
Improved Approximation Algorithms for
PRIZE-COLLECTING STEINER TREE and TSP

Aaron Archer∗ MohammadHossein Bateni† MohammadTaghi Hajiaghayi∗ Howard Karloff∗
∗ AT&T Labs – Research, 180 Park Avenue, Florham Park, NJ 07932.
E-mail: {aarcher,hajiagha,howard}@research.att.com.

† Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540.
E-mail: mbateni@cs.princeton.edu.

Abstract— We study the prize-collecting versions of the Steiner
tree, traveling salesman, and stroll (a.k.a. PATH-TSP) problems
(PCST, PCTSP, and PCS, respectively): given a graph (V, E)
with costs on each edge and a penalty (a.k.a. prize) on each node,
the goal is to find a tree (for PCST), cycle (for PCTSP), or
stroll (for PCS) that minimizes the sum of the edge costs in the
tree/cycle/stroll and the penalties of the nodes not spanned by it. In
addition to being a useful theoretical tool for helping to solve other
optimization problems, PCST has been applied fruitfully by AT&T
to the optimization of real-world telecommunications networks.
The most recent improvements for the first two problems, giving
a 2-approximation algorithm for each, appeared first in 1992. (A
2-approximation for PCS appeared in 2003.) The natural linear
programming (LP) relaxation of PCST has an integrality gap of 2,
which has been a barrier to further improvements for this problem.

We present (2 − ε)-approximation algorithms for all three
problems, connected by a unified technique for improving prize-
collecting algorithms that allows us to circumvent the integrality
gap barrier.

1. INTRODUCTION

Prize-collecting problems involve situations where there
are various demand points that desire to be “served” by some
structure and we must find the structure of lowest cost to
accomplish this. However, if some of the demand points are
too expensive to serve, then we can refuse to serve them and
instead pay a penalty. The two most famous prize-collecting
problems are the prize-collecting Steiner tree (PCST) and
prize-collecting traveling salesman (PCTSP) problems. In
both cases, we are given a connected graph G = (V,E),
a non-negative cost ce for each edge e ∈ E, denoting
the cost to purchase that edge, and a non-negative penalty
(sometimes called a prize) πv for each node v ∈ V . In
PCST, we must select some tree T spanning a set V (T) of
nodes so as to minimize the combined cost∑

e∈T

ce +
∑

v∈V (T)

πv = c(T) + π(V (T)),

where V (T) = V − V (T), and the notation c(T) and
π(V (T)) follows the usual convention that when x is a
vector and S is a subset of its indices, x(S) =

∑
i∈S xi.

That is, we aim to minimize the total cost of the tree plus the
penalties of the nodes not spanned. Although T denotes a set

of edges, in a slight abuse of notation we will often write T
to denote the set V (T) of nodes. Since we will never take the
complement of an edge set, this should cause no ambiguity.
PCTSP is the same, except that the set of edges should form
a cycle instead of a tree. We also study a variant of PCTSP,
the prize-collecting stroll (PCS) problem, in which the edges
should form a stroll (i.e., path). When πv = ∞ for all v ∈ V ,
PCTSP simplifies to the ordinary TSP because we have no
choice but to visit all nodes, and PCS simplifies to PATH-
TSP, the path version of TSP. Similarly, if each penalty
is 0 or ∞, PCST simplifies to an instance of the ordinary
Steiner tree problem; in this case, the nodes {v : πv = ∞}
are called terminals (which the Steiner tree must connect)
and the nodes {v : πv = 0} are called Steiner nodes (which
the tree may use if it helps). These are all notorious NP-
hard problems, so PCST, PCTSP, and PCS are NP-hard
as well. Thus, we are interested in obtaining approximation
algorithms for them.

In PCTSP and PCS, one typically assumes that the graph
is complete and the edge costs satisfy the triangle inequality.
Otherwise the problem is inapproximable, since determining
whether the edges of cost zero form a Hamiltonian cycle or
Hamiltonian path is NP-hard. These assumptions open the
door to algorithms that use “shortcutting.” In PCST, these
extra assumptions have no effect.

In the rooted version of these problems, there is a speci-
fied root node r that must be spanned. Since the rooted and
unrooted versions are reducible to each other,1 we consider
only the rooted version for the rest of the paper.

The first approximation algorithms for the PCST and
PCTSP problems were given by Bienstock et al. [7], al-
though the PCTSP had been introduced earlier by Balas [5].
Bienstock et al. achieved a factor of 3 for PCST and
2.5 for PCTSP by rounding the optimal solution to a
linear programming (LP) relaxation. Later, Goemans and
Williamson [18] constructed primal-dual algorithms using
the same LP relaxation to obtain a 2-approximation for
both problems, building on work of Agrawal, Klein and

1To use an algorithm for the unrooted case to solve the rooted case, just
set πr = ∞. To go the other direction, just try all possible roots.

Ravi [1]. Chaudhuri et al. modified the Goemans-Williamson
algorithm to achieve a 2-approximation for PCS [8]. In
a 1998 conference talk covering unpublished work [15]
, Goemans mentioned (exactly) two open problems: re-
solving whether the integrality gap of the Held-Karp LP
relaxation for TSP is exactly 4

3 and improving the PCTSP
approximation ratio below 2. The conference version of the
Goemans-Williamson paper [17] appeared in 1992; in the
17 years since, there have been no improved approximation
algorithms invented for either PCST or PCTSP, until now.
This paper gives (2− ε)-approximation algorithms for both
problems, and for PCS as well.

By contrast, improvements for the original Steiner tree
problem came fast and furiously after Zelikovsky’s an-
nouncement, in 1990, of an 11/6-approximation for Steiner
tree ([28], [29]), the first algorithm to beat the naive 2-
approximation. Berman and Ramaiyer’s improvement of the
11/6 = 1.833... bound of Zelikovsky to 1.746 appeared
in 1992 [6]. Zelikovsky himself improved Berman and
Ramaiyer’s 1.746 to 1.693 in 1996 [30], which was followed
by Prömel and Steger’s improvement to 1.667 in 1997 [26],
and by Karpinski and Zelikovsky to 1.644 in 1997 [25], after
which Hougardy and Prömel improved the bound to 1.598
in 1999 [21]. The best and most recent bound, just under
1.55, is due to Robins and Zelikovsky, in 2005 [27].

We hope for our work to trigger similar improvements for
PCST, PCTSP, and PCS. Indeed, this process has already
begun. After we informed Goemans of our new result, he
combined some of our ideas with others from [15] (namely,
a randomized version of the PCTSP algorithm from [7]) to
improve the ratio for PCTSP below 1.915 [16].

Although the value of ε that we achieve for the two prize-
collecting problems is small (about 0.01 in all three cases),
this is a conceptual breakthrough, since the factor 2 was
thought to be a barrier. The natural LP relaxation for PCST
used in [7] and [18] is known to have an integrality gap of
2. Thus, it cannot by itself provide a strong enough lower
bound to prove an approximation factor better than 2.

