we have argued in the Introduction, its true significance
lies in delimiting the implications of the complexity result
in [19].) There are ways to improve it, perhaps even sub-
stantially. For example, by a more elaborate trickle-down
process all trees could be made full binary trees of depth
log k, which would remove one of the exponential functions
from the exponent of the running time. But a truly practical
algorithm would have to start from a new idea — possibly
from that of a “less exhaustive search” mentioned in the pre-
vious paragraph. In fact, an efficient PTAS for the case of
two strategies has been recently suggested [15].
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APPENDIX

A Skipped Proofs

Proof of Claim 3.3: That a tree resulting from TDP hask − 1 leaves follows by induction: It is true whenk = 2, and for
generalk, the left subtree hasj strategies and thus, by induction,j − 1 leaves, and the right subtree has at mostk + 1 − j
strategies andk − j leaves; adding we get the result.

To estimate the number of cells, let us fix the set of strategies and their ordering at the root of the tree (thus the result of
the calculation will have to be multiplied by2kk!) and then count the number of trees that could be output by TDP. Suppose
that the root has cardinalitym and that the children of the root are assigned sets of sizesj andm+ 1− j (or, in the event of
no duplication,m− j), respectively. Ifj = 2, then a duplication has to have happened and, for the ordering of the strategies
at the left child of the root, there are at most2 possibilities depending on whether the “divided strategy”is still the largest at
the left side; similarly, for the right side there arem− 1 possibilities: either the divided strategy is still the largest at the right
side, or it is not in which case it has to be inserted at the correct place in the ordering and the last strategy of the right side
must be moved to the second place. Ifj > 2, similar considerations show that there are at mostj − 1 possibilities for the left
side and1 possibility for the right side. It follows that the number oftrees is bounded from above by the solutionT (k) of the
recurrence

T (n) = 2 T (2) · (n− 1)T (n− 1)

+

n−1∑

j=3

(j − 1)T (j) ·max{T (n− j), T (n+ 1− j)}.

with T(2)=1. It follows that the total number of trees can be upper-bounded by the functionkk
2

. Taking into account that
there are2kk! choices for the set of strategies and their ordering at the root of the tree, and that each leaf can be of either
Type A, or of Type B, it follows that the total number of cells is bounded byg(k) = kk

2

2k−12kk!. �

Proof of Claim 3.4: The proof follows by a straightforward coupling argument. Indeed, for alli ∈ I, let us couple the
choices made by Stage 1 of SAMPLING Xi and SAMPLING X̂i so that the random leafΦi ∈ ∂T chosen by SAMPLING

Xi and the random leaf̂Φi ∈ ∂T chosen by SAMPLING X̂i are equal, that is, for alli ∈ I, in the joint probability space
Pr[Φi = Φ̂i] = 1; the existence of such a coupling is straightforward since Stage 1 of both SAMPLING Xi and SAMPLING

X̂i is the same random walk onT . �

Proof of Lemma 3.6: Note first that (5) implies via a union bound that

G

(
θ : ∀v ∈ ∂T, ||Fv(·|Φ = θ)− F̂v(·|Φ̂ = θ)||TV ≤ O

(
2k log z

z1/5

))
≥ 1−O(kz−1/3), (16)

since, by Claim 3.3, the number of leaves is at mostk − 1.
Now suppose that, for a given value ofθ ∈ (∂T )I , the following is satisfied

∀v ∈ ∂T, ||Fv(·|Φ = θ)− F̂v(·|Φ̂ = θ)||TV ≤ O

(
2k log z

z1/5

)
. (17)

Observe that the variables{Tv,1}v∈∂T are conditionally independent givenΦ, and, similarly, the variables{T̂v,1}v∈∂T are
conditionally independent given̂Φ. This, by the coupling lemma, Claim 3.3, and (17) implies that

||F (·|Φ = θ)− F̂ (·|Φ̂ = θ)||TV ≤ O

(
k
2k log z

z1/5

)
,

where we used that, ifΦ = Φ̂, then|Iv| = |Îv|, ∀v ∈ ∂T .
Therefore, (16) implies

G

(
θ : ||F (·|Φ = θ)− F̂ (·|Φ̂ = θ)||TV ≤ O

(
k
2k log z

z1/5

))
≥ 1−O(kz−1/3). (18)

All that remains is to shift the bound of (18) to the unconditional space. The following lemma establishes this reduction.



