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Abstract

We prove the following strong hardness result for learning: Given a distribution of labeled
examples from the hypercube such that there exists a monomial consistent with (1 − ǫ) of
the examples, it is NP-hard to find a halfspace that is correct on (1/2 + ǫ) of the examples,
for arbitrary constants ǫ > 0. In learning theory terms, weak agnostic learning of monomials
is hard, even if one is allowed to output a hypothesis from the much bigger concept class of
halfspaces. This hardness result subsumes a long line of previous results, including two recent
hardness results for the proper learning of monomials and halfspaces. As an immediate corollary
of our result we show that weak agnostic learning of decision lists is NP-hard.

Our techniques are quite different from previous hardness proofs for learning. We define
distributions on positive and negative examples for monomials whose first few moments match.
We use the invariance principle to argue that regular halfspaces (all of whose coefficients have
small absolute value relative to the total ℓ2 norm) cannot distinguish between distributions
whose first few moments match. For highly non-regular subspaces, we use a structural lemma
from recent work on fooling halfspaces to argue that they are “junta-like” and one can zero
out all but the top few coefficients without affecting the performance of the halfspace. The
top few coefficients form the natural list decoding of a halfspace in the context of dictatorship
tests/Label Cover reductions.

We note that unlike previous invariance principle based proofs which are only known to give
Unique-Games hardness, we are able to reduce from a version of Label Cover problem that
is known to be NP-hard. This has inspired follow-up work on bypassing the Unique Games
conjecture in some optimal geometric inapproximability results.
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1 Introduction

Boolean conjunctions (or monomials), decision lists, and halfspaces are among the most basic
concept classes in learning theory. They are all long-known to be efficiently PAC learnable, when
the given examples are guaranteed to be consistent with a function from any of these concept
classes [44, 7, 41]. However, in practice data is often noisy or too complex to be consistently
explained by a simple concept. A common practical approach to such problems is to find a predictor
in a certain space of hypotheses that best fits the given examples. A general model for learning that
addresses this scenario is the agnostic learning model [22, 27]. An agnostic learning algorithm for
a class of functions C using a hypothesis space H is required to perform the following task: Given
examples drawn from some unknown distribution, the algorithm must find a hypothesis in H that
classifies the examples nearly as well as is possible by a hypothesis from C. The algorithm is said
to be a proper learning algorithm if C = H.

In this work we address the complexity of agnostic learning of monomials by algorithms that
output a halfspace as a hypothesis. Learning methods that output a halfspace as a hypothesis such
as Perceptron [42], Winnow [36], Support Vector Machines [45] as well as most boosting algorithms
are well-studied in theory and widely used in practical prediction systems. These classifiers are
often applied to labeled data sets which are not linearly separable. Hence it is of great interest to
determine the classes of problems that can be solved by such methods in the agnostic setting. In
this work we demonstrate a strong negative result on agnostic learning by halfspaces. We prove
that non-trivial agnostic learning of even the relatively simple class of monomials by halfspaces is
an NP-hard problem.

Theorem 1.1. For any constant ǫ > 0, it is NP-hard to find a halfspace that correctly labels
(1/2 + ǫ)-fraction of given examples over {0, 1}n even when there exists a monomial that agrees
with a (1− ǫ)-fraction of the examples.

Note that this hardness result is essentially optimal since it is trivial to find a hypothesis with
agreement rate 1/2 — output either the function that is always 0 or the function that is always
1. Also note that Theorem 1.1 measures agreement of a halfspace and a monomial with the given
set of examples rather than the probability of agreement of h with an example drawn randomly
from an unknown distribution. Uniform convergence results based on the VC dimension imply that
these settings are essentially equivalent (see for example [22, 27]).

The class of monomials is a subset of the class of decision lists which in turn is a subset of the
class of halfspaces. Therefore our result immediately implies an optimal hardness result for proper
agnostic learning of decision lists.

Previous work

Before describing the details of the prior body of work on hardness results for learning, we note that
our result subsumes all these results with just one exception (the hardness of learning monomials
by t-CNFs [34]). This is because we obtain the optimal inapproximability factor and allow learning
of monomials by the much richer class of halfspaces.

The results of the paper are noteworthy in the broader context of hardness of approximation.
Previously, hardness proofs based on the invariance principle were only known to give Unique-Games
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hardness. In this work, we are able to harness invariance principles to show NP-hardness result by
working with a version of Label Cover whose projection functions are only required to be unique-
on-average. This could be one potential approach to revisit the many strong inapproximability
results conditioned on the Unique Games conjecture (UGC), with an eye towards bypassing the
UGC assumption. Such a goal was achieved for some geometric problems recently [21]; see Section
2.3.

Agnostic learning of monomials, decision lists and halfspaces has been studied in a number of
previous works. Proper agnostic learning of a class of functions C is equivalent to the ability to
come up with a function in C which has the optimal agreement rate with the given set of examples
and is also referred to as the Maximum Agreement problem for a class of function C.

The Maximum Agreement problem for halfspaces is equivalent to the so-called Hemisphere
problem and is long known to be NP-complete [24, 17]. Amaldi and Kann [1] showed that Maximum
Agreement for halfspaces is NP-hard to approximate within 261

262 factor. This was later improved
by Ben-David et al. [5], and Bshouty and Burroughs [9] to approximation factors 415

418 , and 84
85 ,

respectively. An optimal inapproximability result was established independently by Guruswami and
Raghavendra [20] and Feldman et al. [15] showing NP-hardness of approximating the Maximum
Agreement problem for halfspaces within (1/2 + ǫ) for every constant ǫ > 0. The reduction in [15]
requires examples with real-valued coordinates, whereas the proof in [20] also works for examples
drawn from the Boolean hypercube.

The Maximum Agreement problem for monotone monomials was shown to be NP-hard by
Angluin and Laird [2], and NP-hardness for general monomials was shown by Kearns and Li [28].
The hardness of approximating the maximum agreement within 767

770 was shown by Ben-David et
al. [5]. The factor was subsequently improved to 58/59 by Bshouty and Burroughs [9]. Finally,
Feldman et al. [14, 15] showed a tight inapproximability result, namely that it is NP-hard to
distinguish between the instances where (1− ǫ)-fraction of the labeled examples are consistent with
some monomial and instances where every monomial is consistent with at most (1/2+ǫ)-fraction of
the examples. Recently, Khot and Saket [34] proved a similar hardness result even when a t-CNF
is allowed as output hypothesis for an arbitrary constant t (a t-CNF is the conjunction of several
clauses, each of which has at most t literals; a monomial is thus a 1-CNF).

For the concept class of decisions lists, APX-hardness (or hardness to approximate within some
constant factor) of the Maximum Agreement problem was shown by Bshouty and Burroughs [9].
As mentioned above, our result subsumes all these results with the exception of [34].

A number of hardness of approximation results are also known for the complementary problem
of minimizing disagreement for each of the above concept classes [27, 23, 3, 8, 14, 15]. Another
well-known evidence of the hardness of agnostic learning of monomials is that even a non-proper
agnostic learning of monomials would give an algorithm for learning DNF — a major open problem
in learning theory [35]. Further, Kalai et al. proved that even agnostic learning of halfspaces with
respect to the uniform distribution implies learning of parities with random classification noise —
a long-standing open problem in learning theory and coding [25].

Monomials, decision lists and halfspaces are known to be efficiently learnable in the presence
of more benign random classification noise [2, 26, 29, 10, 6, 12]. Simple online algorithms like
Perceptron and Winnow learn halfspaces when the examples can be separated with a significant
margin (as is the case if the examples are consistent with a monomial) and are known to be robust
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to a very mild amount of adversarial noise [16, 4, 18]. Our result implies that these positive results
will not hold when the adversarial noise rate is ǫ for any constant ǫ > 0.

Kalai et al. gave the first non-trivial algorithm for agnostic learning monomials in time 2Õ(
√
n)

[25]. They also gave a breakthrough result for agnostic learning of halfspaces with respect to the
uniform distribution on the hypercube up to any constant accuracy (and analogous results for a
number of other settings). Their algorithms output linear thresholds of parities as hypotheses. In
contrast, our hardness result is for algorithms that output a halfspace (which is a linear threshold
of single variables).

Organization of the paper: We sketch the idea of our proof in Section 2. We define some
probability and analytical tools in Section 3. In Section 4 we define the dictatorship test, which is
an important gadget for the hardness reduction. For the purpose of illustration, we also show
why this dictatorship test already suffices to prove Theorem 1.1 assuming the Unique Games
Conjecture [30]. In Section 5, we describe a reduction from a variant of the Label Cover problem
to prove Theorem 1.1 under the assumption that P 6= NP.

Notation: We use 0 to encode “False” and 1 to encode “True”. We denote pos(t) : R → {0, 1}
as the indicator function of whether t > 0; i.e., pos(t) = 1 when t > 0 and pos(t) = 0 when t < 0.

For x = (x1, x2, . . . , xn) ∈ {0, 1}n, w ∈ R
n, and θ ∈ R, a halfspace h(x) is a Boolean function of

the form pos(w ·x− θ); a monomial (conjunction) is a function of the form
∧

i∈S si, where S ⊆ [n]
and si is the literal of xi which can represent either xi or ¬xi; a disjunction is a function of the form
∨

i∈S si. One special case of monomials is the function f(x) = xi for some i ∈ [n], also referred to
as the i-th dictator function.

2 Proof Overview

We prove Theorem 1.1 by exhibiting a reduction from the k-Label Cover problem, which is
a particular variant of the Label Cover problem. The k-Label Cover problem is defined as
follows:

Definition 2.1. For positive integer M,N that M > N and k > 2, an instance of k-Label
Cover L(G(V,E),M,N, {πv,e |e ∈ E, v ∈ e}) consists of a k-uniform connected (multi-)hypergraph
G(V,E) with vertex set V and an edge multiset E; a set of functions {πvi,e}ki=1. Every hyperedge
e = (v1, . . . , vk) is associated with a k-tuple of projection functions {πvi,e}ki=1 where πvi,e : [M ] →
[N ].

A vertex labeling Λ is an assignment of labels to vertices Λ : V → [M ]. A labeling Λ is said to
strongly satisfy an edge e if πvi,e(Λ(vi)) = πvj ,e(Λ(vj))) for every vi, vj ∈ e. A labeling Λ weakly
satisfies edge e if πvi,e(Λ(vi)) = πvj ,e(Λ(vj))) for some vi, vj ∈ e, vi 6= vj .

The goal in Label Cover is to find a vertex labeling that satisfies as many edges (projection
constraints) as possible.
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2.1 Hardness assuming the Unique Games conjecture

For the sake of clarity, we first sketch the proof of Theorem 1.1 with a reduction from the k-
Unique Label Cover problem which is a special case of k-Label Cover where M = N and all
the projection functions {πv,e|v ∈ e, e ∈ E} are bijections. The following inapproximability result
[33] for k-Unique Label Cover is equivalent to the Unique Games Conjecture of Khot [30].

Conjecture 2.2. For every constant η > 0 and a positive integer k, there exists an integer R0

such that for all positive integers R > R0, given an instance L(G(V,E), R,R, {πv,e|e ∈ E, v ∈ e})
it is NP-hard to distinguish between,

• strongly satisfiable instances: there exists a labeling Λ : V → [R] that strongly satisfies 1− kη
fraction of the edges E.

• almost unsatisfiable instances: there is no labeling that weakly satisfies 2k2

Rη/4 fraction of the
edges.

Given an instance L of k-Unique Label Cover, we will produce a distribution D over labeled
examples such that the following holds: if L is a strongly satisfiable instance, then there is a
disjunction that agrees with the label on a randomly chosen example with probability at least 1− ǫ,
while if L is an almost unsatisfiable instance then no halfspace agrees with the label on a random
example from D with probability more than 1

2 + ǫ. Clearly, such a reduction implies Theorem 1.1
assuming the Unique Games Conjecture but with disjunctions in place of conjunctions. De Morgan’s
law and the fact that a negation of a halfspace is a halfspace then imply that the statement is also
true for monomials (we use disjunctions only for convenience).