PCST and PCTSP are two of the classic optimization
problems, deserving of study in their own right. Moreover,
work on the PCST has had a large impact, both in theory
and practice. At AT&T, PCST code has been used in large-
scale studies in access network design, both as described
in Johnson, Minkoff and Phillips [23], and in unpublished
applied work involving the first author of the present paper.

The impact of PCST within approximation algorithms is
also far-reaching. As noted by Chudak, Roughgarden and
Williamson [10], PCST is a Lagrangian relaxation of the
k-MST problem, which asks for the minimum-cost tree
spanning at least k nodes. Moreover, they note that the
PCST algorithm of Goemans and Williamson (henceforth
called GW) is not just a 2-approximation algorithm, but
also a Lagrangian preserving 2-approximation (we give a
formal definition shortly). This implies the useful property

that the total edge cost of the tree T returned by GW is
no more than twice the edge cost of the cheapest tree that
pays at most π(V (T)) penalty. Thus, if one runs PCST
with all penalties set to some constant, and it happens to
return a tree spanning exactly k nodes, then this tree is
a 2-approximate k-MST. This property has been used in
a sequence of papers ([13], [4], [3]) culminating in a 2-
approximation algorithm for k-MST by Garg [14]. It has also
been used to improve the approximation ratio and running
time of algorithms for the MINIMUM LATENCY problem
([2], [8]). The technique of applying Lagrangian relaxation
to a problem with hard constraints, then using a Lagrangian-
preserving approximation algorithm on the relaxed problem
to recover an approximation algorithm for the original prob-
lem, has been successfully applied to the k-MEDIAN and
UNCAPACITATED FACILITY LOCATION problems as well,
in a sequence of papers starting with [22].

In this paper, we use the Lagrangian-preserving guarantee
of the GW algorithm in a different way. Tree T is a
Lagrangian-preserving 2-approximate solution if

c(T) + 2π(T) ≤ 2OPT. (1)

To be an ordinary 2-approximation, it would suffice to sat-
isfy (1) with the 2 on the left side changed to 1. One way to
view this is that GW essentially achieves an approximation
ratio of 1 on the penalty term, and 2 on the tree term. We
can show that if either GW or OPT pays a large amount
of penalty, then GW achieves a (2 − ε)-approximation. In
the case where both GW and OPT pay a small penalty,
intuitively GW is finding approximately the correct set of
nodes to span, but it might have failed to construct a cheap
tree. (This intuition is somewhat misleading; in actuality,
GW might choose a very wrong set of nodes, so we will
have to correct for this as well.) We take advantage of
this by using GW to help us identify a set of nodes to
span, then running the Robins-Zelikovsky (RZ) algorithm
for the ordinary Steiner tree problem, using those nodes as
terminals. We use RZ here as a black box: for the purpose
of achieving a (2 − ε) factor for PCST, any (2 − ε′)-
approximation for ordinary Steiner tree would suffice. We
emphasize that in selecting the terminal set to send to RZ,
we do not simply use the set of nodes that GW chose
to span; in fact, we carefully select a subset. The proper
selection of these terminals is the crux of our algorithm.

There are two keys to this whole scheme. First, we
must ensure that the extra nodes that GW spanned but
that we choose not to designate as terminals have a small
total penalty. We do this by using LP duality to bound
their penalty against the cost of the tree produced by GW
(Lemma 3). The second key is Lemma 4, which guarantees
that there exists a tree spanning our chosen terminals whose
cost is not much larger than OPT . Thus, when we run RZ
on this set of nodes to find a 1.55-approximation to this tree,
it will give better than a 2-approximation, even after we add

in the penalty term (since both the nodes excluded by GW
and the extra ones that we excluded from the terminal set
have small total penalty). Our algorithm for PCTSP is very
similar, except that we use the Christofides 3

2 -approximation
algorithm for TSP [9] instead of RZ. For PCS, we use
a 3

2 -approximation for the path version of TSP, due to
Hoogeveen [20].

One novel feature of our analysis is that we use the details
of the GW moat-growing algorithm to prove in Lemma 4
that there exists an inexpensive set of edges satisfying certain
properties, but not to find it. All other applications of GW of
which we are aware use it purely in an algorithmic sense to
identify edges; this may be the first time it has been utilized
solely to provide an existence proof.

We structure the rest of the paper as follows. Section 2
describes the GW PCST algorithm. Section 2.1 discusses
performance guarantees for GW, along with a bad instance
that motivates our improved algorithm. Section 3 describes
our algorithm for PCST, states the key lemmas, and fits
them together to prove the approximation ratio of (2 − ε).
The heart of our analysis appears in Section 3.1, where we
prove the key lemmas. Section 4 applies the same techniques
to derive (2− ε)-approximation algorithms for PCTSP and
PCS. Section 5 explains how several variants of GW relate.

2. GOEMANS-WILLIAMSON ALGORITHM

This section describes the GW algorithm [18] and some
of the reasons why it is difficult to modify it to improve its
approximation ratio. The algorithm we describe below is a
slight variant of that given in [18], as suggested by Johnson,
Minkoff and Phillips [23].

Let I be our input instance, in which we are given a graph
G = (V,E), a root node r ∈ V , a cost ce for each edge e,
and a penalty πv for each node v. Recall that our goal is
to find a tree T , rooted at r, that minimizes c(T) + π(T).
Since every feasible tree is required to include r, without
loss of generality we can set πr = ∞. The GW algorithm
is motivated by the following LP relaxation and its dual.

Primal: minimize
∑
e∈E

cexe +
∑

R⊆V−{r}

π(R)zR

subject to:
∑

e∈δ(R)

xe +
∑
U⊇R

zU ≥ 1 ∀R ⊆ V − {r}

xe, zR ≥ 0 ∀e ∈ E,R ⊆ V − {r}

(2)

Dual: maximize
∑

R⊆V−{r}

yR

subject to:
∑

R:e∈δ(R)

yR ≤ ce ∀e ∈ E

∑
U⊆R

yU ≤ π(R) ∀R ⊆ V − {r}

yR ≥ 0 ∀R ⊆ V − {r}.

(3)

Here, δ(R) denotes the set of edges with exactly one
endpoint in R. A tree T rooted at r corresponds to the
following solution in the primal LP: xe = 1 for each e ∈ T ,
zT = 1, and all other variables are zero. In light of this, the
primal constraint for set R says that either R ⊆ T , or else
T contains an edge in δ(R). We will refer to the first set of
dual constraints as edge packing constraints, and the second
set as penalty packing constraints.

The algorithm consists of two phases, GW-GROWTH then
GW-PRUNING. In GW-GROWTH, the algorithm maintains
a forest F of edges between nodes in V . We refer to the
connected components of F as clusters (or GW-clusters).
Initially, F = ∅, so the clusters are all singletons. We
identify a cluster with the set of nodes it spans. Associated
with each cluster C there is a dual variable yC from LP (3).
For the purpose of this description, we also assign a “fake”
dual variable yC to the cluster that contains r, even though
this variable does not appear in LP (3).

