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Abstract

The threshold degree of a Boolean function f : {0, 1}n → {−1,+1}
is the least degree of a real polynomial p such that f (x) ≡ sgn p(x). We
construct two halfspaces on {0, 1}n whose intersection has threshold degree
2(
√

n), an exponential improvement on previous lower bounds. This solves
an open problem due to Klivans (2002) and rules out the use of perceptron-
based techniques for PAC learning the intersection of two halfspaces, a cen-
tral unresolved challenge in computational learning. We also prove that the
intersection of two majority functions has threshold degree �(log n), which
is tight and settles a conjecture of O’Donnell and Servedio (2003).

Our proof consists of two parts. First, we show that for any nonconstant
Boolean functions f and g, the intersection f (x) ∧ g(y) has threshold de-
gree O(d) if and only if ‖ f − F‖∞ + ‖g − G‖∞ < 1 for some rational
functions F, G of degree O(d). Second, we settle the least degree required
for approximating a halfspace and a majority function to any given accuracy
by rational functions.

Our technique further allows us to make progress on Aaronson’s chal-
lenge (2008) and contribute strong direct product theorems for polynomial
representations of composed Boolean functions of the form F( f1, ..., fn). In
particular, we give an improved lower bound on the approximate degree of
the AND-OR tree.
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1 Introduction

Representations of Boolean functions by real polynomials play an important role
in theoretical computer science, with applications ranging from complexity theory
to quantum computing and learning theory. The surveys in [7, 40, 13, 43] offer
a glimpse into the diversity of these results and techniques. We study one such
representation scheme known as sign-representation. Specifically, fix a Boolean
function f : X → {−1,+1} for some finite set X ⊂ Rn, such as the hypercube
X = {−1,+1}n. The threshold degree of f, denoted deg±( f ), is the least degree
of a polynomial p(x1, . . . , xn) such that

f (x) = sgn p(x)

for each x ∈ X. In other words, the threshold degree of f is the least degree of a
real polynomial that represents f in sign.

The formal study of this complexity measure and of sign-representations in
general began in 1969 with the seminal work of Minsky and Papert [30], who
examined the threshold degree of several common functions. Since then, sign-
representations have found a variety of applications in theoretical computer sci-
ence. Paturi and Saks [35] and later Siu et al. [47] used Boolean functions with
high threshold degree to obtain size-depth trade-offs for threshold circuits. The
well-known result, due to Beigel et al. [9], that PP is closed under intersection is
also naturally interpreted in terms of threshold degree. In another development,
Aspnes et al. [6] used the notion of threshold degree and its relaxations to obtain
oracle separations for PP and to give an insightful new proof of classical lower
bounds for AC0. Krause and Pudlák [26, 27] used random restrictions to show that
the threshold degree gives lower bounds on the weight and density of perceptrons
and their generalizations, which are well-studied computational models.

Learning theory is another area in which the threshold degree of Boolean
functions is of considerable interest. Specifically, functions with low threshold
degree can be efficiently PAC learned under arbitrary distributions via linear pro-
gramming. The current fastest algorithm for PAC learning polynomial-size DNF
formulas, due to Klivans and Servedio [21], is an illustrative example: it is based
precisely on an upper bound on the threshold degree of this concept class.

The threshold degree has recently become a versatile tool in communication
complexity. The starting point in this line of work is the Degree/Discrepancy The-
orem [41, 42], which states that any Boolean function with high threshold degree
induces a communication problem with low discrepancy and thus high communi-
cation complexity in almost all models. This result was used in [41] to show the
optimality of Allender’s simulation of AC0 by majority circuits [4], thus solving an
open problem of Krause and Pudlák [26]. Known lower bounds on the threshold
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degree have played an important role in recent progress [44, 38] on unbounded-
error communication complexity, which is considerably more powerful than the
models above.

In summary, the threshold degree has a variety of applications in circuit com-
plexity, learning theory, and communication complexity. Nevertheless, analyzing
the threshold degree has remained a difficult task, and Minsky and Papert’s sym-
metrization technique from 1969 has been essentially the only method available.
Unfortunately, symmetrization only applies to symmetric Boolean functions and
certain derivations thereof. In a recent tutorial presented at the FOCS’08 con-
ference, Aaronson [2] re-posed the challenge of developing new analytic tech-
niques for multivariate real polynomials that represent Boolean functions. We
make significant progress on this challenge in the context of sign-representation,
contributing a number of strong direct product theorems for the threshold degree.
As an application, we construct two halfspaces on {0, 1}n whose intersection has
threshold degree �(

√
n), which solves an open problem due to Klivans [19] and

rules out the use of perceptron-based techniques for PAC learning the intersection
of even two halfspaces (a central unresolved challenge in computational learning
theory). We give a detailed description of our results in Sections 1.1–1.3, followed
by a discussion of our techniques in Section 1.4.

1.1 Results for general compositions

Our first result is a general direct product theorem for the threshold degree of
composed functions.

THEOREM 1.1 (Threshold degree). Consider functions f : X → {−1,+1} and
F : {−1,+1}k → {−1,+1}, where X ⊂ Rn is a finite set. Then

deg±(F( f, . . . , f )) > deg±(F) deg±( f ).

Theorem 1.1 gives the best possible lower bound that depends on deg±(F)
and deg±( f ) alone. In particular, the bound is tight whenever F = PARITY or
f = PARITY. To our knowledge, the only previous direct product theorem of
any kind for the threshold degree was the XOR lemma in [33], which states that
the XOR of k copies of a given function f : X → {−1,+1} has threshold degree
k deg±( f ).

We are able to generalize Theorem 1.1 to the notion of ε-approximate degree
degε(F), which is the least degree of a real polynomial p with ‖F − p‖∞ 6 ε.

This notion plays a fundamental role in complexity theory, learning theory, and
quantum computing and was also re-posed as an analytic challenge in Aaronson’s
tutorial [2]. We have:
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THEOREM 1.2 (Approximate degree). Fix functions f : X → {−1,+1} and
F : {−1,+1}k → {−1,+1}, where X ⊂ Rn is a finite set. Then for 0 < ε < 1,

degε(F( f, . . . , f )) > degε(F) deg±( f ).

Again, Theorem 1.2 gives the best lower bound that depends on degε(F) and
deg±( f ) alone. For example, the stated bound is tight for any function F when f =
PARITY. In Section 3.1, we prove various other results involving bounded-error
and small-bias approximation, as well as compositions of the form F( f1, . . . , fk)

where f1, . . . , fk may all be distinct.
We use Theorem 1.2 to obtain an improved lower bound on the approximate

degree of the well-studied AND-OR tree, given by

f (x) =
n∨

i=1

n∧
j=1

xi j . (1.1)

Prior to this work, the best lower bound was �(n0.66...), due to Ambainis [5].
Preceding it were lower bounds of �(

√
n) due to Nisan and Szegedy [32] and

�(
√

n log n) due to Shi [46]. We improve the standing lower bound from
�(n0.66...) to �(n0.75), the best upper bound being O(n) due to Høyer et al. [16].

THEOREM 1.3 (AND-OR Tree). Define f : {−1,+1}n
2
→ {−1,+1} by (1.1).

Then

deg1/3( f ) = �(n0.75).

Furthermore, the proof of Theorem 1.3 is simpler and more modular than the pre-
vious lower bound [5], which was based on the collision and element distinctness
problems.

1.2 Results for specific compositions

While Theorems 1.1 and 1.2 give the best lower bounds that depend on deg±(F),
deg±( f ), and degε(F) alone, much stronger lower bounds can be derived in
some cases by exploiting additional structure of F and f. Consider the special
but illustrative case of the conjunction of two functions. In other words, we are
given functions f : X → {−1,+1} and g : Y → {−1,+1} for some finite sets
X, Y ⊂ Rn and would like to determine the threshold degree of their conjunction,
( f ∧ g)(x, y) = f (x) ∧ g(y). A simple and elegant method for sign-representing
f ∧ g, due to Beigel et al. [9], is to use rational approximation. Specifically, let
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p1(x)/q1(x) and p2(y)/q2(y) be rational functions of degree d that approximate f
and g, respectively, in the following sense:

max
x∈X

∣∣∣∣ f (x)−
p1(x)
q1(x)

∣∣∣∣ + max
y∈Y

∣∣∣∣g(y)− p2(y)
q2(y)

∣∣∣∣ < 1. (1.2)

Letting −1 and +1 correspond to “true” and “false,” respectively, we obtain:

f (x) ∧ g(y) ≡ sgn{1+ f (x)+ g(y)} ≡ sgn
{

1+
p1(x)
q1(x)

+
p2(y)
q2(y)

}
. (1.3)

Multiplying the last expression in braces by the positive quantity q1(x)2q2(y)2

gives

f (x) ∧ g(y) ≡ sgn
{
q1(x)2q2(y)2

+p1(x)q1(x)q2(y)2 + p2(y)q1(x)2q2(y)
}
,

whence deg±( f ∧g) 6 4d. In summary, if f and g can be approximated as in (1.2)
by rational functions of degree at most d, then the conjunction f ∧ g has threshold
degree at most 4d.

It is natural to ask whether there exists a better construction. After all, given a
sign-representing polynomial p(x, y) for f (x)∧ g(y), there is no reason to expect
that p arises from the sum of two independent rational functions as in (1.3). Indeed,
x and y can be tightly coupled inside p(x, y) and can interact in complicated ways.
Our next result is that, surprisingly, no such interactions can beat the simple con-
struction above. In other words, the sign-representation based on rational functions
always achieves the optimal degree, up to a small constant factor.

THEOREM 1.4 (Conjunctions of functions). Let f : X → {−1,+1} and g : Y →
{−1,+1} be given functions, where X, Y ⊂ Rn are arbitrary finite sets. Assume
that f and g are not identically false. Let d = deg±( f ∧ g). Then there exist
degree-4d rational functions

p1(x)
q1(x)

,
p2(y)
q2(y)

that satisfy (1.2).

Via repeated applications of Theorem 1.4, we are able to obtain analogous
results for conjunctions f1∧ f2∧· · ·∧ fk for any Boolean functions f1, f2, . . . , fk

and any k. Our results further extend to compositions F( f1, . . . , fk) for various F
other than F = AND, such as halfspaces and read-once AND/OR/NOT formulas.
We defer a more detailed description of these extensions to Section 3.4, limiting
this overview to the following representative special case.
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THEOREM 1.5 (Extension to multiple functions). Let f1, f2, . . . , fk be noncon-
stant Boolean functions on finite sets X1, X2, . . . , Xk ⊂ Rn, respectively. Let
F : {−1,+1}k → {−1,+1} be a halfspace or a read-once AND/OR/NOT for-
mula. Assume that F depends on all of its k inputs and that the composition
F( f1, f2, . . . , fk) has threshold degree d. Then there is a degree-D rational func-
tion pi/qi on X i , i = 1, 2, . . . , k, such that

k∑
i=1

max
xi∈X i

∣∣∣∣ fi (xi )−
pi (xi )

qi (xi )

∣∣∣∣ < 1,

where D = 8d log 2k.

Theorem 1.5 is close to optimal. For example, when F = AND, the upper bound
on D is tight up to a factor of 2(k log k); for all F in the statement of the theorem,
it is tight up to a polynomial in k. See Remark 3.22 for details.

Theorems 1.4 and 1.5 contribute a strong technique for proving lower bounds
on the threshold degree, via rational approximation. Prior to this paper, it was
a substantial challenge to analyze the threshold degree even for compositions of
the form f ∧ g. Indeed, we are only aware of the work in [30, 33], where the
threshold degree of f ∧g was studied for the special case f = g = MAJORITY. The
main difficulty in those previous works was analyzing the unintuitive interactions
between f and g. Our results remove this difficulty, even in the general setting of
compositions F( f1, f2, . . . , fk) for arbitrary f1, f2, . . . , fk and various combining
functions F. Specifically, Theorems 1.4 and 1.5 make it possible to study the base
functions f1, f2, . . . , fk individually, in isolation. Once their rational approxima-
bility is understood, one immediately obtains lower bounds on the threshold degree
of F( f1, f2, . . . , fk).

1.3 Results for intersections of two halfspaces

As an application of our direct product theorems in Section 1.2, we obtain the first
strong lower bounds on the threshold degree of intersections of halfspaces, i.e.,
intersections of functions of the form f (x) = sgn(

∑
αi xi − θ) for some reals

α1, . . . , αn, θ. In light of Theorem 1.4, this task amounts to proving that rational
functions of low degree cannot approximate a given halfspace. We accomplish this
in the following theorem, where the notation rdegε( f ) stands for the least degree
of a rational function A with ‖ f − A‖∞ 6 ε.

THEOREM 1.6 (Approximation of a halfspace). Let f : {−1,+1}n
2
→ {−1,+1}
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be given by

f (x) = sgn

1+
n∑

i=1

n∑
j=1

2i xi j

 . (1.4)

Then for 1/3 < ε < 1,

rdegε( f ) = 2
(

1+
n

log{1/(1− ε)}

)
.

Furthermore, for all ε > 0,

rdegε( f ) 6 64ndlog2 ne + 1.

The function (1.4) is known as the canonical halfspace. Thus, Theorem 1.6
shows that a rational function of degree 2(n) is necessary and sufficient for ap-
proximating the canonical halfspace within 1/3. The upper bound in this theorem
follows readily from classical work by Newman [31], and it is the lower bound
that has required of us technical novelty and effort. The best previous degree lower
bound for constant-error approximation for any halfspace was�(log n/ log log n),
obtained implicitly in [33]. We complement Theorem 1.6 with a full solution for
another common halfspace, the majority function.

THEOREM 1.7 (Approximation of majority). Let MAJn : {−1,+1}n → {−1,+1}
denote the majority function. Then

rdegε(MAJn) =


2

(
log

{
2n

log(1/ε)

}
· log

1
ε

)
, 2−n < ε < 1/3,

2

(
1+

log n
log{1/(1− ε)}

)
, 1/3 6 ε < 1.

Again, the upper bound in Theorem 1.7 is relatively straightforward. Indeed, an
upper bound of O(log{1/ε} log n) for 0 < ε < 1/3 was known and used in the
complexity literature long before our work [35, 47, 9, 20], and we only somewhat
tighten that upper bound and extend it to all ε. Our primary contribution in Theo-
rem 1.7, then, is a matching lower bound on the degree, which requires consider-
able effort. The closest previous line of research concerns continuous approxima-
tion of the sign function on [−1,−ε]∪ [ε, 1], which unfortunately gives no insight
into the discrete case. For example, the lower bound derived by Newman [31] in
the continuous setting is based on the integration of relevant rational functions with
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respect to a suitable weight function, which has no meaningful discrete analogue.
We discuss our solution in greater detail at the end of the introduction.

Our first application of these lower bounds for rational approximation is to
construct an intersection of two halfspaces with high threshold degree. In what
follows, the symbol f ∧ f denotes the conjunction of two independent copies of a
given function f.

THEOREM 1.8 (Intersection of two halfspaces). Let f : {−1,+1}n
2
→ {−1,+1}

be given by (1.4). Then

deg±( f ∧ f ) = �(n).

