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Abstract— Linial, London and Rabinovich [16] and Aumann
and Rabani [3] proved that the min-cut max-flow ratio for general
maximum concurrent flow problems (when there are k commodi-
ties) is O(log k). Here we attempt to derive a more general theory
of Steiner cut and flow problems, and we prove bounds that are
poly-logarithmic in k for a much broader class of multicommodity
flow and cut problems. Our structural results are motivated by the
meta question: Suppose we are given a poly(log n) approximation
algorithm for a flow or cut problem - when can we give a
poly(log k) approximation algorithm for a generalization of this
problem to a Steiner cut or flow problem?

Thus we require that these approximation guarantees be inde-
pendent of the size of the graph, and only depend on the number
of commodities (or the number of terminal nodes in a Steiner cut
problem). For many natural applications (when k = no(1)) this
yields much stronger guarantees.

We construct vertex-sparsifiers that approximately preserve the
value of all terminal min-cuts. We prove such sparsifiers exist
through zero-sum games and metric geometry, and we construct
such sparsifiers through oblivious routing guarantees. These results
let us reduce a broad class of multicommodity-type problems to a
uniform case (on k nodes) at the cost of a loss of a poly(log k)
in the approximation guarantee. We then give poly(log k) ap-
proximation algorithms for a number of problems for which such
results were previously unknown, such as requirement cut, l-
multicut, oblivious 0-extension, and natural Steiner generalizations
of oblivious routing, min-cut linear arrangement and minimum
linear arrangement.

Keywords-multicommodity flow; metric geometry; approxima-
tion algorithms;

1. INTRODUCTION

Linial, London and Rabinovich [16] and Aumann and
Rabani [3] proved that the min-cut max-flow ratio for
general maximum concurrent flow problems (when there are
k commodities) is O(log k). These results imply approxi-
mation algorithms for a variety of NP-hard cut problems
and give an approximation guarantee that is poly-logarithmic
in k as opposed to poly-logarithmic in n. Garg, Vazirani
and Yannakakis [9] proved that the min-cut max-flow ratio
for maximum multicommodity flow is also O(log k). Here
we attempt to derive a more general theory of Steiner cut
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and flow problems, and we prove bounds that are poly-
logarithmic in k. These bounds apply to a much broader
class of multicommodity flow and cut problems. Our struc-
tural results are motivated by the meta question: Suppose
we are given a poly(log n) approximation algorithm for
a flow or cut problem - when can we give a poly(log k)
approximation algorithm for a generalization of this problem
to a Steiner cut or flow problem?

Thus we require that these approximation guarantees be
independent of the size of the graph, and only depend on the
number of commodities (or the number of terminal nodes
in a Steiner cut problem). For many natural applications of
multicommodity flows and cuts, we expect that the number
of commodities k is much smaller than n, and for such
problems we get approximation algorithms that have much
stronger guarantees.

1.1. Concisely, and Simultaneously Approximating All Cuts

Suppose we are given an undirected, capacitated graph
G = (V,E) and a set K ⊂ V of size k. Let h : 2V → <+

denote the cut function of G:

h(A) =
∑

(u,v)∈E s.t. u∈A,v∈V−A
c(u, v)

We define the function hK : 2K → <+ which we refer to
as the terminal cut function on K:

hK(U) = min
A⊂V s.t. A∩K=U

h(A)

The combinatorial interpretation of the terminal cut function
is that hK(U) is just the minimum edge cut separating U
from K−U in G. Note that U is required to be a subset of
K. We prove that there is an undirected, capacitated graph
G′ = (K,E′) on just the terminals so that the cut function
of this graph h′ : 2K → <+ satisfies

hK(U) ≤ h′(U) ≤ O(
log k

log log k
)hK(U)

for all U ⊂ K. So we can approximate the terminal cuts in
G on a graph G′ of size k and this approximation factor is
independent of the size of the graph G. Previous results - see



Mader’s Theorem or [14] - on approximating the terminal
cuts of a graph only preserve the smallest terminal cuts. Such
papers approach approximating terminal cuts via matroid
theory, and here we consider the problem of approximating
all terminal cuts via metric geometry.

This (surprising) structural result is a crucial step in our
paper: For almost all non-pathological Steiner multicom-
modity cut and flow problems, we can solve the problem
in G′ and map a solution back to G while losing only
poly(log k) factors in the approximation guarantee.

Open Question 1: Is there an ω(1) lower bound on how
well the cut function of a graph G′ = (K,E′) can approxi-
mate the terminal cut function?

1.2. An Approach Through Metric Geometry

Our approach fundamentally relies on metric geometry
and oblivious routing. We use a rounding algorithm due to
[7] for the 0-extension problem to get an existential result
on approximating the terminal cuts of a graph concisely in
an undirected, capacitated graph G′ on only the nodes K (a
vertex sparsifier). Roughly, we prove this structural result by
realizing it as the min-max dual to the 0-extension problem.

We note that in addition to the many known applications
of oblivious routing schemes, here we use oblivious rout-
ing guarantees to approximate a geometric question about
polytopes: Given polytopes Q,P ⊂ <n (that are given by a
separation oracle), find a unit vector u ∈ <n that maximizes
the ratio

maxλP s.t. λPu ∈ P
maxλQ s.t. λQu ∈ Q

We can use Lowner-John ellipsoids to get an O(n3)-
approximation to this problem [11], but in the special case
in which Q is the set of demand vectors that are routable
in an undirected, capacitated graph G with congestion at
most 1, we give a O(log n) approximation algorithm for
this problem. We accomplish this by using oblivious routing
schemes to give a geometric relaxation for Q. We believe
that this notion of using an oblivious routing scheme to
approximately solve an optimization problem can be useful
in other applications.

