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Abstract

We consider the single-source (or single-sink) buy-at-bulk problem with an unknown concave cost
function. We want to route a set of demands along a graph to or from a designated root node, and the cost
of routingx units of flow along an edge is proportional to some concave, non-decreasing functionf such
thatf(0) = 0. We present a polynomial time algorithm that finds a distribution over trees such that the
expected cost of a tree for anyf is within anO(1)-factor of the optimum cost for thatf . The previous
best simultaneous approximation for this problem, even ignoring computation time, wasO(log |D|),
whereD is the multi-set of demand nodes.

We design a simple algorithmic framework using the ellipsoid method that finds anO(1)-approximation
if one exists, and then construct a separation oracle using anovel adaptation of the Guha, Meyerson, and
Munagala [GMM01] algorithm for the single-sink buy-at-bulk problem that proves anO(1) approxi-
mation is possible for allf . The number of trees in the support of the distribution constructed by our
algorithm is at most1 + log |D|.

∗Departments of Management Science and Engineering, and by courtesy, Computer Science, Stanford University. Email:
ashishg@stanford.edu. Research supported by an NSF ITR grant and the Stanford-KAUST alliance for academic excellence.

†Department of Computer Science, Stanford University. Email: itp@stanford.edu. Research supported by an NSF ITR grant
and the Stanford-KAUST alliance for academic excellence.

http://arxiv.org/abs/0908.3740v1


1 Introduction

We study the single-source (or single-sink) buy-at-bulk network design problem with an unknown concave
cost function. We are given an undirected graphG = (V,E) with edge lengthsle and a set of demand nodes
D ⊆ V with integer demandsdv and want to route these demands to a designated root noder as cheaply as
possible, where the cost of routing along a particular edge is proportional to some functionf of the amount
of flow sent along the edge. In many applications it is naturalto assume thatf is a concave, non-decreasing
function such thatf(0) = 0, capturing the case where we benefit from some kind of economyof scale
when aggregating flows together. We call such functionsaggregation functionsand defineF as the set of
all aggregation functions.

When the functionf is given, the problem becomes the well-studied single-sinkbuy-at-bulk (SSBaB)
problem. SSBaB isNP -hard, since it contains the Steiner tree problem as a special case. The problem
was introduced by Salman et al. [SCRS97] who gave algorithmsfor special cases. Awerbuch and Azar
[AA97] gave anO(log2 n)-approximation using metric tree embedding, which subsequently improved to
O(log n) using better metric embeddings [Bar98, FRT03]. Building ontheir own work on hierarchical facil-
ity location [GMM00], Guha, Meyerson, and Munagala (GMM) gave the first constant-factor approximation
[GMM01], an algorithm that features prominently in our results. Recent work [Tal02, GKR03, JR04, GI06]
has reduced the approximation ratio to 24.92 and also provided an elegant cost-sharing framework for think-
ing about this problem.

However, for some applications we may want to assume thatf is unknown or is known to vary over time.
For instance, we may be aggregating observations in a sensornetwork where we do not know the amount
of redundancy among different observations or where the redundancy is known to change. In this setting,
it is desirable to find a solution that is robust to changes inf and provides a constant-factor approximation
simultaneouslyfor all f ∈ F . Moreover, from a purely theoretical perspective, the existence of a good
algorithm that is independent off reveals non-trivial structure in the problem.

We will focus on randomized algorithms. Given the concavityof f , we may assume without loss of
generality that the optimal routing graph is a tree. LetT be the set of all trees inG spanningD andr, and
let T ∗

f be the optimal tree for some fixedf . We use the shorthandf(T ) to denote the cost ofT underf , i.e.
∑

e lef(xT,e) wherexT,e is the amount of flow treeT routes on edgee. There are two natural objectives
which capture simultaneous approximation for multiple cost functions. First, we can try to minimize

R1 = max
f∈F

E[f(T )]
f(T ∗

f )
(1)

which essentially gives a distribution over trees such thatin expectation, each functionf is well-approximated.
Second, and much more difficult, we can look for an algorithm that uses the objective

R2 = E

[

max
f∈F

f(T )

f(T ∗
f )

]

(2)

A bound on (2) subsumes (1) and proves there exists a single tree that is simultaneously good for allf . We
call R1 the obliviousapproximation ratio andR2 thesimultaneousapproximation ratio. In this paper, we
will work with the weaker, oblivious objective (1).

Both objectives have been studied in the literature. The tree embeddings used by Awerbuch and Azar
[AA97] give anO(log2 n) oblivious approximation, which was later reduced toO(log n) [Bar98, FRT03].
Goel and Estrin [GE03] improved this toO(log |D|) and also prove the same bound on the stronger simul-
taneous objective. Gupta et al. [GHR06] achieve aO(log2 n) oblivious approximation for a generalization
where both the function and the demands are unknown. Khulleret al. [KRY95] studied special case of si-
multaneously approximatingf(x) = x andf(x) = 1 for x ≥ 1, i.e. the shortest-path and Steiner trees, and
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prove anO(1) simultaneous approximation. These 2 functions constituteopposite extremes of functions
in F , and one may wonder if anO(1) approximation for these 2 functions also works for allf ∈ F lying
“in-between”. However, it is not difficult to construct a graph and a set of demands such that the shortest-
path and Steiner trees are identical, but this tree is anω(1)-approximation for otherf ∈ F . Enachescu et
al. [EGGM05] achieve anO(1) simultaneous value but only for grid graphs, assuming spatial correlation
among nearby nodes. This naturally leads to the following questions:

Is R1 = O(1) achievable? If yes, is there a polynomial algorithm that guaranteesR1 = O(1)?

We answer both questions in the affirmative. We first write a simple LP formulation of the problem
and show that using the ellipsoid method on the dual we can findanO(1) approximation to the optimal
ratio, whatever it happens to be for a given problem instance. We also show that given an appropriate
separation oracle the optimum is constant and compute an explicit distribution over1+ ⌈log (

∑

v dv)⌉ trees
in polynomial time. This general approach is along the linesof small metric tree embeddings [CCG+98]
and oblivious congestion minimization [Räc08].

Our key result is the construction of the necessary separation oracle subroutine, running in polynomial
time, that proves a constant is achievable. We build our oracle around the GMM algorithm for SSBaB,
using a modified analysis to solve a different problem in which we bound the cost of the GMM tree by a
combination of different trees under different cost functions.

1.1 Organization of the Paper

In Section 2 we present an LP formulation and a framework using an approximate separation oracle that
finds a constant-factor approximation to the optimal oblivious approximation ratio. In Section 3 we present
our primary result, which proves the oblivious approximation ratio is constant and constructs the separation
oracle required by Section 2 assuming some extra conditionson the input, and in Section 4 we complete
the proof by showing those extra assumptions can be removed.We conclude with some open problems
(including whetherR2 = O(1) can be achieved).

2 LP Formulation and Algorithm Framework

LetR1 be the worst-case optimal oblivious ratio, i.e.

R1 = max
G,l,D,r

min
M

max
f

ET∼M[f(T )]

f(T ∗
f )

whereM is a distribution overT . In this section we discuss the problem of finding anO(1)-oblivious
approximation if one exists.

By losing a factor of2 in the approximation ratio we can restrict our analysis to a smaller class of
aggregation functions. LetD = 2⌈log(

P

v dv)⌉, the total amount of demand rounded up to the nearest power of
2. We never route more thanD flow on any edge, anddv is integral, so we only care aboutf(x) for integers
0 ≤ x ≤ D. Supposef ∈ F , and2i < x < 2i+1. By the monotonicity off , f(2i) ≤ f(x) ≤ f(2i+1), and
by the concavity off , f(2i+1) ≤ 2f(2i), so with a loss of a factor of 2 we can interpolate betweenf(2i) and
f(2i+1) and assumef is piecewise linear with breakpoints only at powers of 2. LetAi(x) = min{x, 2i} and
T ∗
i the optimal aggregation tree forAi. We callAi(x) the i-th atomic function following the terminology

of Goel and Estrin [GE03], and it is easy to see that anyf ∈ F that is linear between successive powers of
2 can be written as a linear combination of{Ai}0≤i≤logD. Therefore, it suffices to design an algorithmA
minimizingmaxi EA[Ai(TA)]/Ai(T

∗
i ).
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Our algorithm makes use of the standard SSBaB problem wheref is known. We assume thatf is given
in the form of a set ofK pipes{(σk, δk)}0≤k≤K−1, where the cost of routingx flow on pipek is equal to
σk+xδk. Thenf(x) is defined as the cost of using the cheapest pipe forx flow: mink σk+xδk. We assume
thatσ0 ≤ σ1 ≤ · · · ≤ σK−1, and by concavity we can assumeδ0 ≥ δ1 ≥ · · · ≥ δK−1. Defineuk = σk

δk
, the

point at which the cost due toδkx begins to outweigh the cost due toσk. We calluk thecapacityof pipek;
the name arises from an alternate formulation (equivalent up to a factor of 2) of SSBaB where pipes have a
fixed costσk for a fixed capacityuk. LetπBaB be the best-known approximation ratio for SSBaB. Currently
πBaB = 24.92 using an algorithm by Grandoni and Italiano [GI06].

