
Span programs and quantum query complexity:

The general adversary bound is nearly tight

for every boolean function

Ben W. Reichardt∗

Abstract

The general adversary bound is a semi-definite program (SDP) that lower-bounds the quan-
tum query complexity of a function. We turn this lower bound into an upper bound, by giving a
quantum walk algorithm based on the dual SDP that has query complexity at most the general
adversary bound, up to a logarithmic factor.

In more detail, the proof has two steps, each based on “span programs,” a certain linear-
algebraic model of computation. First, we give an SDP that outputs for any boolean function a
span program computing it that has optimal “witness size.” The optimal witness size is shown
to coincide with the general adversary lower bound. Second, we give a quantum algorithm for
evaluating span programs with only a logarithmic query overhead on the witness size.

The first result is motivated by a quantum algorithm for evaluating composed span programs.
The algorithm is known to be optimal for evaluating a large class of formulas. The allowed gates
include all constant-size functions for which there is an optimal span program. So far, good
span programs have been found in an ad hoc manner, and the SDP automates this procedure.
Surprisingly, the SDP’s value equals the general adversary bound. A corollary is an optimal
quantum algorithm for evaluating “balanced” formulas over any finite boolean gate set.

The second result broadens span programs’ applicability beyond the formula evaluation
problem. We extend the analysis of the quantum algorithm for evaluating span programs. The
previous analysis shows that a corresponding bipartite graph has a large spectral gap, but only
works when applied to the composition of constant-size span programs. We show generally that
properties of eigenvalue-zero eigenvectors in fact imply an “effective” spectral gap around zero.

A strong universality result for span programs follows. A good quantum query algorithm for
a problem implies a good span program, and vice versa. Although nearly tight, this equivalence
is nontrivial. Span programs are a promising model for developing more quantum algorithms.
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1 Introduction

Quantum algorithms for evaluating formulas have developed rapidly since the breakthrough AND-
OR formula-evaluation algorithm [FGG07]. The set of allowed gates in the formula has increased
from just AND and OR gates to include all boolean functions on up to three bits, e.g., the three-
majority function, and many four-bit functions—with certain technical balance conditions. Op-
erationally, these new algorithms can be interpreted as evaluating “span programs,” a certain
linear-algebraic computational model [KW93]. Discovering an optimal span program for a function
immediately allows it to be added to the gate set [RŠ08].

This paper is motivated by three main puzzles:

1. Can the gate set allowed in the formula-evaluation algorithm be extended further? Given
that the search for optimal span programs has been entirely ad hoc, yet still quite successful,
it seems that the answer must be yes. How far can it be extended, though?

2. What is the relationship between span program complexity, or “witness size,” and the adver-
sary lower bounds on quantum query complexity? There are two different adversary bounds,
Adv ≤ Adv±, but the power of the latter is not fully understood. Span program witness size
appears to be closely connected to these bounds. For example, so far all known optimal span
programs are for functions f with Adv(f) = Adv±(f).

3. Aside from their applications to formula evaluation, can span programs be used to derive
other quantum algorithms?

Our first result answers the first two questions. Unexpectedly, we find that for any boolean func-
tion f , the optimal span program has witness size equal to the general adversary bound Adv±(f).
This result is surprising because of its broad scope. It allows us to optimally evaluate formulas over
any finite gate set, quantumly. Classically, optimal formula-evaluation algorithms are known only
for a limited class of formulas using AND and OR gates, and a few other special cases.

This result suggests a new technique for developing quantum algorithms for other problems.
Based on the adversary lower bound, one can construct a span program, and hopefully turn this
into an algorithm, i.e., an upper bound. Unfortunately, it has not been known how to evaluate
general span programs. The second result of this paper is a quantum algorithm for evaluating span
programs, with only a logarithmic query overhead on the witness size. The main technical difficulty
is showing that a corresponding bipartite graph has a large spectral gap. We show that properties
of eigenvalue-zero eigenvectors in fact imply an “effective” spectral gap around zero.

In combination, the two results imply that the general quantum adversary bound, Adv±, is tight
up to a logarithmic factor for every boolean function. This is surprising because Adv± is closely
connected to the nonnegative-weight adversary bound Adv, which has strong limitations. The
results also imply that quantum computers, measured by query complexity, and span programs,
measured by witness size, are equivalent computational models, up to a logarithmic factor.

Some further background material is needed to place the results in context.

Quantum algorithms for evaluating formulas

Farhi, Goldstone and Gutmann in 2007 gave a nearly optimal quantum query algorithm for eval-
uating balanced binary AND-OR formulas [FGG07, CCJY07]. This was extended by Ambainis et
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al. to a nearly optimal quantum algorithm for evaluating all AND-OR formulas, and an optimal
quantum algorithm for evaluating “approximately balanced” AND-OR formulas [ACR+07].

Reichardt and Špalek gave an optimal quantum algorithm for evaluating “adversary-balanced”
formulas over a considerably extended gate set [RŠ08], including in particular:

• All functions {0, 1}n → {0, 1} for n ≤ 3, such as AND, OR, PARITY and MAJ3.

• 69 of the 92 inequivalent functions f : {0, 1}4 → {0, 1} with Adv(f) = Adv±(f) (Defini-
tion 2.4).

They derived this result by generalizing the previous approaches to consider span programs,
a computational model introduced by Karchmer and Wigderson [KW93]. They then derived a
quantum algorithm for evaluating certain concatenated span programs, with a query complexity
upper-bounded by the span program witness size (Definition 2.3). Thus in fact the allowed gate
set includes all functions f : {0, 1}n → {0, 1}, with n = O(1), for which we have a span program P
computing f and with witness size wsize(P ) = Adv±(f) (Definition 2.4). A special case of [RŠ08,
Theorem 4.7] is:

Theorem 1.1 ([RŠ08]). Fix a function f : {0, 1}n → {0, 1}. For k ∈ N, define fk : {0, 1}nk →
{0, 1} as follows: f1 = f and fk(x) = f

(
fk−1(x1, . . . , xnk−1), . . . , fk−1(xnk−nk−1+1, . . . , xnk)

)
for

k > 1. If span program P computes f , then

Q(fk) = O(wsize(P )k) , (1.1)

where Q(fk) is the bounded-error quantum query complexity of fk.

[RŠ08] followed an ad hoc approach to finding optimal span programs for various functions.
Although successful so far, continuing this method seems daunting:

• For most functions f , probably Adv±(f) > Adv(f). Indeed, there are 222 four-bit boolean
functions, up to the natural equivalences, and for only 92 of them does Adv± = Adv hold.
For no function with a gap has a span program matching Adv±(f) been found. This suggests
that perhaps span programs can only work well for the rare cases when Adv± = Adv.

• Moreover, for all the functions for which we know an optimal span program, it turns out
that an optimal span program can be built just by using AND and OR gates with optimized
weights. (This fact has not been appreciated; see Appendix A.) On the other hand, there is
no reason to think that optimal span programs will in general have such a limited form.

• Finally, it can be difficult to prove a span program’s optimality. For several functions, we
have found span programs whose witness sizes match Adv numerically, but we lack a proof.

In any case, the natural next step is to try to automate the search for good span programs.
A main difficulty is that there is considerable freedom in the span program definition, e.g., span
programs are naturally continuous, not discrete. The search space needs to be narrowed down.

We show that it suffices to consider span programs written in so-called “canonical” form. This
form was introduced by [KW93], but its significance for developing quantum algorithms was not
at first appreciated. We then find a semi-definite program (SDP) for varying over span programs
written in canonical form, optimizing the witness size. This automates the search for span programs.

Remarkably, the SDP has a value that corresponds exactly to the general adversary bound
Adv±, in a new formulation. Thus we characterize optimal span program witness size:
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Theorem 1.2. For any function f : {0, 1}n → {0, 1},

inf
P

wsize(P ) = Adv±(f) , (1.2)

where the infimum is over span programs P computing f . Moreover, this infimum is achieved.

This result greatly extends the gate set over which the formula-evaluation algorithm of [RŠ08]
works optimally. In fact, it allows the algorithm to run on formulas with any finite gate set. A
factor is lost that depends on the gates, but for a finite gate set, this will be a constant. As another
corollary, Theorem 1.2 also settles the question of how the general adversary bound behaves under
function composition, and it implies a new upper bound on the sign-degree of boolean functions.

Quantum algorithm for evaluating span programs

Now that we know there are span programs with witness size matching the general adversary bound,
it is of considerable interest to extend the formula-evaluation algorithm to evaluate arbitrary span
programs. Unfortunately, though, a key theorem from [RŠ08] does not hold general span programs.

The [RŠ08] algorithm works by plugging together optimal span programs for the individual
gates in a formula ϕ to construct a composed span program P that computes ϕ. Then a family of
related graphs GP (x), one for each input x, is constructed. For an input x, the algorithm starts
at a particular “output vertex” of the graph, and runs a quantum walk for about 1/wsize(P ) steps
in order to compute ϕ(x). The algorithm’s analysis has two parts. First, for completeness, it is
shown that when ϕ(x) = 1, there exists an eigenvalue-zero eigenvector of the weighted adjacency
matrix AGP (x) with large support on the output vertex. Second, for soundness, it is shown that
if ϕ(x) = 0, then AGP (x) has a spectral gap of Ω(1/wsize(P )) for eigenvectors supported on the
output vertex. This spectral gap determines the algorithm’s query complexity.

The completeness step of the proof comes from relating the definition of GP (x) to the wit-
ness size definition. Eigenvalue-zero eigenvectors correspond exactly to span program “witnesses,”
with the squared support on the output vertex corresponding to the witness size. This argument
straightforwardly extends to arbitrary span programs.

For soundness, the proof essentially inverts the matrix AGP (x)− ρ1 gate by gate, span program
by span program, starting at the inputs and working recursively toward the output vertex. In this
way, it roughly computes the Taylor series about ρ = 0 of the eigenvalue-ρ eigenvectors in order
eventually to find a contradiction for |ρ| small. One would not expect this method to extend to
arbitrary span programs, because it loses a constant factor that depends badly on the individual
span programs used for each gate. Indeed, it fails in general. Span programs can be constructed
for which the associated graphs simply do not have an Ω(1/wsize(P )) spectral gap in the 0 case.
(For example, take a large span program and add an AND gate to the top whose other input is 0.
The composed span program computes the constant 0 function and has constant witness size, but
the spectral gaps of the associated large graphs need not be Ω(1).)

On the other hand, it has not been understood why the [RŠ08] analysis works so well when
applied to balanced compositions of constant-size optimal span programs. In particular, the corre-
spondence between graphs and span programs by definition relates the witness size to properties of
eigenvalue-zero eigenvectors. Why does the witness size quantity also appear in the spectral gap?

We show that this is not a coincidence, that in general an eigenvalue-zero eigenvector of a
bipartite graph implies an “effective” spectral gap for a perturbed graph. Somewhat more precisely,
the inference is that the total squared overlap on the output vertex of small-eigenvalue eigenvectors
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is small. This argument leads to a substantially more general small-eigenvalue spectral analysis.
It also implies simpler proofs of Theorem 1.1 as well as of the AND-OR formula-evaluation result
in [ACR+07].

This small-eigenvalue analysis is the key step that allows us to evaluate span programs on a
quantum computer. Besides showing an effective spectral gap, though, we would also need to bound
‖AGP ‖ in order to generalize [RŠ08]. However, recent work by Cleve et al. shows that this norm
does not matter if we are willing to concede a logarithmic factor in the query complexity [CGM+08].
We thus obtain:

Theorem 1.3. Let P be a span program computing f : {0, 1}n → {0, 1}. Then

Q(f) = O

(
wsize(P )

log wsize(P )
log log wsize(P )

)
. (1.3)

We can now prove the main result of this paper, that for any boolean function f the general
adversary bound on the quantum query complexity is tight up to a logarithmic factor:

Theorem 1.4. For any function f : {0, 1}n → {0, 1}, the quantum query complexity of f satisfies

Q(f) = Ω(Adv±(f)) and Q(f) = O

(
Adv±(f)

log Adv±(f)
log log Adv±(f)

)
. (1.4)

Proof. The lower bound is due to [HLŠ07] (see Theorem 2.6). For the upper bound, use the SDP
from Theorem 1.2, to construct a span program P computing f , with wsize(P ) = Adv±(f). Then
apply Theorem 1.3 to obtain a bounded-error quantum query algorithm that evaluates f .

Thus the Adv± semi-definite program is in fact an SDP for quantum query complexity, up to
a logarithmic factor. Previously, Barnum et al. have already given an SDP for quantum query
complexity [BSS03], and have shown that the nonnegative-weight adversary bound Adv can be
derived by strengthening it, but their SDP is quite different. In particular, the Adv± SDP is
“greedy,” in the sense that it considers only how much information can be learned using a sin-
gle query; see Definition 2.4 below. The [BSS03] SDP, on the other hand, has separate terms
for every query. It is surprising that a small modification to Adv can not only break the cer-
ticate complexity and property testing barriers [HLŠ07], but in fact be nearly optimal always.
For example, for the Element Distinctness problem with the input in [n]n specified in binary,
Adv(f) = O(

√
n log n) [ŠS06] but Q(f) = Ω(n2/3) by the polynomial method [AS04, Amb05].

Theorem 1.4 implies that Adv±(f) = Ω(n2/3/ log n).

2 Definitions

For a natural number n ∈ N, let [n] = {1, 2, . . . , n}. Let B = {0, 1}. For a bit b ∈ B, let b̄ = 1− b
denote its complement. A function f with codomain B is a (total) boolean function if its domain
is Bn for some n ∈ N; f is a partial boolean function if its domain is a subset D ⊆ Bn.

The complex and real numbers are denoted by C and R, respectively. For a finite set X, let
CX be the inner product space C|X| with orthonormal basis {|x〉 : x ∈ X}. We assume familiarity
with ket notation, e.g.,

∑
x∈X |x〉〈x| = 1 the identity on CX . For vector spaces V and W over C,

let L(V,W ) denote the set of all linear transformations from V into W , and let L(V ) = L(V, V ).
For A ∈ L(V,W ), ‖A‖ is the operator norm of A.
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The union of disjoint sets is sometimes denoted by t.
In the remainder of this section, we will define span programs, from [KW93], and the “witness

size” span program complexity measure from [RŠ08]. We will then define the quantum adversary
bounds and state some of their basic properties, including composition, lower bounds on quantum
query complexity, and the previously known lower bound on span program witness size.

2.1 Span programs

A span program P is a certain linear-algebraic way of specifying a boolean function fP [KW93,
GP03]. Roughly, a span program consists of a target |t〉 in a vector space V , and a collection of
subspaces Vj,b ⊆ V , for j ∈ [n], b ∈ B. For an input x ∈ Bn, fP (x) = 1 when the target can be
reached using a linear combination of vectors in ∪j∈[n]Vj,xj . For our complexity measure on span
programs, however, it will be necessary to fix a set of “input vectors” that span each subspace Vj,b.
We desire to span the target using a linear combination of these vectors with small coefficients.

Formally we therefore define a span program as follows:

Definition 2.1 (Span program [KW93]). Let n ∈ N. A span program P consists of a “target”
vector |t〉 in a finite-dimensional inner-product space V over C, together with “input” vectors
|vi〉 ∈ V for i ∈ I. Here the index set I is a disjoint union I = Ifree t

⊔
j∈[n],b∈B Ij,b.

To P corresponds a function fP : Bn → B, defined by

fP (x) =

{
1 if |t〉 ∈ Span({|vi〉 : i ∈ Ifree ∪

⋃
j∈[n] Ij,xj})

0 otherwise
(2.1)

We say that Ifree indexes the set of “free” input vectors, while Ij,b indexes input vectors “labeled
by” (j, b). We say that P “computes” the function fP . For x ∈ Bn, fP (x) evaluates to 1, or true,
when the target can be reached using a linear combination of the “available” input vectors, i.e.,
input vectors that are either free or labeled by (j, xj) for j ∈ [n].

Some additional notation will come in handy. Let {|i〉 : i ∈ I} be an orthonormal basis for C|I|.
Let A : C|I| → V be the linear operator

A =
∑
i∈I
|vi〉〈i| . (2.2)

Written as a matrix, the columns of A are the input vectors of P . For an input x ∈ Bn, let I(x)
be the set of available input vector indices and Π(x) : C|I| → C|I| the projection thereon,

I(x) = Ifree ∪
⋃
j∈[n]

Ij,xj (2.3)

Π(x) =
∑
i∈I(x)

|i〉〈i| . (2.4)

Lemma 2.2. For a span program P , fP (x) = 1 if and only if |t〉 ∈ Range(AΠ(x)). Equivalently,
fP (x) = 0 if and only if Π(x)A†|t〉 ∈ Range

[
Π(x)A†

(
1− |t〉〈t|‖t‖2

)]
.

Lemma 2.2 follows from Eq. (2.1). Therefore exactly when fP (x) = 1 is there a “witness”
|w〉 ∈ C|I| satisfying AΠ(x)|w〉 = |t〉. Exactly when fP (x) = 0, there is a witness |w′〉 ∈ V
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satisfying 〈t|w′〉 6= 0 and Π(x)A†|w′〉 = 0, i.e., |w′〉 has nonzero inner product with the target
vector and is orthogonal to the available input vectors.

The complexity measure we use to characterize span programs is the witness size [RŠ08]:

Definition 2.3 (Witness size with costs [RŠ08]). Consider a span program P , and a vector s ∈
[0,∞)n of nonnegative “costs.” Let S =

∑
j∈[n],b∈B,i∈Ij,b

√
sj |i〉〈i|. For each input x ∈ Bn, define

the witness size of P on x with costs s, wsizes(P, x), as follows:

• If fP (x) = 1, then |t〉 ∈ Range(AΠ(x)), so there is a witness |w〉 ∈ C|I| satisfying AΠ(x)|w〉 =
|t〉. Then wsizes(P, x) is the minimum squared length of any such witness, weighted by the
costs s:

wsizes(P, x) = min
|w〉:AΠ(x)|w〉=|t〉

‖S|w〉‖2 . (2.5)

• If fP (x) = 0, then |t〉 /∈ Range(AΠ(x)). Therefore there is a witness |w′〉 ∈ V satisfying
〈t|w′〉 = 1 and Π(x)A†|w′〉 = 0. Then

wsizes(P, x) = min
|w′〉: 〈t|w′〉=1

Π(x)A†|w′〉=0

‖SA†|w′〉‖2 . (2.6)

The witness size of P with costs s, restricted to domain D ⊆ Bn, is

wsizes(P,D) = max
x∈D

wsizes(P, x) . (2.7)

The wsizes(P,D) notation is for handling partial boolean functions. For the common case that
D = Bn, let wsizes(P ) = wsizes(P,Bn). For j ∈ [n], sj can intuitively be thought of as the charge
for evaluating the jth input bit. When the subscript s is omitted, the costs are taken to be uniform,
s = ~1 = (1, 1, . . . , 1), e.g., wsize(P ) = wsize~1(P ). In this case, note that S = 1−∑i∈Ifree

|i〉〈i|. The
extra generality of allowing nonuniform costs is necessary for considering unbalanced formulas.

Before continuing, let us remark that the above definition of span programs differs slightly
from the original definition due to Karchmer and Wigderson [KW93]. Call a span program strict
if Ifree = ∅. Ref. [KW93] considers only strict span programs. For the witness size complexity
measure, we will later prove that span programs and strict span programs are equivalent (Propo-
sition 4.10). Allowing free input vectors is often convenient for defining and composing span
programs, though, and may be necessary for developing efficient quantum algorithms based on
span programs. Ref. [RŠ08] uses an even more relaxed span program definition than Definition 2.1,
letting each input vector to be labeled by a subset of [n]×B. This definition is convenient for terse
span program constructions, and is also easily seen to be equivalent to ours.

Classical applications of span programs have used a different complexity measure, the “size” of
P being the number of input vectors, |I|. This measure has been characterized in [Gál01].

Note that replacing the target vector |t〉 by c|t〉, for c 6= 0, changes the witness sizes by a factor
of |c|2 or 1/|c|2, depending on whether fP (x) = 1 or 0. Thus we might just as well have defined
the witness size as √

max
x:fP (x)=0

wsizes(P, x) max
x:fP (x)=1

wsizes(P, x) , (2.8)

provided that fP is not the constant 0 or constant 1 function on D. Explicit formulas for wsizes(P, x)
can be written in terms of Moore-Penrose pseudoinverses of certain matrices, and are given in [RŠ08,
Lemma A.3]. Theorem 9.3 will give an alternative, related criterion for comparing span programs.
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2.2 Adversary lower bounds

There are essentially two techniques, the polynomial and adversary methods, for lower-bounding
quantum query complexity. The polynomial method was introduced in the quantum setting by
Beals et al. [BBC+01]. It is based on the observation that after running a quantum algorithm
for q oracle queries to an input x, the probability of any measurement result is a polynomial of
degree at most 2q in the variables xj . The first of the adversary bounds, Adv, was introduced
by Ambainis [Amb02]. Adversary bounds are a generalization of the classical hybrid argument,
that considers the entanglement of the system when run on a superposition of input strings. Both
methods have classical analogs; see [Bei93] and [Aar06]

The polynomial method and Adv are incomparable. Špalek and Szegedy [ŠS06] proved the
equivalence of a number of formulations for the adversary bound Adv, and also showed that Adv is
subject to a certificate complexity barrier. For example, for f a total boolean function, Adv(f) ≤√
C0(f)C1(f), where Cb(f) is the best upper bound over those x with f(x) = b of the size of the

smallest certificate for f(x). The polynomial method can surpass this barrier. In particular, for
the Element Distinctness problem, the polynomial method implies an Ω(n2/3) lower bound on the
quantum query complexity [AS04, Amb05], and this is tight [Amb07, Sze04]. However, displaying
two list elements that are the same is enough to prove that the list does not have distinct elements,
so C0(f) = 2 and Adv(f) = O(

√
n). Adv also suffers a “property testing barrier” on partial

functions.
On the other hand, the polynomial method can also be loose. Ambainis gave a total boolean

function fk on n = 4k bits that can be represented exactly by a polynomial of degree only 2k, but
for which Adv(fk) = 2.5k [Amb06], and see [HLŠ07] for other examples.

Thus both lower bound methods are limited. In 2007, though, Høyer et al. discovered a strict
generalization Adv± of Adv [HLŠ07]. For example, for Ambainis’s function, Adv±(fk) ≥ 2.51k.
Adv± also breaks the certificate complexity and property testing barriers. No similar limits on
its power have been found. In particular, for no function f is it known that the quantum query
complexity of f is ω(Adv±(f)).

In this section, we define the two adversary bounds. On account of how their definitions differ,
we call Adv the “nonnegative-weight” adversary bound, and Adv± the “general” adversary bound.
We also state some previous results.

Definition 2.4 (Adversary bounds with costs [HLŠ05, HLŠ07]). For finite sets C and E, and
D ⊆ Cn, let f : D → E and let s ∈ [0,∞)n be a vector of nonnegative costs. An adversary matrix
for f is a nonzero, |D| × |D| real, symmetric matrix Γ that satisfies 〈x|Γ|y〉 = 0 for all x, y ∈ D
with f(x) = f(y).

Define the nonnegative-weight adversary bound for f , with costs s, as

Advs(f) = max
adversary matrices Γ:
∀x,y∈D, 〈x|Γ|y〉≥0
∀j∈[n], ‖Γ◦∆j‖≤sj

‖Γ‖ , (2.9)

where Γ ◦∆j denotes the entry-wise matrix product between Γ and ∆j =
∑

x,y∈D:xj 6=yj |x〉〈y|, and
the norm is the operator norm.

The general adversary bound for f , with costs s, is

Adv±s (f) = max
adversary matrices Γ:
∀j∈[n], ‖Γ◦∆j‖≤sj

‖Γ‖ . (2.10)
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In this maximization, the entries of Γ need not be nonnegative. In particular, Adv±s (f) ≥ Advs(f).
Letting ~1 = (1, 1, . . . , 1), the nonnegative-weight adversary bound for f is Adv(f) = Adv~1(f)

and the general adversary bound for f is Adv±(f) = Adv±~1 (f).

One special case is when sj∗ = 0 for some j∗ ∈ [n]. In this case, since Γ ◦ ∆j∗ must be zero,
letting s′ = (s1, . . . , ŝj∗ , . . . , sn) and fb be the restriction of f to inputs x with xj∗ = b, we have
Advs(f) = maxb∈C Advs′(fb) and Adv±s (f) = maxb∈C Adv±s′(fb). Provided sj > 0 for all j ∈ [n],
we can write

Advs(f) = max
adversary matrices Γ:
∀x,y∈D, 〈x|Γ|y〉≥0

min
j∈n

sj
‖Γ‖

‖Γ ◦∆j‖
(2.11)

Adv±s (f) = max
adversary matrices Γ

min
j∈n

sj
‖Γ‖

‖Γ ◦∆j‖
, (2.12)

which are the expressions used in Refs. [HLŠ05, HLŠ07]. Furthermore, Theorem 6.2 and Theo-
rem 6.4 will state dual semi-definite programs for Adv and Adv±.

The adversary bounds are primarily of interest because, with uniform costs s = ~1, they give
lower bounds on quantum query complexity.

Definition 2.5. For f : D → E, with D ⊆ Cn, let Qε(f) be the ε-bounded-error quantum query
complexity of f , Q(f) = Q1/10(f), and, when E = {0, 1}, let Q1(f) be the one-sided bounded-error
quantum query complexity.

