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Abstract— Given a set D = {d1, d2, ..., dD} of D strings of
total length n, our task is to report the “most relevant” strings for
a given query pattern P . This involves somewhat more advanced
query functionality than the usual pattern matching, as some
notion of “most relevant” is involved. In information retrieval
literature, this task is best achieved by using inverted indexes.
However, inverted indexes work only for some predefined set of
patterns. In the pattern matching community, the most popular
pattern-matching data structures are suffix trees and suffix arrays.
However, a typical suffix tree search involves going through all the
occurrences of the pattern over the entire string collection, which
might be a lot more than the required relevant documents.

The first formal framework to study such kind of retrieval prob-
lems was given by Muthukrishnan [25]. He considered two metrics
for relevance: frequency and proximity. He took a threshold-
based approach on these metrics and gave data structures taking
O(n log n) words of space. We study this problem in a slightly
different framework of reporting the top k most relevant documents
(in sorted order) under similar and more general relevance metrics.
Our framework gives linear space data structure with optimal query
times for arbitrary score functions. As a corollary, it improves the
space utilization for the problems in [25] while maintaining optimal
query performance. We also develop compressed variants of these
data structures for several specific relevance metrics.

Keywords-document retrieval; text indexing; succinct data struc-
tures; top-k queries

1. INTRODUCTION

In text pattern matching, the most fundamental problem is
to find, given a text of size n and a pattern P of length p, all
the locations in the text where this pattern matches. Earlier
work has focussed on developing linear-time algorithms for
this problem [19]. When the text is given beforehand, and
the pattern queries come online, one might want to build a
data structure on the text such that pattern matching queries
can be answered in O(p + occ) time, where occ denotes
the number of occurrences. Suffix tree [23, 35] is the most
popular data structure which achieves this goal.

Most string databases consist of a collection of multiple
text documents (or strings) rather than just one single
text. In this case, the most natural question is to retrieve
all the documents in which the query pattern occurs. A
simple suffix tree search might be inefficient in this case
as the search might involve browsing through a lot more
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occurrences than the actual number of qualifying documents.
More formally, let D = {d1, d2, ..., dD} be the collection of
D strings of total length n. The characters of each string in
D are drawn from the alphabet set Σ. Given a query pattern
P (with length p), let occ be the number of occurrences of
this pattern over the entire collection and let ndoc be the
number of documents in which the pattern occurs. Then,
ndoc may be much smaller than occ. The usual suffix tree
based approach would give a query time of O(p + occ),
which may be inefficient. Muthukrishnan [25] gave a linear-
space data structure having optimal O(p+ndoc) query time
for this document listing problem.

Muthukrishnan [25] also initiated a more appropriate
study of document retrieval with various relevance metrics.
The two problems considered by [25] were K-mine and K-
repeats. In the K-mine problem, the query returns all the
documents which have at least K occurrences of the pattern
P . This basically amounts to thresholding by frequency. In
the K-repeats problem, the query returns all the documents
in which there is at least one pair of occurrences of the
pattern P such that these occurrences are at most distance K
apart. This relates to another popular heuristic in information
retrieval called proximity. He gave O(n log n)-word data
structures for these problems which can answer the queries
in optimal O(p + ndoc) time.

Sadakane [31] showed how to solve the document listing
problem using succinct data structures which take space very
close to that of the compressed text. He also showed how
to compute the TF-IDF scores [36] of each document with
such data structures. However, one limitation of Sadakane’s
approach is that it needs to first retrieve all the documents
where the pattern (or patterns) occurs, and then find their
relevance scores. The more meaningful task from the in-
formation retrieval point of view, however, is to get only
some of the highly relevant documents. In this sense, it is
very costly to retrieve all the documents first. Nevertheless,
Sadakane did show some very useful tools and techniques
for deriving succinct data structures for these problems.
Similar work was also done by Välimäki and Mäkinen [34]
where they derived alternative succinct data structures for
the document listing problem. In all these papers, deriving
succinct data structures for the more meaningful (in the IR
sense) K-mine and K-repeats problems were listed as open



problems. Further, no succinct data structure was known till
date, and no O(n) words (i.e., linear space in the traditional
sense) data structure was known either.

We study these problems in a slightly more natural and
more general framework of retrieving top k most relevant
documents (in sorted order) to the query pattern P . For a
pattern P and a document d, we define a score function
score(P, d) which captures the relevance score of document
d with respect to the pattern P . In our framework, the score
function can be arbitrary and can capture many practical
measures, such as the frequency of P in d, the distance
between two closest occurrences of P in d (known as
proximity), or simply the static PageRank [27] of d which
is independent of pattern P . The score function may also be
some combinations of these measures.

Muthukrishnan’s formulation tends to capture the notions
of frequency and proximity by introducing the K-mine and
K-repeats problems. However, he solved these problems
separately and individually. We give a uniform framework
for arbitrary score functions, and in that sense problems like
K-mine and K-repeats are subcases under our framework.
Also, one of the major challenges with Muthukrishnan’s
formulation is that it relies on the user to specify the correct
threshold. Moreover, it is not easy to convert these into a
top-k based solution without admitting some inefficiencies.
Our model is more robust in the sense that both the top-
k queries and the threshold-based queries can be answered
with equal ease.