Lemma A.1 (18) implies

||F − F̂ ||TV ≤ O

(
k
2k log z

z1/5

)
. (19)

Proof of Lemma A.1: Let us denote by

Good = {θ|θ ∈ (∂T )I : ||F (·|Φ = θ)− F̂ (·|Φ̂ = θ)||TV ≤ O

(
k
2k log z

z1/5

)
,

and letBad = (∂T )I −Good. By (18), if follows thatG(Bad) ≤ O(kz−1/3).

||T − T̂ ||TV =
1

2

∑

t

|F (t)− F̂ (t)|

=
1

2

∑

t

∣∣∣∣∣
∑

θ

F (t|Φ = θ)G(Φ = θ)−
∑

θ

F̂ (t|Φ̂ = θ)Ĝ(Φ̂ = θ)

∣∣∣∣∣

=
1

2

∑

t

∣∣∣∣∣
∑

θ

(F (t|Φ = θ)− F̂ (t|Φ̂ = θ))G(θ)

∣∣∣∣∣
(

usingG(θ) = Ĝ(θ), ∀θ
)

≤ 1

2

∑

t

∑

θ

∣∣∣F (t|Φ = θ)− F̂ (t|Φ̂ = θ)
∣∣∣G(θ)

=
1

2

∑

t

∑

θ∈Good

∣∣∣F (t|Φ = θ)− F̂ (t|Φ̂ = θ)
∣∣∣G(θ)

+
1

2

∑

t

∑

θ∈Bad

∣∣∣F (t|Φ = θ)− F̂ (t|Φ̂ = θ)
∣∣∣G(θ)

≤
∑

θ∈Good

G(θ)

(
1

2

∑

t

∣∣∣F (t|Φ = θ)− F̂ (t|Φ̂ = θ)
∣∣∣
)

+
∑

θ∈Bad

G(θ)

(
1

2

∑

t

∣∣∣F (t|Φ = θ)− F̂ (t|Φ̂ = θ)
∣∣∣
)

≤
∑

θ∈Good

G(θ) ·O
(
k
2k log z

z1/5

)
+
∑

θ∈Bad

G(θ)

≤ O

(
k
2k log z

z1/5

)
+O(kz−1/3).

�

�

Proof of Theorem 4.2: Let p be the number of players ands the number of strategies per player which we assume to be a
constant; the input size isN = psp. Consider a newp-player game in which the set of pure strategies of each player is the
set of all distributions over thes strategies of the original game whose probabilities are integer multiples ofδ = ǫ

2ps . We
claim that, if we search over all the pure strategy profiles ofthe new game, we are bound to discover anǫ-approximate Nash
equilibrium of the original game. To prove this, it suffices to notice the following which is proven below by two applications
of the coupling lemma.

Lemma A.2 Let (x1, . . . , xp) be a mixed-Nash equilibrium of the original game and(x̂1, . . . , x̂p) be another set of mixed
strategies, where, for alli, j, x̂i(j) is an integer multiple ofδ = ǫ

2ps , |x̂i(j)−xi(j)| ≤ δ and, ifxi(j) = 0, then alsôxi(j)=0.
Then(x̂1, . . . , x̂p) is anǫ-approximate Nash equilibrium of the original game.



The number of pure strategy profiles of the new game that we have to search over is at most
((

1
δ

)s)p
, which is easily seen to

beNO(log log N
ǫ ). �

Proof of Lemma A.2: For every playeri and strategyj, letU i
j andÛ i

j be the expected utility of playeri if she playsj and

the other players play{xi′}i′ 6=i and{x̂i′}i′ 6=i respectively. The difference betweenU i
j andÛ i

j can be bounded as follows

|U i
j − Û i

j | ≤ ||(x1, . . . , xp)− (x̂1, . . . , x̂p)||TV,

where the right hand side of the above expression representsthe total variation distance between the compound distributions
(x1, . . . , xp) and(x̂1, . . . , x̂p), and we used the fact that the payoff functions of the playerslie in [0, 1]. We will show that

||(x1, . . . , xp)− (x̂1, . . . , x̂p)||TV ≤ ǫ

2
.

Indeed, for alli, let Xi be a randoms-dimensional vector such thatXi = ej with probabilityxi(j), and suppose that the
vectors{Xi}i are independent. Similarly, define vectors{X̂i}i. The coupling lemma implies that, for any coupling of{Xi}i
and{X̂i}i,

||(X1, . . . ,Xp)− (X̂1, . . . , X̂p)||TV ≤ Pr[(X1, . . . ,Xp) 6= (X̂1, . . . , X̂p)],

which, by a union bound, implies

||(X1, . . . ,Xp)− (X̂1, . . . , X̂p)||TV ≤
∑

i

Pr[Xi 6= X̂i].