Let L be an instance of k-Unique Label Cover on hypergraph G = (V,E) and a set of labels
[R]. The examples we generate will have |V | × R coordinates, i.e., belong to {0, 1}|V |×R. These
coordinates are to be thought of as one block of R coordinates for every vertex v ∈ V . We will

index the coordinates of x ∈ {0, 1}|V |×R as x = (x
(r)
v )v∈V,r∈[R].

For every labeling Λ : V → [R] of the instance, there is a corresponding disjunction over
{0, 1}|V |×R given by,

h(x) =
∨

v

x(Λ(v))v .

Thus, using a label r for a vertex v is encoded as including the literal x
(r)
v in the disjunction. Notice

that an arbitrary halfspace over {0, 1}|V |×R need not correspond to any labeling at all. The idea
would be to construct a distribution on examples which ensures that any halfspace agreeing with at
least 1

2 + ǫ fraction of random examples somehow corresponds to a labeling of Λ weakly satisfying
a constant fraction of the edges in L.

Fix an edge e = (v1, . . . , vk). For the sake of exposition, let us assume πvi,e is the identity
permutation for every i ∈ [k]. The general case is not anymore complicated.

For the edge e, we will construct a distribution on examples De with the following properties:

• All coordinates x
(r)
v for a vertex v /∈ e are fixed to be zero. Restricted to these examples, the

halfspace h can be written as h(x) = pos(
∑

i∈[k]〈wvi ,xvi〉 − θ).

5



• For any label r ∈ [R], the labeling Λ(v1) = . . . = Λ(vk) = r strongly satisfies the edge e.

Hence, the corresponding disjunction ∨i∈[k]x
(r)
vi needs to have agreement > 1 − ǫ with the

examples from De.

• There exists a decoding procedure that given a halfspace h outputs a labeling Λh for L such
that, if h has agreement > 1

2 + ǫ with the examples from De, then Λh weakly satisfies the edge
e with non-negligible probability.

For conceptual clarity, let us rephrase the above requirement as a testing problem. Given
a halfspace h, consider a randomized procedure that samples an example (x, b) from the distri-
bution De, and accepts if h(x) = b. This amounts to a test that checks if the function h cor-
responds to a consistent labeling. Further, let us suppose the halfspace h is given by h(x) =
pos

(
∑

v∈V 〈wv,xv〉 − θ
)

. Define the linear function fv : {0, 1}R → R as fv(xv) = 〈wv,xv〉. Then,
we have h(x) = pos(

∑

v∈V fv(xv)− θ).

For a halfspace h corresponding to a labeling Λ, we will have fv(xv) = x
(Λ(v))
v – a dictator

function. Thus, in the intended solution every linear function fv associated with the halfspace h is
a dictator function.

Now, let us again restate the above testing problem in terms of these linear functions. For
succinctness, we write fi for the linear function fvi . We need a randomized procedure that does
the following:

Given k linear functions f1, . . . , fk : {0, 1}R → R, queries the functions at one point
each (say x1, . . . ,xk respectively), and accepts if pos(

∑k
i=1 fi(xi)− θ) = b.

The procedure must satisfy,

• (Completeness) If each of the linear functions fi is the r’th dictator function for some r ∈ [R],
then the test accepts with probability 1− ǫ.

• (Soundness) If the test accepts with probability 1
2 + ǫ, then at least two of the linear functions

are close to the same dictator function.

A testing problem of the above nature is referred to as a Dictatorship Testing and is a recurring
theme in hardness of approximation.

Notice that the notion of a linear function being close to a dictator function is not formally
defined yet. In most applications, a function is said to be close to a dictator if it has influential
coordinates. It is easy to see that this notion is not sufficient by itself here. For example, in the
linear function pos(10100x1+x2− 0.5), although the coordinate x2 has little influence on the linear
function, it has significant influence on the halfspace.

We resolve this problem by using the notion of critical index (Definition 3.1) that was introduced
in [43] and has found numerous applications in the analysis of halfspaces [37, 40, 13]. Roughly
speaking, given a linear function f , the idea is to recursively delete its influential coordinates until
there are none left. The total number of coordinates so deleted is referred to as the critical index
of f . Let cτ (wi) denote the critical index of wi, and let Cτ (wi) denote the set of cτ (wi) largest
coordinates of wi. The linear function l is said to be close to the i’th dictator function for every i
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in Cτ (wi). A function is far from every dictator if it has critical index 0 – no influential coordinate
to delete.

An important issue is that the critical index of a linear function can be much larger than the
number of influential coordinates and cannot be appropriately bounded. In other words, a linear
function can be close to a large number of dictator functions, as per the definition above. To counter
this, we employ a structural lemma about halfspaces that was used in the recent work on fooling
halfspaces with limited independence [13]. Using this lemma, we are able to prove that if the critical
index is large, then one can in fact zero out the coordinates of wi outside the t largest coordinates
for some large enough t, and the agreement of the halfspace h only changes by a negligible amount!
Thus, we first carry out the zeroing operation for all linear functions with large critical index.

We now describe the above construction and analysis of the dictatorship test in some more
detail. It is convenient to think of the k queries x1, . . . ,xk as the rows of a k×R matrix with {0, 1}
entries. Henceforth, we will refer to matrices {0, 1}k×R and their rows and columns.

We construct two distributionsD0,D1 on {0, 1}k such that for s ∈ {0, 1}, we have Prx∈Ds

[

∨k
i=1xi =

s
]

> 1− ǫ/2 for ǫ = ok(1) (this will ensure the completeness of the reduction, i.e., certain disjunc-
tions pass with high probability). Further, the distributions D0,D1 will be carefully chosen to have
matching first four moments. This will be used in the soundness analysis where we will use an
invariance principle to infer structural properties of halfspaces that pass the test with probability
noticeably greater than 1/2.

We define the distribution D̃R
s on matrices {0, 1}k×R by sampling R columns independently

according to Ds, and then perturbing each bit with a small probability ǫ/2. We define the following
test (or equivalently, distribution on examples): given a halfspace h on {0, 1}k×R, with probability
1/2 we check h(x) = 0 for a sample x ∈ D̃R

0 , and with probability 1/2 we check h(x) = 1 for a
sample x ∈ D̃R

1 .

Completeness: By construction, each of the R disjunctions ORj(x) = ∨k
i=1x

(j)
i passes the test

with probability at least 1− ǫ (here x
(j)
i denotes the entry in the i’th row and j’th column of x).

Soundness: For the soundness analysis, suppose h(x) = pos(〈w,x〉 − θ) is a halfspace that
passes the test with probability at least 1/2 + ǫ. The halfspace h can be written in two ways by
expanding the inner product 〈w,x〉 along rows and columns, i.e., h(x) = pos(

∑k
i=1〈wi,xi〉 − θ) =

pos(
∑R

i=1〈w(i),x(i)〉 − θ). Let us denote fi(x) = 〈wi,xi〉.
First, let us see why the linear functions 〈wi,xi〉 must be close to some dictator. Note that we

need to show that two of the linear functions are close to the same dictator.

Suppose each of the linear functions fi is not close to any dictator. In other words, for each
i, no single coordinate of the vector wi is too large (contains more than τ -fraction of the ℓ2 mass
‖wi‖2 of vector wi ). Clearly, this implies that no single column of the matrix w is too large.

Recall that the halfspace is given by h(x) = pos(
∑

j∈[R]〈w(j),x(j)〉−θ).Here l(x) =
∑

j∈[R]〈w(j),x(j)〉−
θ is a degree 1 polynomial into which we are substituting values from two product distributions DR

0

and DR
1 . Further, the distributions D0 and D1 have matching moments up to order 4 by design.

Using the invariance principle, the distribution of l(x) is roughly the same, whether x is from DR
0

or DR
1 . Thus, by the invariance principle, the halfspace h is unable to distinguish between the

distributions DR
0 and DR

1 with a noticeable advantage.

7



Further, suppose no two linear functions fi are close to the same dictator, i.e., Cτ (wi)∩Cτ (wj) =

∅. In this case, we condition on the values of x
(j)
i for j ∈ Cτ (wi). Since Cτ (wi) ∩Cτ (wj) = ∅, this

conditions at most one value in each column. Therefore, the conditional distribution on each column
in cases D0 and D1 still have matching first three moments. We thus apply the invariance principle
using the fact that after deleting the coordinates in Cτ (wi), all the remaining coefficients of the
weight vector w are small (by definition of critical index). This implies that Cτ (wi) ∩Cτ (wj) 6= ∅
for some two rows i, j and finishes the proof of the soundness claim.

The above consistency-enforcing test almost immediately yields the Unique Games hardness of
weak learning disjunctions by halfspaces via standard methods.

2.2 Extending to NP-hardness

To prove NP-hardness as opposed to hardness assuming the Unique Games conjecture, we reduce
a version of Label Cover to our problem. This requires a more complicated consistency check, and
we have to overcome several additional technical obstacles in the proof.

The main obstacle encountered in transferring the dictatorship test to a Label Cover-based
hardness is one that commonly arises for several other problems. Specifically, the projection con-
straint on an edge e = (u, v) maps a large set of labels R = {r1, . . . , rd} corresponding to a vertex
u to a single label r for the vertex v. While composing the Label Cover constraint (u, v) with the
dictatorship test, all labels in R have to be necessarily equivalent. In several settings including this
work, this requires the coordinates corresponding to labels in R to be mostly identical! However, on
making the coordinates corresponding to R identical, the prover corresponding to u can determine
the identity of edge (u, v), thus completely destroying the soundness of the composition. In fact,
the natural extension of the Unique Games-based reduction for MaxCut [32] to a corresponding
Label Cover hardness fails primarily for this reason.

Unlike MaxCut or other Unique Games-based reductions, in our case, the soundness of the
dictatorship test is required to hold against a specific class of functions, i.e, halfspaces. Harnessing
this fact, we execute the reduction starting from a Label Cover instance whose projections are
unique on average. More precisely, a smooth Label Cover (introduced in [31]) is one in which for
every vertex u, and a pair of labels r, r′, the labels {r, r′} project to the same label with a tiny
probability over the choice of the edge e = (u, v). Technically, we express the error term in the
invariance principle as a certain fourth moment of the coefficients of the halfspace, and use the
smoothness to bound this error term for most edges of the Label Cover instance.

2.3 Bypassing the Unique Games conjecture

Unlike previous invariance principle based proofs which are only known to give Unique-Games
hardness, we are able to reduce from a version of the Label Cover problem, based on unique
on average projections, that can be shown to be NP-hard. It is of great interest to find other
applications where a weak uniqueness property like the smoothness condition mentioned above
can be used to convert a Unique-Games hardness result to an unconditional NP-hardness result.
Indeed, inspired by the success of this work in avoiding the UGC assumption and using some of
our methods, follow-up work has managed to bypass the Unique Games conjecture in some optimal
geometric inapproximability results [21]. To the best of our knowledge, the results of [21] are the
first NP-hardness proofs showing a tight inapproximability factor that is related to fundamental
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parameters of Gaussian space, and among the small handful of results where optimality of a non-
trivial semidefinite programming based algorithm is shown under the assumption P 6= NP. We hope
that this paper has thus opened the avenue to convert at least some of the many tight Unique-Games
hardness results to NP-hardness results.

3 Preliminaries

In this section, we define two important tools in our analysis: i) critical index, ii) invariance
principle.

3.1 Critical Index

The notion of critical index was first introduced by Servedio [43] and plays an important role in
the analysis of halfspaces in [37, 40, 13].

Definition 3.1. Given any real vector w = (w(1), w(2), . . . , w(n)) ∈ R
n. Reorder the coordinates

by decreasing absolute value, i.e., |w(i1)| > |w(i2)| > . . . > |w(in)| and denote σ2
t =

∑n
j=t |w(ij )|2.

For 0 6 τ 6 1, the τ -critical index of the vector w is defined to be the smallest index k such
|w(ik)| 6 τσk. If no such k exists (∀k, |w(ik)| > τσk), the τ -critical index is defined to be +∞. The
vector w is said to be τ -regular if the τ -critical index is 1.

A simple observation from [13] is that if the critical index of a sequence is large then the sequence
must contain a geometrically decreasing subsequence.