The design of succinct/compressed text indexing data
structures has been an emerging field of research with great
practical impact. In addition to deriving a linear space
data structure with optimal query times, we further show
how to achieve compressed data structures. Our compressed
solutions take space very near to the entropy of the text data,
albeit suffering from somewhat worse query times, which
answer affirmatively to an open problem listed by [34].

1.1. Our Results

The following summarizes our results:
1) We provide a general framework to design linear space

data structures for top-k string retrieval problems. Our
framework works with any arbitrary score function.
Many popular metrics like frequency, proximity, and
importance are covered by this model. We achieve
query time of O(p + k log k) for retrieving the top
k documents in sorted order.

2) We provide a framework for designing
succinct/compressed data structures for top-k
string retrieval problems. Our main idea is based on
sparsification which allows us to achieve better space
(at the cost of somewhat worse query times). Our
framework is applicable to any score function that
can be calculated in compressed space. In the specific
case when we score by frequency, our data structure

occupies 2|CSA| + o(n) bits and answers queries in
O(p + k polylog n) time.‖

3) Our framework improves the following existing results
in the literature:

a) K-mine problem: Muthukrishnan gave
O(n log n)-word indexes which answer queries
in O(p + ndoc) time. We present optimal O(n)-
word† data structures which support queries
in optimal O(p + ndoc) time. We also give
a succinct data structure for these problems,
taking 2|CSA|+o(n)+D log(n/D) space while
answering queries in O(p + ndoc polylog n)
time.

b) K-repeats problem: Once again, we improve
Muthukrishnan’s O(n log n)-word structure to
O(n)-word structure.

c) Document Listing Problem: An O(n)-word data
structure was proposed by [25], and the space
was subsequently improved through a series of
papers to |CSA| + 2n + o(n) + D log(n/D)
bits with query answered in O(p + ndoc log n)
time [13, 31, 34]. We remove the additional 2n
bits required (with slight increase in query time)
to achieve a better space bound of |CSA| +
o(n) + D log(n/D) bits.

1.2. Related Work

Pattern matching is a field of research which is almost
about half a century old. Some of the earliest algorithms
like [19] achieved optimal linear time performance. In
the data structural sense, suffix trees [23, 35] and suffix
arrays [21] are the most popular linear space data structures
with optimal (or near-optimal) query performance. Although
thought to be linear, the practical space requirement of suffix
tree turned out to be about 15–50 times that of the text
and and for suffix arrays this was almost about 5–20 times
the text. Due to this limitation, they compared unfavorably
to inverted indexes. Recently, Grossi and Vitter [17] and
Ferragina and Manzini [11] gave compressed variants of text
searching data structures, based on the Burrows-Wheeler
Transform [6]. These data structures not only compared
well with inverted indexes in their space utilization but
also provided query functionality for arbitrary patterns.
Since then, designing succinct or compressed data structures
for text problems has been a thriving field of research
with many improvements and extensions [2, 10, 26, 29, 30].
Puglisi et al [28] indeed showed that compressed text indexes
provide faster searching than inverted indexes. However,
the authors also showed that if the number of occurrences

‖Here, |CSA| denotes space (in bits) of the compressed suffix array
(CSA) [17] of the given documents in D. It is shown that the average bits
per character, |CSA|/n, is close to the empirical entropy of the documents.
†Space is optimal in the non-succinct manner.



(matching locations) are too many then again inverted in-
dexes perform better in terms of document retrieval.

The formal study of document retrieval problems is mo-
tivated by this fact that occurrences of a pattern may be
too many but the number of documents carrying the pattern
might be fewer. Matias et al [22] gave the first solution
for the document listing problem which answers this in
O(p log D + ndoc) time. Muthukrishnan [25] improved the
result to optimal O(p + ndoc). He also initiated the formal
framework for capturing the notion of ”relevant” documents
by introducing the K-mine and K-repeats problems, and
gave data structures taking O(n log n) words of space for
them. His work quickly motivated a flurry of new results
with some seeking to improve them and some utilizing them
in specific applications [7]. Many particular algorithms in
bio-informatics have been based on the frequency metric [15,
20].

One particular line of research was to obtain com-
pressed/succinct data structures for document listing prob-
lem by solving range minimum/maximum query (RMQ)
using succinct variant of cartesian tree (See [31]). Although
solving RMQ is as old as Chazelle’s original paper on range
searching [8], many simplifications [3] and improvements
have been made, culminating in Fischer et al’s 2n + o(n)
bits of space data structure [13, 14]. Even our results shall
extensively use RMQ as a tool to obtain top-k in a given
set of ranges.

The study of reporting top-k matching items in the given
range in sorted order can be traced back to McCreight’s
priority search trees [24]. Bialynicka-Birula and Grossi [4]
gave a general framework to add rank information to items
being outputted (from any range reporting data structure)
and report top-k items in sorted order. We wish to note here
that, although they achieve an additive term of O(k) (as
against our O(k log k)) for reporting k items in sorted order,
their data structure necessarily takes super-linear space. The
other data structures having an O(k) additive term like [16,
24] do not output the top-k items in sorted order. Although
these data structures do not directly address the notion of
frequency or proximity (when rank score is dependent on
set of items rather than a single item) they can be used
as alternative tools (in place of RMQ structures) in our
framework also.