Theorem 2.6 ([BSS03, HLŠ07]). For any function f : D → E, with D ⊆ Cn, the ε-bounded-error
quantum query complexity of f is lower-bounded as

Qε(f) ≥ 1− 2
√
ε(1− ε)
2

Adv(f)

Qε(f) ≥ 1− 2
√
ε(1− ε)− 2ε

2
Adv±(f) .

(2.13)

In particular, Q(f) = Ω(Adv±(f)). Moreover, if D = {0, 1}, then

Qε(f) ≥ 1− 2
√
ε(1− ε)
2

Adv±(f) . (2.14)

For boolean functions, the nonnegative-weight adversary bound composes multiplicatively, but
this was not known to hold for the general adversary bound [HLŠ07]:

Theorem 2.7 (Adversary bound composition [HLŠ07, Amb06, LLS06, HLŠ05]). Let f : {0, 1}n →
{0, 1} and, for j ∈ [n], let fj : {0, 1}mj → {0, 1}. Define g : {0, 1}m1 × · · · × {0, 1}mn → {0, 1} by

g(x) = f
(
f1(x1), . . . , fn(xn)

)
. (2.15)

Let s ∈ [0,∞)m1 × · · · × [0,∞)mn, and let αj = Advsj (fj) and βj = Adv±sj (fj) for j ∈ [n]. Then

Advs(g) = Advα(f) (2.16)
Adv±s (g) ≥ Adv±β (f) . (2.17)

In particular, if Advs1(f1) = · · · = Advsn(fn) = α, then Advs(g) = αAdv(f), and if Adv±s1(f1) =
· · · = Adv±sn(fn) = β, then Adv±s (g) ≥ βAdv±(f).
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Reichardt and Špalek [RŠ08] show that the adversary bounds lower-bound the witness size of
a span program:

Theorem 2.8 ([RŠ08]). For any span program P computing fP : {0, 1}n → {0, 1},

wsize(P ) ≥ Adv±(fP ) ≥ Adv(fP ) . (2.18)

There is a direct proof that wsize(P ) ≥ Adv(fP ) in [RŠ08, Sec. 5.3], but the inequality
wsize(P ) ≥ Adv±(fP ) is only implicit in [RŠ08]. The argument is as follows. Letting fk : {0, 1}nk →
{0, 1} be the k-times-iterated composition of f on itself, Q(fkP ) = Ok(wsize(P )k) by Theorem 1.1.
Now by Theorem 2.7, Adv±(f)k ≤ Adv±(fk) = O(Q(fkP )). Putting these results together and let-
ting k →∞ gives Adv±(f) ≤ wsize(P ). A full and direct proof will be given below in Theorem 6.1.

3 Example: Span programs based on one-sided-error quantum
query algorithms

Span programs have proved useful in [RŠ08] for evaluating formulas. There, span programs for
constant-size gates are composed to generate a span program for a full formula. In this section,
we give an explicit construction of asymptotically large span programs that are interesting from
the perspective of quantum algorithms and that do not arise from the composition of constant-size
span programs. We relate span program witness size to one-sided bounded-error quantum query
complexity. Theorem 7.1 below will strengthen the results in this section, but the construction
there will be less explicit.

Formally, we show:

Theorem 3.1. Consider a quantum query algorithm A that evaluates f : {0, 1}n → {0, 1}, with
bounded one-sided error on false inputs, using q queries. Then there exists a span program P
computing fP = f , with

wsize(P ) = O(q) . (3.1)

In particular, infP :fP=f wsize(P ) = O(Q1(f)).

This example should be illustrative for Definition 2.1 and Definition 2.3, but is not needed for
the rest of this article. Another nontrivial span program example is given in Appendix A.

Many known quantum query algorithms have one-sided error, as required by Theorem 3.1,
or can be trivially modified to have one-sided error. Examples include algorithms for Search,
Ordered Search, Graph Collision, Triangle Finding, and Element Distinctness. There are excep-
tions, though. For example, the formula-evaluation algorithms discussed above and implicit in
Theorem 1.1 all have bounded two-sided error. In particular, for AND-OR formula evaluation,
the algorithm from [ACR+07] outputs the formula’s evaluation but not a witness to that evalua-
tion [RŠ08, Sec. 5]. For AND-OR formula evaluation, a witness can be extracted from the λ = 0
graph eigenstate, but it is not known how far this generalizes [ACGT09]. We certainly expect that
there are functions f with bounded two-sided-error quantum query complexity, Q(f), strictly less
than the bounded one-sided-error quantum query complexity, Q1(f).

Proof of Theorem 3.1. Assume that the quantum algorithm A has a workspace of m qubits, and an
n-dimensional query register. Starting in the state |0m, 1〉, it alternates between applying unitaries
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independent of the input string x and oracle queries to x. The evolution of the system is given by

|ϕ0〉 = |0m, 1〉 V1→ |ϕ1〉 =
∑n

j=1 |ϕ1,j〉|j〉 Ox→ |ϕ2〉 =
∑n

j=1(−1)xj |ϕ1,j〉|j〉 → · · ·
· · · V2r−1→ |ϕ2r−1〉 =

∑n
j=1 |ϕ2r−1,j〉|j〉 Ox→ |ϕ2r〉 =

∑n
j=1(−1)xj |ϕ2r−1,j〉|j〉 → · · ·

· · · V2q+1→ |ϕ2q+1〉
(3.2)

Here, for r ∈ [q + 1], V2r−1 is the unitary independent of x that is applied at odd time step 2r− 1,
while Ox : |y〉|j〉 7→ (−1)xj |y〉|j〉 is the phase-flip input oracle applied at even time steps. (To allow
conditional queries, prepend a constant bit 0 to the input string x.) The state of the system after
s time steps is |ϕτ 〉 =

∑n
j=1 |ϕs,j〉 ⊗ |j〉; for s ≥ 2, these states depend on x.

On inputs x evaluating to f(x) = 1, the algorithm A does not make errors. Thus for these
x we may assume without loss of generality that |ϕ2q+1〉 = |0m, 1〉, by at most doubling the
number of queries to clean the algorithm’s workspace. On inputs evaluating to f(x) = 0, then,
|〈0m, 1|ϕ2q+1〉| ≤ ε for some ε bounded away from one.

Recall that B = {0, 1}. We construct a span program P as follows:

• The inner product space is V = C(2q+2)2m , spanned by the orthonormal basis {|s, y, j〉 : s ∈
{0, 1, . . . , 2q + 1}, y ∈ Bm, j ∈ [n]}.

• The target vector is |t〉 = −|0, 0m, 1〉+ |2q + 1, 0m, 1〉.

• There are free input vectors for each odd time step s: Ifree = {2r− 1 : r ∈ [q+ 1]}×Bm× [n],
with

|vs,y,j〉 = −|s− 1, y, j〉+ |s〉 ⊗ Vs|y, j〉 (3.3)

for (s, y, j) ∈ Ifree.

• For j ∈ [n] and b ∈ B, Ij,b = {2r : r ∈ [q]} ×Bm × [n]× {b}, with, for (s, y, j, b) ∈ Ij,b,

|vs,y,j,b〉 = −(|s− 1〉+ (−1)b|s〉)⊗ |y, j〉 . (3.4)

For analyzing this span program, it will be helpful to set up some additional notation. Let Us
be the unitary applied at time step s:

Us =

{
Vs if s is odd
Ox if s is even

(3.5)

For an input x, the available input vectors, i.e., those indexed by I(x), are then

|vs,y,j〉 := −|s, y, j〉+ |s+ 1〉 ⊗ Us+1|y, j〉 (3.6)

for all y ∈ Bm, j ∈ [n] and s = 0, 1, . . . , 2q even or odd. Let A(x) =
∑2q

s=0

∑
y,j |vs,y,j〉〈s, y, j|. Then

fP (x) = 1 if and only if |t〉 ∈ Range(A(x)).

Claim 3.2. If f(x) = 1, then fP (x) = 1 and wsize(P, x) ≤ q.
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Proof. Letting |w〉 =
∑2q

s=0 |s〉 ⊗ |ϕs〉, then

A(x)|w〉 =
2q∑
s=0

∑
y,j

|vs,y,j〉〈y, j|ϕs〉

=
2q∑
s=0

−|s〉 ⊗ |ϕs〉+ |s+ 1〉 ⊗ Us+1|ϕs〉

=
2q∑
s=0

−|s〉 ⊗ |ϕs〉+ |s+ 1〉 ⊗ |ϕs+1〉

= −|0〉 ⊗ |ϕ0〉+ |2q + 1〉 ⊗ |ϕ2q+1〉
= |t〉 ,

(3.7)

where we have used for the second equality that
∑

y,j |y, j〉〈y, j| is a resolution of the identity, and
for the third equality that Us+1|ϕs〉 = |ϕs+1〉 in order to get a telescoping series. Thus |w〉 is a
witness to fP (x) = 1. Since the input vectors |vs,y,j〉 for s even are free, the witness size is

wsize(P, x) ≤
∥∥∥∥∥
(

q∑
k=1

|2k + 1〉〈2k + 1| ⊗ 1

)
|w〉
∥∥∥∥∥

2

(3.8)

=
q∑

k=1

‖|2k + 1〉 ⊗ |ϕ2k+1〉‖2

= q .

Claim 3.3. If f(x) = 0, then fP (x) = 0 and wsize(P, x) ≤ 4q/(1− ε)2.

Proof. Let |w′〉 =
∑2q+1

s=0 |s〉⊗|ϕs〉. Then |〈t|w′〉| = |1− 〈0m, 1|ϕ2q+1〉| ≥ 1− ε > 0. Moreover, since

〈vs,y,j |(|σ〉 ⊗ |ϕσ〉) =


−〈y, j|ϕs〉 if σ = s

〈y, j|U †s+1|ϕs+1〉 = 〈y, j|ϕs〉 if σ = s+ 1
0 otherwise

(3.9)

we compute

A(x)†|w′〉 =
2q∑
s=0

2q+1∑
σ=0

∑
y,j

|s, y, j〉〈vs,y,j |(|σ〉 ⊗ |ϕσ〉) = 0 . (3.10)

Thus |w′〉 is a witness to fP (x) = 0. Now the input vectors associated with false inputs are, for
odd s between 1 and 2q−1, y ∈ {0, 1}m and j ∈ [n], |v′s,y,j〉 := −|s, y, j〉− |s+ 1〉⊗Us+1|y, j〉. Now
〈v′s,y,j |w′〉 = −〈y, j|ϕs〉 − 〈y, j|U †s+1|ϕs+1〉 = −2〈y, j|ϕs〉. The witness size therefore satisfies

(1− ε)2wsize(P, x) ≤
q∑

k=1

∑
y,j

|〈v′2k−1,y,j |w′〉|
2 (3.11)

= 4
q∑

k=1

∑
y,j

|〈y, j|ϕ2k+1〉|2

= 4q .
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After scaling the target vector appropriately—see Eq. (2.8)—Claim 3.2 and Claim 3.3 together
give wsize(P ) ≤ 2q/(1− ε), proving Theorem 3.1.

4 Span program manipulations

This section presents several useful manipulations of span programs. First, we develop span pro-
gram complementation and composition. The essential ideas for both manipulations have already
been proposed in [RŠ08], but the ideas there were not fully translated into the span program
formalism, which we do here. Section 4.2 also introduces a new construction of composed span pro-
grams, tensor-product composition, which appears be useful for designing more efficient quantum
algorithms for evaluating formulas [Rei09].

Both techniques take as inputs span programs computing certain functions and output a span
program computing a different function. In Section 4.3, we give two ways of simplifying a span
program P that do not change fP nor increase the witness size. Section 5 will present a more
dramatic simplification, though.

4.1 Span program complementation

Although Definition 2.1 seems to have asymmetrical conditions conditions for when fP (x) = 1
versus when fP (x) = 0, this is misleading. In fact, span programs can be complemented freely.
This is important for composing span programs that compute non-monotone functions.

Lemma 4.1. For every span program P , there exists a span program P †, said to be “dual” to P ,
that computes the negation of fP , fP †(x) = ¬fP (x), with witness size wsizes(P †, x) = wsizes(P, x)
for all x ∈ Bn and s ∈ [0,∞)n.

Proof. There are different constructions of dual span programs [CF02, NNP05, RŠ08]. Here we
more or less follow [RŠ08, Sec. 2.3], as the other constructions may not preserve witness size.

As in Definition 2.1, let P have target vector |t〉 and input vectors |vi〉, for i ∈ I = Ifree t⊔
j∈[n],b∈B Ij,b, in the inner product space V = Cd. Recall that A =

∑
i∈I |vi〉〈i|, I(x) = Ifree ∪⋃

j∈[n] Ij,xj and Π(x) =
∑

i∈I(x) |i〉〈i|. Let Π̃(x) =
∑

i∈I(x)rIfree
|i〉〈i|, and fix an orthonormal basis

{|k〉 : k ∈ [d]} for V .

Definition 4.2. The dual span program P †, with target vector |t′〉 and input vectors |v′k〉 for k ∈
I ′ = I ′free t

⊔
j∈[n],b∈B I

′
j,b in the inner product space V ′, is defined by:

• V ′ = C1+|I|, with orthonormal basis {|0〉} t {|i〉 : i ∈ I}.

• |t′〉 = |0〉.

• I ′free = [d], with free input vectors, for k ∈ I ′free,

|v′k〉 = (|0〉〈t|+A†)|k〉 = |0〉〈t|k〉+
∑
i∈I
|i〉〈vi|k〉 . (4.1)

• For j ∈ [n] and b ∈ B, I ′j,b = Ij,b̄ with |v′i〉 = |i〉 for i ∈ I ′j,b.
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Fix s ∈ [0,∞)n, and let A′ =
∑

k∈I′ |v′k〉〈k| = |0〉〈t| + A† +
∑

i∈IrIfree
|i〉〈i|. Let I ′(x) = I ′free ∪⋃

j∈[n] I
′
j,xj

and Π′(x) =
∑

i∈I′(x) |i〉〈i|.
If fP (x) = 1, then there exists a witness |w〉 ∈ C|I| such that AΠ(x)|w〉 = |t〉. Assume that |w〉

is an optimal witness, i.e., wsizes(P, x) = ‖S|w〉‖2 (see Definition 2.3). Let |w′〉 = |0〉 − Π(x)|w〉.
Then 〈t′|w′〉 = 1 and

A′†|w′〉 =
(
|t〉〈0|+A+

∑
i∈IrIfree

|i〉〈i|
)

(|0〉 −Π(x)|w〉)

= |t〉 −AΠ(x)|w〉 −
∑

i∈IrIfree

|i〉〈i|Π(x)|w〉

= −
(
1−

∑
i∈Ifree

|i〉〈i|
)

Π(x)|w〉 .

(4.2)

Therefore, |w′〉 is orthogonal to the available input vectors of P † (Π′(x)A′†|w′〉 = 0), implying that
|w′〉 is a witness to fP †(x) = 0. Moreover, Eq. (4.2) also implies wsizes(P, x) = ‖SA′†|w′〉‖2 ≥
wsizes(P †, x).

Conversely, if fP †(x) = 0, then there is a witness |w′〉 ∈ V ′, with 〈t′|w′〉 = 1, orthogonal to
the available input vectors of P †. Assume that |w′〉 is an optimal witness, i.e., wsizes(P †, x) =
‖SA′†|w′〉‖2. The two conditions 〈0|w′〉 = 1, and 〈i|w′〉 = 0 for all i ∈ ∪j∈[n]Ij,x̄j , imply (1 −
Π(x))|w′〉 = |0〉. The condition that |w′〉 is orthogonal to the free input vectors then implies

0 = (|t〉〈0|+A)|w′〉
= (|t〉〈0|+A)(|0〉+ Π(x)|w′〉)
= |t〉+AΠ(x)|w′〉 .

(4.3)

Thus fP (x) = 1, with witness |w〉 = −Π(x)|w′〉. Moreover, the equalities of Eq. (4.2) still hold, so
wsizes(P †, x) = ‖SΠ(x)|w〉‖2 ≥ wsizes(P, x).

So far we have shown that fP †(x) = ¬fP (x) for all x ∈ Bn. It remains to show that
wsizes(P, x) = wsizes(P †, x) in the case fP (x) = 0.

Assume that fP (x) = 0. Then there exists an optimal witness |w′〉 satisfying 〈t|w′〉 = 1,
Π(x)A†|w′〉 = 0 and wsizes(P, x) = ‖SA†|w′〉‖2. Let |w〉 = |w′〉 − (1 − Π(x))A†|w′〉. Then |w〉 is
supported only on the available input vector indices of P †; the first term, |w′〉, is supported on
I ′free, while the second term is supported only on ∪j∈[n]Ijx̄j . Furthermore,

A′|w〉 =
(
|0〉〈t|+A† +

∑
i∈IrIfree

|i〉〈i|
)

(|w′〉 − (1−Π(x))A†|w′〉)

= (|0〉〈t|+A†)|w′〉 −
( ∑
i∈IrIfree

|i〉〈i| − Π̃(x)
)
A†|w′〉

= |0〉 = |t′〉

(4.4)

since
∑

i∈IrIfree
|i〉〈i| − Π̃(x) = 1 − Π(x). Therefore |w〉 is a witness to fP †(x) = 0. Moreover, the

squared length of S
(
1 −∑k∈I′free

|k〉〈k|
)
|w〉 is ‖S(1−Π(x))A†|w′〉‖2 = ‖SA†|w′〉‖2 = wsizes(P, x),

so wsizes(P †, x) ≤ wsizes(P, x).
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To show the converse statement, wsizes(P, x) ≤ wsizes(P †, x), let Π′free =
∑

k∈I′free
|k〉〈k| be

the projection onto the free columns of A′. Let |w〉 be an optimal witness to fP †(x) = 1, i.e.,
wsizeS(P †, x) = ‖S(1−Π′free)|w〉‖

2. Then Π′(x)|w〉 =
(
Π′free +

∑
i∈I′(x)rI′free

|i〉〈i|
)
|w〉 = |w〉 and

|t′〉 = |0〉 = A′|w〉
= (|0〉〈t|+A†)Π′free|w〉+

∑
i∈I′(x)rI′free

|i〉〈i|w〉 . (4.5)

This implies that 〈t|Π′free|w〉 = 1 and also A†Π′free|w〉 +
∑

j∈n,i∈Ij,x̄j
|i〉〈i|w〉 = 0. Multiplying by

Π(x), the latter equation implies that Π(x)A†Π′free|w〉 = 0, so |w′〉 = Π′free|w〉 is a witness for
fP (x) = 0. Therefore,

wsizes(P, x) ≤ ‖SA†|w′〉‖2

=
∥∥∥S ∑

j∈[n],i∈Ij,x̄j

|i〉〈i|w〉
∥∥∥2

= ‖S(1−Π′free)|w〉‖
2

= wsizes(P †, x) .

(4.6)

Thus wsizes(P †, x) = wsizes(P, x) always.

4.2 Tensor-product and direct-sum span program composition

We will now show that the best span program witness size for a function composes sub-multiplicatively,
in the following sense:

Theorem 4.3 (Span program composition). Consider functions f : Bn → B and, for j ∈ [n],
fj : Bm → B. Let g : Bm → B be defined by

g(x) = f
(
f1(x), f2(x), . . . , fn(x)

)
. (4.7)

Let P be a span program computing fP = f and, for j ∈ [n], let Pj be a span program computing
fPj = fj.

Then there exists a span program Q computing fQ = g, and such that, for any s ∈ [0,∞)m and
rj = wsizes(Pj),

wsizes(Q) ≤ wsizer(P ) . (4.8)

In particular, wsizes(Q) ≤ wsize(P ) maxj∈[n] wsizes(Pj).

The ease with which span programs compose is one of their nicest features. To prove Theo-
rem 4.3, we will give two constructions of composed span programs, a tensor-product-composed
span program Q⊗ and a direct-sum-composed span program Q⊕, that each satisfy Eq. (4.8). The
method of composing span programs used in [RŠ08] is a special case of direct-sum composition,
but tensor-product composition is new. Below the proof of Theorem 4.3, we will define a third
composition method, reduced-tensor-product span program composition, that is closely related to
tensor-product composition.
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Of course, only one proof of Theorem 4.3 is needed, so the definitions and proofs for Q⊕

and Qr⊗ can be safely skipped over. We include here multiple composition methods because
the different constructions have different tradeoffs when it comes to designing efficient quantum
algorithms for formula evaluation. In particular, we believe that an intermediate construction, in
which some inputs are composed in a reduced-tensor-product fashion and other inputs in the direct-
sum fashion, should be useful for designing a slightly faster quantum algorithm for evaluating AND-
OR formulas [Rei09]. Appendix B gives examples of the three different span program composition
methods for AND-OR formulas, using the correspondence between span programs and bipartite
graphs that will be developed in Section 8.

Proof of Theorem 4.3. Let span program P be in inner-product space V , with target vector |t〉 and
input vectors indexed by Ifree and Ijc for j ∈ [n] and c ∈ B. For j ∈ [n], let P j1 = Pj and let P j0

be a span program computing fP j0 = ¬fP j1 with wsizes(P j0) = wsizes(P j1). Such span programs
exist by Lemma 4.1. For j ∈ [n] and c ∈ B, let P jc be in the inner product space V jc with target
vector |tjc〉 and input vectors indexed by Ijcfree and Ijckb for k ∈ [m], b ∈ B.

Some more notation will be convenient. For x ∈ Bm, let y = y(x) ∈ Bn be given by y(x)j =
fP j1(x) = fj(x) for j ∈ [n]. Thus g(x) = f(y(x)). Also let I(y)′ = I(y) r Ifree = ∪j∈[n]Ijyj . Define
ς : I r Ifree → [n]×B by ς(i) = (j, c) if i ∈ Ijc. The idea is that ς maps i to the index of the span
program that must evaluate to true in order for |vi〉 to be available.

Definition 4.4. The tensor-product-composed span program Q⊗ is defined by:

• The inner product space is V ⊗ = V ⊗⊗j∈[n],c∈B V
jc.

• The target vector is |t⊗〉 = |t〉V ⊗
⊗

j∈[n],c∈B |tjc〉V jc.

• The free input vectors are indexed by I⊗free = Ifree t
⊔
j∈[n],c∈B(Ijc × Ijcfree) with, for i ∈ I⊗free,

|v⊗i 〉 =

|vi〉V ⊗
⊗

j∈[n],c∈B |tjc〉V jc if i ∈ Ifree

|vi′〉V ⊗ |vi′′〉V jc ⊗
⊗

j′∈[n],c′∈B:
(j′,c′)6=(j,c)

|tj′c′〉V j′c′ if i = (i′, i′′) ∈ Ijc × Ijcfree
(4.9)

• The other input vectors are indexed by I⊗kb = tj∈[n],c∈B(Ijc × Ijckb) for k ∈ [m], b ∈ B. For
i ∈ Ijc, i′ ∈ Ijckb, let

|v⊗ii′〉 = |vi〉V ⊗ |vi′〉V jc ⊗
⊗

j′∈[n],c′∈B:
(j′,c′) 6=(j,c)

|tj′c′〉V j′c′ . (4.10)

Definition 4.5. The direct-sum-composed span program Q⊕ is defined by:

• The inner product space is V ⊕ = V ⊕⊕j∈[n],c∈B(CIjc ⊗ V jc). Any vector in V ⊕ can be
uniquely expressed as |u〉V +

∑
i∈IrIfree

|i〉 ⊗ |ui〉, where |u〉 ∈ V and |ui〉 ∈ V ς(i).

• The target vector is |t⊕〉 = |t〉V .
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• The free input vectors are indexed by I⊕free = I t⊔j∈[n],c∈B(Ijc × Ijcfree) with, for i ∈ I⊕free,

|v⊕i 〉 =


|vi〉V if i ∈ Ifree

|vi〉V − |i〉 ⊗ |tjc〉 if i ∈ Ijc
|i′〉 ⊗ |vi′′〉 if i = (i′, i′′) ∈ Ijc × Ijcfree

(4.11)

• The other input vectors are indexed by I⊕kb = tj∈[n],c∈B(Ijc × Ijckb) for k ∈ [m], b ∈ B. For
i ∈ Ijc, i′ ∈ Ijckb, let

|v⊕ii′〉 = |i〉 ⊗ |vi′〉 . (4.12)

For x ∈ Bm, the indices of the available input vectors for Q⊗ and Q⊕ are

I⊗(x) = Ifree ∪
⋃

j∈[n],c∈B

Ijc × Ijc(x) (4.13)

I⊕(x) = I ∪
⋃

j∈[n],c∈B

Ijc × Ijc(x) . (4.14)

Note that if Ifree = Ijcfree = ∅ for j ∈ [n] and c ∈ B, then Q⊗ has no free input vectors either,
I⊗free = ∅.

Assume g(x) = fP (y(x)) = 1. Then we have witnesses |w〉 ∈ CI and |wjyj 〉 ∈ CIjyj , for j ∈ [n],
such that

|t〉 =
∑
i∈I(y)

wi|vi〉

|tjyj 〉 =
∑

i∈Ijyj (x)

w
jyj
i |vi〉 ,

(4.15)

and such that wsizer(P, y) = ‖R|w〉‖2 (where, analogous to the definition of S in Definition 2.3,
R =

∑
j∈[n],c∈B,i∈Ijc

√
rj |i〉〈i|) and wsizes(P jyj , x) = ‖S|wjyj 〉‖2.