Lemma 3.2. (Lemma 5.5 in [13]) Given a vector w = (w(i))ni=1 such that |w(1)| > |w(2)| > . . . >
|w(n)|, if the τ -critical index of the vector w is larger than l, then for any 1 6 i 6 j 6 l + 1,

|w(j)| 6 σj 6 (
√

1− τ2)j−iσi 6 (
√

1− τ2)j−i|w(i)|/τ.

In particular, if j > i+ (4/τ2) ln(1/τ) then |w(j)| 6 |w(i)|/3.

For a τ -regular weight vector, the following lemma bounds the probability that its weighted
sum falls into a small interval under certain distributions on the points. The proof is in Appendix
B.

Lemma 3.3. Let w ∈ R
n be a τ -regular vector w, and

∑ |w(i)|2 = 1. D is a distribution over
{0, 1}n. Define a distribution D̃ on {0, 1}n as follows: to generate y from D̃, first sample x from
D and then define,

y(i) =

{

x(i) with probability 1− γ

random bit with probability γ.

Then for any interval [a, b], we have

Pr
[

〈w,y〉 ∈ [a, b]
]

6
4|b− a|√

γ
+

4τ√
γ
+ 2e−

γ2

2τ2 .
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Intuitively, by the Berry-Esseen Theorem, 〈w,y〉 is τ close to the Gaussian distribution if each
y(i) is a random bit; therefore we can bound the probability that 〈w,y〉 falls into the interval [a, b].
In above lemma, each y(i) has probability γ to be a random bit, then γ fraction of y(i) is set to be
a random bit and we can similarly bound the probability that 〈w,y〉 falls into the interval [a, b].

Definition 3.4. For a vector w ∈ R
n, define set of indices Ht(w) ⊆ [n] as the set of indices

containing the t biggest coordinates of w by absolute value. Suppose its τ -critical index is cτ , define
set of indices Cτ (w) = Hcτ (w). In other words, Cτ (w) is the set of indices whose deletion makes
the vector w to be τ -regular.

Definition 3.5. For a vector w ∈ R
n and a subset of indices S ⊆ [n], define the vector Truncate(w, S) ∈

R
n as:

(Truncate(w, S))(i) =

{

w(i) if i ∈ S

0 otherwise

As suggested by Lemma 3.2, a weight vector with a large critical index has a geometrically
decreasing subsequence. The following two lemmas use this fact to bound the probability that the
weighted sum of a geometrically decreasing sequence of weights falls into a small interval. First,
we restate Claim 5.7 from [13] here.

Lemma 3.6. [Claim 5.7, [13]] Let w = (w(1), . . . , w(T )) be such that |w(1)| > |w(2)| . . . > |w(T )| > 0

and |w(i+1)| 6 |w(i)

3 | for 1 6 i 6 T − 1 . Then for any interval I = [α − w(T )

6 , α + w(T )

6 ] of length
|w(T )|

3 , there is at most one point x ∈ {0, 1}T such that 〈w,x〉 ∈ I.

Lemma 3.7. Let w = (w(1), . . . , w(T )) be such that |w(1)| > |w(2)| . . . > |w(T )| > 0 and |w(i+1)| 6
|w(i)

3 | for 1 6 i 6 T − 1. Let D be a distribution over {0, 1}T . Define a distribution D̃ on {0, 1}T
as follows: To generate y from D̃, sample x from D and set

y(i) =

{

x(i) with probability 1− γ

random bit with probability γ.

Then for any θ ∈ R we have

Pr
[

〈w,y〉 ∈ [θ − w(T )

6
, θ +

w(T )

6
]
]

6

(

1− γ

2

)T
.

Proof. By Lemma 3.6, we know that for the interval J =
[

θ − |wT |
6 , θ + |wT |

6

]

, there is at most one

point r ∈ {0, 1}T such that 〈w, r〉 ∈ J . If no such r exists then clearly the probability is zero.

On the other hand, suppose there exists such an r, then 〈w,y〉 ∈ J only if (y
(1)
1 , y

(2)
1 , . . . , y

(T )
1 ) =

(r(1), . . . , r(T )) holds.

Conditioned on any fixing of the bits x, every bit y(j) is an independent random bit with
probability γ. Therefore, for every fixing of x, for each i ∈ [T ], with probability at least γ/2, y(i)

is not equal to r(i). Therefore, Pr[y(1) = r(1), y(2) = r(2), . . . , y(T ) = r(T )] 6
(

1− γ
2

)T
.
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3.2 Invariance Principle

While invariance principles have been shown in various settings by [39, 11, 38], we restate a version of
the principle well suited for our application. We present a self-contained proof for it in Appendix C.

Definition 3.8. A function Ψ(x) : R → R for which fourth-order derivatives exist everywhere on
R is said to be K-bounded if |Ψ′′′′(t)| 6 K for all t ∈ R.

Definition 3.9. Two ensembles of random variables P = (p1, . . . , pk) and Q = (q1, . . . , qk) are said
to have matching moments up to degree d if for every multi-set S of elements from [k], |S| 6 d, we
have E[

∏

i∈S pi] = E[
∏

i∈S qi].

Theorem 3.10. (Invariance Principle) Let A = {A{1}, . . . ,A{R}},B = {B{1}, . . . ,B{R}} be fam-

ilies of ensembles of random variables with A{i} = {a(i)1 , . . . , a
(i)
ki
} and B{i} = {b(i)1 , . . . , b

(i)
ki
}, satis-

fying the following properties:

• For each i ∈ [R], the random variables in ensembles (A{i},B{i}) have matching moments up
to degree 3. Further all the random variables in A and B are bounded by 1.

• The ensembles A{i} are all independent of each other, similarly the ensembles B{i} are inde-
pendent of each other.

Given a set of vectors l = {l{1}, . . . , l{R}}(l{i} ∈ R
ki), define the linear function l : Rk1×· · ·×R

kR →
R as

l(x) =
∑

i∈[R]

〈l{i},x{i}〉

Then for a K-bounded function Ψ : R → R we have

∣

∣

∣

∣

E
A

[

Ψ
(

l(A)− θ
)]

−E
B

[

Ψ
(

l(B)− θ
)]

∣

∣

∣

∣

6 K
∑

i∈[R]

‖l{i}‖41

for all θ > 0. Further, define the spread function c(α) corresponding to the ensembles A,B and the
linear function l as follows,

(Spread Function: )For 1/2 > α > 0, let

c(α) = max
(

sup
θ

PrA
[

l(A) ∈ [θ − α, θ + α]
]

, sup
θ

PrB
[

l(B) ∈ [θ − α, θ + α]
]

)

then for all θ,

∣

∣

∣

∣

E
A
[pos (l(A)− θ)]−E

B
[pos (l(B)− θ)]

∣

∣

∣

∣

6 O

(

1

α4

)

∑

i∈[R]

‖l{i}‖41 + 2c(α).

Roughly speaking, the second part of the theorem states that pos function can be thought of
as 1

α4 -bounded with error parameter c(α).
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4 Construction of the Dictatorship Test

In this section we describe the construction of the dictatorship test which will be the key ingredient
in the hardness reduction from k-Unique Label Cover.

4.1 Distributions D0 and D1

The dictatorship test is based on following two distributions D0 and D1 defined on {0, 1}k .

Lemma 4.1. For k ∈ N, there exists two probability distributions D0, D1 on {0, 1}k such that for
x = (x1, . . . , xk),

Prx∼D0{every xl is 0} > 1− 2√
k

and Prx∼D1{every xl is 0} 6
1√
k
,

while matching moments up to degree 4, i.e., ∀i, j,m, n ∈ [k]

E
D0

[xi] = E
D1

[xi] E
D0

[xixjxmxn] = E
D1

[xixjxmxn]

E
D0

[xixj] = E
D1

[xixj ] E
D0

[xixjxm] = E
D1

[xixjxm]

Proof. For ǫ = 1√
k
, take D1 to be the following distribution:

1. with probability (1− ǫ), randomly set exactly one of the bit to be 1 and all the other to be 0;

2. with probability ǫ
4 , independently set every bit to be 1 with probability 1

k1/3
;

3. with probability ǫ
4 , independently set every bit to be 1 with probability 2

k1/3
;

4. with probability ǫ
4 , independently set every bit to be 1 with probability 3

k1/3
;

5. with probability ǫ
4 , independently set every bit to be 1 with probability 4

k1/3
.

The distribution D0 is defined to be the following distribution with parameter ǫ1, ǫ2, ǫ3, ǫ4 to be
specified later:

1. with probability 1− (ǫ1 + ǫ2 + ǫ3 + ǫ4), set every bit to be zero;

2. with probability ǫ1, independently set every bit to be 1 with probability 1
k1/3

;

3. with probability ǫ2, independently set every bit to be 1 with probability 2
k1/3

;

4. with probability ǫ3, independently set every bit to be 1 with probability 3
k1/3

;

5. with probability ǫ4, independently set every bit to be 1 with probability 4
k1/3

.

12



From the definition of D0,D1, we know that Prx∼D0 [every xi is 0] > 1− (ǫ1 + ǫ2 + ǫ3 + ǫ4) and
Prx∼D1 [every xi is 0] 6 ǫ = 1√

k
.

It remains to determine each ǫi. Notice that the moment matching conditions can be expressed
as a linear system over the parameters ǫ1, ǫ2, ǫ3, ǫ4 as follows:

4
∑

i=1

ǫi(
i

k1/3
) = (1− ǫ)/k +

4
∑

i=1

ǫ

4
(
i

k
1
3

)

4
∑

i=1

ǫi(
i

k1/3
)2 =

4
∑

i=1

ǫ

4
(
i

k
1
3

)2

4
∑

i=1

ǫi(
i

k
1
3

)3 =
4

∑

i=1

ǫ

4
(
i

k
1
3

)3

4
∑

i=1

ǫi(
i

k
1
3

)4 =
4

∑

i=1

ǫ

4
(
i

k
1
3

)4.

We then show that such a linear system has a feasible solution ǫ1, ǫ2, ǫ3, ǫ4 > 0 and
∑4

i=1 ǫi 6
2/
√
k .

To prove this, by applying Cramer’s rule,

ǫ1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1− ǫ)/k +
∑4

i=1
ǫ
4(

i

k
1
3
) 2

k
1
3

3

k
1
3

4

k
1
3

∑4
i=1

ǫ
4(

i

k
1
3
)2 4

k
2
3

9

k
2
3

16

k
2
3

∑4
i=1

ǫ
4(

i

k
1
3
)3 8

k
3
3

27

k
3
3

64

k
3
3

∑4
i=1

ǫ
4(

i

k
1
3
)4 16

k
4
3

81

k
4
3

256

k
4
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

k
1
3

2

k
1
3

3

k
1
3

4

k
1
3

1

k
2
3

4

k
2
3

9

k
2
3

16

k
2
3

1

k
3
3

8

k
3
3

27

k
3
3

64

k
3
3

1

k
4
3

16

k
4
3

81

k
4
3

256

k
4
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

With some calculation using basic linear algebra, we get

ǫ1 = ǫ/4 +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1− ǫ)/k 2

k
1
3

3

k
1
3

4

k
1
3

0 4

k
2
3

9

k
2
3

16

k
2
3

0 8

k
3
3

3

k
3
3

64

k
3
3

0 16

k
4
3

3

k
4
3

256

k
4
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

k
1
3

2

k
1
3

3

k
1
3

4

k
1
3

1

k
2
3

4

k
2
3

9

k
2
3

16

k
2
3

1

k
3
3

8

k
3
3

27

k
3
3

64

k
3
3

1

k
4
3

16

k
4
3

81

k
4
3

256

k
4
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

4
√
k
+O(

1

k
2
3

).
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For large enough k, we have 0 6 ǫ1 6 1
2
√
k
. By similar calculation, we can bound ǫ2, ǫ3, ǫ4 by 1

2
√
k
.

Overall, we have ǫ1 + ǫ2 + ǫ3 + ǫ4 6 2/
√
k

We define a “noisy” version of Db (b ∈ {0, 1}) below.

Definition 4.2. For b ∈ {0, 1}, define the distribution D̃b on {0, 1}k as follows:

• First generate x ∈ {0, 1}k according to Db.

• For each i ∈ [k],

yi =

{

xi with probability 1− 1
k2

uniform random bit ui with probability 1
k2

Observation 4.3. D̃0 and D̃1 also have matching moments up to degree 4.