Let us now fix a coupling for which, for alli,

Pr[Xi 6= X̂i] = ||Xi − X̂i||TV.

Such a coupling exists by the coupling lemma and the fact thatthe random vectors{Xi}i are independent and so are the
random vectors{X̂i}i. Combining the above, we get

||(X1, . . . ,Xp)− (X̂1, . . . , X̂p)||TV ≤
∑

i

||Xi − X̂i||TV.

Observe finally that
||(x1, . . . , xp)− (x̂1, . . . , x̂p)||TV = ||(X1, . . . ,Xp)− (X̂1, . . . , X̂p)||TV,

and, for alli,
||Xi − X̂i||TV = ||xi − x̂i||TV ≤ δs =

ǫ

2p
.

It follows that
||(x1, . . . , xp)− (x̂1, . . . , x̂p)||TV ≤ ǫ

2
.

Hence, for alli, j,

|U i
j − Û i

j | ≤ ||(x1, . . . , xp)− (x̂1, . . . , x̂p)||TV ≤ ǫ

2
,

which implies that(x̂1, . . . , x̂p) is anǫ-approximate Nash equilibrium of the original game.�

Proof of Theorem 5.1: It is not hard to see that for any sets of probabilities{pi}i and{p′i}i, and for anyα ∈ {1, 2},
∣∣∣∣∣EXi∼B(pi)

[
fα

(
n∑

i=1

Xi

)]
− EYi∼B(p′

i)

[
fα

(
n∑

i=1

Yi

)]∣∣∣∣∣ ≤
∣∣∣∣∣

∣∣∣∣∣
∑

i

Xi −
∑

i

Yi

∣∣∣∣∣

∣∣∣∣∣
TV

,

where, in the right hand side of the above{Xi}i is a set of independent Bernoulli random variables with expectations{pi}i
and{Yi}i a set of independent Bernoulli random variables with expectations{p′i}i.

Suppose now that{p∗i }i is the set of probabilities achieving the optimum value for (15). It follows from the above that
if we perturb thep∗i ’s to another set of probabilities{p′∗i }i the value of the minmax problem is only affected by an additive
term||∑i Xi −

∑
i Yi||TV, whereXi ∼ B(p∗i ) andYi ∼ B(p′∗i ), for all i.



It follows from Theorem 2.1 that, for any set of probabilities{p∗i }i, there exists another set ofǫ-“discretized” probabilities
{p′∗i }i, that is,p′∗i is an integer multiple ofǫ, for all i, such that

∣∣∣∣∣

∣∣∣∣∣
∑

i

Xi −
∑

i

Yi

∣∣∣∣∣

∣∣∣∣∣
TV

≤ O(ǫ1/6).

Hence, we can restrict the optimization toǫ-discretized probabilities with an additive loss ofO(ǫ1/6) in the value of the
optimum. Even so, the search space is of sizeΩ

((
1
ǫ

)n)
which is exponential in the input sizeO(n). By observing that the

objective function is symmetric with respect to the set of probabilities{pi}i we can prune the search space to searching only
over the partitions ofn unlabeled objects into1/ǫ bins, that isO(n1/ǫ) possible partitions. This results in a polynomial time
approximation scheme.�

B Proof of Lemma 3.7

Proof: By the assumption it follows that

|µv(θ) − µ̂v(θ)| ≤
∣∣∣E [µv(Φ)]− E [µ̂v(Φ̂)]

∣∣∣+ z(α−1)/2
√
E [µv(Φ)] log z + z(α−1)/2

√
E [µ̂v(Φ̂)] log z.

Moreover, note that
E [µv(Φ)] = 2−depthT (v)

∑

i∈I
pi,v(ℓ

∗
v)

and, similarly,
E [µ̂v(Φ̂)] = 2−depthT (v)

∑

i∈I
p̂i,v(ℓ

∗
v).

By the definition of the ROUNDING procedure it follows that

|E [µv(Φ)]− E [µ̂v(Φ̂)]| ≤ 2−depthT (v) 1

z
.