We use this approximation algorithm to give a polynomial
time construction of a graph G′ on K (a vertex sparsifier)
that approximates the terminal cuts of the original graph G
(to within a worse but still poly(log k) factor).

These results let us reduce a broad class of
multicommodity-type problems to a uniform case (on
k nodes) at the cost of a loss of a poly(log k) in the
approximation guarantee. We cannot concisely define
this class but we can use our results to give poly(log k)
approximation algorithms for a number of problems
for which such results were previously unknown, such
as requirement cut 1 , l-multicut, and natural Steiner

generalizations of oblivious routing, min-cut linear
arrangement and minimum linear arrangement.

We can also give a poly(log k) approximation algorithm
for the 0-extension problem that is oblivious to the semi-
metric ∆ (defined on a fixed K). We defer the proof to the
full version.

2. MAXIMUM CONCURRENT FLOW

An instance of the maximum concurrent flow problem
consists of an undirected graph G = (V,E), a capacity
function c : E → <+ that assigns a non-negative capacity
to each edge, and a set of demands {(si, ti, di)} where
si, ti ∈ V and di is a non-negative real value. For such
problems we set K = ∪i{si, ti} and suppose that |K| = k.
The maximum concurrent flow question asks, given such
an instance, what is the largest fraction of the demand
that can be simultaneously satisfied? This problem can be
formulated as a polynomial-sized linear program, and hence
can be solved in polynomial time. However, a more natural
formulation of the maximum concurrent flow problem can
be written using an exponential number of variables.

For any a, b ∈ V let Pa,b be the set of all (simple)
paths from a to b in G. Then the maximum concurrent flow
problem can be written as :

max λ
s.t. ∑

P∈Psi,ti
x(P ) ≥ λdi∑

P3e x(P ) ≤ c(e)
x(P ) ≥ 0.

For a maximum concurrent flow problem, let λ∗ denote the
optimum. We defined the cut function h and the terminal
cut function hK in section 1.2. We also define the demand
function d : 2K → <+ as

d(U) =
∑

i s.t. |{si,ti}∩U=1|

di

which given U ⊂ K is just the total demand that has exactly
one endpoint in U and one endpoint in K − U .

Theorem 1: [16] [3] If all demands are supported in K,
and |K| = k, then there exists a cut A ⊂ V such that

h(A)
d(A ∩K)

≤ O(log k)λ∗

We are interested in multicommodity-type problems,
which we informally define as problems that are only a
function of the terminal cut function hK and the congestion

1Subject to the mild technical restriction that the number of groups g be
at most quasi-polynomial in k. Otherwise we give a O(poly(log k) log g)-
approximation algorithm and if g is not quasi-polynomial in k then this
approximation algorithm is dominated by O(log g) and there is a lower
bound of Ω(log g) for the approximability of this problem via a reduction
from set cover [17].



of multicommodity flows with demands supported in the set
K. We want to find a graph G′ = (K,E′) and a capacity
function c′ : E′ → <+ such that for all U ⊂ K:

hK(U) ≤ h′(U) ≤ poly(log k)hK(U)

where h′ : K → <+ is the cut function defined on the graph
G′. For non-pathological Steiner cut problems (such as, for
example the requirement cut problem), mapping solutions
between G and G′ will preserve the value of the solution to
within a poly(log k) factor. This strategy is the basis for the
approximation algorithms designed in this paper.

But for multicommodity-type problems which depend on
the congestion of certain multicommodity flows, we need
a method to preserve the congestion of all multicommodity
flows within a poly(log k) factor. The above theorem due
to Linial, London and Rabinovich and Aumann and Rabani
gives a O(log k)-approximate min-cut max-flow relation for
maximum concurrent flows, and this theorem allows us to
use reductions that approximately preserve the terminal cut
function to approximately preserve the congestion of all
multicommodity flows too.

Throughout we will use the notation that graphs G1, G2

(on the same node set) are ”summed” by taking the union
of their edge set (and allowing parallel edges).

3. STRUCTURAL GRAPH THEORY AS A DUAL TO
METRIC GEOMETRY

Here we prove that there is graph G′ = (K,E′) and a
capacity function c′ : E′ → <+ such that for all U ⊂ K:

hK(U) ≤ h′(U) ≤ O(
log k

log log k
)hK(U)

where h′ : K → <+ is the cut function defined on the
graph G′. This is a global structural result, but we prove
this by introducing a zero-sum game between an extension
player and a cut player. The extension player attempts to
construct such a graph G′, and the cut player verifies that
the cut function of this graph approximates the terminal cut
function. We define this game in such a way so that bounding
the game value of this game implies the above structural
result.

We can bound the game value of this game by proving
that there is a good response for the extension player for
every distribution on checks that the cut player makes. We
use a rounding procedure due to Fakcharoenphol, Harrelson,
Rao and Talwar [7] for the 0-extension problem to produce
a good response. The zero-sum game allows us to transform
a global question about whether such graphs G′ exist into a
local question about finding a good response to distributions
on checks.

We use a zero-sum game to realize a result in structural
graph theory as the dual to a local question in metric
geometry. This approach is inspired by the results of Räcke.
Although not explicitly stated as such in [19], Räcke’s

construction can also be viewed as using a zero-sum game
to derive a result in structural graph theory (the existence
of a O(log n)-competitive oblivious routing scheme) as the
dual to the local question of low distortion embeddings into
tree metrics [8].