Top-k query processing has been an extensive field of
research in the information retrieval and database commu-
nity [9, 18]. Many theoretical results have also appeared in
the context of aggregating ranks from various ranked lists [1,
32].

2. PRELIMINARIES

2.1. Generalized Suffix Tree

Given a set of D strings {d1, d2, . . . , dD} of total length
n, the generalized suffix tree (GST) is a compact trie storing
all suffixes of all the D strings. The GST consists of n

leaves, each corresponds to a distinct suffix of a particular
string. Each edge in the GST is labeled by a character string;
for any node v, we denote path(v) to be the string formed
by concatenating the edge labels from the root to v. The
edge labels in GST satisfies the following: For any leaf `,
path(`) is equal to the suffix corresponding to `.

Given a pattern P , the locus node v of P in the GST is
defined as the node, closest to the root, such that P is a
prefix of path(v). It is known [23] that all occurrences of p,
if exist, will exactly correspond to the leaves in the subtree
of the locus node.‡ The locus of P can easily be determined
in O(p) time, by traversing from the root of the GST and
matching characters of P along the way.

2.2. Suffix Array

Usually, the edges of a node in the GST are ordered
by the lexicographical order of its label, so that the ith
leaf will correspond to the ith (lexicographically) smallest
suffix. We use SA[i] to denote the position where this suffix
starts, and the array SA[1..n] is called the suffix array
for the documents. Given a pattern P , if P appears in
any of the D strings indexed by the documents, then the
suffixes corresponding to all occurrences of P will be in
contiguous region of SA. More precisely, there exists a range
[L,R] such that SA[L..R] are the starting positions of all
occurrences of P . We call such a range [L,R] the SA range
of P .

2.3. Compressed Suffix Arrays

Let T [1..n] be a text over an alphabet Σ. The basic pattern
matching structure we use is the compressed version of
the suffix array (CSA) for the text T , which supports the
following operations: (1) Report SA[i], which is the starting
position of the ith smallest suffix of T ; (2) Report SA−1[j],
which is the rank of the jth suffix T [j..n] among all suffixes
of T ; (3) Given a pattern P , compute the exact range [L, R]
such that P is the prefix of all suffixes with starting position
SA[L], SA[L + 1], ..., SA[R].

There are various versions of CSA in the literature which
provide different performance tradeoffs. Throughout this
paper, we shall assume the version by Ferragina et al [12]
and assume |Σ| = O(polylog n), such that SA[i] and
SA−1[j] can be reported in O(log1+ε n) time, while the
exact range [L, R] for P can be computed in O(p+log1+ε n)
time for any ε > 0. Note that the CSA of [12] is also a
self-index in that we do not have to explicitly maintain the
original text. The total space is nHh + o(n log |Σ|), where
Hh denotes the empirical hth-order entropy of T .∗∗

‡This follows from the fact that P occurs at a particular location in some
document d if and only if P is the prefix of a particular suffix of d.
∗∗The space bound holds for all h < α log n/ log |Σ|, where α is any

fixed constant with 0 < α < 1.



2.4. Top-k using RMQs

We shall use RMQ data structures extensively to report
the desired documents when answering our query. The basic
result is captured in the following lemma:

Lemma 1. Let A be an array of numbers. We can preprocess
A in linear time and associate A with a linear-space RMQ
data structure such that given a set of t non-overlapping
ranges [L1, R1], [L2, R2], . . ., [Lt, Rt], we can find: (i)
All numbers in A[L1, R1], A[L2, R2], . . ., A[Lt, Rt] which
are more than (or less than) some specified number K in
O(t + occ) time. (ii) Largest (or smallest) k numbers in
A[L1, R1] ∪ A[L2, R2] ∪ · · · ∪ A[Lt, Rt] in O(t + k log k)
time.

Proof: See Appendix A for the proof.

2.5. Score Functions

Given a pattern P and document d, let S denote the set
of all positions in d where P matches. We study a class of
score functions score(P, d) which depend on the set S. Some
useful examples of the score function include: (1) freq(P, d)
which is the cardinality of S; (2) mindist(P, d) which is
the minimum distance between any two positions in S; (3)
docrank(P, d) which is simply the static “importance” value
associated with document d.

The functions freq(P, d) and mindist(P, d) are directly
associated with K-mine and K-repeats problems respec-
tively. Importance metric captured by docrank(P, d) can
simply be considered as PageRank [27] of the document
d which is static and invariant of P .

In this paper, we focus on obtaining top-k highest scor-
ing documents given the pattern P . In the design of our
succinct/compressed solutions, some of the score calculation
will be done on the fly. We call a score function succinctly
calculable if there is a compressed data structure (like
CSA) on document d which can calculate score(P, d) in
O(p + polylog n) time. Amongst the above functions, we
shall show that freq(P, d) is succinctly calculable (and so is
docrank ) but we do not know if mindist(P, d) is succinctly
calculable or not.