Hence it follows that

|µv(θ)− µ̂v(θ)| ≤ 2−depthT (v) 1

z
+

2
√
log z

z(1−α)/2

√
max {E [µv(Φ), E [µ̂v(Φ̂)]}]. (20)

Let Nv(θ) := {i : θi = v}, nv = |Nv|. Conditioned onΦ = θ, the distribution ofTv,1 is the sum ofnv independent

Bernoulli random variables{Zi}i∈Nv with expectationsE [Zi] = pi,v(ℓ
∗
v) ≤ ⌊zα⌋

z . Similarly, conditioned on̂Φ = θ, the

distribution ofT̂v,1 is the sum ofnv independent Bernoulli random variables{Ẑi}i∈Nv with expectationsE [Ẑi] = p̂i,v(ℓ
∗
v) ≤

⌊zα⌋
z . Note that

E
[
∑

i∈Nv

Zi

]
= µv(θ)

and, similarly,

E
[
∑

i∈Nv

Ẑi

]
= µ̂v(θ).

Without loss of generality, let us assume thatE [µv(Φ)] ≥ E [µ̂v(Φ̂)]. Let us further distinguish two cases for some constant
τ < 1− α to be decided later

Case 1:E [µv(Φ)] ≤ 1
zτ .



From (7) it follows that,

µv(θ) ≤ E [µv(Φ)] + z(α−1)/2
√
E [µv(Φ)] log z ≤ 1

zτ
+

√
log z

z(τ+1−α)/2
=: g(z).

Similarly, becauseE [µ̂v(Φ̂)] ≤ E [µv(Φ)] ≤ 1
zτ , µ̂v(θ) ≤ g(z).

By Markov’s inequality,PrΦ=θ[
∑

i∈Nv
Zi ≥ 1] ≤ µv(θ)

1 ≤ g(z) and, similarly,PrΦ̂=θ[
∑

i∈Nv
Ẑi ≥ 1] ≤ g(z). Hence,

∣∣∣∣∣PrΦ=θ

[
∑

i∈Nv

Zi = 0

]
− Pr Φ̂=θ

[
∑

i∈Nv

Ẑi = 0

]∣∣∣∣∣ =
∣∣∣∣∣PrΦ=θ

[
∑

i∈Nv

Zi ≥ 1

]
− Pr Φ̂=θ

[
∑

i∈Nv

Ẑi ≥ 1

]∣∣∣∣∣

≤ 2g(z).

It follows then easily that

||Fv(·|Φ = θ)− F̂v(·|Φ̂ = θ)||TV ≤ 4g(z) = 4 ·
(

1

zτ
+

√
log z

z(τ+1−α)/2

)
. (21)

Case 2:E [µv(Φ)] ≥ 1
zτ .

The following claim was proven in [16], Lemma 3.9,

Claim B.1 For any set of independent Bernoulli random variables{Zi}i with expectationsE [Zi] ≤ ⌊zα⌋
z ,

∥∥∥∥∥
∑

i

Zi − Poisson

(
E
(
∑

i

Zi

))∥∥∥∥∥
TV

≤ 1

z1−α
.

By application of this lemma it follows that
∥∥∥∥∥
∑

i∈Nv

Zi − Poisson(µv(θ))

∥∥∥∥∥
TV

≤ 1

z1−α
, (22)

∥∥∥∥∥
∑

i∈Nv

Ẑi − Poisson(µ̂v(θ))

∥∥∥∥∥
TV

≤ 1

z1−α
. (23)

We study next the distance between the two Poisson distributions. We use the following lemma whose proof is postponed till
later in this section.

Lemma B.2 If λ = λ0 +D for someD > 0, λ0 > 0,

‖Poisson(λ)− Poisson(λ0)‖TV ≤ D

√
2

λ0
.

An application of Lemma B.2 gives

‖Poisson(µv(θ)) − Poisson(µ̂v(θ))‖TV ≤ |µv(θ)− µ̂v(θ)|
√

2

min {µv(θ), µ̂v(θ)}
. (24)

We conclude with the following lemma proved in the end of thissection.

Lemma B.3 From (7), (8), (20)and the assumptionE [µv(Φ)] ≥ 1
zτ , it follows that

|µv(θ)− µ̂v(θ)|
√

2

min {µv(θ), µ̂v(θ)}
≤
√
72

log z

z1−α
.