3.1. 0-Extensions

The 0-extension problem was originally formulated by
Karzanov who introduced the problem as a natural general-
ization of the minimum multiway cut problem [13]. Suppose
we are given an undirected, capacitated graph G = (V,E),
c : E → <+, a set of terminals K ⊂ V and a semi-metric D
on the terminals. Then the goal of the 0-extension problem
is to assign each node in V to a terminal in K (and each
terminal t ∈ K must be assigned to itself) such that the sum
over all edges (u, v) of c(u, v) times the distance between
u and v under the metric D is minimized.

Formally, the goal is to find a function f : V →
K (such that f(t) = t for all t ∈ K) so that∑

(u,v)∈E c(u, v)D(f(u), f(v)) is minimized over all such
functions. Then when D is just the uniform metric on
the terminals K, this exactly the minimum multiway cut
problem. Calinescu, Karloff and Rabani gave a (semi)metric
relaxation of the 0-extension problem [5]:

min
∑

(u,v)∈E c(u, v)δ(u, v)
s.t.

δ is a semi-metric on V
∀t,t′∈Kδ(t, t′) = D(t, t′).

Note that the semi-metric δ is defined on V while D
is defined only on K. Let OPT ∗ denote the value of an
optimal solution to the above linear programming relaxation
of the 0-extension problem. Clearly OPT ∗ ≤ OPT . Cali-
nescu, Karloff and Rabani [5] gave a randomized rounding
procedure to round any feasible solution δ of value C to
a 0-extension that has expected value at most O(log k)C.
Fakcharoenphol, Harrelson, Rao and Talwar [7] gave an
improved randomized rounding procedure that achieves an
O( log k

log log k ) approximation ratio:

Theorem 2: [7]

OPT ∗ ≤ OPT ≤ O(
log k

log log k
)OPT ∗

Given a function f : V → K such that f(t) = t for all
t ∈ K, we can define the capacitated graph H on K that
results from the function f as:

cH(a, b) =
∑

u,v|f(u)=a,f(v)=b

c(u, v)

We will abuse notation and refer to the graph H generated
by f as a 0-extension of the graph G. We will use the above
theorem due to Fakcharoenphol, Harrelson, Rao and Talwar
to show that, existentially, there is a graph G′ such that for



all U ⊂ K hK(U) ≤ h′(U) ≤ O( log k
log log k )hK(U). In fact,

this graph will be a convex combination of 0-extensions of
G.

3.2. A Zero-Sum Game

Here we introduce and analyze an appropriately chosen
zero-sum game, so that a bound on the game value of this
game will imply the desired structural graph theory result.

Given an undirected, capacitated graph G = (V,E) and a
set K ⊂ V of terminals, an extension player (P1) and a cut
player (P2) play the following zero-sum game that we will
refer to as the extension-cut game:

The extension player (P1) chooses a 0-extension f :
V → K such that f(t) = t for all terminals t

The cut player (P2) chooses a cut from 2K

Given a strategy f for P1 and a strategy A for P2, P2
wins 1

hK(A) units for each unit of capacity crossing the cut
(A,K−A) in P1’s 0-extension. Also, we restrict P2 to play
only strategies A for which hK(A) 6= 0. So if P1 plays a
strategy f and P2 plays a strategy A then P2 wins:

N(f,A) =
∑

(u,v)∈E

1|{f(u),f(v)}∩A|=1c(u, v)
hK(A)

Definition 1: Let ν denote the game value of the
extension-cut game

Using von Neumann’s Min-Max Theorem, we can bound
the game value by bounding the cost of P1’s best response
to any fixed, randomized strategy for P2. So consider any
randomized strategy µ for P2. µ is just a probability distri-
bution on 2K . We can define an `1 metric on K:

Dµ(t, t′) =
∑
A⊂K

µ(A)
1|{t,t′}∩A|=1

hK(A)

Dµ is just a weighted sum of cut-metrics on K. Given Dµ

we can define a semi-metric δ that is roughly consistent with
Dµ. This semi-metric will serve as a feasible solution to the
linear programming relaxation for the 0-extension problem.
A bound on the cost of this feasible solution will imply that
there is a 0-extension that has not too much cost, and this
will imply that the extension player has a good response to
the strategy µ. We define δ as:

Initially set all edge distances d(u, v) to zero. Then for
each A ⊂ K, if there is no unique minimum cut separating
A and K − A, choose one such minimum cut arbitrarily.
For this minimum cut, for each edge (u, v) crossing the cut,
increment the distance d(u, v) by µ(A)

hK(A) .
Then let δ be the semi-metric defined as the shortest path

metric on G when distances are d(u, v).