Proof. Since the noise is defined to be an independent uniform random bit, when calculating mo-
ments of y, such as ED̃b

[yi1yi2 · · · yid], we can substitute yi by (1 − γ)xi +
1
2γ. Therefore, a degree

d moment of y can be expressed as a weighted sum of moments of x of degree up to d. Since
D0 and D1 have matching moments up to degree 4, it follows that D̃0 and D̃1 also have the same
property.

The following simple lemma asserts that conditioning the two distributions D̃0 and D̃1 on the
same coordinate xj being fixed to value b results in conditional distributions that still have matching
moments up to degree 3.

Lemma 4.4. Given two distributions P0,P1 on {0, 1}k with matching moments up to degree d, for
any multi-set S of elements from [k], |S| 6 d− 1, j ∈ [k] and c ∈ {0, 1}.

E
P0

[
∏

i∈S
xi | xj = c] = E

P1

[
∏

i∈S
xi | xj = c].

Proof. For the case c = 1 and any b ∈ {0, 1},

E
Pb

[xj
∏

i∈S
xi] = E

Pb

[
∏

i∈S
xi | xj = 1]PrP0 [xj = 1] = E

Pb

[
∏

i∈S
xi | xj = 1] E

P0

[xj ].

Therefore,

E
P0

[
∏

i∈S
xi | xj = 1] =

EP0 [xj
∏

i∈S xi]

EP0 [xj]
=

EP1 [xj
∏

i∈S xi]

EP1 [xj ]
= E

P1

[
∏

i∈S
xi | xj = 1].

For the case c = 0, replace xj with x′j = 1 − xj. It is easy to see that P0 and P1 still have
matching moments and conditioning on xj = 0 is the same as conditioning on x′j = 1. Hence we
can reduce to the case c = 1.
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4.2 The Dictatorship Test

Let R be a positive integer. Based on the distributions D0 and D1, we define the dictatorship test
as follows:

1. Generate a random bit b ∈ {0, 1}.
2. Generate x ∈ {0, 1}kR (which is also written as {x(j)i }i∈[k],j∈[R]) from DR

b .

3. For each i ∈ [k], j ∈ [R],

y
(j)
i =

{

x
(j)
i with probability 1− 1

k2
;

random bit with probability 1
k2 .

4. Output the labelled example (y, b). Equivalently, if h denotes the halfspace, ACCEPT
if h(y) = b.

We can also view y as being generated as follows: i) With probability 1
2 , generate a negative

sample from distribution D̃R
0 ; ii) With probability 1

2 , generate a positive sample from distribution

D̃R
1 .

The dictatorship test has the following completeness and soundness properties.

Theorem 4.5. (completeness) For any j ∈ [R], h(y) = ∨k
i=1y

(j)
i passes with probability > 1− 3√

k
.

Theorem 4.6. (soundness) Fix τ = 1
k7

and t = 1
τ2
(3 ln(1/τ) + lnR) + ⌈4k2 ln k⌉⌈ 4

τ2
ln(1/τ)⌉. Let

h(x) = pos(〈w,y〉 − θ) be a halfspace such that Ht(wi) ∩ Ht(wj) = ∅ for all i, j ∈ [k]. Then the
halfspace h(y) passes the dictatorship test with probability at most 1

2 +O( 1k ).

Proof. (Theorem 4.5) If x is generated from DR
0 , we know that with probability at least 1− 2√

k
, all

the bits in {x(j)1 , x
(j)
2 , . . . , x

(j)
k } are set to 0. By union bound, with probability at least 1− 2√

k
− 1

k ,

{y(j)1 , y
(j)
2 , . . . , y

(j)
k } are all set to 0, in which case the test passes as ∨k

i=1y
(j)
i = 0. If x is generated

from DR
1 , we know that with probability at least 1− 1√

k
, one of the bits in {x(j)1 , x

(j)
2 , . . . , x

(j)
k } is set

to 1 and by union bound one of {y(j)1 , y
(j)
2 , . . . , y

(j)
k } is set to 1 with probability at least 1− 1√

k
− 1

k ,

in which case the test passes since ∨k
i=1y

(j)
i = 1. Overall, the test passes with probability at least

1− 3√
k
.

4.3 Proof of Soundness (Theorem 4.6)

We will prove the contrapositive statement of Theorem 4.6: if some h(y) passes the above dictator-
ship test with high probability, then we can decode for each wi (i ∈ [k]), a small list of coordinates
and at least two of the lists will intersect.

The proof is based on two key lemmas (Lemmas 4.7, 4.8). The first lemma states that if a
halfspace passes the test with good probability, then two of its critical index sets Cτ (wi), Cτ (wj)
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must intersect. This would immediately imply Theorem 4.6 if cτ is less than t. The second lemma
states that every halfspace can be approximated by another halfspace with critical index less than
t; so we can assume that cτ is small without loss of generality.

Let h(y) be a halfspace function on {0, 1}kR given by h(y) = pos(〈w,y〉 − θ). Equivalently,
h(y) can be written as

h(y) = pos
(

∑

j∈[R]

〈w(j),y(j)〉 − θ
)

= pos
(

∑

i∈[k]
〈wi,yi〉 − θ

)

,

where w(j) ∈ R
k and wi ∈ R

R.

Lemma 4.7. (Common Influential Coordinates) For τ = 1
k7 , let h(y) be a halfspace such that for

all i 6= j ∈ [k], we have Cτ (wi) ∩ Cτ (wj) = ∅ . Then

∣

∣

∣ E
D̃R

0

[h(y)]− E
D̃R

1

[h(y)]
∣

∣

∣ 6 O
(1

k

)

.

Proof. Fix the following notation,

li = Truncate(wi, Cτ (wi)) si = wi −wC
i

yC
i = Truncate(yi, Cτ (wi)) yC = yC

1 ,y
C
2 , . . . ,y

C
k

s = s1, s2, . . . , sk l = l1, l2, . . . , lk.

We can rewrite the halfspace h(y) as h(y) = pos
(

〈l,yC〉 + 〈s,y〉 − θ
)

. Let us first normalize the

halfspace h(y) so that
∑

i∈[k] ‖li‖2 = 1. We now condition on a possible fixing of the vector yC .

Under this conditioning and for y chosen randomly from the distribution D̃R
0 , define the family of

ensembles A = A{1}, . . . ,A{R} as follows:

A{j} = {y(j)i | i ∈ [k] for which j /∈ Cτ (wi)}

Similarly define the ensemble B = B{1}, . . . ,B{R} using y chosen randomly from the distribution

D̃R
1 . Further let us denote l{j} = (l

(j)
1 , . . . , l

(j)
k ). Now we apply the invariance principle (Theorem

3.10) to the ensembles A,B and the linear function l. For each j ∈ [R], there is at most one
coordinate i ∈ [k] such that j ∈ Cτ (wi). Thus, conditioning on yC amounts to fixing of at most

one variable y
(j)
i in each column {y(j)i }i∈[k]. By Lemma 4.4, since D̃0 and D̃1 have matching moments

up to degree 4, we get that A{j} and B{j} have matching moments up to degree 3. Also notice

that maxj∈[R],i∈[k] |l(j)i | 6 τ‖li‖2 6 τ‖l‖2 (as li is a τ -regular) and each y
(j)
i is set to be a random

unbiased bit with probability 1
k2 ; by Lemma 3.3, the linear function l and the ensembles A, B

satisfy the following spread property for every θ′ ∈ R:

PrA
[

l(A) ∈ [θ′ − α, θ′ + α]
]

6 c(α)

PrB
[

l(B) ∈ [θ′ − α, θ′ + α]
]

6 c(α),
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where c(α) 6 8αk + 4τk + 2e−
1

2τ2k4 (by setting γ = 1
k2

and |b− a| = 2α in Lemma 3.3). Using the
invariance principle (Theorem 3.10) this implies:

∣

∣

∣E
A

[

pos
(

〈s,yC〉+
∑

j∈[R]

〈l{j},A{j}〉 − θ
)∣

∣

∣y
C
]

−

E
B

[

pos
(

〈s,yC〉+
∑

j∈[R]

〈l{j},B{j}〉 − θ
)∣

∣

∣
yC

]∣

∣

∣

6 O
( 1

α4

)

∑

i∈[R]

‖l{i}‖41 + 2c(α) (1)

By definition of the critical index, we have maxj∈[R] l
j
i 6 τ‖li‖2. Using this, we can bound

∑

i∈[R] ‖l{i}‖41 as follows:

∑

j∈[R]

‖l{j}‖41 6 k4
∑

i∈[k]

∑

j∈[R]

‖l(j)i ‖4 6 k4
∑

i∈[k]

(

max
j∈[R]

|l(j)i |2
)

‖li‖22

6 k4τ2
∑

i∈[k]
‖li‖22 6 k4τ2‖l‖22 6

1

k10
.

In the final inequality in above calculation, we used the fact that τ = 1
k7 and ‖l‖2 = 1. Let us

choose α = 1
k2

and (1) is therefore bounded by O(1/k) for all settings of yC . Averaging over all
settings of yC we get that

∣

∣

∣
E
D̃R

0

[h(y)] − E
D̃R

1

[h(y)]
∣

∣

∣
6 O

(

1

k

)

.

The above lemma asserts that unless some two vectors wi,wj have a common influential co-
ordinate, the halfspace h(y) cannot distinguish between D̃R

0 and D̃R
1 . Unlike with the traditional

notion of influence, it is unclear whether the number of coordinates in Cτ (wi) is small. The following
lemma yields a way to get around this.

Lemma 4.8. (Bounding the number of influential coordinates) Let t be set as in Theorem 4.6.
Given a halfspace h(y) and r ∈ [k] such that |Cτ (wr)| > t, define h̃(y) = pos(

∑

i∈[k]〈w̃i,yi〉 − θ)
as follows: w̃r = Truncate(wr,Ht(wr)) and w̃i = wi for all i 6= r. Then,

∣

∣

∣
E
D̃R

0

[h̃(y)]− E
D̃R

0

[h(y)]
∣

∣

∣
6

1

k2
and

∣

∣

∣
E
D̃R

1

[h̃(y)]− E
D̃R

1

[h(y)]
∣

∣

∣
6

1

k2
.

Proof. Without loss of generality, we assume r = 1 and |w(1)
1 | > |w(2)

1 | > · · · > |w(R)
1 |. In particular,

this implies Ht(w1) = {1, . . . , t}. Set T = ⌈4k2 ln k⌉. Define the subset G of Ht(w1) as

G = {gi | gi = 1 + i⌈(4/τ2) ln(1/τ)⌉, 0 6 i 6 T}.

Therefore, by Lemma 3.2, |w(gi)
1 | is a geometrically decreasing sequence such that |w(gi+1)

1 | 6

|w(gi)
1 |/3. Let H = Ht(w1) \G. Fix the following notation:

wG
1 = Truncate(w1, G), wH

1 = Truncate(w1,H), w>t
1 = Truncate(w1, {t+ 1, . . . , n}).
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Similarly, define the vectors yG
1 ,y

H
1 ,y>t

1 . We now rewrite the halfspace functions h(y) and h̃(y)
as:

h(y) = pos
(

k
∑

i=2

〈wi,yi〉+ 〈wG
1 ,y

G
1 〉+ 〈wH

1 ,yH
1 〉+ 〈w>t

1 ,y>t
1 〉 − θ

)

h̃(y) = pos
(

k
∑

i=2

〈wi,yi〉+ 〈wG
1 ,y

G
1 〉+ 〈wH

1 ,yH
1 〉 − θ

)

.

Notice that for any y, h(y) 6= h̃(y) implies

∣

∣

k
∑

i=2

〈wi,yi〉+ 〈wG
1 ,y

G
1 〉+ 〈wH

1 ,yH
1 〉 − θ

∣

∣ 6 |〈w>t
1 ,y>t

1 〉|. (2)

By Lemma 3.2, we know that

|w(gT )
1 |2 >

τ2

(1− τ2)t−gT
‖w>t

1 ‖22 >
τ2

(1− τ2)
1
τ2

(3 ln(1/τ)+lnR)
‖w>t

1 ‖22 >
R

τ
‖w>t

1 ‖22.