We also employ an approximation algorithm for a special caseof SSBaB, the single-sink rent-or-buy
(SSRoB) problem. Heref(x) is characterized by 2 pipes:(0, 1) and (M, 0), i.e. we can payx to route
x flow or payM to route any amount of flow. LetπRoB be the best-known SSRoB approximation ratio.
Eisenbrand et al. [EGRS08] give a2.92-approximation.

If we can calculateAi(T ) andAi(T
∗
i ) for everyi andT ∈ T then the following linear program finds

the optimal distribution of trees.

min θ
s.t.

∑

T∈T xT ≥ 1
∀0 ≤ i ≤ logD, θAi(T

∗
i )−

∑

T∈T xTAi(T ) ≥ 0
x, θ ≥ 0

(3)

In other words, we want a distribution{xT }T∈T of trees minimizingmaxi
P

T xtAi(T )
Ai(T ∗

i )
. However, this

approach is not directly tractable, asT ∗
i is NP -hard to find, and|T | is exponentially large.

We solve an SSRoB approximation for eachAi to getAi(T̃i)—a πRoB-approximation—and replace
Ai(T

∗
i ) with Ai(T̃i) in the constraints, so that all quantities in the LP are polynomial-time computable. Now

consider the dual of (3), which is given by

max β

s.t.
∑logD

i=0 αiAi(T̃i) ≤ 1

∀T ∈ T β −
∑logD

i=0 αiAi(T ) ≤ 0
α, β ≥ 0

(4)

With an approximate separation oracle for the dual (4), we can approximate the solution in polynomial
time using the ellipsoid method, and then transform it into an approximate solution to the primal (3). More
formally:

Theorem 2.1.With a randomizedπBaB-approximation to SSBaB, we can find a2πRoBπBaBR1-approximation
in expectation to the primal LP(3) that runs in polynomial time with high-probability.

The proof uses a SSBaB approximation algorithm to constructan approximate separation oracle for (4).
However, we will not prove this theorem because it is a special case of the following more general result,
assuming thatR1 is a constant which will follow from Theorem 3.8.

Theorem 2.2. If there exists a polynomial-time algorithmA and a given constantc such that∀α0, . . . , αK−1 ≥
0, A findsTA such thatEA [

∑

i αiAi(TA)] ≤ c
∑

i αiAi(T
∗
i ) then we can construct an algorithm that

runs in polynomial-time with high probability, makesO(poly(logD)) calls toA with high probability, and
achieves an expected oblivious approximation ratio of2cπRoB using a distribution over1 + logD trees.

Proving that such an algorithmA exists for a constantc is the primary result of this paper and is discussed
in sections 3 and 4.
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Remark 2.3. If A is deterministic then the algorithm always runs in polynomial time and the expected ratio
is cπRoB , and if it is randomized then the algorithm runs in polynomial time with high probability and the
expected ratio is2cπRoB . For randomizedA the ratio can also be reduced to(1 + ǫ)cπRoB with a 1

ǫ
-factor

increase in the runtime.

Proof of Theorem 2.2.Let Ai(T̃i) be aπRoB-approximation toAi(T
∗
i ) as above. We construct an approxi-

mate separation oracleS(~α, β) for the dual (4) as follows:

1. Check if
∑

i αiAi(T̃i) > 1. If so, we have a violated constraint and are done.

2. RunA(~α) until it returns a treeT such that
∑

i αiAi(T ) < 2c
∑

i αiAi(T̃i).

3. If
∑

i αiAi(T ) < β, returnT . Otherwise, return feasible.

For a fixedβ, let Pβ be the polytope defined by
∑

i αiAi(T̃i) ≤ 1, andβ −
∑

i αiAi(T ) ≤ 0 for all
T ∈ T . We run the following procedure to find the desired distribution of trees:

1. Run the ellipsoid method to check the feasibility ofP2c, starting with the initial bounding box0 ≤
αi ≤ 1 ∀i and usingS as the separation oracle. It will terminate as infeasible.

2. LetC be the set of constraints returned byS provingP2c is infeasible. It consists of
∑logD

i=0 αiAi(T̃i) ≤

1, and2c−
∑logD

i=0 αiAi(T ) ≤ 0 for T in some subset of treesT ′.

3. In the dual LP (2), restrict the constraints toC, and take the dual to get

min θ
s.t.

∑

T∈T ′ xT ≥ 1

∀0 ≤ i ≤ logD, θAi(T̃i)−
∑

T∈T ′ xTAi(T ) ≥ 0
x, θ ≥ 0

(5)

4. Find a vertex optimal solution to (5), and return the distribution {x∗T }.

First, we claim thatS(~α, β) will find a violated constraint wheneverβ ≥ 2c and will do so in polynomial
time with high probability. If

∑

i αiAi(T̃i) ≤ 1 is violated, then we are done. If not, we knowA(~α) finds
TA such that

EA

[

∑

i

αiAi(TA)

]

≤ c
∑

i

αiAi(T
∗
i ) ≤ c

∑

i

αiAi(T̃i) ≤ c

By Markov’s inequalityPrA
[

∑

i αiAi(TA) ≥ 2c
∑

i αiAi(T̃i)
]

≤ 1
2 , so with high probabilityO(log n) in-

vocations ofA—each running in polynomial time—suffice in step 2 ofS to find aT satisfying
∑

i αiAi(T ) <
2c

∑

i αiAi(T̃i). Now if β ≥ 2c, the constraintβ −
∑

i αiAi(T ) ≤ 0 is violated.
With the necessary separation oracle, the ellipsoid algorithm can solve feasibility ofPβ inO(poly(logD))

iterations, so usingS it will conclude P2c is infeasible1. The set of constraintsC returned byS dur-
ing the execution constitutes a proof of infeasibility, andC consists of

∑logD
i=0 αiAi(T̃i) ≤ 1, andβ −

∑logD
i=0 αiAi(T ) ≤ 0 for eachT in some set of treesT ′.
Consider writing (4) with only the constraints inC. Taking the dual yields (5), which only has variables

xT for T ∈ T ′. The ellipsoid algorithm concludedP2c is infeasible afterO(poly(logD)) iterations, so|T ′|
is only polynomially-large in the input size, implying we can solve (5) exactly in polynomial time.

1In practiceA may find violated constraints forβ < 2c, and we can do binary search to find the smallest infeasibleβ. However,
we cannot improve the provable guarantee beyondβ = c, and this comes at a cost to the runtime.
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Find a vertex-optimal solutionθ∗, x∗T to (5). The constraints inC are enough to restrict the optimal dual
objective to be at most2c, so by dualityθ∗ ≤ 2c. Therefore, for alli

∑

T∈T ′

x∗TAi(T ) ≤ θ∗Ai(T̃i) ≤ 2cAi(T̃i) ≤ 2cπRoBAi(T
∗
i )

Divide byAi(T
∗
i ) to get the oblivious ratio:

max
i

∑

T x∗TAi(T )

Ai(T ∗
i )

≤ 2cπRoB

Moreover, we claim{x∗T } is a distribution over only1 + logD trees. The LP (5) has|T ′|+ 1 variables
and 2 + logD constraints, and the vertex-optimal solutionθ∗, x∗T must have|T ′| + 1 tight constraints,
implying at least|T ′| − logD− 1 non-negativity constraints must be tight. We knowθ∗ is positive, so only
at most1 + logD of the variablesxT can be non-zero.

3 The Separation Oracle SubroutineA

By Theorem 2.1 we can find anO(1)-approximation toR1, whatever it may be, but it remains to prove that
this optimal ratio is a constant. In this section we construct the procedureA required by Theorem 2.2 using
the GMM algorithm for SSBaB.

Our contribution is adapting a special case of the analysis of the GMM algorithm, namely those cases
that arise whenf(x) =

∑

i αiAi(x), to solve a different problem–that of bounding the cost of the output
by

∑

i αiAi(T
∗
i ) rather thanf(T ∗

f ). The GMM algorithm and proof works in stages and bounds the cost of
the pipes laid in each stage by a different chunk of the optimal treeT ∗

f . On the other hand, in our proof we
bound the cost of each stage by the cost of adifferenttree evaluated under adifferentcost function.