The algorithm has a notion of time, which unfolds in
epochs. An epoch ends when an event point is reached,
at which time the event is processed and the next epoch
begins. If two events are set to occur simultaneously, then
ties can be broken arbitrarily, although processing the first
event may prevent the second from occurring. If both events
do occur, then the epoch between them has zero duration.
There are two types of event points, tight edge and cluster
death events, which we describe momentarily. Initially all
yC’s are 0. During each epoch, each cluster is either active
or dead (a.k.a. inactive), and each active cluster C increases
its yC value at rate 1 for the duration of the epoch. At time
0, all clusters are active. Each cluster C also has a potential
PC . Initially, P{v} = πv for all v ∈ V . During each epoch,
the potential of each active cluster decreases at rate 1, in
order to maintain the invariant

PC = π(C)−
∑
U⊆C

yU . (4)

If the potential of a cluster ever reaches zero, it triggers
a cluster death event, wherein the cluster dies (i.e., becomes
inactive). Since P{r} = πr = ∞, the root cluster never dies.
Note that a cluster has zero potential if and only if its penalty
packing constraint is tight.

A tight edge event is triggered on e when its edge packing
constraint becomes tight (where we include in the sum the
“fake” dual variables corresponding to the root cluster).
When such an e goes tight, we add e to F , causing the two
components C1 and C2 to merge. We set the new potential
PC1∪C2 = PC1 +PC2 , to maintain invariant (4), and declare
C1∪C2 to be active. Thus, a dead cluster can be resurrected
if an active cluster merges with it.

The purpose of the two types of events is to prevent the
penalty and edge packing constraints from being violated.
If processing one event obviates the need for another event
that would otherwise have been triggered at the same time,

we skip the latter one. Thus, we trigger the death of cluster
C only if C is still an active cluster. Similarly, we trigger a
tight edge event on e only if e connects two distinct clusters
C1 and C2 and at least one of them is active. Because of
this rule, F remains a forest. If the edge packing constraints
for two distinct edges between C1 and C2 become tight
simultaneously, then processing one of them will merge the
components, and this rule prevents the other event from
occurring. Similarly, this rule can cause tight edge and
cluster death events to prevent each other from occurring.

Since the root cluster is always active, it will eventually
merge with every other cluster. At this point, F is a tree
spanning all of V , and the GW-GROWTH phase ends. The
algorithm works even with infinite penalties.

A good intuitive way to understand GW-GROWTH is
that each dual variable yC represents a moat. As the moat
grows, it “fills up” the edges at the boundary of cluster C.2

Whenever the moats have collectively filled up an edge, we
“buy” that edge by putting it in F . Note that every cluster
C is a contiguous set of nodes in the final forest F .

The set of edges we have bought may be too expensive,
so we must now prune some of them away, in the GW-
PRUNING phase. If a cluster ever died during the course of
GW-GROWTH, color it black. If there exists a black cluster
C such that the intersection of C with V (F) consists of the
vertex set of the entire subtree of F to one side of some
edge e, then prune away e and this entire subtree. Clearly,
F remains a tree. We iteratively prune away subtrees of F
in this fashion, in any order, until there are no more such
black clusters. At this point, GW-PRUNING ends and the
algorithm returns the tree F .

2.1. A good case, and a motivating bad example

Our starting point is the following theorem regarding GW.

Theorem 1 ([18], [10], [11]). The tree T returned by the
GW algorithm for PCST satisfies

c(T) + 2π(T) ≤ 2OPT. (5)

The history of Theorem 1 is somewhat complicated; see
Section 5. Notice that (5) is stronger than what would be
necessary for GW to be a 2-approximation: there is a factor
of 2 in front of π(T), where a 1 would suffice. Because
of this property, GW is said to be a Lagrangian-preserving
2-approximation algorithm.3 This stronger guarantee obvi-
ously implies that if π(T) is large compared to OPT , then
T is better than a 2-approximation. The following theorem
quantifies this, and shows we can also win if a significant
fraction of OPT comes from the penalties.

2This “geometric” view of the dual variables as moats was suggested by
Jünger and Pulleyblank [24], predating GW.

3The term arises because of its connections to Lagrangian relaxation,
which we will not explore in this work.

Lemma 2. Let O denote the optimal tree, and let δ = π(O)
OPT .

Fix any α ∈ [12 , 1], and derive a new instance Iα from I by
multiplying all penalties by α. Let TGW be the tree returned
by GW on Iα , and let γ = π(T GW)

OPT . Then c(TGW) +
π(TGW) ≤ (2− (2α− 1)γ − 2(1− α)δ)OPT .

Proof: Let OPTα be the cost of the optimal solution
for instance Iα . Since O is one possible solution, OPTα ≤
c(O) + απ(O). Thus, Theorem 1 yields

c(TGW) + 2απ(TGW) ≤ 2OPTα ≤ 2(c(O) + απ(O))

c(TGW) + π(TGW) ≤ 2(c(O) + π(O))

− (2α− 1)π(TGW)− 2(1− α)π(O)
= (2− (2α− 1)γ − 2(1− α)δ)OPT.

The second line follows by subtracting the same term
(2α−1)π(TGW) from both sides and rearranging. The other
transformations come from applying the definitions of γ and
δ and applying our bound on OPTα.

Thus, if γ or δ is at least a constant, then TGW is a (2−ε)-
approximation, for some constant ε. This accords with the
intuition that the GW algorithm deals especially well with
the penalty term. The difficulties come from the tree cost,
so it is instructive to see an example of what goes wrong.

Suppose we run GW on Iα and the resulting tree TGW is
not already a (2−ε)-approximation. Because this implies that
both γ and δ are very small, we might hope that TGW and
O span approximately the same set of nodes. Thus, if we
ran the RZ 1.55-approximation algorithm on the ordinary
Steiner tree instance with V (TGW) as Steiner nodes and
V (TGW) as the terminal set (which may include some nodes
not in V (O)), we might hope that the tree it returned would
be close to a 1.55-approximation for the original PCST
instance. However, the following example shows that this
cannot work.

Given k ≥ 2 and z small but positive, we construct
an instance of the ordinary Steiner tree problem, cast as
a special case of PCST, where all penalties are either 0 or
∞. Thus, Iα = I, and necessarily γ = δ = 0. There is a
2k-cycle, alternating between terminals and Steiner nodes,
connected by edges of cost 1. There is one “hub” Steiner
node in the middle, with “spoke” edges of cost 1+z to each
of the terminals in the cycle. In this case, TGW is a path
containing all cycle edges except for the pair on either side
of one of the Steiner nodes, costing 2k−2 (including all but
two Steiner nodes: this single one on the cycle, and the hub
node). Meanwhile, OPT buys only the k spoke edges (and,
by contrast, includes only one Steiner node, the hub), at total
cost k(1 + z). This ratio goes to 2 as k → ∞ and z → 0.
But in this case, TGW already spans the set V (TGW) of
new terminals optimally, so there is nothing to be gained by
calling RZ on terminal set V (TGW) (i.e., the two nodes in
V (TGW) do not help). A better idea is required.