Using the fact that R‖w>t
1 ‖22 > ‖w>t

1 ‖21, we can get that ‖w>t
1 ‖1 6

√
τ |w(gT )

1 | 6 1
6 |w

(gT )
1 |. Combin-

ing the above inequality with (2) we see that,

Pr
D̃R

0

[

h(y) 6= h̃(y)
]

6 Pr
D̃R

0

[

|
k

∑

i=2

〈wi,yi〉+ 〈wG
1 ,y

G
1 〉+ 〈wH

1 ,yH
1 〉 − θ| 6 |〈w>t

1 ,y>t
1 〉|

]

6 Pr
D̃R

0

[

∣

∣

k
∑

i=2

〈wi,yi〉+ 〈wG
1 ,y

G
1 〉+ 〈wH

1 ,yH
1 〉 − θ

∣

∣ 6
|w(gT )

1 |
6

]

= Pr
D̃R

0

[

〈wG
1 ,y

G
1 〉 ∈ [θ′ − 1

6
|w(gT )

1 |, θ′ + 1

6
|w(gT )

1 |]
]

where θ′ = −∑k
i=2〈wi,yi〉 − 〈wH

1 ,yH
1 〉 + θ. For any fixing of the value of θ′ ∈ R, it induces a

certain distribution on yG
1 . However, the 1

k2
noise introduced in yG

1 is completely independent.
This corresponds to the setting of Lemma 3.7, and hence we can bound the above probability by
(

1− 1
2k2

)T
6

1
k2
. The result follows from averaging over all values of θ′.

With the two lemmas above, we now prove the soundness property.

Proof. (Theorem 4.6) The probability of success of h(y) is given by 1
2 +

1
2

(

ED̃R
1
[h(y)]−ED̃R

0
[h(y)]

)

.

Therefore, it suffices to show that
∣

∣

∣ED̃R
0
[h(y)] −ED̃R

1
[h(y)]

∣

∣

∣ = O( 1k ).

Define I = {r | Cτ (wr) > t}. We discuss the following two cases.

1. I = ∅; i.e., ∀i ∈ [k], Cτ (wi) 6 t. Then for all i, j, Ht(wi)∩Ht(wj) = ∅ implies Cτ (wi)∩Cτ (wj) =

∅. By Lemma 4.7, we thus have
∣

∣

∣ED̃R
0
[h(y)]−ED̃R

1
[h(y)]

∣

∣

∣ = O( 1k ).
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1. Sample an edge e = (v1, . . . , vk) ∈ E.

2. Generate a random bit b ∈ {0, 1}.
3. Sample x ∈ {0, 1}kR from D̃R

b .

4. Define y ∈ {0, 1}|V |×R as follows:

(a) For each v /∈ {v1, . . . , vk}, yv = 0.

(b) For each i ∈ [k] and j ∈ [R], y
(j)
vi = x

(πvi,e(j))
i .

5. Output the example (y, b).

Figure 1: Reduction from k-Unique Label Cover

2. I 6= ∅. Then for all r ∈ I, we set w̃r = Truncate(wr,Ht(wr)) and replace wr with w̃r in h to
get a new halfspace h′. Since such replacements occur at most k times and by Lemma 4.8 every
replacement changes the output of the halfspace on at most 1

k2
fraction of examples, we can bound

the overall change by k × 1
k2

= 1
k . That is

∣

∣

∣
E
D̃R

0

[h′(y)]− E
D̃R

0

[h(y)]
∣

∣

∣
6

1

k
,

∣

∣

∣
E
D̃R

1

[h′(y)]− E
D̃R

1

[h(y)]
∣

∣

∣
6

1

k
. (3)

Also notice that for h′ and all r ∈ [k], the critical index of w̃r (i.e., |Cτ (w̃r)|) is less than t. This

reduces the problem to Case 1, and we conclude
∣

∣

∣
ED̃R

0
[h′(y)]−ED̃R

1
[h′(y)]

∣

∣

∣
= O(1/k). Along with

(3) this finishes the proof of Theorem 4.6.

4.4 Reduction from k-Unique Label Cover

With the dictatorship test defined, we now describe briefly a reduction from k-Unique Label

Cover problem to agnostic learning of monomials, thus showing Theorem 1.1 under the Unique
Games Conjecture (Conjecture 2.2). Although our final hardness result only assumes P 6= NP, we
describe the reduction to k-Unique Label Cover for the purpose of illustrating the main idea of
our proof.

Let L(G(V,E), R,R, {πv,e|v ∈ V, e ∈ E}) be an instance of k-Unique Label Cover. The re-
duction is defined in Figure 4.4. It will produce a distribution over labeled examples: (y, b) where

y ∈ {0, 1}|V |×R and label b ∈ {0, 1}. We will index the coordinates of y ∈ {0, 1}|V |×R by y
(i)
w (for

w ∈ V, i ∈ R) and denote yw (for w ∈ V ) to be the vector (y
(1)
w , y

(2)
w , . . . , y

(R)
w ).

Proof of Theorem 1.1 assuming Unique Games Conjecture Fix k = 10
ǫ2
, η = ǫ3

100 and a

positive integer R > ⌈(2k)
1
η2 ⌉ for which Conjecture 2.2 holds.
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Completeness: Suppose that Λ : V → [R] is a labeling that strongly satisfies 1 − kη fraction

of the edges. Consider disjunction h(y) =
∨

v∈V y
(Λ(v))
v . For at least 1 − kη fraction of edges

e = (v1, v2, . . . , vk) ∈ E, πv1,e(Λ(v1)) = · · · = πvk,e(Λ(vk)) = r. Let us fix such a choice of edge e in
step 1. As all coordinates of y outside of {yv1 , . . . ,yvk} are set to 0 in step 4(a), the disjunction

reduces to ∨i∈[k]y
(Λ(vi))
vi = ∨i∈[k]x

(r)
i . By Theorem 4.5, such a disjunction agrees with every (y, b)

with probability at least 1 − 3√
k
. Therefore h(y) agrees with a random example with probability

at least (1− 3√
k
)(1− kη) > 1− 3√

k
− kη > 1− ǫ.

Soundness: Suppose there exists a halfspace h(y) =
∑

v∈V 〈wv,yv〉 that agrees with more than
1
2 + ǫ > 1

2 + 1√
k
fraction of the examples. Set t = k14(3 ln(k7) + lnR) + ⌈4k14 ln k7⌉ · ⌈4k2 ln k⌉ =

O
(

k16 lnR
)

(same as in Theorem 4.6). Define the labeling Λ using the following strategy : for each
vertex v ∈ V randomly pick a label from Ht(wv).

By an averaging argument, for at least ǫ
2 fraction of the edges e ∈ E generated in step 1 of the

reduction, h(y) agrees with the examples corresponding to e with probability at least 1
2 + ǫ

2 . We
will refer to such edges as good. By Theorem 4.6 for each good edge e ∈ E, there exists i, j ∈ [k],
such that πvi,e

(

Ht(wvi)
)

∩ πvj ,e
(

Ht(wvj )
)

6= ∅. Therefore the edge e ∈ E is weakly satisfied by the
labeling Λ with probability at least 1

t2
. Hence, in expectation the labeling Λ weakly satisfies at least

ǫ
2 · 1

t2 = Ω( 1
k33 ln2 R

) > 2k2

Rη/4 fraction of the edges (by the choice of R and t).

5 Reduction from Label Cover

In this section, we describe a reduction from a k-Label Cover with an additional smoothness
property to the problem of agnostic learning of disjunctions by halfspaces. This will give us Theo-
rem 1.1 without assuming the Unique Games Conjecture.

5.1 Smooth k-Label Cover

Our reduction use the following hardness result for k-Label Cover (Definition 2.1) with the
additional smoothness property.

Theorem 5.1. There exists a constant γ > 0 such that for any integer parameter J, u > 1, it is NP-
hard to distinguish between the following two types of k-Label Cover L(G(V,E),M,N, {πv,e |e ∈
E, v ∈ e}) instances with M = 7(J+1)u and N = 2u7Ju:

1. (Strongly satisfiable instances) There is some labeling that strongly satisfies every hyperedge.

2. (Instances that are not 2k22−γu-weakly satisfiable) There is no labeling that weakly satisfies
at least 2k22−γu fraction of the hyperedges.

In addition, the k-Label Cover instances have the following properties:

• (Smoothness) for a fixed vertex v and a randomly picked hyperedge containing v,

∀i, j ∈ [M ],Pr[πv,e(i) = πv,e(j)] 6 1/J.
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• Pick a hyperedge e = (v1, v2, . . . , vk) ∈ E with corresponding projections πv1,e, . . . , πvk ,e :
[M ] → [N ].

• Generate a random bit b ∈ {0, 1}.

• Sample x ∈ {0, 1}kN from DN
b .

• Generate y ∈ {0, 1}|V |×M as follows:

1. For each v /∈ e, yv = 0.

2. For each i ∈ [k], set yvi ∈ {0, 1}M as follows:

y(j)vi =

{

x
(πvi,e(j))
i with probability 1− 1

k2

random bit with probability 1
k2

• Output the example (y, b) or equivalently ACCEPT if h(y) = b.

Figure 2: Reduction from k-Label Cover

• For any mapping πv,e and any number i ∈ [N ], we have |(πv,e)−1(i)| 6 d = 4u; i.e., there are
at most d = 4u elements in [M ] that are mapped to the same number in [N ].

The proof of the above theorem can be found in Appendix D.

In the rest of the paper, we will set u = k and therefore d = 4k. Also we set the smoothness
parameter J = d17 = 417k.

5.2 Reduction from Smooth k-Label Cover

The starting point is a smooth k-Label Cover L(G(V,E),M,N, {πv,e |e ∈ E, v ∈ e}) with M =
7(J+1)u and N = 2u7Ju as described in Theorem 5.1. Figure 5.2 illustrates the reduction from
k-Label Cover L(G(V,E), N,M, {πv,e |e ∈ E, v ∈ e}) that given an instance of k-Label Cover

L produces a random labeled example. We refer to the obtained distribution on examples as E .

5.3 Proof of Theorem 1.1

We claim that our reduction has the following completeness and soundness properties.

Theorem 5.2. • Completeness: If L is a strongly-satisfiable instance of smooth k-Label
Cover, then there is a disjunction that agrees with a random example from E with probability
at least 1−O( 1√

k
).

• Soundness: If L is not 2k22−γk-weakly satisfiable and is smooth with parameters J = 417k

and d = 4k, then there is no halfspace that agrees with a random example from E with
probability more than 1

2 +O( 1√
k
).
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Combining the above theorem with Theorem 5.1 we get that for k = O(1/ǫ2), we obtain our
main result: Theorem 1.1.

It remains to check the correctness of the completeness and soundness claims in Theorem 5.2.
First let us prove the completeness property.

Proof. (Proof of Completeness) Let Λ be the labeling that strongly satisfies L. Consider disjunction
h(y) =

∨

v∈V y
(Λ(v))
v . Let e = (v1, v2, . . . , vk) be any hyperedge and let Ee be the distribution E

restricted to the examples generated for e. With probability at least 1−1/k, y
Λ(vi)
vi = x

πvi,e(Λ(vi))
i for

every i ∈ [k]. As e is strongly satisfied by Λ, for all i, j ∈ [k], πvi,e(Λ(vi)) = πvj ,e(Λ(vj)). Therefore,
as in the proof of Theorem 4.5, we obtain that h(y) agrees with a random example from Ee with
probability at least 1 − O(1/

√
k). Labeling Λ strongly satisfies all edges and therefore we obtain

that h(y) agrees with a random example from E with probability at least 1−O(1/
√
k).

The more complicated part is the soundness property which we prove in Section 5.4.

5.4 Soundness Analysis

Proof Idea The main idea is similar to the proof of Theorem 4.6 although it is more technically
involved. Notice that the reduction in Figure 5.2 produces examples such that yj1vi , y

j2
vi are “almost

identical” copies when πvi,e(j1) = πvi,e(j2). Further for different edges e, the coordinates of y will
be grouped in different ways, such that each group will have almost identical copies.

To handle these additional complications, the first step of the proof is to show that almost all
the hyperedges in smooth k-Label Cover satisfy a certain “niceness” property. After that we
generalize the proofs of Lemma 4.7 and Lemma 4.8 under the weaker assumption that most of the
hyperedges are “nice”.