3.1 Background: The GMM Algorithm

For completeness, we summarize the GMM algorithm and the keylemmas and definitions. See the original
paper [GMM01] for a thorough treatment. We are given a graph,demandsD, and pipes{(σk, δk)}k∈[K] as
described in Section 2. We assume the costs of successive pipes differ “significantly”: for some constantγ
such that0 < γ < 1

2 , we have thatδk+1 < γδk andσk < γσk+1. For the SSBaB problem, it is easy to
satisfy these constraints for arbitrary pipes with only anO(1)-factor loss. For our problem, it is harder but
still possible, and this is discussed in Section 4.

We definegk as the indifference point between pipek andk + 1, which is the solution to the equation
σk + δkgk = σk+1 + δk+1gk, and we definebk as the solution toσk+1 + δk+1bk = 2γ(σk + δkbk), which
we interpret as the point at which pipek + 1 becomes “significantly” cheaper than pipek. It is easy to see
thatuk ≤ bk ≤ uk+1 for all k.

The algorithm usesO(1)-approximations for Steiner tree and load-balanced facility location (LBFL), a
generalization of the standard facility location problem.In the LBFL problem we have a graph and demands
as in SSBaB, a facility costFv for each nodev, and a lower boundLv on the demand that a facility atv must
service. The objective is to choose facilities and routing paths so as to minimize the sum of the cost of the
open facilities and the distances traveled by the demands toa servicing facility. To approximate the LBFL
we must relax the lower bound. Using [GMM00] we can approximate the optimal LBFL cost to within2πF
while reducing the lower bound by a factor of at most 3. HereπF denotes the best approximation to the
normal facility location problem, currentlyπF = 1.52 by Mahdian et al. [MYZ02]. We useπS to denote
the best approximation ratio for Steiner tree, currently1.55 due to Robins and Zelikovsky [RZ00].
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Now we can describe the GMM algorithm itself. At stagek, we lay pipe typek, and we break each stage
into a Steiner tree step and a “shortest-path” tree step based on whether the cost of pipek is dominated by
the termσk or the termδkx. The effective demands will also change each stage. LetD(k) be the demand
nodes at the start of stagek, andd(k)v the stagek demand atv ∈ D(k). Initially D(0) = D.

1. Steiner Tree: Find aπS-approximate Steiner tree onD(k) ∪ {r} with edge cost per unit lengthσk.
Route all demands towardr. Cut the farthest-upstream edge with more thanuk flow, recalculate the
flow, and repeat to get a forest with at leastuk flow at each root other thanr and at mostuk flow on
each edge.

2. Consolidation:Let t be a subtree not containingr andSt the demand nodes inD(k) it contains. Choose

v ∈ St with probability d
(k)
v

P

u∈St
d
(k)
u

and route all demand int back tov using pipek.

3. Shortest Path Tree:Approximately solve a LBFL problem with facility lower bound bk and edge cost
per unit lengthδk on theoriginal demandsD (notD(k) andd(k)v ). This creates a forest of shortest-path
trees with at leastbk flow at each root. Ifbk demand does not exist, route everything tor.

4. Consolidation:Let t be subtree in the above forest servicing the demandsSt in D. Choosev ∈ St with
probability dv

P

u∈St
du

, and route the true, current demandd
(k)
v in St back tov. LetD(k+1) be the set of

nodes chosen for consolidation andd
(k+1)
v the demand at these nodes after consolidation.

Next, we mention the crucial lemmas in the GMM analysis used in our proof. See [GMM01] for the
proofs.

Lemma 3.1 (GMM Lemma 4.1). Let d̂v be the current demand at somev ∈ D immediately after any
consolidation step. ThenE[d̂v ] = dv, i.e. the original demand.

Using an algorithm that is a 3-approximation to the LBFL facility lower bounds, we have the following:

Lemma 3.2(GMM Lemma 4.5). For everyv ∈ D(k), we haveE[d(k)v ] ≥
bk−1

3 .

DefineP δ
k to be theincrementalcost (due toδ) of the pipes laid in thefacility location step in stagek

andP σ
k to be thefixedcost (due toσ) of the pipes laid in theSteiner treestep in stagek. All of the other

costs incurred by the GMM algorithm can be bounded byP δ
k andP σ

k , so our analysis need only consider
these quantities:

Lemma 3.3 (GMM Lemmas 4.2, 4.4, and 4.8). Let P δ
k andP σ

k as defined above. ThenE[f(TGMM )] ≤
4
∑

k E[P δ
k + P σ

k ], whereTGMM is the final tree.

3.2 Adapting the GMM Algorithm

From Theorem 2.2 we are given~α such thatαi ≥ 0, and
∑

i αiAi(T̃i) ≤ 1. We want to find a treeT using
the GMM algorithm such that

∑

i αiAi(T ) ≤ c
∑

i αiAi(T
∗
i ). DefineL =

∑

i αiAi(T
∗
i ), themulti-level

cost, andf(x) =
∑

i αiAi(x), the concave cost function. Using this notation our objective becomes to find
T such thatf(T ) ≤ cL. DefineK as the number of non-zeroαi, and for0 ≤ k ≤ K − 1 definep(k) = j
wherej is the index of thek-th non-zeroαi.

First, we claim that given~α we can define the pipes{(σk, δk)} used by the GMM algorithm, and given
SSBaB pipes satisfying some minor conditions we can recover~α. The following lemmas characterize the
equivalence between the 2 types of parameters:
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Lemma 3.4. Given~α satisfyingαi ≥ 0 with K non-zeroαi, the SSBaB pipes{(σk, δk)}0≤k≤K defined
by δk =

∑

j≥k αp(j) andσk =
∑

j<k αp(j)2
p(j) define the functionf(x). That is,f(x) =

∑

i αiAi(x) =
mink{σk + δkx}.

Lemma 3.5. Suppose we are givenK + 1 SSBaB pipes{(σk, δk)}0≤k≤K such thatσ0 = 0 and gk is a
power of 2 for allk. For 0 ≤ k ≤ K − 1, let p(k) = log gk, αp(k) = δk − δk+1, andαj = 0 whenever
j 6= p(k) for all k. Then

∑

i αiAi(x) = mink{σk + δkx}.

Proof of Lemma 3.4.By definition f(x) =
∑

k αp(k)Ap(k)(x). For anyk, f(x) is linear from2p(k−1) to
2p(k) (we will assume2p(−1) = 0 for consistency of notation), which will correspond to pipek. Forx ∈
[2p(k−1), 2p(k)], the functionsAp(0)(x), . . . , Ap(k−1)(x) have leveled off, andAp(k)(x), . . . , Ap(K−1)(x) are
growing at rate 1. Defineδk as the slope off(x) in this interval:δk =

∑

j≥k αp(j).

Now we can defineσk to matchf(x) in the interval[2p(k−1), 2p(k)]:

σk + δk2
p(k−1) =

∑

i

αiAi(2
p(k−1)) =

∑

j<k

αp(j)2
p(j) +

∑

j≥k

αp(j)2
p(k−1)

=
∑

j<k

αp(j)2
p(j) + δk2

p(k−1)

⇒ σk =
∑

j<k

αp(j)2
p(j)

We also add aK + 1st pipe such thatδK = 0 andσK =
∑

k αp(k)2
p(k) to cover the interval after every

Ap(k) has leveled off. Now, we claimf(x) = minj{σj + δjx}: for eachk we knowf(x) = σk + δkx

wheneverx ∈ [2p(k−1), 2p(k)] by our choice ofδk andσk, and by the concavity off(x) for eachj we have
σj + δjx > f(x) whenx < 2p(j−1) or x > 2p(j). Therefore no other pipe can be cheaper in this interval.
Concavity also ensures thatσk < σk+1 andδk > δk+1 for all k, yielding valid SSBaB pipes.