3. LINEAR SPACE STRUCTURE

In this section, we describe our non-succinct data structure
with almost optimal query times. Nevertheless, this data
structure takes linear space (as opposed to O(n log n) space
of the earlier known data structures for related problems).
We mainly focus the discussion on our top-k retrieval
result, though this approach also works for the threshold
versions [25].

First, we build a generalized suffix tree (GST) of all
the suffixes in all the documents. Let `1, `2, . . . , `n be the
leaves of this GST. Each leaf of this suffix tree is annotated
with two values SA[i] which stores the position in the
(concatenated) text of this suffix and di which stores the

document id of the document to which this suffix belongs.
We shall first describe our result in terms of frequency metric
and then generalize to arbitrary score function.

3.1. N-structure

At any node v of GST, we store an N-structure Nv which
is an array of 5-tuples 〈document d, frequency c, parent
pointer t, first depth δf , last depth δl〉. First, Nv for any
leaf node `i will contain exactly one entry with document
di and frequency 1. For an internal node v, an entry for a
document d occurs in Nv if and only if at least two children
of v contain document d in their subtrees. In case the entry
of document d is present in Nv then its corresponding value
c denotes the frequency of d in the subtree of v. The parent
pointer t points to the lowest ancestor of v which also has
an entry of document d. In case there is no such ancestor,
then the pointer t points to a dummy node which is regarded
as the parent of the root of GST. For δf and δl, we shall
give their definitions and describe their usage later.

Observation 1. Let `i and `j be two leaves belonging to
the same document d. If v is the lowest common ancestor
lca(`i, `j), then Nv contains an entry for document d.

Observation 2. If for two nodes u, w both Nu and Nw con-
tain an entry for document d, then the node z = lca(u,w)
also has an entry for document d in Nz .

Lemma 2. For any node v and any document d which
occurs at some leaf in the subtree of v, there is exactly
one pointer t such that (i) t corresponds to document d, (ii)
t originates at some node in the subtree of v, and (iii) t
points to some node not in the subtree of v.

Proof: It is easy to check that at least one pointer t
will simultaneously satisfy the three properties. To show
that t is unique, suppose on the contrary that two nodes
u and w, which are in the subtree of v, both contain an
entry of document d and with the corresponding parent
pointers pointing to some nodes outside the subtree of v.
By Observation 2, z = lca(u,w) also has an entry for d.
Consequently, the parent pointers at u and w must point
to some nodes in the subtree of z. On the other hand, since
both u and w are in subtree of v, z must be in the subtree of
v. The above statements immediately imply that the parent
pointers of u and w are pointing to some nodes in the subtree
of v. Thus contradiction occurs and the lemma follows.

Lemma 3. The total number of internal nodes which have
an entry for document d is at most |d|−1, where |d| denotes
the number of characters in document d.†

3.2. I-structure

Based on pointer field in the N-structure, we are now
ready to describe another structure Iv stored at every internal

†Here, we exclude the dummy node.



node v. For each pointer t in some N-structure which points
to node v, Iv contains a corresponding entry which stores
information about the origin of t. Specifically, the entry for t
inside Iv stores a triplet 〈origin r, document d, frequency c〉,
where r denotes the pre-order rank (in GST) of the node w
from which t originates, while document id d and frequency
c indicate 〈t, d, c〉 is an entry in the N-structure Nw.

The entries in the I-structure Iv are sorted by increasing
order of pre-order ranks of the origin. If there is a tie in
rank of the origin, we order the entries by document id d.
That is all the origin values r occur in increasing order in
Iv . We store Iv by an array whose jth entry is denoted
by 〈r[j], d[j], c[j]〉. Note that some entries in Iv may have
the same r-values, which happens if their origin is common
whose N-structure has more than one entries (corresponding
to different documents) pointing to v; in this case these
entries in Iv are ordered by the document ids. Also, note
that in a given Iv we also have repeated values for document
id (when they have different origins). Finally, we store the
range-maximum query structure on the array c of frequency
values.

Lemma 4. The total number of entries
∑

v |Iv| in all I-
structures is O(n).

Proof: The total number of entries in I-structures is
same as the total number of pointers. This in turn is the
total number of entries in N-structures. By Lemma 3, the
total number of such entries inside all internal nodes is at
most

∑D
i=1(|di|−1) ≤ n. On the other hand, the number of

such entries inside all leaves is exactly n, so that the total
number is at most 2n.

3.3. Answering Queries

First, we match the pattern P in GST in O(p) time
and reach at its locus node v. By the property of GST,
all the leaves in the subtree correspond to the occurrences
of P . Now by Lemma 2, for each document that appears
in the subtree of v, there will be a unique parent pointer,
originated from some node in the subtree, pointing to some
ancestor node of v. Thus, to answer top-k most frequent
documents, it is sufficient if we can identify such pointers,
and select the corresponding documents which have top-k
highest frequency values.

By definition of the I-structure, we know that each of these
pointers must exist in one of the entries in I-structure of one
of ancestors of v. Let rank(w) denote the pre-order rank of
a node w in GST. For the locus v we have just reached,
let Lv = rank(v) and let Rv be the highest pre-order rank
of any node in the subtree of v. Note that all the nodes in
subtree of v have contiguous pre-order ranks. Thus, nodes
in the subtree of v can be represented by the range [Lv, Rv].