Claim 1: δ(t, t′) ≥ Dµ(t, t′) for all terminals t, t′

Claim 2:
∑

(u,v)∈E(G) δ(u, v)c(u, v) = 1

Theorem 3:
ν ≤ O(

log k
log log k

)

Proof: Using the theorem due to Fakcharoenphol, Har-
relson, Rao and Talwar, there exists a 0-extension f : V →
K (such that f(t) = t for all terminals t) and such that∑

(u,v)∈E

c(u, v)δ(f(u), f(v)) ≤ O(
log k

log log k
)

Then suppose P1 plays such a strategy f :

EA←µ[N(f,A)]

=
∑

(u,v)∈E

∑
A

1|{f(u),f(v)}∩A|=1c(u, v)µ(A)
hK(A)

=
∑

(u,v)∈E

c(u, v)Dµ(f(u), f(v))

≤
∑

(u,v)∈E

c(u, v)δ(f(u), f(v)) ≤ O(
log k

log log k
)

We can immediately use the bound on the game value to
obtain the desired structural result:

Theorem 4: There exists a graph G′ = (K,E′) that is a
convex combination of 0-extensions of G, for which for all
A ⊂ K:

hK(A) ≤ h′(A) ≤ O(
log k

log log k
)hK(A)

where h′ : 2K → <+ is the cut function on G′.

Proof: We can again apply von Neumann’s Min-Max
Theorem, and get that there exists a distribution γ on 0-
extensions (f : V → K s.t. f(t) = t for all t ∈ K) such
that for all A ⊂ K:

Ef←γ [N(f,A)] = O(
log k

log log k
)

For any 0-extension f , let Gf be the corresponding 0-
extension of G generated by f , and let hf : 2K → <+

be the cut function defined on this graph. Then let G′ =∑
f∈supp(γ) γ(f)Gf . And for any A ⊂ K:

hK(A) ≤ hf (A) and

hK(A) ≤ h′(A) =
∑

f∈supp(γ)

γ(f)hf (A)

Also because Ef←γ [N(f,A)] = O( log k
log log k ):∑

(u,v)∈E

∑
f∈supp(γ)

γ(f)
1|{f(u),f(v)}∩A|=1c(u, v)

hK(A)
=

1
hK(A)

∑
f∈supp(γ)

γ(f)hf (A) =
h′(A)
hK(A)



So for any A ⊂ K

h′(A) ≤ O(
log k

log log k
)hK(A)

Note that this proof is non-constructive. In particular,
the Garg-Konemann inspired techniques that are used in
[19] to give a polynomial time construction for a O(log n)-
competitive oblivious routing scheme cannot be used to
make this result constructive because even given a graph G′

that is a convex combination of 0-extension graphs, checking
if h′(U) ≤ O( log k

log log k )hK(U) for all U ⊂ K is a sparsest
cut question (as we will see later).

We will eventually use this existential result to prove that
a certain polytope (with exponentially many constraints) is
feasible, and then use entirely different techniques to find a
point in the polytope and to constructively find such a graph
G′ that approximates the terminal cut function to within
poly(log k).

4. APPLICATIONS TO OBLIVIOUS ROUTING

Suppose we are given a capacitated, undirected graph
G and a subset K ⊂ V of size k. Suppose also that we
are promised all the demands we will be asked to route
will have both endpoints in K. Here we prove that for
this problem there is an oblivious routing scheme that is
O( log3 k

log log k )-competitive. We also give a polynomial (in n
and k) time algorithm for constructing such schemes. There
are many previously known oblivious routing schemes, but if
k2 << log n then these schemes cannot beat the trivial

(
k
2

)
competitive ratio resulting from choosing

(
k
2

)
independent

minimum congestion unit flows (one for each a, b ∈ K).

4.1. Existential Oblivious Routing
Let G′ be a convex combination of 0-extensions of G,

and suppose that for all A ⊂ K:

hK(A) ≤ h′(A) ≤ O(
log k

log log k
)hK(A)

Here we consider G′ to be a demand graph on the
terminals K.

Lemma 1: The demands in G′ can be routed in G with
congestion at most O( log2 k

log log k )

Proof: Let T ⊂ V be arbitrary. Also let A = T ∩K.
Then

h(T ) ≥ hK(A)

So
Ω(

log log k
log k

) ≤ hK(A)
h′(A)

≤ h(T )
d(T )

and this holds for all T ⊂ V , so the sparsest cut in G (when
demands are given by G′) is at least

Ω(
log log k

log k
)

Using the Theorem 1 due to Linal, London and Rabi-
novich [16] and Aumann and Rabani [3], this implies that
all the demands in G′ can be routed using congestion at
most

O(
log2 k

log log k
)

We also note that G′ is a better communication network
than G:

Lemma 2: Any set of demands (which have support only
in K) that can be routed with congestion at most C, can
also be routed in G′ with congestion at most C

Proof:
G′ =

∑
f∈supp(γ)

γ(f)Gf

And each Gf is a 0-extension of G, so given a flow that
satisfies the demands and achieves a congestion of at most
C in G, we can take a flow path decomposition of this
flow. Then consider any path in the flow decomposition
and suppose that this flow path carries δ units of flow.
Decompose this path into subpaths that connect nodes in
K and contain no nodes of K as internal nodes. For each
such subpath, suppose that the subpath connects a and b in
K, then add δ units of flow along the edge (a, b) in Gf .
This scheme will satisfy all demands because the original
flow paths in G satisfied all demands. And also, each edge
in Gf will have congestion at most C because the edges in
Gf are just a subset of the edges in G and each edge in Gf
is assigned exactly the same total amount of flow as it is in
the flow in G.

So for each f ∈ supp(γ), route γ(f) fraction of all
demands according to the routing scheme given for Gf
above. The contribution to the congestion of any edge
(u, v) ∈ E′ from any f is at most γ(f)C, and so the total
congestion on any edge is at most C. Yet all demands are
met because

∑
f∈supp(γ) γ(f) = 1.