3. OUR PCST ALGORITHM

Our algorithm PCST-ALG(α, β) (parametrized by con-
stants α ∈ [12 , 1], β ≥ 1) is relatively simple to describe,
but its analysis is quite involved. We produce two solutions
to instance I, and output the better one. As hinted in
Section 2.1, the first solution is TGW , the output of GW on
instance Iα . For the second solution, we use GW-GROWTH
to identify a set of terminals defining an instance of the
ordinary Steiner tree problem, and run RZ to generate a
second solution TRZ .4

The bad example of Section 3 shows that we cannot
identify this terminal set in the obvious way; we need to be
more clever. In particular, we define another instance Iα,β

as follows. For notational simplicity, let S = V (TGW). We
derive Iα,β from I by scaling up all penalties by a factor
of β, then changing the penalty of each node in S to zero.
We run GW-GROWTH on Iα,β , and let D be the set of all
nodes in S that were ever part of a dead cluster during GW-
GROWTH. (Note that all nodes in S get deactivated at time
0, but they are not in D.) We do not run GW-PRUNING at
all. The set of terminals that we send to the RZ algorithm
is S − D. Note that choosing S − D instead of S defeats
the bad example from Section 2.1, because in that case D
consists of the k − 1 Steiner nodes on the cycle that had
been part of S and were causing trouble.

Recall that O denotes both the optimal tree and the set of
nodes it spans, and γ and δ are defined such that π(S) =
γOPT and π(O) = δOPT . Since we have control over
α and β but not over γ or δ, our analysis can select the
best possible α and β but must assume the worst γ and δ.
Lemma 2 shows that if either γ or δ is at least a constant,
TGW already provides a (2 − ε)-approximation. The big
work is in showing that when γ and δ are both tiny, TRZ

provides a (2− ε)-approximation.
To give the reader an outline of the proof, we state the

main lemmas here, and show how they combine to prove
the main theorem. Lemma 3 allows us to bound the penalty
cost π(TRZ), and Lemma 4 allows us to bound the edge cost
c(TRZ). Since TRZ spans at least the terminal set S −D,
it incurs at most π(D ∪ S) in penalty cost. Since π(S) =
γOPT , we just need to bound π(D). We first state that
π(D) can be made negligible by choosing β large enough.

Lemma 3. For set D in PCST-ALG(α, β), βπ(D) ≤
c(TGW) ≤ 2(1− (1− α)δ − αγ)OPT .

To bound c(TRZ), we prove the following key (non-
algorithmic) fact: starting from the optimal tree O, the
marginal cost of extending this tree to connect to the nodes
in (S−D)−O is no larger than (2βδ)OPT . This guarantees
existentially that there is a tree that spans all nodes in S−D

4Although T GW depends on α, and T RZ on both α and β, we suppress
this in the notation since we view α and β as fixed.

and is not much more expensive than OPT ; hence RZ won’t
pay too much when fed terminal set S −D.

Lemma 4. Let I = O ∩ S and A = (S − D) − O =
(S−D)− I . Then there exists a forest F with the following
properties:

1) each node of A is included in one of the (nontrivial)
trees of F ,

2) each tree in the forest includes exactly one node from
I , and

3) c(F) ≤ (2βδ)OPT .

Now it’s just a matter of mopping up.

Lemma 5. The second solution TRZ in PCST-ALG(α, β)
achieves an approximation ratio of at most

ρ(1 + (2β − 1)δ) + γ +
2
β

(1− (1− α)δ − αγ),

where ρ < 1.55 is the approximation factor of the RZ
algorithm for Steiner tree.

Proof: The edge cost of the optimal tree is (1−δ)OPT ,
so we can augment it with the forest F from Lemma 4 to
obtain a tree spanning at least S − D and costing at most
(1 + (2β − 1)δ)OPT . The edge cost of TRZ is at most ρ
times as much. In addition, TRZ pays at most π(D ∪ S) in
penalties, since it spans at least the terminals S − D. But
π(S) = γOPT by definition, and π(D) ≤ 2

β (1−(1−α)δ−
αγ)OPT by Lemma 3.

It is now a simple matter to prove an approximation ratio
of 2− ε.

Theorem 6. For some appropriate α, β and some constant
ε > 0, PCST-ALG(α, β) is a (2 − ε)-approximation algo-
rithm for PCST.

Proof: Let BGW = 2 − (2α − 1)γ − 2(1 − α)δ and
BRZ = ρ(1 + (2β − 1)δ) + γ + 2

β (1 − (1 − α)δ − αγ) be
the upper bounds on the approximation ratios of solutions
TGW and TRZ given in Lemmas 2 and 5, respectively. We
get to choose α, β, but all we know about γ and δ is that
they lie in [0, 1].

Take α = 0.75, making BGW = 2 − 1
2γ − 1

2δ. We may
assume that γ, δ ≤ 0.001, for otherwise BGW is at most
1.9995. But then BRZ ≤ ρ(1 + 2βδ) + γ + 2

β ≤ 1.55(1 +
0.002β) + 0.001 + 2

β . Now take β = 100, to infer that
BRZ ≤ 1.55(1.2) + 0.001 + 0.02 = 1.881 < 1.9995.

With a more careful analysis, we can improve the approxi-
mation bound to that given below in Theorem 7, whose proof
we provide at the end of Section 3.1.

Theorem 7. For some appropriate α, β, PCST-ALG(α, β)
is a 1.991902-approximation algorithm for PCST.

3.1. Proving the key lemmas

We have now reduced our main result, Theorem 7, to
proving two key pieces, Lemmas 3 and 4. We start by

relating π(D) to c(TGW) via the dual variables generated
when we run GW-GROWTH on Iα,β .

Lemma 8. Let y denote the dual solution generated by run-
ning GW-GROWTH on Iα,β . Then

∑
R⊆D∪S yR = βπ(D).

