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Abstract

We study the complexity of a class of problems involving satisfying constraints which remain the
same under translations in one or more spatial directions. In this paper, we show hardness of a classical
tiling problem on anN×N 2-dimensional grid and a quantum problem involving finding the ground state
energy of a1-dimensional quantum system ofN particles. In both cases, the only input isN , provided
in binary. We show that the classical problem isNEXP-complete and the quantum problem isQMAEXP-
complete. Thus, an algorithm for these problems which runs in time polynomial inN (exponential in
the input size) would imply thatEXP = NEXP or BQEXP = QMAEXP, respectively. Although tiling
in general is already known to beNEXP-complete, to our knowledge, all previous reductions require
that either the set of tiles and their constraints or some varying boundary conditions be given as part of
the input. In the problem considered here, these are fixed, constant-sized parameters of the problem.
Instead, the problem instance is encoded solely in the size of the system.
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1 Introduction

One perennial difficulty with practical applications of hardness results is that the practically interesting
instances of a hard language may not themselves form a hard class. One approach to solving this problem
is the difficult theory of average-case complexity [Lev86, BDCG89], in which one can show that “typical”
cases of some language are hard. In this paper we take a different approach. In many cases, practically
interesting instances possess some shared property, such as a symmetry, that distinguish them from the
general instance and might, in principle, make those instances easier. We will study such an example and
show that, even in a system possessing a great deal of symmetry, it is still possible to prove a hardness result.

Specifically, we consider the related problems of determining whether there is a possible tiling of anr-
dimensional grid with some fixed set of classical tiles and offinding the lowest energy state (orground state)
of a quantum system involving interactions only between neighboring particles on anr-dimensional grid.
The ground state energy of a system is considered one of the basic properties of a physical system, and over
the last few decades, physicists have developed a number of heuristics that have been successful in finding
the ground state energy in many special cases. On the other hand, in earlier work [AGIK07, AGIK09], we
have shown that in the most general case, even in a1-dimensional quantum system, finding the ground state
is a computationally difficult problem (modulo the usual complexity-theoretic assumptions). However, the
construction presented in [AGIK07] involves a system whichis completely unnatural from a physical point
of view. The most interesting physical systems frequently possess an additional symmetry: translational
invariance. In this paper, we will show that even a1-dimensional translationally-invariant system can be
hard.

One interesting feature of our proof which may have more general applicability is that the only free
parameter for the language we consider is the size of the system. This is frequently the case for interesting
systems: there is a basic set of rules of constant size, and wewish to study the effect of those rules when the
system to which the rules apply becomes large. In practice, many such systems seem difficult to solve, but
it is hard to see how to prove a complexity-theoretic hardness result, since that requires reducing a general
problem in some complexity class to the language under consideration, and there doesn’t seem to be room
in the language to fit all the needed instances. Usually, thisdifficulty is circumvented by modifying the
problem slightly, to add additional parameters in which we can encode the description of the instance we
wish to simulate.

To illustrate, let us present the classical tiling problem we study in this paper: We are given a set of
square tiles which come in a variety of colors. The area to be tiled is a square area whose size is an integer
multiple of the length of a tile. We are given horizontal constraints indicating which pairs of colors can be
placed next to each other in the horizontal direction and another set of constraints in the vertical direction.
We specify a particular color which must go in the four corners of the grid. The description of the tile colors,
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placement constraints and boundary conditions are fixed forall inputs of the problems. The input is just a
numberN written in binary and we wish to know whether anN ×N grid can be properly tiled given these
constraints. We show that this problem isNEXP-complete. Note that the input in this case is sizelogN , so
an algorithm to solve our tiling problem that runs in time polynomial inN would imply thatNEXP = EXP.
While it is possible thatP 6= NP and yetNEXP = EXP, this seems unlikely to be the case.

This version of tiling is equivalent to the more common Wang Tiles [Wan60] in that any set of tiles can be
transformed into a set of Wang Tiles (and vice versa) such that there is a one-to-one correspondence between
valid tilings on anN ×N grid. For aninfinite grid, the problem is undecidable. Intuitively, it makes sense
that it is also hard (for some sets of tiles) for a finite grid, since there are exponentially many possible tilings,
and it is impossible to tell locally whether a given partial tiling can be extended indefinitely. Indeed, there
are prior results showing that related tiling problems areNEXP-complete, but to our knowledge, all previous
reductions require that either the set of tiles and their constraints or some varying boundary conditions be
given as part of the input [LP97, Boa97]. For instance, one may specify the placement of some number of
tiles and ask whether it is possible to extend that partial tiling to a tiling of the full square. Even though that
problem had been proven hard, the more natural problem of whether it is possible to efficiently find a tiling
of the empty grid remained open.

Many NEXP-complete problems are succinct versions of familiar combinatorial problems [GW83,
PY86] in which the input has some special structure which allows for a more compact representation. For
example, consider the problem of finding an independent set in a graph where the graph is specified by
indicating the number of nodes in binary and providing a compact rule (or circuit) to determine if two nodes
are connected. Traditionally, the rule is included as part of the input, which potentially allows for a more
expressive language. The analog to our work would be for the rule to have a constant-sized description,
fixed for all inputs. A philosophically similar approach hasbeen taken by Valiant [Val79], who considers
counting objects (for instance graphs) of a variable sizeN with a fixed rule (such as containing a certain
fixed set of subgraphs).

The basic idea of our construction is to reduce from an instance x of some language inNEXP by
encodingx in the binary expansion ofN , the size of the grid. It is well known that a finite set of tiling rules
can be used to implement a universal Turing Machine. We need some way to express the program for the
Turing Machine to run, and that program must grow with the size of x. Previous constructions managed
this by resorting to either polylogN different tile types or varying boundary conditions to encode x, but
those are both fixed, constant-sized parameters in our version of the problem. Instead, we use the tiles to
implement a binary counter which convertsN into binary and then uses it as an input to a universal Turing
Machine.

The other problem we consider is finding the ground state energy of a quantum system. The state of a
quantum system withN qubits is a vector in a Hilbert space of dimension2N . We will be considering a
slightly more general version in which an individual particle has its state in a space of dimensiond, in which
case the state of a system ofN such particles is a vector in adN -dimensional Hilbert space. One of the
postulates of quantum mechanics states that any physical property of a system that can be measured (e.g.
location, momentum, energy) corresponds to a linear operator. For anN -particle system, it can be expressed
as adN × dN matrix over the complex numbers. If the property is measured, then the outcome must be an
eigenvalue of the corresponding linear operator and the state of the system after the measurement is in the
eigenspace corresponding to the outcome. Thus, the problemof finding the energy for the lowest energy
state is the same as determining the lowest eigenvalue for the energy operator (also called theHamiltonian
for the system). The difficulty, of course, is that the Hamiltonian matrix is exponentially large in the sizeN
of the system.

We are typically interested in systems whose Hamiltonians are local in that they can be expressed as
a sum of terms each of which acts non-trivially only on a constant-sized subset of the particles in the sys-
tem. Although the term “local” does not imply anything aboutthe physical location of the particles, it is
motivated by the idea that particles only interact when theyare physically close to each other. We are there-
fore interested in extending this even further and examining particles that are located in a geometrically
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r-dimensional space where only particles within a fixed distance can interact. A particularly natural model
to consider, then, is a system of particles on anr-dimensional grid, where the terms of the Hamiltonian
operate only on neighboring pairs of particles in the grid. Note that although the full matrix representation
of a Hamiltonian is exponentially large in the size of the system, a local Hamiltonian has a compact repre-
sentation: each term can be expressed as a constant-sized matrix, and there can only be polynomially many
such terms.

Kitaev introduced the classQMA, the quantum analog ofNP, and showed that the problem of deter-
mining the ground state energy of a system defined by a local Hamiltonian isQMA-hard [KSV02]. Thus,
we do not hope to solve it even on a quantum computer. With an additional promise, the problem isQMA-
complete: there exist two valuesa > b, such thata−b ≥ 1/poly(N), where it is guaranteed that the ground
state energy is at mostb or at leasta, and one wants to determine only which of the two alternatives holds.
In other words, we wish to determine the energy with precision (a − b)/2. The problem is still hard even
for two-dimensional systems on qubits or one-dimensional systems of particles of constant Hilbert space
dimension [OT05,AGIK07].

Despite these worst-case results, numerical methods have been successful at determining ground state
energies for many quantum systems, especially in one dimension. What are the differences between these
hardQMA-complete problems and the more tractable systems studied by numerical physicists? One fea-
ture of theQMA-completeness constructions is that the individual terms of the Hamiltonian are position-
dependent. Essentially, the computation performed by a quantum verifier circuit is encoded into the Hamil-
tonian so that a low energy state exists if and only if there isa quantum witness that causes a verifier to
accept. Thus, the terms of the Hamiltonian encode, among other things, individual gates in a quantum cir-
cuit. In contrast, many quantum systems of physical interest are much more uniform in that they consist
of a single Hamiltonian term that is simultaneously appliedto each pair of neighboring particles along a
particular dimension. Such a system is calledtranslationally invariant.

Since highly symmetric systems are rather natural, a numberof researchers have studied the com-
putational power of translationally invariant quantum systems. For instance, [NW08] gives a20-state
translation-invariant modification of the construction from [AGIK07] (improving on a56-state construc-
tion by [JWZ07]) that can be used for universal1-dimensional adiabatic computation. These modifications
require that the system be initialized to a particular configuration in which each particle is in a state that
encodes some additional information. The terms of the Hamiltonian, although identical, act differently on
different particles depending on their state. The ground state is therefore degenerate and one determines
which ground state is reached by ensuring that the system starts in a particular state. Kay [Kay08] gives a
construction showing that determining the ground state energy of a one dimensional nearest-neighbor Hamil-
tonian isQMA-complete even with all two-particle terms identical. The construction does, however, require
position-dependent one-particle terms. Irani has demonstrated ground state complexity in one-dimensional
translationally-invariant systems by showing that such systems can have ground states with a high degree
of quantum entanglement [Ira09]. While quantum entanglement is closely related to the performance of
numerical heuristics in practice, the particular states inthis construction are easy to compute.

In contrast, we show that there exist1-dimensional translationally-invariant quantum systemswith
nearest-neighbor interactions for which finding the groundstate energy is complete forQMAEXP, a quantum
analogue ofNEXP. As with the classical result, the only parameter which varies in the language isN , the
number of particles, and we must useN to encode the instance from which we wish to reduce. The quantum
result uses a similar idea to the classical result: we arrange for a control particle to shuttle between the ends
of the system and count the number of particles. The binary encoding for the number of particles is then
used as an input to a quantum Turing Machine.

One consequence of our result is that it is now possible to talk about the hardness of a specific Hamilto-
nian term rather than the hardness of a class of Hamiltonians. Since a system with a computationally difficult
Hamiltonian cannot find its own ground state, it is likely that such a system will behave like a spin glass
at low temperatures. The usual models of spin glasses have randomly chosen coefficients, causing a break-
down of translational invariance. The systems we constructin this paper are different, with a completely
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ordered, translationally-invariant Hamiltonian, even though the ground states are quite complicated. Any
disorder in the system is emergent rather than put in by hand,a property that these spin glasses would share
with structural glasses. Some other systems with “self-induced disorder” have been introduced previously,
although not in the context of computational complexity [BM94]. In all of our hardness constructions, we
construct specific two-particle terms designed to let us prove that the resulting Hamiltonian problems are
hard, but one can imagine going the other direction, and studying the complexity of a particular Hamiltonian
term given to you. However, we currently have no techniques for doing so.

It is worth noting that the one-dimensional version of the classical tiling problem is very easy: it is in
P (see section 4.3 for the algorithm). That is, it can be solvedin a time polylogN , whereas it appears the
quantum problem takes timeexp(N), even on a quantum computer (unlessQMAEXP = BQEXP, where
BQEXP is like BQP, but with exponential circuits). Translational invariance does seem to simplify the1-
dimensional classical case, reducing poly(N ) time to polylog(N ) time, but it doesn’t help very much in the
quantum case.

Note that the classical tiling problem is a special case of the ground state energy problem for quantum
systems where the Hamiltonian is diagonal in the standard basis with only1 or 0 entries. Any ground state
of such a system is a classical state in which the state of eachparticle is specified by one of thed possible
standard basis states, which correspond to the possible tile colors. A pair of tiles(ti, tj) is allowed by the
tiling rules iff the corresponding|titj〉〈titj| term of the Hamiltonian is0, so that allowed tilings have0 total
energy, whereas a forbidden tiling has energy at least1.

2 Problems and Results

The paper contains a variety of different but related results involving classical tiling and quantum Hamilto-
nian problems with translational invariance. In this section, we will summarize the different variants, giving
the proofs and more detailed discussion of each variant in later sections. While there are certain recurring
techniques, the details of the different cases vary considerably. As a consequence, the proof of each major
result is largely self-contained.

Definition 2.1 TILING
Problem Parameters: A set of tilesT = {t1, . . . , tm}. A set of horizontal constraintsH ⊆ T × T such
that if ti is placed to the left oftj, then it must be the case that(ti, tj) ∈ H. A set of vertical constraints
V ⊆ T × T such that ifti is placed belowtj , then it must be the case that(ti, tj) ∈ V . A designated tilet1
that must be placed in the four corners of the grid.
Problem Input: IntegerN , specified in binary.
Output: Determine whether there is a valid tiling of anN ×N grid.

Theorem 2.2 TILING is NEXP-complete.

We give the proof in section 3. The basic idea is that the corner tiles are used to create a border around
the perimeter of the grid which allows us to implement special rules at the top and bottom rows. The interior
of the grid is tiled in two layers, each of which implements the action of a Turing machine. The first TM
proceeds from top to bottom on layer 1 and the second proceedsfrom bottom to top on layer 2. The first TM
takes no input and acts as a binary counter forN steps. The bottom row of the first layer then holds a binary
number that isΘ(N1/k). The rules for the lower boundary are then used to copy the output from the binary
counter to the bottom row of layer 2, which acts as the input toa generic non-deterministic Turing machine.
The rules for the top boundary check whether the final configuration on layer 2 is an accepting state.

Note that it is important that we chose to have the inputN provided in binary. If it were instead given
in unary, there would only be one instance per problem size, and the problem would be trivially inP/poly.
Thus, in order to prove a meaningful hardness result, we are forced to move up the exponential hierarchy
and prove the problem isNEXP-complete rather thanNP-complete.
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2-D, no symmetry 2-D, reflection sym. 2-D, rotation sym. 1-D
BC on all corners

unweighted NEXP-complete P, uncomputable? P P

weighted NEXP-complete NEXP-complete P P

BC on0 or 1 corner
unweighted P, uncomputable P P P

weighted NEXP-complete NEXP-complete P P

Periodic BC
unweighted NEXP-complete* P, uncomputable? P P

weighted NEXP-complete NEXP-complete P P

Table 1: Summary of the variants of TILING. “BC” is short for “boundary condition.” “P, uncomputable”
means that the associated problem is inP, but an essential parameter of the efficient algorithm we found is
uncomputable (with a question mark if we are not sure whetherit is uncomputable). “NEXP-complete*”
means complete under an expected poly-time randomized reduction or a deterministic polyspace reduction.

A common convention for this tiling problem is to only specify the boundary condition tile in a single
corner of the grid. This does not work in our case, so we instead use specified tiles in all four corners to mark
out the boundary of the grid to be tiled. We have considered other versions of the classical translationally-
invariant tiling problem to understand to what extent the precise definition of the problem is important.
The boundary conditions, as noted above, are a critical component. As well as fixing the tiles at the4
corners of the square, we have considered periodic boundaryconditions (so we are actually tiling a torus)
and open boundary conditions, where any tile is allowed at the edges of the square. The case of periodic
boundary conditions is particularly interesting because it is truly translationally invariant, unlike our usual
formulation where the boundaries break the translational symmetry. We show this case is also hard, but
with a more complicated reduction than in our standard TILING problem. Another variant is to make the
problem more similar to the quantum Hamiltonian problem by assigning a cost to any pair of adjacent tiles,
and allowing the costs to be different from0 or 1. This is like a weighted version of tiling and corresponds
to a Hamiltonian which is diagonal in the standard basis but does not have any other constraints.

We have also considered problems with additional symmetry beyond the translational invariance. If we
havereflection symmetry, then if(ti, tj) ∈ H, then(tj , ti) ∈ H as well, and if(ti, tj) ∈ V , then(tj , ti) ∈ V
also. That is, the tiling constraints to the left and right are the same, as are the constraints above and below.
However, if we only have reflection symmetry, there can stillbe a difference between the horizontal and
vertical directions. If we haverotation symmetry, we have reflection symmetry and also(ti, tj) ∈ H iff
(ti, tj) ∈ V . Now the direction does not matter either. These additionalsymmetries are well motivated
from a physical point of view since many physical systems exhibit reflection or rotation symmetry. Finally,
we have studied the one-dimensional version of the problem as well as the two-dimensional version. See
Table 1 for a summary of our results. Proofs are given in Section 4.

Some variants of TILING we consider are easy but in a strange non-constructive sense in that there
existsN0 ∈ Z

+ ∪ {∞} such that ifN < N0, there exists a valid tiling, and ifN ≥ N0, then there does not
exist a tiling (or sometimes the other way around). However,N0 is uncomputable as a function of(T,H, V ).
These cases are denoted as “P, uncomputable” in Table 1 (with a question mark if we have notbeen able
to prove whetherN0 is computable or not). Note that this does not exclude the existence of a (potentially
slower) algorithm to solve particular instances; indeed, all the classes in Table 1 are included inNEXP. For
these variants, we know that there is an efficient algorithm,so a hardness result can be ruled out, but since
the algorithm depends on an uncomputable parameter, it may be that the problem remains hard in practice.

Now we turn to the quantum problem. First we need to define the classQMAEXP. It will be a bit more
convenient to work with quantum Turing Machines than quantum circuits. The definition is the same as
QMA except that the witness and the length of the computation forthe verifier (which is a quantum Turing
Machine) can be of size2n

k

on an input of lengthn.
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Definition 2.3 A languageL is in QMAEXP iff there exists ak and a Quantum Turing MachineM such
that for each instancex and any|ψ〉 on O(2|x|

k

) qubits, on input(x, |ψ〉), M halts inO(2|x|
k

) steps.
Furthermore, (a) ifx ∈ Lyes, ∃ |ψ〉 such thatM accepts(x, |ψ〉) with probability at least2/3. (b) if
x ∈ Lno, then∀ |ψ〉,M accepts(x, |ψ〉) with probability at most1/3.

Definition 2.4 r-DIM TIH (Translationally-Invariant Hamiltonian)
Problem Parameter: r Hamiltonian termsH1, . . . ,Hr that each operate on two finite dimensional parti-
cles, specified with a constant number of bits. Two polynomials p andq.
Problem Input: IntegerN , specified in binary.
Promise: Consider anN r-dimensional grid of particles and the Hamiltonian resulting from applyingHi

to each pair of neighboring particles along dimensioni. The ground state energy of this system is either at
mostp(N) or at leastp(N) + 1/q(N).
Output: Determine whether the ground state energy of the system is atmostp(N) or at leastp(N) +
1/q(N).

The following theorem is the main result for the quantum caseand shows that the problem will likely
be, in general, difficult. Note that typically, one is willing to spend time that is polynomial in the size of
the system (which is in turn exponential in the size of the input). It follows from the result that if there is
a quantum algorithm that finds the ground state energy in timethat is polynomial in the size of the system
thenQMAEXP = BQEXP.

Theorem 2.5 1-DIM TIH is QMAEXP-complete.

The theorem immediately implies thatr-DIM TIH is QMAEXP-complete for anyr ≥ 1 since we can
always takeHi = 0 for i ≥ 2 which results in a system ofN r−1 independent lines withN particles. We
prove theorem 2.5 in section 5.

As is common inQMA-completeness results, the construction for Theorem 2.5 creates a Hamiltonian
whose ground state is a uniform superposition of a sequence of states which represent a particular process.
A portion of the Hilbert space for the system holds a clock which allows us to control the length of the
sequence and ensures that the states in the sequence are mutually orthogonal. That is, thetth state has the
form |φt〉|t〉, where|φt〉 is thetth state in the process we wish to simulate, and the overall ground state will
be

∑

t |φt〉|t〉. The size of the system controls the number of time steps for which the clock runs. In the case
of the construction presented here, the process consists oftwo main phases. The first phase is the execution
of a Turing machine which simply increments a binary counter. The clock ensures that this TM is run for
N − 3 steps after which a number that isΘ(N1/k) is encoded in binary in the state of the quantum system.
This state is then used as the input to an arbitrary quantum Turing machine which is executed in the second
phase. This QTM implements a verifier which is also allowed a quantum witness of lengthΘ(N). Finally,
there is an energy term which penalizes any non-accepting computation of the verifier.

We can also consider variants of1-DIM TIH. If we use periodic boundary conditions instead of open
boundary conditions, we get the same result (see section 5.8). If we add reflection symmetry, the problem
also remainsQMAEXP-complete with open or periodic boundary conditions (see section 6).

Another case of particular physical interest is the infinitechain. Of course, if the Hamiltonian term is
fixed and the chain is infinite, the ground state energy of the system is a single number and there is not a
computational problem with an infinite family of inputs to study. Instead, we look at a variation where the
two-particle Hamiltonian term is the input to the problem and the size of the input is the number of bits
required to specify the term. We then ask: if this term is applied to each pair of neighboring particles in an
infinite chain, what is the ground energy per particle?

Definition 2.6 ITIH (Infinite-Translationally-Invariant H amiltonian)
Problem Parameter: Three polynomialsp, q, andr. d, the dimension of a particle.
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Problem Input: A HamiltonianH for twod-dimensional particles, with matrix entries which are multiples
of 1/r(N).
Promise: Consider an infinite chain of particles and the Hamiltonian resulting from applyingH to each
pair of neighboring particles. The ground state energy per particle of this system is either at most1/p(N)
or at least1/p(N) + 1/q(N).
Output: Determine whether the ground state energy per particle of the system is at most1/p(N) or at least
1/p(N) + 1/q(N).

We prove the following theorem:

Theorem 2.7 ITIH is QMAEXP-complete.

As a corollary of Theorem 2.5, the following version ofN -REPRESENTABILITY [LCV07] is also
QMAEXP-complete: Given a density matrixρ on twod-state particles, is it withinǫ of a stateρ′ such that
there exists a translationally-invariant pure state|ψ〉 for N particles arranged in a circle for whichρ′ is the
marginal state of two adjacent particles?ρ is a parameter of the problem, andN , given in binary, is the
only input, as in our Hamiltonian problem. We can reduce to this version ofN -REPRESENTABILITY by
starting with1-DIM TIH on a circle. Then there is always a translationally-invariant pure ground state|ψ〉
of the HamiltonianH. By breaking the Hilbert space of twod-state particles up into small balls, we can
get a finite set of density matricesρ to try. For each one, if we can solveN -REPRESENTABILITY, we can
determine ifρ can be extended to a candidate ground state|φ〉, and if so we can determine the energy of|φ〉,
since it is just equal toNtr(H1ρ). Trying all possibleρ, we can thus find the ground state energy ofH, up
to someǫ-dependent precision.

3 Hardness of TILING

The construction will make use of a binary counter Turing machineMBC which starts with a blank semi-
infinite tape. The head begins in a designated start state in the left-most position of the tape.MBC will
generate all binary strings in lexicographic order. More specifically, there is a functionf : Z → {0, 1}∗

such that for some constantN0 and everyN ≥ N0, if MBC runs forN steps, then the stringfBC(N) will
be written on the tape with the rest of the tape blank. Moreover there are constantsc1 andc2 such that ifn
is the length of the stringfBC(N) andN ≥ N0, then2c1n ≤ N ≤ 2c2n. We will also assume that for any
binary stringx, we can computeN such thatfBC(N) = x in time that is polynomial in the length ofx. In
some of the variations of the problem we consider in section 4, we will need to put additional restrictions
onN (such as requiringN to be odd), and in those cases, we still require that we can findanN with the
appropriate restrictions such thatfBC(N) = x.