We can now construct an oblivious routing scheme in G′

and compose this with the embedding of G′ into G to get
an oblivious Steiner routing scheme in G:

Theorem 5: [19] There is an oblivious routing scheme for
G′ (on k nodes) that on any set of demands incurs congestion
at most O(log k) times the off-line optimum

Theorem 6: There is an oblivious Steiner routing scheme
that on any set of demands (supported in K) incurs conges-
tion at most O( log3 k

log log k ) times the off-line optimum

Proof: Given G′, use Räcke’s Theorem [19] to con-
struct an oblivious routing scheme in G′. This can be
mapped to an oblivious routing scheme in G using the
existence of a low-congestion routing for the demand graph
G′ in G: Given a, b ∈ K, if the oblivious routing scheme



in G′ assigns δ units of flow to a path Pa,b in G′, then
construct a set of paths in G that in total carry δ units of
flow as follows:

Let Pa,b = (a, p1), (p1, p2), ...(pl, b). Let p0 = a and
pl+1 = b. Then consider an edge (pi, pi+1) contained in this
path and suppose that c′(pi, pi+1) is α in G′. Then for each
flow path P connecting pi to pi+1 in the low-congestion
routing of G′ in G, add the same path and multiply the
weight by δ

α . The union of these flow paths sends δ units
of flow from a to b in G. Räcke’s oblivious routing scheme
sends one unit of flow from a to b for all a, b ∈ K in G′.
So this implies that we have constructed a set of flows in G
such that for all a, b ∈ K, one unit of flow is sent from a
to b in G.

So consider any set of demands that have support con-
tained in K. Suppose that this set of demands can be
routed in G with congestion C. Then there exists a flow
satisfying these demands that can be routed in G′ with
congestion at most C using Lemma 2. Räcke’s oblivious
routing guarantees imply that the oblivious routing scheme
in G′ incurs congestion at most O(log k)C on any edge in
G′. This implies that we have scaled up each edge in G′ by
at most O(log k)C and so we have scaled up the amount
of flow transported on each path in an optimal routing the
(demand) graph G′ into G by at most O(log k)C. So the
congestion incurred by this oblivious routing scheme is at
most

O(
log3 k

log log k
)C

This result is non-constructive, because the proof of
Theorem 4 is non-constructive.

4.2. Constructive Oblivious Routing

Azar et al formulate the problem of deciding (for a given
graph G) whether there exists an oblivious routing scheme
that is T -competitive against the off-line optimal algorithm
as a linear program [4]. This algorithm can be adapted to
yield:

Theorem 7: An optimal oblivious Steiner routing scheme
can be constructed in polynomial (in n and k) time

So an O( log3 k
log log k )-competitive oblivious Steiner routing

scheme can be constructed in polynomial time.

5. CONSTRUCTIONS FOR VERTEX SPARSIFIERS

Here we consider the problem of constructing - in time
polynomial in n and k - an undirected, capacitated graph
G′ = (K,E′) for which the cut function h′ approximates
the terminal cut function hK . We will use existential results
(in Theorem 4) to conclude that a particular polytope is non-
empty, and we will design approximate separation oracles

for this polytope to give a polynomial time construction for
finding such a graph G′.

Rather surprisingly, we use oblivious routing guarantees to
design an approximate separation oracle. So apart from the
original motivation for studying oblivious routing schemes,
we actually use oblivious routing to solve an optimization
problem. These ideas lead us to believe that the remarkable
oblivious routing guarantees due to Räcke [19] can also
be understood as a geometric phenomenon particular to
undirected multicommodity polytopes.

5.1. The Terminal Cut Polytope

Constructing such a graph G′ can be naturally represented
as a feasibility question for a linear program. We can
define a non-negative variable xa,b for each pair a, b ∈ K.
Then finding a G′ for which the cut function h′ f(k)g(k)-
approximates the terminal cut function is equivalent to
finding a feasible point in the polytope:

Type 1:
∑

a,b s.t. a∈A,b/∈A
xa,b ≤ f(k)hK(A)

Type 2: hK(A) ≤ g(k)
∑

a,b s.t. a∈A,b/∈A
xa,b

0 ≤ xa,b
Theorem 4 implies that this polytope is non-empty for

f(k) = O( log k
log log k ), g(k) = 1. However there are 2k+1

linear constraints, and we cannot check all constraints in
time polynomial in n and k. We will construct approximate
separation oracles for both Type 1 and Type 2 Inequalities.
Then we can use the ellipsoid algorithm to find feasible
edge weights. And we will choose f(k) and g(k) to be
polylogarithmic in k.

Lemma 3: There is a polynomial time algorithm to find a
Type 1 Inequality that is within an O(

√
log k log log k) fac-

tor approximately the maximally violated Type 1 Inequality.

Proof: Given non-negative edge weights xa,b we can
consider the problem of (approximately) minimizing

hK(A)
h′(A)

over all sets A ⊂ K. This is exactly the sparsest cut problem
when the graph G′ (with edge weights xa,b) is considered
to be the demand graph and we are attempting to route this
demand with low congestion in G. Then we can use the
current best approximation algorithm to sparsest cut due to
[2] which is a O(

√
log k log log k) approximation algorithm

to this problem, and we will find a set B for which

hK(B)
h′(B)

≤ O(
√

log k log log k) min
A⊂K

hK(A)
h′(A)

And so the Type 1 Inequality for the set B is within
an O(

√
log k log log k) factor approximately the maximally



violated Type 1 Inequality, and we can find such a set
constructively (with high probability).