Now, for each ancestor u of v, the entries in the I-structure
Iu is sorted according to the pre-order rank of the origins
r. The contiguous range in the origin array r, with values

from [Lv, Rv], will correspond to parent pointers originated
from the nodes in the subtree of v (that point to u). Suppose
such a range can be found in the array Iu for each ancestor
u. That is, we can find iu and ju such that Iu[iu] is the first
entry such that its r value is at least Lv , and Iu[ju] is the
last entry such that its r value is at most Rv . Then we can
examine the frequency array c[iu..ju] for each Iu together
and apply Lemma 1(ii) to return the k documents with the
highest frequency.

The range [iu, ju] for each Iu can be found in O(log log n)
time if we have maintained a predecessor data structure
over the array r. The number of ancestors of v is at most
depth(v). Since depth(v) ≤ p, this range translation takes
at most O(p log log n) time overall. The subsequent step
by using Lemma 1(ii) then takes O(p + k log k) time. So
in total, the top-k frequent documents can be returned in
O(p log log n + k log k) time.

3.4. Improvement

Our main bottleneck is the predecessor structure for range
translation which costs us O(p log log n) time. Now, we shall
see how we can convert O(p log log n) term to O(p). Notice
that the log log n factor comes from the need of translating
the range [Lv, Rv] in the I-structure of each of the ancestor
of v. Next, we shall show how we can use the two fields δf

and δl to directly map the range without having to resort to
the predecessor query.

Firstly, recall that in the Iu structure of an ancestor u of
v, if an entry whose origin is from the subtree of v, then its
pre-order rank must be between Lv and Rv . Further, if the
origin of such an entry e is the smallest, e will be the iuth
entry of Iu (i.e., the left boundary of the range [iu, ju]). Note
that the origin of e must be the first node (in pre-order rank)
among all nodes in the subtree of v having parent pointers
to u.

The above motivates us to define the δf value for an entry
in the N-structure Nx of any node x as follows: Let y be the
ancestor of x where the parent pointer tx points to; Let w
be the node on path from x to y, closest to y, such that from
the subtree of w, x is the first node (in pre-order rank) with
parent pointer pointing to y. Thus, whenever the locus node
for a pattern P is between w (inclusive) and x (inclusive),
the left boundary of the range in Iy will be originated from
x. Then δf is defined to be depth(w), and associate this
with such a parent pointer tx. If there is no such node w,
δf is set to be ∞. Also, if tx is the very first pointer in
Iy , then δf of tx is set to depth(y). Note that in the case
δf 6= ∞, let z be the origin node of the pointer just before
tx in Iy; then δf must be exactly one more than the depth
of the lowest common ancestor (lca) of x and z. Similarly,
we define δl with respect to the right boundary of the range
in Iy.

Let us now get back to the original problem of finding left
and right boundaries in Iu of each ancestor u of v. Based on



the definitions of δf and δl, we have the following lemma:

Lemma 5. Consider all the pointers originating from the
subtree of v (i.e., the pointers that are in the N-structure
of some descendant of v). If such a pointer satisfies δf ≤
depth(v) (resp. δl ≤ depth(v)), then there exists an ancestor
u of v such that this pointer is the first (resp. last) among
all the pointers in the I-structure Iu which originate in the
subtree of v.

Conversely, for any ancestor u of v, if a pointer t is the
first (resp last) pointer among all the pointers in Iu which
originate in the subtree of v, then t satisfies δf ≤ depth(v)
(resp. δl ≤ depth(v)).

Proof: For the first part of the lemma, consider a pointer
t originating in the subtree of v satisfies δf ≤ depth(v).
Suppose that t points to I-structure Iu for some ancestor u
of v. Now assume to the contrary that this is not the first
pointer originating in subtree of v which reaches Iu. Then,
there exists another pointer s originating in the subtree of v
also reaching Iu and such that pre-order rank of origin of s
is less than that of t. In this case, δf of t must be strictly
more that the depth of lca of these two originating nodes.
Since, both the nodes are in subtree of v, the lca is also in
the subtree of v. Thus, δf of t is strictly more than depth(v).

For the converse, suppose t is the first pointer to reach
Iu from the subtree of v, then consider a pointer s which
appears just before t in Iu. The origin of s must be outside
the subtree of v. Thus, δf of t is strictly more than the lca
of the origins of s and t. Since this lca must be some proper
ancestor of v, δf of t is at most depth(v).

Similar arguments work for the case of δl.
By the above lemma, if we can search all the pointers

originating in the subtree of v satisfying δf ≤ depth(v)
(resp. δl ≤ depth(v)), we can find the desired left (resp.
right) boundaries in Iu for each ancestor u. To facilitate the
above search, we shall visit each node of the GST in pre-
order, and concatenate the N-structures for all the nodes in
one single array N , and construct two RMQ data structures
over the δf entries and δl entries, respectively. Thus, there
is a contiguous range [start, end] in N corresponding to
the subtree of v. Now we find all the δf and δl values in
this range which are less than depth(v) using Lemma 1(i),
and thus obtain the desired pointers. As there are at most
2 × depth(v) such pointers reported, the total time is
O(depth(v)), which is O(p).