Using a standard padding argument, we can reduce any language inNEXP to NTIME(2c1n). If L is in
NTIME(2n

k

), the reduction consists of padding an inputx so that its length is|x|k/c1 [Pap95]. Thus, we
will take an arbitrary non-deterministic Turing machineM which accepts a languageL in time 2c1n and
reduce it to TILING. The tiling rules and boundary conditions will be specific to the Turing machineM but
will be independent of any particular input. The reduction for Theorem 2.2 then will take an input stringx
and output integerN such thatfBC(N − 3) = x. The tiling rules will have the property that a stringx is in
L if and only if anN ×N grid can be tiled according to the tiling rules.

Proof of Theorem 2.2. The boundary conditions for theN ×N grid will be that the four corners of the
grid must have a designated tile type. (We actually only need to use two corners as described in Section
4.1.) First we will specify a set of boundary tiles and their constraints. In addition to there are four other
kinds of boundary tiles: , , , . We will call the rest of the tilesinterior tiles. The tiling rules for
the boundary tiles are summarized in table 2.

will mark the left side of the grid, the top of the grid, the bottom of the grid, and the right
side of the grid. (See figure 1.) To show this, note the following facts:
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Tile on right
∗

N N N Y Y N
Tile N N Y N N
on N N N N N N
left Y N N Y N N

Y N N N Y N
∗ N N N N

Tile on top
∗

N Y Y N N N
Tile Y Y N N N N
on Y N Y N N N
bottom N N N N N N

N N N Y N
∗ N N N N

Table 2: The tiling rules for boundary tiles.∗ represents any interior tile. “N” indicates a disallowed pairing
of tiles. For two boundary tiles, “Y” represents an allowed pairing. Some of the rules for interior tiles are
not specified, because they depend on the specific interior tile.

Figure 1: The only allowed tiling of the sides of a5× 5 grid.

• Nothing can go to the left of a tile which means that the only place a tile could go is the
left-most boundary.

• Similarly, tiles can only go in the top row, tiles can only go in the bottom row, and tiles can
only go in the right-most column.

• No interior tile can border a tile in any direction. Furthermore a cannot border on itself in any
direction. This means that the only possible locations for aare the four corners since those are the
only places which can be surrounded by, , , or tiles. Since the boundary conditions state
that tiles must go in the corners, those are exactly the locationsthat will hold tiles.

• The only tiles that can go above or below a tile are and tiles, and cannot go on the west
boundary. Thus, the tiles on the west boundary adjacent to the corners must be tiles.

• Only or can go above or below a tile, so the entire west boundary, except for the corners,
will be tiles.

• Similar logic shows that the entire east boundary, except for the corners, will be tiles. Also, the
entire south boundary, except for the corners, will betiles, and the entire north boundary, except
for the corners, will be tiles.

The remainder of the grid will be tiled in two layers. The constraints on the two layers only interact at
the bottom of the grid, so we describe each layer separately.The actual type for an interior tile is specified
by a pair denoting its layer 1 type and layer 2 type. The bottomlayer will be used to simulate the Turing
machineMBC . The top boundary of the grid will be used to ensure thatMBC begins with the proper initial
conditions. Then the rules will enforce that each row of the tiling going downwards advances the Turing
machineMBC by one step. At the bottom of the grid, the output is copied onto layer 2. Layer 2 is then used
to simulate a generic non-deterministic Turing machine on the input copied from layer 1. The lower left
corner is used to initialize the state ofM and the constraints enforce that each row going upwards advances
the Turing machineM by one step. Finally, the only states ofM that are allowed to be below an tile are
accepting states. Since each Turing machine only executes forN − 3 steps and the grid has space forN − 2
tape symbols, the right end of the tape will never be reached.
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Tile on right
[b] [b, q′, r] [b, q′, l] [b, q′, R] [b, q′, L]

[a] Y Y N Y N Y
Tile [a, q, r] N N N N If q = q′ N
on [a, q, l] Y N N N N Y
left [a, q,R] N N If q = q′ N N N

[a, q, L] Y N N N N Y
Y* Y If q′ = q0 Y N Y

Tile on top
[b] [b, q′, r] [b, q′, l] [b, q′, R] [b, q′, L]

[a] If a = b If a = b If a = b, q′ 6= q0 N N
Tile [a, q, r] N N N If TM rule If TM rule
on [a, q, l] N N N If TM rule If TM rule
bottom [a, q,R] If a = b If a = b If a = b, q′ 6= q0 N N

[a, q, L] If a = b If a = b If a = b, q′ 6= q0 N N

Table 3: The tiling rules to simulate a Turing machine. “N” indicates a disallowed pairing of tiles, and “Y”
represents an allowed pairing. Pairings with “if” statements are allowed only if the condition is satisfied. “If
TM rule” means the pairing is allowed only if(a, q) → (b, q′, L/R) is one of the valid non-deterministic
moves of the Turing machine being simulated. The “Y*” entry will be modified later to get the correct
starting configuration for the Turing machine.

Although it is well known that tiling rules are Turing complete [Ber66], we review the ideas here in
order to specify the details in our construction. We will assume that the Turing machineM is encoded in a
tiling that goes from bottom to top. This can easily be reversed forMBC which goes from top to bottom.
The non-deterministic Turing machineM is specified by a triplet(Σ, Q, δ), with designated blank symbol
# ∈ Σ, start stateq0 ∈ Q and accept stateqA ∈ Q. There are three varieties of tiles, designated by elements
of Σ (variety 1),Σ ×Q× {r, l} (variety 2) andΣ ×Q× {R,L} (variety 3). Variety 1 represents the state
of the tape away from the Turing machine head. Variety 2 represents the state of the tape and head when the
head has moved on to a location but before it has acted. The{r, l} symbol in a variety 2 tile tells us from
which direction the head came in its last move. Variety 3 represents the state of the tape and head after the
head has acted, and the{R,L} symbol tells us which way the head moved.

The tiling rules are given in table 3. The table below gives anexample of a section of tiles that encodes
the move(a, q) → (b, q′, L) of the Turing machine from the bottom row to the middle row andthe move
(c, q′) → (f, q′′, R) from the middle row to the top row:

[f, q′′, R] [b, q′′, l] [d]

[c, q′, r] [b, q′, L] [d]

[c] [a, q, r] [d, q, L]

The lower row shows the head in the square with thea. The[d, q, L] is from the previous TM move. The
tile [b, q′, L] in the middle row enforces that the tiler is committing to executing the step(a, q) → (b, q′, L),
although there may have been other possible non-deterministic choices. The[c, q′, r] tile to the left of the
[b, q′, L] shows the new location and state of the head after the first move. The[b, q′, L] tile now just acts as
a [b] tile for purposes of the tiling above. The tile[f, q′′, R] enforces that the tiler is committing to executing
the step(c, q′) → (f, q′′, R). The[b, q′′, l] tile to the right of the[f, q′′, R] shows the new location and state
of the head after the second move.

To be consistent with the horizontal tiling rules, a row mustconsist of some number of variety 1 tiles,
along with adjacent pairs consisting of a variety 2 tile and avariety 3 tile. The variety 2 and 3 tiles must
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Additional layer1 rules:

Boundary Tile Adjacent interior tile
Location [a] [a, q, r] [a, q, l] [a, q,R] [a, q, L]

Bottom Y Y Y Y Y
Top If a = # N If a = # andq = q0 N N
Left If a 6= # Y If q = q0 Y N

Additional layer2 rules:

Boundary Tile Adjacent interior tile
Location [a] [a, q, r] [a, q, l] [a, q,R] [a, q, L]

Bottom If a matches layer1 N If q = q0 anda matches layer1 N N
Top Y If q = qA If q = qA Y Y
Left If a 6∈ ΣMBC

Y If q = q0 Y N

Table 4: Additional tiling rules between certain boundary and interior tiles for layers1 and2. For layer2,
the alphabet symbola ∈ Σ must match the alphabet symbol for the corresponding layer1 tile when on the
bottom interior row.

be matched in the following sense:q = q′, and either we haver on the left andL on the right orR on the
left andl on the right. At the west edges of the row, we could possibly have just a single variety 2 tile by
itself. However, this can only happen if the tile is of the form [a, q, l]. The rules enforce then that a tile
can only go to the left of a variety 2 tile if the Turing Machinestate isq0, which is the starting head state
of the machine. We can assume without loss of generality thatthe Turing machine never transitions back
to theq0 state, and never has a transition that would move it left fromthe first location on the tape. Given
that we have one row of this form, the next row up must have the same number of pairs of variety 2 and
variety 3 tiles, and furthermore, each pair must be shifted one position left or right, with the Turing machine
performing an allowed transition, as in the example. If one row has exactly one variety 2 tile[a, q0, l] in the
leftmost position, then every row above it in a valid tiling will also have exactly one variety 2 tile, and the
jth row up will correctly represent the state of the Turing machine tape and head afterj steps.

For our particular tiling, we will need additional rules forsome pairs of boundary tiles and interior tiles.
These additional rules will be different for layers1 and2, and some of them will couple the two layers. In
addition, we will need to slightly modify some of the horizontal tiling rules. The new and modified rules are
summarized in table 4. Also, for layer1, recall that we reverse “above” and “below” for the regular Turing
machine simulation rules (table 3), so that time goes downwards instead of upwards.

We would like to start out the Turing machineMBC with [#, q0, l] in the leftmost location followed by
[#] tiles. This is ensured by the additional rules for layer1: The top interior row must consist of only these
two types of tiles, and the leftmost location cannot be[#]. Since there cannot be any variety 3 tiles, there
can only be one[#, q0, l] in the leftmost location. We can assume without loss of generality that the Turing
machine overwrites the leftmost# on the tape and never writes a# there again.

The rest of the layer 1 rules just enforce the rules for the Turing machineMBC .
Now in order to copy the output fromMBC to the input tape forM , we restrict the kinds of tiles that can

go above tiles. All the alphabet characters in the bottom interior row of layer 2 must match the alphabet
characters for layer 1. That is, the output ofMBC is copied onto the input ofV .

We also want to ensure that the starting configuration ofV has only one head in the leftmost location.
To accomplish this, we forbid a to go next to an[a] tile for a ∈ ΣMBC

, so the leftmost tile in the 2nd row
from the bottom of layer 2 must be[a, q0, l]. Since there can be no variety 3 tiles in the 2nd row, that must
be the only variety 2 tile in the row. A little care must be taken to overwrite the leftmost input tape character
with something that is not in the alphabet ofMBC . This is because we have forbidden having an[a] tile to
the right of a for anya ∈ ΣMBC

, and this prohibition applies toall rows. The information encoded in
the left-most tape symbol can be retained by having a newa′ symbol inΣM for everya ∈ ΣMBC

.
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Finally, the only variety 2 tiles on layer 2 which we allow below a tile must be of the form[a, qA, r/l],
whereqA is the accepting state. Thus, there is a valid tiling if and only if the non-deterministic TMM
accepts on inputx in N − 3 steps.

4 Variants of the Classical Tiling Problem

We now turn to studying variants of TILING. There are varietyof different boundary conditions we could
consider. We can also consider changing the absolute prohibitions on certain adjacent tiles to a soft condition
by assigning different weights to the different adjacent pairs of tiles. We can add additional reflection or
rotation symmetry to the tiling rules. Also, we prove that inone dimension, TILING and all the above
variants are easy.

All of the hardness results are proven by reducing from TILING, perhaps with a restriction (usually
straightforward) on the value ofN . For instance, when discussing WEIGHTED TILING with periodic
boundary conditions, we requireN to be odd. TILING with oddN is clearly stillNEXP-complete, as we
can either use a universal Turing MachineM that performs some processing on the inputx, or simply a
different counting Turing MachineMBC that counts more slowly, effectively ignoring the least significant
bit of N . The other restrictions onN we use similarly result in hard subclasses of TILING.

To prove the variants hard, we have a main layer, which duplicates the tiling rules given to us, with
perhaps some small variations (e.g., adding extra tiles). We also add additional layers with tiling rules that
force a structure that duplicates the conditions of the standard TILING problem. The details of the additional
layer differ with each construction, and are provided in thediscussion below.

4.1 Boundary Conditions

Our choice of fixing the tiles in all four corners of the squareis unusual. See, for instance, Papadim-
itriou [Pap95], who fixes just the tile in a single corner. If we had instead chosen that convention, the
TILING problem would become easy, in an annoying non-constructive sense:

Theorem 4.1 Define a variant of TILING where a designated tilet1 is placed in the upper right corner of
the grid, and the other corners are unconstrained. Then there existsN0 ∈ Z

+ ∪ {∞} such that ifN < N0,
there exists a valid tiling, and ifN ≥ N0, then there does not exist a tiling. However,N0 is uncomputable
as a function of(T,H, V ).

This theorem follows immediately from the observation thatwith this boundary condition, a valid tiling
for anN × N grid can be cropped by removing the leftmost column and bottommost row to give a valid
tiling for the (N − 1)× (N − 1) grid. We knowN0 must be uncomputable because the question of whether
there is an infinite tiling is uncomputable. Still, if we fix(T,H, V ), we know there exists a straightforward
algorithm to solve this variant of tiling: simply determineif N < N0. We just do not knowN0, so we do
not know precisely what algorithm to use.

On the other hand, if we fix boundary conditions in two corners, that is already enough for hardness.
There are two cases to consider: when the two corners are adjacent and when they are opposite. The
techniques used for showing these two cases are hard are similar to those used in some other variants, so we
omit the details. When the two corners are opposite, we can create a boundary much like that of figure 1,
but with two new unique corner tiles. When the two corners areadjacent, we can modify the tiling rules
given in section 3 in order to avoid the need for the right boundary. We only need special tiling conditions
at the right boundary to prevent a new TM head from appearing there. If instead, we insist that only[#] can
appear to the right of[#], it is also impossible to create a new TM head on the right end.

Another interesting case is when we have periodic boundary conditions. That is, we consider the top row
to be adjacent to the bottom row, and the leftmost column is adjacent to the rightmost column. Essentially,
we are tiling a torus. This case is particularly interestingbecause it is truly translationally invariant, unlike
our usual formulation, where the boundaries break the translational invariance.
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a. b.

Figure 2: A possible arrangement of layers1 (a.) and2 (b.) for PERIODIC TILING.

Theorem 4.2 Define PERIODIC TILING as a variant of TILING with periodic boundary conditions on an
N ×N grid. PERIODIC TILING isNEXP-complete under an expected poly-time randomized reduction or
a deterministic polyspace reduction.

Since we are dealing with the classNEXP, even an exponential-time reduction is meaningful. For
instance, if there is an algorithm to solve PERIODIC TILING which takes time poly(N ), then, as a conse-
quence of theorem 4.2,EXP = NEXP.

Proof: To prove this, we will show that, for appropriateN , we can introduce an effective horizontal and
vertical border at some point inside the square. The actual location of the borders will not be specified at all,
but we will choose conditions so that there is exactly one horizontal border and one vertical border. Those
borders will then act like the usual edges of the grid for the standard4-corners boundary condition.

We will specialize toN which is an odd prime. We will add two additional layers of tiles over those for
the usual TILINGNEXP-completeness result (section 3). The new layer1 has7 different possible types of
tile: , , , , , , and . The new layer2 has10 types of tile: , , , , , , ,

, , and .
The , , and tiles will create the vertical and horizontal borders. and are used to make

sure that there is at least one of each kind of border, and theand tiles will create a diagonal line within
the rectangle defined by the borders. Layer2 is used to mark the directions next to the border and make sure
the diagonal line goes from the upper left corner of the rectangle to the bottom right corner, which ensures
that the rectangle is a square. WhenN is prime, this means there can only be one horizontal and one vertical
border. The structure of tiling that we would like to achieveis shown in figure 2.

Layer 1: The tiling rules for layer 1 are summarized in table 5.
The rules for , , and imply that if we have a anywhere in a column, that column must only

contain and tiles, and if we have a anywhere in a row, that row can only contain and
tiles. Furthermore, a tile must be surrounded by tiles above and below and tiles to the left and
right. Thus, layer1 contains some number of vertical and horizontal lines composed of and tiles
intersecting at tiles. No two horizontal or vertical lines can be adjacent.

The next set of rules for layer 1 enforce that the space between the lines must be filled by a checkerboard
of or alternating with or tiles. We ensure this by forbidding and from being adjacent
to themselves or each other in any direction, and forbiddingand from being adjacent to themselves
or each other in any direction. SinceN is odd, this ensures that it is not possible to tile the entiretorus with
the checkerboard pattern and there must be at least one horizontal and one vertical line.

Furthermore, if we ever have a tile anywhere, we want to be forced to have a diagonal line of
tiles continuing to the upper left and lower right, with a diagonal line of tiles next to it (above and to the
right), with both lines ending at a vertical or horizontal line. We enforce this by requiring that a tile must
have both below it and to its left. Above a tile we can have only or , and to the right of a
tile, we must have either or .

Layer 2: The tiling rules for layer 2 are summarized in table 6.
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Tile on right

Y N Y N N N N
Tile N N N Y N Y Y
on Y N N N N N N
left N Y N N N Y Y

N Y N N N Y N
N Y N Y N N N
N Y N N Y N N

Tile on top

N N N Y N Y Y
Tile N Y Y N N N N
on N Y N N N N N
bottom Y N N N N Y Y

Y N N N N Y N
Y N N Y N N N
Y N N N Y N N

Table 5: The tiling rules for layer 1 for PERIODIC TILING.

Tile on right

Y N N N N Y N N N N
N Y N N N N N Y N N
N N N N N N N N N Y

Tile N N N N N N N N Y N
on Y N N N N N N N N N
left N N N N N N N N N Y

N Y N N N N N N N N
N N N N N N N N N Y
N N Y N N N N N Y N
N N N Y Y N Y N N Y

Tile on top

N N N N N N N N N Y
N N N N N N N N Y N
N N Y N N Y N N N N

Tile N N N Y Y N N N N N
on N N N N N N N N N Y
bottom N N N N N N N N N Y

N N N Y N N N N N N
N N Y N N N N N N N
Y N N N N N N N Y N
N Y N N N N Y Y N Y

Table 6: The tiling rules for layer 2 for PERIODIC TILING.
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Layer 2 tile

N N N N N N N N N Y
N N N N N N N N N Y

Layer 1 N N N N N N N N N Y
tile Y Y Y Y N Y Y N Y N

Y Y Y Y N Y Y N Y N
Y Y Y Y N Y Y N Y N
N N N N Y N N Y Y N

Table 7: The allowed pairs of layer1 and layer2 tiles for PERIODIC TILING.

We wish to mark the top side of the rectangles delineated by the layer1 and tiles. will
mark the right side, the left side, and the bottom side, with , , , and marking the upper
left, upper right, lower left, and lower right corners, respectively. will be inside the rectangle and will
go over the layer1 and tiles.

Looking at the horizontal tiling rules, we see that if we havea anywhere, there must be a horizontal
line of that either goes all the way around the grid (due to the periodic boundary conditions) or ends at

on the left and on the right. If it ends, then, because of the vertical tilingrules, below the tile is a
vertical line of tiles which end at a tile, and below the tile is a vertical line of tiles which end
at a tile. The and tiles must be in the same row, and between them is a line oftiles, forming a
closed rectangle. Following this line of logic for the othertiles, we find that layer2 must be a collection of
rectangles, horizontal stripes, and vertical stripes.

The remaining rules enforce that we haveon the outside of the rectangles andon the inside. That
is, if any of the border tiles has a solid color on one edge, it must be adjacent on that side to a matching solid
color tile. These rules imply that inside the rectangle delineated by the , , , and tiles are only

tiles, and immediately outside it are tiles. Each rectangle is outlined by , , , and tiles on
the sides, with , , , and on the corners, and is full of inside. A vertical stripe has on its
left and on its right, and a horizontal stripe has above it and below it. Both vertical and horizontal
stripes have only inside them. The rectangles and stripes cannot be adjacent and are separated by
tiles.

Interactions between layers 1 and 2:The layer1 and layer2 tiles must pair up as indicated in table 7.
These conditions tell us that the horizontal and vertical lines on layer1 formed by , , and must

match exactly the locations of the tiles on layer2. This implies that in fact layer2 can only contain
rectangles which must be lined up with the space between the horizontal and vertical lines on layer1. On
layer1, each rectangle delineated by the horizontal and vertical lines must have a in the upper left corner,
which starts a diagonal line of tiles extending towards to the bottom right. Since it must end at the border
of the rectangle, but a tile cannot be in the same spot as a layer2 or tile, the only place the
diagonal line can end is at the lower right corner. Thus, the rectangle must actually be a square. See figure 2
for an example of an allowed tiling.

However, the only way for all the rectangles formed by the horizontal and vertical layer1 lines to be
squares is if the spacing between them is equal. They then formM ×M squares arrayed in ak× k grid for
a total ofk2 squares. It follows thatN = k(M + 1). But whenN is prime, thenk must be1. (M cannot
be0 since the horizontal and vertical lines cannot be adjacent.) Thus, the only allowed tiling is to produce a
single(N−1)×(N−1) square on layer1. We can then consider some data layers of tiles which implement
the rules from section 3. The layer2 , , , and tiles mark out the corner of the square, so we can
put a condition on the data layers that enforce the corner boundary conditions on those locations.

We do need to be careful of one aspect, however, since we are now restricted to a size of square which
is 1 less than a prime number. For any inputx, we need to choose a primeN . N should be not much bigger

15



thanx (logN = poly(log x)), and it must be possible for the universal TM implemented bythe data layers
to deducex in a reasonable time. We will show a method of finding a primeN such that the1/3 most
significant bits representx. Let n0(x) = 2⌈log x⌉ (that is, basically twice the number of bits inx) and let
N0(x) = x2n0(x) (that is, the binary expansion ofN0(x) is that ofx followed by(n0(x)− 1) 0s). We want
to show that there exists a prime number in the range[N0(x), N0(x + 1)). In fact, we will show that there
is a prime in a somewhat narrower range so that it can be found by exhaustive search in polynomial space.
Furthermore, the primes in this range are sufficiently plentiful that the expected time to find a prime number
by random selection will be polynomial.

It is known that there exists a constantθ < 1 such that

lim
y→∞

[π(y + yθ)− π(y)] =
yθ

log y
, (1)

whereπ(y) is the number of primes less than or equal toy [Ing37]. (For our purposes, it is sufficient to take
θ = 2/3, but smallerθ is possible.) That is, for sufficiently largey, the number of primes in the interval
[y, y + yθ] is approximately1/ log y times the size of the interval.1 Then

N0(x)
θ = xθ2θn0(x) ≤ 2θ(⌈log x⌉+n0(x)) ≤ 2n0(x). (2)

In particular, it follows thatN0(x) + N0(x)
θ ≤ N0(x + 1). If we can find a primeN in the interval

I(x) = [N0(x), N0(x) +N0(x)
θ), the TM can thus easily deducex by looking at the most significant bits.

There is at least one prime inI(x), so we can certainly find one with an exhaustive search, whichcan be
done with polynomial space. Furthermore, by (1), if we choose a randomN ∈ I(x), for sufficiently largex,
there is a probability about1/ log(N0(x)) thatN is prime, which we can verify in poly(log x) time. Thus,
we get a randomized reduction to PERIODIC TILING which runs in expected time poly(log x).

4.2 Weighted Constraints

Now we consider the case where the constraints count different amounts.

Definition 4.3 WEIGHTED TILING
Problem Parameters:A set of tilesT = {t1, . . . , tm}. A set of horizontal weightswH : T × T → Z, such
that if ti is placed to the left oftj, there is a contribution ofwH(ti, tj) to the total cost of the tiling. A set
of vertical weightswV : T × T → Z, such that ifti is placed belowtj , there is a contribution ofwV (ti, tj)
to the total cost of the tiling. A polynomialp. Boundary conditions (a tile to be placed at all four corners,
open boundary conditions, or periodic boundary conditions).
Problem Input: IntegerN , specified in binary.
Output: Determine whether there is a tiling of anN ×N grid such that the total cost is at mostp(N).

Note that we can shift all the weights by a constantr: w′
H(ti, tj) = wH(ti, tj) − r, w′

V (ti, tj) =
wV (ti, tj) − r. This has the effect of shifting the total cost by2rN(N − 1). Therefore, we may assume
without loss of generality thatp(N) = o(N2).