We will use (constructive) algorithms for oblivious routing
to find an approximately maximally violated Type 2 Inequal-
ity: Suppose there is a Type 2 constraint that is violated by
a OPT -factor. So there exists a terminal cut A such that
hK(A) > OPTh′(A).

Lemma 4: There exists a maximum concurrent flow ~f
that can be routed with congestion 1 in G, but cannot be
routed with congestion ≤ OPT in G′.

Proof: Place a super-source s and connect s via infinite
capacity (directed) edges to each node in A. Also place a
super-sink t and connect each node in K−A via an infinite
capacity (directed) edge to t. Compute a maximum s−t flow.
The value of this flow is hK(A). So choose a maximum
concurrent flow problem ~f in which fa,b is just the amount
of a to b flow in a path decomposition of the above maximum
flow. In particular, fa,b = 0 if a and b are either both in A
or both in K−A. This flow can clearly be routed in G with
congestion at most 1, because we constructed this demand
vector from such a routing.

However because h′(A)
hK(A) <

1
OPT there is a cut of sparsity

1
OPT and so ~f cannot be routed with congestion ≤ OPT
in G′.

Hence we consider the problem of finding a demand
vector ~f that can be routed with congestion 1 in G, but
cannot be routed with congestion ≤ O(log k)g(k) in G′.
Given such a demand vector ~f , we can find a cut of sparsity
at most < 1

g(k) in G′ i.e. we can find a cut A ⊂ K for
which

h′(A)
d(A)

<
1

g(k)

Because ~f can be routed with congestion 1 in G, we are
guaranteed:

hK(A)
d(A)

≥ 1

So this implies that we have found a Type 2 Inequality that
is violated. So using Lemma 4 and the above argument, up to
a O(log k) factor, the problem of finding an (approximately)
maximally violated Type 2 Inequality is equivalent to finding
a demand vector ~f that can be routed with congestion at
most 1 in G, and maximizes the minimum congestion needed
to route this demand vector in G′. We define this problem
formally as the Max-Min Congestion Problem, and we given
a poly(log k) approximation algorithm for this problem:

Formally, given an undirected, capacitated graph G =
(V,E), a subset K ⊂ V of size k, and an undirected,
capacitated graph G′ = (K,E′) the goal of the Max-Min
Congestion Problem is to find a demand vector ~f (such that
the demands are supported in K) that can be routed with

congestion 1 in G and maximizes the minimum congestion
needed to route ~f in G′.

5.2. An Approximation Algorithm via Oblivious Routing

Theorem 8: There exists a polynomial time O(log k)-
approximation algorithm for the Max-Min Congestion Prob-
lem.

We first construct an oblivious routing scheme for G′.
Let f ′a,b : E′ → <+ be an O(log k)-competitive oblivious
routing scheme for G′ - i.e. for each a, b ∈ K, f ′a,b sends
a unit flow from a to b in G′. Then f ′ has the property
that for any demand vector ~d, the congestion that results
from routing according to f ′ is within an O(log k) factor
of the optimal congestion for routing ~d in G′. And such an
oblivious routing scheme is guaranteed to exist, and can be
found in polynomial time using the results due to Räcke
[19].

For any edge (a, b) ∈ E′, we consider the following linear
program LP (a, b):

maxDa,b =
P

i,j di,jf
′i,j(a,b)

c(a,b)

s.t. ∑
t x

i,j(i, t) = di,j∑
t x

i,j(s, t) = 0∑
i,j x

i,j(e) ≤ c(e)
xi,j(e) ≥ 0.

We will solve the above linear program for all (a, b) ∈ E′
and output the demand vector ~d that achieves the maximum
Da,b over all (a, b) ∈ E′. Let

D = max
(a,b)∈E′

Da,b

Lemma 5: Let ~d be the output, then ~d can be routed
with congestion at most 1 in G and cannot be routed with
congestion < D

O(log k) in G′.

Proof: The linear program enforces that ~d can be routed
in G with congestion at most 1. Suppose ~d achieves value
D on an edge (i, j) -i.e. (i, j) = arg max(a,b)Da,b and ~d is
the optimizing demand. Then ~d achieves congestion D on
edge (i, j) when routed according to the oblivious routing
scheme. The oblivious routing guarantees for G′ imply that
no routing of ~d achieves congestion smaller than

D

O(log k)

Let OPT be the optimal value for the Max-Min Conges-
tion Problem.

Lemma 6: There exists a feasible demand ~d which
achieves Da,b ≥ OPT for some (a, b) ∈ E′.



Proof: Let ~d′ be demand that achieves the optimal value
for the Max-Min Congestion Problem. The oblivious routing
scheme is a routing, and must then achieve congestion at
least OPT on some edge (a, b) ∈ E′ (not necessarily the
same edge that achieves congestion OPT as in the optimal
off-line routing scheme for ~d′ in G′).

Proof: This implies Theorem 8, and the vector ~d
computed by solving a polynomial (in k) number of linear
programs will be a O(log k) approximation for the Max-Min
Congestion Problem.

5.3. Constructions for Vertex Sparsifiers

Lemma 7: There is a polynomial time algorithm to find
a Type 2 Inequality that is within an O(log2 k) factor
approximately the maximally violated Type 2 Inequality.