The lower bound in Theorem 1.8 is tight and matches the construction by
Beigel et al. [9]. Prior to our work, only an �(log n/ log log n) lower bound
was known on the threshold degree of the intersection of two halfspaces, due to
O’Donnell and Servedio [33], preceded in turn by an ω(1) lower bound of Minsky
and Papert [30]. Note that Theorem 1.8 requires the difficult part of Theorem 1.6,
namely, the lower bound for the rational approximation of a halfspace.

Theorem 1.8 solves an open problem in computational learning theory, due
to Klivans [19]. In more detail, recall that Boolean functions with low threshold
degree can be efficiently PAC learned under arbitrary distributions, by expressing
an unknown function as a perceptron with unknown weights and solving the asso-
ciated linear program [21, 20]. Now, a central challenge in the area is PAC learning
the intersection of two halfspaces under arbitrary distributions, which remains un-
resolved despite much effort and solutions to some restrictions of the problem,
e.g., [28, 48, 20, 23]. Prior to this paper, it was unknown whether intersections
of two halfspaces on {0, 1}n are amenable to learning via perceptron-based tech-
niques. Specifically, Klivans [19, §7] asked for a lower bound of�(log n) or better
on the threshold degree of the intersection of two halfspaces. We solve this problem
with a lower bound of �(

√
n), thereby ruling out the use of perceptron-based

techniques for learning the intersection of two halfspaces in subexponential time.
To our knowledge, Theorem 1.8 is the first unconditional, structural lower bound
for PAC learning the intersection of two halfspaces; all previous hardness results
for the problem were based on complexity-theoretic assumptions [10, 3, 25, 18].
We complement Theorem 1.8 as follows.

THEOREM 1.9 (Mixed intersection). Let f : {−1,+1}n
2
→ {−1,+1} be given

by (1.4). Let g : {−1,+1}d
√

ne
→ {−1,+1} be the majority function. Then

deg±( f ∧ g) = 2(
√

n).
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In words, even if one of the halfspaces in Theorem 1.8 is replaced by a majority
function, the threshold degree will remain high, resulting in a challenging learning
problem. Finally, we have:

THEOREM 1.10 (Intersection of two majorities). Consider the majority function
MAJn : {−1,+1}n → {−1,+1}. Then

deg±(MAJn ∧MAJn) = �(log n).

Theorem 1.10 is tight, matching the construction of Beigel et al. [9]. It set-
tles a conjecture of O’Donnell and Servedio [33], who gave a lower bound of
�(log n/ log log n) with completely different techniques and conjectured that the
true answer was �(log n). Theorems 1.8–1.10 are of course also valid for disjunc-
tions rather than conjunctions. Furthermore, Theorems 1.8 and 1.10 remain tight
with respect to conjunctions of any constant number of functions.

Finally, we believe that the lower bounds for rational approximation in The-
orems 1.6 and 1.7 are of independent interest. Rational functions are classical
objects with various applications in theoretical computer science [9, 35, 47, 20, 1],
and yet our ability to prove strong lower bounds for the rational approximation of
Boolean functions has seen little progress since the seminal work in 1964 by New-
man [31]. To illustrate some of the counterintuitive phenomena involved in rational
approximation, consider the familiar function ORn : {0, 1}n → {−1,+1}, given by
ORn(x) = 1⇔ x = 0. A well-known result of Nisan and Szegedy [32] states that
deg1/3( f ) = 2(

√
n), meaning that a polynomial of degree 2(

√
n) is required for

approximation within 1/3. At the same time, we claim that rdegε( f ) = 1 for all
0 < ε < 1. Indeed, let

AM(x) =
1− M

∑
xi

1+ M
∑

xi
.

Then ‖ f − AM‖∞ → 0 as M → ∞. This example illustrates that proving lower
bounds for rational functions can be a difficult and unintuitive task. We hope
that Theorems 1.6 and 1.7 in this paper will spur further progress on the rational
approximation of Boolean functions.

1.4 Our techniques

We use one set of techniques to obtain our direct product theorems for the threshold
degree (Sections 1.1 and 1.2) and another, unrelated set of techniques to analyze
the rational approximation of halfspaces (Section 1.3). We will give a separate
overview of the technical development in each case.
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Direct product theorems. In symmetrization, one takes an assumed multivariate
polynomial p that sign-represents a given symmetric function and converts p into
a univariate polynomial, which is amenable to direct analysis. No such approach
works for the function compositions of this paper, whose sign-representing poly-
nomials can have complicated structure and will not simplify in a meaningful way.
This leads us to pursue a completely different approach.

Specifically, our results are based on a thorough study of the linear program-
ming dual of the sign-representation problems at hand. The challenge in our work
is to bring out, through the dual representation, analytic properties that will obey
a direct product theorem. Depending on the context (Theorem 1.1, 1.2, or 1.4),
the property in question can be nonnegativity, correlation, orthogonality, certain
quotient structure, or a combination of several of these. A strength of this approach
is that it works with the sign-representation problem itself (over which we have
considerable control) rather than an assumed sign-representing polynomial (whose
structure we can no longer control in a meaningful way). We are confident that this
approach will find other applications.

As a concrete illustration, we briefly describe the idea behind Theorem 1.4.
The dual object with which we work there is a certain problem of finding, in the
positive spans of two given matrices, two vectors whose corresponding entries have
comparable magnitude. By an analytic argument, we are able to prove that this in-
termediate problem has the sought direct-product property, giving the missing link
between sign-representation and rational approximation. Thus, by working with
the dual, we implicitly decompose any sign-representation p(x, y) of the function
f (x) ∧ g(y) into individual rational approximants for f and g, regardless of how
tightly the x and y parts are coupled inside p.

Rational approximation. Our proof of Theorem 1.6 is built around two key ideas.
The first is a new technique for placing lower bounds on the degree of a given poly-
nomial p ∈ R[x1, x2, . . . , xn] with prescribed approximate behavior, whereby one
constructs a degree-nonincreasing linear map M : R[x1, x2, . . . , xn] → R[x] and
argues that Mp has high degree. This technique is crucial to proving Theorem 1.6,
which is not amenable to standard techniques such as symmetrization. As applied
in this work, the technique amounts to constructing random variables x1, x2, . . . , xn

in Euclidean space that, on the one hand, satisfy the linear dependence
∑

2i xi ≡ z
for a suitably fixed vector z and, on the other hand, in expectation look independent
to any low-degree polynomial p ∈ R[x1, x2, . . . , xn]. We pass, then, from p to a
univariate polynomial by observing that E[p(x1, . . . , xn)] = q(z) for some uni-
variate polynomial q of degree no greater than the degree of p. This technique is a
substantial departure from previous methods and shows promise on other problems
involving approximation by polynomials or rational functions.

9



Second, we are able to prove that the rational approximation of the sign func-
tion has a self-reducibility property on the discrete domain. More specifically, we
are able to give an explicit solution to the dual of the rational approximation prob-
lem by distributing the nodes as in known positive results. What makes this pro-
gram possible in the first place is our ability to zero out the dual object on the com-
plementary domain, which is where the above map M : R[x1, x2, . . . , xn]→ R[x]
plays a crucial role. This dual approach, too, departs entirely from previous analy-
ses. In particular, recall that Newman’s lower-bound analysis is specialized to the
continuous domain and does not extend to the setting of Theorem 1.7, let alone
Theorem 1.6.

Recent progress

A recent follow-up paper [45] proves that the intersection of two halfspaces on
{0, 1}n has threshold degree 2(n), improving on the lower bound of �(

√
n)

in this work. We have also learned that the inequality degε(F( f, . . . , f )) >
degε(F) deg±( f ) was derived independently by Lee [29] in a recent work on read-
once Boolean formulas.

2 Preliminaries

Throughout this work, the symbol t refers to a real variable, whereas u, v, w, x,
y, z refer to vectors in Rn and in particular in {−1,+1}n. We adopt the following
standard definition of the sign function:

sgn t =


−1, t < 0,
0, t = 0,
1, t > 0.

We will also have occasion to use the following modified sign function:

s̃gn t =

{
−1, t < 0,
1, t > 0.

Equations and inequalities involving vectors in Rn, such as x < y or x > 0, are to
be interpreted component-wise, as usual.

Throughout this manuscript, we view Boolean functions as mappings f : X →
{−1,+1} for some finite set X, where−1 and+1 correspond to “true” and “false,”
respectively. If µ1, . . . , µk are probability distributions on finite sets X1, . . . , Xk,
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respectively, then µ1 × · · · × µk stands for the probability distribution on X1 ×

· · · × Xk given by

(µ1 × · · · × µk)(x1, . . . , xk) =

k∏
i=1

µi (xi ).

The majority function on n bits, MAJn : {−1,+1}n → {−1,+1}, is given by

MAJn(x) =

{
1,

∑
xi > 0,

−1, otherwise.

The symbol Pk stands for the family of all univariate real polynomials of degree up
to k. The following combinatorial identity is well-known.

FACT 2.1. For every integer n > 1 and every polynomial p ∈ Pn−1,

n∑
i=0

(
n
i

)
(−1)i p(i) = 0.

This fact can be verified by repeated differentiation of the real function

(t − 1)n =
n∑

i=0

(
n
i

)
(−1)n−i t i

at t = 1, as explained in [33].
For a real function f on a finite set X, we write ‖ f ‖∞ = maxx∈X | f (x)|. For

a subset X ⊆ Rn, we adopt the notation −X = {−x : x ∈ X}. We say that a
set X ⊆ Rn is closed under negation if X = −X. Given a function f : X → R,
where X ⊆ Rn is closed under negation, we say that f is odd (respectively, even)
if f (−x) = − f (x) for all x ∈ X (respectively, f (−x) = f (x) for all x ∈ X ).

Given functions f : X → {−1,+1} and g : Y → {−1,+1}, recall that the
function f ∧ g : X × Y → {−1,+1} is given by ( f ∧ g)(x, y) = f (x) ∧ g(y).
The function f ∨ g is defined analogously. Observe that in this notation, f ∧ f
and f are completely different functions, the former having domain X × X and
the latter X. These conventions extend in the obvious way to any number of
functions. For example, f1 ∧ f2 ∧ · · · ∧ fk is a Boolean function with domain
X1× X2×· · ·× Xk, where X i is the domain of fi . Generalizing further, we let the
symbol F( f1, . . . , fk) denote the Boolean function on X1×X2×· · ·×Xk obtained
by composing a given function F : {−1,+1}k → {−1,+1} with the functions
f1, f2, . . . , fk . Finally, recall that the negated function f : X → {−1,+1} is given
by f (x) = − f (x).
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2.1 Sign-representation and approximation by polynomials

By the degree of a multivariate polynomial p on Rn, denoted deg p, we shall
always mean the total degree of p, i.e., the greatest total degree of any monomial of
p. The degree of a rational function p(x)/q(x) is the maximum of deg p and deg q.
Given a function f : X → {−1,+1}, where X ⊂ Rn is a finite set, the threshold
degree deg±( f ) of f is defined as the least degree of a multivariate polynomial
p such that f (x)p(x) > 0 for all x ∈ X. In words, the threshold degree of f
is the least degree of a polynomial that represents f in sign. Equivalent terms
in the literature include “strong degree” [6], “voting polynomial degree” [26],
“polynomial threshold function degree” [34], and “sign degree” [12]. Crucial to
understanding the threshold degree is the following result, which is a well-known
corollary to Gordan’s transposition theorem [15].

THEOREM 2.2 (Gordan [15]). Let X ⊂ Rn be a finite set, f : X → {−1,+1}
a given function. Then deg±( f ) > d if and only if there exists a probability
distribution µ on X such that∑

x∈X

µ(x) f (x)p(x) = 0

for every polynomial p of degree up to d. Equivalently, deg±( f ) > d if and only if
there exists a map ψ : X → R, ψ 6≡ 0, such that f (x)ψ(x) > 0 on X and∑

x∈X

ψ(x)p(x) = 0

for every polynomial p of degree up to d.

Theorem 2.2 has a short proof using linear programming duality, as explained
in [41, §2.2].

The threshold degree is closely related to another analytic notion. Let f : X →
{−1,+1} be given, for a finite subset X ⊂ Rn. The ε-approximate degree of f,
denoted degε( f ), is the least degree of a polynomial p such that | f (x)− p(x)| 6 ε

for all x ∈ X. The relationship between the threshold degree and approximate
degree is an obvious one:

deg±( f ) = lim
ε↗1

degε( f ). (2.1)

We will need the following dual characterization of the approximate degree.

12



THEOREM 2.3. Fix ε > 0. Let f : X → {−1,+1} be given, X ⊂ Rn a finite set.
Then degε( f ) > d if and only if there exists a function ψ : X → R such that∑

x∈X

|ψ(x)| = 1,∑
x∈X

ψ(x) f (x) > ε,

and, for every polynomial p of degree up to d,∑
x∈X

ψ(x)p(x) = 0.

Theorem 2.3 follows readily from linear programming duality, as explained
in [42, §3]. Theorem 2.2 can be derived from Theorem 2.3 in view of (2.1).

2.2 Approximation by rational functions

Consider a function f : X → {−1,+1}, where X ⊆ Rn is an arbitrary set. For
d > 0, we define

R( f, d) = inf
p,q

sup
x∈X

∣∣∣∣ f (x)−
p(x)
q(x)

∣∣∣∣ ,
where the infimum is over multivariate polynomials p and q of degree up to d such
that q does not vanish on X. In words, R( f, d) is the least error in an approximation
of f by a multivariate rational function of degree up to d. We will also take an
interest in the related quantity

R+( f, d) = inf
p,q

sup
x∈X

∣∣∣∣ f (x)−
p(x)
q(x)

∣∣∣∣ ,
where the infimum is over multivariate polynomials p and q of degree up to d such
that q is positive on X. These two quantities are related in a straightforward way:

R+( f, 2d) 6 R( f, d) 6 R+( f, d). (2.2)

The second inequality here is trivial. The first follows from the fact that every ratio-
nal approximant p(x)/q(x) of degree d gives rise to a degree-2d rational approx-
imant with the same error and a positive denominator, namely, {p(x)q(x)}/q(x)2.
The infimum in the definitions of R( f, d) and R+( f, d) cannot in general be re-
placed by a minimum [39], even when X is a finite subset of R. This is in contrast to
the more familiar setting of a finite-dimensional normed linear space, where least-
error approximants are guaranteed to exist. We now recall Newman’s classical
construction of a rational approximant to the sign function [31].
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THEOREM 2.4 (Newman). Fix N > 1. Then for every integer k > 1, there is a
rational function S(t) of degree k such that

max
16|t |6N

| sgn t − S(t)| 6 1− N−1/k (2.3)

and the denominator of S is positive on [−N ,−1] ∪ [1, N ].

Proof (adapted from Newman [31]). Consider the univariate polynomial

p(t) =
k∏

i=1

(
t + N (2i−1)/(2k)).

By examining every interval [N i/(2k), N (i+1)/(2k)], where i = 0, 1, . . . , 2k− 1, one
sees that

p(t) >
N 1/(2k)

+ 1
N 1/(2k) − 1

|p(−t)|, 1 6 t 6 N . (2.4)

Letting

S(t) = N−1/(2k)
·

p(t)− p(−t)
p(t)+ p(−t)

,

one has (2.3). The positivity of the denominator of S on [−N ,−1] ∪ [1, N ] is a
consequence of (2.4).