Combining (22), (23), (24) and Lemma B.3 we get
∥∥∥∥∥
∑

i∈Nv

Zi −
∑

i∈Nv

Ẑi

∥∥∥∥∥
TV

≤ 2

z1−α
+

√
72

log z

z1−α
= O

( √
log z

z(1−α)/2

)
,

which implies

||Fv(·|Φ = θ)− F̂v(·|Φ̂ = θ)||TV ≤ O

( √
log z

z(1−α)/2

)
. (25)

Takingτ > (1 − α)/2, we get from (21), (25) that in both cases

||Fv(·|Φ = θ)− F̂v(·|Φ̂ = θ)||TV ≤ O

( √
log z

z(1−α)/2

)
. (26)

�

Proof of lemma B.2: We make use of the following lemmas.

Lemma B.4 If λ, λ0 > 0, the Kullback-Leibler divergence betweenPoisson(λ0) andPoisson(λ) is given by

∆KL(Poisson(λ)||Poisson(λ0)) = λ

(
1− λ0

λ
+

λ0

λ
log

λ0

λ

)
.

Lemma B.5 (e.g. [14]) If P andQ are probability measures on the same measure space andP is absolutely continuous with
respect toQ then

‖P −Q‖TV ≤
√
2∆KL(P ||Q).

By simple calculus we have that

∆KL(Poisson(λ)||Poisson(λ0)) = λ

(
1− λ0

λ
+

λ0

λ
log

λ0

λ

)
≤ D2

λ0
.

Then by Lemma B.5 it follows that

‖Poisson(λ)− Poisson(λ0)‖TV ≤ D

√
2

λ0
.

�

Proof of lemma B.3: From (20) and the assumptionE [µv(Φ)] ≥ E [µ̂v(Φ̂)] we have

|µv(θ)− µ̂v(θ)|2 ≤ 1

z2
+

4 log z

z1−α
E [µv(Φ)] + 4

1

z

√
log z

z(1−α)/2

√
E [µv(Φ)].

From the assumptionE [µv(Φ)] ≥ 1
zτ it follows

E [µv(Φ)] =
√
E [µv(Φ)]

√
E [µv(Φ)] (27)

≥ 1

zτ/2

√
E [µv(Φ)]. (28)

Sinceτ < 1− α, it follows that, for sufficiently largez which only depends onα andτ , 1
zτ/2 ≥ 2

√
log z

z(1−α)/2 . Hence,

E [µv(Φ)] ≥
2
√
log z

z(1−α)/2

√
E [µv(Φ)],



which together with (7) implies

µv(θ) ≥ E [µv(Φ)]− z(α−1)/2
√
E [µv(Φ)] log z ≥ 1

2
E [µv(Φ)] (29)

Similarly, starting fromE [µ̂v(Φ̂)] ≥ E [µv(Φ)]− 1
z ≥ 1

zτ − 1
z , it can be shown that for sufficiently largez

µ̂v(θ) ≥
1

2
E [µ̂v(Φ̂)]. (30)

From (29), (30) it follows that

min{µv(θ), µ̂v(θ)} ≥ 1

2
min{E [µv(Φ)], E [µ̂v(Φ̂)]} =

1

2
E [µ̂v(Φ)] ≥

1

2
E [µv(Φ)]−

1

2z
≥ 1

4
E [µv(Φ)],

where we used thatE [µv(Φ)] ≥ 1
zτ ≥ 2

z for sufficiently largez, sinceτ < 1− α. Combining the above we get

2|µv(θ) − µ̂v(θ)|2
min {µv(θ), µ̂v(θ)}

≤ 2
1
z2 + 4 log z

z1−α E [µv(Φ)] + 4 1
z

√
log z

z(1−α)/2

√
E [µv(Φ)]

1
4E [µv(Φ)]

≤ 8
1

z2E [µv(Φ)]
+ 32

log z

z1−α
+ 32

√
log z

z1+(1−α)/2
√
E [µv(Φ)]

≤ 8
zτ

z2
+ 32

log z

z1−α
+ 32

zτ/2
√
log z

z1+(1−α)/2

≤ 8
1

z2−τ
+ 32

log z

z1−α
+ 32

√
log z

z(3−α−τ)/2

≤ 72
log z

z1−α
,

since2− τ > 1− α and(3− α− τ)/2 > 1− α, assuming sufficiently largez. �

C Proof of Lemma 3.8

Proof: We will derive our bound by approximating with thetranslated Poisson distribution, which is defined next.

Definition C.1 ([37]) We say that an integer random variableY has atranslated Poisson distributionwith paremetersµ and
σ2 and write

Ł(Y ) = TP (µ, σ2)

if Ł (Y − ⌊µ− σ2⌋) = Poisson(σ2 + {µ− σ2}), where{µ− σ2} represents the fractional part ofµ− σ2.

