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Abstract—Boosting is a general method for improving
the accuracy of learning algorithms. We use boosting
to construct improved privacy-preserving synopses of an
input database. These are data structures that yield, for a
given set Q of queries over an input database, reasonably
accurate estimates of the responses to every query in Q,
even when the number of queries is much larger than the
number of rows in the database. Given a base synopsis
generator that takes a distribution on Q and produces a
“weak” synopsis that yields “good” answers for a majority
of the weight in Q, our Boosting for Queries algorithm
obtains a synopsis that is good for all of Q. We ensure
privacy for the rows of the database, but the boosting
is performed on the queries. We also provide the first
synopsis generators for arbitrary sets of arbitrary low-
sensitivity queries, i.e., queries whose answers do not vary
much under the addition or deletion of a single row.

In the execution of our algorithm certain tasks, each
incurring some privacy loss, are performed many times.
To analyze the cumulative privacy loss, we obtain an
O(ε2) bound on the expected privacy loss from a single
ε-differentially private mechanism. Combining this with
evolution of confidence arguments from the literature, we
get stronger bounds on the expected cumulative privacy
loss due to multiple mechanisms, each of which provides
ε-differential privacy or one of its relaxations, and each
of which operates on (potentially) different, adaptively
chosen, databases.

I. BACKGROUND AND SUMMARY OF RESULTS

Boosting. Boosting is a general and widely
used method for improving the accuracy of learn-
ing algorithms. (See [23] for an excellent sur-
vey.) Given a training set of labeled examples,
{(x1, y1), (x2, y2), . . . , (xm, ym)}, where each xi is
drawn from an underlying distribution D on a universe
X , and yi ∈ {+1,−1}, a learning algorithm produces
a hypothesis h : X → {+1,−1}. Ideally, h will
“describe” not just the given samples, but also the un-
derlying distribution. The goal of boosting is to convert
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a weak learner, which produces a hypothesis that does
just a little better than random guessing, into a strong,
or very accurate, learner. Many boosting algorithms
share the following basic structure. First, an initial
(typically uniform) probability distribution is imposed
on the sample set. Computation then proceeds in rounds.
In each round t: (1) the base learner is run on the current
distribution Dt, producing a classification hypothesis
ht; and (2) the hypotheses h1, . . . , ht are used to re-
weight the samples, defining Dt+1. The process halts ei-
ther after a predetermined number of rounds or when an
appropriate combining of the hypotheses is determined
to be sufficiently accurate. The main design decisions
are how to modify the probability distribution from one
round to the next, and how to combine the hypotheses
{ht}t=1,...,T to form a final output hypothesis.

Differential Privacy. Differential privacy is a notion
of privacy tailored to private data analysis, where the
goal is to learn information about the population as a
whole, while protecting thea privacy of each individual.
(See the surveys [7], [6].) Roughly speaking, differ-
ential privacy ensures that the system will behave in
essentially the same fashion, independent of whether
any individual opts in to, or out of, the database.
Here, “behaves essentially the same way” means that
the probability distribution over outputs of an analysis,
where the probability space is the coin flips of the
privacy mechanism, is essentially the same, independent
of the presence or absence of any individual.

Early results on differential privacy showed how to
accurately answer small to moderate numbers of count-
ing queries of the form “How many rows in the database
satisfy property P ?” [12], [10]. Specifically, any set Q
of counting queries could be answered in a differentially
private manner with an accuracy of roughly

√
|Q|,

so for a database of size n, we can obtain nontrivial
accuracy (namely, errors of magnitude o(n)) if |Q| is
sufficiently smaller than n2. (For simplicity, throughout
the introduction, we hide dependence on parameters



other than |Q| and n.) In [10], [8], similar bounds were
obtained for arbitrary low-sensitivity queries, that is
queries whose output does not change much when one
item is added or removed from the database.

A remarkable result of Blum, Ligett, and Roth [3]
shows that differential privacy is possible even in cases
when the number of counting queries is much larger
than n2. Specifically, given a set Q of counting queries,
they show how to answer all the queries in Q within
an error of roughly n2/3 · log1/3 |Q|, which provides
nontrivial accuracy provided that |Q| is sufficiently
smaller than 2n. In fact, they also provide a compact
representation of all of these answers in the form
of a synthetic database. This is a data structure that
“looks like” a database, in that its rows are drawn
from the same universe X from which the database
rows are drawn. When appropriately scaled, the re-
sponses on the synthetic database to all the queries
in Q approximate the answers to the same queries on
the original database. Dwork et al. [11] improved the
running time to poly(|X |, |Q|), where X is the universe
of the database rows, and achieved an incomparable
accuracy bound of roughly

√
n · |Q|o(1). Our Boosting

for Queries algorithm, described next, is inspired by the
differentially private synopsis generator of [11],

A compact representation for answers to a set Q of
queries on a database x need not be in the form of a
synthetic database; it can be an arbitrary data structure,
which, when presented with any q ∈ Q, returns an ap-
proximation to q(x). We refer to such a data structure as
a synopsis of the database x. General privacy-preserving
synopses are of interest because they may be easier to
construct than privacy-preserving synthetic databases.
For example, there are stronger hardness results for
constructing synthetic databases than are known for
general privacy-preserving synopses [11], [26].