Theorem 4.4 WEIGHTED TILING isNEXP-complete, with any of the three choices of boundary condi-
tions.

Proof: The case of the four-corners boundary condition follows immediately from the result for unweighted
TILING.

WEIGHTED TILING with open boundary conditions: It is sufficient to take all the weights to be
0, +2, +4, or −1, andc = −4. We will reduce from TILING; the main point is to show we can fixthe
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Tile on right

+4 +4 +4 +4 -1
Tile +4 +4 +4 +4 +2
on +4 +4 +4 +4 -1
left +4 +4 +4 +4 +2

+2 -1 +2 -1 0

Tile on top

+4 +4 +4 +4 +2
Tile +4 +4 +4 +4 +2
on +4 +4 +4 +4 0
bottom +4 +4 +4 +4 0

0 0 +2 +2 0

Table 8: The tiling weights for WEIGHTED TILING with open boundary conditions.

Figure 3: The preferred arrangement of the new layer in WEIGHTED TILING with open boundary condi-
tions.

boundary conditions on the corners. To do so, we take the TILING instance and add a new layer of tiles
consisting of five special types of tile, , , , , and . The weights are summarized in table 8.

Suppose we have any configuration which contains the tile, and suppose we replace that tile by,
leaving the rest of the configuration the same. If there is anytile to the left of the replaced tile, the cost of
that edge decreases by at least2. Similarly, if there is any tile above the replaced tile, thecost of the above
edge decreases by at least2. The only way for the overall cost of the tiling to increase isif the replaced

tile was located in the upper left corner. Similarly, if we replace by , the cost decreases unless
possibly the tile is located in the upper right corner. Similarly, we can more cheaply replace and

by tiles unless the and tiles are located in the lower left and lower right corners, respectively.
Thus, the cheapest tilings have tiles everywhere but the corners, and it is easy to verify that the optimal
tiling of the new layer has total cost−4, with , , , and in the proper corners, and elsewhere.
Figure 3 shows the optimal configuration of the new layer.

Finally, we insist that , , , or in the special layer must correspond to the usual corner tilet1
in the main layer. Then the optimal tiling overall has the main layer constrained in exactly the way it would
be in the standard TILING problem.

WEIGHTED TILING with periodic boundary conditions: We can of course apply Theorem 4.2, but
when we allow weights, there is a simpler solution which avoids the caveats about the reduction.

We now consider only oddN , not necessarily prime. We will use the weights0, +1, and+3, and set
c = +2. Thus, to have a good enough tiling, we can have two pairings with weight+1, and all the others
must have weight0. The weights we use are summarized in table 9.

In order to avoid any pairing with cost+3, we cannot have and next to each other. That is, any
region with just these two tile types must be in a checkerboard pattern. Of course, whenN is odd, we cannot
fill the whole grid that way. Indeed, in each row and column, there must be at least one , , or tile.

If we have a tile anywhere, it must have a tile adjacent to it to the left and right, and a tile
adjacent to it above and below. Whenever we have atile, it must form a vertical line with only and

tiles wrapping all the way around the torus. Similarly, if wehave a tile, there must be a horizontal
line with only and tiles. Furthermore, if there is a single tile in the horizontal line, the overall cost
of the edges within the line is+2, and if there is more than one tile, the cost is larger.

1This is the result one might expect from the Prime Number Theorem, but that theorem is not strong enough, as it is compatible
with having a large interval with a low density of primes.
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Tile on right

+3 0 +3 0 +3
Tile 0 +3 +3 0 +3
on +3 +3 0 +3 +1
left 0 0 +3 +3 +3

+3 +3 +1 +3 +3

Tile on top

+3 0 0 +3 +3
Tile 0 +3 0 +3 +3
on 0 0 +3 +3 +3
bottom +3 +3 +3 0 0

+3 +3 +3 0 +3

Table 9: The tiling weights for WEIGHTED TILING with periodic boundary conditions.

Since tiles cannot be adjacent vertically, and tiles cannot be adjacent horizontally, nor can either
be adjacent to the other in any direction, the only way to avoid a full row or column with only and
tiles is to have at least one horizontal line and at least one vertical line. Whenever a horizontal line and
vertical line intersect, there must be a at the crossing. Each crossing has a cost of+2, so to minimize the
total cost, we can have only one crossing, and thus just one horizontal line of ’s and one vertical line of

’s. Those horizontal and vertical lines will determine the boundary of an(N − 1) × (N − 1) grid, and
we can set the boundary conditions at the corners via adjacency to the and tiles. The arrangement is
much like that of figure 2a, but with replaced by and replaced by .

4.3 One-Dimensional Tiling

In one dimension, the tiling problem becomes the following:

Definition 4.5 1-DIM TILING
Problem Parameters: A set of tilesT = {t1, . . . , tm}. A set of constraintsH ⊆ T × T such that ifti is
placed to the left oftj, then it must be the case that(ti, tj) ∈ H. A designated tilet1 that must be placed at
the ends of the line.
Problem Input: IntegerN , specified in binary.
Output: Determine whether there is a valid tiling of a line of lengthN .

We can also define a WEIGHTED1-DIM TILING problem analogously to the WEIGHTED TILING
problem in section 4.2.

Theorem 4.6 1-DIM TILING and WEIGHTED1-DIM TILING are inP.

Proof: Unweighted case:Let us create a directed graph withm nodes. Theith node corresponds to theith
tile type ti, and there is an edge betweeni andj iff (ti, tj) ∈ H. We wish to know whether there is a path
of length exactlyN starting and ending att1. Certainly this can be done in timepoly(N), but we actually
wish to do it in timepolylog(N). We will also generalize slightly to allow the left end of theline to have
tile t0 and the right end to have tilet1.

First, let us make a table of all paths which start and end at the same node and have no other repeated
nodes. Such a path is called asimple cycle. A path is asimple pathif it is a simple cycle or it contains no
repeated nodes. LetM be the set of all simple cycles, and letl(p) be the length of the pathp. Clearly when
p is a simple path,l(p) ≤ m+1, which is constant, so constructing the table of simple cycles takes constant
time.

Given any pathp, we can decompose it into a simple path and a multisetP of simple cycles by progres-
sively removing simple cycles fromp until we are left with a simple path, adding each removed cycle to
P .

Definition 4.7 A multisetP of simple cycles isallowedfor the simple pathp if there exists a pathq which
can be decomposed as above into exactly the multisetP plusp.
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Claim 4.8 The multisetP is allowed for a pathp iff P ’s underlying setQ (with multiple occurrences
removed) is allowed forp.

Proof of claim: ⇒: If we have any path through the nodeti, we can insert a simple cycle forti to get
another possible path. Ifq is a path which can be decomposed to the setQ, then every node on every simple
cycle inP appears inq, so we can insert as many copies as we need of the simple cyclesin P .

⇐: Conversely, letq be a path for the allowed multisetP . We can expressq as a tree, with the root
being the simple pathp and each node being a simple cycle. Cyclec′ is a child ofc if they share a node
andc′ is not the parent ofc. The tree can be obtained by iteratively taking two consecutive occurrences of
a nodeti along a cycle such that there are no repetitions between the occurrences ofti and identifying the
two occurrences ofti. The cycle is then removed (except for one of the occurrencesof ti) and the process
iterated until no cycles remain. We wish to modify the tree sothat the resulting pathq′ has the same multiset
P as its decomposition, but with the property that there is a subtree rooted atp containing just one of every
simple cycle inQ. Then we can take the pathq corresponding to that subtree, andq has the setQ for its
decomposition.

That is, we need that within the tree, for everyr ∈ Q, there exists an occurrencec of r such that the path
from p to c in the tree does not pass through two occurrences of any simple cycle. Since we can move any
node corresponding to a simple cycle forti to be a child ofanysimple cycle that containsti, we can put the
tree in the desired format by moving one instance of eachr ∈ Q up the tree until it lies off of the first cycle
which containsti.

Claim 4.9 There is a tiling of a line of lengthN from t0 to t1 iff ∃ simple pathp, and functionf : M →
Z
+ ∪ {0} such that:

1. p = (ti0 , ti1 , . . . , tiL), with i0 = 0, iL = 1, l(p) = L+ 1,

2. L+ 1 +
∑

q∈M f(q)l(q) = N ,

3. f−1(Z+) is allowed forp.

Given an allowed multisetP of simple cycles, the functionf(q) represents the number of times the
particular simple cycleq appears in the multiset, which means thatf−1(Z+) is the underlying set forP . To
see that Claim 4.9 is true, observe that the resulting path containsN nodes, as desired. Conversely, givenp
andf , we can create an allowed multisetP for p by including each simple cycleq a number of times equal
to f(q).

There are only a constant number of simple pathsp and allowed setsP of simple cycles. By running
over(p, P ) and applying claim 4.9, the1-DIM TILING problem reduces to determining if there

existsf ′ : P → Z
+ ∪ {0} such that

∑

q∈P f
′(q)l(q) = N ′, N ′ = N − (L + 1) −

∑

q∈P l(q). (We
takef ′(q) = f(q)− 1, with f given by the claim.) With fixed(p, P ), we must therefore solve the following
problem: Given a set ofm′ positive integersak (the set of distinctl(q) for q ∈ P ), do there exist non-negative
integersbk (the correspondingf ′(q), summed over any cycles with equal lengths) such that

∑

k akbk = N ′?
This is a special case of the Unbounded Knapsack Problem [Lue75] where the set of objects is fixed and
only the total cost allowed varies.

Note that, if we allowedbk to be negative, this would just be answered by determining ifN ′ is a multiple
of gcd(a1, . . . , am′). Indeed, ifN ′ is greater thanm′g, whereg is the least common multiple of theak, this
is all we need to determine: Ifgcd(a1, . . . , am′)|r, then we can writer =

∑

k akck, with the property that
akck ≥ −g for all k. Thus, ifN ′ = m′g + r, thenN ′ =

∑

k ak(ck + g/ak), providing our solution.
Conversely, ifgcd(a1, . . . , am′) 6 |N ′, then it is not possible that

∑

k akbk = N ′. ForN ′ < m′g, matters are
more complicated, but sinceg ≤ (m′)! is a constant, we can answer those cases via a look-up table.

Weighted case:The1-DIM TILING problem remains easy even if we take a weighted variant. In this
case, the directed graph we get is a complete graph, but the edges have a weight associated with them, and
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we want to determine the minimal cost path of lengthN from t0 to t1. Now we need to count both the length
and the cost of each simple cycle. That is, we need to learn if∃ simple pathp, f :M → Z

+∪{0} such that:

1. p = (ti0 , ti1 , . . . , tiL), with i0 = 0, iL = 1, l(p) = L+ 1,

2. L+ 1 +
∑

q∈M f(q)l(q) = N ,

3. c(p) +
∑

q∈M f(q)c(q) ≤ c,

4. f−1(Z+) is allowed forp,

wherec(q) is the cost of pathq.
Once we fix(p, P ), we again get a setak of positive integer lengthsl(q) for q ∈ P , but we also have

ck, the costsc(q) of q ∈ P . We can assumef ′(q) = 0 for all but one cycleq ∈ P for each length — we
should pick the one with the lowest costc(q). Now we wish to find non-negative integersbk that minimize
∑

k bkck subject to
∑

k akbk = N ′, which is again a special case of the Unbounded Knapsack Problem. We
again setg ≤ m! to be the least common multiple of theak (i.e., the lcm of1, . . . ,m). We create a look-up
table to give an optimal path forN < mg. WhenN is a multiple ofg, note that we can find an optimal path
by simply calculating which simple cycle has the lowest ratio ck/ak; then we just use that cycleg/ak times.

For other values ofN ′ = dg+ r, with d ≥ m, we just look at the optimal path for(m− 1)g+ r and add
(d−m+1)g/ak copies of the optimal simple cycle. This will be an optimal path forN ′. To show this, note
that we can assume without loss of generality that an optimalsolution will not havebk ≥ g/ak for more
than one value ofk: Suppose there were two valuesk1, k2 for which bk ≥ g/ak, with ck1/ak1 ≤ ck2/ak2 .
Then we can shiftbk1 7→ bk1 + g/ak1 andbk2 7→ bk2 − g/ak2 , leaving the total length the same without
increasing the cost. Furthermore, using the same logic, we know that the one valuek1 for which bk ≥ g/ak
must have a minimal value ofck/ak. ForN ′ > mg, there must actually exist such a value ofk1, so the
optimal path must have been formed in the way we have described.

4.4 Additional Symmetry

We consider two additional kinds of symmetry. If we havereflection symmetry, then(ti, tj) ∈ H implies
(tj , ti) ∈ H as well, and(ti, tj) ∈ V implies(ti, tj) ∈ V also. That is, the tiling constraints to the left and
right are the same, as are the constraints above and below. However, if we only have reflection symmetry,
there can still be a difference between the horizontal and vertical directions. If we haverotation symmetry,
we have reflection symmetry and also(ti, tj) ∈ H iff (ti, tj) ∈ V . Now the direction does not matter either.

Note that these types of reflection and rotation symmetries assume that we can reflect or rotate the tiling
rules without simultaneously reflecting or rotating the tiles. For instance, if a tileti has a pattern on it (such
as ) that looks different when it is turned upside down, then when we reflect vertically, we also could
reflect the tile, producing a new tileR(ti) ( in this case). We could define a reflection symmetry for this
type of tile too: (ti, tj) ∈ H iff (R(tj), R(ti)) ∈ H, etc., but we just get the same complexity classes as
for the case with no additional reflection symmetry. This is because we can add an extra layer of tiles with
arrows on them and put on a constraint that any adjacent arrowtiles must point the same direction. While
either direction will work (or any of the four directions in the case of rotation symmetry), one direction ends
up preferred in any given potential tiling, so by looking at the arrow tile in a given spot, we can effectively
reproduce rules that have no reflection symmetry. Thus, we address the case where the rules have reflection
or rotation symmetry without simultaneously reflecting or rotating the tiles.

Theorem 4.10 When the constraints for TILING have reflection symmetry, there existNe, No ∈ Z
+ ∪{∞}

such that for evenN ≥ Ne or oddN ≥ No, a valid tiling exists, while for evenN < Ne and oddN < No,
there is no tiling (except forN = 1, when there is a trivial tiling).

• When we have open boundary conditions, eitherNe = No = ∞ or Ne = No = 1.
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→

Figure 4: Extending a tiling of a6× 6 grid to8× 8 when the tiling conditions have a reflection symmetry.
The spaces on the right mark the repeated rows and columns.

→

Figure 5: Extending the tiling of a corner to a tiling of a3× 3 grid with fixed corner boundary conditions.

• When we have the four corners boundary condition, eitherNo = 3 or Ne = No = ∞.

• When we have periodic boundary conditions, eitherNe = 2 or Ne = No = ∞.

• When we have rotation symmetry,Ne andNo are computable.

When we have reflection symmetry but not rotation symmetry, we have been unable to determine so far
whetherNe andNo are computable for the four corners and periodic boundary conditions, respectively.

Proof: To prove the theorem, simply note that given a valid tiling ofanN × N grid, withN ≥ 4, we can
extend it to a valid tiling of an(N +2)× (N +2) grid. The main observation is that we can repeat existing
patterns when we have reflection symmetry, because ifAB is a legal configuration, so isABAB.

In order to extend a tiling, we can do the following: strip offthe leftmost column and bottommost row,
and replace them with duplicates of the next two rows and columns. We can fill in the corner by duplicating
the bottom left2× 2 square once we have stripped off the rows. Then the original leftmost column and bot-
tommost row became the new leftmost and bottommost column and row, with some duplication to lengthen
them to the right size. (See figure 4.)

This strategy handles even more general boundary conditions than the three main cases we consider. In
particular, it also works if the tiling rules on the sides of the grid are completely different from the tiling rules
in the interior of the grid. When the tiling rules are the sameon the sides as in the center, except perhaps for
the corners, we can copy the outermost two rows and columns, so this strategy works forN ≥ 2.

Four corners boundary conditions: WhenN is odd and we have the four-corners boundary condition,
we can look to see if there is a tiling of a2 × 2 grid with the corner tile in the upper right corner. If so,
we can duplicate the right column to add a column on the left, and then duplicate the top row to add a row
on the bottom. (See figure 5.) This gives us a tiling of the3 × 3 grid with all four corners correctly tiled.
Conversely, if there is no2 × 2 tiling containing one of the corner tiles, then there cannotbe a tiling of any
N ×N grid withN > 1, which means thatNo = Ne = ∞.

Open boundary conditions: In the case of completely open boundary conditions, we need only check
a2× 2 grid to see if there is a valid tiling. If not, there cannot be atiling of any sizeN > 2 either. If there
is, we can extend it as in figure 5 to get a tiling of the3 × 3 grid as well, and extend as in figure 4 to get a
tiling of any size grid.
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Figure 6: A tiling of a6× 6 square with rotation symmetry.

Periodic boundary conditions: When we have periodic boundary conditions, a valid tiling ofa 2 × 2
grid with open boundary conditions gives us a valid periodictiling of a 2× 2 grid as well, so we can extend
it to all evenN . However, if we try to apply the strategy of figure 5 to extend it to oddN , we potentially
ruin the periodicity, so we do not know ifNo is computable in this case. If there is no tiling of a2 × 2 grid
with open boundary conditions, then there can not be a tilingfor anyN with periodic boundary conditions
andNo = Ne = ∞.

Rotation symmetry: When we have rotation symmetry (with any boundary conditions), it will suffice
to computeNe andNo as the minimum even and odd lengths that allow us to tile a single side of the square.
If a tiling of one side exists, we can use this same tiling on all four sides and then fill in the center using
diagonal stripes of identical tiles, as in figure 6. In the case where there are special rules for the boundary,
we will need to tile a side plus the adjacent row/column as preparation, but this presents little additional
difficulty.

To tile a single side, we can use an approach similar to the previous1-dimensional case. However, now
matters are much simpler, since the graph is now undirected.There are thus always many size2 cycles, so
we need only find the minimal even- and odd-length cycles fort1. That sets an upper bound onNe andNo.
It might be one of these can be made smaller, but that is straightforward to check as well.

The weighted cases with reflection or rotation symmetry are more difficult, so we treat them in separate
subsections.

4.5 Weighted Tiling With Reflection Symmetry

In this subsection, we consider WEIGHTED TILING with reflection symmetry.

4.5.1 Open or Four Corners Boundary Conditions

Theorem 4.11 WEIGHTED TILING isNEXP-complete with either open boundary conditions or boundary
conditions fixed at the corners.

It is interesting to note that the total costp(N) of the satisfying tilings that appear in our proof is linear
in N . We have not been able to prove a result for these boundary conditions when the cost function is a
constant. (Recall that we can always shift the costs so thatp(N) = o(N2).)

Proof: We will describe the costs for open boundary conditions, butthey will imply fixed corner tiles, so
the four-corners boundary conditions can use the same costs. When we list costs, we will talk of pairings
being “forbidden.” Of course, in WEIGHTED TILING, no pair ofadjacent tiles is completely forbidden,
but we will assign a large cost (say+30) to “forbidden” pairings, and will show that a low-cost tiling can
never include a forbidden pair.

The tiling will consist of three extra layers beyond those the main layers used to prove the basicNEXP-
completeness of TILING (as described in section 3). Layer1 will break the reflection symmetry in both the
horizontal and vertical directions, but the broken symmetry will only be visible at certain locations in the
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Figure 7: A tiling for Layer1 of a 10 × 10 grid for the WEIGHTED TILING problem with reflection
symmetry. The reflection symmetry is broken in the immediatevicinity of the central diagonal.

grid. That is, there is not a unique optimal tiling of Layer1. Any optimal tiling can be globally reflected in
the horizontal and/or vertical directions to get another optimal tiling. We will choose rules such that one of
these reflections, applied to an optimal tiling, always produces a distinct tiling. There will, in fact, be exactly
4 optimal tilings of Layer1, related to each other by reflections. (There is actually another class of optimal
tilings of Layer1 when it is considered by itself, but that class will be eliminated by the rules for Layers2
and3.) Since the reflected tilings are different from each other,there are certain locations we can look at to
determine which orientation of the four we actually have. Bychoosing one of the four orientations to be a
canonical reference point, we can globally define the four directions “left,” “right,” “up,” and “down.” We
would like to use this information to implement direction-dependent rules for the main layers even though
the underlying rules remain reflection-invariant. To do this, we need to be able to look at an adjacent pair
of tiles in Layer1 and determine a direction from that. Since the rules are translation-invariant, we cannot
make reference to the location of the tiles, only that they are adjacent in either the horizontal or vertical
direction. Nevertheless, for an optimal tiling of Layer1, it is possible in some locations in the grid to
determine directions purely from the Layer1 tiles. However, it is not possible everywhere.

Therefore, we use Layer2 to extend the broken horizontal reflection symmetry, so there is a locally
visible distinction between “left” and “right” at all locations in the grid. Layer3 similarly extends the
broken vertical reflection symmetry, allowing us to define “up” and “down” at all locations in the grid. Most
of the work, and all of the non-trivial weights, go into Layer1. Layers2 and3 only have weights0 and+30
(for forbidden pairings).

We will restrictN to be even and1 mod 3. That is,N ≡ 4 mod 6. We will set the allowed cost to be
p(N) = 76− 16N , and assumeN is large.

Layer 1:
Layer1 will have 9 types of tile: , , , , , , , , and . , , and will form

the outer border of the grid in an optimal tiling. The interior of the grid will mostly consist of , , ,
and tiles. By and large, these four tiles will alternate and or and horizontally, and and

or and vertically. However, there will also be a diagonal stripe of tiles reaching from corner
to corner, with tiles at the end. At the left and right ends of the interior, adjacent to the tiles, we only
permit and tiles (alternating vertically) or tiles. BecauseN is even, the tiles to the left and right
of the and tiles will be different in a consistent way, allowing us to distinguish left and right near
the central diagonal. Similarly, the tiles above and below the and tiles are different, allowing us to
distinguish up and down. See figure 7 for an example of this tiling.

To achieve this, we use the rules given in table 10.

Claim 4.12 With these rules, for largeN , the cost of an optimal tiling is76− 16N .

To show that the desired tiling is indeed optimal, letT be some tiling, withTab the identity of the tile
in location(a, b) in the grid. Letw(T ) be the total cost ofT and letw(Sab) be the total cost of the2 × 2
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Horizontal tiling rules

30 30 30 30 6 6 30 30 7
30 -11 0 30 30 30 30 30 30
30 0 30 30 30 30 30 30 30
30 30 30 30 0 30 30 1 30
6 30 30 0 30 30 30 1 1
6 30 30 30 30 30 0 1 1

30 30 30 30 30 0 30 1 30
30 30 30 1 1 1 1 30 30
7 30 30 30 1 1 30 30 30

Vertical tiling rules

-11 30 0 30 30 30 30 30 30
30 30 30 6 6 6 6 30 7
0 30 30 30 30 30 30 30 30

30 6 30 30 30 30 0 1 30
30 6 30 30 30 0 30 1 1
30 6 30 30 0 30 30 1 1
30 6 30 0 30 30 30 1 30
30 30 30 1 1 1 1 30 30
30 7 30 30 1 1 30 30 30

Table 10: The tiling weights for layer 1 for WEIGHTED TILING with reflection symmetry. Since there is
reflection symmetry, the horizontal and vertical tiling weight matrices are symmetric.
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square in location(a, b): i.e.,

w(Sab) = wH(Tab, T(a+1)b) + wV (Tab, Ta(b+1)) + wV (T(a+1)b, T(a+1)(b+1)) + wH(Ta(b+1), T(a+1)(b+1)).
(3)

Finally, letw(Rb) =
∑

a wH(Tab, T(a+1)b) be the internal cost of rowb andw(Ca) =
∑

b wV (Tab, Ta(b+1))
be the internal cost of columna. Then

2w(T ) =

N−1∑

a,b=1

w(Sab) + w(R1) +w(RN ) + w(C1) + w(CN ). (4)

The only negative weights are the horizontal edges and the vertical edges between twotiles.
There are no possible2× 2 squares with negative cost, and the only2× 2 squares with total cost0 are

(5)

and its three reflections. Therefore, to get a minimal cost tiling, we should have as many2 × 2 squares as
possible be of that form, and have preferentiallyand around the edges of the grid.