The following lemma provides a bound for the total variationdistance between two translated Poisson distributions with
different parameters.

Lemma C.2 ([5]) Letµ1, µ2 ∈ R andσ2
1 , σ

2
2 ∈ R+ \ {0} be such that⌊µ1 − σ2

1⌋ ≤ ⌊µ2 − σ2
2⌋. Then

∣∣∣∣TP (µ1, σ
2
1)− TP (µ2, σ

2
2)
∣∣∣∣

TV
≤ |µ1 − µ2|

σ1
+

|σ2
1 − σ2

2 |+ 1

σ2
1

.

The following lemma was proven in [16], Lemma 3.14,

Lemma C.3 Let z > 0 be some integer and{Zi}mi=1, wherem ≥ zβ, be any set of independent Bernoulli random variables

with expectationsE [Zi] ∈
[
⌊zα⌋
z , 1

2

]
. Letµ1 =

∑m
i=1 E [Zi] andσ2

1 =
∑m

i=1 E [Zi](1 − E [Zi]). Then

∥∥∥∥∥

m∑

i=1

Zi − TP
(
µ1, σ

2
1

)
∥∥∥∥∥

TV

≤ O
(
z−

α+β−1
2

)
.



Let Nv(θ) := {i : θi = v}, nv(θ) = |Nv(θ)|. Conditioned onΦ = θ, the distribution ofTv,1 is the sum ofnv(θ)

independent Bernoulli random variables{Zi}i∈Nv(θ) with expectationsE [Zi] = pi,v(ℓ
∗
v). Similarly, conditioned on̂Φ = θ,

the distribution ofT̂v,1 is the sum ofnv(θ) independent Bernoulli random variables{Ẑi}i∈Nv(θ) with expectationsE [Ẑi] =
p̂i,v(ℓ

∗
v). Note that

∑

i∈Nv(θ)

E [Zi] = µv(θ)

and, similarly,
∑

i∈Nv(θ)

E
[
Ẑi

]
= µ̂v(θ).

Settingµ1 := µv(θ), µ2 := µ̂v(θ) and

σ2
1 =

∑

i∈Nv(θ)

E [Zi] (1− E [Zi]),

σ2
2 =

∑

i∈Nv(θ)

E
[
Ẑi

]
(1− E

[
Ẑi

]
),

we have from Lemma C.3 that

∥∥∥∥∥∥

∑

i∈Nv(θ)

Zi − TP
(
µ1, σ

2
1

)
∥∥∥∥∥∥

TV

≤ O
(
z−

α+β−1
2

)
. (31)

∥∥∥∥∥∥

∑

i∈Nv(θ)

Ẑi − TP
(
µ2, σ

2
2

)
∥∥∥∥∥∥

TV

≤ O
(
z−

α+β−1
2

)
. (32)

It remains to bound the total variation distance between thetranslated poisson distributions using Lemma C.2. Withoutloss
of generality let us assume⌊µ1 − σ2

1⌋ ≤ ⌊µ2 − σ2
2⌋. Note that

σ2
1 =

∑

i∈Nv(θ)

E [Zi] (1− E [Zi]) ≥ nv(θ)
⌊zα⌋
z

(
1− ⌊zα⌋

z

)
≥ 1

2
nv(θ)

⌊zα⌋
z

,

where the last inequality holds for values ofz which are larger than some function of constantα. Also,

|σ2
1 − σ2

2 | ≤
∑

i∈Nv(θ)

∣∣∣E [Zi] (1− E [Zi])− E
[
Ẑi

]
(1− E

[
Ẑi

]
)
∣∣∣

=
∑

i∈Nv(θ)

|pi,v(ℓ∗v)(1 − pi,v(ℓ
∗
v))− p̂i,v(ℓ

∗
v)(1− p̂i,v(ℓ

∗
v))|

=
∑

i∈Nv(θ)

(|pi,v(ℓ∗v)− p̂i,v(ℓ
∗
v)|+

∣∣p2i,v(ℓ∗v)− p̂2i,v(ℓ
∗
v)
∣∣)

≤
∑

i∈Nv(θ)

3

z

(
using|pi,v(ℓ∗v)− p̂i,v(ℓ

∗
v)| ≤

1

z

)

≤ 3nv(θ)

z
.