Proof of Lemma 3.5.LetK +1 be the number of pipes, andδ0 > · · · > δK , 0 = σ0 < · · · < σK . Since we
never route more thanD flow we may assume the cost function levels off at somex ≤ D, so thatδK = 0.
Definep(k) = log gk for 0 ≤ k ≤ K − 1: when we change pipes atgk the slope off(x) drops, which can
occur only because the termαp(k)Ap(k)(x) levels off. Recoverαp(k) by reversing the definitions in the proof
of Lemma 3.4: we haveδk =

∑

j≥k αp(j), so fork ≤ K − 1 let αp(k) = δk − δk+1.
We now show by induction that

∑

k αp(k)Ap(k)(x) = minj{σj + δjx}. For the base casex ∈ [0, g0],
we have

min
j

{σj + δjx} = δ0x = (δ0 − δK)x =

K−1
∑

k=0

(δk − δk+1)x =
∑

k

αp(k)x =
∑

k

αp(k)Ap(k)(x)

Now assume that forx ∈ [0, gi−1] that
∑

k αp(k)Ap(k)(x) = minj{σj + δjx}. Forx ∈ (gi−1, gi], we know
thatf(x) = σi + δix. Therefore,

σi + δix =
(

σi−1 + δi−12
p(i−1)

)

+ δi(x− 2p(i−1))

=
∑

k

αp(k)Ap(k)(2
p(i−1)) +

K−1
∑

k=i

(δk − δk+1)(x− 2p(i−1))

=
∑

k<i

αp(k)Ap(k)(2
p(i−1)) +

∑

k≥i

αp(k)x

=
∑

k

αp(k)Ap(k)(x)
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We use that pipesi − 1 andi have equal cost atgi−1 in the first line and the induction hypothesis in the
second line.

We note thatαp(k) corresponds not to a particular SSBaB pipe, but to a breakpoint between pipes: when
we switch from pipek to k + 1 at 2p(k) flow, the slope off drops fromδk to δk+1, which is caused by the
termαp(k)Ap(k)(x) leveling off.

Given the above equivalence, we will use~α and{(σk, δk)}k interchangeably for the remainder of the
paper, using whichever representation is more convenient and converting from one form to another using
Lemmas 3.4 and 3.5. However, the additional constraints that for some parameter0 < γ < 1

2 we have
δk+1 < γδk andσk < γσk+1 for all pipesk, will restrict the possible vectors~α that can be run through the
algorithm:

Definition 3.6. Call ~α γ-regularif the pipes found using Lemma 3.4 satisfyδk+1 < γδk andσk < γδk+1.

We note the following constraints thatγ-regularity imposes on~α:

Lemma 3.7. If δk+1 < γδk, thenαp(k) > (1− γ)δk andαp(k) >
1−γ
γ

αp(k+1).

Proof. These follow immediately fromαp(k) = δk − δk+1 andδk+1 < γδk.

3.3 Approximation guarantee assuming regular~α

We will first prove the existence of the separation oracle procedureA in Theorem 2.2 forγ-regular~α and
later prove in Section 4 that arbitrary~α can be regularized with only anO(1) change inf(x) andL:

Theorem 3.8. Let ~α beγ-regular, and letf(x) =
∑

i αiAi(x), andL =
∑

i αiAi(T
∗
i ). Then the GMM

algorithm finds a treeTGMM such thatE [f(TGMM)] = O(L).

Roughly, our proof bounds the cost of the pipes laid in phasek of the algorithm byαp(k)Ap(k)(T
∗
p(k)).

Using Lemma 3.3 we concentrate onP δ
k andP σ

k and ignore the other costs. First, we bound the cost of the
Steiner tree steps:

Lemma 3.9. LetπS be the approximation ratio for Steiner tree. Then we have
∑

k E[P σ
k ] ≤

3πS

1−γ
L.

Proof. We need to bound the cost of a Steiner tree spanning the current demandsD(k) with cost per unit
lengthσk. If k = 0, thenσk = 0 and we have nothing to bound, so assumek > 0.

We use the edges inT ∗
p(k−1). Note that it spansD∪{r} and henceD(k) ∪{r}, and letWk ⊆ T ∗

p(k−1) be

the subset of edges spanning these nodes. By Lemma 3.2 eachv ∈ D(k) has aggregated at leastE[d(k)v ] ≥
bk−1

3 demand. At the end of the previous LBFL phase, we chose a nodev for consolidation from the set of
all u routing to facilityf with probability dv

P

u→f du
≤ 3dv

bk−1
. An edge is inWk only if somev ∈ D(k) routes

through it, so by the union bound an edge carryingx∗e demand inT ∗
p(k−1) is in Wk with probability at most

3x∗
e

bk−1
.

The treeWk paysσk for any amount of flow, whereasT ∗
p(k−1) paysAp(k−1)(x

∗
e) = min{2p(k−1), x∗e} to

sendx∗e flow one. Then the cost ofWk is

E[Wk] = σk
∑

e

Pr[e ∈ Wk]le = σk
∑

e

Pr[e ∈ Wk]le
Ap(k−1)(x

∗
e)

min{x∗e, 2
p(k−1)}

≤ σk
∑

e:x∗
e≤2p(k−1)

3x∗e
bk−1

Ap(k−1)(x
∗
e)

x∗e
le + σk

∑

e:x∗
e>2p(k−1)

1 ·
Ap(k−1)(x

∗
e)

2p(k−1)
le

= 3
σk
bk−1

∑

e:x∗
e≤2p(k−1)

Ap(k−1)(x
∗
e)le +

σk
2p(k−1)

∑

e:x∗
e>2p(k−1)

Ap(k−1)(x
∗
e)le

(6)
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We need to boundσk

bk−1
and σk

2p(k−1) . For the former term,

σk
bk−1

=
σk(2γδk−1 − δk)

σk − 2γσk−1
≤

σk(2γδk−1 − δk)

2γσk(1− γ)
≤

2γ(δk−1 − δk)

2γ(1 − γ)
=

αp(k−1)

1− γ

using thatbk−1 =
σk−2γσk−1

2γδk−1−δk
by definition, theγ-regularity constraints onσk−1, and the fact that2γ < 1.

For the latter term,

σk
2p(k−1)

=
σk−1 + αp(k−1)2

p(k−1)

2p(k−1)
≤

γσk + αp(k−1)2
p(k−1)

2p(k−1)
= γ

σk
2p(k−1)

+ αp(k−1)

⇒ (1− γ)
σk

2p(k−1)
≤ αp(k−1) ⇒

σk
2p(k−1)

≤
αp(k−1)

1− γ

using the formula forσk in Lemma 3.4 andγ-regularity.
Plug these into the final line in equation (6) above:

E[Wk] ≤
αp(k−1)

1− γ



3
∑

e:x∗
e≤2p(k−1)

Ap(k−1)(x
∗
e)le +

∑

e:x∗
e>2p(k−1)

Ap(k−1)(x
∗
e)le





=

(

3

1− γ

)

αp(k−1)Ap(k−1)(T
∗
p(k−1))

We lose another factor ofπS in approximating the Steiner tree. Sum over allk to bound
∑

k E[P σ
k ] by

3πS

1−γ
L.

Analyzing the LBFL step requires an additional lemma bounding the difference betweengk andbk:

Lemma 3.10. For everyk, gk ≤ bk ≤ 1−2γ2

γ
gk.

Proof. The boundgk ≤ bk follows from Lemma 3.5 in GMM [GMM01]. For the other inequality, from the
definition ofbk andgk we have

gk =
σk+1 − σk
δk − δk+1

bk =
σk+1 − 2γσk
2γδk − δk+1

⇒
bk
gk

=
σk+1 − 2γσk
σk+1 − σk

·
δk − δk+1

2γδk − δk+1

For the ratio ofσ terms,

σk+1 − 2γσk
σk+1 − σk

=
σk+1 − σk
σk+1 − σk

+ (1− 2γ)
σk

σk+1 − σk

< 1 + (1− 2γ)
σk

(

1
γ
− 1

)

σk
= 1 +

γ − 2γ2

1− γ
=

1− 2γ2

1− γ

Similarly, for theδs,

δk − δk+1

2γδk − δk+1
=

2γδk − δk+1

2γδk − δk+1
+ (1− 2γ)

δk
2γδk − δk+1

< 1 + (1− 2γ)
δk

(2γ − γ)δk
=

1− γ

γ

Combining the 2 bounds,
bk
gk

≤
1− 2γ2

1− γ

1− γ

γ
=

1− 2γ2

γ
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Now we can bound the LBFL costE[P δ
k ]:

Lemma 3.11. We have that
∑

k E[P δ
k ] ≤ 2πF

1−2γ2

γ−γ2 L whereπF is the approximation ratio for the standard
(non-load-balanced) facility location problem.