We can break the whole cost down into pairs of rows. Let us calculate the minimal value of

w′(Rb, Rb+1) ≡ w(Rb) + w(Rb+1) + 2

N∑

a=1

wV (Tab, Ta(b+1)) (6)

=
N−1∑

a=1

w(Sab) + wV (T1b, T1(b+1)) +wV (TNb, TN(b+1)) (7)

for a particular assignment of tiles to a pair of rows. We mustdecide a collection ofN vertical pairs of tiles
to achieve the minimum cost. Since

2w(T ) =
∑

b

w′(Rb, Rb+1) + w(R1) + w(RN ), (8)

the minimal value ofw′ for pairs of rows is a good guide to the minimal achievable total cost for the whole
grid. By equation (7), if every square in the pair of rows had cost 0, and the first and last pairs had the
minimal edge cost−11, we would havew′(Rb, Rb+1) = −22, but we cannot quite achieve that:

Lemma 4.13 WhenN > 4 is even, the minimum value ofw′(Rb, Rb+1) is−12.
Any pair of rowsRb, Rb+1 withw′(Rb, Rb+1) = −12 has the following structure: Each row starts and

ends with tiles, has exactly one or tile, and to the left and right of the or , alternates either
and or and . The and/or tiles in the two rows are diagonally adjacent to each other.

Furthermore, if one row has alternating and tiles to the right (left) of the or tile, the other row
has alternating and tiles to the right (left) of the or tile, as required by the allowed pairs of
adjacent tiles.

Beyond this structure, there are four classes of solutions:

a. One row contains a tile adjacent to one of the tiles. The other tile in the column with the
tile is the same ( or ) as the tile in the column with the tile in the other row.

b. One row contains a tile adjacent to one of the tiles. The other tile in the column with the tile
is different than the tile in the column with the tile in the other row. In this case, one row contains
no or tiles and the other row contains no or tiles.

c. Both rows have tiles. The two tiles in the same columns as thetiles are the same. In this case,
each row contains at least one tile from each pair (, ) and ( , ).
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d. Both rows have tiles. The two tiles in the same columns as thetiles are different. In this case,
each row contains tiles from only one of the pairs (, ) and ( , ).

If one side (left or right) is forbidden to have a for one or both rows, the minimal value achievable
is −10. This can be achieved only through a pair of rows which usesat the other end of both rows, and
alternates and elsewhere in one row, and and elsewhere in the other row.

If is forbidden for both ends of one or both rows, the minimal value achievable is0. This can only
be achieved by having one row alternating and , and the other row alternating and .

The four classes of minimal-cost solution given by the lemmadepend on two factors. First, do we have
only tiles, or one tile and one tile? Classes a and b have , whereas classes c and d do not.
Second, do we have the same alternating pair (, ) or ( , ) on both sides of the tile(s), or do we
have different alternating pairs on the left and right? Classes a and c have different alternating pairs, while
classes b and d have the same pair on each side of thetile in a particular row. In our solution, we are
primarily interested in classes b and d because whenN is even, they have an asymmetry between left and
right in the vicinity of the tiles. However, at this stage we cannot rule out classes a andc.

Proof of lemma: The minimal cost of a pair of rows can be calculated using the efficient 1-dimensional
tiling algorithm described in section 4.3. We merge each vertically adjacent pair of tiles into a single node
of the graph. The difference from the algorithm of section 4.3 is that to minimizew′(Rb, Rb+1), we must
now assign a cost to visiting a node equal to2wV (Tab, Ta(b+1)) in addition to the cost of each edge (which
is equal towH(Tab, T(a+1)b) + wH(Ta(b+1), T(a+1)(b+1))). We must adapt the algorithm slightly: When
calculating the cost of a simple path, we include the cost of all the nodes, including the beginning and
ending node. When we calculate the cost of a simple cycle, we include the cost of all nodes, but only count
the starting/ending node once. Note that this creates a distinction between the cost accounting for a simple
path and a simple cycle, even when the simple path being considered is actually a cycle. We need to do this
because the simple cycles will be inserted into a longer pathat the location of the starting node of the cycle,
whose cost is already calculated as part of the path. The ending of the cycle introduces a second copy of
that node into the path, so the cost of that node should be added in.

If there is even one forbidden pairing in the pair of rows, theoverall cost must be at least+8 = −22+30.
Since we will be able to achieve a cost of−12, it will be sufficient to consider only paths and pairs of tiles
involving allowed pairings.

Consider the graph whose nodes are allowed vertical pairs and edges are allowed horizontal2 × 2
squares. The nodes of the graph are weighted by twice the costof the horizontal edge in the pair, and the
edges of the graph are weighted by the sum of the cost of the twovertical edges in the square. The graph
breaks down into three connected components. The first component contains the pairs

, , , , , , , , , , , , , , , , . (9)

The second component contains the pairs

, , , , , . (10)

The third component is just the vertical mirror image of the second component. In the second and third
components, there are no paths with total costw′ less than or equal to0: The vertical pairs which include

have cost per node of+12 or +14, and the minimal cost of an edge is−11. The vertical pair which
includes only has node cost0, but all the edges leaving it also have positive cost (+6 or +7). We will
be able to achieve path costs less than0 using the first component, so the second and third componentsare
only useful at the top and bottom edges of theN ×N grid.

Let us consider in more detail the first component, pictured in figure 8. First, the costs of the nodes: The
pair with two tiles has node cost−22. The12 nodes which involve a or have node cost+2, and

26



✟✟✟✟✟✟✟✟

✂
✂
✂
✂
✂
✂
✂
✂
✂✂

✂
✂
✂
✂
✂
✂
✂
✂
✂✂

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

❇
❇
❇
❇
❇
❇
❇
❇
❇❇

❇
❇
❇
❇
❇
❇
❇
❇
❇❇

❍❍❍❍❍❍❍❍

❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊❊

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊❊✆

✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆✆

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆✆

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

❈
❈
❈
❈

✄
✄
✄
✄

✄
✄
✄
✄

❈
❈
❈
❈

�
��

❅
❅❅

❅
❅❅

�
��

❛❛❛❛❛❛❛❛❛❛❛

✦✦✦✦✦✦✦✦✦✦✦

❅
❅

❅

�
�
�

✦✦✦✦❅
❅

❅
❅❅

�
�
��

❛❛❛❛ �
�
�
��

❅
❅

❅❅

Figure 8: The first component of the graph of vertical pairs oftiles.
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the remaining4 nodes have cost0. However, the edges from the node with two tiles have large positive
cost:+12 to connect to the nodes involving both and , and+13 to connect to the4 nodes involving

. (It is not adjacent to the other nodes.) The pairs involvingor have edge costs+1 (to connect to
a node which does not involve , , or ), +2 (to connect to another node with a or ), or +13
(to connect to the two- node, which is only possible for the four nodes). The remaining four nodes
involve either the pair ( , ) or the pair ( , ). Besides the connections listed above, they also connect
to one of the other four nodes in this class with an edge of cost0.

Let us first consider the cost of simple cycles. We are particularly interested in minimum-cost simple
cycles of various lengths. For a simple cycle, we count the node cost for the beginning/ending node only
once. It is thus easy to see that we cannot achieve a negative cost simple cycle — the benefit (negative cost)
of having a ( , ) node is outweighed by the high positive cost of the edges in and out of that node.
Therefore, the minimum cost of a cycle is0, and this is easy to achieve for a cycle of length 2, using a (,

) node and the matching ( , ) node.
Thus, if our path contains any ( , ) or ( , ) node, we can extend it to a path whose length has

the same cost and the same parity (even or odd) by inserting copies of an appropriate cost0 cycle. In order
to cover paths whose length might have a different parity than the simple path we started with, we will also
need to insert a simple cycle of odd length. There are no othercost0 simple cycles, so the minimum-cost
odd length cycle will have positive cost, and we will only want to use at most one of them. It is not possible
to build an odd cycle of allowed transitions using just (, ), ( , ), and ( , ) nodes, so we will
need to include at least one node with aor tile. Since there is a cost associated to the nodes involving

or tiles, we would like to minimize the number of such nodes we use. It is straightforward to see
there are no odd cycles with only one or node, so we will want cycles which use two of these nodes.

Let us first consider odd simple cycles that contain a (, ) or ( , ) node. In this case, we can
achieve a cycle with total cost+8 and length3 by starting with a ( , ) or ( , ) node, followed by
two nodes involving , and then back to the original node. There are a number of allowed paths of this
form, such as

. (11)

There are no other allowed length3 cycles starting and ending on a (, ) or ( , ) node. There are
longer simple cycles, but they also have larger cost.

The other minimal cost odd simple cycle starts on a (, ) node, connecting from there to any of the
four nodes, and from there to another node (with the in the opposite position), then back to the
( , ) node. The total cost is+10. This type of length 3 cycle costs more than the previously discussed
class of length 3 cycles, so would only be useful if we wanted to extend a path that contained no (, )
or ( , ) nodes. This will not be needed, so we can ignore this simple cycle.

The next step is to consider minimal cost simple paths. Our goal is to achieve an overall negative cost,
and it is clear the only way to achieve that is through the use of ( , ) nodes. In particular, the only
possible locations for the ( , ) nodes are the beginning and the ending of our path, since those are the
only locations where the cost of edges in and out of the node does not overcome the negative cost of the
node itself. We will assume for now that the (, ) nodes occur at both ends of the path and address the
other cases later.

The minimum-cost way to leave a (, ) node is by connecting to one of the two (, ) nodes.
Then we can connect directly back to (, ), for a total cost of−20. Extending this simple path using a
cost0 length 2 simple cycle, we can create arbitrarily long paths of odd length with cost−20. However,N
is even. By using one of the cost+8 length 3 simple cycles, we can create paths of any even length(N ≥ 6)
with total cost−12. This produces the paths of class d in the statement of the lemma.

Next, let us consider even-length simple paths that start and end on ( , ) nodes. To achieve an even
length, we again need to use at least twoor nodes, and to minimize the cost, we will want to use
exactly two. Since we have the beginning and ending (, ) nodes, exactly two or nodes, and

28



cannot repeat any ( , ) or ( , ) node (because we want asimplepath), we will get a simple path of
length4, 6, or 8.

For length 4, we have the simple path version of the simple cycle of length3 starting and ending with
( , ). As a path, this has total cost−12. However, it contains no ( , ) or ( , ) node, so cannot
be extended to a longer path without increasing the cost.

Next, we can consider paths that include atile. We can indeed achieve a total cost of−12 using the
paths

(12)

and

(13)

or variations. These paths start with a node, continue to a node, then a node, then a ( , )
node, and finally a ( , ) node, before returning to . (Or we could have the same progression from
right to left instead.) The difference between the two classes is that in the class represented by (13) (class a
in the statement of the lemma), one row (the top one in this case) contains both and tiles, whereas in
(12) (class b in the statement of the lemma), both rows consist of either all and tiles or all and
tiles (plus , , and/or ). These paths all include ( , ) and ( , ) nodes, so can be extended to
any evenN while maintaining the total cost−12.

There are two more types of simple paths of total cost−12. In these, we use two nodes, and the ( ,
) nodes connect to ( , ) nodes. Either we have just these six nodes, for instance:

, (14)

or we also include the two ( , ) nodes, as in this path:

. (15)

Both of these types of simple path give class c in the statement of the lemma.
We also need to consider the case where one or both sides are forbidden to have . When one side is

forbidden to have , our best strategy is to use the simple path (, ) followed by one of the ( , )
nodes, and then extend using the cost0 length2 simple cycle. This path will have a cost of−10. If both
sides are forbidden , then we should just use the cost0 length2 simple cycle everywhere, for an overall
cost of0.

Now let us consider the top and bottom rows. Again, we will consider a pair of rows, but with a new
formula for costs to take into account the effect of the edge.For the first and second rows, we should
consider the following formula:

w′′(R1, R2) = 2w(R1) + w(R2) + 2

N∑

a=1

wV (Ta1, Ta2). (16)

We can definew′′(RN−1, RN ) similarly, countingw(RN ) twice. This formula reflects the appearance of
w(R1) in equation (4). Indeed, we have that

2w(T ) = w′′(R1, R2) +

N−2∑

b=2

w′(Rb, Rb+1) + w′′(RN−1, RN ). (17)
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Figure 9: A component of the graph of vertical pairs of tiles.The edge costs are calculated for thew′′

formula appropriate for the top two rows.

Lemma 4.14 The minimum value ofw′′(R1, R2) is 24 − 10N , using a path that has everywhere in the
top row, and an alternating pattern of either (, ) or ( , ) in the second row.

If one corner is required to have a tile, the minimum value ofw′′(R1, R2) is 40 − 10N . This can
be achieved by having elsewhere in the top row. In the second row, under thetile there is a tile.
Elsewhere the second row alternates between either the pair( , ) or the pair ( , ).

If the top row begins and ends with , the minimum value ofw′′ is 58− 10N , and this can be achieved
only if the top row is in all other locations. The other row must start and end with, and in between
alternate either and tiles or and , with a tile at one end, just before or after the tile.

Proof of lemma: Returning to the graph of allowed vertical pairs, the secondcomponent now becomes the
most favorable: The component with at the top can produce a−Θ(N) total cost for the top pair of rows.
Similarly, the component with at the bottom can produce a−Θ(N) total cost for the bottom pair of rows.
The component of the graph with at the top is pictured in figure 9. The node and edge weights in figure 9
are calculated according to equation (16).

There are two minimal-cost simple cycles, both of length 2 and cost−20: One contains ( , ) and
( , ), the other ( , ) and ( , ). There are two minimal-cost odd-length cycles, both of length 3
and cost+18. They involve ( , ), ( , ), and either ( , ) or ( , ).

The minimal-cost simple paths have length2 and cost+2, e.g., ( , ), ( , ). This can be extended
to evenN with a cost−20 length 2 simple cycle to get a total cost of22− 10N .

If we insist that the simple path start at (, ), then the minimal-cost length2 simple path is ( , )
followed by ( , ) or ( , ), which has cost+18. The minimal-cost length3 simple path adds on ( ,

) or ( , ) on the end, giving cost+8. We can than get a minimal-cost path of lengthN (for N even)
by taking the length-2 simple path and extending with a length-2 simple cycle, for total cost38− 10N .

If we insist that our starting simple path both start and end at ( , ), our best strategy is to use the
length 3 simple cycle as our simple path. As a simple path, it has length 4 and also has cost+18. We then
get an even length path of total cost58− 10N .

As we can see, there is a mismatch between the optimal tilingsof the top two rows and the middle pairs
of rows. The optimal tilings for a middle row have on both ends, but that would produce forbidden
transitions (and a corresponding suboptimal pair of middlerows) if we tried also to put in the optimal tiling
for the top two rows.

We wish to apply equation (17) to minimize the total cost. We consider various different combinations
of tiling the top (and bottom) pairs of rows and middle pairs of rows.

There are three combinations which involve no forbidden pairs.

1. The top and bottom pairs of rows use optimal tilings, and the middle pairs of rows use tilings which
do not include on either end. In that case, we find the total cost for Layer1 is [2(22 − 10N) +
(N − 3)(0)]/2 = 22− 10N .
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2. The top and bottom rows each have ain one corner but not in the other. The middle rows have
on one end (between the tiles), but not in the other. The optimal tiling subject to these constraints
has a cost of[2(38 − 10N) + (N − 3)(−10)]/2 = 53− 15N .

3. We have tiles in all four corners and the middle pairs of rows use optimal tilings. The total cost is
then[2(58 − 10N) + (N − 3)(−12)]/2 = 76− 16N .

For sufficiently largeN , the last choice is optimal.
If we were to use forbidden pairs, we could combine, for instance, an optimal tiling of the top pair of

rows with an optimal tiling of most of the middle pairs of rows. However, for that particular combination,
we would need to use at least two forbidden pairs, and the costof doing that is greater than the cost of
switching the top pair of rows to a tiling with in both corners. Similarly for other combinations that
involve forbidden pairs.

Now let us investigate whether it is actually possible to achieve the cost76 − 16N using the third
combination ( in all four corners). By lemma 4.13, we have vertical lines of tiles on the left and
right sides of the grid, and with a path of or tiles somewhere in between them. The path is diagonal
everywhere, but could potentially move back and forth to theleft and right. If the dividing line is adjacent at
some point to an end tile, it is a tile; otherwise, it is a tile. The dividing line splits the remaining
locations into two or more connected components, each of which consists of rows of alternating and
tiles and rows of alternating and tiles, with the two types of rows alternating as well.

In summary, we have at all four corners, everywhere else in the top and bottom rows, and
everywhere on the left and right sides, except at the corners. There is exactly one or tile in each row.
In the second and(N − 1)th rows, it must be a tile and must be located in either the second or(N − 1)th
column. Elsewhere, the or tiles from two adjacent rows must be located diagonally fromeach other.
SinceN is even, it is not possible to do all of this if the tiles from the top and bottom rows are in the
same column. Therefore, the and tiles must form a diagonal line reaching from one corner (e.g., the
(2, 2) location) to the opposite corner (e.g., the(N − 1, N − 1) location) of the interior. The ends of the line
are tiles, and the rest of the diagonal line is composed oftiles. On each side of the line, the interior
of the grid is tiled by rows alternating between and tiles and and tiles. Columns2 andN − 1
contain only and tiles, as well as and .

We thus get8 possible minimal cost solutions for Layer1. There is the arrangement of figure 7, and
three rotations of it. These correspond to cases b and d in Lemma 4.13. Alternatively, we can take the upper
left corner or lower right corner of figure 7 and rotate it180◦ around the center of the grid to fill in the
other corner. There is one rotation for each of those solutions as well, with the diagonal line going from
the upper left to the lower right instead. These correspond to cases a and c in Lemma 4.13. The first four
solutions, rotations of figure 7, have a local breaking of reflection symmetry in the vicinity of the diagonal
line: In the orientation of figure 7, immediately to the left of and above the diagonal line, we have and

tiles, whereas immediately to the right of and below the diagonal line, we have and tiles. In
contrast, while the other four solutions also break vertical and horizontal reflection symmetry, there is no
local, translationally-invariant rule anywhere in the grid that can allow us to distinguish the directions.

Layer 2:
Layer 2 will have only 3 types of tile: , , . The tiling rules will only specify permitted or

forbidden pairs of adjacent tiles; forbidden pairs have a cost of+30, as before, and permitted pairs have a
cost of0. When the Layer1 tile is or , the Layer2 tile must be . For any other Layer1 tile, any of
the three Layer2 tiles is possible.

For the vertical tiling rules, we only allow each type of tileto be adjacent to itself. Horizontally, each
type of tile is forbidden to be adjacent to itself. Thus, to avoid any forbidden pairs of tiles, Layer2 must
consist of vertical lines, all of one kind of tile, and no two adjacent lines can be the same. Our goal is to
have the three types of tile cycle: followed by followed by , and then back to . Then by looking
at Layer2 for any horizontally adjacent pair of locations in the grid,we can distinguish left from right.
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Figure 10: The permitted tiling of Layer2 for a10× 10 grid when Layer1 is the optimal tiling of figure 7.
Notice that at every location, it is possible to distinguishleft and right by looking at the adjacent tiles.

To achieve this, we determine whether two different Layer2 tiles can be adjacent horizontally depending
on the Layer1 tiles underlying them. If neither of the Layer1 tiles is a or , any pair of Layer2 tiles is
permitted. If one of the Layer1 tiles is a , , or tile (although the latter two are forbidden in Layer1
to be horizontally adjacent to or ), then any pair of Layer2 tiles is permitted. It is forbidden in Layer
1 to have two or tiles adjacent, but if it happens, we allow any pair of Layer2 tiles. Otherwise, the
following combinations are allowed. We use brackets to indicate the pair of Layer1 and Layer2 tile, so
[ ] indicates a on Layer1 and on Layer2 in a given location. In all of the following pairs, we
use for one of the Layer1 tiles, but we have precisely the same rules ifis substituted for .

Allowed Forbidden
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

(18)

If Layer 1 is the tiling of figure 7, then the middleN − 2 columns of Layer2 will, according the rules of
(18), cycle between columns of tiles, tiles, and tiles, in that order from left to right. Columns1
andN , since Layer1 contains tiles there, must be tiles on Layer2. Since adjacent columns must have
different Layer2 tiles, column2 cannot be tiles. If column2 contained tiles, sinceN ≡ 1 mod 3,
then columnN−1 would contain tiles, which is forbidden, since columnN also contains tiles. Thus,
column2 contains tiles and columnN − 1 contains tiles, so the whole grid cycles between the three
types of tiles for Layer2, as pictured in figure 10. Similarly if Layer1 is a rotation of figure 7.

On the other hand, if Layer1 is arranged according to one of the other optimal tilings, there will be no
allowed tiling of Layer2. This is because in two adjacent rows, we will have a configuration such as

(19)

There is no way to tile Layer2 for these four locations consistent with both the rules of (18) and the constraint
that only identical tiles can be vertically adjacent in Layer 2. Thus, in order to achieve a cost of76 − 16N ,
Layer1 must be in a tiling corresponding to one of the four rotationsof figure 7.

Layer 3:
Layer3 is very similar to Layer2. There are again3 kinds of tiles: , , and . When the Layer

1 tile is , the Layer3 tile must be ; otherwise, any Layer3 tile is allowed. The adjacency rules
are effectively the same as Layer2, but with horizontal and vertical exchanged, and with, , and
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substituted for , , and , respectively. Thus, the only permitted tiling of Layer3 has rows consisting
of a single type of tile, with the three kinds of rows cycling.

Main Layers:
To tile the main layers, we just use the rules from section 3. Those rules distinguish between up and

down and between left and right, so to achieve that, we look atthe tiles in Layers2 and3. If Layer 2 is a
for one location and for the second location, we consider the first location to be to the left of the second
location. Similarly, we consider a Layer2 tile to be to the left of a Layer2 tile, and a Layer2
tile to be to the left of a Layer2 tile. We consider a Layer3 tile to be above a Layer3 tile, a
Layer3 tile to be above a Layer3 tile, and a Layer3 tile to be above a Layer3 tile. We can set
the corner boundary conditions for the main layers by looking at Layer1: When the Layer1 tile is a tile,
the main layer tile must be a corner tile.

If there is a valid tiling of the main layer, which occurs whenthe instance is a “yes” instance, then
we achieve an overall cost76 − 16N . If the instance is a “no” instance, then if Layer1 has an optimal
arrangement, and Layers2 and3 are in the allowed tiling consistent with Layer1, then there cannot be a
valid tiling of the main layer. Thus, for a “no” instance, thecost must be greater than76− 16N .

4.5.2 Periodic Boundary Conditions

Now we turn to WEIGHTED TILING with reflection symmetry and periodic boundary conditions. In this
case, we are able to prove results for both constant and linear cost functions:

Theorem 4.15 For WEIGHTED TILING with reflection symmetry and periodic boundary conditions:

• When the cost functionp(N) is a constant, independent ofN , the problem is inP. In particular, there
existNe, No ∈ Z

+ ∪ {∞} such that for evenN ≥ Ne or oddN ≥ No, a valid tiling exists, while for
evenN , 2c < N < Ne and oddN , 2c < N < No, there is no tiling.Ne is computable.

• When the cost functionp(N) is linear inN , the problem isNEXP-complete.

• WhenN is even, the problem is inP for any cost functionp(N).