Using the above and Lemma C.2 we have that

∣∣∣∣TP (µ1, σ
2
1)− TP (µ2, σ

2
2)
∣∣∣∣ ≤ |µ1 − µ2|

σ1
+

|σ2
1 − σ2

2 |
σ2
1

+
1

σ2
1

≤ |µ1 − µ2|
σ1

+
3nv(θ)

z

1
2nv(θ)

⌊zα⌋
z

+
1

1
2nv(θ)

⌊zα⌋
z

≤ |µ1 − µ2|
σ1

+O(z−α) +
1

1
2z

β ⌊zα⌋
z

≤ |µ1 − µ2|
σ1

+O(z−α) +O(z−(α+β−1)).

To bound the ratio|µ1−µ2|
σ1

we distinguish the following cases:

• √
3 log z

√
2−depthT (v)

√
|I| ≤ 1

22
−depthT (v)|I|: Combining this inequality with (11) we get that

|I| ≤ 21+depthT (v)nv(θ).

Hence,

|µ1 − µ2|
σ1

≤
1
z +

√
log z
z

√
|I|√

1
2nv(θ)

⌊zα⌋
z

≤
1
z +

√
log z
z

√
21+depthT (v)nv(θ)√

1
2nv(θ)

⌊zα⌋
z

= O

(
1

z
α+β+1

2

)
+O

(
2

depthT (v)

2

√
log z

z
1+α
2

)

• √
3 log z

√
2−depthT (v)

√
|I| > 1

22
−depthT (v)|I|: It follows that

|I| < 12 2depthT (v) log z.

Hence,

|µ1 − µ2|
σ1

≤
1
z +

√
log z
z

√
|I|√

1
2nv(θ)

⌊zα⌋
z

≤
1
z +

√
log z
z

√
12 2depthT (v) log z√

1
2nv(θ)

⌊zα⌋
z

= O

(
1

z
α+β+1

2

)
+O

(
2

depthT (v)

2 log z

z
α+β+1

2

)

Combining the above, it follows that

∣∣∣∣TP (µ1, σ
2
1)− TP (µ2, σ

2
2)
∣∣∣∣ ≤ |µ1 − µ2|

σ1
+

|σ2
1 − σ2

2 |+ 1

σ2
1

≤ O

(
1

z
α+β+1

2

)
+O

(
2

depthT (v)

2

√
log z

z
1+α
2

)
+O

(
2

depthT (v)

2 log z

z
α+β+1

2

)
+O(z−α) +O(z−(α+β−1))

≤ O

(
2

depthT (v)

2

√
log z

z
1+α
2

)
+O

(
2

depthT (v)

2 log z

z
α+β+1

2

)
+O(z−α) +O(z−(α+β−1)).

Combining the above with (31) and (32) we get

∥∥∥∥∥∥

∑

i∈Nv(θ)

Zi −
∑

i∈Nv(θ)

Ẑi

∥∥∥∥∥∥
TV

≤ O

(
2

depthT (v)

2

√
log z

z
1+α
2

)
+O

(
2

depthT (v)

2 log z

z
α+β+1

2

)
+O(z−α) +O(z−(α+β−1

2 )).

�



D Concentration of the Leaf Experiments

The following lemmas constitute the last piece of the puzzleand complete the proof of Lemma 3.5. They roughly state
that, after the random walk in Stage 1 of the processes SAMPLING is performed, the experiments that will take place in Stage
2 of the processes SAMPLING are similar with high probability.
Proof of Lemma 3.10:Note that

µv(Φ) =
∑

i∈I
Ωi =: Ω,

where{Ωi}i are independent random variables defined as

Ωi =

{
pi,v(ℓ

∗
v), with probability2−depthT (v)

0, with probability1− 2−depthT (v).

We apply the following version of Chernoff/Hoeffding bounds to the random variablesΩ
′

i := z1−αΩi ∈ [0, 1].

Lemma D.1 (Chernoff/Hoeffding) Let Z1, . . . , Zm be independent random variables withZi ∈ [0, 1], for all i. Then, if
Z =

∑n
i=1 Zi andγ ∈ (0, 1),

Pr[|Z − E [Z]| ≥ γE [Z]] ≤ 2 exp(−γ2E [Z]/3).