Proof. In the shortest path tree step, the GMM algorithm solves an LBFL problem on the original demands
D with facility lower boundbk and edge cost per unit lengthδk. We will construct a feasible solution using
the edges ofT ∗

p(k). Orient the edges towardsr, and find the farthest upstream (i.e. away fromr) edge routing
at leastbk flow. Cut the edge, and place a facility at the upstream node. Subtract this flow from downstream
edges, and repeat the procedure. If we finish with less thanbk flow at the root node, we route each demand
still reaching the root from its source vertex along the treeto the nearest existing facility (according to
distances inT ∗

p(k)). LetFk be the resulting forest, and note that it has at leastbk flow at each facility.
For an edgee let xe be the amountFk routes one when the demandsD are routed, andx∗e the amount

thatT ∗
p(k) routes one. We now show thatxe ≤ x∗e. If we finish cuttingT ∗

p(k) with at leastbk at the root then
all flows are a subset of the flows inT ∗

p(k) soxe ≤ x∗e. If we end up with too little demand for a facility in
the final step then some of those demands will not be flowing downstream towardsr in Fk. For each edge
they take towardsr, they are following the routing inT ∗

p(k), soxe ≤ x∗e. For eache edge taken away fromr,
we are no longer followingT ∗

p(k), but we must be moving upstream towards the nearest facility. This implies
that in the treeT ∗

p(k) edgee carried more thanbk flow because all demand at the upstream facility flowed
throughe towardsr. Since we are sending strictly less thanbk demand upstream we still havexe ≤ x∗e.

The forestFk never routes more thanbk flow, soxe ≤ bk. Whenx∗e ≤ gk, x∗e = Ap(k)(x
∗
e), soxe ≤

Ap(k)(x
∗
e). SinceAp(k) levels off atgk, this may not hold forx∗e > gk , but by Lemma 3.10bk ≤ 1−2γ2

γ
gk.

Thereforexe ≤ bk ≤ 1−2γ2

γ
Ap(k)(x

∗
e) whenx∗e ≥ gk.

Now letye be the flowFk routes on edgee when the current, stagek demandsD(k) are used. By Lemma
3.1,E[d̂v ] = dv for eachv ∈ D. Summing over all the demands that contribute to an edge’s flow, we have
E[ye] = xe.

The cost ofFk with δj cost per unit edge length is

E

[

δk
∑

e

leye

]

= δk
∑

e

lexe ≤ δk
∑

e

le

(

1− 2γ2

γ
Ap(k)(x

∗
e)

)

≤

(

αp(k)

1− γ

)(

1− 2γ2

γ

)

Ap(k)(T
∗
p(k))

using 1−2γ2

γ
> 1 andαp(k) ≥ (1− γ)δk from Lemma 3.7.

We can find an approximate LBFL solution that is a2πF -approximation to the optimal cost and reduces
the facility lower bound by a factor of at most3. Therefore

E[P δ
k ] ≤ 2πFE[Fk] ≤

(

2πF
1− 2γ2

γ − γ2

)

αp(k)Ap(k)(T
∗
p(k))

Sum over all values ofk to bound the expected cost by2πF
1−2γ2

γ−γ2 L.

Proof of Theorem 3.8.Combining the bounds in Lemmas 3.3, 3.11, and 3.9:

E[f(TGMM )] ≤ 4

(

2πF
1− 2γ2

γ − γ2
+

3πS
1− γ

)

L
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This completes the analysis ofA for γ-regular~α. If arbitrary~α can beγ-regularized for some0 < γ < 1
2

it follows thatR = O(1).
Recent algorithms for SSBaB are based on the Gupta, Kumar, and Roughgarden (GKR) algorithm

[GKR03, GKPR07], which achieves a better approximation ratio than GMM with a simpler analysis, and
one may wonder whether we could reap the same benefits by basing our proof around this algorithm in-
stead. One round of GKR is roughly equivalent to one round of GMM—starting with aboutgk−1 demand
at a subset of nodes and ending with aboutgk demand at a smaller subset—but the GKR analysis bounds
the entire cost of a round using only one tree, whereas GMM requires two. However, each tree required
by GMM can be easily constructed from someT ∗

i in O(αiAi(T
∗
i )), but building the tree needed by GKR

and within the right bounds seems trickier. Note that Lemmas3.9 and 3.11 use two different trees,T ∗
p(k−1)

andT ∗
p(k), analyzed in two different ways, either fixed or linear cost per edge. Although this conveniently

matches the GMM algorithm, it also required for the proof to work. Using only a single Steiner tree on a
subset of the nodes as in GKR allows less flexibility, so a proof may require a different approach or more
substantial changes to the original GKR analysis.

4 Handling Arbitrary ~α

Given any~α, whereαi ≥ 0, definingf(x), a concave cost function, andL, the multi-level cost, we need
to find regular~α′ definingf ′(x) andL′ such thatf(x) = O(f ′(x)) ∀x, andL′ = O(L). Then applying
Theorem 3.8 to~α′ givesf ′(TGMM ) = O(L′), and

f(TGMM ) = O(f ′(TGMM )) = O(L′) = O(L)

satisfying the precondition of Theorem 3.8. Note that we canallow f to grow andL to shrink arbitrarily
in the transformation tof ′ andL′, but we need to bound increases inL and decreases inf . By scaling by
∑

i αi we may assume without loss of generality that
∑

i αi = 1.
First, we prove a simple bound on the change between each termAi(T

∗
i ) in L.

Lemma 4.1. For anyi and anyk > 0, Ai(T
∗
i ) ≤ Ai+k(T

∗
i+k) ≤ 2kAi(T

∗
i ).

Proof. NoteAi(x) ≤ Ai+k(x) ≤ 2kAi(x) for k > 0. Therefore

Ai(T
∗
i ) ≤ Ai(T

∗
i+k) ≤ Ai+k(T

∗
i+k) ≤ Ai+k(T

∗
i ) ≤ 2kAi(T

∗
i )

To regularize the values we run~α through a series of three procedures, one for each of the following
lemmas, each of which changes~α to satisfy an additional set of constraints. None of the procedures are
conceptually difficult, but the details are quite intricate. We will state the lemmas, give a brief sketch of the
ideas, and present the complete proofs in the appendix.

The first lemma is only a helper used in satisfying theσ constraints. The proof serves as a warmup for
the later lemmas, which use similar ideas but are more involved.

Lemma 4.2. Given arbitrary ~α, we can find~α′ such that the correspondingf ′,L′, δ′, σ′ satisfyf(x) ≤

f ′(x), L′ ≤ 2L, and
σ′
K−1

δ′K−1
≤ D, whereK is the number of pipes, andD is the total demand rounded up to

a power of 2.

The following 2 lemmas perform the actual regularization.
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Lemma 4.3. Given~α satisfyingσK−1

δK−1
≤ D, we can find~α′ such that the correspondingf ′,L′, δ′, σ′ satisfy

f(x) ≤ 3f ′(x), L′ = O(L),
σ′
K−1

δ′K−1
≤ D, andδ′k+1 < γδ′k for all k.

Lemma 4.4. Given~α satisfyingσK−1

δK−1
≤ D andδk+1 < γδk, we can find~α′ such that such the corresponding

f ′,L′, δ′, σ′ satisfyf(x) ≤ 5
2f

′(x), L′ = O(L), δ′k+1 < γδ′k, andσ′
k < γσ′

k+1 for all k.

The proofs are based around the following idea: check ifδk+1 ≥ γδk or σk ≥ γσk+1, and discard pipes
that violate the constraints. The additional difficulty, relative to the analysis of GMM, arises from the special
form thatf must satisfy and the need to bound the increase inL. When we remove pipes in general the
indifference points between subsequent pipes will no longer be powers of 2, sof can no longer be defined
in terms of~α. We fix this by modifying the parameters of an offending pipe until the new breakpoint is a
power of2. To avoid drastic changes inL or f , we achieve this by holding the cost of the given pipek fixed
at its indifference point with eitherk − 1 of k + 1 and “rotating” the lineσk + δkx around this fixed point
until the other indifference point is fixed.

Analyzing the increase inL caused by these procedures is the technical crux in the regularization anal-
ysis, as removing pipes can shift “α-mass” in the multi-level cost onto much more expensive trees. We
consider each pipe removal and the terms inL it affects. Ifα-mass is shifted fromAi(T

∗
i ) to Ai+l(T

∗
i+l),

wherel = O(1), then the current chunk ofL has increased byO(1). If not, we show that the conditions
requiringl = ω(1) imply there exist large terms inL abovei + l that can absorb the increase with only an
O(1)-factor loss. We only charge against eachL-termO(1) times during the entire regularization, so the
total increase is bounded byO(1).

We summarize the consequences of the regularization procedure below:

Theorem 4.5. The algorithmA required by Theorem 2.2 exists for a constantc, and the oblivious approxi-
mation ratioR1 is constant.