Proof: Constant cost function: p(N) = c, some constant independent ofN . Let us suppose we have a
tiling of the N × N grid with periodic boundary conditions with total costc′ ≤ c. Let the rows of this
tiling beR1, . . . , RN , and because of the periodic boundary conditions, letRN+1 = R1. Let w(Ra) =
∑

bwH(Tab, Ta(b+1)), whereTab is the tile in location(a, b), and letw(Ra, Ra+1) =
∑

bwV (Tab, t(a+1)b).
Thenc′ =

∑

a(w(Ra) + w(Ra, Ra+1)). Notice that if we duplicate two adjacent rows, sayRa andRa+1,
then the total cost becomesc′ +w(Ra) +w(Ra+1) + 2w(Ra, Ra+1) (because of the reflection symmetry).
Now,

N∑

a=1

[w(Ra) + w(Ra+1) + 2w(Ra, Ra+1)] = 2

N∑

a=1

[w(Ra) + w(Ra, Ra+1)] = 2c′. (20)

Thus, there must exist somea for which

w(Ra) + w(Ra+1) + 2w(Ra, Ra+1) ≤ 2c′/N. (21)

Whenc′ is a constant, forN > 2c′, that means there is somea for which

w(Ra) + w(Ra+1) + 2w(Ra, Ra+1) ≤ 0, (22)

since the weights are integers.2 Then we can duplicate rowsRa andRa+1 without increasing the cost.
Similarly, there are two columns which we can duplicate without increasing the cost. Thus, we also have a

2If we generalize the definition of WEIGHTED TILING to allow rational weights, we can simply rescale to get integer weights.
If we allow irrational weights, this argument fails, but it is possible to prove the same result using the ideas presentedin the even
N case below.
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Figure 11: An optimal tiling for the periodic boundary condition case withN = 9.

tiling for the (N + 2)× (N + 2) square grid with costc′′ ≤ c′ ≤ c. The only difference from theorem 4.10
is that there might be some small exceptions withN ≤ 2c which have valid tilings but cannot be extended.
Ne then is the smallest even value forN such thatNe ≥ 2c and there is a valid tiling of theNe×Ne grid of
weightc′ ≤ c. Similarly,No is the smallest value forN such thatNo ≥ 2c and there is a valid tiling of the
No ×No grid of weightc′ ≤ c.

Note that this argument requires that the costp(N) be a constant. It fails ifp(N) grows at least linearly
with N .

Even N : WhenN is even, we can easily compute the exact minimal cost achievable. Consider all
possible2× 2 squares of tiles, and compute the cost of each by adding the costs of the four adjacent pairs in
the square. Given any possible tiling of the periodicN ×N grid of total costc′, letSa,b be the2× 2 square
whose top left corner is in location(a, b), and letw(Sa,b) be the cost ofSa,b. Then

∑

a,bw(Sa,b) = 2c′.
Therefore, the minimal possible cost achievable for theN ×N grid isN2w/2, wherew is the minimal cost
of any possible2×2 square. WhenN is even, this is actually achievable by repeating a minimal cost square
N/2 times in each direction. The squares with their top left corner in location(a, b), with a, b even, are
exactly the square that we chose to repeat, and the squares inother locations are reflections of that square,
which have the same cost.

Linear cost function:
The construction uses similar ideas to the case with open boundary conditions, but differs in some

details.
The argument now uses4 layers of tiles, plus a main layer implementing the tiling rules of section 3.

The first three layers work in much the same way as the three layers discussed in the previous proof for
WEIGHTED TILING with open boundary conditions. The fourth layer defines borders that can be used
to set the boundary conditions in the main layer. We will consider oddN , with N divisible by 3 (so
N ≡ 3 mod 6). The allowed cost is6N − 2.

Layer 1:
Layer 1 uses tiles , , , , , , and . The tiles , , , , and serve much

the same purpose as in the proof for open boundary conditions, and indeed have the same adjacency rules
between them. Only the adjacency rules forand are new.

The desired optimal tiling for Layer1 has, for all but one row, a single tile interrupting an alternating
line of either and or and (with the two types of row alternating). The remaining row consists
of alternating and tiles, also interrupted by one tile. The tiles form a diagonal line circling the
torus. An example of the optimal tiling is given in figure 11.

To achieve this, we use the adjacency rules given in table 11.
The only2 × 2 squares with total cost0 involve one each of , , , and . Since they must

alternate colors both vertically and horizontally, butN is odd, it is not possible to fill the whole torus with
such squares. Indeed, if we wish to avoid forbidden pairings, any region containing only , , , and

tiles cannot include any path which is topologically non-trivial on the torus. Such a path would circle the
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Horizontal tiling rules

30 0 30 30 30 30 1
0 30 30 30 30 30 1

30 30 30 0 30 30 1
30 30 0 30 30 30 1
30 30 30 30 30 0 1
30 30 30 30 0 30 1
1 1 1 1 1 1 30

Vertical tiling rules

30 30 1 30 1 30 2
30 30 30 1 30 1 2
1 30 30 30 30 0 1

30 1 30 30 0 30 1
1 30 30 0 30 30 1

30 1 0 30 30 30 1
2 2 1 1 1 1 30

Table 11: The tiling weights for layer 1 for WEIGHTED TILING with reflection symmetry and periodic
boundary conditions. Since there is reflection symmetry, the horizontal and vertical tiling weight matrices
are symmetric.

torus either vertically, horizontally, or both, and would therefore produce inconsistent constraints on the tile
types. Any tiling must therefore contain enough adjacent pairs of tiles in the grid with nonzero cost to block
the non-trivial cycles. Forbidden pairings have a high cost, so the cheapest way to block the non-trivial
cycles is with , , and tiles. To block all kinds of non-trivial cycles, we need at least2N − 1 ,

, or tiles in the tiling.
Each included in the tiling has a net cost of4, since for any tile (other than another ), a placed

adjacent to it in any direction costs exactly1 more than any other allowed tile in the same position. We can
account each or tile at an overall cost of2, since that is the minimum cost to place tiles both above
and below it. Therefore, and tiles are cheaper than tiles. However, and tiles are only
allowed to be horizontally adjacent to each other or atile. Therefore, the and tiles must form
horizontal lines. One such line can act as one of the two topologically non-trivial cycles, but a second such
line is not helpful. Furthermore, and must alternate horizontally, which means we cannot go all the
way around a horizontal cycle with just them. Therefore, thehorizontal line must contain at least one;
the cost will be minimal if there is exactly one.

Thus, to minimize the cost, we must have a configuration whichcontains a large region of , , ,
and tiles, arranged to avoid forbidden pairings, plus a horizontal line containingN − 1 alternating
and tiles, andN additional tiles, for a total cost of2(N − 1) + 4N = 6N − 2. Furthermore, there
must be exactly one tile in each row (since there are onlyN of them, and each row must have at least one
in order to get the parity right). The tiles cannot be adjacent vertically, and they must form a continuous
path (in order to form a second topologically non-trivial cycle), so they are adjacent diagonally. BecauseN
is odd, the only way that the tiles can form a closed path is therefore for them to form a single diagonal
line. In short, to achieve a cost6N − 2, we must have a configuration much like that of figure 11.

Layers 2 and 3:
Layers2 and3 work almost the same way as for the open boundary condition case. For the purpose of

the Layer2 and Layer3 rules, a Layer1 tile is treated the same way as a Layer1 tile, and a Layer
1 tile is treated the same way as a Layer1 tile. As before, Layer2 will cycle between columns of
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Layer 4 tile

N N N N N N N N N Y N N
N N N N N N N N N Y N N

Layer 1 Y Y Y Y Y Y Y Y Y N Y N
tile Y Y Y Y Y Y Y Y Y N Y N

Y Y Y Y Y Y Y Y Y N Y N
Y Y Y Y Y Y Y Y Y N Y N
Y Y Y Y Y Y Y Y Y N Y Y

Table 12: The compatibility rules between layer 1 tiles and layer 4 tiles for WEIGHTED TILING with
reflection symmetry and periodic boundary conditions.

Figure 12: The arrangement of layer4 when the Layer1 tiling is given by figure 11.

, , and , and Layer3 will cycle between rows of , , and tiles. SinceN is divisible by3, it
is possible to do this consistently, and there are no other configurations consistent with an optimal Layer1
tiling. However, unlike the open boundary conditions case,there is nothing to fix which columns have
and which rows have , so there are three possible Layer2 tilings and three possible Layer3 tilings which
are consistent with any optimal Layer1 tiling.

Layer 4:
Layer4 is used to set the boundaries of the square(N − 1) × (N − 1) region used in the main layer

to implement the construction of section 3. It uses the tiles, , , , , , , , , , ,
and . We consult Layer1 to determine the locations of boundaries, and Layers2 and3 to determine
the orientation left/right and up/down. The tiling weightsare given in table 13. We also have the rules in
table 12 which specify which pairs of layer 4 tiles and layer 1tiles can be in the same location.

Suppose we have an optimal tiling of Layer1. Then there is a row which contains and , with one
. The locations with or on Layer1 must have on Layer4, but the location cannot, so the

only remaining possibility for that location is a . Since must have adjacent to it horizontally, and
there can be no other tiles on Layer4, this is the only location on Layer4 that contains a tile. The
rest of the column containing the must thus be all tiles. That is, there is a vertical line of tiles
intersecting a horizontal line of tiles at a location. There can be no other , , or elsewhere in
Layer4.

We consider the remaining tiles to be the “interior” of the tiling, defining an(N − 1) × (N − 1) grid.
The tiles , , and will mark the upper boundary of the interior, , , and mark the right edge
of the interior, , , and mark the bottom row, and , , and indicate the leftmost column of
the interior. The corners of the interior are indicated by, , , and . The remaining interior tiles
are . The resulting tiling pattern is given in figure 12.

Main Layers:
In the main layers, we again define directions, breaking the reflection symmetry by looking at Layers
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Tile on right

0 30 30 30 30 0 30 30 30 30 30 30
30 0 30 30 30 30 30 0 30 30 30 30
30 30 30 30 30 30 30 30 30 30 0 30
30 30 30 30 30 30 30 30 0 30 30 30

Tile 0 30 30 30 30 0 30 30 30 30 30 30
on 30 30 30 30 30 30 30 30 30 30 0 30
left 30 0 30 30 30 30 30 0 30 30 30 30

30 30 30 30 30 30 30 30 30 30 0 30
30 30 0 30 30 30 30 30 0 30 30 30
30 30 30 30 30 30 30 30 30 0 30 0
30 30 30 0 0 30 0 30 30 30 30 30
30 30 30 30 30 30 30 30 30 0 30 30

Tile on top

30 30 30 30 30 30 30 30 30 0 30 30
30 30 30 30 30 30 30 30 0 30 30 30
30 30 0 30 30 0 30 30 30 30 30 30
30 30 30 0 0 30 30 30 30 30 30 30

Tile 30 30 30 30 30 30 30 30 30 0 30 30
on 30 30 30 30 30 30 30 30 30 0 30 30
bottom 30 30 30 0 0 30 30 30 30 30 30 30

30 30 0 30 30 0 30 30 30 30 30 30
0 30 30 30 30 30 30 30 0 30 30 30

30 0 30 30 30 30 0 0 30 30 30 30
30 30 30 30 30 30 30 30 30 30 0 0
30 30 30 30 30 30 30 30 30 30 0 30

Table 13: The tiling weights for layer 4 for WEIGHTED TILING with reflection symmetry and periodic
boundary conditions. Even though the underlying rules havereflection symmetry, we have presented them
in a way without reflection symmetry. The distinction between “left” and “right” in a horizontally adjacent
pair is provided by the corresponding pair of layer 2 tiles, and the distinction between “top” and “bottom”
for a vertically adjacent pair is provided by layer 3.
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2 and3. We implement the protocol of section 3 on an(N − 1) × (N − 1) grid defined by the interior
locations determined by Layer4. If the Layer4 tile is a , , or , the main layer tile must be an extra
tile not used in the main set. The extra tile type can only be ina location that has one of those three tile
types on Layer4, and it can be adjacent to any other main layer tile. Locations on Layer4 that have a ,

, , or tile must have a corner tile in the main layer. The other Layer4 tiles can correspond to any
main layer tile. Thus, when Layer1 has an optimal tiling, and Layers2 – 4 have no forbidden pairings, the
main layer only has a tiling without forbidden pairings if the universal Turing machineM accepts on input
fBC(N − 1). That is, there is an overall tiling of cost6N − 2 iff the problem is a “yes” instance; otherwise,
the cost is higher.

4.6 Weighted Tiling with Rotation Symmetry

When we have full rotation symmetry, even the WEIGHTED TILING problem is easy:

Theorem 4.16 For WEIGHTED TILING with rotation symmetry, we have the following results:

• With open boundary conditions: Either there exists computableN0 ∈ Z
+ such that tiling is possible

for N ≥ N0 and impossible forN < N0 or there exists computableN0 ∈ Z
+ such that tiling

is possible forN < N0 and impossible forN ≥ N0. (N0 depends on the weights and maximum
allowed costp(N).)

• With periodic boundary conditions: One of the following three cases holds: There exists computable
N0 ∈ Z

+ such that tiling is possible for allN ≥ N0, there exists computableN0 ∈ Z
+ such that

tiling is impossible for allN ≥ N0, or tiling is possible for all evenN and there exists computable
No ∈ Z

+ ∪ {∞} such that for oddN ≥ No, tiling is possible.

• With the four-corners boundary condition: There exist computableNe, No ∈ Z
+ ∪ {∞} such that

either there exists a tiling for any evenN ≥ Ne or for no evenN ≥ Ne, and either there exists a
tiling for any oddN ≥ No or for no oddN ≥ No.

Proof: Rotation symmetry and open boundary conditions:This case is essentially trivial. We find the
minimal weightw between any pair of tiles, and simply tile the square in a checkerboard pattern with those
two tiles. That is certainly the minimum cost achievable. The resulting cost is2N(N − 1)w.

Rotation symmetry and periodic boundary conditions: Find the lowest weight of a cycle of length
N for the one-dimensional WEIGHTED TILING problem. Call thatw. The minimum achievable total
cost for2-D WEIGHTED TILING with rotation symmetry and periodic boundary conditions is then2Nw
(N rows andN columns each of costw). This can actually always be done using the same tiling as the
unweighted rotation symmetry case (figure 6). Thus, the problem reduces to the one-dimensional case,
which we have argued is inP. However, with the additional reflection symmetry, the argument can be
simplified. If all the weights are positive, thenw ≥ N and tiling is only possible for smallN since we are
assumingp(N) = o(N). If there exists a pair of tiles with negative weight, then for sufficiently largeN , the
minimal cost path will use many of that negative pair, and tiling is always possible for sufficiently largeN .
If the smallest weight is0, then any sufficiently long one-dimensional cycle with constant weightw must
use a0-cost pairing, and it is possible to duplicate the pair of tiles used in that0-cost pairing. Thus, the
minimum weight cycle of lengthN +2 is also at mostw. Therefore, we need only determine the minimum-
weight cycle of odd length containing a zero-cost pairing. (WhenN is even and there is a zero-cost pairing,
a zero-cost cycle is always possible by alternating betweenthe two tiles involved in the pairing.)

Rotation symmetry and 4-corners boundary condition: This case is more difficult, but still compu-
tationally easy (inP). For largeN , the idea is that we will again tile most of the square using a pair of tiles
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Figure 13: The shaded tiles are an upper-left4-square. The tiles in the darker shade are the upper-left
4-border.

ti, tj with minimal cost to be adjacent. That determines the asymptotic scaling of the total cost for largeN .
However, the details are more complicated because of the effect of the corners.

First, note that if the minimum weight for every pair of tilesis positive, then it is certainly not possible
to tile anN × N grid when2N(N − 1) > p(N). Conversely, if there is a pair of tiles(ti, tj) such that
the cost for having them adjacent is negative, then we can always tile anN × N grid for sufficiently large
N by taking a checkerboard ofti andtj, with only the corners different (if the designated corner tile t1 is
not alreadyti or tj). Suppose thatw(t1, ti), w(t1, tj) ≤ w. Then “sufficiently large”N meansN such that
2N(N − 1)− 8 ≥ 8w − p(N).

The only potentially difficult case is thus when there are pairs of tiles(ti, tj) with w(ti, tj) = 0, but
no pairs with a negative cost. We can assumep(N) = c, a constant, as we can always achieve a constant
cost8w using the strategy above (0 cost pairs everywhere but the corners). We will show that if there exists
a tiling of constant cost, the vicinity of the four corners must satisfy certain conditions. Then by running
through the possible configurations near the corners, we canfind a minimum-weight tiling.

Consider the graph whose nodes are tile typesti and edges correspond to pairings of tiles with0 cost.
Let Zα be a set of tiles comprising a connected component of this graph with more than one tile, and let
Z = ∪αZα. We will show that any tiling of total cost at mostc must consist mostly of tiles from one
particularZα, with only a constant number of different tiles, and that indeed it is sufficient to place all the
non-Zα tiles near the corners of the grid. Then by considering all possible low-cost combinations of tiles
near the corners, we will be able to determine the minimum achievable cost for the grid.

We will define thek-square for the upper left cornerto be thek × k square of tiles in the upper left
corner of the grid. Theupper-leftk-borderconsists of the rightmost column and bottom row of thek-square
for the upper left corner. We make similar definitions for theother corners: the upper-rightk-border is the
leftmost column and bottom row of thek-square for the upper right corner, the lower leftk-border is the
rightmost column and top row of thek-square for the lower left corner and the lower rightk-border is the
leftmost column and top row of thek-square for the lower right corner. An example is given in Figure 13.
We say that a square isvalid if its border contains only zero-cost adjacent pairs and thecorner of the square
that is also the corner of the larger grid has the correct corner tile. Since ak-border must be connected that
means that the edges within the border are all contained within a particular connected componentZα.

We will determine if there is anN ×N tiling of the grid by considering all valid tilings for the squares
in each corner of the grid where we allow the sizes of the squares to go up to2c. For each such combination,
we require that the total cost of the tiling be somec′ ≤ c and that the tiles in each border come from the same
connected componentZα. We then must determine whether it is possible to fill the remainder of the grid
with zero-cost adjacent pairs, possibly interrupted by a few additional adjacent pairs with total cost at most
c− c′ (although it will turn out that this is never necessary). Suppose we have such a tiling, and consider tile
ti ∈ Zα on the border of one square, and tiletj ∈ Zα on the border of a different square. Then, as shown
below, there must exist a path fromti to tj that only includes zero-cost adjacent pairs of tiles. Note that the
parity of the length of the path does not depend on which path we choose.

More generally, given twok-squaresI1 and I2 for different corners of the grid, we are interested in
whether it ispossibleto create a path of zero-cost adjacent pairs to get fromti ∈ I1 to tj ∈ I2, without
necessarily being concerned about whether we can tile the whole grid:
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Figure 14: Extending a square to make a corner triangle. The black tiles have nonzero cost to be adjacent to
any other tile. All other pairings that occur in the figure arezero cost.

Definition 4.17 Suppose we have twok-squaresI1 andI2 that are located at different corners of the grid,
with borders fromZα. We say they arecompatible forN andZα if, given tileti on the border ofI1 and tile
tj on the border ofI2, there is a path of zero-cost pairings fromti to tj of the correct length forI1 andI2 to
be placed together on anN ×N grid. We say a set of four squaresI1, I2, I3, andI4 which fit into the four
corners of the grid iscompatible forN andZα if they are compatible in pairs.

Note that it does not matter which tile we pick from the borderto define compatibility. This is because if
we uset′i on the border ofI1 instead ofti, we can take a path fromt′i to ti using only the zero-cost pairings
in the border ofI1, and concatenate it with the path fromti to tj. Similarly, if I1, I2, andI3 are valid squares
located at three different corners, then ifI1 is compatible withI2 andI2 is compatible withI3, it follows
thatI1 is compatible withI3. Also, if I1 andI2 are compatible forN , they are also compatible forN + 2:
Because of the reflection symmetry, we can repeat a pair of adjacent tiles in a path to lengthen it by2.

For largeN , if there is a tiling of theN × N grid with total cost at mostc, then there must exist, for
someα, valid squares in the four cornersI1, I2, I3, andI4 which are compatible forN andZα such that the
total cost ofI1, I2, I3, andI4 is at mostc and the sizes of the squares are betweenc and2c. To see why this
is true, note that there can be onlyc non-zero-cost adjacent pairs in the entire tiling. Therefore, ask ranges
from c to 2c, it must be the case that for each corner at least onek-border contains only zero-cost adjacent
pairs. Furthermore, for each such pair of borders, there areat leastc + 1 disjoint paths from a tile in one
border to a tile in the other border. This follows from the fact that the borders themselves have more thanc
tiles. At least one of these paths must contain only zero-weight pairings. Thus we know that for sufficiently
large grids, if there is a tiling of total weight at mostc, then there must be four valid squares for the four
corners which are compatible forN andZα. The converse is also true:

Lemma 4.18 Let I1, I2, I3, and I4 be four squares which are compatible forN andZα, N sufficiently
large. Then there is a tiling of theN × N grid usingI1, I2, I3, andI4 in the four corners, with only tiles
fromZα used in the rest of the grid.

Proof of lemma: Assume without loss of generality thatI1 is in the upper left corner,I2 is in the upper
right corner,I3 is in the lower left corner, andI4 is in the lower right corner of the grid.

We will extend each square to create an isosceles right triangle whose outer diagonal border is composed
of just one kind of tile. This can be done by progressively duplicating the outer sides of the square, each time
shifting by one space towards the edge of the grid, as in figure14. Finally, we can add additional diagonal
layers to make sure the outer diagonal border is any particular tile fromZα, and to increase the size of the
triangle as much as desired.

We can define compatibility of the newly created corner triangles in the same way as for the squares.
When squaresI andJ for two different corners are compatible forN andZα, then their corresponding
triangles remain compatible when extended as described above, at least whenN is large. In particular, there
is a path of zero-cost tile pairs that will let us tile the top row of the grid betweenI1 and I2. Then we
can copy the tiling of the interval between triangles diagonally down and to the left, much as in figure 6
describing the unweighted case. This fills in the upper left corner of the grid, up to the diagonal line defined
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Filled by
checkerboard
of and

Figure 15: A16× 16 grid tiled by extending triangles on the four corners.

by the leftmost tile of the triangle forI2 and the topmost tile of the triangle forI3. We can do the same
thing for the lower right corner of the grid, tiling the rightedge betweenI2 andI4, and copying this tiling
diagonally down and to the left. This leaves only a diagonal strip betweenI2 andI3, and we can tile that
using a checkerboard pattern consisting of the outermost tile ti for the triangles and any other tile fromZα
which has a zero-cost pairing withti. See figure 15 for an example of a complete grid tiled in this way.

Thus, we can use the following algorithm to determine what the lowest achievable cost is for large even
and odd grid sizes, when the lowest-cost pairings are cost0: List the low-cost valid squares for each corner
up to size2c and determine which sets of four are compatible for large even N and for large oddN . The
lowest total cost for each case tells us the minimum achievable cost.

5 The Quantum Case

5.1 Preliminaries

As in the 2-dimensional classical tiling problem, we make use of a binary counting Turing machineMBC .
Because we are working with quantum systems, we will requirethatMBC be reversible. Bernstein and
Vazirani [BV97] have shown that any deterministic Turing machine can be made reversible, meaning that
given a configuration of the Turing machine, it has a unique predecessor in the computation. There may be
some additional overhead but it is not significant. We can still assume that there is a functionf : Z → {0, 1}∗

such that for some constantN0 and everyN ≥ N0, if MBC runs forN steps, then the stringfBC(N) will
be written on the tape with the rest of the tape blank. Moreover there are constantsc1 andc2 such that ifn
is the length of the stringfBC(N) andN ≥ N0, then2c1n ≤ N ≤ 2c2n. We will also assume that for any
binary stringx, we can computeN such thatfBC(N) = x in time that is polynomial in the length ofx.

We can reduce any language inQMAEXP to a languageL that is accepted by a verifier who uses a
witness of size2c1n and whose computation lasts for2c1n steps, wheren is the length of the input. This is
the same reduction used in the classical case, in which the input is padded to length|x|k/c1. We can use
standard boosting techniques to assume that the probability of acceptance is at least1−ǫ for a “yes” instance
or at mostǫ for a “no” instance, withǫ = 1/poly(N) [KSV02]. Suppose we are given an arbitrary verifier
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quantum Turing machineV which takes as input a classical/quantum pair(x, |ψ〉) such that|ψ〉 has2c1n

qubits and halts in2c1n steps. Based onV , we will produce a Hamiltonian termH which acts on a pair of
finite-dimensional particles. We will also produce two polynomialsp andq. The reduction for Theorem 2.5
will then take input stringx and output an integerN such thatfBC(N − 3) = x. The Hamiltonian will
have the property that for anyx, if there exists a|ψ〉 that causesV to accept with probability at least1 − ǫ,
then whenH is applied to every neighboring pair in a chain of lengthN , the resulting system has a unique
ground state whose energy is at mostp(N). If for every |ψ〉, V accepts with probability at mostǫ, then the
ground state energy of the system is at leastp(N) + 1/q(N).