The formal definition of “niceness” and the proof that most of the edges are “nice” appear in
Section 5.4.1. The generalization of Lemma 4.7 appears in Section 5.4.2. The generalization of
Lemma 4.8 appears in Section 5.4.3. All these results are put together into a proof of Theorem 5.2
in Section 5.4.4.

5.4.1 Most of the edges are “nice”

Let h(y) be a halfspace that agrees with more than 1
2 +

1√
k
-fraction of the examples. Suppose,

h(y) = pos
(

∑

v∈V
〈wv,yv〉 − θ

)

.

Let τ = 1
k13

and let

sv = Truncate(wv, Cτ (wv)), lv = wv − sv.

Definition 5.3. A vertex v ∈ V is said to be β-nice with respect to a hyperedge e ∈ E containing
it if

∑

i∈[N ]

(

∑

j∈π−1(i)

|l(j)v |
)4

6 β‖lv‖42,
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where π : [M ] → [N ] is the projection associated with vertex v and hyperedge e. A hyperedge
e = (v1, v2, . . . , vk) is β-nice, if for every i ∈ [k], the vertex vi is β-nice with respect to e.

Lemma 5.4. The fraction of 2τ -nice hyperedges in E is at least 1−O(1/k).

Proof. By definition, we know that lv is τ -regular vector. Denote Iv = {i | (l
(i)
v )2

‖lv‖22
>

1
d8
}. By

definition |I| 6 d8. Notice there are at most d16 pairs of values in I × I. By the smoothness

property of the k-Label Cover instance, for any vertex v, at least 1− d16

J fraction of the hyperedges
incident on v have the following property: for any i, j ∈ Iv, π

v,e(i) 6= πv,e(j). If all the vertices in
a hyperedge have this property we call it a good hyperedge. By an averaging argument, we know
that among all hyperedges at least 1− kd16

J = 1− k
4k

> 1−O( 1k ) fraction is good.

We will show all these good hyperedges are also 2τ -nice. For a given good hyperedge e, a vertex

v ∈ e, π = πv,e and i ∈ [N ], there is at most one j ∈ π−1(i) such that (l
(i)
v )2

‖lv‖22
>

1
d8
.

Based on the above property, we will show

∑

i∈[N ]

(

∑

j∈π−1(i)

|l(j)v |
)4

6 2τ‖lv‖42 .

Notice that

∑

i∈[N ]

(

∑

j∈π−1(i)

|l(j)v |
)4

=
∑

i∈[N ]

∑

j1,j2,j3,j4∈π−1(i)

∣

∣l(j1)v l(j2)v l(j3)v l(j4)v

∣

∣ (4)

and the sum of all the terms with j1 = j2 = j3 = j4 is ‖lv‖44.
For all other terms |l(j1)v l

(j2)
v l

(j3)
v l

(j4)
v

∣

∣ with j1, j2, j3, j4 that are not all equal, there is at least one

|l(jr)v | (r ∈ [4]) smaller than ‖lv‖2
d4

. Therefore, |l(j1)v l
(j2)
v l

(j3)
v l

(j4)
v

∣

∣ can be bounded by

‖lv‖2
d4

(

∑

j1,j2,j3,j4

|l(j1)v |3 + |l(j2)v |3 + |l(j3)v |3 + |l(j4)v |3
)

.

Overall, expression (4) can be bounded by

‖lv‖44 +
‖lv‖2
d4

∑

i∈[N ]

∑

j1,j2,j3,j4∈π−1(i)

|l(j1)v |3 + |l(j2)v |3 + |l(j3)v |3 + |l(j4)v |3

6τ2‖lv‖42 +
‖lv‖2
d4

4d3
∑

j∈[M ]

|l(j)v |3 (since |π−1(i)| 6 d, each l(j)v appears at most 4d3 times)

6(τ2 + 4
τ

d
)‖lv‖42 (lv is τ -regular vector, so |ljv| 6 τ‖lv‖2 for all j ∈ [M ] )

62τ‖lv‖42.

23



Let us fix a 2τ -nice hyperedge e = (v1, . . . , vk). As before let Ee denote the distribution on
examples restricted to those generated for hyperedge e. We will analyze the probability that the
halfspace h(y) agrees with a random example from Ee.

Let πv1,e, πv2,e, . . . , πvk ,e : [M ] → [N ] denote the projections associated with the hyperedge e.
For the sake of brevity, we shall write wi,yi, li instead of wvi ,yvi , lvi . For all j ∈ [N ] and i ∈ [k],
define

y
{j}
i = Truncate(yi, (π

vi,e)−1(j)).

Similarly, define vectors w
{j}
i , l

{j}
i and s

{j}
i .

Notice that for every example (y, b) in the support of Ee, yv = 0 for every vertex v /∈ e.
Therefore, on restricting to examples from Ee we can write:

h(y) = pos
(

∑

i∈[k]
〈wi,yi〉 − θ

)

.

5.4.2 Common Influential Variables (generalization of Lemma 4.7)

Lemma 5.5. Let h(y) be a halfspace such that for all i 6= j ∈ [k], we have πvi,e(Cτ (wi)) ∩
πvj ,e(Cτ (wj)) = ∅. Then

∣

∣

∣
E
Ee
[h(y)|b = 0]− E

Ee
[h(y)|b = 1]

∣

∣

∣
6 O

(1

k

)

. (5)

Proof. Fix the following notation:

yC
i = Truncate(yi, Cτ (wi)) yC = yC

1 ,y
C
2 , . . . ,y

C
k

s = s1, s2, . . . , sk l = l1, l2, . . . , lk.

We can rewrite the halfspace h(y) as h(y) = pos
(

〈s,yC〉 + 〈l,y〉 − θ
)

. Let us first normalize the

weights of h(y) so that
∑

i∈[k] ‖li‖22 = 1. Let us condition on a possible fixing of the vector yC .

Under this conditioning and also for b = 0, define the family of ensembles A = A{1}, . . . ,A{N} as
follows:

A{j} =
{

y
(r)
i | i ∈ [k], r ∈ [M ] such that πvi,e(r) = j and r /∈ Cτ (wi)

}

Similarly define the ensemble B = B{1}, . . . ,B{N} for the conditioning b = 1. Now we shall apply
the invariance principle (Theorem 3.10) to the ensembles A,B and the linear function l(y):

l(y) =
∑

j∈[N ]

〈l{j},y{j}〉.

As we prove in Claim 5.6 below, the ensembles A,B have matching moments up to degree 3.
Furthermore, by Lemma 3.3, the linear function l and the ensembles A, B satisfy the following
spread property:

PrA
[

l(A) ∈ [θ′ − α, θ′ + α]
]

6 c(α) PrB
[

l(B) ∈ [θ′ − α, θ′ + α]
]

6 c(α)
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for all θ′ ∈ R, where c(α) = 8αk + 4τk + 2e−
1

2k4τ2 (by setting γ = 1
k2

and |b− a| = 2α in Lemma
3.3).

Using the invariance principle (Th. 3.10), this implies:

∣

∣

∣

∣

∣

∣

E
A



pos



〈s,yC〉+
∑

j∈[N ]

〈l{j},A{j}〉 − θ



 |yC



−E
B



pos



〈s,yC〉+
∑

j∈[N ]

〈l{j},B{j}〉 − θ



 |yC





∣

∣

∣

∣

∣

∣

6 O(
1

α4
)
∑

j∈[N ]

‖l{j}‖41 + 2c(α). (6)

Take α to be 1
k2

and recall that τ = 1
k13

. In Claim 5.7 below we show that

∑

j∈[N ]

‖l{j}‖41 6 2τk4.

The above inequality holds for an arbitrary conditioning of the values of yC . Hence, by averaging
over all settings of yC we prove (5).

Claim 5.6. The ensembles A and B have matching moments up to degree 3.

Let us suppose for a moment that y was generated by setting y
(j)
vi = x

(πvi,e(j))
i , that is without

adding any noise. By Lemma 4.1, the first four moments of random variable y conditioned on
b = 0 agree with the first moments of random variable y conditioned on b = 1. As we showed in
Observation 4.3, even with noise, the first four moments of y remain the same when conditioned
on b = 0 and b = 1. Finally, πvi,e(Cτ (wi)) ∩ πvj ,e(Cτ (wj)) = ∅ for all i 6= j ∈ [k]. Hence for each
j ∈ [N ], conditioning on yC fixes bits in at most one row of A{j}. Formally, for every j ∈ [N ],

there exists at most one i ∈ [k] such that y
{j}
i and yC have shared variables. Therefore, by Lemma

4.4, A and B have matching moments up to degree 3.

Claim 5.7.
∑

j∈[N ]

‖l{j}‖41 6 2τk4 .

Proof. Since ‖l{j}‖1 =
∑

i∈[k] ‖l
{j}
i ‖1, we can write

∑

j∈[N ]

‖l{j}‖41 6
∑

j∈N
k4
(

∑

i∈[k]
‖l{j}i ‖41

)

= k4
∑

i∈[k]

(

∑

j∈[N ]

‖l{j}i ‖41
)

. (7)

As e = (v1, . . . , vk) is a 2τ -nice hyperedge, we have
∑

j∈[N ] ‖l
{j}
i ‖41 6 2τ‖li‖42. By normalization of

l, we know
∑

i∈[k] ‖li‖22 = 1. Substituting this into inequality (7) we get the claimed bound.

5.4.3 Bounding the Number of Influential Coordinates (generalization of Lemma 4.8)

Lemma 5.8. Given a halfspace h(y) = pos(
∑

i∈[k]〈wi,yi〉 − θ) and r ∈ [k] such that |Cτ (wr)| > t

for t = 1
τ2
(⌈4k2 ln(2k)⌉⌈4 ln(1/τ)⌉+ln(1/τ)+10 ln d) = O(k29), define h̃(y) = pos(

∑

i∈[k]〈w̃i,yi〉−θ̃)
as follows:
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• w̃r = Truncate(wr,Ht(wr)) and w̃i = wi for all i 6= r.

• θ̃ = θ −E[〈ar,yr〉|b = 0], for a = w − w̃.

Then,

∣

∣

∣E
Ee
[h̃(y)|b = 0]− E

Ee
[h(y)|b = 0]

∣

∣

∣ 6
1

k2
,

∣

∣

∣E
Ee
[h̃(y)|b = 1]− E

Ee
[h(y)|b = 1]

∣

∣

∣ 6
1

k2
.

Proof. It is easy to see that the matching moments condition implies that

EEe [〈ar,yr〉|b = 0] = EEe [〈ar,yr〉|b = 1].

Let us show the inequality for the case b = 0, the other inequality can be derived in an identical
way. Let Ee,0 denote distribution Ee conditioned on b = 0. Without loss of generality, we may

assume that r = 1 and |w(1)
1 | > |w(2)

1 | . . . > |w(M)
1 |. In particular, this implies Ht(w1) = {1, . . . , t}.

Define

µr = EEe,0 [〈ar,yr〉], µ{i}
r = EEe,0 [〈a{i}

r ,y{i}
r 〉].

Let us set T = ⌈4k2 ln(2k)⌉ and define the subset G = {g1, . . . , gT } of Ht(w1) as follows:

G = {gi | gi = 1 + i⌈(4/τ2) ln(1/τ)⌉, 0 6 i 6 T}.

Therefore, by Lemma 3.2, |w(gi)
1 | is a geometrically decreasing sequence such that |w(gi+1)

1 | 6

|w(gi)
1 |/3. Let H = Ht(w1) \G. Fix the following notation:

wG
1 = Truncate(w1, G), wH

1 = Truncate(w1,H), w>t
1 = Truncate(w1, {t+ 1, . . . , n}).

Similarly, define the vectors yG
1 ,y

H
1 ,y>t

1 . By definition, we have a1 = w>t
1 . Rewriting the halfspace

functions h(y), h̃(y) :

h(y) = pos
(

k
∑

i=2

〈wi,yi〉+ 〈wG
1 ,y

G
1 〉+ 〈wH

1 ,yH
1 〉+ 〈a1,y

>t
1 〉 − θ

)

,

h̃(y) = pos
(

k
∑

i=2

〈wi,yi〉+ 〈wG
1 ,y

G
1 〉+ 〈wH

1 ,yH
1 〉+ µ1 − θ

)

.