A useful consequence of Newman’s theorem is the following general statement
on decreasing the error in rational approximation.

THEOREM 2.5. Let f : X → {−1,+1} be given, where X ⊆ Rn. Let d be a given
integer, ε = R( f, d). Then for k = 1, 2, 3, . . . ,

R( f, kd) 6 1−
(

1− ε
1+ ε

)1/k

.

Proof. We may assume that ε < 1, the theorem being trivial otherwise. Let S be
the degree-k rational approximant to the sign function for N = (1 + ε)/(1 − ε),
as constructed in Theorem 2.4. Let A1, A2, . . . , Am, . . . be a sequence of rational
functions on X of degree at most d such that supX | f − Am | → ε as m →∞. The
theorem follows by considering the sequence of approximants S(Am(x)/{1 − ε})
as m →∞.
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2.3 Symmetrization

Let Sn denote the symmetric group on n elements. For σ ∈ Sn and x ∈ Rn ,
we denote σ x = (xσ(1), . . . , xσ(n)) ∈ Rn. The following is a generalized form of
Minsky and Papert’s symmetrization argument [30], as formulated in [38].

PROPOSITION 2.6 (cf. Minsky and Papert). Let n1, . . . , nk be positive integers.
Let φ : {0, 1}n1 × · · · × {0, 1}nk → R be a polynomial of degree d. Then there is a
polynomial p on Rk of degree at most d such that for all x in the domain of φ,

E
σ1∈Sn1 ,...,σk∈Snk

[
φ
(
σ1x1, . . . , σk xk

)]
= p

(
. . . , xi,1 + · · · + xi,ni , . . .

)
.

We now obtain a form of the symmetrization argument for rational approxima-
tion.

PROPOSITION 2.7. Let n1, . . . , nk be positive integers, and α, β distinct reals. Let
G : {α, β}n1 ×· · ·× {α, β}nk → {−1,+1} be a function such that G(x1, . . . , xk) ≡

G(σ1x1, . . . , σk xk) for all σ1 ∈ Sn1, . . . , σk ∈ Snk . Let d be a given integer. Then
for each ε > R+(G, d), there exists a rational function p/q on Rk of degree at
most d such that for all x in the domain of G, one has∣∣∣∣G(x)− p(. . . , xi,1 + · · · + xi,ni , . . . )

q(. . . , xi,1 + · · · + xi,ni , . . . )

∣∣∣∣ < ε

and q(. . . , xi,1 + · · · + xi,ni , . . . ) > 0.

Proof. Clearly, we may assume that ε < 1. Using the linear bijection (α, β) ↔
(0, 1) if necessary, we may further assume that α = 0 and β = 1. Since ε >
R+(G, d), there are polynomials P, Q of degree up to d such that for all x in the
domain of G, one has Q(x) > 0 and

(1− ε)Q(x) < G(x)P(x) < (1+ ε)Q(x).

By Proposition 2.6, there exist polynomials p, q on Rk of degree at most d such
that

E
σ1∈Sn1 ,...,σk∈Snk

[
P
(
σ1x1, . . . , σk xk

)]
= p

(
. . . , xi,1 + · · · + xi,ni , . . .

)
and

E
σ1∈Sn1 ,...,σk∈Snk

[
Q
(
σ1x1, . . . , σk xk

)]
= q

(
. . . , xi,1 + · · · + xi,ni , . . .

)
for all x in the domain of G. Then the required properties of p and q follow
immediately from the corresponding properties of P and Q.
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3 Direct product theorems

In the several subsections that follow, we prove our direct product theorems for
polynomial representations of composed Boolean functions. General compositions
are treated in Section 3.1, followed by a study of conjunctions and other specific
compositions in Sections 3.2–3.5.

3.1 General compositions

We begin our study with general compositions of the form F( f1, . . . , fk). Our
focus in this section will be on results that depend only on the threshold or approxi-
mate degrees of F, f1, . . . , fk . In later sections, we will exploit additional structure
of the functions involved. The following result settles Theorems 1.1 and 1.2 from
the Introduction.

THEOREM 3.1. Let f : X → {−1,+1} and F : {−1,+1}k → {−1,+1} be given
functions, where X ⊂ Rn is a finite set. Then for 0 < ε < 1,

degε(F( f, . . . , f )) > degε(F) deg±( f ). (3.1)

In particular,

deg±(F( f, . . . , f )) > deg±(F) deg±( f ). (3.2)

Proof. Recall that the threshold degree is a limiting case of the approximate degree,
as given by (2.1). Hence, one obtains (3.2) by letting ε ↗ 1 in (3.1). In the
remainder of the proof, we focus on (3.1) alone.

Put D = degε(F) and d = deg±( f ). By Theorem 2.3, there exists a map
9 : {−1,+1}k → R such that ∑

z∈{−1,+1}k

|9(z)| = 1, (3.3)

∑
z∈{−1,+1}k

9(z)F(z) > ε, (3.4)

and
∑
9(z)p(z) = 0 for every polynomial p of degree less than D. By Theo-

rem 2.2, there exists a distribution µ on X such that
∑
µ(x) f (x)p(x) = 0 for

every polynomial p of degree less than d.
Now, define ζ : X k

→ R by

ζ(. . . , xi , . . . ) = 2k9(. . . , f (xi ), . . . )

k∏
i=1

µ(xi ).
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We claim that ∑
Xk

ζ(. . . , xi , . . . )p(. . . , xi , . . . ) = 0 (3.5)

for every polynomial p of degree less than Dd. By linearity, it suffices to consider
a polynomial p of the form p(. . . , xi , . . . ) =

∏
pi (xi ), where

∑
deg pi < Dd.

Since 9 is orthogonal on {−1,+1}k to all polynomials of degree less than D, we
have the representation

9(z) =
∑

S⊆{1,...,k},
|S|>D

9̂(S)
∏
i∈S

zi

for some reals 9̂(S). As a result,∑
Xk

ζ(. . . , xi , . . . )p(. . . , xi , . . . )

= 2k
∑
|S|>D

9̂(S)
∏
i∈S

∑
xi∈X

µ(xi ) f (xi )pi (xi )


︸ ︷︷ ︸

∏
i /∈S

∑
xi∈X

µ(xi )pi (xi )

 . (3.6)

Since
∑

deg pi < Dd, the pigeonhole principle implies that deg pi < d for more
than k−D indices i ∈ {1, . . . , k}.As a result, for each set S in the outer summation
of (3.6), at least one of the underbraced factors vanishes (recall that f is orthogonal
on X with respect to µ to all polynomials of degree less than d). This gives (3.5).

We may assume that f is not a constant function, the theorem being trivial
otherwise. It follows that deg±( f ) > 1 and

∑
X µ(x) f (x) = 0. Now, define a

product distribution λ on X k by λ(. . . , xi , . . . ) =
∏
µ(xi ). Since

∑
X µ(x) f (x) =

0, it follows that the string (. . . , f (xi ), . . . ) is distributed uniformly on {−1,+1}k

when (. . . , xi , . . . ) ∼ λ. As a result,∑
Xk

|ζ(. . . , xi , . . . )| = 2k E
z∈{−1,+1}k

[|9(. . . , zi , . . . )|] = 1, (3.7)

where the last equality holds by (3.3). Similarly,∑
Xk

ζ(. . . , xi , . . . )F(. . . , f (xi ), . . . )

= 2k E
z∈{−1,+1}k

[9(. . . , zi , . . . )F(. . . , zi , . . . )] > ε, (3.8)

where the inequality holds by (3.4). Now (3.1) follows from (3.5), (3.7), (3.8), and
Theorem 2.3.
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REMARK. In Theorem 3.1 and elsewhere in this paper, we consider Boolean func-
tions on finite subsets of Rn, which is the setting of primary interest in compu-
tational complexity. It is useful to keep in mind, however, that approximation
and sign-representation problems on compact infinite sets and other well-behaved
infinite sets are easily reduced to the finite case.

We now consider the so-called AND-OR tree, given by f (x) =
∨n

i=1
∧n

j=1 xi j .

We improve the standing lower bound on the approximate degree of f from
�(n0.66...) to �(n0.75), the best upper bound being O(n).

THEOREM 1.3 (RESTATED). Let f : {−1,+1}n
2
→ {−1,+1} be given by f (x) =∨n

i=1
∧n

j=1 xi j . Then

deg1/3( f ) = �(n0.75).

Proof. Without loss of generality, assume that n = 4m2 for some integer m.Define
g : {−1,+1}4m3

→ {−1,+1} by

g(x) =
m∨

i=1

4m2∧
j=1

xi j .

Let G : {−1,+1}4m
→ {−1,+1} be given by G(x) = x1 ∨ · · · ∨ x4m . A well-

known result of Minsky and Papert [30] states that deg±(g) = m. Also, Nisan and
Szegedy [32] proved that deg1/3(G) = 2(

√
m). Since f = G(g, . . . , g), it follows

by Theorem 3.1 that deg1/3( f ) = �(m
√

m), as desired.

We now further develop the ideas of Theorem 3.1 to obtain a more general
result on the approximation of composed functions by polynomials. This gen-
eralization is based on a combinatorial property of Boolean functions known as
certificate complexity. For a string x ∈ {−1,+1}k and a set S ⊆ {1, 2, . . . , k}
whose distinct elements are i1 < i2 < · · · < i|S|, we adopt the notation x |S =
(xi1, xi2, . . . , xi|S|) ∈ {0, 1}|S|. For a Boolean function F : {−1,+1}k → {−1,+1}
and a point x ∈ {−1,+1}k, the certificate complexity of F at x, denoted Cx(F),
is the minimum size of a subset S ⊆ {1, 2, . . . , k} such that F(x) = F(y) for all
y ∈ {−1,+1}k with x |S = y|S. The certificate complexity of F, denoted C(F), is
the maximum Cx(F) over all x . In the degenerate case when F is constant, we have
C(F) = 0. At the other extreme, the parity function F : {−1,+1}k → {−1,+1}
satisfies C(F) = k, which is the maximum possible. The following proposition is
immediate from the definition of certificate complexity.
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PROPOSITION 3.2. Let F : {−1,+1}k → {−1,+1} be a given Boolean function.
Let y ∈ {−1,+1}k be a random string whose i th bit is set to −1 with probability
αi and to +1 otherwise, independently for each i. Then for every x ∈ {−1,+1}k,

P
y
[F(x1, . . . , xk) = F(x1 y1, . . . , xk yk)] > min

i1<i2<···<iCx (F)

Cx (F)∏
j=1

(1− αi j ).

Proof. Fix a set S ⊆ {1, 2, . . . , k} of cardinality Cx(F) such that F(x) = F(y)
whenever x |S = y|S. Then clearly Py[F(. . . , xi , . . . ) = F(. . . , xi yi , . . . )] >
Py[y|S = (1, 1, . . . , 1)], and the bound follows.

We can now state and prove the desired generalization of Theorem 3.1.

THEOREM 3.3. Let f : X → {−1,+1} and F : {−1,+1}k → {−1,+1} be given
functions, where X ⊂ Rn is a finite set. Then for each ε, δ > 0,

degε+η−2+2(1−δ)C(F)(F( f, . . . , f )) > degε(F) deg1−δ( f ) (3.9)

for some η = η(ε, F) > 0.

REMARK 3.4. One recovers Theorem 3.1 by letting δ ↘ 0 in (3.9). We also
note that (3.9) is considerably stronger than Theorem 3.1: functions {−1,+1}k →
{−1,+1} are known, such as ODD-MAX-BIT [8], with threshold degree 1 and
(1− δ)-approximate degree k�(1) for δ as small as δ = exp{−k�(1)}. Another
advantage of Theorem 3.3 is that the (1− δ)-approximate degree is easier to bound
from below than the threshold degree [8, 49, 24, 36, 37], even for δ exponentially
small. For δ small, the (1 − δ)-approximate degree is essentially equivalent to a
notion known as perceptron weight [30, 8, 49, 27, 20, 22, 24, 12, 36, 37].

Proof of Theorem 3.3. Let D = degε(F) and d = deg1−δ( f ) > 0. Theorem 2.3
provides a map 9 : {−1,+1}k → R such that∑

z∈{−1,+1}k

|9(z)| = 1, (3.10)

∑
z∈{−1,+1}k

9(z)F(z) > ε + η (3.11)

for some η = η(ε, F) > 0, and
∑

z∈{−1,+1}k 9(z)p(z) = 0 for every polynomial p
of degree less than D. Analogously, there exists a map ψ : X → R such that∑

x∈X

|ψ(x)| = 1, (3.12)∑
x∈X

ψ(x) f (x) > 1− δ, (3.13)
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and
∑

x∈X ψ(x)p(x) = 0 for every polynomial p of degree less than d.
Define ζ : X k

→ R by

ζ(. . . , xi , . . . ) = 2k 9(. . . , s̃gnψ(xi ), . . . )

k∏
i=1

|ψ(xi )|.

By the same argument as in Theorem 3.1, we have∑
Xk

ζ(. . . , xi , . . . )p(. . . , xi , . . . ) = 0 (3.14)

for every polynomial p of degree less than Dd.
Let µ be the distribution on X k given by µ(. . . , xi , . . . ) =

∏
|ψ(xi )|. Since

ψ is orthogonal to the constant polynomial 1, the string (. . . , s̃gnψ(xi ), . . . ) is
distributed uniformly over {−1,+1}k when one samples (. . . , xi , . . . ) according
to µ. As a result, ∑

Xk

|ζ(. . . , xi , . . . )| =
∑

z∈{−1,+1}k

|9(z)| = 1, (3.15)

where the final equality uses (3.10).
Define A+1 = {x ∈ X : ψ(x) > 0, f (x) = −1} and A−1 = {x ∈ X : ψ(x) <

0, f (x) = +1}. Since ψ is orthogonal to the constant polynomial 1, it follows
from (3.12) that ∑

x :ψ(x)<0

|ψ(x)| =
∑

x :ψ(x)>0

|ψ(x)| =
1
2
.

In light of (3.13), we see that
∑

x∈A+1
|ψ(x)| < δ/2 and

∑
x∈A−1
|ψ(x)| < δ/2.

Now, for any given z ∈ {−1,+1}k, the following two random variables are identi-
cally distributed:

• the string (. . . , f (xi ), . . . ) when one chooses (. . . , xi , . . . ) ∼ µ and condi-
tions on the event that (. . . , s̃gnψ(xi ), . . . ) = z;

• the string (. . . , yi zi , . . . ), where y ∈ {−1,+1}k is a random string whose
i th bit independently takes on −1 with probability 2

∑
x∈Azi
|ψ(x)| < δ.

Proposition 3.2 now implies that for each z ∈ {−1,+1}k,∣∣∣∣Eµ [F(. . . , f (xi ), . . . ) | (. . . , s̃gnψ(xi ), . . . ) = z
]

− F(. . . , s̃gnψ(xi ), . . . )

∣∣∣∣ 6 2− 2(1− δ)C(F). (3.16)
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We are now prepared to complete the proof. We have∑
Xk

ζ(. . . , xi . . . )F(. . . , f (xi ), . . . )

= 2k E
µ

[
9(. . . , s̃gnψ(xi ), . . . )F(. . . , f (xi ), . . . )

]
>

∑
z∈{−1,+1}k

9(z)F(z)− 2{1− (1− δ)C(F)}
∑

z∈{−1,+1}k

|9(z)|

> ε + η − 2+ 2(1− δ)C(F), (3.17)

where the last two inequalities use (3.16), (3.10), and (3.11). In view of Theo-
rem 2.3, the exhibited properties (3.14), (3.15), and (3.17) of ζ force (3.9).