Quantum Turing machines were first introduced in [Deu85] andfurther developed in [BV97]. The latter
paper showed that we can make a number of simplifying assumptions about the form of a quantum Turing
machine and not restrict its power in a complexity-theoretic sense. In particular, we can assume without loss
of generality that the Turing machineV has a one-way infinite tape and that the head starts in designated
start stateq0 at the left-most end of the tape. We will also assume that on input x, after 2c1|x| steps, the
Turing machine is in an accepting or rejecting state and the head is again at the left-most end of the tape. We
will also assume that the witness will be stored in a paralleltrack with the left-most qubit in the left-most
position of the tape.

We now describe the set of states for the particles. A standard basis state for the whole system will be
denoted by the state for each particle. Statesand are special bracket states that occur at the ends of
the chain.

Definition 5.1 A standard basis state isbracketedif the left-most particle is in state , the right-most
particle is in state , and no other particle in the chain is in state or . Sbr is the space spanned by all
bracketed states.

We will restrict our attention for now toSbr and add a term later that gives an energy penalty to any state
outsideSbr. The rest of the states will be divided into six tracks, so thestate of a particle is an ordered6-tuple
with each entry specifying the state for a particular track.The set of allowable states will not necessarily be
the full cross product of the states for each track.

Two of the tracks will implement a clock, with one track working as sort of a second hand and another
track as a minute hand. The other four tracks will be used to implement two Turing machines which share a
work tape. Track 3 holds the work tape. Track 4 holds the stateand head location for the first Turing Machine
(which isMBC ) and Track 5 holds the state and head location for the second Turing Machine (which isV ).
The sixth track will hold the quantum witness forV . Since there is limited interaction between the tracks,
it will be simpler to describe the Hamiltonian as it acts on each track separately and then describe how they
interact. The figure below gives a picture of the start state for the system. Each column represents the state
of an individual particle.

→
0 · · · Track 1: Clock second hand · · ·

0̄ 0 · · · Track 2: Clock minute hand · · · 0 0

# # · · · Track 3: Turing machine work tape · · · # #
q0 · · · Track 4: Tape head and state for TMMBC · · ·

q0 · · · Track 5: Tape head and state for TMV · · ·
0/10/1 · · · Track 6: Quantum witness forV · · · 0/10/1

As is typical in hardness results for finding ground state energies, the Hamiltonian applied to each pair
will consist of a sum of terms of which there are two types. Type I terms will have the form|ab〉〈ab| wherea
andb are possible states. This has the effect of adding an energy penalty to any state which has a particle in
statea to the immediate left of a particle in stateb. We will say a configuration islegal if it does not violate
any Type I constraints. Type II terms will have the form:1

2(|ab〉〈ab|+ |cd〉〈cd|−|ab〉〈cd|−|cd〉〈ab|). These
terms enforce that for any eigenstate with zero energy, if there is a configurationA with two neighboring
particles in statesa andb, there must be a configurationB with equal amplitude that is the same asA except
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that a andb are replaced byc andd. Even though a Type II term is symmetric, we associate a direction
with it by denoting it withab → cd. Type II terms are also referred to astransition rules. We will say
that configurationA transitions into configurationB by rule ab → cd if B can be obtained fromA by
replacing an occurrence ofab with an occurrence ofcd. We say that the transition rule applies toA in the
forward direction and applies toB in the backwards direction. We will choose the terms so that for any
legal configuration, at most one transition rule applies to it in the forward direction and at most one rule
applies in the backwards direction. Thus, a state satisfying all Type I and Type II constraints must consist of
an equal superposition of legal configurations such that there is exactly one transition rule that carries each
configuration to the next. The illegal pairs are chosen so that any state which satisfies the Type I and Type II
constraints corresponds to a process we would like to simulate or encode in the ground state. In our case, the
process is the execution of two Turing Machines each forN − 3 steps, whereN is the length of the chain.

We will make use of the following simple lemma throughout theconstruction in limiting the set of
standard basis states in the support of the ground state.

Lemma 5.2 For any regular expression over the set of particle states inwhich each state appears at most
once, we can use illegal pairs to ensure that any legal standard basis state for the system is a substring of a
string in the regular set.

Proof: The alphabet for the regular expression is the set of particle states. Since each character appears once
in the regular expression, the set of charactersb which can follow a particular charactera is well defined and
does not depend on where the character appears in the string.Therefore, we can add an illegal pairab if b is
not one of the characters which can followa. Any substring of the regular expression has no illegal pairs.

5.2 Outline of the Construction

We give now a brief outline of the construction and provide the full details in the subsections that follow.
Illegal pairs are used to enforce that the state of Track 1 is always of the form

∗
(→ +

→

)
∗

. (The+
denotes the regular expression OR and not a quantum superposition.) There is one arrow symbol on Track
1 that shuttles back and forth between the left end and the right end and operates as a second hand for our
clock. We call one round trip of the arrow on Track 1 aniteration. Every iteration has2(N − 2) distinct
states and2(N −2) transitions. Each iteration causes one change in the configuration on Track 2 which acts
then as a minute hand for the clock. The Track 2 states are partitioned into two phases. The first phase is
called theCounting Phaseand consists of allN − 2 of the states of the form 1

∗
0̄ 0

∗
. The second

phase is theComputation Phaseand consists of allN − 2 of the states of the form 1
∗

1̄ 2
∗

states.
The 1

∗
0̄ 0

∗
states are ordered according to the number of particles in state 1 and the 1

∗
1̄ 2

∗

states are ordered according to the number of particles in state 2 . The state immediately after 1
∗

0̄ in
the ordering is 1

∗
1̄ . The target ground state for the clock is the uniform superposition of all the clock

states, entangled appropriately with states of the other4 tracks. We need to have illegal pairs that cause all
other states to have an energy cost. As is the case in other such proofs, it is not possible to disallow all states
directly with illegal pairs. Instead, we need to show that some states are unfavorable because they evolve
via forward or backwards transitions to high energy states.

Each of the arrow states for Track 1 will come in three varieties: →0 and

→

0 will be used during the initial
minute of the clock when it is in state 0̄ 0

∗
and will be used to check initial conditions on the other

tracks. →1 and

→

1 will be used during the counting phase and→2 and

→

2 will be used during the computation
phase.→1 and →2 will be used to trigger different actions on the other tapes.Every time the→1 sweeps from
the left end of the chain to the right end of the chain, it causesMBC to execute one more step. Thus,MBC is
run for exactlyN − 2 steps. The→2 symbol is what causes the Turing machineV to execute a step. We then
add a term that penalizes any state which is in the final clock state and does not have an accepting Turing
machine state. Thus, only accepting computations will havelow energy.
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Phase Function Track1 state Track2 state Number of steps
Initialization Phase Check start state

∗
( →0 +

→

0 )
∗

0̄ 0
∗

2(N − 2)

Counting Phase RunMBC
∗
( →1 +

→

1 )
∗

1
∗

0̄ 0
∗

(N − 2)(2N − 5)

Computation Phase RunV
∗
( →2 +

→

2 )
∗

1
∗

1̄ 2
∗

(N − 2)(2N − 5)

Table 14: The different clock phases in the quantum construction on a line.

Finally we use an additional term to enforce the boundary conditions. This is achieved by weighting
the Hamiltonian terms for the illegal pairs and transition rules by a factor of three. Then an additional term
is applied to each particle, which gives a benefit to any particle that is in the or state. Only the left-
most and right-most particles can obtain this energy benefitwithout incurring the higher cost of having an
endpoint state in the middle of the chain.

5.3 The Clock Tracks

There will be four types of states in Track 1:→ ,

→

, , and . (However, the→ and

→

states each come in
multiple varieties — see below for the details.) We will haveillegal pairs that will enforce that any standard
basis state with no illegal pairs must be a substring of a string from the regular expression:

∗
(→ +

→

)
∗

.

Furthermore, any bracketed standard basis state must be exactly a string corresponding to this regular ex-
pression. The transition rules then move the arrows in the direction in which they are pointing:

1. → → → ,

→

→

→

: in the forward direction, arrows move in the direction theyare pointing.
In the reverse direction, they move in the opposite direction.

2. → →

→

,

→

→ → : arrows change direction when they hit an endpoint.

Note that the→ symbol always interacts with the particle on its right in theforward direction and the
particle on its left in the reverse direction. Similarly, the

→

symbol interacts with the particle on its left in
the forward direction and the particle on the right in the reverse direction. Therefore, we know that every
legal configuration for Track 1 has exactly one transition rule that applies in the forward direction and one
that applies in the reverse direction. The arrow symbol on Track 1 shuttles back and forth between the left
end and the right end as shown below and operates as a second hand for our clock. We call one round trip
of the arrow on Track 1 aniteration. Every iteration has2(N − 2) distinct states and2(N − 2) transitions.
Each iteration causes one change in the configuration on Track 2 which acts then as a minute hand for the
clock.

→

→

→

→

→

→

→ →

→

There are five states for Track 2:0 , 1 , 2 , and 0̄ and 1̄ . We will have illegal pairs that will enforce
that any legal configuration on Track 2 must have the form1

∗
( 0̄ 0

∗
+ 1̄ 2

∗
) . We will impose an

ordering on the set of all possible such states and select transitions so that in one Track 1 iteration, the state on
Track 2 will advance from one configuration to the next in the ordering. Each state for Track 2 corresponds
to a minute in our clock and the states are partitioned into two phases. The first phase is called theCounting
Phaseand consists of all the states of the form1

∗
0̄ 0

∗
. The second phase is theComputation Phase

44



and consists of all of the states of the form1
∗

1̄ 2
∗

. The 1
∗

0̄ 0
∗

states are ordered according
to the number of particles in state1 and the 1

∗
1̄ 2

∗
states are ordered according to the number of

particles in state2 . The state immediately after 1
∗

0̄ in the ordering is 1
∗

1̄ . The ordering of
the states for Track 2 is shown below for a six particle system.

0̄ 0 0 0 1 1 1̄ 2

1 0̄ 0 0 1 1̄ 2 2

1 1 0̄ 0 1̄ 2 2 2

1 1 1 0̄

1 1 1 1̄

The arrow particle on Track 1 will cause a transition from oneTrack 2 state to the next. Each of the
arrow states for Track 1 will come in three varieties:→0 and

→

0 will be used during the initial minute of the
clock when it is in state 0̄ 0

∗
and will be used to check initial conditions on the other tracks. →1 and

→

1

will be used during the counting phase and→2 and

→

2 will be used during the computation phase. We need
to describe how these different Track 1 symbols trigger transitions on Track 2. The transitions for Track 1
will remain as described in that the transition→ →

→

will always cause a transition from one of the
→ symbols to one of the other→ symbols, but we need to specify which→ symbols are used in order to
ensure that forward and backwards transitions remain unique for each standard basis state.

We will use ordered pairs to denote a combined Track 1 and Track 2 state for a particle as in[ , 1 ].
The states for the left-most and right-most particles are not divided into tracks and are simply or . As
space permits we will denote the states for the different tracks vertically aligned. Examples for neighboring
particle states are given below:

→

2

→

2

→

1 1̄

.

We will use the symbol• to denote a variable state. Thus[→ , • ] is used to denote any state in which the
Track 1 state is→ .

Clock States for the Initialization: When Track 1 has a→0 or

→

0 symbol, we want to ensure that Track
2 is in state 0̄ 0

∗
. Therefore, we disallow[ →0 , • ] and[

→

0 , • ] for any • that is not 0 or 0̄ . We have
the usual transitions that advance the Track 1 arrow:

→
0

• •

→
→
0

• •

→

0

• •

→

→

0

• •

→
0

•

→

→

0

•

These happen regardless of the values on the other tracks anddo not change the values on the other Tracks.
The state [ →0 , 0̄ ] does not have a transition in the reverse direction since this only occurs in the initial
state. Finally, we have the transition

→

0

0̄

→
→1

0̄

The presence of thē0 on Track 2 specifies that→1 should transition to

→

0 in the reverse direction instead of

→

1 . The initial iteration of the second hand is demonstrated ona chain of length six in figure 16.
Clock States for the Counting Phase:During the counting phase, Track 2 will always be in some

state of the form 1
∗

0̄ 0
∗

, so we will forbid the states[ →1 , • ] and[

→

1 , • ] when • is 2 or 1̄ . The
right-moving transitions will remain unchanged:→1 → →1 . These occur regardless of the contents of
Track 2 and do not effect any change on Track 2. The change in direction at the right end will depend on the
contents of Track 2:

→1

0
→

→

1

0

→1

0̄

→

→

2

1̄
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→
0

0̄ 0 0 0 0̄ 0

→

0

0 0

0̄

→
0

0 0 0 0̄

→

0

0 0 0

0̄ 0

→
0

0 0

→

0

0̄ 0 0 0

0̄ 0 0

→
0

0

→1

0̄ 0 0 0

0̄ 0 0

→

0

0

Figure 16: The initial iteration of the second hand on a chainof length six

The latter transition triggers the transition to the computation phase. In the left-moving direction, the arrow
will sweep past pairs of0 particles and pairs of1 particles:

→

1

0 0
→

→

1

0 0

→

1

1 1
→

→

1

1 1
.

When the arrow on Track 1 sweeps left and meets the0̄ particle on Track 2, it triggers an advance of the
minute hand. This does not change the transition on Track 1:

→

1

0̄ 0
→

→

1

1 0̄

.

Note that the

→

1 never coincides with thē0 , so we will disallow the state[

→

1 , 0̄ ]. Finally, we have that

→

1

must turn at the left end:

→

1

1
→

→1

1
.

We illustrate in figure 17 the first iteration of the counting phase and then the last iteration in the counting
phase. The very last transition illustrates the transitionto the computation phase.

Clock States for the Computation Phase:During this time, Track 2 will always be in some state of the
form 1

∗
1̄ 2

∗
, so we will forbid the states[ →2 , • ] and[

→

2 , • ] when • is 0 or 0̄ . Since→2 should
never be in the same configuration as0̄ , we will also disallow the pair[ →2 , 1 ][ , 0̄ ]. The left-moving
transitions will remain unchanged:

→

2 →

→

2 . These occur regardless of the contents of Track 2 and do
not effect any change on Track 2. The change in direction at the left end will happen as long as there is a1

left in Track 2:

→

2

1
→

→
2

1
.

When the state on Track 2 becomes1̄ 2
∗

and the left-moving arrow on Track 1 reaches the left end of
the chain, we want the clock to stop since this is the very laststate. Thus, there is no forward transition out
of [

→

2 , 1̄ ]. In the right-moving direction, the arrow will sweep past pairs of 1 particles and pairs of2
particles:

→
2

1 1
→

→
2

1 1

→
2

2 2
→

→
2

2 2
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First iteration of the counting phase

→1

0̄ 0 0 0

0̄

→1

0 0 0

0̄ 0

→1

0 0

0̄ 0 0

→1

0

0̄ 0 0

→

1

0

0̄ 0

→

1

0 0

0̄

→

1

0 0 0

→

1

1 0̄ 0 0

→1

1 0̄ 0 0

Last iteration of the counting phase

1 1 0̄

→

1

0

1 1

→

1

1 0̄

1

→

1

1 1 0̄

→

1

1 1 1 0̄

→1

1 1 1 0̄

1

→1

1 1 0̄

1 1

→1

1 0̄

1 1 1

→1

0̄

1 1 1

→

2

1̄

Figure 17: The first iteration and last iterations of the counting phase. The very last transition illustrates the
transition to the computation phase.
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When the arrow on Track 1 sweeps right and meets the1̄ particle on Track 2, it triggers an advance of the
minute hand:

→
2

1 1̄

→
→
2

1̄ 2

Note that since the→2 never coincides with thē1 , we can make the state[ →2 , 1̄ ] illegal. Finally, we have
the turning at the right end:

→
2

2
→

→

2

2

We illustrate in figure 18 the first iteration in the computation phase and then the last iteration. The very last
state shown is the final state for the clock.

First iteration of the Computation Phase

1 1 1

→

2

1̄

1 1

→

2

1 1̄

1

→

2

1 1 1̄

→

2

1 1 1 1̄

→
2

1 1 1 1̄

1

→
2

1 1 1̄

1 1

→
2

1 1̄

1 1 1̄

→
2

2

1 1 1̄

→

2

2

Last iteration of the Computation Phase

→
2

1 1̄ 2 2

1̄

→
2

2 2 2

1̄ 2

→
2

2 2

1̄ 2 2

→
2

2

1̄ 2 2

→

2

2

1̄ 2

→

2

2 2

1̄

→

2

2 2 2

→

2

1̄ 2 2 2

Figure 18: The first and last iterations of the computation phase. The very last state shown is the final state
for the clock.

Before describing the states and transitions for the other tracks, we will pause to consider the Hamil-
tonian created so far. A single two-particle term will be thesum of the terms from the transition rules and
the illegal pairs described so far. Suppose that a state of a particle is described only by its state on Tracks
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1 and 2. LetHN be the system resulting from applying this term to every neighboring pair in a chain ofN
particles. What is the dimension and structure of the groundstate ofHN restricted toSbr?

Definition 5.3 We will say that a standard basis state iswell-formed if the Track 1 state corresponds to a
string in the regular language

∗
(→ +

→

)
∗

and if the Track 2 state corresponds to a string in the
regular language 1

∗
( 0̄ 0

∗
+ 1̄ 2

∗
) .

Note that if a standard basis state is well-formed it must be in Sbr.

Lemma 5.4 Consider a well-formed standard basis state. There is at most one transition rule that applies
to the state in the forward direction and at most one that applies to the state in the reverse direction.
Furthermore, the set of well-formed states is closed under the transition rules.

Proof: The rules are summarized in table 15. If only the Track 1 states are specified then the rule holds for
any states on Track 2 and does not alter the Track 2 states. No pair appears twice on the left-hand side of a
transition rule and no pair appears twice in the right-hand side of a transition rule. It can be verified that the
application of a transition rule maintains the condition ofbeing well-formed.

Consider the set of states that correspond to the valid clockstates beginning with →
0

∗
on Track

1 and 0̄ 0
∗

on Track 2 and ending with

→

2

∗
on Track 1 and 1̄ 2

∗
on Track 2. There are

exactly4(N − 2)2 such states in this sequence. Let|φcl〉 be the uniform superposition of these states.

Lemma 5.5 Consider a well-formed standard basis states that is not in the support of|φcl〉. Then for some
i ≤ 2N , s will reach a state with an illegal pair afteri applications of the transition rules in either the
forward or reverse direction.

Proof: We will argue that for each well-formed standard basis state, it is either in the support of|φcl〉, has
an illegal pair or is within2N transitions of a state which contains an illegal pair. In some cases, we have
added penalties for a particular particle state (e.g.,[ →0 , 2 ]). This can easily be handled with illegal pairs by
making any pair illegal which contains that particular state.

Every Track 1 configuration of the form
∗
( →0 +

→

0 )
∗

occurs in|φcl〉. Moreover, for every
standard basis state in the support of|φcl〉, if the control state is→0 or

→

0 , then Track 2 is in state 0̄ 0
∗

.
Now consider a state in which Track 2 has a1 , 1̄ or 2 particle and the control particle on Track 1 is→0 or

→

0 . The control particle will transition (in either the forward or reverse direction) towards the1 , 1̄ or 2

particle on Track 2 and eventually they will coincide. This happens in fewer thanN moves and will result
in an illegal state.

Now consider the standard basis states whose control particle is →1 or

→

1 . Every possible combination of
∗
( →1 +

→

1 )
∗

occurs in|φcl〉 with every possible combination of 1
∗

0̄ 0
∗

except those where
the control particle is

→

1 and coincides with thē0 . The state[

→

1 , 0̄ ] is an illegal particle state. So we now
need to take care of the case where the control particle on Track 1 is →1 or

→

1 and Track 2 is a 1
∗

1̄ 2
∗

state. Since it is illegal for a→1 or

→

1 to coincide with a 1̄ or 2 on Track 2, we can assume that the control
particle on Track 1 is over a1 particle on Track 2. In this case, it will transition in the forward direction in
fewer than2N steps (possibly turning at the left end of the chain) until itreaches thē1 . This will result in
a particle in state[ →1 , 1̄ ] which is illegal.

Finally, consider the case where the control particle is→
2 or

→

2 . Every possible combination of the
expression

∗
( →2 +

→

2 )
∗

occurs in|φcl〉 with every possible combination of 1
∗

1̄ 2
∗

except
those where the control particle is→2 and coincides with thē1 . The state[ →2 , 1̄ ] is illegal. So we now
need to take care of the case where the control particle on Track 1 is →2 or

→

2 and Track 2 is a 1
∗

0̄ 0
∗

state. Since it is illegal for a→2 or

→

2 to coincide with a 0̄ or 0 on Track 2, we can assume that the control
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Right-moving Control
→
0 →

→

0

→
0 → →

0

→1

0
→

→

1

0

→1

0̄

→

→

2

1̄

→1 → →1

→
2 →

→

2

→
2

1 1
→

→
2

1 1

→
2

2 2
→

→
2

2 2

→
2

1 1̄

→
→
2

1̄ 2

→
2

2
→

→

2

2

Left-moving Control

→

0

0̄

→
→1

0̄

→

0 →

→

0

→

1

1
→

→1

1

→

1

0 0
→

→

1

0 0

→

1

1 1
→

→

1

1 1

→

1

0̄ 0
→

→

1

1 0̄

→

2 →

→

2

→

2

1
→

→
2

1

Table 15: The transition rules for Tracks1 and2.
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particle on Track 1 is over a1 particle on Track 2. In this case, it will transition in the forward direction in
fewer than2N steps (possibly turning at the left end of the chain) until itis just before the0̄ on Track 2.
This will result in a pair[ →2 , 1 ][ , 0̄ ] which is illegal.

Lemma 5.6 |φcl〉 is the unique ground state ofHN |Sbr
. All other eigenstates have an energy that is at least

Ω(1/N3).

Proof: The proof of this lemma follows from the standard techniquesused for showingQMA-completeness
of 1-dimensional Hamiltonians [AGIK09], so we only give a briefsketch here. The idea is that any standard
basis state insideSbr which is not well-formed will have energy at least one from the illegal pairs, so we
can restrict our attention to well-formed states. Now we create a graph over well-formed standard basis
states. There is an edge from statea to stateb if b can be reached froma by the application of one transition
rule in the forward direction. Lemma 5.4 implies that this graph is composed of disjoint directed paths.
Call Htrans the Hamiltonian resulting from the sum of all the terms from transition rules andHlegal the
Hamiltonian from illegal pairs. The subspace spanned by thestates in a single path is closed underHtrans

andHlegal. Furthermore, the matrix forHtrans restricted to the states in a path looks like
















1
2 -12 0 · · · 0

-12 1 -12 0
. . .

...

0 -12 1 -12 0
.. .

...
. . . . . . . .. . . . .. .

... 0 -12 1 - 12 0
0 -12 1 -12

0 · · · 0 - 12
1
2

















where the dimension of the matrix is the length of the path. The matrix forHlegal is diagonal in the standard
basis. If the path contains no states with illegal pairs, thenHlegal is zero. The unique ground state has zero
energy and is the uniform superposition of all standard basis states in the path. Moreover, the next highest
energy state has energy at least1/L, whereL is the length of the path. In our case, Lemma 5.5 indicates
there is exactly one path with no illegal states which corresponds to|φcl〉. The length of this path isO(N2),
so the next highest eigenvalue in this space is at leastΩ(1/N2).

Now consider a path with some illegal states and suppose thatthe ratio of illegal states in the path to the
length of the path is1/s. Again, it is known [AGIK09] that any state in the subspace spanned by the states
in this path will have energy be at least1/s3. By Lemma 5.5, we know that for any path which does not
correspond to|φcl〉 the ratio of illegal states to the total number of states at least1/2N , which means that
any state in this subspace will have energy at leastΩ(1/N3).

The remaining subsections describe how the arrow on Track 1 interacts with the other four tracks. The
only role of Track 2 is to record the time. It causes the control state on Track 1 to transition from the counting
phase to the computation phase and finally to stop iterating at the end of the computation phase.