By Claim 5.9 below, with probability at most 1
d = 1

4k
, we have |〈a1,y1〉−µ1| > d4‖a1‖2. Suppose

|〈a1,y1〉 − µ1| < d4‖a1‖2, then Claim 5.10 below gives |〈a1,y1〉 − µ1| < 1/d6|w(gT )
1 | < 1

3 |w
(gT )
1 |.

Thus, we can write

PrEe,0
[

h(y) 6= h̃(y)
]

6 PrEe,0
[

〈wG
1 ,y

G
1 〉 ∈ [θ′ − 1

3
|w(gT )

1 |, θ′ + 1

3
|w(gT )

1 |]
]

+
1

4k
.

where θ′ = −∑k
i=2〈wi,yi〉 − 〈wH

1 ,yH
1 〉 − µ1 + θ. For any fixing of the value of θ′ ∈ R, induces

a certain distribution on yG
1 . However, the 1

k2
noise introduced in yG

1 is completely independent.
This corresponds to the setting of Lemma 3.7, and hence we can bound the above probability by
(1− 1/(2k2))T + 1/4k 6 (1− 1/(2k2))4k

2 ln (2k) + 1/4k 6 1/k2.
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Claim 5.9.

PrEe,0
[

|〈a1,y1〉 − µ1| > d4‖a1‖2
]

6
1

d
.

Proof. Write [M ] as the union of disjoint sets R1 ∪R2 ∪ · · · ∪RN where Ri = (πv1,e)−1(i). Notice
every Ri has size at most d, therefore

VarEe,0
(

〈a1,y1〉
)

=
∑

i∈[N ]

VarEe,0
(

〈aRi
1 ,yRi

1 〉
)

6
∑

i∈[N ]

d‖aRi
1 ‖22 = d‖a1‖22.

By applying Chebyshev’s inequality (Th. A.3), we have

PrEe,0
[

|〈a1,y1〉 − µ1| > d4‖a1‖2
]

6
2d

d8
6

1

d
.

Claim 5.10. By the choice of the parameters T and t,

‖a1‖2 6
1

d10
|w(gT )

1 |.

Proof. By Lemma 3.2,

|w(gT )
1 |2 > τ

(1− τ2)t−gT )
‖a1‖22 >

τ

(1− τ2)
1
τ2

(ln(1/τ)+10 ln d)
‖a1‖22 > d10‖a1‖22.

5.4.4 Proof of Soundness

Recall that we chose τ = 1/k13 and t = O(k29).

Lemma 5.11. Fix a hyperedge e which is 2τ -nice. If for all i 6= j ∈ [k], πvi,e
(

Ht(wi)
)

∩
πvj ,e

(

Ht(wj)
)

= ∅ then the probability that halfspace h(y) agrees with a random example from
Ee is at most 1

2 +O( 1k ).

Proof. The proof is similar to the proof of Theorem 4.6. Define I = {r | Cτ (wr) > t}. We divide
the problem into the following two cases.

1. I = ∅; i.e., for all i ∈ [k], Cτ (wi) 6 t. Then for any i 6= j ∈ [k], Ht(wi) ∩Ht(wj) = ∅ implies
Cτ (wi) ∩ Cτ (wj) = ∅. By Lemma 5.5, we have

∣

∣

∣
E
Ee
[h(y)|b = 0]− E

Ee
[h(y)|b = 1]

∣

∣

∣
6 O

(1

k

)

.

2. I 6= ∅. Then for all r ∈ I, we set w̃r = Truncate(wr,Ht(wr)) and define a new halfspace h′ by
replacing wr with w̃r in h. Since such replacements occur at most k times and, by Lemma
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5.8, every replacement changes the output of the halfspace on at most 1
k2

fraction of examples
from Ee, we can bound the overall change by k × 1

k2
= 1

k . That is

∣

∣

∣ E
Ee,0

[h′(y)]− E
Ee,0

[h(y)]
∣

∣

∣ 6
1

k
,

∣

∣

∣ E
Ee,1

[h′(y)]− E
Ee,1

[h(y)]
∣

∣

∣ 6
1

k
. (8)

For the halfspace h′ and for all r ∈ [k], we have |Cτ (w̃r)| 6 t, thus reducing to Case 1.
Therefore

∣

∣

∣
E
Ee,o

[h′(y)]− E
Ee,1

[h′(y)]
∣

∣

∣
6 O

(1

k

)

. (9)

Combining (8) and (9), we get

∣

∣

∣
E
Ee,0

[h(y)]− E
Ee,1

[h(y)]
∣

∣

∣
6 O

(1

k

)

.

In other words, the probability that halfspace h(y) agrees with a random example from Ee is at
most 1

2 +O( 1k ).

We first recall the soundness statement:

Proposition 5.12. If L is not a 2k22−γk-weakly satisfiable instance of smooth k-Label Cover,
then there is no halfspace that agrees with a random example from E with probability more than
1
2 +

1√
k
.

Proof. The proof is by contradiction. We can define the following labeling strategy: for each vertex
v, uniformly randomly pick a label from Ht(wv). We know that the size of Ht(wvi) is t = O(k29).

Suppose there exists a halfspace that agrees with a random example from E with probability
more than 1

2 + 1√
k
. Then by an averaging argument, for at least 1

2
√
k
-fraction of the hyperedges e,

h(y) agrees with a random example from Ee with probability at least 1
2 + 1

2
√
k
. We refer to these

edges as good.

Since there is at most O(1/k)-fraction of the hyperedges that are not 2τ -nice we know that
at least 1

4
√
k
-fraction of the hyperedges are 2τ -nice and good. By Lemma 5.11, for each 2τ -nice

and good hyperedge e there exist two vertices vi, vj ∈ e such that πvi,e(Ht(wi)) and πvj ,e(Ht(wj))
intersect. Then there is a 1

t2
probability that the labeling strategy we defined will weakly satisfy

hyperedge e.

Overall this strategy is expected to weakly satisfy at least 1
4
√
k

1
t2

= Ω( 1
k59

) fraction of the

hyperedges. This is a contradiction since L is not 2k2

2γk
-weakly satisfiable.
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Appendix

A Probabilistic Inequalities

In the discussion below we will make use of the following well-known inequalities.

Theorem A.1. (Hoeffding’s Inequality) Let x(1), . . . , x(n) be independent real random variables
such that x(i) ∈ [a(i), b(i)]. Then the sum of these variables S =

∑n
i=1 x

(i) satisfies

Pr[|S −E[S]| > nt] 6 2e
− n2t2

∑n
i=1

(b(i)−a(i))2 .

Theorem A.2. (Berry-Esseen Theorem) Let x1, x2, . . . , xn be i.i.d. random unbiased {−1, 1} vari-
ables. Also assume that

∑n
i=1 c

2
i = 1 and maxi{|ci|} 6 α. Let g denote a unit Gaussian variable

N(0, 1). Then for any t ∈ R,
∣

∣

∣
Pr

[

∑

cixi 6 t
]

−Pr[g 6 t]
∣

∣

∣
6 α.

Theorem A.3. (Chebyshev’s Inequality) Let X be a random variable with expected value u and
variance σ2. Then for any real number t > 0,

Pr[|X − µ| > t · σ] 6 1/t2.

B Proof of Lemma 3.3

Recall that each y(i) is generated by the following manner:

y(i) =

{

x(i) with probability 1− γ

random bit with probability γ.
(10)
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Let us define a random vector z ∈ {0, 1}n based on y. For y generated, if y(i) is generated as a
copy of x(i) in (10), then z(i) = 0; if y(i) is generated as a random bit in (10), then z(i) = 1. Let us
write S =

∑n
i=1w

(i)y(i). Our proof is based on two claims.

Claim B.1. For a τ -regular vector w, Pr[
∑n

i=1 |w(i)|2z(i) > γ/2] > 1− 2e−
γ2

2τ2 .

Claim B.2. For a τ -regular vector w, given any a′ < b′ ∈ R and any fixing of z(1), z(2), . . . , z(n),

if
∑n

i=1(w
(i))2z(i) = σ2 > 0, then Pr[S ∈ [a′, b′]] 6 2|b′−a′|

σ + 2τ
σ .

Given the above two claims are correct, define event V to be {∑n
i=1(w

(i))2z(i) >
γ
2} and use

1[a,b](x) : R → {0, 1} to denote the indicator function of whether x falls into interval [a, b].

Pr[S ∈ [a, b]] = E[1[a,b](S)] = Pr[V ]E[1[a,b](S) | V ] +Pr[¬V ]E[1[a,b](S) | ¬V ]

By Claim B.1,

Pr[¬V ]E[1[a,b](S) | ¬V ] 6 Pr[¬V ] 6 2e−
γ2

2τ2 .

By Claim B.2,

Pr[V ]E[1[a,b](S) | V ] 6
4(b− a)√

γ
+

4τ√
γ
.

Overall,

Pr [S ∈ [a, b]] 6
4(b− a)√

γ
+

4τ√
γ
+ 2e−

γ2

2τ2 .

It remains to verify Claim B.1 and Claim B.2.

To prove Claim B.1, we need to apply the Hoeffding’s inequality (see Theorem A.1).

Notice that (w(i))2z(i) ∈ [0, (w(i))2] and applying Hoeffding’s Inequality, we know

Pr

[∣

∣

∣

∣

∣

n
∑

i=1

(w(i))2z(i) −E

[

n
∑

i=1

(w(i))2z(i)

]∣

∣

∣

∣

∣

> nt

]

6 2e
−2n2t2

∑n
i=1

(w(i))4 .

We know E[
∑n

i=1(w
(i))2z(i)] = γ and

∑n
i=1((w

(i))2)2 6 maxi
{

(w(i))2
}
∑n

i=1(w
(i))2 6 τ2. If we

take nt = γ/2, we have

Pr

[∣

∣

∣

∣

∣

n
∑

i=1

(w(i))2z(i) − γ

∣

∣

∣

∣

∣

>
γ

2

]

6 2e−
γ2

2τ2 .

Therefore, with probability at least 1− 2e−
γ2

2τ2 ,
∑n

i=1(w
(i))2z(i) > γ

2 .

To prove Claim B.2, we need use Berry-Esseen Theorem (See Theorem A.2). Let us split S into
two parts: S′ =

∑

zi=1wiyi and S′′ =
∑

zi=0wiyi. Since S = S′ + S′′ and S′ is independent of S′′,

it suffices to show that Pr [S′ ∈ [a′, b′]] 6 2|b′−a′|√
σ

+ 2τ
σ for any a′, b′ ∈ R. Define y′(i) = 2y(i) − 1 and

note that y′(i) a {−1, 1} variable. By rewriting S′ using this definition, we have

S′ =
∑

z(i)=1

w(i)y(i) =
∑

z(i)=1

w(i) 1 + y′(i)

2
.
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Then

Pr
[

S′ ∈ [a′, b′]
]

= Pr





∑

z(i)=1

w(i)y′(i) ∈ [a′′, b′′]



 , (11)

where a′′ = 2a′ −∑

z(i)=1w
(i) and b′′ = 2b′ −∑

z(i)=1w
(i). We can further rewrite the above term

as

Pr





∑

z(i)=1

w(i)y′(i) 6 b′′



−Pr





∑

z(i)=1

w(i)y′(i) 6 a′′





= Pr





∑

z(i)=1

w(i)y′(i)
√

∑

z(i)=1(w
(i))2

6
b′′

√

∑

z(i)=1(w
(i))2



−Pr





∑

z(i)=1

w(i)y′(i)
√

∑

z(i)=1(w
(i))2

6
a′′

√

∑

z(i)=1(w
(i))2



 .

We can now apply Berry-Esseen’s theorem. Notice that for all the i such that z(i) = 1, y′(i) is

distributed as an independent unbiased random {−1, 1} variable. Also maxz(i)=1
|w(i)|

√

∑

z(i)=1
(w(i))2

6

τ
√

∑

z(i)=1
(w(i))2

.

By Berry-Esseen’s theorem, we know that expression (11) is bounded by

Pr



N(0, 1) 6
b′′

√

∑

z(i)=1(w
(i))2



−Pr



N(0, 1) 6
a′′

√

∑

z(i)=1(w
(i))2



+
2τ

√

∑

z(i)=1(w
(i))2

.