Theorems 3.1 and 3.3 complement known upper bounds for the approximation
of composed functions. The following theorem is due to Buhrman et al. [11], who
studied the approximation of Boolean functions with perturbed inputs. We include
the proof from [11] and slightly generalize it to any given parameters.

THEOREM 3.5 (cf. Buhrman et al.). Fix functions F : {−1,+1}k → {−1,+1} and
f : X → {−1,+1}, where X ⊂ Rn is finite. Then for all 1, δ > 0,

degη(1,δ)(F( f, . . . , f )) 6 deg1(F) degδ( f ), (3.18)

where

η(1, δ) = 1+ 2− 2
(

1−
δ

1+ δ

)C(F)

. (3.19)

In particular,

deg1/3(F( f, . . . , f ))

6 deg1/3(F) deg1/3( f ) · O(log{1+ deg1/3(F)}). (3.20)

Proof (adapted from Buhrman et al.). Fix polynomials P and p on {−1,+1}k and
X, respectively. As usual, P may be assumed to be multilinear in view of its
domain. Define 8 : X k

→ R by

8(. . . , xi , . . . ) = P
(
. . . ,

1
1+ ‖ f − p‖∞

p(xi ), . . .

)
.

Fix any input (. . . , xi , . . . ) ∈ X k and consider a random variable y ∈ {−1,+1}k

whose i th bit takes on −1 with probability

αi =
1
2
−

f (xi )p(xi )

2(1+ ‖ f − p‖∞)
6
‖ f − p‖∞

1+ ‖ f − p‖∞
,
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independently for each i. Then

|8(. . . , xi , . . . )− F(. . . , f (xi ), . . . )|

=

∣∣∣∣Ey [P(. . . , yi f (xi ), . . . )− F(. . . , f (xi ), . . . )]
∣∣∣∣

6 ‖P − F‖∞ +
∣∣∣∣Ey [F(. . . , yi f (xi ), . . . )− F(. . . , f (xi ), . . . )]

∣∣∣∣
6 ‖P − F‖∞ + 2− 2

(
1−

‖ f − p‖∞
1+ ‖ f − p‖∞

)C(F)

,

where the first and last steps in the derivation follow by the multilinearity of P and
by Proposition 3.2, respectively. This completes the proof of (3.18).

Taking 1 = 1/6 and δ = 1/(12C(F)) in (3.18) gives

deg1/3(F( f, . . . , f )) 6 deg1/6(F) deg1/(12C(F))( f ).

Basic approximation theory [14] shows that for each ε > 0, there exists a univariate
polynomial of degree O(log 1

ε
) that sends [− 4

3 ,−
2
3 ] → [−1 − ε,−1 + ε] and

[ 2
3 ,

4
3 ]→ [1− ε, 1+ ε]. As a result, we obtain

deg1/3(F( f, . . . , f )) 6 deg1/3(F) deg1/3( f ) · O(log{1+ C(F)}),

which is equivalent to (3.20) because C(F) is known to be within a polynomial of
deg1/3(F) for every Boolean function F : {−1,+1}k → {−1,+1}, as discussed in
detail in the survey article [13].

Compositions with k distinct functions. We now consider compositions of the
form F( f1, . . . , fk),where the functions f1, . . . , fk may all be distinct. For a func-
tion F : {−1,+1}k → R and a vector v = (v1, . . . , vk) of nonnegative integers,
define the (ε, v)-approximate degree degε,v(F) to be the least D for which there is
a polynomial P(x1, . . . , xk) with

P ∈ span

{∏
i∈S

xi : S ⊆ {1, 2, . . . , k},
∑
i∈S

vi 6 D

}
and ‖F − P‖∞ 6 ε. Note that the ε-approximate degree of F is the (ε, v)-
approximate degree of F for v = (1, 1, . . . , 1). It is clear that

degε,v(F) > min
i1<i2<···<idegε (F)

{vi1 + vi2 + · · · + videgε (F)
},

with an arbitrary gap achievable between the right and left members of the in-
equality. We will also need the following generalized version of Theorem 2.3, due
to Ioffe and Tikhomirov [17].
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THEOREM 3.6 (Ioffe and Tikhomirov). Let X be a finite set. Fix any family 8 of
functions X → R and an additional function f : X → R. Then

min
φ∈span(8)

‖ f − φ‖∞ = max
ψ

{∑
x∈X

f (x)ψ(x)

}
,

where the maximum is over all functions ψ : X → R such that∑
x∈X

|ψ(x)| 6 1

and, for each φ ∈ 8, ∑
x∈X

φ(x)ψ(x) = 0.

A short proof of Theorem 3.6 can be found, e.g., in [42, §3]. With this setup in
place, we obtain the following analogues of Theorems 3.3 and 3.5 for compositions
of the form F( f1, . . . , fk).

THEOREM 3.7. Fix nonconstant functions F : {−1,+1}k → {−1,+1} and
fi : X i → {−1,+1}, i = 1, 2, . . . , k, where each X i ⊂ Rn is finite. Then for
ε, δ > 0, one has

degε+η−2+2(1−δ)C(F)(F( f1, . . . , fk)) > degε,v(F) (3.21)

for some η = η(ε, F) > 0, where v = (deg1−δ( f1), . . . , deg1−δ( fk)).

Proof. Let D = degε,v(F) and di = deg1−δ( fi ). Theorem 3.6 provides a map
9 : {−1,+1}k → R such that∑

z∈{−1,+1}k

|9(z)| = 1, (3.22)

∑
z∈{−1,+1}k

9(z)F(z) > ε + η

for some η = η(ε, F) > 0, and

9(z) =
∑
S∈S

9̂(S)
∏
i∈S

zi
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for some reals 9̂(S), where S = {S ⊆ {1, 2, . . . , k} :
∑

i∈S di > D}. Analo-
gously, there are maps ψi : X i → R, i = 1, 2, . . . , k, such that∑

xi∈X i

|ψi (xi )| = 1,

∑
xi∈X i

ψi (xi ) fi (xi ) > 1− δ,

and
∑

xi∈X i
ψi (xi )p(xi ) = 0 for every polynomial p of degree less than di .

Define ζ : X1 × · · · × Xk → R by

ζ(. . . , xi , . . . ) = 2k 9(. . . , s̃gnψi (xi ), . . . )

k∏
i=1

|ψi (xi )|.

By an argument analogous to that in Theorem 3.1, we have∑
X1×···×Xk

ζ(. . . , xi , . . . )p(. . . , xi , . . . ) = 0 (3.23)

for every polynomial p of degree less than D.
Let µ be the distribution on X1 × · · · × Xk given by µ(. . . , xi , . . . ) =∏
|ψi (xi )|. Since each ψi is orthogonal to the constant polynomial 1, the string

(. . . , s̃gnψi (xi ), . . . ) is distributed uniformly over {−1,+1}k when one samples
(. . . , xi , . . . ) according to µ. As a result,∑

X1×···×Xk

|ζ(. . . , xi , . . . )| =
∑

z∈{−1,+1}k

|9(z)| = 1, (3.24)

where the final equality uses (3.22).
By an argument analogous to that in Theorem 3.3, we obtain∑

X1×···×Xk

ζ(. . . , xi . . . )F(. . . , fi (xi ), . . . ) > ε + η − 2+ 2(1− δ)C(F). (3.25)

In view of Theorem 2.3, the exhibited properties (3.23), (3.24), and (3.25) of ζ
complete the proof.

REMARK 3.8. Analogous to the earlier development, taking δ ↘ 0 in Theorem 3.7
yields the lower bound degε(F( f1, . . . , fk)) > degε,v(F) for each ε > 0, where
v = (deg±( f1), . . . , deg±( fk)).
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THEOREM 3.9. Fix functions F : {−1,+1}k → {−1,+1} and fi : X i →

{−1,+1}, i = 1, 2, . . . , k, where each X i ⊂ Rn is finite. Then for all 1, δ > 0,

degη(1,δ)(F( f1, . . . , fk)) 6 deg1,v(F),

where v = (degδ( f1), . . . , degδ( fk)) and

η(1, δ) = 1+ 2− 2
(

1−
δ

1+ δ

)C(F)

. (3.26)

In particular,

deg1/3(F( f1, . . . , fk)) = deg1/3,v(F) · O(log{1+ deg1/3(F)}) (3.27)

for v = (deg1/3( f1), . . . , deg1/3( fk)).

Proof. Fix a real polynomial P on {−1,+1}k and polynomials pi on X i , respec-
tively. As usual, P may be assumed to be multilinear in view of its domain. Define
8 : X1 × · · · × Xk → R by

8(. . . , xi , . . . ) = P
(
. . . ,

1
1+ ‖ fi − pi‖∞

pi (xi ), . . .

)
.

The remainder of the proof is analogous to that of Theorem 3.5, with the obvious
notational changes and an optimal choice of approximants P, p1, . . . , pk .

Bounds using block sensitivity. Several results above can be sharpened some-
what using the notion of block sensitivity, denoted bs(F) for a function
F : {−1,+1}k → {−1,+1} and defined as the maximum number of nonempty dis-
joint subsets S1, S2, S3, · · · ⊆ {1, 2, . . . , k} such that on some input x ∈ {−1,+1}k,
flipping the bits in any one set Si changes the value of the function. We have:

PROPOSITION 3.10. Let F : {−1,+1}k → {−1,+1} be a given Boolean function.
Let y ∈ {−1,+1}k be a random string whose i th bit is set to −1 with probability
at most α, independently for each i. Then for every x ∈ {−1,+1}k,

P
y
[F(x1, . . . , xk) 6= F(x1 y1, . . . , xk yk)] 6 2α bs(F).

Proof. By monotonicity, we may assume that each bit of y takes on−1 with proba-
bility exactly α. For a fixed integer r and a uniformly random string y ∈ {−1,+1}k

with |{i : yi = −1}| = r, the probability that F(. . . , xi , . . . ) 6= F(. . . , xi yi , . . . )

is clearly at most bs(F)/bk/rc 6 2r bs(F)/k. Averaging over r gives the sought
bound.
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Since by definition C(F) > bs(F) for every function F : {−1,+1}k →
{−1,+1}, use of Proposition 3.10 instead of Proposition 3.2 can lead to sharper
bounds in some results of this section. Specifically, Theorems 3.3, 3.5, 3.7, and 3.9
remain valid with (3.9) replaced by

degε+η−4δ bs(F)(F( f, . . . , f )) > degε(F) deg1−δ( f ); (3.28)

with (3.19) and (3.26) replaced by

η(1, δ) = 1+
4δ bs(F)

1+ δ
; (3.29)

and with (3.21) replaced by

degε+η−4δ bs(F)(F( f1, . . . , fk)) > degε,v(F). (3.30)

In particular, we obtain from Theorem 3.3 that

deg1/3(F( f, . . . , f )) > deg2/3(F) deg1−(12 bs(F))−1( f )

> deg1/3(F) deg1/3( f ) ·�
(

1
1+ bs(F)

)
.

3.2 Auxiliary results on rational approximation

In this section, we prove a number of auxiliary facts about uniform approximation
and sign-representation. This preparatory work will set the stage for our analysis of
conjunctions of functions. We start by spelling out the exact relationship between
the rational approximation and sign-representation of a Boolean function.

THEOREM 3.11. Let f : X → {−1,+1} be a given function, where X ⊂ Rn is
finite. Then for every integer d,

deg±( f ) 6 d ⇔ R+( f, d) < 1.

Proof. For the forward implication, let p be a polynomial of degree at most d
such that f (x)p(x) > 0 for every x ∈ X. Letting M = maxx∈X |p(x)| and m =
minx∈X |p(x)|, we have

R+( f, d) 6 max
x∈X

∣∣∣∣ f (x)−
p(x)
M

∣∣∣∣ 6 1−
m
M
< 1.

For the converse, fix a degree-d rational function p(x)/q(x) with q(x) > 0 on
X and maxX | f (x)− {p(x)/q(x)}| < 1. Then clearly f (x)p(x) > 0 on X.
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Our next observation amounts to reformulating the rational approximation of
Boolean functions in a way that is more analytically pleasing.

THEOREM 3.12. Let f : X → {−1,+1} be a given function, where X ⊂ Rn is
finite. Then for every integer d > deg±( f ), one has

R+( f, d) = inf
c>1

c2
− 1

c2 + 1
,

where the infimum is over all c > 1 for which there exist polynomials p, q of degree
up to d such that 0 < 1

c q(x) 6 f (x)p(x) 6 cq(x) on X.

Proof. In view of Theorem 3.11, the quantity R+( f, d) is the infimum over all
ε < 1 for which there exist polynomials p and q of degree up to d such that
0 < (1− ε)q(x) 6 f (x)p(x) 6 (1+ ε)q(x) on X. Equivalently, one may require
that

0 <
1− ε
√

1− ε2
q(x) 6 f (x)p(x) 6

1+ ε
√

1− ε2
q(x).

Letting c = c(ε) =
√
(1+ ε)/(1− ε), the theorem follows.

We will now show that if a degree-d rational approximant achieves error ε
in approximating a given Boolean function, then a degree-2d approximant can
achieve error as small as ε2. Note that this result is a refinement of Theorem 2.5
for small k.

THEOREM 3.13. Let f : X → {−1,+1} be a given function, where X ⊆ Rn. Let
d be a given integer. Then

R+( f, 2d) 6

(
ε

1+
√

1− ε2

)2

,

where ε = R( f, d).

Proof. The theorem is clearly true for ε = 1. For 0 6 ε < 1, consider the
univariate rational function

S(t) =
4
√

1− ε2

1+
√

1− ε2
·

t
t2 + (1− ε2)

.

Calculus shows that

max
1−ε6|t |61+ε

| sgn t − S(t)| =
(

ε

1+
√

1− ε2

)2

.

27



Fix a sequence A1, A2, . . . of rational functions of degree at most d such that
supx∈X | f (x) − Am(x)| → ε as m → ∞. Then S(A1(x)), S(A2(x)), . . . is the
sought sequence of approximants to f, each a rational function of degree at most
2d with a positive denominator.

COROLLARY 3.14. Let f : X → {−1,+1} be a given function, where X ⊆ Rn.

Then for all integers d > 1 and reals t > 2,

R+( f, td) 6 R( f, d)t/2.

Proof. If t = 2k for some integer k > 1, then repeated applications of Theo-
rem 3.13 yield R+( f, 2kd) 6 R( f, 2k−1d)2 6 · · · 6 R( f, d)2

k
. The general case

follows because 2blog tc > t/2.

3.3 Conjunctions of functions

In this section, we prove our direct product theorems for conjunctions of Boolean
functions. Recall that a key challenge will be, given a sign-representation φ(x, y)
of a composite function f (x) ∧ g(y), to suitably break down φ and recover in-
dividual rational approximants of f and g. We now present an ingredient of our
solution, namely, a certain fact about pairs of matrices based on Farkas’ Lemma.
For the time being, we will formulate this fact in a clean and abstract way.