Let |w⊗〉 ∈ CI⊗(x) be

w⊗i =


wi if i ∈ Ifree

wi′w
ς(i′)
i′′ if i = (i′, i′′) with i′ ∈ I(y)′, i′′ ∈ Iς(i′)(x)

0 otherwise

(4.16)

Then∑
i∈I⊗(x)

w⊗i |v⊗i 〉 =
∑
i∈Ifree

wi|vi〉V ⊗
⊗

j∈[n],c∈B

|tjc〉V jc +
∑

i∈I(y)′,

i′∈Iς(i)(x)

wi|vi〉V ⊗ w
ς(i)
i′ |vi′〉V ς(i) ⊗

⊗
j∈[n],c∈B:
(j,c)6=ς(i)

|tjc〉V jc

=
∑
i∈I(y)

wi|vi〉V ⊗
⊗

j∈[n],c∈B

|tjc〉V jc

= |t⊗〉 , (4.17)

so indeed fQ⊗(x) = 1.
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Let |w⊕〉 ∈ CI⊕(x) be

w⊕i =


wi if i ∈ I(y)

wi′w
ς(i′)
i′′ if i = (i′, i′′) with i′ ∈ I(y)′, i′′ ∈ Iς(i′)(x)

0 otherwise

(4.18)

Then ∑
i∈I⊕(x)

w⊕i |v⊕i 〉 =
∑
i∈Ifree

wi|vi〉V +
∑
i∈I(y)′

wi
(
|vi〉V − |i〉 ⊗ |tς(i)〉

)
+

∑
i∈I(y)′,

i′∈Iς(i)(x)

wiw
ς(i)
i′ |i〉 ⊗ |vi′〉

=
∑
i∈I(y)

wi|vi〉V +
∑
i∈I(y)′

wi|i〉 ⊗
[
− |tς(i)〉+

∑
i′∈Iς(i)(x)

w
ς(i)
i′ |vi′〉

]
= |t〉V = |t⊕〉 , (4.19)

so indeed fQ⊕(x) = 1.
Moreover,

‖S|w⊗〉‖2 = ‖S|w⊕〉‖2 =
∑

j∈[n],i∈Ijyj ,

k∈[m],i′∈I
jyj
kxk

sk|wiwjyji′ |2

=
∑
i∈I(y)′

wsizes(P ς(i), x)|wi|2

= wsizer(P, y) ,

(4.20)

so wsizes(Q⊗, x) = wsizes(Q⊕, x) ≤ wsizer(P, y).
Now assume that g(x) = fP (y) = 0. Then we have witnesses |u〉 ∈ V and |ujȳj 〉 ∈ V jȳj , for

j ∈ [n], such that 〈t|u〉 = 〈tjȳj |ujȳj 〉 = 1, 〈vi|u〉 = 0 for i ∈ I(y), 〈vi|ujȳj 〉 = 0 for i ∈ Ijȳj (x),
wsizer(P, y) =

∑
j∈[n],i∈Ijȳj

rj |〈vi|u〉|2 and wsizes(P jȳj , x) =
∑

k∈[m],i∈I
jȳj
kx̄k

sk|〈vi|ujȳj 〉|2.

Let

|u⊗〉 = |u〉V ⊗
⊗
j∈[n]

(
|ujȳj 〉

V jȳj
⊗ |t

jyj 〉
V jyj

‖|tjyj 〉‖2

)
. (4.21)

Then 〈t⊗|u⊗〉 = 1. For i ∈ Ifree, 〈v⊗i |u⊗〉 = 0 since 〈vi|u〉 = 0, and similarly for i ∈ Ijyj ,
i′ ∈ Ijyj (x), 〈v⊗i,i′ |u⊗〉 = 0. We also have that for j ∈ [n], i ∈ Ijȳj and i′ ∈ Ijȳj (x), 〈v⊗ii′ |u⊗〉 = 0,
since 〈vi′ |ujȳj 〉 = 0. Thus 〈v⊗i |u⊗〉 = 0 for all i ∈ I⊗(x), so |u⊗〉 is a witness for fQ⊗(x) = 0.
Moreover,

wsizes(Q⊗, x) ≤
∑

j∈[n],c∈B,i∈Ijc,
k∈[m],i′∈Ijckx̄k

sk|〈v⊗ii′ |u⊗〉|2

=
∑

j∈[n],i∈Ijȳj ,

k∈[m],i′∈I
jȳj
kx̄k

sk|〈v⊗ii′ |u⊗〉|2 , (4.22)
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where we have used 〈v⊗ii′ |u⊗〉 = 0 for i ∈ I(y), since 〈vi|u〉 = 0,

=
∑

i∈IrI(y),

k∈[m],i′∈Iς(i)kx̄k

sk

∣∣∣∣∣
[
〈vi|V ⊗ 〈vi′ |V ς(i) ⊗

⊗
j∈[n],c∈B:
(j,c)6=ς(i)

〈tjc|V jc
]

·
[
|u〉V ⊗

⊗
j∈[n]

(
|ujȳj 〉

V jȳj
⊗ |t

jyj 〉
V jyj

‖|tjyj 〉‖2

)]∣∣∣∣∣
2

=
∑

i∈IrI(y),

k∈[m],i′∈Iς(i)kx̄k

sk|〈vi|u〉|2 · |〈vi′ |uς(i)〉|2

=
∑

i∈IrI(y)

wsizes(P ς(i), x)|〈vi|u〉|2

= wsizer(P, y) , (4.23)

where we have substituted the definitions of |v⊗ii′〉 and |u⊗〉, and used 〈tjȳj |ujȳj 〉 = 1. We conclude
that fQ⊗ = g and wsizes(Q⊗) ≤ wsizer(P ).

Let
|u⊕〉 = |u〉V +

∑
i∈IrI(y)

〈vi|u〉|i〉 ⊗ |ui〉 . (4.24)

Then 〈t⊕|u⊕〉 = 1. For i ∈ I⊕free, 〈v⊕i |u⊕〉 = 0. Indeed, this follows for i ∈ I(y) since 〈vi|u〉 = 0,
and it holds for i ∈ I r I(y) since (〈vi|V − 〈i| ⊗ 〈tς(i)|)(|u〉V + 〈vi|u〉|i〉 ⊗ |ui〉) = 0. |u⊕〉 is clearly
orthogonal to the entire subspace |i〉 ⊗ V ς(i) for i ∈ I(y). Finally, for i ∈ I r I(y) and i′ ∈ Iς(i)(x),
〈v⊕ii′ |u⊕〉 = 0 since 〈vi′ |ui〉 = 0. Thus 〈v⊕i |u⊕〉 = 0 for all i ∈ I⊕(x), so |u⊕〉 is a witness for
fQ⊕(x) = 0. Moreover,

wsizes(Q⊕, x) ≤
∑

i∈IrIfree

k∈[m],i′∈Iς(i)kx̄k

sk|〈v⊕ii′ |u⊕〉|2

=
∑

i∈IrI(y)

k∈[m],i′∈Iς(i)kx̄k

sk
∣∣(〈i| ⊗ 〈vi′ |)(〈vi|u〉|i〉 ⊗ |ui〉)∣∣2

=
∑

i∈IrI(y)

k∈[m],i′∈Iς(i)kx̄k

sk|〈vi|u〉|2|〈vi′ |ui〉|2

=
∑

i∈IrI(y)

wsizes(P ς(i), x)|〈vi|u〉|2

= wsizer(P, y) . (4.25)

We conclude that fQ⊕ = g and wsizes(Q⊕) ≤ wsizer(P ).

Tensor-product composition is somewhat extravagant in the dimension of the final inner product
space. This is not a particular concern theoretically, since a set ofm vectors can always be embedded
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isometrically in at most m dimensions. However, it can be convenient to have an explicit isometric
embedding of the composed span program’s vectors into a lower dimensional space. The “reduced”
tensor-product span program composition, which we will define next, is such an embedding. It
is particularly effective when the outer span program has many zero entries in its input vectors.
Canonical span programs, defined below in Section 5, are good examples.

As in the setup for Theorem 4.3, consider functions f : Bn → B and, for k ∈ [n], fk : Bm → B.
Let g : Bm → B be defined by

g(x) = f
(
f1(x), f2(x), . . . , fn(x)

)
. (4.26)

Let P be a span program computing fP = f and, for j ∈ [n], let Pj be a span program computing
fPj = fj .

Let span program P be in inner-product space V , with target vector |t〉 and input vectors
indexed by Ifree and Ijc for j ∈ [n] and c ∈ B. For j ∈ [n], let P j1 = Pj and let P j0 be a span
program computing fP j0 = ¬fP j1 with wsizes(P j0) = wsizes(P j1). For j ∈ [n] and c ∈ B, let P jc

be in the inner product space V jc with target vector |tjc〉 and input vectors indexed by Ijcfree and
Ijckb for k ∈ [m], b ∈ B.

Let d = dim(V ) and {|l〉 : l ∈ [d]} be an orthonormal basis for V .

Definition 4.6. The tensor-product-composed span program, reduced with respect to the basis {|l〉 :
l ∈ [d]}, is Qr⊗, defined by:

• For l ∈ [d], let Zl = {(j, c) ∈ [n]×B : ∀ i ∈ Ijc, 〈l|vi〉 = 0}, and let πl =
∏

(j,c)∈Zl ‖|t
jc〉‖.

• The inner product space of Qr⊗ is V r⊗ =
⊕

l∈[d]

(⊗
(j,c)/∈Zl V

jc
)
. Any vector |v〉 ∈ V r⊗ can

be uniquely expressed as
∑

l∈[d] |l〉 ⊗ |vl〉, where |vl〉 ∈
⊗

(j,c)/∈Zl V
jc.

• The target vector is
|tr⊗〉 =

∑
l∈[d]

〈l|t〉|l〉πl ⊗
⊗

(j,c)/∈Zl

|tjc〉V jc . (4.27)

• The free input vectors are indexed by Ir⊗free = I⊗free = Ifree t
⊔
j∈[n],c∈B(Ijc × Ijcfree) with, for

i ∈ Ir⊗free,

|vr⊗i 〉 =


∑

l∈[d] 〈l|vi〉|l〉πl ⊗
⊗

(j,c)/∈Zl |t
jc〉V jc if i ∈ Ifree∑

l∈[d] 〈l|vi′〉|l〉πl ⊗ |vi′′〉V jc ⊗
⊗

(j′,c′)/∈Zl:
(j′,c′)6=(j,c)

|tj′c′〉V j′c′ if i = (i′, i′′) ∈ Ijc × Ijcfree

(4.28)

• The other input vectors are indexed by Ir⊗kb = I⊗kb = tj∈[n],c∈B(Ijc × Ijckb) for k ∈ [m], b ∈ B.
For i ∈ Ijc, i′ ∈ Ijckb, let

|vr⊗ii′ 〉 =
∑
l∈[d]

〈l|vi〉|l〉πl ⊗ |vi′〉V jc ⊗
⊗

(j′,c′)/∈Zl:
(j′,c′)6=(j,c)

|tj′c′〉V j′c′ . (4.29)

For example, if P is a canonical span program—see Definition 5.1 below—with {|x〉 : x ∈
Bn, fP (x) = 0} an orthonormal basis for V , then for each x with fP (x) = 0, {(j, xj) : j ∈ [n]} ⊆ Zx.
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Proposition 4.7. The span program Qr⊗ computes fQr⊗ = g, and, for any s ∈ [0,∞)m,

wsizes(Qr⊗) ≤ wsizeσ(P ) , (4.30)

where σj = wsizes(Pj) for j ∈ [n]. In particular, wsizes(Qr⊗) ≤ wsize(P ) maxj∈[n] wsizes(Pj).

Proof. Rather than repeat the proof of Theorem 4.3, it is enough to note that the input vectors of
Qr⊗ are in one-to-one correspondence with the input vectors of Q⊗, and that the lengths of, and
angles between, corresponding vectors are preserved. Therefore, fQr⊗ = fQ⊗ and for all s ∈ [0,∞)n

and x ∈ Bn, wsizes(Qr⊗, x) = wsizes(Q⊗, x).

To conclude this section, let us remark that the composed span programs Q⊕, Q⊗ and Qr⊗

from Theorem 4.3 and Definition 4.6 are optimal under certain conditions.

Corollary 4.8. In Theorem 4.3, assume that the functions fj, j ∈ [n], depend on disjoint sets of the
input bits. Assume also that the span programs Pj have witness sizes rj = wsizes(Pj) = Adv±s (fj)
and that P has witness size wsizer(P ) = Adv±r (f). (By Theorem 2.8, these witness sizes are
optimal.) Then the composed span program Q satisfies

wsizes(Q) = Adv±s (g) = Adv±r (f) , (4.31)

which is optimal.

Proof. We have the inequalities

Adv±r (f) ≤ Adv±s (g)
≤ wsizes(Q)
≤ wsizer(P )
= Adv±r (f) ,

(4.32)

where the three inequalities are from Theorem 2.7, Theorem 2.8 and Theorem 4.3, respectively.
Therefore, all inequalities are equalities, and Eq. (4.31) follows.

Theorem 6.1 below will show that a span program P has optimal witness size with costs s among
all span programs computing fP if and only if wsizes(P ) = Adv±s (fP ). Therefore, Corollary 4.8
says that Q is optimal if the input span programs are optimal and the fj depend on disjoint sets
of the input bits.

4.3 Strict and real span programs

For searching for span programs with optimal witness size, it turns out that Definition 2.1 is more
general than necessary. In fact, it suffices to consider span programs over the reals R, and without
any free input vectors.

Definition 4.9. Let P be a span program.

• P is strict if it has no free input vectors, i.e., Ifree = ∅.

• P is real if in a basis for V the coefficients of the input and target vectors are all real numbers.
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• P is monotone if Ij,0 = ∅ for all j ∈ [n].

As remarked in Section 2.1, [KW93] considered only strict span programs.

Proposition 4.10. For any span program P , there exists a strict span program P ′ with fP ′ = fP
and wsizes(P ′, x) = wsizes(P, x) for all s ∈ [0,∞)n and x ∈ Bn.

Proof. Construct P ′ by projecting P ’s target vector |t〉 and input vectors {|vi〉 : i ∈ I r Ifree} to
the space orthogonal to the span of the free input vectors. That is, let ∆free be the projection onto
the space orthogonal to Span({|vi〉 : i ∈ Ifree}). Then the target vector of P ′ is ∆free|t〉 and the
input vectors are {∆free|vi〉 : i ∈ I r Ifree}.

Then fP ′ = fP . Indeed, if fP (x) = 1, i.e., |t〉 = AΠ(x)|w〉 for some witness |w〉, then |w〉 is also
a witness for fP ′(x) = 1. Conversely, if fP ′(x) = 1, i.e., for some |w〉, ∆free|t〉 = ∆freeAΠ(x)|w〉,
then |t〉 −AΠ(x)|w〉 ∈ Range({|vi〉 : i ∈ Ifree}), so fP (x) = 1.

Now fix s ∈ [0,∞)n. We claim that wsizes(P ′, x) = wsizes(P, x) for all x ∈ Bn.
First, if fP (x) = 0, then by Definition 2.3,

wsizes(P, x) = min
|w′〉:〈t|w′〉=1

Π(x)A†|w′〉=0

‖SA†|w′〉‖2

= min
|w′〉:〈t|w′〉=1

Π(x)A†|w′〉=0

∆free|w′〉=|w′〉

‖SA†|w′〉‖2

= min
|w′〉:〈t|∆free|w′〉=1

Π(x)A†∆free|w′〉=0

‖SA†∆free|w′〉‖
2

= wsizes(P ′, x) ,

(4.33)

where the second equality is because Π(x)A†|w′〉 = 0 implies in particular that 〈vi|w′〉 = 0 for all
i ∈ Ifree.

If fP (x) = 1, then let Πfree =
∑

i∈Ifree
|i〉〈i| and Π′(x) = Π(x) − Πfree =

∑
i∈I(x)rIfree

|i〉〈i|. We
have

wsizes(P, x) = min
|w〉:AΠ(x)|w〉=|t〉

‖SΠ′(x)|w〉‖2

= min
|w〉:Π′(x)|w〉=|w〉

A|w〉−|t〉∈Range(AΠfree)

‖S|w〉‖2 (4.34)

= min
|w〉:∆freeAΠ′(x)|w〉=∆free|t〉

‖S|w〉‖2

= wsizes(P ′, x) .

Span programs may also be taken to be real without harming the witness size:

Lemma 4.11. For any span program P , there exists a real span program P ′ computing the same
function fP ′ = fP , with wsizes(P ′, x) ≤ wsizes(P, x) for every cost vector s ∈ [0,∞)n and x ∈ Bn.

Proof. Let i =
√
−1. For a complex number c ∈ C, let <(c),=(c) ∈ R denote its real and imaginary

parts, c = <(c) + =(c)i. Extend this definition entry-wise to complex vectors: for v ∈ Cl, let
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<(v) = (<(v1), . . . ,<(vl)) and =(v) = (=(v1), . . . ,=(vl)). Furthermore, define R : Cl → Rl ⊗R2

by
R(v) = <(v)⊗ |0〉+ =(v)⊗ |1〉 . (4.35)

Note that this map satisfies, for any vector v ∈ Cl and any scalar c ∈ C, ‖R(v)‖ = ‖v‖ and

R(c v) = <(c)R(v) + =(c)R(iv) . (4.36)

Let P have target vector |t〉, and input vectors |vι〉 for ι ∈ I = Ifree t
⊔
j∈[n],b∈B Ij,b. Fix an

arbitrary orthonormal basis for P ’s inner product space V .
Let the inner product space for P ′ be V ′ = V ⊗C2. Let P ′’s target vector be |t′〉 = R(|t〉), and

its input vectors be indexed by I ′ = I × B, such that for any x ∈ Bn, the set of available input
vectors is indexed by I ′(x) = I(x)×B. That is, I ′free = Ifree ×B and I ′j,b = Ij,b ×B for j ∈ [n] and
b ∈ B. For (ι, b) ∈ I ′ = I ×B, let the corresponding input vector be

|vι,b〉 = R(ib|vι〉) =

{
<(|vι〉)⊗ |0〉+ =(|vι〉)⊗ |1〉 if b = 0
−=(|vι〉)⊗ |0〉+ <(|vι〉)⊗ |1〉 if b = 1

(4.37)

Fix a cost vector s ∈ [0,∞)n. Let A =
∑

ι∈I |vι〉〈ι|, A′ =
∑

(ι,b)∈I′ |vι,b〉〈ι, b| and Π(x) =∑
ι∈I(x) |ι〉〈ι|.
The most interesting case to check is when fP ′(x) = 0. Let |w′〉 be an optimal witness, i.e.,

〈w′|t′〉 = 1, (Π(x)⊗1)A′†|w′〉 = 0 and wsizes(P ′, x) = ‖(Π(x)⊗ 1)A′†|w′〉‖2. Then since the entries
of P ′’s target and input vectors are real, <(|w′〉) is also a witness for fP ′(x) = 0, with equal or
better witness size, so assume that |w′〉 = <(|w′〉). Let |w〉 be such that R(|w〉) = |w′〉. Then
<(〈w|t〉) = 〈w′|t′〉 = 1 so |〈w|t〉| ≥ 1; there may be a nonzero imaginary part to 〈w|t〉. Also,
A′†|w′〉 = R(A†|w〉), so |w〉 is a witness for fP (x) = 0 and ‖(S ⊗ 1)A′†|w′〉‖2 = ‖SA†|w〉‖2. Hence
wsizes(P, x) ≤ wsizes(P ′, x)/|〈w|t〉| ≤ wsizes(P ′, x).

The arguments in the other cases are similar. In every case, witnesses for P and for P ′ have a
simple correspondence. If |w〉 is a witness for fP (x) = b ∈ B, then |w′〉 = R(|w〉) will be a witness
for fP ′(x) = b. If |w′〉 is a witness for fP ′(x) = b, then so is <(|w′〉), and letting |w〉 be such that
R(|w〉) = <(|w′〉), |w〉 will be a witness for fP (x) = b. We omit the details.

Lemma 4.11 implies that there would have been no loss in generality in defining span programs
over R instead of over C. In some cases, though, it is convenient to work over C to have smaller
span programs. For example, [RŠ08] gives a span program for the three-majority function with
three input vectors and optimal witness size two, and one can verify that this is impossible for span
programs over R.

The idea of the construction in Lemma 4.11 is essentially to replace every entry a of A =∑
i∈I |vi〉〈i| by the 2 × 2 block

(<a −=a
=a <a

)
to simulate multiplication of complex numbers over the

reals. The proof can be slightly simplified by assuming, without loss of generality, that |t〉 = |1〉,
a basis vector for V . We have avoided doing so, though, in order to illustrate a special case of
how span programs can be defined over matrices. For j, k, l ∈ N, Definition 2.1 and Definition 2.3
naturally extend to allowing the target to be a vector of j × l matrices and the input vectors to
have entries that are j × k matrices. The program evaluates to 1 if there exists a way of summing
available input vectors multiplied by k × l matrices to reach the target. Provided that an entry-
wise matrix inner product is used in the generalization of Definition 2.3, such programs can be
simulated over R without changing the witness size. This generalization can be useful for finding
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span programs when we would like to work with a higher-dimensional representation of a function’s
symmetry group. For example, this technique has been used to find an optimal span program for
a Hamming-weight threshold function in [RŠ08, Example 5.1].

Let us conclude this section with one last span program manipulation:

Lemma 4.12. For P a span program and M any invertible linear transformation on P ’s inner
product space V , fP and the witness size of P are invariant under applying M to the target vector
and all input vectors.

Proof. Let P ′ be the span program in which M has been applied to P ’s target and input vectors.
The claim is that for all x ∈ Bn and s ∈ [0,∞)n, fP ′(x) = fP (x) and wsizes(P, x) = wsizes(P ′, x).
Indeed, the conditions AΠ(x)|w〉 = |t〉 and (MA)Π(x)|w〉 = M |t〉 are equivalent. This implies that
fP = fP ′ and, when fP (x) = 1, wsizes(P, x) = wsizes(P ′, x), by definition Eq. (2.5). To finish the
proof, note that when fP (x) = 0,

min
|w′〉:〈t|w′〉=1

Π(x)A†|w′〉=0

‖SA†|w′〉‖2 = min
|w′〉:〈t|M†|w′〉=1

Π(x)(MA)†|w′〉=0

‖S(MA)†|w′〉‖2 (4.38)

by the change of variables |w′〉 →M †|w′〉. By Eq. (2.6), wsizes(P, x) = wsizes(P ′, x).

5 Canonical span programs

For every function f : Bn → B, there exists a span program P computing fP = f . Indeed, one
can, for example, expand f into a circuit that uses OR gates and NOT gates. Each OR gate can
be implemented by a trivial span program with |t〉 = |vi〉 = (1) ∈ C. Appealing to Lemma 4.1
to negate this span program, and using Theorem 4.3 to compose the span programs following the
circuit, gives a span program for f . However, this naive span program will generally not have
the optimal witness size among all span programs computing f . Moreover, there is considerable
freedom in the definition of span programs, so unless f is very simple, it can be quite difficult to
find an optimal span program.

In this section we prove that it suffices to search over span programs with a restricted form,
so-called canonical span programs. Combined with Lemma 4.11, this implies that it suffices to look
for real, canonical span programs. In Section 6, we will develop a semi-definite program, inspired by
this reduction, for computing the optimal span program for a function. Canonical span programs
were originally defined by Karchmer and Wigderson [KW93], but their significance for developing
quantum algorithms was not at first appreciated.

Definition 5.1 (Canonical span program [KW93]). Let P be a span program computing fP : Bn →
B, with inner product space V , target vector |t〉 and input vectors |vi〉 for i ∈ Ifree t

⊔
j∈[n],b∈B Ij,b.

P is canonical if:

• Ifree = ∅. Thus P is strict (Definition 4.9).

• V = CF0 where F0 = {x ∈ Bn : fP (x) = 0}.

• In the orthonormal basis {|x〉 : x ∈ F0} for V , the target |t〉 is given by |t〉 =
∑

x∈F0
|x〉, and

• For all x ∈ F0, j ∈ [n] and i ∈ Ij,xj , 〈x|vi〉 = 0.
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Theorem 5.2. For any cost vector s ∈ [0,∞)n, a span program P can be converted to a canonical
span program P̂ that computes the same function fP̂ = fP , with wsizes(P̂ , x) ≤ wsizes(P, x) for
all x ∈ Bn. In fact, for all x ∈ Bn with fP (x) = 0, wsizes(P̂ , x) = wsizes(P, x), with |x〉 itself an
optimal witness for fP̂ (x) = 0.

Moreover, P̂ uses the same input vector index sets Ij,b as P , so in particular if P is monotone
then P̂ is also monotone. If P is real, then so is P̂ .

Proof. This theorem is analogous to [KW93, Theorem 6], and we use the same conversion procedure,
except we additionally analyze the witness size.

Let P have target vector |t〉 ∈ V and input vectors |vi〉 for i ∈ I = Ifree ∪
⋃
j∈[n],b∈B Ij,b. Recall

the definitions A =
∑

i∈I |vi〉〈i|, I(x) = Ifree ∪
⋃
j∈[n] Ij,xj and Π(x) =

∑
i∈I(x) |i〉〈i|. Fix s ∈ [0,∞)n

and let S =
∑

j∈[n],b∈B,i∈Ij,b
√
sj |i〉〈i|.

For x ∈ Bn, let |w(x)〉 or |w′(x)〉 be optimal witnesses for fP (x) being 1 or 0, respectively, with
costs s. That is, let

|w(x)〉 = arg min|w〉:AΠ(x)|w〉=|t〉‖S|w〉‖2 if fP (x) = 1

|w′(x)〉 = arg min |w′〉:〈t|w′〉=1

Π(x)A†|w′〉=0

‖SA†|w′〉‖2 if fP (x) = 0 (5.1)

(See [RŠ08, Lemma A.3] for explicit formulas for |w(x)〉 and |w′(x)〉.)
Let F0 = {x ∈ Bn : fP (x) = 0}. To construct P̂ from P , simply apply to P ’s target and input

vectors the map
∑

x∈F0
|x〉〈w′(x)| ∈ L(V,CF0). Then

• The target vector becomes |t̂〉 =
∑

x∈F0
|x〉〈w′(x)|t〉 =

∑
x∈F0

|x〉 ∈ CF0 , as required for a
canonical span program. The input vectors become, for i ∈ I, |v̂i〉 =

∑
x∈F0

|x〉〈w′(x)|vi〉.
• For any x ∈ F0 and i ∈ I(x), since 〈w′(x)|vi〉 = 0, 〈x|v̂i〉 = 0.