Theorem 1. We can design an O(n) words data structure
which can answer the top-k most frequent documents for a
given pattern P in O(p + k log k) time.

3.5. Comparison with Muthukrishnan’s K-mine Problem

In K-mine problem, one needs to output all the documents
that have K or more occurrences of the pattern p. This
can be easily done by applying Lemma 1(i) once the range

[iu, ju] in each ancestor u is ready. This gives the following
result:

Theorem 2. We can design an O(n) data structure for K-
mine problem which answers the queries in O(p + ndoc)
time.

Thus our structure directly compares with Muthukrish-
nan’s data structure, saving space by a factor of O(log n)
while matching Muthukrishnan’s optimal query time.

By simply replacing the frequency value by “score”, we
can easily generalize this structure to use arbitrary score
functions (We remark that only construction algorithm may
change depending on how easy it is to evaluate a given score
function).

Theorem 3. We can design an O(n) words data structure
such that we can answer top-k best scoring documents for a
given pattern p in O(p+k log k) time. If our task is to output
all the documents with more than some threshold score s,
then it can be done in O(p + ndoc) time.

Corollary 1. We can design O(n)-word data structure for
K-repeats problem of [25] which can answer queries in
O(p + ndoc) time.

Again, we save the space by a factor of O(log n) over
Muthukrishnan’s K-repeats data structure.

3.6. Construction Algorithms

Although our data structural framework is very general
for arbitrary score functions, the running time of our con-
struction algorithm depends on how easily we can calculate
the score for a given set of positions.

Firstly, we construct a generalized suffix tree in O(n)
time. Next, we construct the LCA data structure of [3], also
in O(n) time, so that the lca of any two nodes in the GST
can be reported in O(1) time. Then, for each document
d, we traverse all the leaves corresponding to d in GST
and add an entry for d in each node which is an lca of
successive leaves from document d. Next, we construct a
suffix tree for document d in O(|d|) time, then traverse
this tree in a post-order. Note that there is a one-to-one
correspondence between the nodes in this tree and the lca’s
found in the GST. Consequently, the parent pointer values
of all entries can be determined while the frequency counts
can be calculated by maintaining subtree sizes along the
traversal. In total, the first three tuples of all entries in all N-
structures (i.e., document d, frequency c, and parent pointer
t) can be initialized in O(n) time.

Next, we traverse the GST in pre-order fashion, and
corresponding to each parent pointer in the N-structure
encountered, we add an entry to I-structure of respective
node. Once, the entries in each I-structure are ready, we
visit each I-structure and construct an RMQ data structure
over it. This overall takes O(n) time.



Now, it remains to show how to calculate the δf (similarly
δl) values. For this, we traverse each of the I-structure Iw

sequentially and get the list of pointing nodes (they appear
in pre-order). Now, again we take successive lca’s between
consecutive pointing nodes. The δf value for a particular
node v is exactly equal to 1 plus the depth of the lca of v and
its previous node (in Iw), which can be computed in O(1)
time. After computing all the δf values in all entries, we
traverse all the N-structures in pre-order and construct RMQ
structure over δf values. All of this can be accomplished in
O(n) time.

In case of mindist score function, we need more time to
calculate the score function (this is the only change). In this
case, the scores are first calculated over the suffix tree of
document d. For this, we do a recursive computation. Say
at a node v, we have two children v1 and v2. Also assume
that following is available at v1 (and v2): (1) mindist(v1)††;
(2) a list L1 of text positions appearing in the subtree of v1

in sorted format (stored as a binary search tree). Then, we
first merge the list L1 at v1 and the list L2 at v2 to obtain
the list L at v and also during this merge operation we
find out the closest pair of positions with one coming from
the list at v1 and the other from v2. Now we compare the
distance of this pair with mindist(v1) and mindist(v2) and
obtain mindist(v) for v. This merging step can be done in
O (|L1| log(|L2|/|L1|)) time (assuming |L1| ≤ |L2|) using
Brown and Tarjan’s fast merging algorithm [5]. The total
time can be shown to be O(n log n) for processing the entire
document (See a similar analysis in [33]). This thus gives
us an O(n log n) algorithm for calculating mindist scores
over the GST.

4. SUCCINCT STRUCTURES

In this section, we describe succinct structure for the
problem of top-k string retrieval. Our structures are based
on the idea of sparsification.

4.1. Two Versions of CSA

We shall first maintain a CSA over the whole collection
of concatenated text. When we concatenate all the text
documents, we also need to maintain a structure which
remembers the text boundaries. This is represented by bit-
vector B over the concatenated text such that the bit is 1
if and only if it corresponds to the last character of some
document in the concatenated text. We store this bit vector in
compressed form and build a data structure over it support-
ing rank and select queries. This takes D log(n/D) + o(n)
bits. Note that concatenated text is never stored explicitly.
We only store CSA over it.

††We slightly overload the mindist notation where mindist(v1) de-
notes the minimum distance between the positions appearing in the
subtree of v1. If we stick to the earlier definition, this is exactly
mindist(path(v1), d).