THEOREM 3.15. Fix matrices A, B ∈ Rm×n and a real c > 1. Consider the
following system of linear inequalities in u, v ∈ Rn:

1
c

Au 6Bv 6 cAu,

u > 0,

v > 0.

 (3.31)

If u = v = 0 is the only solution to (3.31), then there exist vectors w > 0 and
z > 0 such that

wT A + zT B > c(zT A + wT B).

Proof. If u = v = 0 is the only solution to (3.31), then linear programming duality
implies the existence of vectors w > 0 and z > 0 such that wT A > czT A and
zT B > cwT B. Adding the last two inequalities completes the proof.

For clarity of exposition, we first prove the main result of this section for the
case of two Boolean functions at least one of which is odd. While this case seems
restricted, we will see that it captures the full complexity of the problem.
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THEOREM 3.16. Let f : X → {−1,+1} and g : Y → {−1,+1} be given func-
tions, where X, Y ⊂ Rn are arbitrary finite sets. Assume that f 6≡ 1 and g 6≡ 1.
Let d = deg±( f ∧ g). If f is odd, then

R+( f, 2d)+ R+(g, d) < 1.

Proof. We first collect some basic observations. Since f 6≡ 1 and g 6≡ 1, we have
deg±( f ) 6 d and deg±(g) 6 d. Therefore, Theorem 3.11 implies that

R+( f, d) < 1, R+(g, d) < 1. (3.32)

In particular, the theorem holds if R+(g, d) = 0. In the remainder of the proof, we
assume that R+(g, d) = ε, where 0 < ε < 1.

By hypothesis, there exists a degree-d polynomial φ such that f (x) ∧ g(y) =
sgnφ(x, y) for all x ∈ X, y ∈ Y. Define

X− = {x ∈ X : f (x) = −1}.

Since X is closed under negation and f is odd, we have f (x) = 1 ⇔ −x ∈ X−.
We will make several uses of this fact in what follows, without further mention.

Put

c =

√
1+ (1− δ)ε
1− (1− δ)ε

,

where δ ∈ (0, 1) is sufficiently small. Since R+(g, d) > (c2
− 1)/(c2

+ 1), we
know by Theorem 3.12 that there cannot exist polynomials p, q of degree up to d
such that

0 <
1
c

q(y) 6 g(y)p(y) 6 cq(y), y ∈ Y. (3.33)

We claim, then, that there cannot exist reals ax > 0, x ∈ X, not all zero, such that

1
c

∑
x∈X−

a−xφ(−x, y) 6 g(y)
∑

x∈X−

axφ(x, y) 6 c
∑

x∈X−

a−xφ(−x, y), y ∈ Y.

Indeed, if such reals ax were to exist, then (3.33) would hold for the polynomi-
als p(y) =

∑
x∈X− axφ(x, y) and q(y) =

∑
x∈X− a−xφ(−x, y). In view of the

nonexistence of the ax , Theorem 3.15 applies to the matrices[
φ(−x, y)

]
y∈Y, x∈X−

,
[
g(y)φ(x, y)

]
y∈Y, x∈X−

29



and guarantees the existence of nonnegative reals λy, µy for y ∈ Y such that∑
y∈Y

λyφ(−x, y)+
∑
y∈Y

µyg(y)φ(x, y)

> c

∑
y∈Y

µyφ(−x, y)+
∑
y∈Y

λyg(y)φ(x, y)

 , x ∈ X−. (3.34)

Define polynomials α, β on X by

α(x) =
∑

y∈g−1(−1)

{λyφ(−x, y)− µyφ(x, y)},

β(x) =
∑

y∈g−1(1)

{λyφ(−x, y)+ µyφ(x, y)}.

Then (3.34) can be restated as

α(x)+ β(x) > c{−α(−x)+ β(−x)}, x ∈ X−.

Both members of this inequality are nonnegative, and thus {α(x) + β(x)}2 >

c2
{−α(−x)+ β(−x)}2 for x ∈ X−. Since in addition α(−x) 6 0 and β(−x) > 0

for x ∈ X−, we have

{α(x)+ β(x)}2 > c2
{α(−x)+ β(−x)}2, x ∈ X−.

Letting γ (x) = {α(x)+ β(x)}2, we see that

R+( f, 2d) 6 max
x∈X

∣∣∣∣ f (x)−
c2
+ 1
c2
·
γ (−x)− γ (x)
γ (−x)+ γ (x)

∣∣∣∣ 6
1
c2
< 1− ε,

where the final inequality holds for all δ ∈ (0, 1) small enough.

REMARK. In Theorem 3.16 and elsewhere in this paper, the degree of a multi-
variate polynomial p(x1, x2, . . . , xn) is defined as the greatest total degree of any
monomial of p. A related notion is the partial degree of p, which is the maximum
degree of p in any one of the variables x1, x2, . . . , xn. One readily sees that the
proof of Theorem 3.16 applies unchanged to this alternate notion. Specifically, if
the conjunction f (x) ∧ g(y) can be sign-represented by a polynomial of partial
degree d, then there exist rational functions F(x) and G(y) of partial degree 2d
such that ‖ f −F‖∞+‖g−G‖∞ < 1. In the same way, the program of Section 3.4
carries over, with cosmetic changes, to the notion of partial degree. Analogously,
our proofs apply to hybrid definitions of degree, such as partial degree over blocks
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of variables. Other, more abstract notions of degree can also be handled. In the
remainder of the paper, we will maintain our focus on total degree and will not
elaborate further on its generalizations.

As promised, we will now remove the assumption, made in Theorem 3.16,
about one of the functions being odd. The result that we are about to prove settles
Theorem 1.4 from the Introduction.

THEOREM 3.17. Let f : X → {−1,+1} and g : Y → {−1,+1} be given func-
tions, where X, Y ⊂ Rn are arbitrary finite sets. Assume that f 6≡ 1 and g 6≡ 1.
Let d = deg±( f ∧ g). Then

R+( f, 4d)+ R+(g, 2d) < 1 (3.35)

and, by symmetry,

R+( f, 2d)+ R+(g, 4d) < 1.

Proof. It suffices to prove (3.35). Define X ′ ⊂ Rn+1 by X ′ = {(x, 1), (−x,−1) :
x ∈ X}. It is clear that X ′ is closed under negation. Let f ′ : X ′→ {−1,+1} be the
odd Boolean function given by

f ′(x, b) =

{
f (x), b = 1,
− f (−x), b = −1.

Let φ be a polynomial of degree no greater than d such that f (x) ∧ g(y) ≡
sgnφ(x, y). Fix an input x̃ ∈ X such that f (x̃) = −1. Then f ′(x, b) ∧ g(y) ≡
sgn {K (1+ b)φ(x, y)+ φ(−x, y)φ(x̃, y)} for a large enough constant K � 1,
whence

deg±( f ′ ∧ g) 6 2d.

Theorem 3.16 now yields R+( f ′, 4d) + R+(g, 2d) < 1. Since R+( f, 4d) 6
R+( f ′, 4d) by definition, the proof is complete.

Finally, we obtain an analogue of Theorem 3.17 for a conjunction of three and
more functions.

THEOREM 3.18. Let f1, f2, . . . , fk be given Boolean functions on finite sets
X1, X2, . . . , Xk ⊂ Rn, respectively. Assume that fi 6≡ 1 for i = 1, 2, . . . , k.
Let d = deg±( f1 ∧ f2 ∧ · · · ∧ fk). Then

k∑
i=1

R+( fi , D) < 1

for D = 8d log 2k.
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Proof. Since f1, f2, . . . , fk 6≡ 1, it follows that for each pair of indices i < j, the
function fi ∧ f j is a subfunction of f1 ∧ f2 ∧ · · · ∧ fk . Theorem 3.17 now shows
that for each i < j,

R+( fi , 4d)+ R+( f j , 4d) < 1. (3.36)

Without loss of generality, R+( f1, 4d) = maxi=1,...,k R+( fi , 4d). Abbreviate ε =
R+( f1, 4d). By (3.36),

R+( fi , 4d) < min
{

1− ε,
1
2

}
, i = 2, 3, . . . , k.

Now Corollary 3.14 implies that

k∑
i=1

R+( fi , D) 6 ε +

k∑
i=2

R+( fi , 4d)1+log k < 1.

3.4 Other combining functions

As we will now see, the development in Section 3.3 applies to many combining
functions other than conjunctions. Disjunctions are an illustrative starting point.
Consider two Boolean functions f : X → {−1,+1} and g : Y → {−1,+1},where
X, Y ⊂ Rn are finite sets and f, g 6≡ −1. Let d = deg±( f ∨ g). Then, we claim
that

R+( f, 4d)+ R+(g, 4d) < 1. (3.37)

To see this, note first that the function f ∨ g has the same threshold degree as its
negation, f ∧ g. Applying Theorem 3.17 to the latter function shows that

R+( f , 4d)+ R+(g, 4d) < 1.

This is equivalent to (3.37) since approximating a function is the same as approxi-
mating its negation: R+( f , 4d) = R+( f, 4d) and R+(g, 4d) = R+(g, 4d). As in
the case of conjunctions, (3.37) can be strengthened to

R+( f, 2d)+ R+(g, 2d) < 1

if at least one of f, g is known to be odd. These observations carry over to disjunc-
tions of multiple functions, f1 ∨ f2 ∨ · · · ∨ fk .

The above discussion is still too specialized. In what follows, we consider
composite functions h( f1, f2, . . . , fk), where h : {−1,+1}k → {−1,+1} is any
given Boolean function. We will shortly see that the results of the previous sections
hold for various h other than h = AND and h = OR.
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We start with some notation and definitions. Let f, h : {−1,+1}k → {−1,+1}
be given Boolean functions. Recall that f is called a subfunction of h if for some
fixed strings y, z ∈ {−1,+1}k, one has

f (x) = h(. . . , (xi ∧ yi ) ∨ zi , . . . )

for each x ∈ {−1,+1}k . In words, f can be obtained from h by replacing some of
the variables x1, x2, . . . , xk with fixed values (−1 or +1).

DEFINITION 3.19. A function F : {−1,+1}k → {−1,+1} is AND-reducible if
for each pair of indices i, j, where 1 6 i 6 j 6 k, at least one of the eight
functions

xi ∧ x j ,

xi ∧ x j ,

xi ∧ x j ,

xi ∧ x j ,

xi ∨ x j ,

xi ∨ x j ,

xi ∨ x j ,

xi ∨ x j

is a subfunction of F(x).

THEOREM 3.20. Let f1, f2, . . . , fk be nonconstant Boolean functions on finite sets
X1, X2, . . . , Xk ⊂ Rn, respectively. Let F : {−1,+1}k → {−1,+1} be an AND-
reducible function. Put d = deg±(F( f1, f2, . . . , fk)). Then

k∑
i=1

R+( fi , D) < 1

for D = 8d log 2k.

Proof. Since F is AND-reducible, it follows that for each pair of indices i < j,
one of the following eight functions is a subfunction of F( f1, . . . , fk):

fi ∧ f j ,

fi ∧ f j ,

fi ∧ f j ,

fi ∧ f j ,

fi ∨ f j ,

fi ∨ f j ,

fi ∨ f j ,

fi ∨ f j .

By Theorem 3.17 (and the opening remarks of this section),

R+( fi , 4d)+ R+( f j , 4d) < 1.

The remainder of the proof is identical to the proof of Theorem 3.18, starting at
equation (3.36).
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In summary, the development in Section 3.3 naturally extends to compositions
F( f1, f2, . . . , fk) for various F. For a function F : {−1,+1}k → {−1,+1} to
be AND-reducible, F must clearly depend on all of its inputs. This necessary
condition is often sufficient, for example when F is a read-once AND/OR/NOT
formula or a halfspace. Hence, Theorem 1.5 from the Introduction is a corollary of
Theorem 3.20.

REMARK. If more information is available about the combining function F, The-
orem 3.20 can be generalized to let some of f1, . . . , fk be constant functions. For
example, some or all of the functions f1, . . . , fk in Theorem 3.18 can be identically
true. Another direction for generalization is as follows. In Definition 3.19, one
considers all the

(k
2

)
distinct pairs of indices (i, j). If one happens to know that

f1 is harder to approximate than f2, . . . , fk, then one can relax Definition 3.19 to
examine only the k − 1 pairs (1, 2), (1, 3), . . . , (1, k). We do not formulate these
extensions as theorems, the fundamental technique being already clear.

3.5 Additional observations

Analogous to Section 3.1, our results here can be viewed as a technique for proving
lower bounds on the threshold degree of composite functions F( f1, f2, . . . , fk).

We make this view explicit in the following statement, which is the contrapositive
of Theorem 3.20.

THEOREM 3.21. Let f1, f2, . . . , fk be nonconstant Boolean functions on finite sets
X1, X2, . . . , Xk ⊂ Rn, respectively. Let F : {−1,+1}k → {−1,+1} be an AND-
reducible function. Suppose that

∑
R+( fi , D) > 1 for some integer D. Then

deg±(F( f1, f2, . . . , fk)) >
D

8 log 2k
. (3.38)

REMARK 3.22 (On the tightness of Theorem 3.21). Theorem 3.21 is close to op-
timal. For example, when F = AND, the lower bound in (3.38) is tight up to a
factor of2(k log k). This can be seen by the well-known argument [9] described in
the Introduction. Specifically, fix an integer D such that

∑
R+( fi , D) < 1. Then

there exists a rational function pi (xi )/qi (xi ) on X i , for i = 1, 2, . . . , k, such that
qi is positive on X i and

k∑
i=1

max
xi∈X i

∣∣∣∣ fi (xi )−
pi (xi )

qi (xi )

∣∣∣∣ < 1.
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As a result,

k∧
i=1

fi (xi ) ≡ sgn

(
k − 1+

k∑
i=1

fi (xi )

)
≡ sgn

(
k − 1+

k∑
i=1

pi (xi )

qi (xi )

)
.

Multiplying by
∏

qi (xi ) yields

k∧
i=1

fi (xi ) ≡ sgn

(k − 1)
k∏

i=1

qi (xi )+

k∑
i=1

pi (xi )
∏

j∈{1,...,k}\{i}

q j (x j )

 ,
whence deg±( f1∧ f2∧· · ·∧ fk) 6 k D. This settles our claim regarding F = AND.
For arbitrary AND-reducible functions F : {−1,+1}k → {−1,+1}, a similar ar-
gument (cf. Theorem 31 of Klivans et al. [20]) shows that the lower bound in (3.38)
is tight up to a polynomial in k.

We close this section with one additional result.

THEOREM 3.23. Let f : X → {−1,+1} be a given function, where X ⊂ Rn is
finite. Then for every integer k > 2,

deg±( f ∧ f ∧ · · · ∧ f︸ ︷︷ ︸
k

) 6 (8k log k) · deg±( f ∧ f ). (3.39)

Proof. Put d = deg±( f ∧ f ). Theorem 3.17 implies that R+( f, 4d) < 1/2,
whence R+( f, 8d log k) < 1/k by Corollary 3.14. By the argument in Re-
mark 3.22, this proves the theorem.