• In particular, for i ∈ Ifree, 〈x|v̂i〉 = 0 for all x ∈ F0. Thus |v̂i〉 = 0, so the free input vectors
may be discarded.

Therefore P̂ is a canonical span program. P̂ is monotone if P is monotone, and P̂ is real if P is
real.

Let Â =
∑

i∈I |v̂i〉〈i| =
∑

x∈F0
|x〉〈w′(x)|A.

For x ∈ F0, note that 〈t̂|x〉 = 1 and

Â†|x〉 = A†|w′(x)〉 . (5.2)

In particular, Π(x)Â†|x〉 = 0, so |x〉 is a witness for fP̂ (x) = 0. Also, wsizes(P̂ , x) ≤ ‖SÂ†|x〉‖2 =
‖SA†|w′(x)〉‖2 = wsizes(P, x). In fact, |x〉 is an optimal witness for fP̂ (x) = 0. Indeed, assume
otherwise, and let |û〉 =

∑
y∈F0

ûy|y〉 satisfy 〈t̂|û〉 =
∑

y∈F0
ûy = 1, Π(x)Â†|û〉 = 0 and ‖SÂ†|û〉‖2 <

‖SÂ†|x〉‖2. Let |u〉 =
∑

y∈F0
ûy|w′(y)〉, so A†|u〉 = Â†|û〉. Then 〈t|u〉 = 1, Π(x)A†|u〉 = 0, and

‖SA†|u〉‖2 = ‖SÂ†|û〉‖2 < wsizes(P, x), a contradiction.
Next consider an x ∈ Bn such that fP (x) = 1. Then

ÂΠ(x)|w(x)〉 =
∑
y∈F0

|y〉〈w′(y)|AΠ(x)|w(x)〉

=
∑
y∈F0

|y〉〈w′(y)|t〉

= |t̂〉 .

(5.3)
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Thus |w(x)〉 is a witness for fP̂ (x) = 1, and wsizes(P̂ , x) ≤ ‖S|w(x)〉‖2 = wsizes(P, x).

Note that the canonical span program P̂ from Theorem 5.2 depends on the cost vector s. In
contrast, the strict span program P ′ from Proposition 4.10 has witness size equal to that of P for
all s ∈ [0,∞)n.

6 Span program witness size and the general adversary bound

In this section, we will use Theorem 5.2 to formulate a semi-definite program (SDP) for the optimal
span program computing a boolean function f . Remarkably, this SDP turns out to be exactly the
dual of the SDP that defines the general adversary bound for f (Definition 2.4). Thus the optimal
span program witness size is exactly equal to the general adversary bound. This result has several
corollaries, in quantum algorithms and in complexity theory, that we give in Section 7.

This result may be somewhat surprising, because the optimal span programs known previously
were all for functions f with Adv(f) = Adv±(f) [RŠ08]. It is not clear why earlier attempts to
find optimal span programs did not succeed for any function f with Adv(f) < Adv±(f).

Theorem 6.1. For any function f : D → B, with D ⊆ Bn, and any cost vector s ∈ [0,∞)n,

inf
P : fP |D=f

wsizes(P,D) = Adv±s (f) , (6.1)

where the infimum is over span programs P that compute a function agreeing with f on D. More-
over, this infimum is achieved.

Before proving Theorem 6.1, let us show the following dual characterization of the general
adversary bound:

Theorem 6.2. For finite sets D ⊆ Cn, and E, let f : D → E, and let s ∈ [0,∞)n be a vector of
nonnegative costs. If either C = {0, 1} or E = {0, 1}, then the general adversary bound for f , with
costs s, equals

Adv±s (f) = min
X�0:

∀(x,y)∈F,
P
j∈[n]:xj 6=yj

〈x,j|X|y,j〉=1

max
x∈D

∑
j∈[n]

sj〈x, j|X|x, j〉 . (6.2)

Here X is required to be a positive semi-definite, (n|D|) × (n|D|) matrix, with coordinates labeled
by D × [n], and F = {(x, y) ∈ D ×D : f(x) 6= f(y)}. The optimum is achieved.

Proof. The proof is by a standard application of duality theory to the semi-definite program given
in Definition 2.4. Nonetheless, this expression for Adv±s (f) is new, and is somewhat simpler than
the expression that was known before, Eq. (6.6) below. Therefore we include a proof, based on the
following immediate observation:

Claim 6.3. Let M =
∑

j,k∈[m]Mjk|j〉〈k| ∈ L(C[m]) be an m ×m Hermitian matrix. Assume that
either M is entry-wise nonnegative, i.e., Mjk ≥ 0 for all j, k ∈ [m], or that M is bipartite, i.e., for
some l ∈ [m− 1], M =

∑
j≤l,k>l(Mjk|j〉〈k|+Mkj |k〉〈j|). Then M � 1 if and only if ‖M‖ ≤ 1.
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Taking the dual of the SDP on the right-hand side of Eq. (6.2), we obtain

max
Γ̃=

P
F αxy |x〉〈y|
{βx≥0}

∑
F

αxy such that
∑
x

βx ≤ 1, ∀j, Γ̃j � sj
∑
x

βx|x〉〈x| . (6.3)

Here Γ̃j = Γ̃ ◦∆j =
∑

x,y∈D:xj 6=yj |x〉〈x|Γ̃|y〉〈y| as in Definition 2.4. Also, Γ̃j � sj
∑

x βx|x〉〈x| means

that the difference (sj
∑

x∈D βx|x〉〈x|) − Γ̃j is a positive semi-definite matrix. In particular, this
constraint implies that if sj = 0 then αxy = 0 for all x, y with xj 6= yj ; and that if αxy 6= 0, then
βx > 0 and βy > 0.

Thus we can change variables, letting Γ =
∑

(x,y)∈∆:αxy 6=0
αxy√
βxβy
|x〉〈y|. Like Γ̃, Γ can vary

over the set of adversary matrices, i.e., symmetric matrices supported only on those |x〉〈y| with
f(x) 6= f(y). The objective function becomes

∑
F 〈x|Γ|y〉

√
βxβy, and, for j ∈ [n], the constraint

on Γ̃j becomes Γj � sj1, where Γj = Γ ◦∆j .
Now if C = {0, 1}, then the matrices ∆j are bipartite—perhaps in a permuted basis—so each

Γj is also bipartite. If E = {0, 1}, then Γ is bipartite since it is supported only on F . In either
case, by Claim 6.3 the condition Γj � sj1 is equivalent to ‖Γj‖ ≤ sj . Therefore, after changing
variables, the SDP becomes

max
adversary matrices Γ

{βx≥0}

∑
F

〈x|Γ|y〉
√
βxβy such that

∑
x

βx ≤ 1, ∀j, ‖Γj‖ ≤ sj . (6.4)

Since any negative signs on the coordinates of the principal eigenvector of Γ can be absorbed into
the matrix, without affecting the norms of the Γj , the objective function in Eq. (6.4) simplifies
to ‖Γ‖, so we obtain Adv±(f). Since the dual SDP in Eq. (6.3) is clearly strictly feasible, by
the duality principle [Lov03, Theorem 3.4] the primal optimum equals the dual optimum and the
primal optimum is achieved. Eq. (6.2) follows.

For completeness, we state without proof the dual forms of the adversary bounds for the case
of functions without a binary input alphabet or boolean codomain:

Theorem 6.4. For finite sets D ⊆ Cn, and E, let f : D → E, and let s ∈ [0,∞)n. Let F =∑
x,y∈D: f(x)6=f(y) |x〉〈y|. As in Definition 2.4, let ∆j =

∑
x,y∈D:xj 6=yj |x〉〈y| for j ∈ [n], and let ◦

denote entry-wise matrix multiplication.
Then the nonnegative-weight adversary bound for f , with costs s, equals

Advs(f) = min
Xj�0:P

j Xj◦∆j◦F≥F

max
x∈D

∑
j∈[n]

sj〈x|Xj |x〉 . (6.5)

The minimization is over |D| × |D| positive semi-definite matrices Xj, j ∈ [n], that satisfy the
entry-wise inequality

∑
j Xj ◦∆j ◦F ≥ F . (Note that Eq. (6.2) has the same form, except with the

requirement that
∑

j Xj ◦∆j ◦ F = F .)
The general adversary bound for f , with costs s, equals

Adv±s (f) = min
Xj ,Yj�0:P

j(Xj−Yj)◦∆j◦F=F

max
x∈D

∑
j∈[n]

sj〈x|(Xj + Yj)|x〉 . (6.6)
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Proof of Theorem 6.1. Lemma 6.5 constructs an SDP whose solution is the optimal witness size of
a span program computing f .

Lemma 6.5. Let f : D → B, with D ⊆ Bn, be a partial boolean function. For b ∈ B, let
Fb = {x ∈ D : f(x) = b}. Then for any cost vector s ∈ [0,∞)n,

inf
P : fP |D=f

wsizes(P,D) = inf
m∈N,

{|vxj〉∈Rm:x∈D,j∈[n]} :
∀(x,y)∈F0×F1,

P
j∈[n]:xj 6=yj

〈vxj |vyj〉=1

max
x∈D

∑
j∈[n]

sj‖|vxj〉‖2 .
(6.7)

Proof. The proof is by establishing a correspondence between solutions to the constraints on
the right-hand side of Eq. (6.7) and real, canonical span programs computing fP |D = f with
maxj∈[n],b∈B |Ij,b| ≤ m.

First let us prove the ≤ direction. Given a solution {|vxj〉}, let P be a span program with target
|t〉 =

∑
x∈F0

|x〉 ∈ RF0 and Ij,b = [m] for all j ∈ [n], b ∈ B. These sets are not disjoint, so for k ∈ Ij,b,
use |vjbk〉 to denote the corresponding input vector, defined by |vjbk〉 =

∑
x∈F0:xj 6=b 〈vxj |k〉|x〉. Thus

A :=
∑

j∈[n],b∈B,k∈[m]

|vjbk〉〈j, b, k|

=
∑

x∈F0,j∈[n]

|x〉〈j, x̄j | ⊗ 〈vxj | .
(6.8)

For x ∈ F0, |w′〉 = |x〉 is a witness for fP (x) = 0; 〈x|t〉 = 1 but 〈x|vjxjk〉 = 0 for all j, k. The
witness size is ‖A†|x〉‖2 =

∑
j sj‖|vxj〉‖2.

For x ∈ F1, let |w〉 =
∑

j |j, xj〉 ⊗ |vxj〉. The condition that
∑

j:xj 6=yj 〈vyj |vxj〉 = 1 implies that

|w〉 is a witness, AΠ(x)|w〉 = A|w〉 = |t〉, so fP (x) = 1. The witness size is ‖|w〉‖2 =
∑

j sj‖|vxj〉‖2.
Thus fP |D = f and wsizes(P,D) ≤ maxx

∑
j sj‖|vxj〉‖2.

Now let us prove the ≥ direction. Let P be a span program computing fP , with fP |D = f . By
Theorem 5.2 and Lemma 4.11, we may assume that P is real and in canonical form, and that for
each x ∈ F0, |x〉 is an optimal witness for fP (x) = 0: wsizes(P, x) = ‖SA†|x〉‖2.

Thus the target vector is |t〉 =
∑

x∈F0
|x〉 and the input vectors lie in the inner product

space RF0 . Let m = maxj∈[n],b∈B |Ij,b|. Without loss of generality, we may assume that |Ij,b| = m
for all j ∈ [n] and b ∈ B. Indeed, if some index set Ij,b is smaller, then we can pad the span program
with zero vectors labeled by (j, b) without affecting the witness size. Therefore, let Ij,b = [m] for all
j ∈ [n] and b ∈ B. These sets are not disjoint, so for k ∈ Ij,b, use |vjbk〉 to denote the corresponding
input vector.

For x ∈ F0, note that since the span program is canonical, 〈x|vjxjk〉 = 0 for all j ∈ [n] and
k ∈ [m]. For j ∈ [n], let |vxj〉 =

∑
k∈[m] 〈vjx̄jk|x〉|k〉. Then Eq. (6.8) again holds. Moreover,

wsizes(P, x) = ‖SA†|x〉‖2 =
∑

j∈[n] sj‖|vxj〉‖2. Thus maxx∈F0

∑
j sj‖|vxj〉‖2 ≤ wsizes(P,D).

For x ∈ F1, on the other hand, let |wx〉 be an optimal witness vector, i.e., satisfying |wx〉 =
Π(x)|wx〉 =

∑
j∈[n],k∈[m] |j, xj , k〉〈j, xj , k|wx〉, A|wx〉 = |t〉 and wsizes(P, x) = ‖S|wx〉‖2. For j ∈ [n],

let |vxj〉 =
∑

k∈[m] |k〉〈j, xj , k|wx〉. Then

A|wx〉 = |t〉 =⇒ ∀ y ∈ F0,
∑

j:xj 6=yj

〈vyj |vxj〉 = 1 . (6.9)

Finally, wsizes(P, x) =
∑

j sj‖|vxj〉‖2, so maxx∈F1

∑
j sj‖|vxj〉‖2 ≤ wsizes(P,D).
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Now the expression on the right-hand side of Eq. (6.1) is just the Cholesky decomposition of
the solution to the SDP in Eq. (6.2). We conclude that infP :fP |D=f wsizes(P ) = Adv±s (f), as
claimed.

Before stating some corollaries of Theorem 6.1, let us make a remark on the proof:

Lemma 6.6. For a function f : D → B, with D ⊆ Bn, assume that there is a rank-k optimal
solution X to Eq. (6.2) for Adv±(f). Note that k ≤ n|D| ≤ n2n. Then by the proof of Lemma 6.5
there is an optimal span program computing f with |Ij,b| = k for all j ∈ [n] and b ∈ B.

[HLŠ07, Theorem 18] states in particular that Eq. (6.5) always has a rank-one optimal solution.
The proof takes the Cholesky decomposition of a solution X =

∑
x,y,j,j′ |x, j〉〈vxj |vyj′〉〈y, j′|, and

replaces each vector |vxj〉 by the scalar ‖|vxj〉‖. That is, let X ′ =
∑

x,y,j,j′ ‖|vxj〉‖‖|vyj′〉‖|x, j〉〈y, j′|,
a rank-one matrix. Then by the Cauchy-Schwarz inequality, 〈x, j|X ′|y, j〉 ≥ 〈x, j|X|y, j〉, with
equality when y = x, so X ′ is as good a solution to Eq. (6.5) as X is. However, note that even
when Advs(f) = Adv±s (f), this argument does not imply that Eq. (6.2) has a rank-one optimal
solution [Špa09].

7 Consequences of the SDP for optimal witness size

This section will state several corollaries of Theorem 6.1. First of all, we can strengthen Theo-
rem 3.1.

Theorem 7.1. For any function f : D → {0, 1}, with D ⊆ {0, 1}n, there exists a span program P
computing fP |D = f with witness size upper-bounded by the bounded-error quantum query complex-
ity of f ,

wsize(P,D) = O(Q(f)) . (7.1)

Proof. By Theorem 2.6, the quantum query complexity of f is lower-bounded by the general ad-
versary bound for f , which by Theorem 6.1 equals the best span program witness size:

Q(f) = Ω(Adv±(f)) (7.2)
= Ω

(
inf

P :fP |D=f
wsize(P,D)

)
.

It is an interesting problem to prove Theorem 7.1 based directly on a quantum query algorithm
that evaluates f , as in the proof of Theorem 3.1 for the one-sided error case.

As an immediate corollary of Theorem 6.1 and Theorem 4.3, the general adversary bound com-
poses multiplicatively for boolean functions. That is, the inequality in Eq. (2.17), from Theorem 2.7,
is actually an equality.

Theorem 7.2 (General adversary bound composition). Let f : {0, 1}n → {0, 1} and, for j ∈ [n], let
fj : {0, 1}mj → {0, 1}. Define g : {0, 1}m1×· · ·×{0, 1}mn → {0, 1} by g(x) = f

(
f1(x1), . . . , fn(xn)

)
.

Let s ∈ [0,∞)m1 × · · · × [0,∞)mn, and let βj = Adv±sj (fj) for j ∈ [n]. Then

Adv±s (g) = Adv±β (f) . (7.3)

In particular, if Adv±s1(f1) = · · · = Adv±sn(fn) = β, then Adv±s (g) = βAdv±(f).
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Proof. Theorem 2.7 gives the inequality Adv±s (g) ≥ Adv±β (f). To obtain the opposite inequality,
appeal to Theorem 6.1 to obtain optimal span programs for the functions, compose these span
programs using Theorem 4.3, and appeal to Theorem 6.1 to upper-bound Adv±s (g).

This proof is rather indirect. Based on the new formulation of the general adversary bound in
Theorem 6.2, we can also give a direct proof of Theorem 7.2 that does not use span programs.

Recall that B = {0, 1}. For x ∈ Bm1 × · · · × Bmn , let y(x) = (f1(x), . . . , fn(x)), so g(x) =
f(y(x)).

For y ∈ Bn and j ∈ [n], fix vectors |vyj〉 ∈ V that achieve Adv±β (f), i.e.,
∑

j:yj 6=yj′
〈vyj |vy′j〉 = 1

for all y, y′ ∈ Bn with f(y) 6= f(y′), and Adv±β (f) = maxy∈Bn
∑

j∈[n] βj‖|vyj〉‖2. For j ∈ [n], fix

vectors |vjzk〉 ∈ V j for z ∈ Bmj , k ∈ [mj ], that achieve Adv±sj (fj), i.e.,
∑

k:zk 6=z′k
〈vjzk|v

j
z′k〉 = 1 for

all z, z′ ∈ Bmj with fj(z) 6= fj(z′).
Based on these solutions, we construct a feasible solution for the dual formulation of Adv±s (g).

For x ∈ Bm1 × · · · ×Bmn , j ∈ [n] and k ∈ [mj ], let

|wxjk〉 = |vy(x)j〉 ⊗ |vjxjk〉 ⊗ |δg(x),fj(xj)〉 ∈ V ⊗ (⊕j∈nV j)⊗C2 . (7.4)

Here, the third register is spanned by the orthonormal basis {|0〉, |1〉}, and δa,b is 1 if a = b and 0
otherwise.

Consider x, x′ ∈ Bm1 × · · · ×Bmn such that g(x) 6= g(x′). In particular, y(x) 6= y(x′). Then∑
j∈[n],k∈[mj ]:
xjk 6=x′jk

〈wxjk|wx′jk〉 =
∑
j∈[n]

〈vy(x)j |vy(x′)j〉
∑

k∈[mj ]:xjk 6=x′jk

〈vjxjk|v
j
x′jk
〉(1− δfj(xj),fj(x′j))

=
∑

j∈[n]:y(x)j 6=y(x′)j

〈vy(x)j |vy(x′)j〉
∑

k∈[mj ]:xjk 6=x′jk

〈vjxjk|v
j
x′jk
〉

=
∑

j∈[n]:y(x)j 6=y(x′)j

〈vy(x)j |vy(x′)j〉

= 1 .

(7.5)

Hence indeed the vectors |wxjk〉 give a feasible solution. We conclude that

Adv±s (g) ≤ max
x∈Bm1×···×Bmn

∑
j∈[n],k∈[mj ]

sjk‖|wxjk〉‖2

= max
x

∑
j∈[n]

‖|vy(x)j〉‖2
∑
k∈[mj ]

sjk‖|vjxjk〉‖
2

≤ max
x

∑
j∈[n]

βj‖|vy(x)j〉‖2

= Adv±β (f) .

(7.6)

The last step is clearly an inequality, which is all we actually need to finish the proof. It is in fact
an equality, though, because y(x) varies over all strings in Bn as x varies over Bm1×· · ·×Bmn .

By substituting Theorem 6.1 into Theorem 1.1, we obtain an exact asymptotic expression for
the quantum query complexity of a boolean function f composed on itself.
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Theorem 7.3. For any function f : {0, 1}n → {0, 1}, define fk : {0, 1}nk → {0, 1} as the function
f composed on itself repeatedly to a depth of k, as in Theorem 1.1. Then

lim
k→∞

Q(fk)1/k = Adv±(f) . (7.7)

Proof. By the adversary lower bound Theorem 2.6, Q(fk) = Ω(Adv±(fk)) = Ω(Adv±(f)k) by
Theorem 2.7. Hence lim infk→∞Q(fk)1/k ≥ Adv±(f). Theorem 6.1 together with the formula-
evaluation algorithm Theorem 1.1 implies Q(fk) = Ok(Adv±(f)k). Hence lim supk→∞Q(fk)1/k ≤
Adv±(f).

Theorem 7.3 implies a new asymptotic upper bound on the sign-degree of a boolean function f
composed on itself to a depth of k, as k →∞.

Definition 7.4 (Sign-degree). Given a function f : {0, 1}n → {0, 1}, a real multivariate polynomial
p(x1, . . . , xn) is said to be a threshold polynomial that sign-represents f if for all inputs x ∈ {0, 1}n,
p(x) 6= 0 and the signs of p(x) and (−1)f(x) coincide.

The sign-degree of f , sign-degree(f), is defined as the least degree of a polynomial that sign-
represents f .

By the polynomial method [BBC+01, NC00], sign-degree(f) = O(Q(f)) for every boolean
function f . (See also Refs. [MNR07, BVdW07], which relate the sign-degree of f to the unbounded-
error quantum and classical query complexities of f .) Thus we obtain the following corollary of
Theorem 7.3:

Corollary 7.5. For any function f : {0, 1}n → {0, 1},

lim sup
k→∞

sign-degree(fk)1/k ≤ lim
k→∞

Q(fk)1/k = Adv±(f) . (7.8)

Lee and Servedio have recently shown that sign-degree(f)k ≤ sign-degree(fk) [Lee09], based on
which Corollary 7.5 gives an upper bound of the sign-degree of f itself.

One special case of interest is when f is a read-once AND-OR formula on n variables. In
this case, Adv(f) = Adv±(f) =

√
n [BS04]. Indeed, these bounds can be computed by show-

ing Adv(s1,...,sm)(ANDm) = Adv±(s1,...,sm)(ANDm) =
√∑

j∈[m] s
2
j , where ANDm denotes the AND

gate on m variables, and then using Theorem 2.7 and Theorem 7.2 to compose the nonnegative-
weight and general adversary bounds, respectively. O’Donnell and Servedio [OS03] asked whether
sign-degree(f) = O(

√
n)? This question has consequences in learning theory [KS01, KOS04]. Am-

bainis et al. proved that sign-degree(f) = n1/2+o(1) by giving a quantum algorithm, and, therefore,
an explicit threshold polynomial [ACR+07]. Combined with the unpublished result of Lee and
Servedio mentioned above, Corollary 7.5 will close this question. In fact, though, [ACR+07] with
Lee and Servedio’s result already suffices; the composed function fk is an “approximately bal-
anced” formula for any fixed AND-OR formula f , and, by another result of [ACR+07], therefore
sign-degree(fk) = O(

√
nk).

Theorem 1.1 is only a special case of the formula-evaluation result from [RŠ08]. That article’s
main result, [RŠ08, Theorem 4.7], can also be extended. For brevity, we will not repeat all the
notation and definitions, but will just state the extension. [RŠ08] used the nonnegative-weight
adversary bound Adv instead of the general adversary bound Adv± throughout, because only for
functions f with Adv(f) = Adv±(f) had the authors found matching span programs. Theorem 6.1,
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however, gives optimal span programs for every boolean function f . Thus if we modify [RŠ08,
Def. 4.5], defining adversary-balanced formulas, to refer to Adv± instead of Adv, and if we let S
be any finite gate set of boolean functions, [RŠ08, Theorem 4.7] becomes:

Theorem 7.6. There exists a quantum algorithm that evaluates an adversary-balanced formula
ϕ(x) over S using O(Adv±(ϕ)) input queries. After efficient classical preprocessing independent
of the input x, and assuming O(1)-time coherent access to the preprocessed classical string, the
running time of the algorithm is Adv±(ϕ)(log Adv±(ϕ))O(1).

Aside from changing Adv to Adv±, the proof from [RŠ08] goes through entirely. Note that
layered formulas, in which gates at the same depth are the same, are a special case of adversary-
balanced formulas.

8 Correspondence between span programs and bipartite graphs

In this section, we define a correspondence between span programs and weighted bipartite graphs,
slightly generalizing the correspondence from [RŠ08]. We also analyze the spectra of these graphs,
focusing on eigenvalues near zero and eigenvectors supported on one particular “output vertex.”
The main result, Theorem 8.3, relates spectral quantities of interest to the span program witness
size. This is the key theorem that allows span programs to be evaluated on a quantum computer.

Theorem 8.3’s proof has two main steps. The first step, an eigenvalue-zero analysis given in
Section 8.1, is essentially the same as the argument in [RŠ08]. However, the second step, analyzing
small, nonzero eigenvalues, is novel. Section 8.2 gives a general argument that relates properties of
eigenvalue-zero eigenvectors of weighted bipartite graphs to what are in a certain sense “effective”
spectral gaps.