Proof: In GW-GROWTH, the initial GW-clusters are
singletons, and new GW-clusters are formed only by merg-
ing old ones. Thus, the collection of GW-clusters forms a
laminar family, meaning that every pair of GW-clusters is
either disjoint, or one contains the other. Thus, D∪S, the set
of all nodes that ever died, can be expressed as the disjoint
union of the maximal dead GW-clusters, C1, . . . , Ck. But
by construction, a GW-cluster dies when its penalty packing
constraint becomes tight. Because Ci is dead,

∑
R⊆Ci

yR =
πα,β(Ci), where πα,β is the penalty vector for instance
Iα,β . Now

∑
R⊆D∪S yR =

∑
GW-clustersR:R⊆D∪S yR, since

only a GW-cluster R can have nonzero yR. Furthermore,
each GW-cluster R ⊆ D ∪ S satisfies R ⊆ Ci for
some i, since the GW-clusters form a laminar family and
the Ci are the maximal clusters contained in D ∪ S.
Hence

∑
R⊆D∪S yR =

∑k
i=1

∑
R⊆Ci

yR. Now the fact that
D ∪ S is the disjoint union of C1, C2, ..., Ck implies that∑k

i=1 πα,β(Ci) = πα,β(D ∪ S) = βπ(D). Altogether we
have ∑

R⊆D∪S

yR =
k∑

i=1

∑
R⊆Ci

yR =
k∑

i=1

πα,β(Ci) = βπ(D).

Let us now consider what LP (3) looks like for an instance
of the ordinary Steiner tree problem. If node set R ⊆ V −{r}
contains no terminals, then the penalty packing constraints
imply that yU = 0 for all U ⊆ R, since π(R) = 0. But if R
contains at least one terminal (whose penalty is infinite), then
the penalty packing constraint becomes vacuous because
π(R) = ∞. This leads to the following lemma.

Lemma 9. Let X ⊆ V be a set of terminals, r ∈ X , and
T be any solution to the ordinary Steiner tree problem with
terminal set X (i.e., any tree T spanning X). Suppose a
vector y of dual variables obeys all of the edge packing
constraints of LP (3), but not necessarily the penalty packing
constraints. Then ∑

R⊆V−{r}:R∩X 6=∅

yR ≤ c(T). (6)

Proof: Consider the dual LP (3) for this Steiner tree
instance. Define a new vector y′ by y′U = 0 if U ∩X = ∅,
and y′U = yU otherwise. For any set R ⊆ V − {r} such
that R ∩ X = ∅, y′ satisfies the penalty packing constraint
trivially because

∑
U⊆R y′U = 0 = π(R); when R∩X = ∅,

the constraint is trivial because π(R) = ∞.
The value of this dual solution y′ is precisely∑
R⊆V−{r} y′R =

∑
R⊆V−{r}:R∩X 6=∅ yR, which lower

bounds the cost of every primal solution, T in particular.

Lemma 3 now follows as a corollary.
Proof of Lemma 3: Consider the ordinary Steiner tree

instance with terminal set D∪{r}. Since D is defined to be
a subset of S, TGW spans D∪{r}, and is hence a solution
to this Steiner tree instance. By design, the dual variables y
constructed by GW-GROWTH on instance Iα,β satisfy the
edge packing constraints of LP (3). Every R ⊆ D ∪ S such
that yR > 0 excludes r and contains some node from D,
since S has zero penalty in Iα,β . Thus, applying Lemma 8
then Lemma 9 with X = D ∪ {r} gives

βπ(D) =
∑

R⊆D∪S

yR ≤
∑

R⊆V−{r}:
R∩(D∪{r}) 6=∅

yR ≤ c(TGW).

Lemma 2 implies c(TGW) ≤ 2(1 − (1 − α)δ − αγ)OPT
after subtracting π(TGW) = γOPT on both sides.

We now work on proving Lemma 4. Let I = O∩S be the
intersection of the set of nodes spanned by OPT and those
spanned by TGW . Let A = (S−D)−I . Lemma 4 says that
there exists an inexpensive forest F of edges connecting I
to A. That is, we can span O ∪A cheaply, paying OPT to
span O, plus c(F) to augment the optimal tree to span A as
well. Therefore, running a good approximation algorithm for
Steiner tree with terminal set O ∪A (or any subset thereof,
such as S −D, the subset of O ∪ A on which we actually
run), will yield a cheap tree. For this argument, it is critical
that we are solving the rooted PCST problem, because both
S and O must contain r, guaranteeing that I 6= ∅.

We now define a set of GW-clusters that plays an impor-
tant role in this lemma.

Definition 10. Let G = {GW-clusters C : C ⊆ I}.

Our strategy is to upper bound c(F) in terms of∑
C∈G yC , where the yC are the dual variables generated

by running GW-GROWTH on Iα,β . This sum must be small
because of the penalty packing constraint.

Proof of Lemma 4: If A = ∅, we can take F = ∅
and the result is trivial. Otherwise, let T and y be the tree
and dual solution that GW-GROWTH generates on instance
Iα,β . We will derive F from T by deleting some edges
in two phases. Recall that T spans the entire node set V ,
since we never ran GW-PRUNING. Thus, T already satisfies
property 1, and both phases of edge deletion will preserve it
as an invariant. The first phase will accomplish property 2,
and the second will preserve it as an invariant. Both phases
of edge deletion taken together will ensure that

c(F) ≤ 2
∑
C∈G

yC . (7)

By the penalty packing constraint, the sum is at most the
total penalty of I in Iα,β , which is βπ(S − I) ≤ βπ(O) =

βδOPT , since S gets no penalty in Iα,β and S − I ⊆ O.
Property 3 then follows.

Our description of F is constructive in the mathematical
sense but not the computational sense, because it depends
on the set I = O ∩ S, and our algorithm does not know O.
We now show how to construct F by deleting edges from
T . To help us prove (7), we will also ensure that F satisfies
the following additional property.

If u, v are distinct nodes in I , let Puv denote the
path from u to v in T , and let euv be the last edge
on Puv that was added to T in GW-GROWTH. For
each such pair u, v, euv /∈ F .

(8)

Start with F = T . As we observed above, T spans all of V .
Consider the edges of T in the reverse of the order in which
they were added during GW-GROWTH. When we arrive at
an edge e, if there exist two nodes in I that are still in the
same tree of F but would be separated by deleting e, then do
so. These deletions preserve the invariant that each tree in
the forest F contains at least one node from I . Since I and
A are disjoint, for each node in A, its tree contains a distinct
node from I , and is hence non-trivial. Thus, property 1 holds
throughout this pruning phase. We will satisfy (8) by the end,
because at the time we consider edge euv , nodes u and v
are still connected by the path Puv , and so we delete euv .
Thus, F will end up with exactly one node of I per tree,
satisfying property 2. We must do further pruning in order
to achieve (7).

Next, we prune each tree in the forest F in precisely
the same way that GW-PRUNING would do, except for the
definition of which GW-clusters are colored black. For our
pruning rule, we color a GW-cluster C black if C died at
any point during GW-GROWTH and C ∈ G (i.e., C contains
no vertices from I). Since only the nodes in D∪S ever died,
the black GW-clusters contain only nodes from (D∪S)−I ,
so this pruning does not prune away any node from A or
I . Moreover, since each pruning step throws away an entire
subtree, the remaining part of the pruned tree is still a single
component. Thus, properties 1 and 2 are maintained. The
remaining forest is our final F .