To illustrate, let C be a given class of functions on {−1,+1}n, such as half-
spaces. Theorem 3.23 shows that the task of constructing a sign-representation for
the intersections of up to k members from C reduces to the case k = 2. In other
words, solving the problem for k = 2 essentially solves it for all k. The dependence
on k in (3.39) is tight up to a factor of 16 log k, even in the simple case when f is
the OR function [30].

4 Rational approximation of a halfspace

In this section, we determine how well a rational function of any given degree can
approximate the canonical halfspace. The lower bounds in Theorem 1.6, the main
result to be proved in this section, are considerably more involved than the upper
bounds. To help build some intuition in the former case, we first obtain the upper
bounds (Section 4.1) and only then prove the lower bounds (Sections 4.2 and 4.3).
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4.1 Upper bounds

As shown in the Introduction, the OR function on n bits has R+(OR, 1) = 0. A
similar example is the ODD-MAX-BIT function f : {0, 1}n → {−1,+1}, due to
Beigel [8], defined by

f (x) = sgn

(
1+

n∑
i=1

(−2)i xi

)
.

Indeed, letting

AM(x) =
1+

∑n
i=1(−M)i xi

1+
∑n

i=1 M i xi
,

we have ‖ f −AM‖∞→ 0 as M →∞. Thus, R+( f, 1) = 0.With this construction
in mind, we now turn to the canonical halfspace. We start with an auxiliary result
that generalizes the argument just given.

LEMMA 4.1. Let f : {0,±1,±2}n → {−1,+1} be the function given by f (z) =
sgn(1+

∑n
i=1 2i zi ). Then

R+( f, 64) = 0.

Proof. Consider the deterministic finite automaton in Figure 1. The automaton
has two terminal states (labeled “+” and “−”) and three nonterminal states (the
start state and two additional states). We interpret the output of the automaton to
be +1 and −1 at the two terminal states, respectively, and 0 otherwise. A string
z = (zn, zn−1, . . . , z1, 0) ∈ {0,±1,±2}n+1, when read by the automaton left to
right, forces it to output exactly sgn(

∑n
i=1 2i zi ). If the automaton is currently at

a nonterminal state, this state is determined uniquely by the last two symbols
read. Hence, the output of the automaton on input z = (zn, zn−1, . . . , z1, 0) ∈
{0,±1,±2}n+1 is given by

sgn

(
n∑

i=0

2iα(zi+2, zi+1, zi )

)
for a suitable map α : {0,±1,±2}3 → {0,−1,+1}, where we adopt the shorthand
zn+1 = zn+2 = z0 = 0. Put

AM(z) =
1+

∑n
i=0 M i+1α(zi+2, zi+2, zi )

1+
∑n

i=0 M i+1|α(zi+2, zi+2, zi )|
.

By interpolation, the numerator and denominator of AM can be represented by
polynomials of degree no more than 4 × 4 × 4 = 64. On the other hand, we have
‖ f − AM‖∞→ 0 as M →∞.

36



start +–

01 –1

–2

1

2

–1

0, 1, 20,–1,–2

–2 2

Figure 1: Finite automaton for the proof of Lemma 4.1.

We are now prepared to prove our desired upper bounds for halfspaces.

THEOREM 4.2. Let f : {−1,+1}nk
→ {−1,+1} be the function given by

f (x) = sgn

1+
n∑

i=1

k∑
j=1

2i xi j

 . (4.1)

Then

R+( f, 64kdlog ke + 1) = 0. (4.2)

In addition, for all integers d > 1,

R+( f, d) 6 1− (k2n+1)−1/d . (4.3)

In particular, Theorem 4.2 settles all upper bounds on rdegε( f ) in Theorem 1.6.

Proof of Theorem 4.2. Theorem 2.4 immediately implies (4.3) in view of the rep-
resentation (4.1). It remains to prove (4.2). In the degenerate case k = 1, we have
f ≡ xn1 and thus (4.2) holds. In what follows, we assume that k > 2 and put
1 = dlog ke. We adopt the convention that xi j ≡ 0 for i > n. For ` = 0, 1, 2, . . . ,
define

S` =
1∑

i=1

k∑
j=1

2i−1x`1+i, j .

Then

n∑
i=1

k∑
j=1

2i−1xi j =
(
S0 + 221S2 + 241S4 + 261S6 + · · ·

)
+
(
21S1 + 231S3 + 251S5 + 271S7 + · · ·

)
. (4.4)
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Now, each S` is an integer in [−221
+ 1, 221

− 1] and therefore admits a represen-
tation as

S` = z`,1 + 2z`,2 + 22z`,3 + · · · + 221−1z`,21,

where z`,1, . . . , z`,21 ∈ {−1, 0,+1}. Furthermore, each S` only depends on k1 of
the original variables xi j , whence z`,1, . . . , z`,21 can all be viewed as polynomials
of degree at most k1 in the original variables. Rewriting (4.4),

n∑
i=1

k∑
j=1

2i−1xi j =

∑
i>1

2i−1z`(i), j (i)

+
 ∑

i>1+1

2i−1z`′(i), j ′(i)


for appropriate indexing functions `(i), `′(i), j (i), j ′(i). Thus,

f (x) ≡ sgn

1+
1∑

i=1

2i z`(i), j (i)︸ ︷︷ ︸+ ∑
i>1+1

2i (z`(i), j (i) + z`′(i), j ′(i)
)︸ ︷︷ ︸
 .

Since the underbraced expressions range in {0,±1,±2} and are polynomials of
degree at most k1 in the original variables, Lemma 4.1 implies (4.2).

4.2 Preparatory work

This section sets the stage for our rational approximation lower bounds with some
preparatory results about halfspaces. It will be convenient to establish some ad-
ditional notation, for use in this section only. Here, we typeset real vectors in
boldface (x1, x2, z, v) to better distinguish them from scalars. The i th component
of a vector x ∈ Rn is denoted by (x)i , while the symbol xi is reserved for an-
other vector from some enumeration. In keeping with this convention, we let ei

denote the vector with 1 in the i th component and zeroes everywhere else. For
x, y ∈ Rn, the vector xy ∈ Rn is given by (xy)i ≡ (x)i (y)i . More generally, for a
polynomial p on Rk and vectors x1, . . . , xk ∈ Rn, we define p(x1, . . . , xk) ∈ Rn

by (p(x1, . . . , xk))i = p((x1)i , . . . , (xk)i ). The expectation of a random vari-
able x ∈ Rn is defined componentwise, i.e., the vector E[x] ∈ Rn is given by
(E[x])i ≡ E[(x)i ].

For convenience, we adopt the notational shorthand α0
= 1 for all α ∈ R. In

particular, if x ∈ Rn is a given vector, then x0
= (1, 1, . . . , 1) ∈ Rn. A scalar

α ∈ R, when interpreted as a vector, stands for (α, α, . . . , α). This shorthand
allows one to speak of span{1, z, z2, . . . , zk

}, for example, where z ∈ Rn is a given
vector.
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THEOREM 4.3. Let N and m be positive integers. Then reals α0, α1, . . . , α4m exist
with the following property: for each b ∈ {0, 1}N , there is a probability distribution
µb on {0,±1, . . . ,±m}N such that

E
v∼µb

[(2v+ b)d] = (αd, αd, . . . , αd), d = 0, 1, 2, . . . , 4m.

Proof. Let λ0 and λ1 be the distributions on {0,±1, . . . ,±m} given by

λ0(t) = 16−m
(

4m + 1
2m + 2t

)
, λ1(t) = 16−m

(
4m + 1

2m + 2t + 1

)
.

Then for d = 0, 1, . . . , 4m, one has

E
t∼λ0

[(2t)d]− E
t∼λ1

[(2t + 1)d]

= 16−m
4m+1∑
t=0

(−1)t
(

4m + 1
t

)
(t − 2m)d = 0, (4.5)

where (4.5) holds by Fact 2.1. Now, letµb = λ(b)1×λ(b)2×· · ·×λ(b)N . Then in view
of (4.5), the theorem holds by letting αd = Eλ0[(2t)d] for d = 0, 1, 2, . . . , 4m.

Using the previous theorem, we will now establish another auxiliary result
pertaining to halfspaces.

THEOREM 4.4. Put z = (−2n,−2n−1, . . . ,−20, 20, . . . , 2n−1, 2n) ∈ R2n+2. There
are random variables x1, x2, . . . , xn+1 ∈ {0,±1,±2, . . . ,±(3n + 1)}2n+2 such
that:

n+1∑
i=1

2i−1xi ≡ z (4.6)

and

E

[
n∏

i=1

xdi
i

]
∈ span{(1, 1, . . . , 1)} (4.7)

for d1, . . . , dn ∈ {0, 1, . . . , 4n}.

Proof. Let

xi = 2yi − yi−1 + en+1+i − en+2−i , i = 1, 2, . . . , n + 1,
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where y0, y1, . . . , yn+1 are suitable random variables with y0 ≡ yn+1 ≡ 0. Then
property (4.6) is immediate. We will construct y0, y1, . . . , yn+1 such that the re-
maining property (4.7) holds as well.

Let N = 2n + 2 and m = n in Theorem 4.3. Then reals α0, α1, . . . , α4n exist
with the property that for each b ∈ {0, 1}2n+2, a probability distribution µb can be
found on {0,±1, . . . ,±n}2n+2 such that

E
v∼µb

[(2v+ b)d] = αd(1, 1, . . . , 1), d = 0, 1, . . . , 4n. (4.8)

Now, we will specify the distribution of y0, y1, . . . , yn by giving an algorithm
for generating yi from yi−1. First, recall that y0 ≡ yn+1 ≡ 0. The algorithm for
generating yi given yi−1 (i = 1, 2, . . . , n) is as follows.

(1) Let u be the unique integer vector such that 2u − yi−1 + en+1+i − en+2−i ∈

{0, 1}2n+2.

(2) Draw a random vector v ∼ µb, where b = 2u− yi−1 + en+1+i − en+2−i .

(3) Set yi = v+ u.

One easily verifies that y0, y1, . . . , yn+1 ∈ {0,±1, . . . ,±3n}2n+2.

Let R denote the resulting joint distribution of (y0, y1, . . . , yn+1). Let i 6 n.
Then conditioned on any fixed value of (y0, y1, . . . , yi−1) in the support of R, the
random variable xi is by definition independent of x1, . . . , xi−1 and is distributed
identically to 2v + b, for some fixed vector b ∈ {0, 1}2n+2 and a random variable
v ∼ µb. In view of (4.8), we conclude that

E

[
n∏

i=1

xdi
i

]
= (1, 1, . . . , 1)

n∏
i=1

αdi

for all d1, d2, . . . , dn ∈ {0, 1, . . . , 4n}, which establishes (4.7). It remains to note
that x1, x2, . . . , xn ∈ {−2n,−2n + 1, . . . ,−1, 0, 1, . . . , 2n, 2n + 1}2n+2, whereas
xn+1 = −yn + e2n+2 − e1 ∈ {0,±1, . . . ,±(3n + 1)}2n+2.

At last, we arrive at the main theorem of this section, which will play a crucial
role in our analysis of the rational approximation of halfspaces.

THEOREM 4.5. For i = 0, 1, 2, . . . , n, define

Ai =

(x1, . . . , xn+1) ∈ {0,±1, . . . ,±(3n + 1)}n+1 :
n+1∑
j=1

2 j−1x j = 2i

 .
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Let p(x1, . . . , xn+1) be a real polynomial with sign (−1)i throughout Ai (i =
0, 1, 2, . . . , n) and sign (−1)i+1 throughout −Ai (i = 0, 1, 2, . . . , n). Then

deg p > 2n + 1.

Proof. For the sake of contradiction, suppose that p has degree no greater than 2n.
Put z = (−2n,−2n−1, . . . ,−20, 20, . . . , 2n−1, 2n). Let x1, . . . , xn+1 be the random
variables constructed in Theorem 4.4. By (4.7) and the identity xn+1 ≡ 2−nz −∑n

i=1 2i−n−1xi , we have

E[p(x1, . . . , xn+1)] ∈ span{1, z, z2, . . . , z2n
},

whence E[p(x1, . . . , xn+1)] = q(z) for a univariate polynomial q ∈ P2n. In view
of (4.6) and the assumed sign behavior of p, we have sgn q(2i ) = (−1)i and
sgn q(−2i ) = (−1)i+1, for i = 0, 1, 2, . . . , n. Therefore, q has at least 2n + 1
roots. Since q ∈ P2n, we arrive at a contradiction. It follows that the assumed
polynomial p does not exist.

REMARK 4.6. The passage p 7→ q in the proof of Theorem 4.5 is precisely
the linear degree-nonincreasing map M : R[x1, x2, . . . , xn+1] → R[x] described
previously in the Introduction.

4.3 Lower bounds

The purpose of this section is to prove that the canonical halfspace cannot be
approximated well by a rational function of low degree. A starting point in our
discussion is a criterion for inapproximability by low-degree rational functions,
which is applicable not only to halfspaces but any odd Boolean functions on Eu-
clidean space.

THEOREM 4.7 (Criterion for inapproximability). Fix a nonempty finite subset S ⊂
Rm with S ∩ −S = ∅. Define f : S ∪ −S→ {−1,+1} by

f (x) =

{
+1, x ∈ S,
−1, x ∈ −S.

Let ψ be a real function such that

ψ(x) > δ|ψ(−x)|, x ∈ S, (4.9)

for some δ ∈ (0, 1) and ∑
S∪−S

ψ(x)u(x) = 0 (4.10)
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for every polynomial u of degree at most d. Then

R+( f, d) >
2δ

1+ δ
.

Proof. Fix polynomials p, q of degree at most d such that q is positive on S ∪−S.
Put

ε = max
S∪−S

∣∣∣∣ f (x)−
p(x)
q(x)

∣∣∣∣ .
We assume that ε < 1 since otherwise there is nothing to show. For x ∈ S,

(1− ε)q(x) 6 p(x) 6 (1+ ε)q(x) (4.11)

and

(1− ε)q(−x) 6 −p(−x) 6 (1+ ε)q(−x). (4.12)

Consider the polynomial u(x) = q(x)+q(−x)+ p(x)− p(−x). Equations (4.11)
and (4.12) show that for x ∈ S, one has u(x) > (2 − ε){q(x) + q(−x)} and
|u(−x)| 6 ε{q(x)+ q(−x)}, whence

u(x) >

(
2
ε
− 1

)
|u(−x)|, x ∈ S. (4.13)

We also note that

u(x) > 0, x ∈ S. (4.14)

Since u has degree at most d, we have by (4.10) that∑
x∈S

{ψ(x)u(x)+ ψ(−x)u(−x)} =
∑
S∪−S

ψ(x)u(x) = 0,

whence

ψ(x)u(x) 6 |ψ(−x)u(−x)|

for some x ∈ S. At the same time, it follows from (4.9), (4.13), and (4.14) that

ψ(x)u(x) > δ

(
2
ε
− 1

)
|ψ(−x)u(−x)|, x ∈ S.

We immediately obtain δ({2/ε} − 1) < 1, as was to be shown.
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REMARK 4.8. The method of Theorem 4.7 amounts to reformulating (4.13) and
(4.14) as a linear program and exhibiting a solution to its dual. The presentation
above does not explicitly use the language of linear programs or appeal to duality,
however, because our goal is solely to prove the correctness of our method and not
its completeness.