Proof: Let A be the maximally violated Type 2 In-
equality. Let OPT = hK(A)

h′(A) . Then using Lemma 4 there is
a maximum concurrent flow demand vector ~d such that ~d
can be routed with congestion at most 1 in G and cannot
be routed with congestion < OPT in G′. So the solution to
the Max-Min Congestion Problem is at least OPT , which
implies that we will find a demand vector ~d which can be
routed in G with congestion at most 1 and cannot be routed
in G′ with congestion < OPT

O(log k) .
Hence we can find a cut A ⊂ K for which

h′(A)
d(A)

<
O(log2 k)
OPT

and
hK(A)
d(A)

≥ 1

and this implies
hK(A)
h′(A)

>
OPT

log2 k

Returning to the linear program for finding such a G′, we
can use the ellipsoid algorithm to find (in time polynomial
in n and k) a point ~x ≥ 0 such that the graph G′ defined
by these edge weights satisfies:

hK(A)
g(k)

≤
∑

a,bs.t.a∈A,b/∈A

xa,b ≤ f(k)hK(A)

for g(k) = O(log2 k) and f(k) = log1.5 k.

Theorem 9: There exist a polynomial (in n and k) time
algorithm to construct an undirected, capacitated graph
G′ = (K,E′) such that the cut function h′ of this graph
O(log3.5 k)-approximates the terminal cut function hK .

6. APPLICATIONS

6.1. An Improved Approximation for Requirement Cut

Given an undirected, capacitated graph G = (V,E) and
g groups of nodes X1, ...Xg ⊂ V , each group Xi is

assigned a requirement ri ∈ {0, ...|Xi|}. Then the goal of
the requirement cut problem is to find a minimum capacity
set of edges whose removal separates each group Xi into at
least ri disconnected components.

[17] gives a O(log n log gR) approximation algorithm for
this problem, where R is the maximum requirement maxi ri.
Then given an instance of the requirement cut problem in
which X1 ∪ X2... ∪ Xg = K and |K| = k, we can use
Theorem 9 to reduce to a uniform case. Let OPT be the
value of the optimal solution in G. We denote the optimal
solution in G′ as OPT ′.

Claim 3:

OPT ′ ≤ O(log3.5 k)OPT

Proof: Interpret the optimal solution to the requirement
cut problem in G as a partition P = {P1, P2, ...Pr} of K
that satisfies the requirement cut - i.e. for all i, the nodes in
Xi are contained in at least ri elements of the partition P .
Then

OPT ≥ 1
2

∑
i

hK(Pi)

and P = {P1, P2, ...Pr} is a valid partition for the require-
ment cut problem mapped to G′ so

OPT ′ ≤
∑
i

h′(Pi) ≤ O(log3.5 k)
∑
i

hK(Pi)

Note that Steiner generalization of sparsest cut, min-
bisection, ρ-separator, also satisfy this type of reducibility
property.

Theorem 10: There is a polynomial (in n and k) time
O(log4.5 k log gR)-approximation algorithm for the require-
ment cut problem

Proof: Construct G′ as in Theorem 9 and we can run the
approximation algorithm due to [17] to find a set of edges
of capacity at most C ≤ O(log k log gR)OPT ′ deleting
which (in G′) results in a partition P ′ = {P ′1, P ′2, ...P ′q}
that satisfies the requirement cut. Then∑

i

h′(P ′i ) = 2C

For each i, define Fi as a set of edges in G that achieves
hK(P ′i ) and separates P ′i and K − P ′i . Delete all edges in
F = F1∪F2...∪Fq , and this results (in G) in a sub-partition
P ′′ of P ′ that also satisfies the requirement cut and the
capacity of these edges is at most 2C.

An almost identical argument that uses the result due to
[10] implies:

Corollary 1: There is a polynomial (in n and k)
time O(log4.5 k)-approximation algorithm for the l-multicut
problem



Note that here k is the number of demand pairs. Previous
approximation algorithms for these problems [17], [10] and
later [19] all rely on a decomposition tree for the graph
G that approximates the cuts and such a decomposition
tree cannot approximate cuts better than the Ω(log n) lower
bound for oblivious routing. But we were able to use a black-
box reduction to the uniform case to get an approximation
guarantee that is poly(log k).

6.2. Applications to Linear Arrangements

We give another application to illustrate the uses of
Theorem 9. The minimum cut linear arrangement prob-
lem is defined as: Given an undirected, capacitated graph
G = (V,E) we want to find an ordering of the vertices
v1, v2, ...vn which minimizes the value of

C = max
1≤i≤n

h({v1, v2, ...vi})

We can define a natural generalization of this problem in
which we are given a set K ⊂ V of size k, and we want
to find an ordering of the nodes in K, u1, u2, ...uk and a
partition A1, A2, ...Ak of the remaining nodes V −K (and
let Bi = Ai ∪ {ui}) which minimizes the value of

CK = max
1≤i≤k

h(∪1≤j≤iBi)

We refer to this problem as the Steiner Min-Cut Linear
Arrangement Problem. We can also give an identical gen-
eralization of minimum linear arrangement to the Steiner
Minimum Linear Arrangement Problem.

Applying our generic reduction procedure to these prob-
lems will require a more intricate uncrossing argument (that
relies on the sub-modularity of the cut function) to map a
solution in G′ back to a solution in G. But the reduction
procedure is quite robust, and will work in this setting
too: Suppose that the optimal solution to the Steiner Min-
Cut Linear Arrangement Problem has value OPT . Again
we construct a graph G′ as in Theorem 9. Let OPT ′

be the value of an optimal solution to the min-cut linear
arrangement problem on G′.