5.4 Initialization Phase

Track 3 will be used as the tape for both Turing machines. Therefore the set of track 3 states for a particle
consists of the union of the two alphabets for the two Turing machines. We want to ensure that this track is
initialized to all blank symbols, so we disallow any state inwhich Track 1 is in→0 and Track 3 has anything
but .

Track 4 will store the location and state forMBC . Therefore, we will add illegal pairs to ensure that the
Track 4 state for the system always has the form

∗
•

∗
, where • is a state forMBC . We assume
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thatMBC has a designated start states , so we want to ensure that Track 4 starts out in the configuration
s

∗
. To do this, we make any state illegal in which the Track 1 state is →

0 and the Track 4 state is
anything excepts or . Furthermore, for any pair in which the left particle is in state , and the Track
1 state is→0 , the Track 4 state must bes . For any pair in which the left particle is not in state, and the
Track 1 state is→0 , the Track 4 state must be . The initial conditions for Track 5 are similar, except that
the starting state forV is used. Since Track 6 holds the quantum witness forV , it can be any state onn
qubits. A state of a particle is now specified by a6-tuple.

5.5 Counting Phase

Every time the→1 sweeps from the left end of the chain to the right end of the chain, it causesMBC to
execute one more step. Thus,MBC is run for exactlyN − 2 steps. Since the classical, reversible Turing
machineMBC is a special case of a quantum Turing machine, we describe thedetails for the more general
case. The→2 symbol is what causes the Turing machineV to execute a step.

5.6 Computation Phase

We will examine a particular quantum rule and explain the desired behavior of our machine.
Consider a pair(q, a), whereq ∈ Q anda ∈ Σ. a will encompass the state on the work tape as well as

the state on the witness tape. Since the→
2 particle triggers the execution of a step, we will consider particles

as triplet states of the form[ →2 , q, a], [ , q, a] and[ , q, a], for a ∈ Σ andq ∈ Q∪{ }∪{ }. q specifies
the Track 5 state, anda tells us the state of Track 3 and Track 6. It will be convenientto refer toq as a generic
Track 5 state of a particle which could be a state fromQ as well as or . We will also be interested in the
computation stateof a particle which just consists of a pair[q, a], whereq ∈ Q ∪ { } ∪ { } anda ∈ Σ.

If the TM is in stateq and in a location with ana on the tape, the QTM defines a superposition of
possible next moves. Letδ(q, a, p, b,D) denote the amplitude that the next state will be a configuration in
which the state isp, the tape symbol is overwritten byb and the head moves in directionD. We will use a
fact established in [BV97] that the states of a quantum Turing machineQ can be partitioned into two sets
QL andQR such that states inQL can be reached only by moves in which the head moves left andQR can
be reached only by moves in which the head moves right. We willuseqL to designate a generic element of
QL andqR to designate a generic element ofQR.

We will need to execute the moves in which the head moves left separately from the moves in which the
head moves right. In order to do this, we introduce a new stateq′R for every stateqR ∈ QR. We will call
this setQ′

R. It will be forbidden to have the Turing machine head in a state fromQ′
R without also having

the →
2 state on Track 1 in the same location. It will also be forbidden to have the→2 in the same location as

q if q ∈ QL. We will be interested in two particular subspaces defined onthe computation state for a pair of
neighboring particles[q, a][p, b], wherea, b ∈ Σ andq, p ∈ Q ∪ { } ∪ { }. SA is the space spanned by
all such legal basis states such thatq 6∈ QL, p 6∈ Q′

R. Note that if the Track 1 state for a pair of particles is
| →2 〉, then the only possible computation states for the pair are in SA. We also defineSB to be the space
spanned by all legal basis states of the form[q, a][p, b] such thatp 6∈ QL, q 6∈ Q′

R. Similarly, if the Track 1
state for a pair of particles is| →

2 〉, then the only possible legal computation states for the pair are inSB .
We will describe a transformationT that mapsSA to SB. The extended mapT ⊗ | →

2 〉〈 →2 | as it
is applied to each pair of particles in turn will implement a step of the Turing machine. We will call this
extended map atransition rulesince it carries one state to another in the same way that the transition rules
for the clock state did. The difference now is that the stateswill in general be quantum states.

The transformation onSA works in two parts. At the moment that the Track 1 arrow moves from the
position to the left of the head, we execute the move for that location. For every(qL, b, L), with amplitude
δ(q, a, qL, b, L), we write ab in the old head location and move the head left into stateqL. For every
(qR, b, R), with amplitudeδ(q, a, qR, b, R), we write ab in the old head location, transition to stateq′R and
leave the head in the same location. We need to defer the action of moving the head right until we have
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access to the new location. In the next step of the clock, whenthe →
2 is aligned with the stateq′R, we move

it right and convert it toqR.
That is, we want a sequence of two transitions.

∣
∣
∣
∣
∣
∣

→
2

q
• a

〉

→
∑

a,b,qL,q

δ(q, a, qL, b, L)

∣
∣
∣
∣
∣
∣

→
2

qL
• b

〉

+
∑

a,b,qR,q

δ(q, a, qR, b, R)

∣
∣
∣
∣
∣
∣

→
2

q′R
• b

〉

. (23)

After this step, the configuration is a superposition of states in which the step has been performed on the
configurations with the head in the same location as the→

2 state, except that moving the head to the right has
been deferred. If the TM state is primed and is aligned with the location of the→2 , that triggers the execution
of the right-moving step.

∣
∣
∣
∣
∣
∣

→
2

q′R
• •

〉

→

∣
∣
∣
∣
∣
∣

→
2

qR
• •

〉

. (24)

Otherwise, the→2 state just sweeps to the right, leaving the other tracks unchanged:

∣
∣
∣
∣
∣
∣

→
2

qR
• •

〉

→

∣
∣
∣
∣
∣
∣

→
2

qR
• •

〉 ∣
∣
∣
∣
∣
∣

→
2

• •

〉

→

∣
∣
∣
∣
∣
∣

→
2

• •

〉 ∣
∣
∣
∣
∣
∣

→
2

• •

〉

→

∣
∣
∣
∣
∣
∣

→
2

• •

〉

(25)
Note that transformations (23), (24) and (25) defineT on every state inSA. Furthermore, the image ofT |SA

is in SB . A critical fact is that afterT is applied to a pair, the computation state of that pair is inSB, which
implies that the next pair over is now in subspaceSA andT can be applied to this new pair. We need to now
show thatT has the necessary properties to be expressed as a Type II Hamiltonian term with the|cd〉 final
state a superposition.

Claim 5.7 T is a partial isometry (meaning it preserves inner products)when restricted toSA.

SinceSA andSB have the same dimension, the claim implies thatT † is well-defined and a partial isometry
onSB . We can extendT to be a unitary map on the full Hilbert space. Then we select the Hamiltonian term
to be:

ISA
⊗ | →2 〉〈 →2 |+ ISB

⊗ | →
2 〉〈 →

2 | − T ⊗ | →
2 〉〈 →2 | − T † ⊗ | →2 〉〈 →

2 |.

Proof of claim: Expressions (23), (24) and (25) each defineT on a different orthogonal subspace ofSA.
SA1 is the space of the form[ , • ][q, a], SA2 is the space of states of the form[q′R, • ][ , • ] andSA3 is
the space spanned by states of the form[qR, • ][ , • ], [ , • ][ , • ] and[ , • ][ , • ]. We will argue
thatT is a partial isometry when restricted to each ofSA1, SA2 andSA3. Furthermore the images ofTSA1

,
TSA2

andTSA3
are mutually orthogonal. This implies thatT is a partial isometry onSA.

T is clearly a partial isometry on each ofSA2 andSA3. We only need to examine the transformation
given in (23). We know that the application of a move of the QTMis unitary. In particular, it is unitary
when restricted to the space of all configurations with the head in a particular location. This means that the
transformation (23) (T restricted to states of the form[ , • ][q, a]) is a partial isometry.

By construction, a single iteration will implement the correct transition rule for the TM head in a single
specific position. We should also verify that it acts correctly when the head is in a superposition of locations.
In particular, when the TM head moves right from locationi, it can end up in the same location as when
it moves left from locationi + 2. In our implementation, when each step is implemented, these steps are
orthogonal because the Track 1 state differs. They are also orthogonal in the original TM rule, since after
the head moves right, it will be in a state fromQR, whereas after it moves left, it will be in a state fromQL,
which is orthogonal toQR. Thus, our implementation is globally performing the correct TM rule.
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We have argued that the extended transformations (or transition rules) which implement the Turing
Machine behave as we would like them to as long as the states towhich they are applied obey certain
conditions. The following definition formalizes those conditions.

Definition 5.8 We say that a state isinvalid if one of the following conditions holds:

1. The control particle on Track 1 is on sitei and is in state→1 . Furthermore, for some particle other
thani, its Track 4 state isq′R for someq′R ∈ Q′

R.

2. The control particle on Track 1 is on sitei and is in state→1 . Furthermore, the Track 4 state for
particle i is qL for someqL ∈ QL.

3. The control particle on Track 1 is on sitei and is in state→2 . Furthermore, for some particle other
thani, its Track 5 state isq′R for someq′R ∈ Q′

R.

4. The control particle on Track 1 is on sitei and is in state→2 . Furthermore, the Track 5 state for
particle i is qL for someqL ∈ QL.

We say that a standard basis state isvalid if it is not invalid. We can add illegal pairs so that any
invalid state has an energy penalty of at least one. The subspace of all valid states is closed under the
action of the transition rules. As before, we call a state well-formed if its clock state (Track 1 and 2) is
well-formed. For any valid, well-formed state, the transition rules apply non-trivially to only one pair of
particles. Furthermore, the transition rules are reversible and norm-preserving over the space spanned by
valid, well-formed states.

5.7 Combining the Tracks

We have described a set of transition rules for Tracks 1 and 2 which advance a clock throughT = 4(N−2)2

states. We have also described a set of transition rules which implement two Turing Machines on tracks 3
through 6. In each set of transition rules, the control particle of the clock on Track 1 advances one space.
Thus, when they are combined, each transition rule advancesthe clock and implements part of a step on one
of the Turing Machines. Consider any state such that the states for Tracks 1 and 2 are clock states and the
states for Tracks 3 through 6 are a quantum state within the subspace of valid states. If the clock state is not
the final state, then the transition rules apply to exactly one pair of particles and take the state to a unique
new state with the same norm in which the clock has advanced byone tick. Similarly, if the clock state is not
the initial state, then the transition rules applied in the reverse direction apply to exactly one pair of particles
and take the state to a new state with the same norm in which theclock has gone back by one tick.

We argued in Subsection 5.3 that a zero eigenstate of the Hamiltonian must be a superposition of the
sequence of clock states. Now that we are considering the states of the other tracks as well, this is a higher-
dimensional space. In order to define a basis for the zero eigenspace of the Hamiltonian defined so far, we
specify a standard basis state for Tracks 3 through 6 for the initial clock state. It will be convenient to separate
the states of Tracks 3 through 5 from the state of Track 6. So let X be a standard basis state for Tracks 3
through 5 andY be a standard basis state for Track 6. Let|t〉 be the state of the clock aftert transitions.
Define|φt,X,Y 〉 denote the state of Tracks 3 through 6 aftert applications of the transition rules assuming
that Tracks 3 through 5 start in stateX and Track 6 starts in stateY . Define|φX,Y 〉 =

∑T−1
t=0 |t〉|φt,X,Y 〉.

The |φX,Y 〉 satisfy all the constraints due to transition rules and illegal states for Tracks 1 and 2. We will
useI to denote the desired initial configuration for Tracks 3 through 5. That is,

∗
on Track 3 ands

∗

andq0
∗

on Tracks 4 and 5. The energy for any|φX,Y 〉 whereX 6= I will be at leastΩ(1/N2). This is
because ifX 6= I, at least one state in the initialization phase will have an energy penalty as the→0 control
state sweeps to the right. So the subspace spanned by{|φI,Y 〉} for all Y form a basis of the zero eigenspace
for the Hamiltonian terms defined so far, restricted toSbr, the subspace of all bracketed states. The next
highest eigenstate inSbr has energyΩ(1/N3).
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5.8 Boundary Conditions

5.8.1 The Finite Chain

First we address the case of a finite chain and add a term that will enforce that the ground state is in
Sbr. In order to penalize states that are not bracketed, we weight H by a factor of3 and add in the term
I − | 〉〈 | − | 〉〈 | to every particle. This has the effect of adding energyN − 2 to every state inSbr.
The ground space is still spanned by the|φI,Y 〉 and the spectral gap remainsΩ(1/N3). Any standard basis
state outsideSbr will have a cost of at leastN − 1: If there area particles in state or in the middle
of the chain, they will savea from theI − | 〉〈 | − | 〉〈 | term. However, there will be at least⌈a/2⌉
illegal pairs because the particles in the middle will each form an illegal pair with the particle to their
left and the particles in the middle will each form an illegal pair with the particles to their right. We can
lower bound the additional cost by counting the type (or ) which is more plentiful, yielding at least
⌈a/2⌉ distinct illegal pairs. Thus, there will be a net additionalenergy cost of at leasta/2 whena is even,
or (a+ 3)/2 whena is odd.

5.8.2 The Cycle

If we instead have periodic boundary conditions, the problem is still QMAEXP-complete. We start by re-
moving the penalty for the pair . The set of legal and well-formed states is exactly the same as it was
for the finite chain except that we can now have more than one segment around the cycle. For example, we
could have the following state wrapped around a cycle:

· · ·
︸ ︷︷ ︸

Segment1

· · ·
︸ ︷︷ ︸

Segment2

· · ·
︸ ︷︷ ︸

Segment3

.

Note that the transition rules do not change the locations ornumbers of or sites, so we can restrict our
attention to subspaces in which the segments are fixed. If a standard basis state is well-formed then every
occurrence of has a to its immediate right and every occurrence ofhas a it its immediate left.
Thus, we can assume that a standard basis state in the supportof a ground state can be divided into valid
segments. Of course, it is possible that there are no segments in which case the state could simply be a single
particle state repeated around the entire cycle. We know that the states within a segment must be ground
states for a chain of that length. Otherwise, the energy of the state is at leastΩ(1/l3), wherel is the length
of the segment. We need to add additional terms and states which give an energy penalty to states with no
segments or more than one segment.

It is most straightforward to achieve this by using oddN and adding an additional Track0. There will
be no transition rules that apply to Track 0, so the state of the Track 0 remains fixed even as transition rules
apply to the state. We will add some extra terms which are diagonal in the standard basis for Track 0 and
introduce energy penalties for certain pairs of particles.Fix a standard basis state for Track 0 and a set of
segments and consider the space spanned by these states. TheHamiltonian is closed over this space, so
we just need to examine the eigenstates restricted to each such subspace. Track0 will have three possible
statesA , B , and . Even the or particles have a Track 0 state, so the state of a particle is either in
{ A , B , } × { , } or it is a7-tuple denoting states for Tracks 0 through 6.

We add the terms| A A 〉〈 A A | and| B B 〉〈 B B |, which gives an energy penalty of1 for pairs A A or
B B on Track 0. SinceN is odd, the state will have energy at least one unless there isat least one particle

whose Track 0 state is . Now we add an energy penalty of1 for any particle whose Track 0 state is
which is not[ , ]. We also add an energy penalty for[ A , ] or [ B , ]. The only way for a state to
have energy less than one is for there to be at least one segment and to have a on Track 0 exactly at the
locations where there is a on the other tracks. Finally, we add an energy penalty of1/2 for any particle
whose Track 0 state is . Thus, the only way for a state to have energy less than one is for there to be
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exactly one segment and to have aon Track 0 exactly at the single location where there is aon the
other tracks.

Consider the set of all basis states with exactly one segmentand whose Track 0 state has aco-located
with the site and alternatingA ’s and B ’s elsewhere on Track 0. Any eigenstate outside this space
has energy at least one. Note that there are2N different low-energy ways to arrange the Track 0 states,
since there areN possible locations for the site and the string of alternatingA ’s and B ’s can begin
with A or B . Each such choice gives rise to a subspace that is closed overH and otherwise has identical
behavior with respect to the rest of the terms, so we will makean arbitrary choice and examine the resulting
subspace. Since there is one segment, the state|φI,Y 〉 from the previous subsection is well defined. This
state is a ground state forH and has energy1/2. All other eigenstates within the subspace have energy at
least1/2 + Ω(1/N3).

5.9 Accepting States

Finally, we add a term for those|φI,ψ〉 that do not lead to an accepting computation forV . In the last
configuration of the clock, the two right-most particles arein state[ ][

→

2 , 1̄ ]. We assume that an accepting
computation will end with the head in the left-most place in stateqA. We add a penalty for a pair whose
Track 1 and 2 state is[ ][

→

2 , 1̄ ] such that the right particle in the pair does not have a Track 5state ofqA.
Thus, an accepting computation will have an energy penalty of at mostǫ/N2 for this term whereǫ can be
made arbitrarily small. If no witness leads to an accepting computation, all states will have energy at least
(1− ǫ)/N2 from this term.

6 Quantum Case With Reflection Symmetry

Many of the Hamiltonian terms in section 5 had a left-right asymmetry, allowing us to, for instance, start
the Turing machine head at the left end of the line of particles. When we add reflection symmetry to the
translational invariance, this is no longer as straightforward. However, by increasing the number of states and
with an appropriate choice of Hamiltonian, we will be able tospontaneously break the reflection symmetry
in the vicinity of the arrow states, showing that1-DIM TIH with reflection symmetry isQMAEXP-complete.
In this section, we present the construction for periodic boundary conditions, but a similar construction
works with open boundary conditions.

The basic idea of the construction is to force the arrow states to haveA on one side andB on the other.
That creates an asymmetry between the two directions, whichwe can use to define left transitions and right
transitions. At one time step, we should considerA to be on the left andB to be on the right. However,
in the next time step, the arrow has moved, and nowB should be on the left andA should be on the right.
Therefore, we will split the arrow state into pairs of statesthat keep track of which directionA should be
in.

Now for the details of the construction. We assume thatN , the number of particles in the cycle, is odd.
There will be a total of seven tracks, numbered 0 through 6. A state is then specified either as or by a
7-tuple, specifying the state for each Track. The statespans all seven tracks. Some of the energy penalties
we introduce will be a multiple of some constantc to be chosen later.

The states for each of the Tracks 1, 2, 4, and 5 will be divided into control states and non-control states.
The non-control states will be divided into two types: A-states and B-states.

Definition 6.1 For any particular standard basis state, we say that itsconfigurationis defined by the fol-
lowing properties:

1. the number of control particles on Tracks 1, 2, 4, and 5

2. the sequence of A-states and B-states (with control states removed) on Tracks 1, 2, 4, and 5

56



A B control
c 0 c 0

A 0 c 0 0
B c 0 c 0

control 0 0 0 c

Table 16: Summary of the rules for A and B-states in Tracks 1, 2, 4, 5. Also, all control states have an
additional cost of1.

3. the entire state of Track 0

4. the locations of the particles in state.

We will select the transition rules so that they never changethe configuration of a standard basis state.
Thus, if we consider the subspace spanned by all the standardbasis states with a particular configuration,
the Hamiltonian will be closed on that subspace. We can therefore analyze each such subspace separately.
We will specifically be interested in the following properties:

Claim 6.2 With an appropriate choice of Hamiltonians, we can ensure that the ground state is a superposi-
tion of basis states whose configurations satisfy the following properties:

1. There is one particle in .

2. For Track 0, the rest of the particles alternateA and B .

3. Tracks 1, 2, 4, and 5 each have exactly one control particle.

4. The non-control particles for tracks 1, 2, 4, and 5 alternate between A-states and B-states with an
A-state or control state on either side of the.

5. The control particle is flanked by an A-state on one side anda B-state or a on the other.

We will therefore restrict our attention to configurations that have these properties.

Proof of claim: Towards this end, we add the following constraints: Track 0 has statesA , B and . There
is a penalty of2c for the pairs A A and B B . There is a penalty ofc for any occurrence of .

Any state that has no or more than one will have a cost of at least2c. A configuration which
satisfies properties 1 and 2 will have a cost ofc.

For Tracks 1, 2, 4, and 5, we will enforce that there is exactlyone particle that is in a control state. This
control state can move around, but there should be just one. This is enforced as follows. The control states
for a track all cost 1. There will be two states for each non-control state, an A version and a B version. The
state spanning Tracks 0 through 6 must go next to an A-state or a control state on Tracks 1, 2, 4, and 5.
The A-states cannot be next to each other and the B-states cannot be next to each other. The control states
can be next to the , A-states, or B-states, but not next to each other. All of these forbidden pairs have a
cost ofc. These rules are summarized in table 16. The transitions maycause the control particle to shift
over by one site by swapping places with a non-control particle. In these transitions, the non-control particle
will remain the same with respect to whether it is an A or B state although it may change other aspects of its
state.

Property 4 of the claim follows immediately from these constraints.
If there are no control states on a Track, the total cost of theTrack must be at leastc (in addition to thec

cost of having the one ). This is a consequence of oddN — alternating A-states and B-states would then
produce an A-state on one side of, but a B-state on the other side.
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Any configuration that avoids the cost ofc must have at least one control state on each of Tracks 1, 2, 4,
and 5. Each control state incurs a cost of one. Thus, the minimal-cost configuration has exactly one control
state on each track of 1, 2, 4, and 5 with a total cost ofc + 4. Any other configuration will have a cost of
at least2c. The minimum cost configuration will have a control particlesomewhere within a sequence of
alternating Bs and As with an A on each end next to the. In order to maintain the parity, property 5 must
hold.

We can choosec = 5 to guarantee that there is an energy gap of at least one between configurations
which obey properties 1 through 5 in the claim and those whichdo not.

6.1 Track 1 Transitions

We are now ready to describe the transitions for Track 1. Since these rules satisfy reflective symmetry,
whenever there is a rule:ab → cd, there is also a ruleba → dc. For the sake of brevity, we do not always
give the reflected version of the rule with the understandingthat it is implicit.

There are four types of control states:→A , →B ,

→

A and

→

B . When we discuss Track 2, these will each be
expanded into three varieties as was done in the construction without reflection symmetry. There are only
two non-control states. These are labelledA and B . We have the following transitions:

→A A → A →B

→

A A → A

→

B

→B B → B →A

→

B B → B

→

A

That is, the control state swaps its location with an adjacent non-control state, and the arrow stays pointing
the same direction while the A/B label on the arrow switches.

We have the following transitions at the ends

→

B → →A

→B →

→

A

That is, the arrow switches direction, and the A/B label on the arrow switches as well.
It will be useful to fix a direction for the cycle by disconnecting the cycle at the particle and stretching

out from left to right.

Definition 6.3 Once this direction is fixed, we say that a standard basis state iscorrectly orientedif one of
the properties hold:

Control particle is→A and the particle to its right is in stateA .

Control particle is

→

A and the particle to its left is in stateA .

Control particle is→B and the particle to its right is in stateB or .

Control particle is

→

B and the particle to its left is in stateB or .

In other words, the arrow points to a state which matches the A/B label on the arrow.

There are2(n − 1) standard basis states for Track 1 that satisfy properties 1 through 4 of claim 6.2
which are also correctly oriented. The reflection of each of these states is a standard basis state which
satisfies properties 1 through 4 but is not correctly oriented. The transitions form an infinite loop over the
correctly oriented Track 1 states as shown below. Theparticle is duplicated on each end to illustrate the
transitions.
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→A A B · · · B A

A →B B · · · B A

A B →A · · · B A

· · ·
A B · · · →B B A

A B · · · B →A A

A B · · · B A →B

A B · · · B A

→

A

A B · · · B

→

B A

A B · · ·

→

A B A

· · ·
A B

→

B · · · B A

A

→

A B · · · B A

→

B A B · · · B A

Note that we always have a two-fold degeneracy which resultsfrom reflecting each state in this sequence.
This results in a set of states which are not correctly oriented. The transitions are closed on the two sets of
states. Furthermore, the structure of the transitions is identical on each set, so we can select one orientation
and analyze that subspace. For ease of exposition then we will restrict our attention to states on Track 1
which are correctly oriented.