Using the criterion of Theorem 4.7 and our preparatory work in Section 4.2,
we now establish a key lower bound for the rational approximation of halfspaces
within constant error.

THEOREM 4.9. Let f : {0,±1, . . . ,±(3n + 1)}n+1
→ {−1,+1} be given by

f (x) = sgn

(
1+

n+1∑
i=1

2i xi

)
.

Then

R+( f, n) = �(1).

Proof. Let A0, A1, . . . , An be as defined in Theorem 4.5. Put A =
⋃

Ai and define
g : A ∪ −A→ {−1,+1} by

g(x) =

{
(−1)i , x ∈ Ai ,

(−1)i+1, x ∈ −Ai .

Then deg±( f ) > 2n by Theorem 4.5. As a result, Theorem 2.2 guarantees the
existence of a function φ : A ∪ −A→ R, not identically zero, such that

φ(x)g(x) > 0, x ∈ A ∪ −A, (4.15)

and ∑
A∪−A

φ(x)u(x) = 0 (4.16)

for every polynomial u of degree at most 2n. Put

p(x) =
n−1∏
j=0

(
−2 j
√

2+
n+1∑
i=1

2i−1xi

)

and

ψ(x) = (−1)n{φ(x)− φ(−x)}p(x).
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Define S = A \ψ−1(0). Then S 6= ∅ by (4.15) and the fact that φ is not identically
zero on A ∪ −A. For x ∈ S, we have ψ(−x) 6= 0 and

|ψ(x)|
|ψ(−x)|

=
|p(x)|
|p(−x)|

>

(
∞∏

i=1

2i/2
− 1

2i/2 + 1

)2

> exp(−9
√

2),

where the final step uses the bound (a − 1)/(a + 1) > exp(−2.5/a), valid for
a >

√
2. It follows from (4.15) and the definition of p that ψ is positive on S.

Hence,

ψ(x) > exp(−9
√

2) |ψ(−x)|, x ∈ S. (4.17)

For any polynomial u of degree no greater than n, we infer from (4.16) that∑
S∪−S

ψ(x)u(x) = (−1)n
∑

A∪−A

{φ(x)− φ(−x)}u(x)p(x) = 0. (4.18)

Since f is positive on S and negative on −S, the proof is now complete in view of
(4.17), (4.18), and Theorem 4.7.

We have reached the main result of this section, which extends Theorem 4.9 to
any subconstant approximation error and to halfspaces on the hypercube.

THEOREM 4.10. Let F : {−1,+1}m
2
→ {−1,+1} be given by

F(x) = sgn

1+
m∑

i=1

m∑
j=1

2i xi j

 .
Then for d < m/14,

R(F, d) > 1− 2−2(m/d). (4.19)

Observe that Theorem 4.10 settles the lower bounds in Theorem 1.6 from the
Introduction.

Proof of Theorem 4.10. We may assume that m > 14, the claim being trivial oth-
erwise. Consider the function G : {−1,+1}(n+1)(6n+2)

→ {−1,+1} given by

G(x) = sgn

1+
n+1∑
i=1

6n+2∑
j=1

2i xi j

 ,
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where n = b(m − 2)/6c. For every ε > R+(G, n), Proposition 2.7 provides a
rational function A on Rn+1 of degree at most n such that, on the domain of G,∣∣∣∣∣∣G(x)− A

. . . , 6n+2∑
j=1

xi j , . . .

∣∣∣∣∣∣ < ε

and the denominator of A is positive. Letting f be the function in Theorem 4.9,
it follows that | f (x1, . . . , xn+1) − A(2x1, . . . , 2xn+1)| < ε on the domain of f,
whence

R+(G, n) = �(1). (4.20)

We now claim that either G(x) or−G(−x) is a subfunction of F. For example,
consider the following substitution for the variables xi j for which i > n + 1 or
j > 6n + 2:

xmj ← (−1) j , (1 6 j 6 m),

xi j ← (−1) j+1, (n + 1 < i < m, 1 6 j 6 m),

xi j ← (−1) j+1, (1 6 i 6 n + 1, j > 6n + 2).

After this substitution, F is a function of the remaining variables xi j and is equiva-
lent to G(x) if m is even, and to−G(−x) if m is odd. In either case, (4.20) implies
that

R+(F, n) = �(1). (4.21)

Theorem 2.5 shows that

R(F, n/2) 6 1−
(

1− R(F, d)
2

)1/bn/(2d)c

for d = 1, 2, . . . , bn/2c, which yields (4.19) in light of (2.2) and (4.21).

5 Rational approximation of the majority function

The goal of this section is to determine R+(MAJn, d) for each integer d, i.e., to
determine the least error to which a degree-d multivariate rational function can ap-
proximate the majority function. As is frequently the case with symmetric Boolean
functions such as majority, the multivariate problem of analyzing R+(MAJn, d) is
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equivalent to a univariate question. Specifically, given an integer d and a finite set
S ⊂ R, we define

R+(d, S) = inf
p,q

max
t∈S

∣∣∣∣sgn t −
p(t)
q(t)

∣∣∣∣ ,
where the infimum ranges over p, q ∈ Pd such that q is positive on S. In other
words, we study how well a rational function of a given degree can approximate
the sign function over a finite support. We give a detailed answer to this question
in the following theorem:

THEOREM 5.1 (Rational approximation of MAJORITY). Let n, d be positive inte-
gers. Abbreviate R = R+(d, {±1,±2, . . . ,±n}). For 1 6 d 6 log n,

exp
{
−2

(
1

n1/(2d)

)}
6 R < exp

{
−

1
n1/d

}
.

For log n < d < n,

R = exp
{
−2

(
d

log(2n/d)

)}
.

For d > n,
R = 0.

Moreover, the rational approximant is constructed explicitly in each case.

Theorem 5.1 is the main result of this section. We establish it in the next
two subsections, giving separate treatment to the cases d 6 log n and d > log n
(see Theorems 5.3 and 5.8, respectively). In the concluding subsection, we give
the promised proof that R+(d, {±1, . . . ,±n}) and R+(MAJn, d) are essentially
equivalent.

5.1 Low-degree approximation

We start by specializing the criterion of Theorem 4.7 to the problem of approxi-
mating the sign function on the set {±1,±2, . . . ,±n}.

THEOREM 5.2. Let d be an integer, 0 6 d 6 2n − 1. Fix a nonempty subset
S ⊆ {1, 2, . . . , n}. Suppose that there exists a real δ ∈ (0, 1) and a polynomial
r ∈ P2n−d−1 that vanishes on {−n, . . . , n} \ (S ∪ −S) and obeys

(−1)tr(t) > δ|r(−t)|, t ∈ S. (5.1)

Then

R+(d, S ∪ −S) >
2δ

1+ δ
. (5.2)
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Proof. Define f : S ∪ −S→ {−1,+1} by f (t) = sgn t. Define ψ : S ∪ −S→ R
by ψ(t) = (−1)t

( 2n
n+t

)
r(t). Then (5.1) takes on the form

ψ(t) > δ|ψ(−t)|, t ∈ S. (5.3)

For every polynomial u of degree at most d, we have∑
S∪−S

ψ(t)u(t) =
n∑

t=−n

(−1)t
(

2n
n + t

)
r(t)u(t) = 0 (5.4)

by Fact 2.1. Now (5.2) is immediate from (5.3), (5.4), and Theorem 4.7.

Using Theorem 5.2, we will now determine the optimal error in the approxima-
tion of the majority function by rational functions of degree up to log n. The case
of higher degrees will be settled in the next subsection.

THEOREM 5.3 (Low-degree rational approximation of MAJORITY). Let d be an
integer, 1 6 d 6 log n. Then

exp
{
−2

(
1

n1/(2d)

)}
6 R+(d, {±1,±2, . . . ,±n}) < exp

{
−

1
n1/d

}
.

Proof. The upper bound is immediate from Newman’s Theorem 2.4. For the lower
bound, put 1 = bn1/d

c > 2 and S = {1,1,12, . . . ,1d
}. Define r ∈ P2n−d−1 by

r(t) = (−1)n
d−1∏
i=0

(t −1i
√
1)

∏
i∈{−n,...,n}\(S∪−S)

(t − i).

For j = 0, 1, 2, . . . , d,

|r(1 j )|

|r(−1 j )|
=

j−1∏
i=0

1 j
−1i
√
1

1 j +1i
√
1

d−1∏
i= j

1i
√
1−1 j

1i
√
1+1 j

>

(
∞∏

i=1

1i/2
− 1

1i/2 + 1

)2

> exp

{
−5

∞∑
i=1

1
1i/2

}
> exp

{
−

18
√
1

}
,

where we used the bound (a−1)/(a+1) > exp(−2.5/a), valid for a >
√

2. Since
sgn r(t) = (−1)t for t ∈ S, we conclude that

(−1)tr(t) > exp
{
−

18
√
1

}
|r(−t)|, t ∈ S.

Since in addition r vanishes on {−n, . . . , n}\(S∪−S),we infer from Theorem 5.2
that R+(d, S ∪ −S) > exp{−18/

√
1}.
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5.2 High-degree approximation

In the previous subsection, we determined the least error in approximating the
majority function by rational functions of degree up to log n. Our goal here is to
solve the case of higher degrees.

We start with some preparatory work. First, we need to accurately estimate
products of the form

∏
i (1

i
+ 1)/(1i

− 1) for all 1 > 1. A suitable lower bound
was already given by Newman [31, Lem. 1]:

LEMMA 5.4 (Newman). For all 1 > 1,
n∏

i=1

1i
+ 1

1i − 1
> exp

{
2(1n

− 1)
1n(1− 1)

}
.

Proof. Immediate from the bound (a + 1)/(a − 1) > exp(2/a), which is valid for
a > 1.

We will need a corresponding upper bound:

LEMMA 5.5. For all 1 > 1,
∞∏

i=1

1i
+ 1

1i − 1
< exp

{
4

1− 1

}
.

Proof. Let k > 0 be an integer. By the binomial theorem, 1i > (1 − 1)i + 1 for
integers i > 0. As a result,

k∏
i=1

1i
+ 1

1i − 1
6

k∏
i=1

1
i

(
i +

2
1− 1

)
6

(
k +

⌈ 2
1−1

⌉
k

)
.

Also,
∞∏

i=k+1

1i
+ 1

1i − 1
<

∞∏
i=0

(
1+

2
(1k+1 − 1)1i

)
< exp

{
21

(1k+1 − 1)(1− 1)

}
.

Setting k = k(1) =
⌊ 2
1−1

⌋
, we conclude that

∞∏
i=1

1i
+ 1

1i − 1
< exp

{
C

1− 1

}
,

where

C = sup
1>1

{
(1− 1) ln

(
k(1)+

⌈ 2
1−1

⌉
k(1)

)
+

21
1k(1)+1 − 1

}
< 4.

48



We will also need the following binomial estimate.

LEMMA 5.6. Put p(t) =
∏n

i=1

(
t − i − 1

2

)
. Then

max
t=1,2,...,n+1

∣∣∣∣ p(−t)
p(t)

∣∣∣∣ 6 2(16n).

Proof. For t = 1, 2, . . . , n + 1, we have

|p(t)| =
(2t − 2)!(2n − 2t + 2)!
4n(t − 1)!(n − t + 1)!

, |p(−t)| =
t!(2n + 2t + 1)!

4n(2t + 1)!(n + t)!
.

As a result,

∣∣∣∣ p(−t)
p(t)

∣∣∣∣ = t
2t + 1

·

(
2n + 2t + 1

2t

)(
2n + 1
n + t

)
(

2t − 2
t − 1

)(
2n − 2t + 2
n − t + 1

) 6
2

(
24n

√
n

)
2

(
22n

√
n

)
2

(
22n

n

) ,

which gives the sought bound.

Our construction requires one additional ingredient.

LEMMA 5.7. Let n, d be integers, 1 6 d 6 n/55. Consider the polynomial p(t) =∏d−1
i=1 (t − d1i

√
1), where 1 = (n/d)1/d . Then

min
j=1,...,d

∣∣∣∣ p(bd1 j
c)

p(−bd1 jc)

∣∣∣∣ > exp
{
−

4 ln 3d
ln(n/d)

−
8

√
1− 1

}
.

Proof. Fix j = 1, 2, . . . , d. Then for each i = 1, 2, . . . , j − 1,

d1 j
− d1i

√
1 > d

(
1 j−i− 1

2 − 1
)

>
1
2
( j − i) ln

n
d
,

and thus

j−1∏
i=1

(
1−

1

d1 j − d1i
√
1

)
> exp

{
−

4
ln(n/d)

j−1∑
i=1

1
j − i

}

> exp
{
−

4 ln 3d
ln(n/d)

}
. (5.5)
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For brevity, let ξ stand for the final expression in (5.5). Since 1 6 d 6 n/55, we
have bd1 j

c − d1 j−1
√
1 > 1. As a result,∣∣∣∣ p(bd1 j

c)

p(−bd1 jc)

∣∣∣∣ >
j−1∏
i=1

d1 j
− 1− d1i

√
1

d1 j + d1i
√
1

d−1∏
i= j

d1i
√
1− d1 j

d1i
√
1+ d1 j

> ξ

j−1∏
i=1

d1 j
− d1i

√
1

d1 j + d1i
√
1

d−1∏
i= j

d1i
√
1− d1 j

d1i
√
1+ d1 j

by (5.5)

> ξ

(
∞∏

i=1

1i/2
− 1

1i/2 + 1

)2

> ξ exp
{
−

8
√
1− 1

}
,

where the last inequality holds by Lemma 5.5.

We have reached the main result of this subsection.

THEOREM 5.8 (High-degree rational approximation of MAJORITY). Let d be an
integer, log n < d 6 n − 1. Then

R+(d, {±1,±2, . . . ,±n}) = exp
{
−2

(
d

log(2n/d)

)}
.

Also,
R+(n, {±1,±2, . . . ,±n}) = 0.

Proof. The final statement in the theorem follows at once by considering the ratio-
nal function {p(t)− p(−t)}/{p(t)+ p(−t)}, where p(t) =

∏n
i=1(t + i).

Now assume that log n < d < n/55. Let

k =
⌈

d
log(n/d)

⌉
, 1 =

(n
d

)1/d
.

Define sets

S1 = {1, 2, . . . , k},

S2 = {bd1i
c : i = 1, 2, . . . , d},

S = S1 ∪ S2.
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Consider the polynomial

r(t) = (−1)nr1(t)r2(t)
∏

i∈{−n,...,n}\(S∪−S)

(t − i),

where

r1(t) =
k∏

i=1

(
t − i −

1
2

)
, r2(t) =

d−1∏
i=1

(t − d1i
√
1).

We have:

min
t∈S

∣∣∣∣ r(t)
r(−t)

∣∣∣∣ > min
i=1,...,k+1

∣∣∣∣ r1(i)
r1(−i)

∣∣∣∣ · min
i=1,...,d

∣∣∣∣ r2(bd1i
c)

r2(−bd1ic)

∣∣∣∣
> exp

{
−

Cd
log(n/d)

}
by Lemmas 5.6 and 5.7, where C > 0 is an absolute constant. Since sgn p(t) =
(−1)t for t ∈ S, we can restate this result as follows:

(−1)tr(t) > exp
{
−

Cd
log(n/d)

}
|r(−t)|, t ∈ S.