We now prove that this F satisfies (7). Our proof is very
similar to the famous proof of Theorem 1. We first break
apart the dual variables by epoch. Let tj be the time at which
the jth event point occurs in GW-GROWTH (0 = t0 ≤ t1 ≤
t2 ≤ · · ·), so that the jth epoch is the interval of time from
tj−1 to tj . For each GW-cluster C, let y

(j)
C be the amount

by which yC grew during epoch j, which is tj − tj−1 if it
was active during this epoch, and 0 otherwise. Thus, yC =∑

j y
(j)
C . Because each edge e of F was added at some point

by GW-GROWTH when its edge packing constraint in LP (3)
became tight, we can exactly apportion the cost ce amongst
the collection of GW-clusters {C : e ∈ δ(C)} whose dual
variables “pay for” the edge, and can divide this up further

by epoch. In other words, ce =
∑

j

∑
C:e∈δ(C) y

(j)
C . Hence

it suffices to prove that the total edge cost from F that is
apportioned to epoch j is at most 2

∑
C∈G y

(j)
C , i.e.,∑

e∈F

∑
C:e∈δ(C)

y
(j)
C ≤ 2

∑
C∈G

y
(j)
C . (9)

In other words, during each epoch, the total rate at which
edges of F are paid for by all active GW-clusters is at most
twice the number of active GW-clusters just in G. Summing
over the epochs yields (9). More formally,

c(F) =
∑
e∈F

c(e) =
∑
e∈F

∑
j

∑
C:e∈δ(C)

y
(j)
C

=
∑

j

∑
e∈F

∑
C:e∈δ(C)

y
(j)
C ≤

∑
j

[2
∑
C∈G

y
(j)
C]

= 2
∑
C∈G

∑
j

y
(j)
C = 2

∑
C∈G

yC .

We now analyze an arbitrary epoch j. Let Cj denote the
set of GW-clusters that existed during epoch j and contain a
node from V (F). The entire set of GW-clusters that existed
during epoch j partitions V , but we are concerned only
with the partition of V (F) induced by intersecting each
GW-cluster with V (F), and hence we care about only the
GW-clusters in Cj . Consider the graph (V (F), F), and then
contract each GW-cluster C ∈ Cj into a supernode. Call
the resulting graph H . It may be the case that some GW-
cluster C ∈ Cj contains nodes from distinct trees in the
forest F , in which case H will have fewer distinct connected
components than F does. Although the GW-clusters in Cj

are identified with nodes of H , we will continue to refer to
them as GW-clusters, in order to to avoid confusion with
the nodes of the original graph. During the jth epoch, some
of the GW-clusters are active and some may be dead. Let
us denote the sets of active and dead GW-clusters in Cj by
Cact and Cdead, respectively. The edges of F that are being
partially paid for during epoch j are exactly those edges of
H that are incident to an active GW-cluster, and the total
amount of these edges that is paid off during epoch j is (tj−
tj−1)

∑
C∈Cact

degH(C). Since, for every active GW-cluster
C in G, y

(j)
C grows by exactly tj− tj−1 in epoch j, we have∑

C∈G y
(j)
C ≥

∑
C∈G∩Cj

y
(j)
C = (tj− tj−1)|G ∩Cact|.5 Thus,

it suffices to show that
∑

C∈Cact
degH(C) ≤ 2|G ∩ Cact|.

Let us call the GW-clusters in G ∩ Cact hungry and the
active or dead GW-clusters that intersect I sated. Thus, we
want to show that the sum of the degrees of the active
GW-clusters in H is at most twice the number of hungry
GW-clusters. First we make some simple observations about
H . Since T is a tree, F is a subset of the edges in T ,
and each GW-cluster represents a disjoint induced subtree
of T , the contraction to H introduces no cycles. Thus, H

5The inequality may be strict if some C ∈ G is growing in epoch j, and
hence y

(j)
C > 0, but C ∩ V (F) = ∅, so C /∈ Cj .

is a forest. Every dead leaf of H must be sated, because
otherwise the corresponding GW-cluster C would be black
and hence would have been pruned away during GW-
PRUNING. Finally, within each tree of the forest H , there
is exactly one sated GW-cluster. This may seem obvious
because each tree of F contains exactly one node of I and
each sated GW-cluster intersects I , but it can be the case
that some C ∈ Cj contains nodes from multiple trees of F ,
so that when we contract C, these multiple trees become a
single tree in H , and that single tree might have multiple
nodes of I . We will use property (8) to show that if this
happens, then the nodes in I from the distinct trees of F
that were merged are actually in the same sated GW-cluster
during this epoch. Then we will be almost done.

Suppose on the contrary that there exist two distinct (and
hence disjoint) sated GW-clusters in the same tree of H .
Each of these GW-clusters contains a node from I—call
these nodes u, v—and consider the path Puv from u to v in
T . Since u, v are distinct nodes of I , they are in different
trees of F (by property 2), but they could both end up getting
collapsed into the same tree of H . This can happen only if
some GW-cluster C exists in epoch j that contains a node
a from u’s tree in F and a node b from v’s tree in F . In
the current epoch, in C there is a (unique) a− b path in the
current forest. Because there is an a−b path, there is a u−v
path. Therefore C contains both u and v, contradicting the
assumption that the cluster containing u is disjoint from the
one containing v.

With this information about H , it is easy to bound∑
C∈Cact

degH(C). Let k be the number of trees in H , and
l be the number of dead sated leaves in H . Because each
tree of H has exactly one node of I , there exist exactly k
sated GW-clusters in Cj (one per tree of H). Since at least l
of the sated clusters are dead, at most k−l sated clusters are
active. Since every active cluster is either sated or hungry,

(#hungry) = (#active)− (#active and sated)

and therefore

|G ∩ Cact| ≥ |Cact| − (k − l). (10)

The number of GW-clusters in H is |Cact|+ |Cdead|, so the
number of edges is (|Cact|+ |Cdead|)−k (there being k trees
in H), and hence

∑
C∈Cact∪Cdead

degH(C) = 2(|Cact| +
|Cdead|−k). Since the only dead leaves are the l sated ones,
the sum of the degrees of the dead GW-clusters is at least
2|Cdead|− l, since every nonleaf has degree at least 2. Thus,

∑
C∈Cact

degH(C) ≤ 2(|Cact|+ |Cdead| − k)− (2|Cdead| − l)

= 2|Cact| − 2k + l ≤ 2|G ∩ Cact| − l

≤ 2|G ∩ Cact|,

by (10), as we wished to show.