5 Open Problems

A number of interesting open problems remain to be solved. First, we have only achieved anO(1)-ratio
for the objectiveR1 = maxf E[f(T )]/f(T ∗

f ), but Goel and Estrin [GE03] have shown anO(log |D|)-

approximation for the much harder objectiveR2 = E
[

maxf f(T )/f(T
∗
f )
]

, proving there exists a single

tree that issimultaneouslyanO(log |D|)-approximation for allf ∈ F . Achieving a constant for this stronger
objective or showing a lower bound remains an important openquestion.

Second, although our algorithm proves that anO(1)-approximate distribution exists, the ellipsoid algo-
rithm tells us little about what these trees actually look like. A combinatorial algorithm that yields insight as
to the actual structure of these trees would also be of interest. Third, we have made little attempt to optimize
the constantc in the approximation ratio, and the resulting value is huge due to the regularization procedure.
Shaving large factors off our bound onR1 may be a simple question, and it would be particularly interesting
to find an oblivious approximation algorithm that is competitive with standard SSBaB for knownf .
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A Proofs of regularization lemmas

Lemma 4.2. Given arbitrary ~α, we can find~α′ such that the correspondingf ′,L′, δ′, σ′ satisfyf(x) ≤

f ′(x), L′ ≤ 2L, and
σ′
K−1

δ′K−1
≤ D, whereK is the number of pipes, andD is the total demand rounded up to

a power of 2.

Proof. Let k be the first pipe such thatσk

δk
≥ D. Notek > 0 since σ0

δ0
= 0. Remove all pipes abovek.

Now we modify the parameters of pipek to satisfy the desired constraint. Increaseδk, while decreasingσk
so as to holdσk + δk2

p(k−1) fixed, until σk

δk
= D. Geometrically, we are rotating the liney = σk + δkx

counter-clockwise around the point(2p(k−1), σk + δk2
p(k−1)). Let δ′k, σ′

k be the new parameters for pipek.
Let f ′ be the new cost function formed by modifying pipek and removing pipesk + 1, . . . ,K − 1 andL′

the associated multi-level cost.

Claim: The functionf ′(x) is concave, andf(x) ≤ f ′(x) for all x.

Initially δk < δk−1 andσk > σk−1, and we continuously decreaseσk while increasingδk. We know
σk−1 + δk−12

p(k−1) = σ′
k + δ′k2

p(k−1), so if we decreaseσ′
k to σk−1 the modified pipek will match

pipek − 1. However, we have thatσk−1

δk−1
< D =

σ′
k

δ′k
, so we stop before reaching that point. Therefore

σ′
k > σk−1 andδ′k < δk−1, which impliesf ′(x) is concave since the switchover between pipesk − 1

andk is unchanged. We only increased the rate of growth forx ≥ 2p(k−1), sof ′(x) ≥ f(x) for all x.

Claim: The new multi-level costL′ is at most2L.

There is a termαp(j) for each changeover between pipes as well as the implicit breakpoint atD
whenf levels off. Increasingδk and removing pipesk + 1, . . . ,K − 1 so that pipek is used all
the way toD corresponds inL to pushingα-mass from the termsαp(k−1)Ap(k−1)(T

∗
p(k−1)) + · · · +

αp(K−1)Ap(K−1)(T
∗
p(K−1)) onto the termδ′kAlogD(T

∗
logD) becausep′(k) = logD.

By the definition ofσ′
k andδ′k and Lemma 3.4 we have

δ′k =
σ′
k

D
=

∑

j<k

α′
p′(j)

2p
′(j)

D
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The termsαp(0), . . . αp(k−2) are unchanged, andαp(k−1) drops due the decreased difference between
δk−1 andδk. There are no non-zeroα′

i betweenp(k − 1) andlogD. This gives us

δ′k =
∑

j<k

α′
p′(j)

2p
′(j)

D
≤

∑

j<k

αp(j)
2p(j)

D

Next we use Lemma 4.1 to relate2
p(j)

D
Ap(j)(T

∗
p(j)) andAlogD(T

∗
logD):

δ′kAlogD(T
∗
logD) ≤

∑

j<k

αp(j)
2p(j)

D
AlogD(T

∗
logD) ≤

∑

j<k

αp(j)Ap(j)(T
∗
p(j)) ≤ L

Finally,L′ =
∑

j<k α
′
p(j)Ap(j)(T

∗
p(j)) + δ′kAlogD(T

∗
logD) ≤ 2L.

Lemma 4.3. Given~α satisfyingσK−1

δK−1
≤ D, we can find~α′ such that the correspondingf ′,L′, δ′, σ′ satisfy

f(x) ≤ 3f ′(x), L′ = O(L),
σ′
K−1

δ′
K−1

≤ D, andδ′k+1 < γδ′k for all k.

Proof. We repeat the following two steps untilδk+1 < γδk for all k.

1. Deletion Step:The basic idea here is the same as that used by GMM Lemma 3.2 [GMM01] to satisfy
the constraints on theδ’s: whenever a pipe violates the constraintδk+1 ≥ γδk, we remove the pipe.

Let k be the smallest index such thatδk+1 ≥ γδk, and letl be the smallest integer such thatδk+l <
γ
3 δk. If such anl exists, then remove pipesk + 1, . . . , k + l − 1, and changef(x) in the interval
[2p(k), 2p(k+l−1)] by using the cheaper of pipek andk + l. If no suchl exists then remove all pipes
abovek, and replace them with pipek. Note that this does not break the condition set in Lemma 4.2.

2. Rotation Step:Pipesk andk + l now have equal cost at some pointg, butg may not be a power of2, in
which casef(x) is no longer in the form

∑

i αiAi(x), and~α′ is no longer defined.

We want to modify the pipes to changeg while not affectingL or f too much. As in Lemma 4.2, we
hold the cost of pipek fixed when routing2p(k−1) flow (where we switch fromk−1 to k), and reduce
δk until pipesk andk+l meet at the next power of 2, increasingσk to maintaink’s cost at2p(k−1). This
corresponds to rotating the liney = σk + δkx clockwise around the point(2p(k−1), σk + δk2

p(k−1)).
Let δ′k andσ′

k be the new parameters for pipek. Note thatf ′(x) now has the proper structure again,
and~α′ andL′ are well-defined. We never increaseσ0 above0 since we hold this point fixed when
adjusting pipe0.

First, we bound the change toδk in the rotation step. This allows us to prove that the constraints on the
δ’s are satisfied, andf(x) decreases by at most anO(1)-factor.

Claim: After rotationδ′k ≥ δk
3 .

Before adjustment, we are indifferent betweenk andk + l at (g, yk) whereyk = σk + δkg = σk+l +
δk+lg. The difference in costs betweenk andk + l at 2p(k−1) flow remains unchanged because we
hold the cost of pipek fixed at2p(k−1). Let xk = g − 2p(k−1), the distance after2p(k−1) at which
their costs are equal. Before rotation, the pipes’ costs approach each other at a rate ofδk − δk+l. If we
reduceδk by a factor of3, then δk

3 − δk+l ≤
1
3(δk − δk+l), so it takes at least3xk for pipe k to grow
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Figure 1: To ensure the indifference point between pipesk andk + l is a power of 2 we “rotate” pipek
around it’s starting point until it meetsk + l at a power of 2.

from σk + δk2
p(k−1) to yk, during which pipek + l’s cost only increases, so pipek does not surpass

k + l until after2p(k−1) + 3xk.

The original pipek met pipek + 1 (now removed) at some point2p(k) ≥ 2p(k−1)+1 before meeting
k + l at g. Thereforeg ≥ 2p(k−1)+1, which impliesxk = g − 2p(k−1) ≥ g

2 . After reducingδk to δk
3 ,

pipesk andk+ l now meet after2p(k−1)+3xk = g+2xk ≥ 2g. There must be a power of2 between
g and2g, and we reduceδk only until we hit the next power of2, soδ′k ≥ δk

3 .

Claim: When the procedure is finishedδ′k+1 < γδ′k for all k.

By the choice ofl, δk+l <
γ
3 δk ≤ γδ′k, using the previous claim. Furtherδ′k < δk < γδk−1, so no

previously-satisfied constraints are broken. We renumber the pipes, and repeat the process for the next
constraint violation. When we are done, all the remaining pipes will satisfyδ′k+1 < γδ′k.

Claim: For allx, f(x) ≤ 3f ′(x).

Note that removing pipesk+1, . . . , k+ l− 1 only changesf in the interval(2p(k−1), 2p(k+l−1)), and
we only remove or adjust pipes in this interval once. Initially, removing pipes can only increasef(x),
but then we reduceδk by a factor of at most 3, which may decreasef(x) by a factor of at most 3.