Since r vanishes on {−n, . . . , n} \ (S∪−S) and has degree 6 2n−1−d, we infer
from Theorem 5.2 that R+(d, S ∪ −S) > exp {−Cd/ log(n/d)} . This proves the
lower bound for the case log n < d < n/55.

To handle the case n/55 6 d 6 n − 1, a different argument is needed. Let

r(t) = (−1)n t
d∏

i=1

(
t − i −

1
2

) n∏
i=d+2

(t2
− i2).

By Lemma 5.6, there is an absolute constant C > 1 such that∣∣∣∣ r(t)
r(−t)

∣∣∣∣ > C−d, t = 1, 2, . . . , d + 1.

Since sgn r(t) = (−1)t for t = 1, 2, . . . , d + 1, we conclude that

(−1)tr(t) > C−d
|r(−t)|, t = 1, 2, . . . , d + 1.

Since the polynomial r vanishes on {−n, . . . , n}\ {±1,±2, . . . ,±(d+1)} and has
degree 2n − 1− d, we infer from Theorem 5.2 that

R+(d, {±1,±2, . . . ,±(d + 1)}) > C−d .
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This settles the lower bound for the case n/55 6 d 6 n − 1.
It remains to prove the upper bound for the case log n < d 6 n − 1. Here we

always have d > 2. Letting k = bd/2c and 1 = (n/k)1/k, define p ∈ P2k by

p(t) =
k∏

i=1

(t + i)
k∏

i=1

(t + k1i ).

Fix any point t ∈ {1, 2, . . . , n} with p(−t) 6= 0. Letting i∗ be the integer with
k1i∗ < t < k1i∗+1, we have:

p(t)
|p(−t)|

>

i∗∏
i=0

k1i∗+1
+ k1i

k1i∗+1 − k1i

k∏
i=i∗+1

k1i
+ k1i∗

k1i − k1i∗
>

k∏
i=1

1i
+ 1

1i − 1

> exp
{

2(1k
− 1)

1k(1− 1)

}
,

where the last inequality holds by Lemma 5.4. Substituting 1 = (n/k)1/k and
recalling that k > 2(log n), we obtain p(t) > A|p(−t)| for t = 1, 2, . . . , n,
where

A = exp
{
2

(
k

log(n/k)

)}
.

As a result, R+(2k, {±1,±2, . . . ,±n}) 6 2A/(A2
+ 1), the approximant in ques-

tion being

A2
− 1

A2 + 1
·

p(t)− p(−t)
p(t)+ p(−t)

.

5.3 Equivalence of the majority and sign functions

It remains to prove the promised equivalence of the majority and sign functions,
from the standpoint of approximating them by rational functions on the discrete
domain. We have:

THEOREM 5.9. For every integer d,

R+(MAJn, d) 6 R+(d − 2, {±1,±2, . . . ,±dn/2e}), (5.6)

R+(MAJn, d) > R+(d, {±1,±2, . . . ,±bn/2c}). (5.7)

Proof. We prove (5.6) first. Fix a degree-(d − 2) approximant p(t)/q(t) to sgn t
on S = {±1, . . . ,±dn/2e}, where q is positive on S. For small δ > 0, define

Aδ(t) =
t2 p(t)− δ
t2q(t)+ δ

.
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Then Aδ is a rational function of degree at most d whose denominator is positive
on S ∪ {0}. Finally, we have Aδ(0) = −1 and

lim
δ→0

max
t∈S
| sgn t − Aδ(t)| = max

t∈S

∣∣∣∣sgn t −
p(t)
q(t)

∣∣∣∣ .
Then Aδ( 1

2

∑
(xi + 1)− bn/2c) is the desired approximant for MAJn(x1, . . . , xn).

We now turn to the lower bound, (5.7). For every ε > R+(MAJn, d), Proposi-
tion 2.7 gives a univariate rational function p(t)/q(t) of degree at most d such that
for all x ∈ {−1,+1}n, one has∣∣∣∣MAJn(x)−

p(
∑

xi )

q(
∑

xi )

∣∣∣∣ < ε

and q(
∑

xi ) > 0. Then

max
t=±1,±2,...,±bn/2c

∣∣∣∣sgn t −
p(2t + n − 2bn/2c)
q(2t + n − 2bn/2c)

∣∣∣∣ < ε,

completing the proof of (5.7).

Note that (2.2) and Theorems 5.3, 5.8, and 5.9 immediately imply Theorem 1.7
from the Introduction.

REMARK 5.10. The proof that we gave for the upper bound, (5.6), illustrates a
useful property of univariate rational approximants A(t) = p(t)/q(t) on a finite
set S. Specifically, given such an approximant and a point t∗ /∈ S, there exists an
approximant A′ with A′(t∗) = a for any prescribed value a and A′ ≈ A everywhere
on S. One such construction is

A′(t) =
(t − t∗)p(t)+ aδ
(t − t∗)q(t)+ δ

for an arbitrarily small constant δ > 0. Note that A′ has degree only 1 higher than
the degree of the original approximant, A. This phenomenon is in sharp contrast to
approximation by polynomials, which do not possess this corrective ability.

6 Intersections of halfspaces

In this section, we prove our main theorems on the sign-representation of inter-
sections of halfspaces and majority functions. In the two subsections that follow,
we give results for the threshold degree as well as threshold density, another key
complexity measure of a sign-representation.
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6.1 Lower bounds on the threshold degree

We start by formalizing the elegant observation due to Beigel et al. [9], already
described briefly in the Introduction.

THEOREM 6.1 (Beigel, Reingold, and Spielman). Let f : X → {−1,+1} and
g : Y → {−1,+1} be given functions, where X, Y ⊂ Rn are finite sets. Let d be
an integer with R+( f, d)+ R+(g, d) < 1. Then

deg±( f ∧ g) 6 2d.

Proof. Fix rational functions p1(x)/q1(x) and p2(y)/q2(y) of degree at most d
such that q1 and q2 are positive on X and Y, respectively, and

max
x∈X

∣∣∣∣ f (x)−
p1(x)
q1(x)

∣∣∣∣+max
y∈Y

∣∣∣∣g(y)− p2(y)
q2(y)

∣∣∣∣ < 1.

Then

f (x) ∧ g(y) ≡ sgn{1+ f (x)+ g(y)} ≡ sgn
{

1+
p1(x)
q1(x)

+
p2(y)
q2(y)

}
.

Multiplying the last expression by the positive quantity q1(x)q2(y), we obtain
f (x) ∧ g(y) ≡ sgn{q1(x)q2(y)+ p1(x)q2(y)+ p2(y)q1(x)}.

Recall that Theorem 3.17 gives an essentially exact converse to Theorem 6.1.
We are now in a position to prove our main results on the threshold degree.

THEOREM 6.2 (restatement of Theorems 1.8 and 1.10). Consider the function
f : {−1,+1}n

2
→ {−1,+1} given by

f (x) = sgn

1+
n∑

i=1

n∑
j=1

2i xi j

 .
Let g : {−1,+1}n → {−1,+1} be the majority function on n bits. Then

deg±( f ∧ f ) = �(n), (6.1)

deg±( g ∧ g ) = �(log n). (6.2)

Proof. By Theorem 4.10, we have R+( f, εn) > 1/2 for some constant ε > 0,
which settles (6.1) in view of Theorem 3.17.

Analogously, Theorems 5.1 and 5.9 show that R+(g, ε log n) > 1/2 for some
constant ε > 0, which settles (6.2) in view of Theorem 3.17.
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REMARK 6.3. The lower bounds (6.1) and (6.2) are tight and match the con-
structions due to Beigel et al. [9]. These matching upper bounds can be seen as
follows. By Theorem 4.2, we have R+( f,Cn) < 1/2 for some constant C > 0,
which shows that deg±( f ∧ f ) = O(n) in view of Theorem 6.1. Analogously,
Theorems 5.1 and 5.9 imply that R+(g,C log n) < 1/2 for some constant C > 0,
which shows that deg±(g ∧ g) = O(log n) in view of Theorem 6.1.

Furthermore, Theorem 6.1 generalizes immediately to conjunctions of k =
3 and more functions. In particular, the lower bounds in (6.1) and (6.2) remain
tight for intersections f ∧ f ∧ · · · ∧ f and g ∧ g ∧ · · · ∧ g featuring any constant
number of functions.

We give one additional result, featuring the intersection of the canonical half-
space with a majority function.
THEOREM 1.9 (RESTATED). Let f : {−1,+1}n

2
→ {−1,+1} be given by

f (x) = sgn

1+
n∑

i=1

n∑
j=1

2i xi j

 .
Let g : {−1,+1}d

√
ne
→ {−1,+1} be the majority function on d

√
ne bits. Then

deg±( f ∧ g ) = 2(
√

n). (6.3)

Proof. We prove the lower bound first. Let ε > 0 be a suitably small constant. By
Theorem 4.10, we have R+( f, ε

√
n) > 1 − 2−

√
n. By Theorems 5.1 and 5.9, we

have R+(g, ε
√

n) > 2−
√

n. In view of Theorem 3.17, these two facts imply that
deg±( f ∧ g ) = �(

√
n).

We now turn to the upper bound. It is clear that R+(g, d
√

ne) = 0 and
R+( f, 1) < 1. It follows by Theorem 6.1 that deg±( f ∧ g) = O(

√
n).

6.2 Lower bounds on the threshold density

In addition to threshold degree, several other complexity measures are of inter-
est when sign-representing Boolean functions by real polynomials. One such
complexity measure is density, i.e., the number of distinct monomials in any
polynomial that sign-represents a given function. Formally, for a given function
f : {−1,+1}n → {−1,+1}, the threshold density dns( f ) is the minimum k such
that

f (x) ≡ sgn

 k∑
i=1

λi

∏
j∈Si

x j


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for some sets S1, . . . , Sk ⊆ {1, 2, . . . , n} and some reals λ1, . . . , λk . We will show
that intersections of two halfspaces not only have high threshold degree but also
high threshold density.

We start with the conjunction of two majority functions. Constructions in [9]
show that the function f (x, y) = MAJn(x) ∧ MAJn(y) can be sign-represented
by a linear combination of nO(log n) monomials, namely, the monomials of degree
up to O(log n). Klivans and Sherstov [24, Thm. 1.2] complement this with a lower
bound of n�(log n/ log log n) on the number of distinct monomials needed. Our next
result improves this lower bound to a tight n2(log n).

THEOREM 6.4. Let f : {−1,+1}n × {−1,+1}n → {−1,+1} be given by
f (x, y) = MAJn(x1, . . . , xn) ∧MAJn(y1, . . . , yn). Then

dns( f ) = n�(log n).

Proof. Identical to the proof of Klivans and Sherstov [24, §3.3, Thm. 1.2], with
the only difference that Theorem 1.10 should be invoked in place of O’Donnell
and Servedio’s earlier result [33] that deg±( f ) = �(log n/ log log n).

We will now derive an exponential lower bound on the threshold density
of the intersection of two halfspaces. For this, we recall an elegant procedure
for converting Boolean functions with high threshold degree into Boolean func-
tions with high threshold density, discovered by Krause and Pudlák [26]. Their
construction maps a given function f : {−1,+1}n → {−1,+1} to the function
f KP : ({−1,+1}n)3 → {−1,+1} given by

f KP(x, y, z) = f (. . . , (zi ∧ xi ) ∨ (zi ∧ yi ), . . . ).

We have:

THEOREM 6.5 (Krause and Pudlák [26, Prop. 2.1]). For every function
f : {−1,+1}n → {−1,+1},

dns( f KP) > 2deg±( f ).

Another ingredient in our analysis is the following observation.

LEMMA 6.6 (Klivans and Sherstov [24]). Let f : {−1,+1}n → {−1,+1} be
a given function. Consider any function F : {−1,+1}m → {−1,+1} given by
F(x) = f (χ1(x), . . . , χn(x)), where each χi is a parity function {−1,+1}m →
{−1,+1} or the negation of a parity function. Then

dns( f ) > dns(F).
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Proof (Klivans and Sherstov [24]). Immediate from the definition of threshold
density and the fact that the product of parity functions is another parity func-
tion.

We are now in a position to prove the desired result for halfspaces.

THEOREM 6.7. Let fn : {−1,+1}n
2
→ {−1,+1} be given by

fn(x) = sgn

1+
n∑

i=1

n∑
j=1

2i xi j

 .
Then

dns( fn ∧ fn) = exp{�(n)}, (6.4)

dns( fn ∧MAJd√ne) = exp{�(
√

n)}. (6.5)

REMARK 6.8. In the proof below, it will be useful to keep in mind the follow-
ing straightforward observation. Fix functions f, g : {−1,+1}k → {−1,+1}
and define functions f ′, g′ : {−1,+1}k → {−1,+1} by f ′(x) = − f (−x) and
g′(y) = −g(−y). Then we have f ′(x)∧g′(y) ≡ −( f (−x)∧g(−y)) f (−x)g(−y),
whence dns( f ′ ∧ g′) 6 dns( f ∧ g) dns( f ) dns(g) and thus

dns( f ∧ g) >
dns( f ′ ∧ g′)

dns( f ) dns(g)
. (6.6)

Similarly, we have f (x) ∧ g′(y) ≡ ( f (x) ∧ g(−y)) f (x), whence

dns( f ∧ g) >
dns( f ∧ g′)

dns( f )
. (6.7)

To summarize, (6.6) and (6.7) allow one to analyze the threshold density of f ∧ g
by analyzing the threshold density of f ′ ∧ g′ or f ′ ∧ g instead. Such a transition
will be helpful in our case.

Proof of Theorem 6.7. Put m = bn/4c. The function fm
KP : ({−1,+1}m

2
)3 →

{−1,+1} has the representation

fm
KP(x, y, z) = sgn

1+
m∑

i=1

m∑
j=1

2i (xi j + yi j + xi j zi j − yi j zi j )

 .
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As a result,

dns( f4m ∧ f4m) > dns( fm
KP
∧ fm

KP) by Lemma 6.6

= dns(( fm ∧ fm)
KP)

> 2deg±( fm∧ fm ) by Theorem 6.5

> exp{�(m)} by Theorem 6.2.

By the same argument as in Theorem 4.10, the function f4m is a subfunction of
fn(x) or− fn(−x). In the former case, (6.4) is immediate from the lower bound on
dns( f4m∧ f4m). In the latter case, (6.4) follows from the lower bound on dns( f4m∧

f4m) and Remark 6.8.
The proof of (6.5) is entirely analogous.

Krause and Pudlák’s method in Theorem 6.5 naturally generalizes to lin-
ear combinations of conjunctions rather than parity functions. In other
words, if a function f : {−1,+1}n → {−1,+1} has threshold degree d and
f KP(x, y, z) ≡ sgn(

∑N
i=1 λi Ti (x, y, z)) for some conjunctions T1, . . . , TN of

the literals x1, y1, z1, . . . , xn, yn, zn,¬x1,¬y1,¬z1, . . . ,¬xn,¬yn,¬zn, then N >
2�(d).With this remark in mind, Theorems 6.4 and 6.7 and their proofs adapt easily
to this alternate definition of density.
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