Finally, we prove the approximation bound of Theorem 7.
Proof of Theorem 7: We define BGW and BRZ as in

the proof of Theorem 6. Choosing the best α and β and
assuming the worst γ and δ gives an approximation ratio of

min
α,β

max
γ,δ

min{BGW , BRZ}, (11)

where the outer min is over α ∈ [12 , 1], β ≥ 1 and the max is
over γ, δ ∈ [0, 1]. For any fixed α, β, the inner maximization
can be written as the following LP:

maximize z

subject to:
z ≤ 2− (2α− 1)γ − 2(1− α)δ

z ≤ (ρ +
2
β

) + (1− 2α

β
)γ + (ρ(2β − 1)− 2

β
(1− α))δ

z ≥ 0, γ, δ ∈ [0, 1]

Using strong LP duality, we can replace this LP with its
dual:

minimize 2λGW + (ρ +
2
β

)λRZ

subject to:

λGW + λRZ ≥ 1

(2α− 1)λGW − (1− 2α

β
)λRZ ≥ 0

2(1− α)λGW −
(

ρ(2β − 1)− 2
β

(1− α)
)

λRZ ≥ 0

λGW , λRZ ≥ 0
(12)

Treating α and β as variables in (12) yields a non-linear
program (NLP) equivalent to (11). Every feasible solution
of this NLP yields a valid upper bound on (11). Using a
numeric solver, we find a local minimum at α = 0.516513,
β = 8.88105, λGW = 0.963974, λRZ = 0.036026, giving
an approximation ratio < 1.991902.

4. PRIZE-COLLECTING TSP AND STROLL

Our algorithm PCTSP-ALG(α, β) for PCTSP is nearly
identical to PCST-ALG(α, β), with some slight differ-
ences that we highlight in a moment, but first we dis-
cuss the algorithm GW-PCTSP given by Goemans and
Williamson [18]. The LP relaxation that undergirds their
algorithm for PCTSP is the same as (2), except that there
is a coefficient of 2 on the z variables and right side of
the primal covering constraint. Hence in the dual LP (3),
there is a coefficient of 2 in front of the objective function
and the y variables in the penalty packing constraint. GW-
PCTSP multiplies all penalties by 1

2 , runs the GW algorithm
for PCST, doubles all of the edges of the resulting tree
T to make all node degrees even, finds an Eulerian tour,
and shortcuts it to obtain a cycle. Recall that we assume
that the costs satisfy the triangle inequality, so this last step
does not increase the cost. This algorithm achieves the same

guarantee as that stated for GW in Theorem 1, i.e., it is
a Lagrangian-preserving 2-approximation. The analysis, in
short, is that even though the cycle cost may be as much as
twice the tree cost, we can afford to pay for it because of the
factor of 2 in the dual objective function. The penalties were
multiplied by 1

2 to prevent GW from violating the amended
penalty packing constraint, so the pruned components are
exactly paid for by twice their dual variables, which is okay
again because of the factor of 2 in the dual objective.

We now describe and analyze PCTSP-ALG(α, β). To
generate the first solution, we simply run GW-PCTSP on Iα

(i.e., in GW-PCTSP, GW-GROWTH is run on I 1
2 α). Since

Lemma 1 still holds, so does Lemma 2. To generate the
second solution, we run GW-GROWTH on I 1

2 α, 1
2 β , define

the sets S and D as before, and then run the Christofides
3
2 -approximation algorithm for TSP [9] on the set S − D.
By similar reasoning as above, we can still show that
π(D) ≤ 2(1 − (1 − α)δ − αγ)OPT as in Lemma 3,
and Lemma 4 remains the same, except that we get the
stronger bound c(F) ≤ βδOPT , because our upper bound
on the penalty of I is now 1

2βδOPT , half what it was in
PCST-ALG(α, β). This is fortunate, because this shows that
if we double each edge of F , add it to the optimal tour O,
find an Eulerian tour and shortcut it, we will have produced a
tour visiting S−D of edge cost at most (1+(2β−1)δ)OPT ,
as before. Thus, the bound on the cost of our second solution
is the same as in Lemma 5, except with ρ = 3

2 (from using
Christofides instead of RZ).

Our algorithm for PCS is similar, except that we use
the Lagrangian-preserving 2-approximation of Chaudhuri
et al. for PCS [8] in place of GW-PCTSP, and the
3
2 -approximation of Hoogeveen for the path version of
TSP [20] in place of Christofides. Some care must be taken
to deal with the fact that the Chaudhuri et al. algorithm
guesses the tail end of the optimal stroll, and the dual
variables yC for sets C containing this tail have coefficient
1 (not 2) in the dual objective function, but in the end we
achieve the same approximation ratio as in Lemma 5.

This gives the following theorem.

Theorem 11. For some appropriate α, β, algorithms
PCTSP-ALG(α, β) and PCS-ALG(α, β) yield an approxi-
mation ratio of 1.989691 for PCTSP and PCS, respectively.

Proof: The proof is the same as for Theorem 7, except
that ρ = 3

2 , so we choose α = 0.518719, β = 7.99878,
λGW = 0.958757 and λRZ = 0.041243.

5. EVOLVING VIEWS OF THE
GOEMANS-WILLIAMSON ALGORITHM

The history of Theorem 1 is highly tangled, so we tease
apart the strands here.

The paper by Goemans and Williamson [18] proposes
a slightly different version of algorithm GW, which we

will refer to as GW-ORIG, consisting of two phases, GW-
GROWTH-ORIG and GW-PRUNING-ORIG. GW-GROWTH-
ORIG is the same as GW-GROWTH, except that they make
the root cluster always inactive, because the fake dual
variables that we introduced for these clusters do not actually
appear in the LP from Section 2, so they cannot contribute
to the dual objective function. The growth phase terminates
once there are no more active components; thus, the forest
it returns may contain more than one tree, in the event that
some cluster died and never merged with the root cluster.
In GW-PRUNING-ORIG, all trees are immediately discarded
except for the one containing r. When pruning this one
tree, the root clusters are not colored black (despite being
always inactive), and hence are never pruned. In Theorem
4.1 of [18], they prove that the tree T returned by their
algorithm satisfies the following guarantee:

c(T) + π(T) ≤
(

2− 1
n− 1

)
OPT, (13)

where n = |V |. Later, Chudak, Roughgarden and
Williamson [10] observed that the same algorithm actually
provides the stronger Lagrangian-preserving guarantee

c(T) + (2− 1
n− 1

)π(T) ≤
(

2− 1
n− 1

)
OPT. (14)

This appears as Theorem 2.1 in [10] without proof, because
the result is already implicit in the proof of Theorem 4.1
from [18]; the original paper simply failed to claim the
stronger result.

Johnson, Minkoff and Phillips [23] first suggested the
variant of GW that we present in Section 2, and claim falsely
in their Theorem 3.2 that it achieves the same guarantee (13)
as the original version GW-ORIG in [18]. However, Feofiloff
et al. [12] give a counterexample to show that this variant
achieves an approximation ratio no better than 2. In an
unpublished manuscript [11], the same authors show that
the approximation ratio for this variant is indeed 2. In other
words, they prove in their Theorem 4.1 that the tree T
resulting from GW-GROWTH followed by GW-PRUNING
satisfies

c(T) + π(T) ≤ 2OPT, (15)

by slightly tweaking the original proof from [18]. In fact,
they actually prove the stronger, Lagrangian-preserving
guarantee that we state in Theorem 1, but fail to claim the
stronger result. In [12], these authors propose another variant
of GW, which is based on a slightly different LP relaxation
(directly addressing the unrooted version of PCST), and
prove that it achieves a slightly better approximation ratio of
2 − 2

n . Again, the solution generated by their improved al-
gorithm actually satisfies the stronger Lagrangian-preserving
guarantee, but they fail to claim the stronger result.