LettingΩ
′

=
∑

i∈I Ω
′

i and applying the above lemma withγ :=
√

1
E[Ω′ ]

log z, it follows that

Pr

[∣∣∣Ω
′ − E [Ω′

]
∣∣∣ ≥

√
E [Ω′ ] log z

]
≤ 2z−1/3,

which in turn implies

Pr
[
|Ω− E [Ω]| ≥ z(α−1)/2

√
E [Ω] log z

]
≤ 2z−1/3,

or, equivalently,

Pr
[
|µv(Φ)− E [µv(Φ)]| ≥ z(α−1)/2

√
E [µv(Φ)] log z

]
≤ 2z−1/3.

Similarly, it can be derived that

Pr

[∣∣∣µ̂v(Φ̂)− E [µ̂v(Φ̂)]
∣∣∣ ≥ z(α−1)/2

√
E [µ̂v(Φ̂)] log z

]
≤ 2z−1/3.

Let us consider the joint probability space which makesΦ = Φ̂ with probability1; this space exists since as we observed
aboveG(θ) = Ĝ(θ), ∀θ. By a union bound for this space

Pr

[
|µv(Φ)− E [µv(Φ)]| ≥

√
log z

z(1−α)/2

√
E [µv(Φ)] ∨

∣∣∣µ̂v(Φ̂)− E [µ̂v(Φ̂)]
∣∣∣ ≥

√
log z

z(1−α)/2

√
E [µ̂v(Φ̂)]

]
≤ 4z−1/3.

which implies

G

(
θ : |µv(θ) − E [µv(Φ)]| ≤

√
log z

z(1−α)/2

√
E [µv(Φ)] ∧

∣∣∣µ̂v(θ)− E [µ̂v(Φ̂)]
∣∣∣ ≤

√
log z

z(1−α)/2

√
E [µ̂v(Φ̂)]

)
≥ 1− 4z−1/3.

�

Proof of Lemma 3.11:Suppose that the random variablesΦ andΦ̂ are coupled so that, with probability1, Φ = Φ̂. Then

µv(Φ)− µ̂v(Φ̂) =
∑

i∈I
Ωi =: Ω,

where{Ωi}i are independent random variables defined as

Ωi =

{
pi,v(ℓ

∗
v)− p̂i,v(ℓ

∗
v), with probability2−depthT (v)

0, with probability1− 2−depthT (v).

We apply Hoeffding’s inequality to the random variablesΩi.



Lemma D.2 (Hoeffding’s Inequality) LetX1, . . . , Xn be independent random variables. Assume that, for alli, Pr[Xi ∈
[ai, bi]] = 1. Then, fort > 0:

Pr

[
∑

i

Xi − E
[
∑

i

Xi

]
≥ t

]
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Applying the above lemma we get

Pr [|Ω− E [Ω]| ≥ t] ≤ 2 exp

(
− 2t2

|I| 4
z2

)
,

since, for alli ∈ I, |pi,v(ℓ∗v)− p̂i,v(ℓ
∗
v)| ≤ 1

z . Settingt =
√
log z

√
|I| 1z we get

Pr

[
|Ω− E [Ω]| ≥

√
log z

√
|I|1

z

]
≤ 2

1

z1/2
.

Note that

|E [Ω]| = |
∑

i∈I
E [Ωi]| = |2−depthT (v)

∑

i∈I
(pi,v(ℓ

∗
v)− p̂i,v(ℓ

∗
v))| ≤

1

z
.

It follows from the above that

Pr

[
|Ω| ≤ 1

z
+
√
log z

√
|I|1

z

]
≥ 1− 2

1

z1/2
,

which gives immediately that

G

(
θ : |µv(θ)− µ̂v(θ)| ≤

1

z
+

√
log z

z

√
|I|
)

≥ 1− 2

z1/2
.

Moreover, an easy application of Lemma D.1 gives

G

(
θ : |nv(θ) − 2−depthT (v)|I|| ≤

√
3 log z

√
2−depthT (v)|I|

)
≥ 1− 2

z
. (33)

Indeed, letTi = 1Φi=v. Thennv(Φ) =
∑

i∈I Ti andE [∑i∈I Ti] = 2−depthT (v)|I|. Applying Lemma D.1 withγ =√
3 log z

2−depthT (v)|I| we get

Pr

[∣∣∣∣∣
∑

i∈I
Ti − E

[
∑

i∈I
Ti

]∣∣∣∣∣ ≥
√
3 log z

√
2−depthT (v)|I|

]
≤ 2

z
,

which implies

Pr

[
|nv(Φ)− 2−depthT (v)|I|| ≤

√
3 log z

√
2−depthT (v)|I|

]
≥ 1− 2

z
.
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