This small-eigenvalue analysis substantially extends the proof in [RŠ08]. The small-eigenvalue
analysis in [RŠ08] only works for span programs that arise from the concatenation of constant-size
span programs with constant entries, with strict balance conditions, and it breaks down when these
conditions are relaxed. For example, [RŠ08] shows spectral gaps of Ω(1/wsize(P )) away from zero,
for a span program P , but the spectral gaps for general span programs cannot be lower-bounded in
terms of the witness size. The small-eigenvalue analysis in [RŠ08] is also more technically involved.
Theorem 8.3 implies a simpler proof of Theorem 1.1 and Theorem 7.6, as well as for the AND-OR
formula-evaluation result in [ACR+07].

Definition 8.1. A finite, weighted, bipartite graph G is specified by finite sets T and U , and
BG ∈ L(CU ,CT ) the “biadjacency matrix.” G has vertices {τi : i ∈ T} t {µj : j ∈ U}. For each
i ∈ T and j ∈ U with 〈i|BG|j〉 6= 0, G has an edge (τi, µj) weighted by 〈i|BG|j〉. The weighted
adjacency matrix of G, AG ∈ L(CT ⊕CU ), is

AG =
(

0 BG
B†G 0

)T U
T
U (8.1)

Henceforth all graphs will be finite. Recall from Section 2 that B = {0, 1}. For a given
span program, recall also the definitions A =

∑
i∈I |vi〉〈i|, I(x) = Ifree ∪

⋃
j∈[n] Ij,xj and Π(x) =∑

i∈I(x) |i〉〈i|. Let

Π(x) = 1−Π(x) =
∑

i∈IrI(x)

|i〉〈i| . (8.2)
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Now the correspondence between span programs and weighted bipartite graphs is given by:

Definition 8.2 (Graphs GP (x)). Let P be a span program with target vector |t〉 and input vectors
|vi〉 for i ∈ I = Ifree ∪

⋃
j∈[n],b∈B Ij,b, in inner product space V . Fix an arbitrary orthonormal basis

{|k〉 : k ∈ [dim(V )]} for V .
Let GP be the weighted bipartite graph with T = [dim(V )]t I, U = {0} t I and the biadjacency

matrix

BGP =
(
|t〉 A
0 1

)0 I
V
I (8.3)

The vertex µ0 is called the “output vertex.”
Note that for each input vector index i ∈ I, GP has two corresponding vertices, with a weight-

one edge between them. For x ∈ Bn, let GP (x) be the same as GP except with these weight-one
edges deleted for all i ∈ I(x). That is, GP (x) has the biadjacency matrix

BGP (x) =
(
|t〉 A

0 Π(x)

)0 I
V
I (8.4)

Definition 8.2 is a modest generalization of the correspondence between span programs and
bipartite graphs given in [RŠ08, Sec. 2]. The difference is that [RŠ08] only defines GP (x) for span
programs with target |t〉 = (1, 0, 0, . . . , 0). This is not a very restrictive requirement, though, since
a unitary change of basis can ensure that |t〉 = (‖|t〉‖, 0, . . . , 0).

It will be convenient to establish some more notation. Any vector |ψ〉 ∈ CT ⊕ CU can be
uniquely expanded as |ψ〉 = (|ψT 〉, |ψU 〉), with |ψT 〉 ∈ CT and |ψU 〉 ∈ CU . For the graphs GP (x),
CT = V ⊕ CI and CU = C{0} ⊕ CI , so any |ψ〉 ∈ CT ⊕ CU can similarly be written |ψ〉 =(
(|ψT,V 〉, |ψT,I〉), (ψU,0, |ψU,I〉)

)
. Let |0〉 = (0, 1, 0) ∈ CT⊕C{0}⊕CI be the unit vector on vertex µ0.

With this notation, the eigenvalue-ρ eigenvector equation of AGP (x),

ρ|ψ〉 = AGP (x)|ψ〉 , (8.5)

is equivalent to the four equations

ρ|ψT,V 〉 = ψU,0|t〉+A|ψU,I〉 (8.6a)

ρ|ψT,I〉 = Π(x)|ψU,I〉 (8.6b)
ρψU,0 = 〈t|ψT,I〉 (8.6c)

ρ|ψU,I〉 = A†|ψT,V 〉+ Π(x)|ψT,I〉 . (8.6d)

Our main result is:

Theorem 8.3. Let P be a span program and D ⊆ Bn. Then a span program P ′ can be constructed
such that fP ′ = fP and, for all x ∈ D,

• If fP (x) = 1, then there is an eigenvalue-zero eigenvector |ψ〉 of AGP ′ (x) with

|〈0|ψ〉|2

‖|ψ〉‖2
≥ 1

2
. (8.7)
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• If fP (x) = 0, let {|α〉} be a complete set of orthonormal eigenvectors of AGP ′ (x), with cor-
responding eigenvalues ρ(α). Then for any c ≥ 0, the squared length of the projection of |0〉
onto the span of the eigenvectors α with |ρ(α)| ≤ c/wsize(P,D) satisfies∑

α: |ρ(α)|≤c/wsize(P,D)

|〈α|0〉|2 ≤ 8c2
(

1 +
1

wsize(P,D)

)
≤ 16c2 . (8.8)

Roughly, Eq. (8.8) says that AGP ′(x)
has an effective spectral gap around zero. We will see in

Section 9 below that this is strong enough for applying quantum phase estimation.
The two main ingredients required for proving Theorem 8.3, an eigenvalue-zero analysis of

AGP (x) and an analysis relating eigenvalue-zero eigenvectors to the effective spectral gap. These
two ingredients are presented in Section 8.1 and Section 8.2 below. Section 8.3 will put them
together to prove Theorem 8.3.

Theorem 8.3 is quite useful. However, we will see in Section 9 below that for some applications,
using Theorem 8.3 as a black box can lead to an O(log n) overhead in the quantum query complexity.
Theorem 9.1 will include two quantum query algorithms. The more specialized algorithm does not
incur a logarithmic overhead, but requires that the norm of the adjacency matrix be at most a
constant. However, the span program P ′ that Theorem 8.3 outputs will not necessarily satisfy
‖AGP ′‖ = O(1), so only the first algorithm applies. Thus if one cares about saving logarithmic
query overhead factors, Theorem 8.3 cannot be applied as a black box.

It is possible that the first algorithm in Theorem 9.1 can be improved to work without the
logarithmic overhead even when ‖AGP ′‖ = ω(1). See Conjecture 11.1. Even if this turns out to be
the case, though, there will be an important case when we cannot apply Theorem 8.3 as a black
box, namely, when we wish to prove upper bounds on the time complexity of the algorithm.

For developing time-efficient quantum algorithms, other properties of the adjacency matrix
besides the norm, such as the maximum degree of a vertex, also matter [CNW09]. This article is
concerned primarily with the query complexity of quantum algorithms and not the time complexity.
Investigating the tradeoffs involved in designing span programs for query-optimal and nearly time-
optimal quantum algorithms is an important area for further research, but is beyond our scope.

With an eye toward these applications, though, we give a version of Theorem 8.3 that applies
to the graphs GP (x) directly instead of to GP ′(x):

Theorem 8.4. Let P be a span program, and for x ∈ Bn let GP (x) be the weighted bipartite graph
from Definition 8.2. Then for x ∈ Bn:

• If fP (x) = 1, let |w〉 ∈ CI be a witness, i.e., AΠ(x)|w〉 = |t〉. Then AGP (x) has an eigenvalue-
zero eigenvector |ψ〉 with

|〈0|ψ〉|2

‖|ψ〉‖2
≥ 1

1 + ‖|w〉‖2
. (8.9)

• If fP (x) = 0, let |w′〉 ∈ V be a witness, i.e., 〈t|w′〉 = 1 and Π(x)A†|w′〉 = 0. Let {|α〉} be
a complete set of orthonormal eigenvectors of AGP (x), with corresponding eigenvalues ρ(α).
Then for any Υ ≥ 0, ∑

α: |ρ(α)|≤Υ

|〈α|0〉|2 ≤ 8Υ2
(
‖|w′〉‖2 + ‖A†|w′〉‖2

)
. (8.10)
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A typical application of Theorem 8.4 will start with a span program having witnesses in the
true and false cases satisfying

max
{

max
x:fP (x)=1

‖|w〉‖2, max
x:fP (x)=0

(‖|w′〉‖2 + ‖A†|w′〉‖2)
}
≤W , (8.11)

for some W . Scale the target vector down by a factor of 1/
√
W , and apply Theorem 8.4; Eq. (8.9)

then holds with 1/2 on the right-hand side, and letting Υ = c/W the right-hand side of Eq. (8.10)
becomes 8c2. See Theorem 9.3.

Although the upper bounds in Eqs. (8.9) and (8.10) depend on quantities, ‖|w〉‖2 and (‖|w′〉‖2 +
‖A†|w′〉‖2), similar to the witness size, for two reasons they are not the same as the witness size.

• First, in the case fP (x) = 1, ‖|w〉‖2 can be greater than wsize(P, x) if P is not strict (Defini-
tion 4.9), because the witness size does not count the portion of |w〉 supported on Ifree.

• Second, in the case fP (x) = 0, while it is true that ‖A†|w′〉‖2 can be bounded by wsize(P, x),
the term ‖|w′〉‖2 is not necessarily so-bounded. This is clear because simultaneously scaling
the target and all input vectors by c > 0 leaves the witness size invariant (Lemma 4.12)
but multiplies ‖|w′〉‖2 by 1/c2. The effective spectral gap of AGP (x) certainly should not be
invariant under such scaling, and should approach zero as c approaches zero.

Theorem 8.4 therefore motivates using W in Eq. (8.11) as a new span program complexity mea-
sure. This measure is important for developing time-efficient quantum algorithms based on span
programs, as in for example Theorem 7.6.

The proof of Theorem 8.4 will also be given below in Section 8.3.

8.1 Eigenvalue-zero spectral analysis of the graphs GP (x)

We will begin by analyzing Eqs. (8.6) at eigenvalue ρ = 0. This theorem is a straightforward
extension of [RŠ08, Theorems 2.5 and A.7].

Theorem 8.5 ([RŠ08]). For a span program P and input x ∈ Bn, consider all the eigenvalue-zero
eigenvector equations of the weighted adjacency matrix AGP (x), except for the constraint at the
output vertex µ0, i.e., Eqs. (8.6) except (8.6c) at ρ = 0.

These equations have a solution |ψ〉 with ψU,0 6= 0 if and only if fP (x) = 1, and have a solution
|ψ〉 with 〈t|ψT,V 〉 6= 0 if and only if fP (x) = 0. More quantitatively, let s ∈ [0,∞)n be a vector of
nonnegative costs, and recall from Definition 2.3 that S =

∑
j∈[n],b∈B,i∈Ij,b

√
sj |i〉〈i|. Then

• If fP (x) = 1, AGP (x) has an eigenvalue-zero eigenvector |ψ〉 = (0, ψU,0, |ψU,I〉) ∈ CT ⊕C{0}⊕
CI with

|ψU,0|2

|ψU,0|2 + ‖S|ψU,I〉‖2
≥ 1

1 + wsizes(P, x)
. (8.12)

• If fP (x) = 0, let |w′〉 ∈ V be an optimal witness, i.e., 〈t|w′〉 = 1, Π(x)A†|w′〉 = 0 and
‖SA†|w′〉‖2 = wsizes(P, x) (see Definition 2.3). Then there is a solution |ψ〉 = (|ψT,V 〉, |ψT,I〉, 0) ∈
V ⊕CI ⊕CU to Eqs. (8.6a,b,d) at ρ = 0, with

|〈t|ψT,V 〉|2

‖|ψT,V 〉‖2 + ‖S|ψT,I〉‖2
≥ 1
‖|w′〉‖2 + wsizes(P, x)

. (8.13)
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Proof. Let ρ = 0. Since GP (x) is bipartite, the ψT terms do not interact with the ψU terms. In
particular, Eqs. (8.6c,d) (resp. 8.6a,b) can always be satisfied by setting the ψT (resp. ψU ) terms
to zero. Fix s ∈ [0,∞)n.

Now Eqs. (8.6a,b) are equivalent to −ψU,0|t〉 = A|ψU,I〉 and |ψU,I〉 = Π(x)|ψU,I〉. If these
equations have a solution with ψU,0 6= 0, then −|ψU,I〉/ψU,0 is a witness for fP (x) = 1. Conversely,
if fP (x) = 1, then let |w〉 ∈ CI be an optimal witness, satisfying AΠ(x)|w〉 = |t〉 and wsizes(P, x) =
‖S|w〉‖2. Let ψU,0 = −1 and |ψU,I〉 = Π(x)|w〉. Then |ψ〉 = (0, ψU,0, |ψU,I〉) satisfies Eqs. (8.6), and
Eq. (8.12) with equality.

Next, assume that |ψ〉 solves Eq. (8.6d) with 〈t|ψT,V 〉 6= 0. Then Π(x)A†|ψT,V 〉 = −Π(x)Π(x)|ψT,I〉 =
0, so |ψT,V 〉/〈t|ψT,V 〉 is a witness for fP (x) = 0. Conversely, assume that fP (x) = 0 and let |w′〉 be
an optimal witness. Let |ψT,V 〉 = |w′〉 and |ψT,I〉 = −A†|w′〉. Then |ψ〉 = (|ψT,V 〉, |ψT,I〉, 0) satisfies
Eqs. (8.6a,b,d), and Eq. (8.13) with equality.

Note that if the costs are uniform s = ~1, then S = 1−∑i∈Ifree
|i〉〈i|, so ‖S|ψU,I〉‖2 ≤ ‖|ψU,I〉‖2

and ‖S|ψT,I〉‖2 ≤ ‖|ψT,I〉‖2. If P is also a strict span program, i.e., Ifree = ∅, then S = 1 so
both these inequalities are equalities, and the denominators on the left-hand sides of Eqs. (8.12)
and (8.13) are, respectively, ‖|ψU 〉‖2 and ‖|ψT 〉‖2. However, if P is not strict, then Eqs. (8.12)
and (8.13) do not imply lower bounds on achievable |ψU,0|2/‖|ψU 〉‖2 or |〈t|ψT,V 〉|2/‖|ψT 〉‖2.

Corollary 8.6. Let P be a span program. Then there exists a span program P̂ that computes
fP̂ = fP , and such that, for all x ∈ Bn,

• If fP (x) = 1, then there is an eigenvalue-zero eigenvector |ψ〉 of AGP̂ (x) with

|ψU,0|2

‖|ψ〉‖2
≥ 1

1 + wsize(P, x)
. (8.14)

• If fP (x) = 0, then there is a solution |ψ〉 to all the eigenvalue-zero eigenvector equations of
AGP̂ (x), except for the constraint at vertex µ0, with

|〈t|ψT,V 〉|2

‖|ψ〉‖2
≥ 1

1 + wsize(P, x)
. (8.15)

Proof. Let P̂ be the canonical span program constructed in Theorem 5.2 for costs s = ~1, with
wsize(P̂ , x) ≤ wsize(P, x) for all x ∈ Bn. P̂ is in particular strict, so Eq. (8.14) follows from
Eq. (8.12).

For showing Eq. (8.15), recall from Theorem 5.2 that an optimal witness |w′〉 for fP̂ (x) = 0
may be taken to be |x〉 itself, so ‖|w′〉‖2 = 1 in Eq. (8.13).

This completes the eigenvalue-zero analysis of the graphs GP (x).

8.2 Small-eigenvalue spectral analysis of the graphs GP (x)

Theorem 8.5 implies in particular that when fP (x) = 0, AGP (x) does not have any eigenvalue-zero
eigenvectors supported on the output vertex µ0. Therefore AGP (x) has some spectral gap around
zero for eigenvectors overlapping |0〉. This spectral gap can be arbitrarily small, though, because
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GP (x) can be a very large graph and its edge weights are poorly constrained. In fact, though, the
lower bound Eq. (8.13) can be translated into a good lower bound on an “effective” spectral gap.
That is, we can upper-bound the total squared support of |0〉 on small-magnitude eigenvalues of
AGP (x).

The main result of this section is:

Theorem 8.7. Let G be a weighted bipartite graph with biadjacency matrix BG ∈ L(CU ,CT ).
Assume that for some δ > 0 and |t〉 ∈ CT , the weighted adjacency matrix AG has an eigenvalue-
zero eigenvector |ψ〉 with

|〈t|ψT 〉|2 ≥ δ‖|ψ〉‖2 . (8.16)

Let G′ be the same as G except with a new vertex, µ0, added to the U side, and for i ∈ T the new
edge (τi, µ0) weighted by 〈i|t〉. That is, the biadjacency matrix of G′ is

BG′ =
(
|t〉 BG

)0 U
T (8.17)

Recall that |0〉 = (0, 1, 0) ∈ CT ⊕ C{0} ⊕ CU . Let {|α〉} be a complete set of orthonormal
eigenvectors of AG′, with corresponding eigenvalues ρ(α). Then for all Υ ≥ 0, the squared length
of the projection of |0〉 onto the span of the eigenvectors α with |ρ(α)| ≤ Υ satisfies∑

α: |ρ(α)|≤Υ

|〈α|0〉|2 ≤ 8Υ2/δ . (8.18)

This theorem applies to the case of a strict span program P with fP (x) = 0, by letting G =
GP (x) and, from Eq. (8.13) with s = ~1, δ = 1/(‖|w′〉‖2 + wsize(P, x)).

To motivate our approach to proving Theorem 8.7, let us recall some basic properties about the
eigenvalues and eigenvectors of bipartite graphs.

Proposition 8.8. Let G be a weighted bipartite graph with biadjacency matrix BG and adjacency
matrix AG.

Assume that |ψ〉 = (|ψT 〉, |ψU 〉) ∈ CT⊕CU is an eigenvalue-ρ eigenvector of AG, for some ρ 6= 0.
Then (|ψT 〉,−|ψU 〉) is an eigenvector of AG with eigenvalue −ρ. Moreover, |ψT 〉 = 1

ρBG|ψU 〉 is an

eigenvector of BGB
†
G and |ψU 〉 = 1

ρB
†
G|ψT 〉 is an eigenvector of B†GBG, both with corresponding

eigenvalues ρ2.
Conversely, if |ϕ〉 ∈ CT is an eigenvalue-λ eigenvector of BGB

†
G for λ > 0, then BG|ϕ〉 ∈ CU

is an eigenvalue-λ eigenvector of B†GBG and |ψ±〉 = (|ϕ〉,± 1√
λ
B†G|ϕ〉) ∈ CT ⊕CU are eigenvectors

of AG with corresponding eigenvalues ±
√
λ.

The proof is immediate.
Thus the spectrum of AG is symmetrical around zero, and nonzero-eigenvalue eigenvectors

of the positive semi-definite matrix BGB
†
G are in exact correspondence to symmetrical pairs of

nonzero-eigenvalue eigenvectors of AG.
Proposition 8.8 allows us to translate the claims of Theorem 8.7 into claims on spectral prop-

erties of positive semi-definite matrices. We will start, though, by proving the necessary result for
positive semi-definite matrices, Theorem 8.9 below. After proving Theorem 8.9, we will give the
translation to prove Theorem 8.7.
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Theorem 8.9. Let X ∈ L(V ) be a positive semi-definite matrix, |t〉 ∈ V a vector, and let X ′ =
X + |t〉〈t|. Let {|β〉} be a complete set of orthonormal eigenvectors of X ′, with corresponding
eigenvalues λ(β) ≥ 0. Assume that there exists a |ϕ〉 ∈ Ker(X) with |〈t|ϕ〉|2 ≥ δ‖|ϕ〉‖2. Then for
any Λ ≥ 0,

δ
∑

β:λ(β)≤Λ
〈t|β〉6=0

1
λ(β)

|〈t|β〉|2 ≤ 4Λ . (8.19)

Proof. The sum is well-defined, with no division by zero, because any |β〉 with 〈t|β〉 6= 0 must have
λ(β) = 〈β|X ′|β〉 = 〈β|X|β〉+ |〈t|β〉|2 > 0.

The key lemma for proving Theorem 8.9 is:

Lemma 8.10. Under the conditions of Theorem 8.9, for any |ξ〉 ∈ V ,

δ|〈t|ξ〉|2 ≤ ‖X ′|ξ〉‖2 . (8.20)

Moreover, if |ξ〉 is a linear combination of eigenvectors with corresponding eigenvalues at most κ,
i.e., |ξ〉 =

∑
β:λ(β)≤κ 〈β|ξ〉|β〉, then

δ|〈t|ξ〉|2 ≤ κ2‖|ξ〉‖2 . (8.21)

Proof. We will write the matrices X and X ′ out in coordinates. Fixing 〈t|ξ〉, we will use straight-
forward calculus to minimize ‖X ′|ξ〉‖2.

Let |1〉, . . . , |m〉 be a complete, orthonormal set of eigenvectors for
(
1 − |t〉〈t|

‖|t〉‖2

)
X
(
1 − |t〉〈t|

‖|t〉‖2

)
,

with corresponding eigenvalues a1, a2, . . . , am. In the coordinates
( |t〉
‖|t〉‖ , |1〉, . . . , |m〉

)
, X and X ′ are

given by

X =


a b̄1 . . . b̄m
b1 a1 0
...

. . .
bm 0 am

 (8.22)

X ′ =


a+ ‖|t〉‖2 b̄1 . . . b̄m

b1 a1 0
...

. . .
bm 0 am

 (8.23)

where a = 〈t|X|t〉/‖|t〉‖2 and bj = 〈aj |X |t〉
‖|t〉‖ , for j ∈ [m].

By incorporating any phases into the basis vectors |j〉, we may assume that all bj ≥ 0. Fur-
thermore, we may assume without loss of generality that all bj > 0. Indeed, if some bj = 0, then
the |j〉 coordinate lies in a different block of X ′ from |t〉, so removing this coordinate will not affect
min|ψ〉 ‖X ′|ψ〉‖/|〈t|ψ〉|. Since X � 0, all aj ≥ 0. Moreover, if some aj = 0, then since

( a bj
bj 0

)
is a

(positive semi-definite) submatrix of X, it must be that bj = 0. Hence we may assume that aj > 0
for all j ∈ [m].

We are given the existence of a |ϕ〉 ∈ Ker(X) with |〈t|ϕ〉|2 ≥ δ‖|ϕ〉‖2. Let us write out this
condition in coordinates. By scaling |ϕ〉, we may assume that 〈t|ϕ〉 = ‖|t〉‖. Thus, written in
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coordinates, |ϕ〉 = (1,− b1
a1
, . . . ,− bm

am
) and 〈t|X|ϕ〉 = 0 implies that

a =
m∑
j=1

b2j/aj . (8.24)

The condition |〈t|ϕ〉|2 ≥ δ‖|ϕ〉‖2, in coordinates, is

‖|t〉‖2 ≥ δ
(

1 +
m∑
j=1

( bj
aj

)2)
. (8.25)

We can now solve the minimization problem:

Claim 8.11.

min
|ξ〉: 〈t|ξ〉=‖|t〉‖

‖X ′|ξ〉‖2 =
‖|t〉‖4

1 +
∑

j

( bj
aj

)2 ≥ δ‖|t〉‖2 . (8.26)

Proof. Since X ′ is a symmetric matrix, we may assume that |ξ〉 has real coordinates. Introduce
variables c1, . . . , cm and let |ξ〉 = (1, c1, . . . , cm). For j ∈ [m], let γj = aj

(aj
bj
cj + 1

)
. Then

‖X ′|ξ〉‖2 =
(
a+ ‖|t〉‖2 +

∑
j

bjcj
)2 +

∑
j

(bj + ajcj)2

=
(
a+ ‖|t〉‖2 +

∑
j

b2j
aj

(γj
aj
− 1
))2

+
∑
j

( bj
aj
γj

)2

=
(
‖|t〉‖2 +

∑
j

( bj
aj

)2
γj

)2

+
∑
j

( bj
aj

)2
γ2
j , (8.27)

where we have substituted cj = bj
aj

(γj
aj
−1
)

and then used Eq. (8.24) to cancel a from the first term.
A global minimum exists and will satisfy, for all j ∈ [m],

0 =
∂

∂γj
‖X ′|ξ〉‖2

= 2
( bj
aj

)2
(
γj + ‖|t〉‖2 +

∑
k

( bk
ak

)2
γk

)
.

(8.28)

Thus we should set all γj equal, γj = γ for j ∈ [m], where γ = −‖|t〉‖2/(1 + S) and S =
∑

j

( bj
aj

)2.

Substituting back into Eq. (8.27), ‖X ′|ξ〉‖2 at the minimum is

‖X ′|ξ〉‖2 = (‖|t〉‖2 + Sγ)2 + Sγ2

= ‖|t〉‖4/(1 + S) , (8.29)

as claimed.

Eq. (8.20) follows. Eq. (8.21) is an immediate consequence of Eq. (8.20), since |ξ〉 =
∑

β:λ(β)≤κ 〈β|ξ〉|β〉
implies ‖X ′|ξ〉‖ ≤ κ‖|ξ〉‖. This completes the proof of Lemma 8.10.
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Now let us derive Eq. (8.19) by bootstrapping Lemma 8.10. We aim to bound

δ
∑

β:λ(β)≤Λ
〈t|β〉6=0

1
λ(β)

|〈t|β〉|2 = δ

∞∑
k=0

∑
Λ

2k+1<λ(β)≤ Λ

2k

1
λ(β)

|〈t|β〉|2

≤ δ

Λ

∞∑
k=0

2k+1
∑

Λ

2k+1<λ(β)≤ Λ

2k

|〈t|β〉|2

=
δ

Λ

∞∑
k=0

2k+1〈t|tk〉 , (8.30)

where |tk〉 =
∑

β: Λ

2k+1<λ(β)≤ Λ

2k
〈β|t〉|β〉, the projection of |t〉 onto the span of the eigenvectors with

eigenvalues in
(

Λ
2k+1 ,

Λ
2k

]
. Therefore 〈t|tk〉 = 〈tk|tk〉 = |〈t|tk〉|2/‖|tk〉‖2 when |tk〉 6= 0, so Eq. (8.21)

can be applied with |ξ〉 = |tk〉 and κ = Λ/2k to continue:

δ
∑

β:λ(β)≤Λ
〈t|β〉6=0

1
λ(β)

|〈t|β〉|2 ≤ 1
Λ

∞∑
k=0

2k+1
( Λ

2k
)2

= 2Λ
∞∑
k=0

1
2k

= 4Λ , (8.31)

as claimed.