In our main algorithm of Section 3, we run GW-GROWTH
twice. First we run it on instance Iα, followed by GW-
PRUNING, to generate a solution TGW . Second, we run

GW-GROWTH on instance Iα,β to figure out which set of
terminals to pass to the RZ algorithm, which then generates
solution TRZ . In the second case, it is critical that we run
GW-GROWTH and not GW-GROWTH-ORIG, because we
use the fact that the tree output by GW-GROWTH spans
all of V . However, in the first case, we could just as well
have used GW-ORIG instead of GW.

We chose to use GW-GROWTH in both cases only because
we thought it made for a cleaner presentation. For any
readers who are uncomfortable that our Theorem 1 relies on
piecing together both published ([18], [10]) and unpublished
([11]) work, we offer two observations. First, Theorem 1
really requires only a tiny modification to the proof of
Theorem 4.1 in [18]. Second, if we amend PCST-ALG to
produce TGW by using GW-ORIG instead of GW, then our
main result, Theorem 7, can be made to be independent
of the unpublished manuscript [11], relying instead on
property (14), which was published in [10].

6. FUTURE WORK

Our techniques might be applicable to the PCST problem
with submodular penalties, introduced in [19].

REFERENCES

[1] A. Agrawal, P. N. Klein, and R. Ravi, “When trees collide: An
approximation algorithm for the generalized Steiner problem
on networks,” SIAM J. on Computing, 24:440–456, 1995.

[2] A. Archer, A. Levin, and D. P. Williamson, “A faster, better
approximation algorithm for the minimum latency problem,”
SIAM J. on Computing, 37: 1472–1498, 2008.

[3] S. Arora and G. Karakostas, “A 2+ε approximation algorithm
for the k-MST problem,” Mathematical Programming, 107:
491–504, 2006.

[4] S. Arya and H. Ramesh, “A 2.5 factor approximation al-
gorithm for the k-MST problem,” Information Processing
Letters, 65: 117–118, 1998.

[5] E. Balas, “The prize collecting traveling salesman problem,”
Networks, 19: 621–636, 1989.

[6] P. Berman and V. Ramaiyer, “Improved approximations for
the Steiner tree problem,” in Proceedings of SODA 1992, 325–
334.

[7] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. P.
Williamson, “A note on the prize collecting traveling salesman
problem.” Mathematical Programming, 59, 413–420, 1993.

[8] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar, “Paths,
trees, and minimum latency tours,” in Proceedings of FOCS
2003, 36–45.

[9] N. Christofides, “Worst-case analysis of a new heuristic
for the travelling-salesman problem,” Graduate School of
Industrial Administration, Carnegie-Mellon University, Tech.
Rep., 1976.

[10] F. A. Chudak, T. Roughgarden, and D. P. Williamson, “Ap-
proximate k-MSTs and k-Steiner trees via the primal-dual
method and Lagrangean relaxation,” Mathematical Program-
ming, 100: 411–421, 2004.

[11] P. Feofiloff, C. G. Fernandes, C. E. Ferreira, and J. C. de Pina,
“A note on Johnson, Minkoff and Phillips’ algorithm for
the prize-collecting Steiner tree problem,” 2006, manuscript
available from http://www.ime.usp.br/ cris/publ/jmp-
analysis.ps.gz.

[12] ——, “Primal-dual approximation algorithms for the prize-
collecting Steiner tree problem,” Information Processing Let-
ters, 103: 195–202, 2007.

[13] N. Garg, “A 3-approximation for the minimum tree spanning
k vertices,” in Proceedings of FOCS 1996, 302–309.

[14] ——, “Saving an epsilon: a 2-approximation for the k-MST
problem in graphs,” in Proceedings of STOC 2005, 396–402.

[15] M. Goemans, “The prize-collecting TSP revisited,” Available
from http://www-math.mit.edu/ goemans/prizecollect.ps, talk
slides from the 1998 SIAM Discrete Math conference.

[16] M. X. Goemans, “Combining approximation algorithms for
prize-collecting TSP,” unpublished manuscript, 2009.

[17] M. X. Goemans and D. P. Williamson, “A general ap-
proximation technique for constrained forest problems,” in
Proceedings of SODA 1992, 307–316.

[18] ——, “A general approximation technique for constrained
forest problems,” SIAM J. on Computing, 24: 296–317, 1995.

[19] A. Hayrapetyan, C.Swamy and É. Tardos, “Network design
for information networks,” Proceedings of SODA 2005, 933-
942.

[20] J. Hoogeveen, “Analysis of Christofides’ heuristic: Some
paths are more difficult than cycles,” Operations Research
Letters, 10: 291–295, July 1991.

[21] S. Hougardy and H. J. Prömel, “A 1.598 approximation
algorithm for the Steiner problem in graphs,” in Proceedings
of SODA 1999, 448–453.

[22] K. Jain and V. V. Vazirani, “Approximation algorithms for
metric facility location and k-median problems using the
primal-dual schema and Lagrangian relaxation,” J. of the
ACM, 48: 274–296, 2001.

[23] D. S. Johnson, M. Minkoff, and S. Phillips, “The prize collect-
ing Steiner tree problem: theory and practice.” in Proceedings
of SODA 2000, 760–769.

[24] M. Jünger and W. R. Pulleyblank, “New primal and dual
matching heuristics,” Algorithmica, 13: 357–386, 1995.

[25] M. Karpinski and A. Zelikovsky, “New approximation algo-
rithms for the Steiner tree problems,” J. of Combinatorial
Optimization, 1, 47–65, 1997.

[26] H. J. Prömel and A. Steger, “RNC-approximation algorithms
for the Steiner problem,” in Proceedings of STACS 1997, 559–
570.

[27] G. Robins and A. Zelikovsky, “Tighter bounds for graph
Steiner tree approximation.” SIAM J. Discrete Mathematics,
19: 122–134, 2005.

[28] A. Zelikovsky, “An 11/6-approximation for the Steiner prob-
lem on graphs,” in Proceedings of the Czechoslovakian Sym-
posium on Combinatorics, Graphs, and Complexity (1990)
published in Annals of Discrete Mathematics, 51: 351–354,
1992.

[29] ——, “An 11/6-approximation algorithm for the network
Steiner problem,” Algorithmica, 9: 463–470, 1993.

[30] ——, “Better approximation bounds for the network and
Euclidean Steiner tree problems,” University of Virginia,
Charlottesville, VA, USA, Tech. Rep., 1996.