Now, we must bound the potential increase inL. To avoid confusion due to relabeling indexes after
removing pipes, we change notation slightly. Suppose the procedure completes afterK ′ iterations. Let
α′
p′(0), . . . , α

′
p′(K ′−1) be the final non-zeroα’s, andαp(0), . . . , αp(K−1) the originalα’s. For0 ≤ k ≤ K ′−1

let αp(sk), . . . , αp(sk+1−1) be theL-terms affected by thekth iteration of the procedure: either they are
removed and merged intoα′

p′(k) or α′
p′(k) = αp(sk) if the constraint is already satisfied. We need to analyze

how mass is shifted between terms inL. DefineLk =
∑sk+1−1

i=sk
αp(i)Ap(i)(T

∗
p(i)), the portion ofL that

roundk affects.
Consider roundk in which we remove old pipessk + 1, . . . , sk+1 − 1 and adjustδ′k. The oldδsk+1

be-
comesδ′k+1. Rotatingδ′k increasesα′

p′(k−1) becauseα′
p′(k−1) = δ′k−1−δ′k but reduces the totalα-mass above

p′(k − 1) becauseδ′k =
∑

j≥k α
′
p(j), decreasingL. The remainingα-mass onαp(sk)Ap(sk)(T

∗
p(sk)

), . . .,
αp(sk+1−1)Ap(sk+1−1)(T

∗
p(sk+1−1)) merges intoα′

p′(k)Ap′(k)(T
∗
p′(k)) wherep′(k) is somewhere betweenp(sk)

andp(sk+1). If mass from someαp(i) moves down toα′
p′(k) wherep′(k) < p(i), then we can ignore it, as it

will only reduceL. If it moves up, then we will charge the increase to some higher term inL.
Let cδ <

γ
3 be some small constant. There are2 cases to consider: eitherδsk+1

≥ cδδ
′
k or δsk+1

< cδδ
′
k.
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Case 1: cδδ′k > δsk+1
= δ′k+1.

Intuitively, this means there is a big drop betweenδsk+1−1 ≥ γ
3 δ

′
k andδsk+1

< cδδ
′
k, soαp(sk+1−1)

must be fairly large:αp(sk+1−1) = δsk+1−1 − δsk+1
≥ (γ3 − cδ)δ

′
k. We will charge any increase in

L this iteration to the termαp(sk+1−1)Ap(sk+1−1)(T
∗
p(sk+1−1)). Note that we are always in this case

when we remove the last pipe because we can view the last pipe as intersecting a dummy pipe with
δ = 0 atD.

In order to boundα′
p′(k)Ap′(k)(T

∗
p′(k)) byαp(sk+1−1)Ap(sk+1−1)(T

∗
p(sk+1−1)) we must show thatp(sk+1−

1) ≥ p′(k). Note2p
′(k) is the cost at which the new, rotated pipek surpasses the old pipesk+1. New

pipe k intersects pipesk+1 − 1 beforesk+1, andδ′k > δsk+1−1, so pipesk andsk+1 meet before
sk+1 − 1 andsk+1 do. Thereforeg ≤ 2p(sk+1−1), and when we reduceδ′k to fix the breakpoint we
never need to raiseg beyond2p(sk+1−1) before hitting a power of2. Therefore

αp(sk+1−1)Ap(sk+1−1)(T
∗
p(sk+1−1)) ≥

(γ

3
− cδ

)

δ′kAp(sk+1−1)(T
∗
p(sk+1−1)) (by assumption)

≥
(γ

3
− cδ

)

α′
p′(k)Ap(sk+1−1)(T

∗
p(sk+1−1)) (usingδ′k =

∑

j≥k

α′
p(j))

≥
(γ

3
− cδ

)

α′
p′(k)Ap′(k)(T

∗
p′(k))

We can charge the increase inα′
p′(k) toαp(sk+1−1) in the current chunkLk, with a loss of

(

γ
3 − cδ

)−1
=

3
γ−3cδ

, and this charge can only occur once for eachLk.

Case 2: cδδ′k ≤ δsk+1
.

In this case there is no large collection of mass that we can easily guarantee is abovep′(k) in the
current interval, but we do know there must be a lot of mass somewhere abovep(sk+1 − 1) because
δsk+1

is large. Theα-massαp(sk+1) + . . .+αp(sk+2−1) = δsk+1
− δsk+2

is “used” in the next iteration

and contributesLk+1 to L. We knowγδsk+1
= γδ′k+1 > δsk+2

, which implies
∑sk+2−1

i=sk+1
αp(i) =

δsk+1
− δsk+2

> (1− γ)δsk+1
. Now we can bound the increase

α′
p′(k)Ap′(k)(T

∗
p′(k)) ≤

(

δ′k − δsk+1

)

Ap′(k)(T
∗
p′(k)) (α′

p′(k) = δ′k − δsk+1
)

≤

(

1

cδ
− 1

)

δsk+1
Ap′(k)(T

∗
p′(k)) (by assumption)

≤

(

1

cδ
− 1

)





1

1− γ

sk+2−1
∑

i=sk+1

αp(i)



Ap′(k)(T
∗
p′(k)) (shown above)

≤
1− cδ

cδ(1− γ)

sk+2−1
∑

i=sk+1

αp(i)Ap(i)(T
∗
p(i)) (p′(k) < p(sk+1) ≤ p(i)

=
1− cδ

cδ(1− γ)
Lk+1

Therefore we can charge the increase inL due to iterationk to the portionLk+1 used in the next
iteration.

For a particular segmentLk of L, thek − 1th iteration may been bounded by1−cδ
cδ(1−γ) increase inLk,

and thekth iteration may charge against a3
γ−3cδ

increase. Each type of charge can occur at most once per
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chunk. Therefore the total increase in each piece, and hencethe total increase inL =
∑

k Lk is

1− cδ
cδ(1− γ)

+
3

γ − 3cδ

This completes the proof.

Lemma 4.4. Given~α satisfyingσK−1

δK−1
≤ D andδk+1 < γδk, we can find~α′ such that such the corresponding

f ′,L′, δ′, σ′ satisfyf(x) ≤ 5
2f

′(x), L′ = O(L), δ′k+1 < γδ′k, andσ′
k < γσ′

k+1 for all k.

Proof. The proof follows Lemma 4.3 but moves backwards through the pipes rather than forwards.

1. Deletion Step:Let k be the highest index such thatσk−1 ≥ γσk, andl > 1 the smallest integer such that
σk−l <

2γ
5 σk. Such anl must exist becauseσ0 = 0. Remove pipesk − l + 1, . . . , k − 1, and replace

them with the cheaper of pipesk − l andk.

2. Rotation Step:As in Lemma 4.3,f(x) may no longer be a linear combination of termsAi(x) because the
new indifference point may not be a power of 2. We use a similarprocedure as before to remedy this.
Hold pipek’s cost for2p(k) flow fixed, and reduceσk while increasingδk to maintain the invariant
until k andk− l meet at a power of 2. Geometrically we are rotatingy = σk+ δkx counter-clockwise
around(2p(k), σk + δk2

p(k)). Let σ′
k, δ′k be the new parameters. Note that~α′ andL′ are now well-

defined.

First, we analyze the change toσk andδk required by the rotation step and use this result to prove the
constraints on both theσ’s andδ’s are satisfied at the end without changingf(x) too much.

Claim: After rotationσ′
k ≥ 2

5σk, andδ′k ≤ 8
5δk.

Suppose the unmodified pipek andk− l meet atg =
σk−σk−l

δk−l−δk
. We will bound the adjustment required

to guarantee they meet beforeg2 . Reduceσk to 2
5σk = σ′

k. The modified pipek has the same cost as
the old at2p(k). If k is the final pipe then from Lemma 4.2 we know D =2p(k) ≥ σk

δk
. Otherwise, pipe

k costs the same ask + 1 at 2p(k), so we have that2p(k) = σk+1−σk

δk−δk+1
≥ σk

δk
, usingγσk+1 > σk (the

constraint fixed in the previous iteration). In either caseδk2
p(k) ≥ σk. Now,

σk + δk2
p(k) =

2

5
σk + δ′k2

p(k)

⇒ δ′k2
p(k) =

3

5
σk + δk2

p(k) ≤

(

1 +
3

5

)

δk2
p(k) ⇒ δ′k ≤

8

5
δk

The constraints on theδs were satisfied before removing pipek − 1, soδk−l >
1
γ2 δk. This implies

δk
δk−l − δk

≤
δk

1
γ2 δk − δk

≤
1

4− 1
=

1

3

usingγ < 1
2 . We combine this with the bound onδ′k to bound the change inδk−l − δ′k:

δk−l − δ′k ≥ (δk−l − δk)−
3

5
δk =(δk−l − δk)

(

1−
3

5

δk
δk−l − δk

)

≥(δk−l − δk)

(

1−
3

5
·
1

3

)

=
4

5
(δk−l − δk)
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Now we have enough information to bound the new switchover point.