Next, for each document d, we build a separate com-
pressed suffix array CSAd. The sum of all these individual
CSAd’s is bounded by |CSA|. Next we show a o(n)-space
structure which maintains some useful top-k statistics on the
top of these CSAs.

4.2. The Sparsified Top-k Structure

First, we shall show the sparsified structure for a fixed
value of k. Consider a generalized suffix tree GST of the
documents. We fix g = k log2+ε n be the group size, and
traverse the leaves of GST from left to right to form groups
of contiguous g leaves. Thus, the first group consists of
`1, `2, . . . , `g, the next group consists of `g+1, . . . , `2g, and
so on. In total, there are n/g groups. Now for each group,
we mark the lca in GST of its first and last leaf. Thus, we
have marked at most n/g internal nodes. Now we do further
marking. If nodes u and v are marked, then lca(u, v) also
gets marked. Thus, the set of marked nodes becomes closed
under the lca operation, and it is easy to show that total
number of marked nodes is no more than 2n/g.

We maintain a list of size k called F-list corresponding
to each marked node v. This F-list consists of top k most
frequent (or highest scoring) documents in the subtree of v;
in addition, we store the corresponding frequencies (score)
along with the documents.

Next, we construct a tree τk consisting of only marked
nodes in GST. Each node v in τk is originally a node in
the GST; we store along with v the corresponding SA range
[Lv, Rv] (i.e., the range of leaves in the GST within the
subtree of v) and also the corresponding F-list Fv . Now,
τk has at most 2n/g = 2n/(k log2+ε n) nodes, each having
O(k) storage due to the F-list. The total space taken by this
structure is thus O(n/ log2+ε n) words or O(n/ log1+ε n)
bits.

We shall store τk explicitly for the values of k =
1, 2, 4, 8, 16, .... That is, for all values which are powers of
2. Thus, we store at most O(log n) such structures. Thus, the
total space taken by these structures is O(n/ logε n) = o(n)
bits. We remark that the original GST will not be stored.

4.3. Answering Queries

First, we round up k to its closest higher power of 2.
Then, we match pattern P in CSA in O(p + log1+ε n) time
and find out the range [L,R] in the suffix array such that the
pattern matches at locations SA[L], SA[L + 1], . . . , SA[R].
Now, we traverse τk based on this range [L,R], starting from
the root and visiting appropriate child and so on, until we
reach the first node v whose SA range [Lv, Rv] is contained
in [L,R]. Note that the node v is indeed the locus of P in
τk if we consider τk as a “reduced version” of the original
GST.

Claim 1. Both the quantities Lv − L and R − Rv are at
most g.



Proof: Suppose Lv − L was more than g. Then there
must have been a marked node w in GST representing
the leaves `Lv−g, `Lv−g+1, ..., `Lv−1. And hence there must
have been a marked node z = lca(v, w). Then, z would also
satisfy the containment property and since z is an ancestor
of v, this would contradict the fact that v is the first such
node encountered.

Now, we check the F-list Fv of v which contains the top-
k frequent documents when we restrict our attention to the
positions in the Lvth to the Rvth leaves in the original GST.
To get the correct top-k frequent documents, we have to take
account to all positions under the subtree of v (i.e., from the
Lth to the Rth leaves in the original GST). In this aspect,
we now examine each leaf `L, `L+1, ..., `Lv−1 and find out
its corresponding document d, using O(log1+ε n) time per
leaf (by computing the values SA[L], SA[L+1], . . .). These
documents may potentially be the top-k most frequent docu-
ments, so that we now calculate the frequency of each in the
range [L,R]. This is done as follows: (1) Starting with the
leaf `i, we find SA[i] and thus its corresponding document
d; (2) Next, we observe that for any position j in CSAd,
we can identify the position j′ in CSA such that SAd[j]
and SA[j′] are referring to the same suffix of document
d.‡‡ This is done by SA and SA−1 operations on the
two CSAs in O(log1+ε n) time (and also constant number
of rank/select operations on the bit-vector B); (3) Another
important observation is that the suffixes of document d have
the same relative rank in SA and SAd. Thus, we can perform
binary search (using the two CSAs) to find out the range
[Ld, Rd] in SAd which corresponds to those suffixes of d
stored within [L,R] in SA. The total time to report Ld and
Rd is O(log2+ε n) time. (4) Finally, we return Rd−Ld + 1
as the frequency of document d in range [L,R] in GST.
We repeat the same for leaves `Rv+1, . . . , `R. Totally we
find the frequencies of these at most 2g documents (each
costing us O(log2+ε n) time). The total time taken by this
is O(k log4+ε n).

Once, we have this set of frequencies (the ones we
calculated and ones we got from F-list of v), we report
top-k amongst them using the standard linear-time selection
algorithm (in O(g + k) time), followed by a sorting of the
k selected documents (in O(k log k) time).

Theorem 4. We can design a succinct data structure taking
2|CSA|+ o(n) + D log(n/D) space which can answer the
top-k frequent query in O(p + k log4+ε n) time.