Claim 4:

OPT ′ ≤ O(log3.5 k)OPT

Proof: Suppose that the optimal solution to the Steiner
Min-Cut Linear Arrangement Problem in G has an ordering
u1, u2, ...uk of the nodes in K. Then consider this ordering
as a solution to the min-cut linear arrangement problem in
G′.

Each set ∪1≤j≤iBi defines a cut in G that
separates {u1, u2, ...ui} from {ui+1, ui+2, ...uk}.
So hK({u1, u2, ...ui}) ≤ h(∪1≤j≤iBi) and so
h′({u1, u2, ...ui}) ≤ O(log3.5 k)h(∪1≤j≤iBi) and this
is true for all {u1, u2, ...ui}.

Because for all {u1, u2, ...ui}, h(∪1≤j≤iBi) ≤ OPT this
implies that for all {u1, u2, ...ui}

h′({u1, u2, ...ui}) ≤ O(log3.5 k)OPT

OPT ′ ≤ max
1≤i≤k

h′({u1, u2, ...ui}) ≤ O(log3.5 k)OPT

Suppose we can find a min-cut linear arrangement of G′

of value C ′.

Claim 5: We can find a solution to the Steiner Min-Cut
Linear Arrangement Problem in G of value at most C ′.

Proof: The cut function h : 2V → <+ is a submodular
function. So for all S, T ⊂ V :

h(S) + h(T ) ≥ h(S ∩ T ) + h(S ∪ T )

So consider a solution to the min-cut linear arrangement
problem in G′ of value C ′. And suppose that the ordering
for K is {u1, u2, ...uk}. For each i, find a set Bi ⊂ V s.t.
h(Bi) = hK({u1, u2, ...ui}).

Consider the sets B1 and B2. We can find sets B′1, B
′
2

such that B′1 ⊂ B′2 and h(B1) = h(B′1), h(B2) = h(B′2)
and B′1 ∩K = B1 ∩K, B′2 ∩K = B2 ∩K. This is true via
submodularity: Choose B′1 = B1 ∩B2 and B′2 = B1 ∪B2.

So B′1 ∩ K = (B1 ∩ K) ∩ (B2 ∩ K) = (B1 ∩ K) and
also B′2 ∩K = (B1 ∩K) ∪ (B2 ∩K) = B2 ∩K because
B1 ∩K ⊂ B2 ∩K.

Also
h(B1) + h(B2) ≥ h(B′1) + h(B′2)

via submodularity. However h(B1) is the minimal value of
an edge cut separating B1 ∩K from K − (B1 ∩K) and B′1
also separates B1 ∩K from K − (B1 ∩K), and a similar
statement holds for B′2. So the above inequality implies

h(B1) = h(B′1), h(B2) = h(B′2)

We can continue the above argument and get sets
B′1, B

′
2, ...B

′
k such that

h(B′i) = hK({u1, u2, ...ui}) and B′1 ⊂ B′2... ⊂ B′k
Then we can choose A′i = (B′i − B′i−1) ∩ (V −K) as our
partition of V −K (and let Di = A′i ∪ {ui}) and then for
any 1 ≤ i ≤ k:

h(∪1≤j≤iDi) = hK({u1, u2, ...ui}) ≤ h′({u1, u2, ...ui})

So

max
1≤i≤k

h(∪1≤j≤iDi) ≤ max
1≤i≤k

h′({u1, u2, ...ui}) ≤ C ′

Using approximation algorithms due to [15] for min-
cut linear arrangement and due to [6] for minimum linear
arrangement, we get:



Theorem 11: There is a polynomial (in n and k) time
O(log4 k log log k)-approximation algorithm for the Steiner
Minimum Linear Arrangement Problem, and a polynomial
time O(log4 k log log k)-approximation algorithm for the
Steiner Minimum Linear Arrangement Problem.

6.3. Applications to 0-Extensions

Theorem 12: There is a polynomial time constructible
O(log4.5 k)-competitive oblivious algorithm for the 0-
extension problem.

We defer the proof, and additional applications to the full
version.

7. IMPROVEMENTS AND AN IMPOSSIBILITY THEOREM

In joint work with Tom Leighton, we have made im-
provements to the structural and algorithmic results in this
paper. These results mostly use the ideas introduced here,
and improvements come from considering a duality inspired
zero-sum game and from adapting techniques from [4] in
the construction of such a G′.

For any multicommodity demand ~f ∈ <(k
2), we denote

congG(~f) as the minimum congestion needed to route ~f
(interpreted as demands on pairs of nodes in K) in G. We
prove there exists a graph G′ = (K,E′) such that

congG′(~f) ≤ congG(~f) ≤ O(
log k

log log k
)congG′(~f)

for all demands ~f ∈ <(k
2). This structural result implies

the structural result given in this paper. We also give a
polynomial (in n and k) time algorithm to construct a graph
G′ = (K,E′) for which

congG′(~f) ≤ congG(~f) ≤ O(
log2 k

log log k
)congG′(~f)

for all demands ~f ∈ <(k
2).

We also prove an Ω(log log k) lower bound: We give a
graph G = (V,E) and a subset K ⊂ V of size k for
which any graph G′ = (K,E′) which satisfies (for all
~f ∈ <(k

2)) congG′(~f) ≤ congG(~f), there must be a demand
~f ∈ <(k

2) for which congG(~f) > Ω(log log k)congG′(~f).
This gives a lower bound on the cost of vertex sparsifiers
for multicommodity demands. No such lower bounds were
previously known, despite the known lower bounds on the
integrality gap for the linear programming relaxation of the
0-extension problem.
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