Using the fact that a unit Gaussian variable falls in any interval of length λ with probability at
most λ and noticing that b′′ − a′′ = 2(b′ − a′), we can bound the above quantity by

2|b′ − a′|
√

∑

z(i)=1(w
(i))2

+
2τ

√

∑

z(i)=1(w
(i))2

=
2|b− a|

σ
+

2τ

σ
.

C Proof of Invariance Principle (Th. 3.10)

We restate our version of the invariance principle here for convenience.

Theorem 3.10 restated (Invariance Principle) LetA = {A{1}, . . . ,A{R}},B = {B{1}, . . . ,B{R}}
be families of ensembles of random variables with A{i} = {a(i)1 , . . . , a

(i)
ki
} and B{i} = {b(i)1 , . . . , b

(i)
ki
},

satisfying the following properties:

• For each i ∈ [R], the random variables in ensembles (A{i},B{i}) have matching moments up
to degree 3. Further all the random variables in A and B are bounded by 1.

• The ensembles A{i} are all independent of each other, similarly the ensembles B{i} are inde-
pendent of each other.
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Given a set of vectors l = {l{1}, . . . , l{R}}(l{i} ∈ R
ki), define the linear function l : Rk1×· · ·×R

kR →
R as

l(x) =
∑

i∈[R]

〈l{i},x{i}〉

Then for a K-bounded function Ψ : R → R we have
∣

∣

∣

∣

E
A

[

Ψ
(

l(A)− θ
)]

−E
B

[

Ψ
(

l(B)− θ
)]

∣

∣

∣

∣

6 K
∑

i∈[R]

‖l{i}‖41. (12)

for all θ > 0. Further, define the spread function c(α) corresponding to the ensembles A,B and the
linear function l as follows,

(Spread Function: )For 1/2 > α > 0, let

c(α) = max
(

sup
θ

PrA
[

l(A) ∈ [θ − α, θ + α]
]

, sup
θ

PrB
[

l(B) ∈ [θ − α, θ + α]
]

)

then for all θ̃,

∣

∣

∣
E
A

[

pos
(

l(A)− θ̃
)]

− EB
[

pos
(

l(B)− θ̃
)]

∣

∣

∣

∣

∣

6 O
(

1
α4

)

∑

i∈[R] ‖l{i}‖41 + 2c(α). (13)

Proof. Let us prove equation (12) first. Let Xi = {B{1}, . . . ,B{i−1},B{i},A{i+1}, . . . ,A{R}}.
We know that

E
A
[Ψ(l(A)− θ)]−E

B
[Ψ(l(B)− θ)] = E

X0

[Ψ(l(X0)− θ)]− E
XR

[Ψ(l(XR)− θ)]

=
R
∑

i=1

E
Xi−1

[Ψ(l(Xi−1)− θ)]− E
Xi

[Ψ(l(Xi)− θ)].

Therefore, it suffices to prove

∣

∣ E
Xi−1

[Ψ(l(Xi−1)− θ)]− E
Xi

[Ψ(l(Xi)− θ)]
∣

∣ 6 K‖l{i}‖41. (14)

Let Yi = {B{1}, . . . ,B{i−1},A{i+1}, . . . ,A{R}} and we have Xi = {Yi,B
{i}} and Xi−1 =

{Yi,A
{i}}. Then

E
Xi−1

[Ψ(l(Xi−1) − θ)] − E
Xi

[Ψ(l(Xi) − θ)] = E
Yi

[

E
A{i}

[Ψ(l(Xi−1)− θ)]− E
B{i}

[Ψ(l(Xi)− θ)]

]

. (15)

Notice that

l(Xi−1)− θ = 〈l{i},A{i}〉+
∑

16j6i−1

〈l{j},B{j}〉+
∑

i+16j6R

〈l{j},A{j}〉 − θ

and
l(Xi)− θ = 〈l{i},B{i}〉+

∑

16j6i−1

〈l{j},B{j}〉+
∑

i+16j6R

〈l{j},A{j}〉 − θ.
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Take θ′ =
∑

16j6i−1〈l{j},B{j}〉 + ∑

i+16j6R〈l{j},A{j}〉 − θ, We can further rewrite equation
(15) as

E
Yi

[

E
A{i}

[Ψ(〈l{i},A{i}〉+ θ′)]− E
B{i}

[Ψ(〈l{i},B{i}〉+ θ′)]
]

. (16)

Using the Taylor expansion of Ψ, we have that the inner expectation of equation (16) is equal
to

∣

∣ E
A{i}

[Ψ(θ′) + Ψ′(θ′)〈l{i},A{i}〉+ Ψ′′(θ′)
2

(〈l{i},A{i}〉)2 + Ψ′′′(θ′)
6

(〈l{i},A{i}〉)3 + Ψ′′′′(δ1)
24

(〈l{i},A{i}〉)4]

− E
B{i}

[Ψ(θ′) + Ψ′(θ′)〈l{i},B{i}〉+ Ψ′′(θ′)
2

(〈l{i},B{i}〉)2 + Ψ′′′(θ′)
6

(〈l{i},B{i}〉)3 + Ψ′′′′(δ2)
24

(〈l{i},B{i}〉)4]
∣

∣.

(17)

for some δ1, δ2 ∈ R.

Using the fact that A{i} and B{i} have matching moments up to degree 3, we can upper bound
equation (17) by

∣

∣

∣

∣

E
A{i}

[
Ψ′′′′(δ1)

24
(〈l{i},A{i}〉)4]− E

B{i}
[
Ψ′′′′(δ2)

24
(〈l{i},B{i}〉)4]

∣

∣

∣

∣

6
K

12
|l{i}|41.

In the last inequality, we use the fact that Ψ is K-bounded and 〈l{i},A{i}〉 6 ‖l{i}‖1, 〈l{i},B{i}〉 6
‖l{i}‖1 since all random variables in A,B are bounded by 1.

Overall, we bound the inner expectation of equation (16) by K
12‖l{i}‖41. This implies equation

(16) and therefore equation (14) is bounded by K
12‖l{i}‖41, establishing equation (12).

To prove equation (13), we need to use the following lemma.

Lemma C.1. ([39], Lemma 3.21) There exists an absolute constant C such that ∀0 < λ < 1
2 , there

exists C
λ4 -bounded function Φλ : R → [0, 1] which approximates the pos(x) function in the following

sense: Φλ(t) = 1 for all t > λ; Φλ(t) = 0 for t < −λ.

By the above lemma, we can find a C
α4 -bounded function Φα such that Φα(l(A)− θ) is equal to

pos(l(A)− θ) except when l(A) ∈ [θ − α, θ + α] and Φα(l(B)− θ) is equal to pos(l(B)− θ) except
when l(B) ∈ [θ−α, θ +α]. Also for any x ∈ R, |pos(x)−Φα(x)| 6 1 as pos(x) and Φα(x) are both
in [0, 1].

Overall, we have

∣

∣

∣

∣

E
A

[

pos
(

l(A)− θ
)]

−E
B

[

pos
(

l(B)− θ
)]

∣

∣

∣

∣

6
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∣

∣

∣
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[

pos
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l(A)− θ
)]

−E
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[

Φα

(

l(A)− θ
)]

∣

∣

∣

∣

+

∣

∣

∣

∣

E
A

[

Φα

(

l(A)− θ
)]

−E
B

[

Φα

(

l(B)− θ
)]

∣

∣

∣

∣

+

∣

∣

∣

∣

E
B

[

Φα

(

l(B)− θ
)]

−E
B

[

pos
(

l(B)− θ
)]

∣

∣

∣

∣

6
C

α4

∑

i∈[R]

‖l{i}‖41 + 2c(α).
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D Hardness of Smooth k-Label Cover

First we state the bipartite smooth Label Cover given by Khot [31]. Our reduction is similar to
the one in [19] but in addition requires proving the smoothness property.

Definition D.1. A Label Cover problem L(G(W,V,E),M,N, {πv,w |(w,w) ∈ E}) consists of a
bipartite graph G(V,W,E) with bipartition V and W . M,N are two positive integers such that
M > N . There are projection functions πv,w : [M ] → [N ] associated with each edge (w, v) ∈ E
where v ∈ V,w ∈ W . All vertices in W have the same degree (i.e., W -side regular). For any
labeling Λ : V → [M ] and Λ : W → [N ], an edge is said to be satisfied if πv,w(Λ(v)) = Λ(w). We
define Opt(L) to be the maximum fraction of edges satisfied by any labeling.

Theorem D.2. There is an absolute constant γ > 0 such that for all integer parameters u and J , it
is NP-hard to distinguish the following two cases: A Label Cover problem L(G(W,V,E), N,M, {πv,w |(w, v) ∈
E}) with M = 7(J+1)u and N = 2u7Ju having

• Opt(L) = 1 or

• Opt(L) 6 2−2γu.

In addition, the Label Cover has the following properties:

• for each πv,w and any i ∈ [N ], we have |(πv,w)−1(i)| 6 4u;

• for a fixed vertex w and a randomly picked neighbor v of w,

∀i, j ∈ [M ],Pr[πv,w(i) = πv,w(j)] 6 1/J.

Below we prove Theorem 5.1.

Proof. Given an instance of bipartite Label Cover L(G(V,W,E),M,N, {πv,w |(w, v) ∈ E}), we can
convert it to a smooth k-Label Cover instance L′ as follows. The vertex set of L′ is V and we
generate the hyperedge set E′ and projections associated with the hyperedges in the following way:

1. pick a vertex w ∈ W ;

2. pick a k-tuple of w’s neighbors v1, . . . , vk and add a hyperedge e = (v1, . . . , vk) to E′ with
projections πvi,e = πvi,w for each i ∈ [k].

Completeness: If Opt(L) = 1, then there exists a labeling Λ such that for every edge (w, v) ∈ E,
πv,w(Λ(v)) = Λ(w). We can simply take the restriction of labeling Λ on V for the smooth k-
Label Cover instance L′. For any hyperedge e = (v1, v2, . . . , vk) generated by w ∈ W , we know
πvi,e(Λ(vi)) = Λ(w) = πvj ,e(Λ(vj)) for any i, j ∈ [k].
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Soundness: If Opt(L) 6 2−2γu, then we can weakly satisfy at most 2k22−γu-fraction of the
hyperedges in L′. This can be proved via contrapositive argument. Suppose there is a labeling
strategy Λ (defined on V ) for the smooth k-Label Cover that weakly satisfies α > 2k22−γu

fraction of the hyperedges. Extend the labelling to W as follows: For each vertex w ∈ W and a
neighbor v ∈ V , let πv,w(Λ(v)) be the label recommended by v to w. Simply assign for every vertex
w ∈ W , the label most recommended by its neighbours.

By the fact that Λ weakly satisfies α-fraction of hyperedges in L′, we know that if we pick a
vertex w and randomly pick two of its neighbors v1, v2 then

Pr [πv1,w(Λ(v1)) = πv2,w(Λ(v2))] >
α
(k
2

) >
2α

k2
.

By an averaging argument, at least α
k2 -fraction of the vertices w ∈ W , will have the following

property: among all the possible pairs of w’s neighbors, at least α
k2
-fraction of pairs recommend the

same label for w. Let us call such a w to be a nice. It is easy to see that for every nice w, the
most recommended label is actually recommended by at least α

k2
fraction of its neighbours. Hence,

the extended labelling satisfies at least α/k2 fraction of edges incident at each nice w ∈ W . Using

W -side regularity, we conclude that the extended labelling satisfies α2

k4 = 4 ·2−2γu-fraction the edges
of L – a contradiction.

Smoothness of L′: For any given vertex v in L′, we want so show that if we randomly pick an
hyperedge e′ containing v, then for the projection πv,e as defined in L′,

∀i, j ∈ [M ],Pr[πv,e′(i) = πv,e′(j)] 6
1

J
.

To see this, notice that all vertices in W have the same degree; picking a projection πv,e′ using
the above procedure is the same as randomly picking a neighbor w of v and using the projection
πv,w defined in L. Therefore,

∀i, j ∈ [M ],Pr[πv,e′(i) = πv,e′(j) = Pr[πv,w(i) = πv,w(j)] 6
1

J
.
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