4.4. Extensions

Although we described our result in terms of frequency
as a scoring function, we can in fact extend it to some
other scoring functions which are succinctly calculable.
Unfortunately, we do not know if mindist(P, d) is succinctly

‡‡Here, SA denotes the suffix array of the concatenated text, and SAd

denotes the suffix array of the document d.

calculable or not. On the other hand, docrank(P, d) is not
only succinctly calculable, but is trivial to compute. In this
case, we do not even need the individual CSA for each
document. We just consider each of the 2g fringe leaves
and get the docrank of their corresponding documents (each
in O(log1+ε n) time). After that, we combine these 2g
documents with the k most important documents in F -list
of v, then perform a linear-time selection, and then perform
a sorting on the selected documents. As g = k log2+ε n, we
can get top k most important documents in O(p+k log3+ε n)
time.

Theorem 5. We can design a succinct data structure taking
|CSA| + o(n) + D log(n/D) space which can answer the
top-k most important document query in O(p + k log3+ε n)
time.

Although our framework is for top-k, we can easily
use our data structure to answer Muthukrishnan’s K-mine
problem. All we do is to first search for k = 1, then search
for k = 2, and then k = 4 and so on, until the least frequent
document among the top-k documents contains less than K
occurrences of P . The total number of documents reported
is at most 1 + 2 + 4 + · · ·+ ndoc = O(ndoc). Note that we
can easily combine all the τk’s into one single tree so that
searching for range of P in each of these τk’s can be done
together.

Theorem 6. We can design a succinct data structure taking
2|CSA|+ o(n) + D log(n/D) space which can answer the
K-mine query in O(p + log2 n + ndoc log4+ε n) time.

As a further extension of our sparsifying framework, we
show that it can be applied to document listing problem also.
Firstly, by using docrank criteria (and setting the importance
of each document to be the same), document listing can be
easily done in O(p + ndoc log3+ε n) (Theorem 5). We can
further improve the query time to O(p + ndoc log1+ε n) by
combining the succinct cartesian tree technique of [31]. We
sketch this result next.

We first group the leaves of GST into consecutive groups
size of logε n leaves each. Now we consider the array Z[i]
which stores the location j such that j < i, leaf i and leaf j
belong to the same document, and j is the largest such index.
To answer the document listing query, Muthukrishan [25]
showed that we can repeatedly apply range minimum queries
on the interval [L,R] given by subtree of locus node v; then
the desired documents will exactly correspond to the entries
in [L,R] whose Z values are less than L. To save space, we
apply the following modification used by Sadakane [31].
We first create a sampled version Z ′ of Z. In this we only
include smallest Z value in each group of size logε n. We
make cartesian tree on Z ′ and find all the qualifying leaves
from Z ′ whose Z ′ (and also Z) values are less than L. Now
for each chosen value from Z ′, we check all the leaves in
its group. This checking takes at most O(log1+ε n) in each



group and this cost is amortized against the chosen value in
Z ′.

Theorem 7. We can design a succinct data structure taking
|CSA| + o(n) + D log(n/D) space which can answer the
document listing query in O(p + ndoc log1+ε n) time.

5. CONCLUSIONS AND FUTURE WORK

We have shown a robust framework for designing space-
conscious data structures for a broad class of string retrieval
problems. Our approach works with many natural scoring
functions. Our first framework achieves optimal query per-
formance and while taking linear space. This is an improve-
ment over earlier data structures for some of the specific
problems which took O(n log n) words of space. We have
also shown a framework for deriving succinct data structures
for such problems. Although its query times are not optimal
in theory, this framework carries high practical appeal, in
the sense that it could potentially beat inverted indexes in
both space and time. The main bottleneck which comes from
calculating scores of fringe documents is mainly theoretical.
It leaves room for many practical tricks to optimize space
and time. It will be interesting to see if practical tuning of
this framework can lead to a robust string retrieval system.
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APPENDIX

1. Proof of Lemma 1

Proof: For (i), we process each range [Li, Ri] indepen-
dently as follows:

(1) We issue a range maximum query and extract the
maximum element mi. (2) If mi < K, we stop and process
the next range. (3) Otherwise, we add mi to our answer list,
split the range [Li, Ri] into two new ranges around mi, and
recursively find the desired elements in these two ranges.
The total time required is O(t + occ) for all t ranges.

For (ii), we issue range maximum queries in each of these
ranges and find the the maximum value in each. Now, we
take largest k of them (take all of them if k > t) and put
them in a binary search tree. We shall use this binary search
tree as a 2-sided heap which supports extract-min as well as
extract-max operations. We maintain the invariant that after
every iteration the number of elements in the binary search
tree is at most k.

In each iteration, we do the following: (1) We first extract
the maximum frequency element and add it to our answer
list. (2) Then, we take the range corresponding to our
extracted element and split it into two ranges (around this
extracted element). (3) Next, for each of these two new
ranges, we insert their respective range-maximum element
in the binary search tree. (4) After that, we delete (at most
two) elements with minimum values until there are at most
k elements in the tree, and discard the ranges corresponding
to the deleted elements from consideration.

Thus, after k iterations, we get top k largest numbers
in decreasing order. The binary search tree operations take
O(log k) per iteration. Hence, our total time requirement is
O(t + k log k).