We no longer need distinct endmarkers and since the state of the control particle next to an
endmarker indicates whether it will sweeping to the other end or changing directions first. For example
any transition or illegal pair involving the pair

→

would be replaced by

→

B . The pair

→

B will never
occur in a state which is correctly oriented. The table belowshows the pairs involving end states in the
non-reflective construction and the corresponding pairs inthe reflecting construction that we are describing
in this section.

→ →

B ,

→

B

→ →A , →A

→ →

A ,

→

A

→ →B , →B

In the non-reflective construction, the Track 1 control symbol
→

, has three varieties
→

0 ,
→

1 and
→

2 . Now
in the construction with reflection symmetry, these in turn come in an A-version and B-version giving six
control symbols:

→

A0 ,

→

A1 ,

→

A2 ,

→

B0 ,

→

B1 ,

→

B2 . We have a similar set of the right-pointing control states.

6.2 Track 2

As discussed above, we will enforce that Track 2 will have exactly one particle in a control state. For Track
2, the control states arē0 and 1̄ . The other states0 , 1 and 2 will each have an A-version and a B-
version. The A-version will be denoted by a heavier outline as in 0 and the B-version will be denoted by a
lighter outline as in0 . In addition to the constraints described below, the statessatisfy the constraints given
in table 16.

We need to have a transition for every possible combination of A’s and B’s. Thus the transition:

→

1

0 0
→

→

1

0 0

is replaced by four transitions:

A

→

A1

0 0
→

→

B1 A

0 0
,

A

→

A1

0 0
→

→

B1 A

0 0
,

B

→

B1

0 0
→

→

A1 B

0 0
,

B

→

B1

0 0
→

→

A1 B

0 0
.

Similarly, the transition

→

1

0̄ 0
→

→

1

1 0̄

is replaced by

A

→

A1

0̄ 0
→

→

B1 A

1 0̄

,
B

→

B1

0̄ 0
→

→

A1 B

1 0̄

,
A

→

A1

0̄ 0
→

→

B1 A

1 0̄

,
B

→

B1

0̄ 0
→

→

A1 B

1 0̄

.
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Finally, the transitions involving an end particle will be expressed using the appropriate control character as
expression in the table above. The rule

→

2

1
→

→
2

1

will become

→

B2

1
→

→A2

1
.

Although all of the illegal pairs and transitions have corresponding rules obtained by reflection, only
one will apply since the states are correctly oriented and the direction of the Track 0 control particle is
determined.

In the construction without reflection symmetry, we defined aTrack 2 state to be well-formed if it had
the following form: 1

∗
( 0̄ 0

∗
+ 1̄ 2

∗
) . With the new construction, we use the following definition

instead:

Definition 6.4 A Track 2 state iswell-formedif it has the form:

( 1 1 )∗( 0̄ ( 0 0 )∗ 0 + 1̄ ( 2 2 )∗ 2 ) or ( 1 1 )∗ 1 ( 0̄ ( 0 0 )∗ + 1̄ ( 2 2 )∗) .

The set of well-formed basis states are all closed under the transition rules. If we restrict our attention
to Tracks 1 and 2 and the subspace spanned by all well-formed clock states, the results from the previous
construction apply and we know that the unique ground state is the uniform superposition over valid clock
states.

The construction without reflection symmetry makes use of illegal pairs with a particular orientation in
enforcing that states must be well-formed. We need a means ofenforcing this same property with only illegal
pairs that obey reflection symmetry. Since we have restricted our attention to states with only one control
particle, we know that the Track 2 state must have the form( 0 + 1 + 2 )∗( 0̄ + 1̄ )( 0 + 1 + 2 )∗ .
We will call a state of this formproper. Furthermore, the set of transition rules is closed over thesubspace
spanned by this set.

We will first observe that for any proper standard basis state, at most one transition rule applies in the
forward direction and at most one applies in the reverse direction. This follows from the fact that the control
particle on Track 1 and the location of the A-state and B-state on either side of the control particle uniquely
determine which pair the transition will apply to. Then the argument for the previous construction (Lemma
4.4) carries over to establish that the transitions that apply in each direction are unique.

This means that when we look at the state graph (graph of all standard basis states with a directed edge
for each transition), it forms a set of disjoint paths over all proper standard basis states. Since the transition
rules are closed over well-formed states, we know that a pathis either composed entirely of states that
are well-formed or states that are not well-formed. Then we will add a set of illegal pairs which all have
the desired reflection symmetry and show that for every path that is not composed of well-formed states,
a fraction of1/2n of the states must have a state with an illegal pair. This willimply that any state in
the subspace formed by the closure of standard basis states long a path composed of states that are not
well-formed will have energy1/poly(n) more than the uniform superposition of the valid clock states.

We add a set of illegal pairs, each with a cost of one. For each pair specified, its reflection is also
illegal. This first group are0 1 , 0 2 , 1 2 . Each of these states have an A-version and a B-version and
we implicitly disallow any combination of these. That is thepair 0 1 implicitly denotes the two pairs
0 1 and 0 1 . Recall that it is already illegal to have two A-states or twoB-states next to each other.

Furthermore, the control states can not be next to each other, so 1̄ 0̄ is an illegal pair. These rules enforce
that any state without an illegal pair must be of the form:

( 0
∗
+ 1

∗
+ 2

∗
)( 0̄ + 1̄ )( 0

∗
+ 1

∗
+ 2

∗
).
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We also add pairs̄0 2 and 1̄ 0 since these never appear in a well-formed state. Finally, wewant to have
the 1

∗
on the left end of the chain and the0

∗
or 2

∗
on the right end of the chain. To do this, we add illegal

pairs:

→

B

0

→

B

2

→B

1
.

We also add illegal pairs:
→A

0

→A

2

→

A

1
.

These are duplicated for the A-version and B-version of0 , 1 , and 2 as well as

→

B0 ,

→

B1 , and

→

B2 for

→

B and

→

A0 ,

→

A1 , and

→

A2 for

→

A . If we have a proper state that is not well-formed and has no illegal pair, it must either
have a 1

∗
on the right end of the chain or a0

∗
or 2

∗
on the left end of the chain. What will happen, is

that the control symbol on Track 1 will cycle around to the endof the chain where the violation occurs and
reach a state with an illegal pair.

6.3 Turing Machine Initialization

We have already described a way to enforce that there is one control state on Tracks 4 and 5. The particle
states which correspond to Turing Machine states will be thecontrol states for Tracks 4 and 5. There is some
designated start states for each Turing Machine and we want to ensure that the Turing Machine starts with
the head in the leftmost location in states . Similar to the non-reflection case, we make any state illegal in
which the Track 1 state is→A0 or →B0 and the Track 4 state is anything excepts or . As described above,
we have already enforced that there is one state corresponding to the head location. Finally, we make any
pair illegal in which one particle is in state and the other particle has a Track 1 state of→A0 and the Track
4 state is nots . This ensures that the unique head location is at the left endof the chain. The same is done
for Track 5.

6.4 Turing Machine Implementation

All the transitions are expended as for Track 2 to include theA-version and the B-version of the non-control
states. Transitions involving and are replaced by rules which use and the appropriate control
particle for Track 1 which will determine whether the other particle is to the left or the right of the .

All the transition rules for the execution of the Turing Machines are governed by the direction in which
the

→

A and

→

B control particles move. We can add the reflection of each of these rules and since the direction
of the control particle is fixed, only the correct set of ruleswill apply.

7 The Infinite Chain

One common approach to studying translationally-invariant systems in physics is to take the limit of the
number of particles going to∞. In this case, we have to alter our approach slightly in orderto define
a sensible notion of complexity. For one thing, we have to change the quantity we wish to evaluate. In
general, the ground state energy will be infinite when there are infinitely many particles. Instead, we should
study the energy density in the ground state: the energy per particle.

There is an additional complication. Throughout the rest ofthe paper, we have fixed a single Hamiltonian
term and used it for all values ofN , but if we were to do that for the infinite chain, the desired answer (the
ground state energy) would be just a single number, and therewould be no language for us to study the
complexity of.

The solution is to vary the Hamiltonian term. We still constrain it to interact two particles (i.e., act on
a d2-dimensional Hilbert space), but now we let the entries of the matrix vary. In particular, if we specify
terms in the Hamiltonian ton = Θ(logN) bits of precision, we can cause the ground state of the infinite

61



chain to break up into segments each of sizeN . Within a single segment, the Hamiltonian will act like the
usual 1D Hamiltonian discussed in section 5.

One might be concerned that the problem is not well-defined onan infinite chain. After all, the hardness
constructions used in this paper cause the ground state to change considerably asN varies, suggesting
that there is no well-defined limit asN → ∞. This concern is largely addressed by separatingN and
the number of particles, since the ground state is now the tensor product of segments of finite size, each
of which is completely well-defined. To be even more careful,one can take a finite number of particles
M ≫ N , using either periodic or open boundary conditions. If we write down the restriction toM particles
of the infinite ground state considered below, there is a constant-size correction to the energy due to the
boundary conditions. However, we wish to determine the energy per particle, and the correction to that is
onlyO(1/M). Thus, in the limitM → ∞, the energy per particle of the ground state is well-defined.

The first step is to alter the Hamiltonian for anN -particle chain slightly so that we can assume that if
a chain of lengthN has a zero energy state inSbr, then it must be the case thatN = 3 mod 4. This can
be achieved by having an additional track with states A, B, C and D. We will use illegal pairs to enforce
that this additional track has states that are a substring of(ABCD)∗. Then we add illegal pairs to enforce
that only an A can be adjacent to a or a . Therefore, in order to avoid additional cost, the additional
track must be of the form A(BCDA)∗ . In order to achieve the same expressive power as we originally
had, the verifier Turing MachineV will begin by erasing the two least significant bits of its input (the count
fromMBC ). Thus, the new construction will yield a state with energyǫ on a chain of lengthN if and only
if N = 3 mod 4 and there is a quantum witness which causes the verifier to accept a binary representation
of (N − 3)/4 with probability (1 − ǫ) in N − 2− x steps, wherex is the number of steps required for the
subroutine which deletes the last two bits of the input.x is approximately2 logN . If eitherN 6= 3 mod 4
or every witness causesV to reject with high probability on input(N − 3)/4, the ground state energy will
be at leastΩ(1/N3). For the remainder of this section, we will assume thatN = 3 mod 4.

Now we address the case of the infinite chain in earnest. For the next step, we make a second small
change to the set of illegal pairs to allow the pair .

Definition 7.1 For a particular state, the sequence of sites extending froma site through the next site
is a segment.

The set of bracketed and well-formed states is exactly the same as it was for the finite chain except that we
can now have more than one segment along the chain. If a standard basis state contains no illegal pairs, there
must be a control symbol on Tracks 1 and 2 betweenand which means we cannot have segments of
length 2. Also, every occurrence of has a to its immediate right and every occurrence ofhas a to
its immediate left. In addition, the illegal pairs exclude the possibility of sequences of sites containing two

sites with no in between, or sequences with twosites without a . We therefore get the following
lemma:

Lemma 7.2 A standard basis state with no illegal pairs either containsno or sites anywhere in the
chain, or it can be divided up into valid segments with no extra sites in between segments.

Let HTM be the resulting two-particle term that includes illegal pairs and transition rules. We omit
for now the term which penalizes for a rejecting computation. A state thus has zero energy forHTM if it
corresponds to a correctly executed computation that begins with the correct initial configuration regardless
of whether it accepts or not. We also omit the terms for the boundary conditions described for the finite
chain and cycle. Instead we are going to add a new termHsize,N which will be energetically favorable to
segments of lengthN .

Let S be the subspace spanned by all well-formed states in the standard basis which have segments and
cannot evolve via forward or backwards transitions to a state which does have an illegal pair. Lemmas 5.4
and 5.5 still apply since we have not changed the transition rules. Thus,S is the set of states which can be
obtained by starting each segment in the correct initial configuration (with an arbitrary quantum state on the
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witness tape) and applying any number of transition rules toeach segment. Since the transition rules do not
alter the segments,HTM is closed overS as it was for the chain. The final HamiltonianH will be the sum
of HTM and a set of terms which are all diagonal in the standard basis, which means thatS will be closed
underH as well. We will studyH|S .

We will add in another HamiltonianHsize,N that will be designed to be energetically favorable to seg-
ments for some specific sizeN . We first construct a HamiltonianH of the formHTM + Hsize,N/p(N)
for some polynomial inN . In the final Hamiltonian, there will also be a term which penalizes rejecting
computations.Hsize,N will have a fixed form (i.e., constant size to specify) exceptthere will be several
coefficients which are inverse polynomials inN and therefore requireO(logN) bits to specify.

Since all two-particle terms are zero on the pair , we can omit the two-particle terms which span
two segments when consideringH|S . NowH can be divided into a sum of terms, each of which acts on
particles entirely within a segment. LetH i be the sum of the terms which act on particles within segmenti.
Let l denote the length of the segment. We can defineH i

size andH i
TM similarly. An eigenstate ofH in S is

then a tensor product of eigenstates of eachH i acting on the particles in segmenti. The energy is the sum
of the energies of eachH i on their corresponding eigenstate. The eigenstates for a segment of lengthl are
exactly the same as the bracketed eigenstates for a chain of the same length. We know that ifl 6= 3 mod 4,
then the ground state has energy at leastΩ(1/l3).

We are now ready to define the final component ofH. DefineTl to be the number of clock states for a
finite chain or segment of lengthl. We determined in section 5 thatTl = 4(l− 2)2. Note that the symbol→0
appears in exactlyl − 2 clock states.

Hsize,N =
1

N
I − 2| 〉〈 |+

TN
N − 2

(
| →0 〉〈 →0 |

)
. (26)

We will analyze the ground state energy of a segment as a function of its length. We will need to use the
Projection Lemma from [KKR06] which will allow us to focus onthe ground space ofH i

TM . Define|φlY 〉
to be the state that corresponds to the uniform superposition of all states that can be obtained by applying
forward transition rules to the correct initial state with quantum stateY on the witness tape. The ground
space ofH i

TM is within the span of all the|φlY 〉. Note that〈φlY |H
i
size,N |φ

l
Y 〉 is the same for allY since

Hsize,N depends only on the clock tracks.

Lemma 7.3 [KKR06] Let H = H1 + H2 be the sum of two Hamiltonians acting on a Hilbert space
H = T + T ⊥. The HamiltonianH2 is such thatT is a zero eigenspace forH2 and the eigenvectors inT ⊥

have value at leastJ > 2‖H1‖. Then

λ(H1|T )−
‖H1‖

2

J − 2‖H1‖
≤ λ(H) ≤ λ(H1|T ),

whereλ(H) is the ground energy ofH.

Corollary 7.4 There is a polynomialp(N) such thatp(N) is O(N7) and for any segment of sizel ≤ 2N
andH i = H i

TM +H i
size,N/p(N),

p(N)λ(H i|S) ≥ 〈φlY |H
i
size,N |φ

l
Y 〉 − 1/2N2.

Proof: We use the projection lemma withH2 = p(N)H i
TM andH1 = H i

size,N . Note thatH1 need not be
positive, although it does need to be positive onT in order to yield a non-trivial lower bound. We need to
establish that‖H i

size‖ = O(N). Sincel ≤ 2N , the first term isO(1). The Hilbert spaceS is the set of all
well-formed, bracketed states for that segment, so there can be at most one→0 site. Thus the second two
terms inH i

size,N are at mostTN/N for any state inS, which is alsoO(N). The spectral gap ofH i
TM is

Ω(1/N3), so we can choosep(N) so thatp(N) isO(N7) andJ (the spectral gap ofp(N)H i
TM ) is at least

2N2‖H1‖
2+2‖H1‖. Using Lemma 7.3, we can lower boundp(N)λ(H i|S) by 〈φlY |H

i
size,N |φ

l
Y 〉−1/2N2.
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Note that we are not able to use the projection lemma for very largel because theΩ(1/N3) gap will not
be large enough. In the lemma below, we determine the ground state energy of a segment as a function of its
length. Largel (greater than2N , including infinitel) are dealt with separately with an argument that does
not require the projection lemma.

Lemma 7.5 The operatorH i acting on thel particles of segmenti restricted to well-formed bracketed
states will have ground state energy at most0 and spectral gapΩ(1/N4) per particle for l = N . The
ground state energy isΩ(1/N9) per particle for any other value ofl.

Proof: We have assumed throughout thatN = 3 mod 4. For anyl such thatl 6= 3 mod 4, the ground
energy is at leastΩ(1) which is at leastΩ(1/N) per particle. We will restrict our attention therefore tol
such thatl = 3 mod 4, so forl 6= n, we know that|l − n| ≥ 4.

We consider four different cases based on the size of the segment l.

l = N:

Consider a state|φNY 〉. Then〈φNY |H
i
TM |φNY 〉 = 0. Recall that|φNY 〉 is a uniform superposition of

states. There areTN distinct configurations represented in the support of|φNY 〉. ExactlyN − 2 of
these contain a→0 site. All of them contain one particle in state. Therefore

〈φNY |H
i
size,N |φ

N
Y 〉 =

N

N
− 2 +

TN
(N − 2)

(N − 2)

TN
= 0. (27)

Any state|ψ〉 that is orthogonal to the subspace spanned by the|φNY 〉 and is also in the subspace
spanned by the well-formed states for segments of lengthN will have 〈ψ|HTM |ψ〉 ≥ Ω(1/N3) and
〈ψ|Hsize/p(N)|ψ〉 ≥ −1/N7. Thus, the spectral gap ofH i will be Ω(1/N4) per particle.

l > 2N:

Let ψ be a state in the standard basis that is well-formed, bracketed and has lengthl. We will only
lower bound〈ψ|H i

size/p(N)|ψ〉. SinceH i
TM is non-negative, the lower bound will hold for all ofH i.

Furthermore, we will omit the last term inHsize because this only adds to the energy. Every standard
basis state in a bracketed well-formed segment of lengthl has exactly one occurrence of. Therefore
the energy of a segment of lengthl will be at least(l/N−2)/p(N). This is at least(1/N−2/l)/p(N)
per particle. Sincel ≥ 2N + 1, this will be at leastΩ(1/N8) per particle. Note that this holds for
infinite l as well.

2N ≥ l > n:

Since we can assume thatl = 3 mod 4, we know thatl ≥ N + 4. We will use the projection lemma
for this case and show that〈φlY |H

i
size|φ

l
Y 〉 ≥ 1/N2, which by Corollary 7.4 will be enough to lower

boundλ(H i) by 1/(2N2p(N)).

〈φlY |H
i
size|φ

l
Y 〉 = (l −N)

(
1

N
−

1

l − 2

)

≥ (l −N)

(
1

N
−

1

N + 2

)

≥
1

N2

l < N:

Since we can assume thatl = 3 mod 4, we know thatl ≤ N − 4. Now we will use the projection
lemma for this case and show that〈φlY |H

i
size|φ

l
Y 〉 ≥ 1/N2, which will be enough to lower bound

64



λ(H) by 1/(2N2p(N)).

〈φlY |H
i
size|φ

l
Y 〉 = (N − l)

(
1

l − 2
−

1

N

)

≥ (N − l)

(
1

N − 2
−

1

N

)

≥
4

N(N − 2)
≥

1

N2

Finally, we add a term which adds energy1 to any state which is not an accepting computation. IfN =
3 mod 4 and there is a quantum witness that causes the verifier to accept with probability(1− ǫ), then there
is a state with energy at mostǫ/N3 per particle. This is the state which corresponds to correctcomputations,
using the good witness, within consecutive segments of lengthN . We can assume the acceptance probability
has been amplified sufficiently to makeǫ small — smaller than1/p(N) is sufficient. Note that the ground
space has anN -fold degeneracy which corresponds to translations of thisstate.

Now suppose that there is no quantum witness which causes theverifier to accept on input(N − 3)/4
with probability greater thanǫ. Consider a possibly infinite set of locations for theand particles and
the subspace spanned by the standard basis states corresponding to these assignments. We will analyze the
subspace spanned by these standard basis states and argue that the ground state energy of the Hamiltonian
restricted to each such subspace is at leastΩ(1/N3) per particle. Therefore, we assume now that the loca-
tions of the particles in the or state are fixed. We can partition the infinite chain into maximal pieces
whose leftmost particle is in state and such that the piece has no other particles in state. Note that
it may be that the leftmost piece extends infinitely to the left. We know that any piece that is longer than
2N incurs a cost of at leastΩ(1/N8) per particle fromHsize,N alone. This follows from the same analysis
for proper segments of length more than2N given above. Now suppose that a piece has length at most
2N . If it is not a proper segment (i.e., beginning with a, ending with a , and no or particles in
between), then there must be at least one illegal pair. The illegal pair will cause an energy cost of1. Since
the energy fromHsize,N/p(N) will be at least−2/p(N), the total energy per particle will beΩ(1). We
also know that if the piece is a proper segment and the length of the segment is somel 6= N or l = N and
N 6= 3 mod 4, then there will be a cost of at leastΩ(1/N9) per particle on that segment. Finally, even
if l = N andN = 3 mod 4, every quantum witness will cause the verifier to reject on input (N − 3)/4
with probability at least(1 − ǫ). Whenǫ is small enough (polynomially small is sufficient), using standard
QMA-completeness proof techniques (see, e.g. [AGIK09]), we can show that there will be an energy penalty
of at leastΩ(1/T 2

N ) for that segment, which isΩ(1/N5) per particle.

8 Conclusion

We have shown that a class of classical tiling problems and1-dimensional quantum Hamiltonian problems
can be proven hard, even when the rules are translationally-invariant and the only input is the size of the
problem. While this result was motivated by the desire to seeif it could be hard to find the ground state in
some physically interesting system, it is true that the tiling problem and Hamiltonian problem for which we
prove hardness are not themselves particularly natural. Still, given that very simple cellular automata can be
universal, it seems quite possible that even some very simple tiling and Hamiltonian problems are complete
for NEXP andQMAEXP respectively. Finding one would be very interesting.

More generally, one can ask which Hamiltonians are computationally hard and which are easy. Our
approach provides a framework to investigate the question,although our techniques are not powerful enough
to answer it except in special cases. Perhaps hard Hamiltonians are pervasive for particles of large enough
dimension, or perhaps they are always outlying exceptionalpoints. The computational hardness structure
of the space of Hamiltonians is clearly somewhat complicated. For instance, for the infinite chain discussed
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in section 7, the hard class of Hamiltonians considered forma sequence (asN → ∞) that converges to a
Hamiltonian that is not itself hard: It lacks theHsize term, so one can have an infinite chain with no segments
or control particles, and the ground state energy is0.

It would also be nice to understand the finite-temperature behavior of these systems better. The hard
constructions should have a very complicated landscape of energy states, and the actual ground states are
highly sensitive to the exact number of particles. This suggests that even at finite temperature, these systems
should have complicated dynamics and behave like a spin glass, but it is not completely clear.

There remain many additional variants of tiling and Hamiltonian problems that we have not studied.
Probably for most variations (e.g., triangular lattice instead of square lattice), we can expect similar results.
However, there are some borderline cases for which the answer is not clear. The case of WEIGHTED
TILING with reflection symmetry and constant allowed cost remains open for the four-corners or open
boundary conditions. When we have translational invariance but no additional symmetry,2-DIM TIH is as
hard as1-DIM TIH, but the construction for1-DIM TIH with reflection invariance does not generalize to
2-DIM TIH with rotational invariance. Can rotationally- andtranslationally-invariant Hamiltonians be hard
in two or more dimensions? Also, the hardness result for ITIHuses quantum properties, and we do not have
a similar classical result.

Another interesting avenue to pursue would be to apply a similar idea to other problems. For instance,
the game of go produces aPSPACE-complete problem [Pap95]. However, the computational problem GO
is defined by asking whether black can force a win given a particular board configuration as input. However,
there is no guarantee that these board configurations would appear in a regular game of go, which starts from
a blank board. A more natural problem arising from GO is to askwho wins with optimal play when starting
from an emptyN ×N board. As with our tiling and Hamiltonian problems, the onlything that varies is the
size; the rules and initial configuration are fixed. Thus, we would wish to show that this variant of GO is
EXPSPACE-complete. Our techniques will not solve this problem, but at least our result points the way to
ask the right question.
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