With Theorem 8.9 in hand, we can now apply Proposition 8.8 to prove Theorem 8.7.

Proof of Theorem 8.7. We are given an eigenvalue-zero eigenvector of AG, (|ψT 〉, 0) ∈ CT ⊕ CU

with |〈t|ψT 〉|2 ≥ δ‖|ψT 〉‖2. In particular, B†G|ψT 〉 = 0.
An eigenvalue-zero eigenvector |ζ〉 = (|ζT 〉, ζ0, |ζU 〉) ∈ CT ⊕C{0} ⊕CU has to satisfy

0 = BG′(ζ0, |ζU 〉)
= ζ0|t〉+BG|ζU 〉 .

(8.32)

Since |〈t|ψT 〉|2 > 0 and B†G|ψT 〉 = 0, |t〉 cannot lie in the range of BG, so ζ0 must be zero. Thus
follows the claim for Υ = 0, that AG′ has no eigenvalue-zero eigenvectors supported on µ0.

Now to show Eq. (8.18) for Υ > 0, note that for each eigenvector |α〉 of AG′ , ρ(α)〈0|α〉 =
〈0|AG′ |α〉 = 〈t|αT 〉. Therefore∑

α: |ρ(α)|≤Υ

|〈α|0〉|2 =
∑

α: 0<|ρ(α)|≤Υ

1
ρ(α)2

|〈t|αT 〉|2 . (8.33)

Let X ′ = BG′B
†
G′ . Let {|β〉} be a complete set of orthonormal eigenvectors of X ′, with correspond-

ing eigenvalues λ(β). By Proposition 8.8, each eigenvector |β〉 with λ(β) 6= 0 corresponds to a pair
of eigenvectors of AG′ with eigenvalues ±

√
λ(β). The above sum therefore equals

2
∑

β: 0<λ(β)≤Υ2

1
λ(β)

|〈t|β〉|2 . (8.34)
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Now apply Theorem 8.9 with X = X ′ − |t〉〈t| = BGB
†
G � 0, |ϕ〉 = |ψT 〉 and Λ = Υ2, to obtain

the claimed upper bound of 8Υ2/δ.

8.3 Proofs of Theorem 8.3 and Theorem 8.4

Let us now combine Theorem 8.5 and Theorem 8.7 to prove Theorem 8.3 and Theorem 8.4. The
proof of Theorem 8.3 will also use the canonical span program reduction, Theorem 5.2.

Proof of Theorem 8.3. Let P̂ be the canonical span program constructed in Theorem 5.2 for costs
s = ~1, with wsize(P̂ , x) ≤ wsize(P, x) for all x ∈ Bn. In particular, recall that when fP (x) = 0, an
optimal witness |w′〉 may be taken to be |x〉 itself. Also, P̂ is strict, i.e., has Ifree = ∅, so S is the
identity on CI .

Let P ′ be the same as P̂ except with the the target vector scaled by a factor of 1/
√

wsize(P,D).
Thus fP ′ = fP still, and, for all x ∈ D,

wsize(P ′, x) ≤
{

1 if fP (x) = 1
wsize(P,D)2 if fP (x) = 0

(8.35)

Now, when fP ′(x) = 0, an optimal witness is |w′〉 =
√

wsize(P,D)|x〉. This scaling step is known
as amplification. It was introduced by [CRŠZ07] and also applied in [ACR+07, RŠ08].

For the case fP (x) = 1, the first part of Theorem 8.3, Eq. (8.7), now follows from Eqs. (8.12)
and (8.35); since S = 1, ‖|ψ〉‖2 = |ψU,0|2 + ‖S|ψU,I〉‖2.

For the case fP (x) = 0, let G be the graph GP (x) with the output vertex µ0 and all incident
edges deleted. Thus G’s biadjacency matrix is the same as BGP (x) from Eq. (8.4), except with
the µ0 column deleted. Theorem 8.5 implies that AG has an eigenvalue-zero eigenvector |ψ〉 =
(|ψT,V 〉, |ψT,I〉, 0) ∈ V ⊕CI ⊕CI satisfying

|〈t|ψT,V 〉|2

‖|ψ〉‖2
≥ 1
‖|w′〉‖2 + wsize(P ′, x)

≥ 1
wsize(P,D)(wsize(P,D) + 1)

(8.36)

by Eqs. (8.13) and (8.35). Eq. (8.8) now follows by Eq. (8.18) in Theorem 8.7 with G′ = GP (x),
Υ = c/wsize(P,D) and δ = 1/

(
wsize(P,D)(wsize(P,D) + 1)

)
.

Proof of Theorem 8.4. The idea is that we want to charge for the free input vectors of P . Let
P ′ be a strict span program that is the same as P except with one extra input bit, and with the
free input vectors of P now labeled by (n + 1, 1). That is, I ′j,b = Ij,b for j ∈ [n] and b ∈ B, but
I ′free = I ′n+1,0 = ∅ and I ′n+1,1 = Ifree. Then for all x ∈ Bn, fP ′(x, 1) = fP (x), with the same
witnesses, and GP ′(x, 1) = GP (x). The only difference is that in the case fP (x) = 1, wsize(P ′, x) =
min|w〉:AΠ(x)|w〉=|t〉 ‖|w〉‖2 counts the portion of |w〉 on indices in Ifree, while wsize(P, x) does not.

The proof now follows the same steps as the proof of Theorem 8.3, except with δ = 1/(‖|w′〉‖2 +
‖A†|w′〉‖2) in the case fP (x) = 0.
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9 Quantum algorithm for evaluating span programs

In this section, we will connect quantum query algorithms to the graph spectral properties that
are the conclusions of Theorem 8.3 and Theorem 8.4. The following theorem gives two quantum
algorithms for evaluating a total or partial boolean function f based on promised spectral properties
of a family of graphs {G(x) : x ∈ D}, with D ⊆ Bn.

Theorem 9.1. Let G = (V,E) be a complex-weighted graph with Hermitian weighted adjacency
matrix AG ∈ L(CV ) satisfying 〈v|AG|v〉 ≥ 0 for all v ∈ V . Let Vinput be a subset of degree-one
vertices of G whose incident edges have weight one, and partition Vinput as Vinput =

⊔
j∈[n],b∈B Vj,b.

For x ∈ Bn, define G(x) from G by deleting all edges to vertices in ∪j∈[n]Vj,xj . Let AG(x) ∈ L(CV )
be the weighted adjacency of matrix of G(x).

Let f : D → B, with D ⊆ Bn, µ ∈ V r Vinput, ε = Ω(1) and Λ > 0. Assume that for all x ∈ D
the graphs G(x) satisfy:

• If f(x) = 1, then AG(x) has an eigenvalue-zero eigenvector |ψ〉 ∈ CV with

|〈µ|ψ〉|2
‖|ψ〉‖ ≥ ε . (9.1)

• If f(x) = 0, let {|α〉} be a complete set of orthonormal eigenvectors of AG(x), with corre-
sponding eigenvalues ρ(α). Assume that the squared length of the projection of |µ〉 onto the
span of the eigenvectors α with |ρ(α)| ≤ Λ satisfies∑

α: |ρ(α)|≤Λ

|〈α|µ〉|2 ≤ ε/2 . (9.2)

Let abs(AG) be the entry-wise absolute value of AG, and let ‖ abs(AG)‖ be its operator norm.
Then f can be evaluated with error probability at most 1/3 using at most

O

(
min

{‖ abs(AG)‖
Λ

,
1
Λ

log 1
Λ

log log 1
Λ

})
(9.3)

quantum queries.

The intuition behind this theorem is that f can be evaluated by starting at |µ〉 and “measuring”
AG(x) to precision Λ. (More precisely, this is implemented by applying phase estimation to a
certain unitary operator.) Output 1 if and only if the measurement returns 0. Eq. (9.1) implies
completeness when f(x) = 1, because the initial state has large overlap with an eigenvalue-zero
eigenstate. Eq. (9.2) implies soundness when f(x) = 0.

In fact, the proof of Theorem 9.1 requires two quantum algorithms, one for each of the bounds
in Eq. (9.3).

1. The proof that Q(f) = O(‖ abs(AG)‖/Λ) is based on Szegedy’s correspondence between
continuous- and discrete-time quantum walks [Sze04]. The proof is nearly the same as
in [RŠ08, Appendix B.2]. The differences are that we are only assuming an effective spectral
gap in the case f(x) = 0, and that the graph G in Theorem 9.1 is not required to be bipartite.
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The graphs to which we apply Theorem 9.1 below will be bipartite, though, since they will
be derived from span programs.

This algorithm applies to the formula-evaluation applications, Theorem 1.1, Theorem 7.3 and
Theorem 7.6. In each case, a span program P is given and the algorithm run with G = GP .
In addition to lower-bounding Λ, the query and time complexity bounds require showing that
‖ abs(AG)‖ = O(1).

2. The second bound, Q(f) = Õ(1/Λ), is applicable in the more typical case when we do not
know an upper bound on ‖ abs(AG)‖. The idea is to apply phase estimation to eiAG(x) . Since
AG is independent of the input x, recent work by Cleve et al. shows that its norm does
not matter if we can concede a logarithmic factor in the query complexity [CGM+08]. For
applying phase estimation, there is still the problem that eigenvalues can wrap around the
circle, e.g., e2πi = e0i, leading to false positives. To avoid such errors, we scale AG(x) by a
uniformly random number R ∈ (0, 144/ε2).

Although Theorem 9.1 refers only to query complexity, and not time complexity, the first
algorithm’s time complexity can also often be bounded under reasonable assumptions on G. See
Refs. [RŠ08, ACR+07, CNW09] for details.

For a span program P , the graphs GP and GP (x) from Definition 8.2 are of the form required by
Theorem 9.1. The assumptions Eqs. (9.1) and (9.2) for Theorem 9.1 are also of the same type as the
conclusions of Theorem 8.3 and Theorem 8.4. Therefore, assuming for the moment Theorem 9.1,
as corollaries we obtain quantum algorithms for evaluating span programs:

Theorem 9.2. Let P be a span program and D ⊆ Bn. Then the quantum query complexity of fP
restricted to D satisfies

Q(fP |D) = O

(
wsize(P,D)

log wsize(P,D)
log log wsize(P,D)

)
. (9.4)

Proof. Set c = 1/8 in Theorem 8.3 and apply Theorem 9.1 with µ the output vertex µ0 of GP ,
ε = 1/2 and Λ = c/wsize(P,D).

Theorem 9.3. Let P be a span program with target vector |t〉 and input vectors |vi〉 for i ∈ I =
Ifree∪

⋃
j∈[n],b∈B Ij,b, in inner product space V . Let D ⊆ Bn and assume that for some W1,W2 ≥ 1,

max
x∈D:fP (x)=1

min
|w〉∈CI :

AΠ(x)|w〉=|t〉

‖|w〉‖2 ≤W1

max
x∈D:fP (x)=0

min
|w′〉∈V : 〈t|w′〉=1,

Π(x)A†|w′〉=0

(‖|w′〉‖2 + ‖A†|w′〉‖2) ≤W2 .
(9.5)

Let P ′ be the same as P , except with the target vector |t〉/√W1. Then fP can be evaluated on
inputs in D using

O
(√

W1W2‖ abs(AGP ′ )‖
)

= O
(√

W1W2‖ abs(AGP )‖
)

(9.6)

quantum queries, with error probability at most 1/3.
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Proof. Apply Theorem 8.4 to P ′ with Υ = 1
4
√

2
/
√
W1W2. Then Theorem 9.1’s assumptions

Eqs. (9.1) and (9.2) hold with ε = 1/2 and Λ = Υ. An O
(√
W1W2‖ abs(AGP ′ )‖

)
-query quan-

tum algorithm follows.
Finally, since W1 ≥ 1, ‖ abs(AGP ′ )‖ ≤ ‖ abs(AGP )‖.

In the rest of this section, we will prove Theorem 9.1, relying heavily on [RŠ08] and [CGM+08].
As sketched above, there are two parts to the proof, given in Section 9.1 and Section 9.2 below.

For x ∈ Bn, let Ox be the phase-flip input oracle defined by

Ox : |b, j〉 7→ (−1)b xj |b, j〉 (9.7)

for b ∈ B and j ∈ [n].

9.1 Algorithm using the Szegedy correspondence

Proposition 9.4 ([RŠ08]). Under the assumptions of Theorem 9.1, f can be evaluated with error
probability at most 1/3 using O(‖ abs(AG)‖/Λ) queries to the input oracle Ox.

The proof is basically the same as for the algorithm in [RŠ08, Appendix B.2], which in turn
was closely based on the algorithms in [CRŠZ07, ACR+07]. However, the arguments in [RŠ08]
were tied to the formula-evaluation application, whereas Proposition 9.4 is in a more general set-
ting. In particular, [RŠ08] could assume a spectral gap in the case f(x) = 0, whereas we only
have Eq. (9.2), an “effective” spectral gap. This weaker assumption means that establishing the
algorithm’s soundness requires somewhat more care.

The key technical ingredient in the proof is a theorem due to Szegedy [Sze04] that we apply
to relate the spectrum and eigenvectors of AG(x) to those of a discrete-time coined quantum walk
unitary. We use a formulation of the theorem essentially the same as given in [ACR+07]. However,
the statement there had a minor typo (in |α,±〉 below). This typo did not affect their application
or the application in [RŠ08], but would matter for us here. Therefore, after stating the corrected
theorem, we also repeat the proof from [ACR+07], which was correct.

Theorem 9.5 ([Sze04]). Let V be a finite set. For each v ∈ V , let |ϕv〉 ∈ CV be a length-one
vector. Define T ∈ L(CV ,CV ⊗CV ), S,U ∈ L(CV ⊗CV ) and M ∈ L(CV ) by

T =
∑
v∈V

(|v〉 ⊗ |ϕv〉)〈v| S =
∑
v,w∈V

|v, w〉〈w, v| (9.8)

U = (2TT † − 1)S M = T †ST =
∑
v,w∈V

〈ϕv|w〉〈v|ϕw〉|v〉〈w| (9.9)

Since T †T = 1, U is a unitary. (U is a swap followed by the reflection about the span of the vectors
{|v〉 ⊗ |ϕv〉 : v ∈ V }.) M is a Hermitian matrix with ‖M‖ ≤ 1. Let {|α〉} be a complete set of
orthonormal eigenvectors of M with respective eigenvalues ρ(α).

Then the spectral decomposition of U corresponds to that of M as follows: Let Rα = Span{T |α〉, ST |α〉}.
Then Rα ⊥ Rα′ for α 6= α′; let R = ⊕αRα. U is −S on R⊥, and U preserves each subspace Rα.

If |ρ(α)| < 1, then Rα is two-dimensional, and within it the eigenvectors and corresponding
eigenvalues of U are given by

|α,±〉 =
(
1−

(
ρ(α)∓ i

√
1− ρ(α)2

)
S
)
T |α〉

λ(α,±) = ρ(α)± i
√

1− ρ(α)2 .
(9.10)
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If ρ(α) ∈ {1,−1}, then ST |α〉 = ρ(α)T |α〉, so Rα is one-dimensional; let |α,+〉 = T |α〉 and
λ(α,+) = ρ(α) be the corresponding eigenvalue of U .

Proof. This proof is taken from [ACR+07].
First assume α 6= α′, and let us show Rα ⊥ Rα′ . Indeed, 〈α|T †T |α′〉 = 〈α|α′〉 = 0, as T †T = 1.

Since S2 = 1, similarly, ST |α〉 is orthogonal to ST |α′〉. Finally, 〈α|T †ST |α′〉 = 〈α|M |α′〉 = 0.
Therefore, the decomposition CV ⊗CV = (

⊕
αRα)⊕R⊥ is well-defined.

R is the span of the images of ST and T . 2TT † − 1 is +1 on the image of T and −1 on its
complement; therefore U is −S on R⊥.

Finally, TT †T = T and TT †ST = TM , so

U(ST |α〉) = (2TT † − 1)T |α〉 = T |α〉
U(T |α〉) = (2TT † − 1)ST |α〉 = (2ρ(α)− S)T |α〉 ;

U fixes the subspaces Rα.
For the case that |ρ(α)| < 1, let |β〉 = (1 + βS)T |α〉. Then U |β〉 = (2ρ(α) + β)T |α〉 − ST |α〉 is

proportional to |β〉 if β(2ρ(α) + β) = −1; i.e., β = −ρ(α)± i
√

1− ρ(α)2. Eq. (9.10) follows.
If ρ(α) ∈ {−1, 1}, then since (〈α|T †)(ST |α〉) = 〈α|M |α〉 = ρ(α), T |α〉 = ρ(α)ST |α〉. Therefore

Rα is one-dimensional, corresponding to a single eigenvector of U with eigenvalue ρ(α).

We will need slightly more control over the eigenvectors |α,±〉:

Lemma 9.6. With the setup of Theorem 9.5, for any |ψ〉 ∈ CV , the eigenvectors |α,±〉 with
|ρ(α)| < 1 satisfy ‖|α,±〉‖ =

√
2(1− ρ(α)2) and

|〈ψ|T †|α,±〉|2

‖|α,±〉‖2
=

1
2
|〈ψ|α〉|2 . (9.11)

When |ρ(α)| = 1, ‖|α,+〉‖ = 1 and 〈ψ|T †|α,+〉 = 〈µ|α〉.

Proof. Fix an eigenvector |α〉 of AG(x) and let ρ = ρ(α). Assume that |ρ| < 1. We have

‖|α,±〉‖2 = 〈α|T †(1− e±i arccos ρS)(1− e∓i arccos ρS)T |α〉
= 〈α|T †2(1− ρS)T |α〉
= 2(1− ρ〈α|T †ST |α〉)
= 2(1− ρ2) ,

(9.12)

where we have used S2 = T †T = 1, ‖|α〉‖ = 1, and T †ST = M . Also, then, we compute

〈ψ|T †|α,±〉 = 〈ψ|T (1− e∓i arccos ρS)T |α〉
= 〈ψ|T †T |α〉 − e∓i arccos ρ〈ψ|T †ST |α〉
= 〈ψ|α〉(1− ρ e∓i arccos ρ)

= 〈ψ|α〉(1− ρ2 ± iρ
√

1− ρ2) ,

(9.13)

so |〈ψ|T †|α,±〉|2 = |〈ψ|α〉|2(1− ρ2). Eq. (9.11) follows.
When |ρ(α)| = 1, the claims are immediate from |α,+〉 = T |α〉 and T †T = 1.
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We can now prove Proposition 9.4.

Proof of Proposition 9.4. Notice that if we scale AG, AG(x) and Λ all by 1/‖ abs(AG)‖, then both
assumptions Eq. (9.1) and Eq. (9.2) still hold. Therefore we will assume below that ‖ abs(AG)‖ = 1.
Our goal is to evaluate f using O(1/Λ) queries to the phase-flip input oracle of Eq. (9.7).

Assume that G is a connected graph; otherwise, discard all components other than the one
containing the vertex µ. Therefore abs(AG) has a single principal eigenvector |δ〉, abs(AG)|δ〉 = |δ〉,
with 〈v|δ〉 > 0 for all v ∈ V .

Put an arbitrary total order “<” on the vertices in V . For each v ∈ V , let

|ϕv〉 =
1√
〈v|δ〉

(√
〈v|AG|v〉〈v|δ〉|v〉+

∑
w∈V :w<v

√
|〈v|AG|w〉| 〈w|δ〉|w〉+

∑
w∈V : v<w
〈v|AG|w〉6=0

〈w|AG|v〉√
|〈v|AG|w〉|

√
〈w|δ〉|w〉

)
(9.14)

Then

‖|ϕv〉‖2 =
1
〈v|δ〉

∑
w∈V
〈v| abs(AG)|w〉〈w|δ〉

= 1 .

(9.15)

Therefore Theorem 9.5 will apply; define T , S, U and M from Eqs. (9.8) and (9.9). Also let Õx
be the unitary

Õx|v, w〉 =

{
−|v, w〉 if v ∈ Vj,xj ⊆ Vinput for some j ∈ [n]
|v, w〉 otherwise

(9.16)

One controlled call to Õx can be implemented using one call to the standard phase-flip oracle Ox
of Eq. (9.7).

The algorithm has three steps:

1. Prepare the initial state T |µ〉.

2. Run phase estimation on Wx = i ÕxU , with precision δp = 2
πΛ and error rate δe = ε/6.

3. Output 1 if the measured phase is 0 or π. Otherwise output 0.

Phase estimation on a unitary W with precision δp and error rate δe requires O(1/(δpδe))
controlled applications of W [CEMM98]. Since ε = Ω(1), the query complexity of this algorithm is
therefore O(1/Λ). It remains to prove completeness and soundness.

Fix an input x ∈ Bn. For v ∈ V , let

|ϕxv〉 =

{
|v〉 if v ∈ Vj,xj for some j ∈ [n]
|ϕv〉 otherwise

(9.17)

Apply Theorem 9.5 using the vectors |ϕxv〉 to define Tx, Ux and Mx.

Lemma 9.7. M = AG and Mx = AG(x). Moreover, letting CE = Span({|v, w〉 : (v, w) ∈ E}) ⊆
CV ⊗CV be the span of the edges of G, Ux|CE = ÕxU |CE and Tx|µ〉 = T |µ〉 ∈ CE.
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Proof. First, note that for any vertices v, w ∈ V , from Eq. (9.9) and Eq. (9.14),

〈v|M |w〉 = 〈ϕv|w〉〈v|ϕw〉

= 〈v|AG|w〉
√
〈v|δ〉
〈w|δ〉

√
〈w|δ〉
〈v|δ〉

= 〈v|AG|w〉 .

(9.18)

Therefore M = AG.
Recall that G(x) is the same as G except with the edges to vertices in ∪j∈[n]Vj,xj removed.

Consider a v ∈ Vj,xj . By assumption, v has a single neighbor w 6= v, so it must be that |ϕv〉 = |w〉.
Since |ϕxv〉 = |v〉, 〈v|Mx|w〉 = 〈ϕxv |w〉〈v|ϕxw〉 = 0. However, for all pairs (v, w) that do not make an
edge leaving some Vj,xj , 〈v|Mx|w〉 = 〈v|M |w〉. Therefore Mx = AG(x).

Next, we aim to show that UxS and ÕxUS are the same when restricted to CE . Note that

US = 2TT † − 1CV ⊗CV

= 2
∑
v∈V
|v〉〈v| ⊗ |ϕv〉〈ϕv| − 1CV ⊗CV

=
∑
v∈V
|v〉〈v| ⊗ (2|ϕv〉〈ϕv| − 1CV ) .

(9.19)

Similarly UxS =
∑

v |v〉〈v| ⊗ (2|ϕxv〉〈ϕxv | − 1CV ). Therefore,

(US)†UxS =
∑
v

|v〉〈v| ⊗
[
(2|ϕv〉〈ϕv| − 1)(2|ϕxv〉〈ϕxv | − 1)

]
=

∑
v/∈∪jVj,xj

|v〉〈v| ⊗ 1 +
∑

j∈[n],v∈Vj,xj
w∼v

|v〉〈v| ⊗ (1− 2|v〉〈v| − 2|w〉〈w|) , (9.20)

where in the second term w is v’s single neighbor in G. On the other hand, from its definition in
Eq. (9.16),

Õx = 1CV ⊗CV − 2
∑

j∈[n],v∈Vj,xj

|v〉〈v| ⊗ 1CV . (9.21)

By inspection, this is the same as Eq. (9.20) on CE .
Finally, since by assumption µ /∈ Vinput, Tx|µ〉 = |µ〉 ⊗ |ϕxµ〉 = |µ〉 ⊗ |ϕµ〉 = T |µ〉. T |µ〉 ∈ CE by

Eq. (9.14).

The initial state T |µ〉 = Tx|µ〉 lies in Range(Tx) ⊆ CE . Also, Ux fixes CE ; in fact, it even fixes
the join of the ranges of Tx and STx, which could be smaller than CE . By Lemma 9.7, ÕxU and
Ux are the same restricted to CE . Therefore, the algorithm behaves the same as if it were running
phase estimation on iUx instead of Wx = iÕxU .

Based on Eq. (9.1), the algorithm is complete:

Lemma 9.8. If x ∈ D and f(x) = 1, then the algorithm outputs 1 with probability at least ε− δe =
5
6ε, where δe = ε/6 is the phase estimation error parameter.
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Proof. Assume that f(x) = 1. From Eq. (9.1), AG(x) has an eigenvalue-zero eigenvector |α〉 ∈ CV

with ‖|α〉‖ = 1 and |〈µ|α〉|2 ≥ ε. By Theorem 9.5 with ρ(α) = 0, Ux has eigenvectors |α,±〉 =
(1± iS)Tx|α〉 with respective eigenvalues ±i. By Lemma 9.6, these satisfy

|〈µ|T †x |α,+〉|
2

‖|α,+〉‖ +
|〈µ|T †x |α,−〉|

2

‖|α,−〉‖ = |〈µ|α〉|2 ≥ ε . (9.22)

Thus the algorithm measures a phase of 0 or π, and outputs 1, with probability at least ε− δe.