σ′
k − σk−l

δk−l − δ′k
=

2
5σk − σk−l

δk−l − δ′k
≤

2
5 (σk − σk−l)

δk−l − δ′k
≤

2
5(σk − σk−l)
4
5(δk−l − δk)

=
1

2

σk − σk−l

δk−l − δk
=

1

2
g

There must be a power of 2 betweeng
2 andg, so we need to reduceσk by at most a factor of25 . Finally,

note that pipes 0 and 1 meet no sooner than 1, andk > 1 since it is always true thatγσ1 > σ0 = 0.
Thereforeg > 1, and hence the new changeover point is at least 1, so we do not need to worry about
a termA−1.

Claim: When the procedure finishesδ′k+1 < γδ′k andσ′
k < γσ′

k+1 for all k.

We chosel such thatσk−l <
2γ
5 σk, soσk−l < γσ′

k. Before starting, we hadγ2δk−l > γδk−1 > δk,
andγ < 1

2 , which impliesδ′k ≤ 8
5δk < 8

5γ
2δk−l < γδk−l. Note that the rotation step does not break

any previously-satisfied constraints on largerk’s.

Claim: For allx, f(x) ≤ 5
2f

′(x).

Only 1 round affects the interval(2p(k−l−1), 2p(k)). Removing pipes only increasesf(x), and if we
adjustσk, then it decreases by a factor of at most2

5 , while δk increases, sof ′(x) ≥ 2
5f(x).

Now we analyze the increase inL. First, unlike in Lemma 4.3, the rotation step works againstus, and
we need to bound the increase.

Claim: Rotation only increasesL by anO(1)-factor.

When adjusting pipek, we increaseδk without changingδk+1, which increasesαp(k). We have that
αp(k) ≥ (1− γ)δk, andδ′k ≤ 8

5δk, so

α′
p(k) = δ′k−δk+1 ≤ (δk−δk+1)

(

1 +
3

5

δk
δk − δk+1

)

≤ αp(k)

(

1 +
3

5

δk
δk(1− γ)

)

=
8− 5γ

5(1− γ)
αp(k)

causingL to increase by at most8−5γ
5(1−γ) .

Second, we need to bound the increase inL caused by removing pipes. LetK ′ be the number of iter-
ations and final pipes andα′

p′(0), . . . , α
′
p′(K ′−1) the resulting non-zeroα’s. Iterationk, for 1 ≤ k ≤ K ′,

deletes pipessk+1+1, . . . , sk−1which removesαp(sk+1), . . . , αp(sk−1). LetLk =
∑sk−1

i=sk+1
αp(i)Ap(i)(T

∗
p(i))

be the amount these contribute toL. Since it moves backwards through pipes the indices of new pipes are not
fixed yet, but as labeled at the end, roundk ensuresσ′

j < γσ′
j+1 and creates a termα′

p′(j) wherej = K ′−k.
The rotation step reduces bothα′

p′(j) andp′(j) which can only help in this step, and we have already
bounded the increase inα′

p′(j+1) due to rotation, so we assume that no rotation is needed. Thisimplies

α′
p′(j) = δsk+1

− δsk =
∑sk−1

i=sk+1
αp(i). As in Lemma 4.3 we need to ensure that too muchα-mass does not

move too high.
Let cσ < 2γ

5 be a small constant. We need to consider two cases again: either σsk+1
< cσσ

′
j+1 or

σsk+1
≥ cσσ

′
j+1.

Case 1: σsk+1
< cσσ

′
j+1.

Intuitively, this meansσsk+1+1 is much larger thanσsk+1
becauseσsk+1+1 ≥ 2γ

5 σ
′
j+1, so by the time

pipe sk+1 catches up with pipesk+1 + 1 or any later pipe, it has already covered anO(1)-fraction

19



of the distance to2p
′(j). Therefore, pushing mass from up toAp′(j)(T

∗
p′(j)) increasesL by only a

constant factor.

We bound2p
′(j) by bounding the cost to which pipesk+1 must grow before switching pipes. Before

removal the old pipesk − 1 crossed the newj + 1 at 2p(sk−1) =
σ′
j+1−σsk−1

δsk−1−δ′j+1
≤

σ′
j+1

1
γ
δ′j+1−δ′j+1

≤
σ′
j+1

δ′j+1
,

soσ′
j+1 + δ′j+12

p(sk−1) ≤ 2σ′
j+1. Pipesk+1’s cost increases faster thansk − 1’s and surpassessk’s

cost before2p(sk−1). Thereforeσ′
j+1 + δ′j+1g ≤ 2σ′

j+1.

We knowσsk+1+1 ≥
2γ
5 σ′

j+1 or else it would not have been removed. Whensk+1 intersectssk+1 + 1

at2p(sk+1) it has grown fromσsk+1
to at leastσsk+1+1 and therefore has covered at least

σsk+1+1 − σsk+1

2σ′
j+1

≥

2γ
5 σ

′
j+1 − cσσ

′
j+1

2σ′
j+1

=
2γ − 5cσ

10

fraction of the distance to the indifference point betweensk+1 + 1 andsk. Therefore

2p(sk+1) ≥
2γ − 5cσ

10
2p

′(j) ⇒ Ap′(j)(T
∗
p′(j)) ≤

10

2γ − 5cσ
Ap(sk+1)(T

∗
p(sk+1)

)

Every other affectedαp(i) is pushed up less thanαp(sk+1), so

α′
jAp′(j)(T

∗
p′(j)) =

sk−1
∑

i=sk+1

αp(i)Ap′(j)(T
∗
p′(j))

≤

sk−1
∑

i=sk+1

αp(i)

(

10

2γ − 5cσ
Ap(i)(T

∗
p(i))

)

=
10

2γ − 5cσ
Lk

Case 2: σsk+1
≥ cσσ

′
j+1.

In this case pipessk+1 andsk+1 + 1 may meet very early, andAp′(j)(T
∗
p′(j)) could be much bigger

thanAp(sk+1)(T
∗
p(sk+1)

). Note that we are never in this case whenσsk+1
= 0. We have that

σ′
j+1 + δj+12

p′(j) = σsk+1
+ δsk+1

2p
′(j)

⇒ α′
p′(j) = δsk+1

− δ′j+1 =
σ′
j+1 − σsk+1

2p′(j)
≤

(

1

cσ
− 1

)

σsk+1

2p′(j)

After the next round—which we know occurs becauseσsk+1
6= 0— σsk+2

will be the pipe preceding

σsk+1
(which isσ′

j). Usingσsk+2
< γσsk+1

, it is easy to see thatσsk+1
<

σsk+1
−σsk+2

1−γ
and from the

formula forσsk+2
we haveσsk+1

− σsk+2
=

∑sk+1−1
i=sk+2

αp(i)2
p(i)

Combining the previous inequalities,

α′
p′(j) ≤

(

1− cσ
cσ

)

σsk+1

2p
′(j)

≤

(

1− cσ
cσ

)(

σsk+1
− σsk+2

1− γ

)

1

2p
′(j)

≤
1− cσ

cσ(1− γ)

sk+1−1
∑

i=sk+2

αp(i)2
p(i)−p′(j)
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Now we can apply Lemma 4.1 to finish the bound:

α′
p′(j)Ap′(j)(T

∗
p′(j)) ≤

1− cσ
cσ(1− γ)

sk+1−1
∑

i=sk+2

αp(i)2
p(i)−p′(j)Ap′(j)(T

∗
p′(j))

≤
1− cσ

cσ(1− γ)

sk+1−1
∑

i=sk+2

αp(i)Ap(i)(T
∗
p(i)) =

1− cσ
cσ(1− γ)

Lk+1

Therefore we can charge the increase inLk this iteration toLk+1 used in the next iteration.

For a particular chunkLk of L, roundk’s increase may be bounded by a102γ−5cσ
-factor increase and

roundk − 1 may be bounded by a1−cσ
cσ(1−γ) -factor increase. Each charge only occurs once. The rotation step

adds another factor of8−5γ
5(1−γ) on top of this. Therefore, the total growth ofL is at most

8− 5γ

5(1− γ)

(

1− cσ
cσ(1− γ)

+
10

2γ − 5cσ

)
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