Based on Eq. (9.2), since the phase estimation precision is δp = 2
πΛ, the algorithm is sound:

Lemma 9.9. If x ∈ D and f(x) = 0, then the algorithm outputs 1 with probability at most
ε/2 + δe = 2

3ε.

Proof. Let {|α〉} be a complete set of orthonormal eigenvectors of AG(x), with corresponding eigen-
values ρ(α). The initial state T |µ〉 = Tx|µ〉 lies in the range of Tx, and therefore is in the span of
the eigenvectors {|α,±〉}, i.e., the space R = ⊕αRα from Theorem 9.5. The probability that the
algorithm outputs 1 is therefore at most δe plus∑

|α,b〉:
arg(λ(α,b))∈[π

2
−δp,π2 +δp]∪[−π

2
−δp,−π2 +δp]

|〈α, b|µ〉|2

‖|α, b〉‖2
=

∑
α:|arcsin ρ(α)|≤δp

( |〈α,+|µ〉|2
‖|α,+〉‖2

+
|〈α,−|µ〉|2

‖|α,−〉‖2
)

(9.23)

where in the first sum b can be either + or −, and we have used λ(α,±) = e±i arccos ρ(α), so
arg(λ(α,±)) = ±(π2 − arcsin ρ(α)).

Since |arcsin ρ(α)| ≤ π
2 |ρ(α)|, and by Lemma 9.6, the above sum is at most∑

α:|ρ(α)|≤Λ

|〈α|µ〉|2 , (9.24)

which is at most ε/2 by Eq. (9.2).

Therefore, the algorithm is correct. The constant gap ε/6 between its completeness and sound-
ness parameters can be amplified as usual.

9.2 Discrete-time simulation of a continuous-time algorithm

Proposition 9.10. Under the assumptions of Theorem 9.1, f can be evaluated with error probability
at most 1/3 using O

(
1
Λ log( 1

Λ)/ log log 1
Λ

)
queries to the input oracle Ox.

Proposition 9.4 and Proposition 9.10 together prove Theorem 9.1.
To prove Proposition 9.10, we will first give an algorithm in the continuous-time query model.

This algorithm uses the same idea as the algorithm from Proposition 9.4. Namely, we run phase
estimation on a certain unitary. Completeness of the algorithm is derived from Eq. (9.1) and
soundness derived from Eq. (9.2).

Then we simulate this continuous-query algorithm in the discrete-query model. The key tech-
nical step is a recent result due to Cleve, Gottesman, Mosca, Somma and Yonge-Mallo, [CGM+08],
that states that continuous-query algorithms can be simulated by discrete-query algorithms with
only a logarithmic overhead. We quote here a weak version of their theorem.
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Theorem 9.11 ([CGM+08]). Suppose we are given a continuous-time query algorithm with any
driving Hamiltonian D(t) whose operator norm ‖D(t)‖ is bounded above by any L1 function with
respect to t. (The size of ‖D(t)‖ as a function of the input size N does not matter.) Then there
exists a discrete-time query algorithm that makes

O

(
T log T

δ

δ log log T
δ

)
(9.25)

full queries and whose answer has fidelity 1− δ with the output of the continuous-time algorithm.

We will not define the continuous-time query model here; see [CGM+08] for details. For other
applications of the model, see, e.g., [FG98, Moc07, FGG07, CCD+03].

Proof of Proposition 9.10. We start by presenting and analyzing the continuous-time query algo-
rithm.

The rough idea is to run phase estimation with precision Λ on the unitary eiAG(x) . Output 1
if the estimated phase is zero, and otherwise output 0. This algorithm belongs in the continuous-
query model, because AG(x) is the sum of an input-independent term AG and an oracle-dependent
term

AG(x) −AG = −
∑

j∈[n],v∈Vj,xj
w∼v

(|v〉〈w|+ |w〉〈v|) . (9.26)

However, this algorithm would not be sound. When f(x) = 0, the problem is that even though
AG(x) has an effective spectral gap, that does not imply that there is an effective gap in the phases
of the eigenvalues of eiAG(x) . Each eigenvalue ρ ∈ R of AG(x) corresponds to the eigenvalue eiρ

of eiAG(x) , and therefore large eigenvalues can wrap all the way around the circle. For example,
an eigenvalue-(2π) eigenvector of AG(x) is an eigenvalue-one eigenvector of eiAG(x) , which phase
estimation will not distinguish from an eigenvalue-zero eigenvector of AG(x).

We solve this issue by scaling AG(x) by a uniformly random T ∈R (0, τ), where τ is a large
enough constant. Intuitively, this means that for any eigenvector |α〉 of AG(x) with eigenvector
ρ(α), |ρ(α)| > Λ, there is only a small chance that Tρ(α) wraps around into the interval [−Λ,Λ].

We will analyze the following concrete algorithm:

1. Let M = d12/εe = O(1). Let τ = M2/Λ. Let T be a random variable chosen uniformly from
the interval (0, τ).

2. Prepare the initial state

1√
M

( M∑
m=1

|m〉
)
⊗ |µ〉 ∈ C[M ] ⊗CV . (9.27)

3. Apply eiT
m
M
AG(x) to the second register, controlled by the value m in the first register. That

is, apply the unitary∑
m∈[M ]

|m〉〈m| ⊗ eiT m
M
AG(x) = exp

(
iT

∑
m∈[M ]

m

M
|m〉〈m| ⊗AG(x)

)
. (9.28)
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The resulting state is
1√
M

∑
m∈[M ]

|m〉 ⊗ eiT m
M
AG(x) |µ〉 . (9.29)

4. Project the first register onto the uniform superposition 1√
M

∑
m∈M |m〉. Output 1 if the

projection succeeds, and output 0 otherwise.

This algorithm is essentially running a slightly simplified version of phase estimation. We have
chosen to write it out concretely, instead of using phase estimation as a black box, partly in order
to illustrate that full phase estimation is unnecessary when the objective is just to decide whether
or not the phase is zero. When there is a large gap between the parameter on the right-hand side
of Eq. (9.1) and that on the right-hand side of Eq. (9.2), the procedure becomes especially simple.
(In fact, for our application of Theorem 9.1 to span programs, the gap can be made a constant
arbitrarily close to one.) A similar simplification can be made in the proof of Proposition 9.4.

Lemma 9.12. When run with input x ∈ D, the above procedure satisfies:

• If f(x) = 1, then it outputs 1 with probability at least ε.

• If f(x) = 0, then it outputs 1 with probability at most 3ε/4.

Proof. Let {|α〉} be a complete set of orthonormal eigenvectors of AG(x), with corresponding eigen-
values ρ(α). The probability that the procedure outputs 1 is the expectation versus T of

Pr
[
output 1|T = t

]
=

1
M2

∥∥∥ ∑
m∈[M ]

eit
m
M
AG(x) |µ〉

∥∥∥2

=
1
M2

∥∥∥∑
α

∑
m∈[M ]

eit
m
M
ρ(α)〈α|µ〉|α〉

∥∥∥2

=
1
M2

∑
α

∣∣∣ ∑
m∈[M ]

eit
m
M
ρ(α)
∣∣∣2|〈α|µ〉|2

(9.30)

When f(x) = 1, we have from Eq. (9.1) that
∑

α:ρ(α)=0 |〈α|µ〉|2 ≥ ε, so Pr
[
output 1|T = t

]
≥ ε,

regardless of t.
For the case f(x) = 0, we split the sum over α into a sum over those α with |ρ(α)| ≤ Λ and a

sum over those α with |ρ(α)| > Λ. By Eq. (9.2), the first sum is at most M2ε/2:

Pr
[
output 1|T = t

]
≤ ε

2
+

1
M2

∑
α: |ρ(α)|>Λ

∣∣∣ ∑
m∈[M ]

eit
m
M
ρ(α)
∣∣∣2|〈α|µ〉|2 . (9.31)

Now use ∣∣∣ ∑
m∈[M ]

eit
m
M
ρ(α)
∣∣∣2 = M +

∑
l,m∈[M ]
l 6=m

eit
l−m
M

ρ(α) (9.32)

and, for ρ(α) 6= 0,

ET
[
eiT

l−m
M

ρ(α)
]

=
eiτ

l−m
M

ρ(α) − 1
iτ l−mM ρ(α)

. (9.33)
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Substituting back into Eq. (9.31) gives

Pr
[
output 1

]
≤ ε

2
+

1
M2

∑
α: |ρ(α)|>Λ

(
M +

∑
l,m∈[M ]
l 6=m

eiτ
l−m
M

ρ(α) − 1
iτ l−mM ρ(α)

)
|〈α|µ〉|2

=
ε

2
+

1
M

∑
α: |ρ(α)|>Λ

(
1 +

1
τρ(α)

∑
l,m∈[M ]
l>m

eiτ
l−m
M

ρ(α) − e−iτ l−mM ρ(α)

i(l −m)

)
|〈α|µ〉|2

≤ ε

2
+

1
M

∑
α: |ρ(α)|>Λ

(
1 +

2M2

τρ(α)

)
|〈α|µ〉|2 ,

(9.34)

where in the last step we have (loosely) bounded the sum over l and m. Now use
∑

α |〈α|µ〉|2 = 1,
τ = M2/Λ and M ≥ 12/ε to conclude

Pr
[
output 1

]
≤ ε

2
+

3
M

≤ 3ε
4

,

(9.35)

as claimed.

Therefore, the above procedure is correct. It remains to show that it can be simulated using
O(τ log τ/ log log τ) queries to the input oracle Ox from Eq. (9.7). The difficulty is simulating eitH(x)

for a t ∈ (0, τ), where
H(x) =

∑
m∈[M ]

m

M
|m〉〈m| ⊗AG(x) . (9.36)

In the language of physics, eitH(x) corresponds to applying the time-independent Hamiltonian H(x)
for a time t.

Let
D =

∑
m∈[M ]

m

M
|m〉〈m| ⊗AG , (9.37)

the “driving Hamiltonian.” D is independent of the input x, so eitD can be implemented without
querying Ox. Let the “query Hamiltonian” be

Hx =
∑
m∈[M ]

m

M
|m〉〈m| ⊗ (AG(x) −AG)

= −
∑
m∈[M ]

m

M
|m〉〈m| ⊗

∑
v∈∪j∈[n]Vj,xj

w∼v

(|v〉〈w|+ |w〉〈v|) ,
(9.38)

where we have used that G(x) differs from G only in the deletion of the weight-one edges leaving
the vertices v ∈ ∪j∈[n]Vj,xj . For an arbitrary t ∈ R, eitHx can be implemented using at most two
queries to the oracle Ox.

Then
H(x) = D +Hx . (9.39)
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The problem for taking the exponential is that the two terms D and Hx do not commute.
We will now apply Theorem 9.11, which very roughly can be thought of as an asymmetric

Lie-Trotter expansion of the exponential. A minor difference between our setting and the one
in [CGM+08], though, is that they assume a more restricted form for the query Hamiltonian. For
querying a k-bit string y with the first bit fixed to y1 = 0, they assume the query Hamiltonian is

H̃y =
∑
j∈[k]

yj |j〉〈j| =
∑

j∈[k]: yj=1

|j〉〈j| . (9.40)

Unfortunately, our query Hamiltonian Hx is not of this required form. In order to apply Theo-
rem 9.11 as a black box, we need to put Hx into this form for some string y. Each bit of y will
be a fixed function of exactly one bit of x, and therefore a discrete phase-flip query on y can be
simulated with one application of Ox.

First of all, note that Theorem 9.11 still holds if the query Hamiltonian is of the form

H̃ ′y =
∑
j∈[k]

yjg(j)|j〉〈j| , (9.41)

where g is any fixed function [k]→ {−1, 1}. That is, signs are allowed. Indeed, then

H̃ ′y = −
∑

j∈[k]: g(j)=−1

|j〉〈j|+
∑

j∈[k]: g(j)=1

yj |j〉〈j|+
∑

j∈[k]: g(j)=−1

(1− yj)|j〉〈j| (9.42)

The first term can be moved into the driving Hamiltonian, since it does not depend on y, and
the remaining terms are of the form of H̃y′ on an input y′ that equals y except with the bits
{j ∈ [k] : g(j) = −1} complemented.

Let us now translate our query Hamiltonian Hx into the form of Eq. (9.41). For m ∈ [M ], let

Dm = |m〉〈m| ⊗AG (9.43)

Hm
x = −|m〉〈m| ⊗

∑
v∈∪j∈[n]Vj,xj

w∼v

(|v〉〈w|+ |w〉〈v|) (9.44)

Hm(x) = Dm +Hm
x = |m〉〈m| ⊗AG(x) . (9.45)

Then H(x) =
∑

m∈[M ]
m
MH

m(x), so

eitH(x) =
∏

m∈[M ]

exp
(
it
m

M
Hm(x)

)
(9.46)

since the different terms Hm(x) commute pairwise.
The term Hm

x is nearly of the form Eq. (9.41). It can be put in that form by changing basis.
For j ∈ [n], b ∈ B and v ∈ Vj,b ⊆ Vinput, with neighbor w, write

|v〉〈w|+ |w〉〈v| = |vw+〉〈vw+| − |vw−〉〈vw−| , (9.47)

where |vw±〉 = 1√
2
(|v〉± |w〉). Use two bits of y, with values xj and x̄j , to get the terms ∓|m〉〈m|⊗

|vw±〉〈vw±| from Eq. (9.44) into the form of Eq. (9.41).
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Overall, therefore y has |Vj,b| copies of bit xj and |Vj,b| copies of the complement x̄j , for all
j ∈ [n], b ∈ B. Thus k, the length of y, is 2|Vinput|.

Finally, apply Theorem 9.11, with accuracy parameter δ = ε
12M = Ω(1), M times, once

for each of the terms in Eq. (9.46). The total query complexity is O(Mτ log(τ)/ log log τ) =
O( 1

Λ log( 1
Λ)/ log log 1

Λ), as desired. The total error introduced in the simulation is at most Mδ,
so the gap between the completeness and soundness parameters of the final algorithm is at least
ε/4− 2 · ε/12 = ε/12. This constant gap can be amplified as usual.

10 The general quantum adversary bound is nearly tight for every
boolean function

We can now prove the main result of this paper, that for any total or partial boolean function f
the general adversary bound on the quantum query complexity is tight up to a logarithmic factor.

Theorem 10.1. For any function f : D → {0, 1}, with D ⊆ {0, 1}n, the bounded-error quantum
query complexity of f , Q(f), satisfies

Q(f) = Ω(Adv±(f)) (10.1)

and

Q(f) = O

(
Adv±(f)

log Adv±(f)
log log Adv±(f)

)
. (10.2)

Proof. The lower bound is a special case of Theorem 2.6, and is due to Høyer, Lee and Špalek [HLŠ07].
As already sketched in Section 1, for the upper bound, use the semi-definite program from

Theorem 6.1 with uniform costs s = ~1 to construct a span program P computing fP |D = f ,
with wsize(P,D) = Adv±(f). Then apply Theorem 9.2 to obtain a bounded-error quantum query
algorithm that evaluates f .

By using binary search and standard error reduction, Theorem 10.1 can be extended to cover
functions with larger codomain [Lee09]:

Theorem 10.2. For any function f : D → [m], with D ⊆ {0, 1}n, Q(f) satisfies

Q(f) = Ω(Adv±(f)) (10.3)

and

Q(f) = O

(
Adv±(f)

log Adv±(f)
log log Adv±(f)

log(m) log logm
)
. (10.4)

Proof. The lower bound is again due to [HLŠ07]. To derive the upper bound, first let us show:

Lemma 10.3. For finite sets D ⊆ Cn, E and F , let f : D → E and g : E → F . Let s ∈ [0,∞)n.
Then

Advs(g ◦ f) ≤ Advs(f) (10.5)
Adv±s (g ◦ f) ≤ Adv±s (f) . (10.6)
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Proof. For x, y ∈ D, f(x) = f(y) implies g(f(x)) = g(f(y)). Therefore if Γ is an adversary matrix
for g◦f : D → F , then Γ is also an adversary matrix for f . The conclusions follow by Definition 2.4
for the adversary bounds.

In order to evaluate f , apply standard binary search using dlog2me steps. In each step, there
is some division of the range g : [m]→ {0, 1}. By Lemma 10.3, Adv±(g ◦ f) ≤ Adv±(f). Therefore
by Theorem 10.1, g ◦ f can be evaluated with error at most 1/3, using

O

(
Adv±(f)

log Adv±(f)
log log Adv±(f)

)
(10.7)

queries. Repeat this O(log logm) times in order to reduce the error probability to 1/(3dlogme).
Then by the union bound, the entire procedure has a probability of error at most 1/3.

We do not have a result for the case of a non-binary input alphabet. Of course the input can be
encoded into binary, so that Theorem 10.1 applies. However, this encoding might increase Adv±

significantly.

11 Open problems

We have shown that for any boolean function f , the general adversary bound Adv±(f) is a tight
lower bound on the bounded-error quantum query complexity Q(f), up to a logarithmic factor. In
proving this statement, we have also shown that quantum algorithms, judged by query complexity,
and span programs, judged by witness size, are equivalent computational models for evaluating
boolean functions, again up to a logarithmic factor.

Among the corollaries, Theorem 7.6 gives an optimal quantum algorithm for evaluating adversary-
balanced formulas over any finite boolean gate set. For example, the formula’s gate set may be
taken to be all functions {0, 1}n → {0, 1} with n ≤ 1000. This formula-evaluation algorithm exploits
the ease of composing span programs. The main unresolved problem here is how best to evaluate
unbalanced formulas, aiming for optimal query complexity and near-optimal time complexity.

Span programs may also be useful for developing other quantum algorithms. They have a
rich mathematical structure, and their potential has not been fully explored. One possible ap-
proach is to study the general adversary bound for more problems. For example, studying the
Barnum/Saks/Szegedy semi-definite program for quantum query complexity [BSS03] has led to
improved zero-error algorithms for Ordered Search [CLP07]. The Adv± SDP is simpler than the
SDP in [BSS03], and Theorem 6.2 gives a new, simpler form for the dual SDP, for boolean func-
tions. Although this SDP is still exponentially large, the simplifications may ease the inference
of structure from numerical investigations. For the Ordered Search problem in particular, Childs
and Lee have closely characterized Adv± [CL08]. This result will not necessarily be useful for
developing an Ordered Search algorithm because the codomain is not boolean and Theorem 10.1
has a logarithmic overhead. A variation of this problem, Least-Significant-Bit Ordered Search, has
boolean codomain, but is of less practical interest.

The nonnegative-weight adversary bound Adv is often easy to approximate. If this bound is
close to Adv±, then perhaps a solution to Eq. (6.5), the SDP dual to the Adv SDP, can also be
turned into a quantum walk algorithm. However, the span program framework will not apply for
the analysis.

55



This article has focused on query complexity, but Theorem 9.1 is more than an information-
theoretic statement. It gives explicit algorithms whose time complexity can be analyzed, as in
Theorem 7.6 for formula evaluation. Proposition 4.7, Theorem 8.4 and Theorem 9.3 are pertinent
results, but more techniques are needed for developing span programs P such that ‖ abs(AGP )‖ =
O(1) and for which the quantum walk reflections from Szegedy’s Theorem 9.5 can be implemented
efficiently.

It is an interesting problem to consider functions with non-binary input alphabet and non-
boolean codomain. The three main theorems, Theorem 6.1, Theorem 8.3 and Theorem 9.1, may
extend to cover partial functions with domain in [k]n and k = O(1). When the codomain is not
boolean, we would like to strengthen Theorem 10.2. The natural approach is to define generalized
canonical span programs and extend Lemma 6.5 to characterize the optimal generalized witness
size of f : Cn → E [RŠ09]. Although this may lead to new quantum query algorithms, it will
be insufficient for obtaining provably optimal or near-optimal algorithms for non-binary input
alphabets, since the SDP in Eq. (6.2) is not always equal to Adv±; see Eq. (6.6). Moreover, there
are functions [3]2 → [3] for which both Adv± and the SDP in Eq. (6.2) compose strictly sub-
multiplicatively, which indicates that the formula-evaluation problem for non-boolean gate sets is
more complicated.

One might ask whether the classical query complexity of evaluating a span program P on
inputs in D can be related to the witness size wsize(P,D). A polynomial dependence is not pos-
sible, though, since there is only a polynomial relationship between quantum and classical query
complexities for total functions [Sim97, BBC+01].

Finally, we conjecture that the logarithmic overhead can be removed from Theorem 10.1. An
analogous conjecture may hold in the continuous-time query model [FG98, Moc07, CGM+08].

Conjecture 11.1. For any function f : D → {0, 1}, with D ⊆ {0, 1}n, the general quantum
adversary bound is tight:

Q(f) = Θ(Adv±(f)) . (11.1)
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[Špa09] Robert Špalek. private communication, 2009.
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A Optimal span programs for the Hamming-weight threshold
functions

In this appendix, span programs with optimal witness size are given for the Hamming-weight
threshold functions. Additionally, optimal span programs are given for those Hamming-weight
interval functions for which the nonnegative-weight adversary bound equals the general adversary
bound. The motivation is to show an explicit and nontrivial span program construction. The
main technique, recursive composition of symmetrized span programs, may be useful for other
constructions.

Surprisingly, the optimal span programs are simply derived from span programs for AND and
OR gates, composed in a certain symmetrical manner and with optimized weights. The optimal
span programs for Threshold 2 of 3 and Threshold 2 of 4 given in [RŠ08] did not have this form.
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The proofs are simple calculations. After presenting the span programs, we compute their
witness sizes, compute the best nonnegative-weight adversary bounds (by giving adversary matrices
and solutions to the dual formulation), and show by perturbations of these matrices that the general
adversary bound is strictly greater in those cases where the span program witness size does not
match the nonnegative-weight adversary bound.

Definition A.1. The Hamming-weight threshold function Tnl : {0, 1}n → {0, 1} is defined by

Tnl (x) =

{
1 if |x| ≥ l
0 otherwise

(A.1)

where |x| = ∑n
i=1 xi is the Hamming weight of x.

The Hamming-weight interval function Inl,m : {0, 1}n → {0, 1} is defined by

Inl,m(x) =

{
1 if l ≤ |x| ≤ m
0 otherwise

(A.2)

Note that Tnl = Inl,n and, for all x ∈ {0, 1}n, Inl,m(x) is the conjunction Tnl (x) ∧ Tnn−m(x̄), where
x̄ is the bitwise complement of x. Also, Inl,m(x) = Inn−m,n−l(x̄), which allows us to assume without
loss of generality that |n2 −m| ≤ |n2 − l|.
Theorem A.2. For the interval function Inl,m, assume that |n2 −m| ≤ |n2 − l|. Then

Adv(Inl,m) =

{√
(m+ 1)(n−m) + m(n−l+1)

(m−l+1)2 if l > 0√
(m+ 1)(n−m) if l = 0

. (A.3)

If l ∈ {0, 1,m}, then Adv±(Inl,m) = Adv(Inl,m); otherwise Adv±(Inl,m) > Adv(Inl,m).
There exists a span program Pnl,m computing fPnl,m = Inl,m, with witness size

wsize(Pnl,m) ≤
√

(m+ 1)(n−m) +
l(n− l + 1)
m− l + 1

. (A.4)

This witness size matches Adv(Inl,m), and hence is optimal, for l ∈ {0, 1,m}, i.e., in those cases
where Adv±(Inl,m) = Adv(Inl,m).

Our span program construction for the case l = 0 and m = n − 2 has been influenced by a
family of constructions due to Ambainis that come arbitrarily close to optimality [Amb08].

We will use the following notation. For i ∈ [n] = {1, 2, . . . , n}, let ei = 0i−110n−i ∈ {0, 1}n be
the bit string with a 1 only in position i, and for x ∈ {0, 1}n, let i ∈ x mean xi = 1 and i /∈ x mean
xi = 0. Let ⊕ denote the bitwise exor operation.

For computing the nonnegative-weight adversary bounds, we will use a dual formulation that
is a simplified version of Eq. (6.5):

Theorem A.3 ([ŠS06]). Let f : {0, 1}n → {0, 1}. Then

Adv(f) = min
{px}

max
x,y:f(x)6=f(y)

1∑
i:xi 6=yi

√
px(i)py(i)

, (A.5)

where the first minimization is over distributions px on [n] for each x ∈ {0, 1}n.
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A.1 Span programs for the threshold functions T n
l

Proposition A.4. For l ∈ [n], there exists a span program Pnl computing fPnl = Tnl , with witness
size

wsize(Pnl ) ≤
√
l(n− l + 1) . (A.6)

Proof. The proof is by induction in l. For the base case, l = 1, Tn1 is the OR function, for which
an optimal span program has V = C, target vector |t〉 = 1 and, for i ∈ I = [n], input vector
|vi〉 = 1 labeled by (i, 1). For this span program, the witness size for inputs x of Hamming weight
|x| = j ≥ 1 is 1/j, achieved by |w〉 = 1

j

∑
i∈x |i〉, and the witness size for x = 0n is n.

For i ∈ [n], let x−i = x1 . . . x̂i . . . xn ∈ {0, 1}n−1 be the string x with the ith bit removed. For
l > 1, the span program for Tnl can be built recursively, by expanding out the formula

Tnl (x1, . . . , xn) =
n∨
i=1

(
xi ∧ Tn−1

l−1 (x−i)
)
. (A.7)

By induction, let Pn−1
l−1 be an optimal span program for Tn−1

l−1 , over a vector space of dimension
d with target vector |t′〉 = (1, 0, . . . , 0), and with witness sizes 1 for inputs of Hamming weight
l − 1 and witness sizes (l − 1)(n − l + 1) for inputs of Hamming weight l − 2. We construct span
program Pnl over the vector space V = C ⊕ (Cn ⊗ Cd), of dimension 1 + nd. Let the target
vector be |t〉 = (1, 0). For the ith term in Eq. (A.7), add the following “block” of input vectors:
(1,
√
l − 1|i〉 ⊗ |t′〉) labeled by (i, 1), and (0, |i〉 ⊗ |vj〉) for each input vector |vj〉 of Pn−1

l−1 on x−i.
The span program Pnl indeed computes Tnl . For computing the witness size of Pnl , note that

all input bits are symmetrical, so it suffices to consider inputs of the form x = 1j0n−j .

• In the true case, j ≥ l, consider the witness |w〉 with weight 1/j on each of the input
vectors (1,

√
l − 1|i〉 ⊗ |t′〉) for i ∈ [j] and then an optimal witness, of squared length at most

(
√
l − 1/j)2 · wsize(Pn−1

l−1 , x−i) within each of those Tn−1
l−1 span program blocks. The witness

size is
‖|w〉‖2 =

1
j2

∑
i∈x

(
1 + (l − 1)wsize(Pn−1

l−1 , x−i)
)
≤ 1 . (A.8)

• In the false case, j < l, let the witness vector |w′〉 ∈ V orthogonal to the available input
vectors be |w′〉 =

(
1,− 1√

l−1

∑
i∈x |i〉 ⊗ |w′i〉

)
. Here |w′i〉 is an optimal witness vector for the

span program Pn−1
l−1 on x−i, i.e., orthogonal to the available input vectors and with 〈t′|w′i〉 = 1.

Then 〈t|w′〉 = 1 and

‖A†|w′〉‖2 =
∑
i/∈x

1 +
∑
i∈x

1
l − 1

‖A†|w′i〉‖
2

= (n− j) +
∑
i∈x

1
l − 1

wsize(Pn−1
l−1 , x−i)

≤ (n− j) + j(n− l + 1)
= n+ j(n− l)
≤ l(n− l + 1) , (A.9)

where in the two inequalities we have used wsize(Pn−1
l−1 , x−i) ≤ (l−1)(n− j+1) and j ≤ l−1,

respectively.
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Thus wsize(Pnl ) ≤
√
l(n− l + 1).

Letting size(P ) be the number of input vectors of a span program P [KW93], note that
size(Pn1 ) = n and size(Pnl ) = n(1 + size(Pn−1

l−1 )), which is exponential in l. For example, for
the three-majority function T 3

2 , size(P 3
2 ) = 9. This size is not optimal, even among span programs

with optimal witness size.
In Proposition A.6 below, we will require slightly finer control over the threshold span program

witness sizes:

Claim A.5. On an input x of Hamming weight |x| = j ≥ l, the span program Pnl constructed in
Proposition A.4 satisfies

wsize(Pnl , x) ≤ 1
j − l + 1

. (A.10)

Proof. By induction in l. The base case, l = 1, was already considered as the base case for the
induction in the proof of Proposition A.4. For l > 1, apply Eq. (A.8) and the induction assumption
to get

wsize(Pnl , x) ≤ 1
j2

∑
i∈x

(
1 + (l − 1)wsize(Pn−1

l−1 , x−i)
)

(A.11)

≤ 1
j

(
1 +

l − 1
j − l + 1

)
=

1
j − l + 1

.

A.2 Span programs for the interval functions Inl,m

Proposition A.6. There exists a span program Pnl,m computing fPnl,m = Inl,m, with witness size

wsize(Pnl,m) ≤
√

(m+ 1)(n−m) +
l(n− l + 1)
m− l + 1

(A.12)

when |n2 −m| ≤ |n2 − l|.

Proof. We use Inl,m(x) = Tnl (x) ∧ Tnn−m(x̄) and combine the span programs Pnl for Tnl and Pnn−m
for Tnn−m from Proposition A.4.

Let V ′ and V ′′ be the vector spaces for Pnl and Pnn−m, with target vectors |t′〉 and |t′′〉, respec-
tively. As in Proposition A.4, scale the target vectors so that witness sizes in the true cases are
at most 1 and in the false cases are at most l(n − l + 1) or (n − m)(m + 1) for Pnl and Pnn−m,
respectively. Let V = V ′ ⊕ V ′′ be the vector space for Pnl,m, with target vector

|t〉 =
(√

l(n− l + 1)|t′〉,
√

(n−m)(m+ 1)|t′′〉
)
∈ V . (A.13)

The input vectors for Pnl,m are exactly the input vectors of Pnl on input x in the first component of
V and the input vectors of Pnn−m on input x̄ in the second component of V . This way, fPnl,m = 1 if
and only if both component span programs evaluate to true, so indeed fPnl,m = Inl,m.

Note that all input bits are symmetrical, so the witness size of Pnl,m on an input x depends only
on j = |x|.
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• In the true case, l ≤ j ≤ m, the witness size is the sum of the squared lengths for witnesses
for the two component span programs, from Claim A.5,

wsize(Pnl,m, x) = l(n− l + 1)wsize(Pnl , x) + (n−m)(m+ 1)wsize(Pnn−m, x̄)

≤ l(n− l + 1)
j − l + 1

+
(n−m)(m+ 1)
m− j + 1

. (A.14)

As the above expression is convex up in j ∈ [l,m], it is maximized for j ∈ {l,m}. Since
|n2 −m| ≤ |n2 − l|, l(n− l + 1) ≤ (m+ 1)(n−m), so j = m is the worst case:

wsize(Pnl,m, x) ≤ l(n− l + 1)
m− l + 1

+ (m+ 1)(n−m) . (A.15)

• In the false case, either j < l or j > m, and we aim to show wsize(Pnl,m, x) ≤ 1. Take first the
case j > l. Consider a witness vector

(
1√

l(n−l+1)
|w′〉, 0

)
∈ V where |w′〉 is an optimal witness

vector to fPnl (x) = 1. The witness size is 1
l(n−l+1)wsize(Pnl , x) ≤ 1. The case j > m is dealt

with symmetrically.

A.3 Adversary bounds for the interval functions Inl,m

Proposition A.7. For the interval function Inl,m with |n2 −m| ≤ |n2 − l|,

Adv(Inl,m) =

{√
(m+ 1)(n−m) + m(n−l+1)

(m−l+1)2 if l > 0√
(m+ 1)(n−m) if l = 0

(A.16)

In particular, Adv(Tnl ) =
√
l(n− l + 1).

Proof. There are two steps to the proof. First we give an adversary matrix Γ that achieves for
each i ∈ [n] ‖Γ‖/‖Γ ◦∆i‖ =

√
(m+ 1)(n−m) + m(n−l+1)

(m−l+1)2 if l > 0, or
√

(m+ 1)(n−m) if l = 0.
By Definition 2.4, this lowers bounds Adv(Inl,m). Second, we give a matching solution to the dual
formulation of the nonnegative-weight adversary bound of Theorem A.3, in order to upper-bound
Adv(Inl,m).

Let

Γ =
∑

x:|x|=m

|x〉
(∑

i/∈x

〈x⊕ ei|+ c
∑

y:|y|=l−1
|x⊕y|=m−l+1

〈y|
)
, (A.17)

where c is to be determined. For the case l = 0, the second term above is zero, so set c = 0.
Then for each i ∈ [n], let Γi = Γ ◦∆i, so

Γi =
∑

x,y:xi 6=yi

〈x|Γ|y〉

=
∑

x:|x|=m
i/∈x

|x〉〈x⊕ ei|+ c
∑

x:|x|=m
i∈x

∑
y:|y|=l−1

|x⊕y|=m−l+1
i/∈y

|x〉〈y| . (A.18)
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Then
Γ†iΓi =

∑
y:|y|=m+1

i∈y

|y〉〈y|+ c2
∑
y,y′,x

|y|=|y′|=l−1,|x|=m
|x⊕y|=|x⊕y′|=m−l+1

i∈x,i/∈y,i/∈y′

|y〉〈y′| . (A.19)

Thus Γ†iΓi is the direct sum of two matrices, for l > 0. The first term above clearly has norm
one, and we want to choose c as large as possible so the second term also has norm one. Now the
eigenvector with largest eigenvalue for the second sum is, by symmetry, |ψ〉 =

∑
x:|x|=l−1,i/∈x |x〉,

with eigenvalue c2
(
n−l
m−l

) (
m−1
l−1

)
. Thus let

c =
[ (

n−l
m−l

) (
m−1
l−1

) ]−1/2 (A.20)

so ‖Γi‖ = 1.
Let us determine the norm of Γ. We have

‖ΓΓ†‖ =
〈ψm|ΓΓ†|ψm〉
〈ψm|ψm〉

, (A.21)

where |ψm〉 =
∑

x:|x|=m |x〉, ‖|ψm〉‖2 = ( nm ). Then

Γ†|ψm〉 =
∑

x:|x|=m

[∑
i/∈x

|x⊕ ei〉+ c
∑

y:|y|=l−1
|x⊕y|=m−l+1

|y〉
]

=
∑

y:|y|=m+1

(m+ 1)|y〉+ c
∑

y:|y|=l−1

(
n−l+1
m−l+1

)
|y〉

(A.22)

so

‖ΓΓ†‖ =
1

( nm )

(
(m+ 1)2 ( n

m+1 ) + c2 ( n
l−1 )

(
n−l+1
m−l+1

)2)
=

{
(m+ 1)(n−m) + m(n−l+1)

(m−l+1)2 if l > 0

(m+ 1)(n−m) if l = 0

(A.23)

This gives the desired lower bound on Adv(Inl,m).
Next, we need to show a matching upper bound on Adv(Inl,m), using Theorem A.3. For each x,

we need a distribution px on [n]. For a function f that is symmetrical under permuting the input
bits, we look for distributions such that px(i) depends only on whether xi = 0 or 1 and moreover
its values in these cases depends only on |x|. Thus for i = 0, 1, . . . , n, we fix a pi, 0 ≤ pi ≤ 1/i (with
p0 = 0) and set p′i = (1− ipi)/(n− i) ≥ 0 (with p′n = 0). Letting pi and p′i be the probabilities of 1
and 0 bits, respectively, when |x| = i, Eq. (A.5) gives

Adv(f) ≤ min
{pi}

max
x,y

f(x)6=f(y)

( ∑
i:xi=1,yi=0

√
p|x|p

′
|y| +

∑
i:xi=0,yi=1

√
p′|x|p|y|

)−1

. (A.24)

Fixing |x| = i and |y| = j, the inner maximum is achieved by x = 1i0n−i and y = 1j0n−j because
these strings have the fewest differing bits. Thus the above bound simplifies to

Adv(f) ≤ min
{pi}

max
i<j

f(1i0n−i)6=f(1j0n−j)

(
(j − i)

√
p′ipj

)−1

. (A.25)
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Now specialize from symmetrical functions down to the Hamming-weight interval function f =
Inl,m. For i ≥ m + 1, we should clearly set pi as large as possible, i.e., set pi = 1/i, while for i < l
we should set p′i as large as possible, i.e., p′i = 1/(n− i).

First consider the case l = 0. Then we should set p′i = 1/(n − i) for all i ≤ m in order to
minimize the expression in Eq. (A.25). This gives

Adv(In0,m) ≤ max
0≤i≤m

m+1≤j≤n

√
(n− i)j
j − i

=
√

(m+ 1)(n−m) ,

(A.26)

where the maximum is achieved at i = m, j = m+ 1.
Now assume l > 0. It turns out that there is some freedom in the choice of pi for l ≤ i < m.

For i = l, . . . ,m, choose pi to balance the (l − 1, i) and (i,m+ 1) terms above, i.e., setting(
(i− l + 1)

√
p′l−1pi

)−1

=
(

(m− i+ 1)
√
p′ipm+1

)−1

. (A.27)

Since p′l−1 = 1/(n− l + 1) and pm+1 = 1/(m+ 1), this gives

pi =
1

i+ (m+1)(n−i)
n−l+1

(
i−l+1
m−i+1

)2 . (A.28)

Substituting this value for pi back in, the (l− 1, i) and (i,m+ 1) terms are both the square root of

f(n, l,m, i) :=
i(n− l + 1)
(i− l + 1)2

+
(n− i)(m+ 1)
(m− i+ 1)2

. (A.29)

The case i = m gives the bound we are aiming for. We claim that this is the worst case, i.e., that
f(n, l,m, i) ≤ f(n, l,m,m) when |n2 −m| ≤ |n2 − l|.

First note that

∂2

∂i2
f(n, l,m, i) = 2

(n− l + 1)(i+ 2l − 2)
(i− l + 1)4

+ 2
(m+ 1)(3n− i− 2m− 2)

(m− i+ 1)4
> 0 . (A.30)

Thus it suffices to check that f(n, l,m, l) ≤ f(n, l,m,m). Indeed,

f(n, l,m,m)− f(n, l,m, l) =
(n−m− l)

(
(m− l + 1)3 − 1

)
(m− l + 1)2

. (A.31)

Note that l ≤ m. The above difference is clearly ≥ 0 if m ≤ n
2 . If m > n

2 , then the assumption
|n2 −m| ≤ |n2 − l| implies that l < n

2 and m− n
2 ≤ n

2 − l, i.e., m+ l ≤ n; so again the above difference
is ≥ 0.

Proposition A.8. For the interval function Inl,m, Adv(Inl,m) < Adv±(Inl,m) if and only if l /∈
{0, 1,m, n− 1, n}.
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Proof. For l ∈ {0, 1,m, n − 1, n}, Adv(Inl,m) = Adv±(Inl,m) because Proposition A.6 gave a span
program Pnl,m with witness size wsize(Pnl,m) = Adv(Inl,m), and by Theorem 2.8, wsize(Pnl,m) ≥
Adv±(Inl,m).

Otherwise, assume that 2 ≤ l ≤ m− 1 and |n2 −m| ≤ |n2 − l|. We will show that a perturbation
of the adversary matrix Γ from Eqs. (A.17) and (A.20) in the proof of Proposition A.7 increases
‖Γ‖/‖Γ ◦∆i‖ for each i ∈ [n]. The perturbation we consider will be in the direction of

Λ =
∑

x:|x|=m−1

|x〉
( ∑

y:|y|=l−1
|x⊕y|=m−l

〈y| − δ
∑

y:|y|=l−1
|x⊕y|=m−l+2

〈y|
)
, (A.32)

where δ > 0 will be determined later. Let Γ(ε) = Γ + εΛ. Let Λi = Λ ◦∆i and Γ(ε)
i = Γ(ε) ◦∆i.

First of all, note that ∂
∂ε‖Γ(ε)‖/‖Γ(ε)

i ‖
∣∣
ε=0

= 0. Indeed,

∂

∂ε
‖Γ(ε)‖

∣∣
ε=0

=
1

2‖Γ‖
∂

∂ε
‖Γ(ε)†Γ(ε)‖

∣∣
ε=0

. (A.33)

However, Γ(ε)†Γ(ε) = Γ†Γ + ε2Λ†Λ since Γ†Λ = Λ†Γ = 0. Thus ∂
∂ε‖Γ(ε)‖

∣∣
ε=0

= 0, and similarly
∂
∂ε‖Γ

(ε)
i ‖
∣∣
ε=0

= 0.

Therefore, we need to compute ∂2

∂ε2
‖Γ(ε)‖/‖Γ(ε)

i ‖
∣∣
ε=0

. Now

∂2

∂ε2
‖Γ(ε)‖

∣∣
ε=0

=
1

2‖Γ‖
∂2

∂ε2
‖Γ†Γ + ε2Λ†Λ‖

∣∣
ε=0

=
1
‖Γ‖

∂

∂ε
‖Γ†Γ + εΛ†Λ‖

∣∣
ε=0

.

(A.34)

By the Perron-Frobenius theorem, Γ†Γ has a unique eigenvalue of largest magnitude, and it is non-
degenerate. Letting |ψ〉 be the corresponding eigenvector, we have by nondegenerate perturbation
theory

∂2

∂ε2
‖Γ(ε)‖

∣∣
ε=0

=
1
‖Γ‖
‖Λ|ψ〉‖2

‖|ψ〉‖2
. (A.35)

For j = 0, 1, . . . , n, let |ψj〉 =
∑

x:|x|=j |x〉, with ‖|ψj〉‖2 = ( nj ). By Eq. (A.21), we may take

|ψ〉 = Γ†|ψm〉

=
∑

x:|x|=m

(∑
i/∈x

|x⊕ ei〉+ c
∑

y:|y|=l−1
|x⊕y|=m−l+1

|y〉
)

= (m+ 1)|ψm+1〉+ c
(
n−l+1
m−l+1

)
|ψl−1〉 , (A.36)

so

Λ|ψ〉 = c
(
n−l+1
m−l+1

)
|ψm−1〉

[ (
m−1
m−l

)
− δ

(
m−1
m−l−1

)
(n−m+ 1)

]
. (A.37)
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Substituting this into Eq. (A.35),

∂2

∂ε2
‖Γ(ε)‖

∣∣
ε=0

=
1
‖Γ‖

c2
(
n−l+1
m−l+1

)2
( n
m−1 )

[ (
m−1
m−l

)
− δ

(
m−1
m−l−1

)
(n−m+ 1)

]2
(m+ 1)2 ( n

m+1 ) + c2
(
n−l+1
m−l+1

)2
( n
l−1 )

=
1
‖Γ‖

( m
l−1 )

(
n−l+1
m−l+1

)( (m+1)(n−m)
n−l+1 + m

(m−l+1)2

)
(n−m+ 1)

(
1− (m− l)(n−m+ 1)

l
δ

)2

. (A.38)

Unlike Γ†Γ, Γ†iΓi has a degenerate principal eigenspace. This principal eigenspace is spanned
by |φ〉 =

∑
x:|x|=l−1

i/∈x
|x〉 and |φ′〉 =

∑
x:|x|=m+1

i∈x
|x〉. Since Λi|φ′〉 = 0, we have by degenerate

perturbation theory

∂2

∂ε2
‖Γ(ε)

i ‖
∣∣
ε=0

=
1
‖Γi‖

∂

∂ε
‖Γ†iΓi + εΛ†iΛi‖

∣∣
ε=0

=
1
‖Γi‖

‖Λi|φ〉‖2

‖|φ〉‖2
(A.39)

Recall that ‖Γi‖ = 1, and note that ‖|φ〉‖2 =
(
n−1
l−1

)
. Then

Λi|φ〉 =
[ (

m−2
m−l−1

)
− δ

(
m−2
m−l−2

)
(n−m+ 1)

] ∑
x:|x|=m−1

i∈x

|x〉 . (A.40)

Substituting into Eq. (A.35),

∂2

∂ε2
‖Γ(ε)

i ‖
∣∣
ε=0

=

(
n−1
m−2

)(
n−1
l−1

) [ ( m−2
m−l−1

)
− δ

(
m−2
m−l−2

)
(n−m+ 1)

]2
=
(
m−2
l−1

) (
n−l

m−l−1

)(
1− (l − 1)(n−m+ 1)

m− l δ

)2

. (A.41)

Now set δ = m−l
(l−1)(n−m+1) ; recall that l ≥ 2 so the denominator is nonzero. We get ∂2

∂ε2
‖Γ(ε)

i ‖
∣∣
ε=0

=

0 while ∂2

∂ε2
‖Γ(ε)‖

∣∣
ε=0

> 0. Thus ∂2

∂ε2
‖Γ(ε)‖/‖Γ(ε)

i ‖
∣∣
ε=0

> 0, so Adv(Inl,m) < Adv±(Inl,m).

B Examples of composed span programs

In order to illustrate the different methods of span program composition used in Theorem 4.3
and Proposition 4.7, in this appendix we give examples of span program direct-sum composition
(Definition 4.5), tensor-product composition (Definition 4.4), and reduced-tensor-product compo-
sition (Definition 4.6). For presenting the examples, we use the correspondence from Definition 8.2
between span programs and bipartite graphs.

Our examples will use the following monotone span programs for fan-in-two AND and OR gates:

Definition B.1. Define span programs PAND and POR computing AND and OR, B2 → B, respec-
tively, by

PAND : |t〉 =
(
α1

α2

)
, |v1〉 =

(
β1

0

)
, |v2〉 =

(
0
β2

)
(B.1)

POR : |t〉 = δ, |v1〉 = ε1, |v2〉 = ε2 (B.2)
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for parameters αj , βj , δ, εj > 0, j ∈ {1, 2}. Both span programs have I1,1 = {1}, I2,1 = {2} and
Ifree = I1,0 = I2,0 = ∅. Let α =

√
α2

1 + α2
2.

Now let ϕ : Bn → B be a size-n AND-OR formula in which all gates have fan-in two. By
composing the span programs of Definition B.1 according to ϕ, we obtain a span program Pϕ
computing ϕ. The particular composed span program Pϕ will depend on what composition method
is used. Figure 1 gives several examples of tensor-product and reduced-tensor-product composition.
Much like a canonical span program, the structure of the reduced-tensor-product-composed span
program is related to the set of “maximal false” inputs to ϕ. Figure 2 compares reduced-tensor-
product composition to direct-sum composition, as well as to the graphs used in the AND-OR
formula-evaluation algorithms of Refs. [ACR+07, FGG07]. Although these algorithms did not use
the span program framework, the graphs they use do correspond to span programs, built essentially
according to direct-sum composition of PAND and POR. The small-eigenvalue spectral analysis in
Theorem 8.7 simplifies their proofs.

Although not shown here, the different composition methods can also be combined. Hybrid-
composed span programs will be analyzed in [Rei09].

Typical parameter choices for PAND and POR are given by:

Claim B.2. With the parameters in Definition B.1 set to

αj = (sj/sp)1/4 βj = 1 (B.3)

δ = 1 εj = (sj/sp)1/4 , (B.4)

where sp = s1 + s2, the span programs PAND and POR satisfy:

wsize(
√
s1,
√
s2)(PAND, x) =

{√
sp if x ∈ {11, 10, 01}
√
sp
2 if x = 00

wsize(
√
s1,
√
s2)(POR, x) =

{√
sp if x ∈ {00, 10, 01}
√
sp
2 if x = 11

(B.5)

It can be seen as a consequence of De Morgan’s laws and span program duality (Lemma 4.1)
that wsize(

√
s1,
√
s2)(PAND, x) = wsize(

√
s1,
√
s2)(POR, x̄) in Claim B.2.
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(a) x1 ∨ x2
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0
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(b) x1 ∧ x2

δα1

δα2

ε1β1
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1
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3

(c) (x1 ∧ x2) ∨ x3

α1δ

α2δ

β1ε1

β1ε2

β2δ

0

001

110

1

2

3

(d) (x1 ∨ x2) ∧ x3

α1δα
′
1

α1δα
′
2

β1ε1β
′
1

β1ε1β
′
2

β1ε2α
′
2

β1ε2α
′
1

α2δα
′ β2δα

′

0

0101

1001

1110

1

2

3

4

(e)
`
(x1 ∧ x2) ∨ x3

´
∧ x4

α2δα
′
1

α1δα
′
2

α1δα
′
1

β1ε1β
′
1

β1ε1β
′
2

β1ε2α
′
2

β1ε2α
′
1

α2δα
′
2

β2δα
′
2

β2δα
′
1

0

1

2

3

4
1110

(f)
`
(x1 ∧ x2) ∨ x3

´
∧ x4

Figure 1: In (a) and (b) are given the graphs GPOR
and GPAND

, respectively, according to Defini-
tion 8.2. Parts (c) and (d) show tensor-product compositions of these span programs, which are also
the reduced-tensor-product compositions. Part (e) shows the reduced-tensor-product composition
of the span programs for a larger formula. Notice that for reduced-tensor-product composition,
the structure of the graph changes locally as each additional gate is composed onto the end of the
formula, e.g., going from (d) to (e). However, composing additional gates has a nonlocal effect
on edge weights. In each graph, the output vertex is labeled 0 and the input vertices are labeled
by [n]. Similarly to canonical span programs, Definition 5.1, the other vertices are labeled by the
maximal false inputs to the formula; notice in each example that a vertex labeled with input x is
connected exactly to those input bits j ∈ [n] with xj = 0. Part (f) shows a span program for the
same formula as part (e), except built using tensor-product composition. The vertex 1110 has been
unnecessarily duplicated. In (e) and (f), there are two AND gates; the primed variables refer to
the PAND span program coefficients for x1 ∧ x2.

69



ϕ(x)
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∨
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∨

∧

(a)
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1
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6

7
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1001011
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1001100

1110011
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(d)

Figure 2: Consider the AND-OR formula ϕ(x) =
(
[(x1∧x2)∨x3]∧x4

)
∨
(
x5∧ [x6∨x7]

)
, represented

as a tree in (a). Part (b) shows the graph on which [ACR+07] runs a quantum walk in order to
evaluate ϕ. The graph is essentially the same as the formula tree. The weight of an edge from
child v to parent p is the 1/4 power of the ratio sv/sp of sizes of the subformula rooted at v to that
rooted at p, as in Claim B.2. The only exception is the weight of the edge to the root, which is
set to 1/n1/4 for amplification, as in Theorem 8.3 and Theorem 9.3. Part (c) shows the graph one
obtains by from direct-sum composition of PAND and POR. It is the same as in (b), except with
two weight-one edges inserted above each internal gate. These edges can be interpreted as pairs
of NOT gates that cancel out. Including them would slow the [ACR+07] algorithm down only by
a constant factor. Part (d) shows a span program derived from the same formula using reduced-
tensor-product composition only. Vertices are labeled using the same convention as in Figure 1.
Even though every gate has fan-in two, graph vertices can have exponentially large degree.
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