Summary of Results. Our principal result is a tech-
nique for generating privacy-preserving synopses for
any set of low-sensitivity queries (not just counting
queries). This is achieved by a novel use of boosting,
together with the construction of an appropriate base
synopsis generator.

Boosting for Queries. We introduce the notion of boost-
ing for queries, where the items on which the boosting
algorithm operates are the database queries, i.e., the
functions or analyses that the analyst wishes to evaluate
on the database. We present an algorithm that, given
a base synopsis generator that takes a distribution on
Q and produces a “weak” synopsis that yields “good”
answers for a majority of the weight in Q, “boosts” it to
obtain a synopsis that is good for all of Q. Although the

boosting is performed over the queries, the privacy is
still for the rows of the database. The privacy challenge
in boosting for queries come from the fact that each row
in the database affects the answers to all the queries, and
thus can potentially have a large influence on how the
distribution on queries changes from one iteration to the
next. Our algorithm is based on a variant of Freund and
Schapire’s Adaboost algorithm [13], due to Schapire and
Singer [24]. To achieve privacy, we do not use a sharp
threshold between “accurate” answers and “inaccurate”
answers to decide whether to increase or decrease the
weight on a query, but rather gradually change the
weight as a function of how accurate the answer is.
This way, no single row in the database has too much
influence on the query distributions constructed by the
boosting algorithm. The running time of the boosting
procedure depends quasi-linearly on the number |Q| of
queries and on the running time of the base synopsis
generator. (In particular, it is independent of the data
universe size |X |.)
Base Synopsis Generators for Arbitrary Low-Sensitivity
Queries and for Counting Queries. We provide a base
synopsis generator for sets of arbitrary low-sensitivity
queries. Applying boosting to it, we get the first
privacy-preserving synopsis construction for arbitrary
low-sensitivity queries. The accuracy of our boosted
mechanism is roughly

√
n·log3/2 |Q|. The running time

of our base synopsis generator (and hence its boosted
version) is large, namely poly(|Q|, |X |n), where n is
the size of the database.

For the special case of counting queries we can
use a base synopsis generator from [11], and obtain
accuracy roughly

√
n · log |Q| (improving on the bound

of
√

n · |Q|o(1)| from [11]) with a running time of
poly(|Q|, |X |). In subsequent work, Hardt and Roth-
blum [16] have obtained similar accuracy and running
time (in fact with a better dependence on |X | than we
have) for counting queries with an interactive mech-
anism that does not need to know all the queries in
advance. (Previously, Roth and Roughgarden [22] gave
such an interactive mechanism that achieved similar
accuracy and efficiency to [3].)

Bounding Expected Privacy Loss and Composition The-
orems. In the execution of our Boosting for Queries
algorithm, certain tasks, each incurring some privacy
loss, are performed many times. To analyze the cu-
mulative privacy loss, we obtain an O(ε2) bound on
the expected privacy loss from a single ε-differentially
private mechanism. Combining this with evolution of
confidence arguments from the literature [5], [12], we
get stronger bounds on the expected cumulative privacy
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loss due to multiple (say k) mechanisms, each providing
ε-differential privacy or one of its relaxations (see
Section II), and each operating on (potentially) different,
adaptively chosen, databases. Roughly speaking, privacy
will deteriorate as

√
kε+kε2, rather than the worst-case

kε known in the literature [10].
Boosting for People. As in previous works on differ-
entially private learning [2], [17], we can also view
the input database as a training set in a learning al-
gorithm, where each row corresponds to an element
in the training set. It is natural to try to combine
learning and differential privacy: use learning theory
to know what to compute on a database to understand
the underlying population, and use the techniques for
differential privacy to do this in a privacy-protective
fashion, with small distortion when possible. In the
full paper we present a differentially private boosting
technique, in which privacy comes at little additional
cost in accuracy. We call this Boosting for People, since
rows corresponding to the data of individual people are
the elements of interest. Further treatment of Boosting
for People is omitted from these proceedings for lack
of space.

II. PRELIMINARIES AND DEFINITIONS

We write [n] for the set {1, 2, . . . n}. Throughout
the paper, we work with discrete probability spaces.
Sometimes we will describe our algorithms as sampling
from continuous distributions, but these should always
be discretized to finite precision in some standard way
(which we do not specify for sake of readability). For
a discrete distribution (or random variable) X taking
values in a set S, we denote by x←X the experiment
of selecting x ∈ S according to the distribution X . The
support of X is denoted Supp(X) = {x : Pr[X =
x] > 0}. A function f : N → R+ is negligible if for
every constant c, f(κ) < 1/κc for sufficiently large κ
(i.e. f(κ) = κ−ω(1)). We write ν(κ) for an unspecified
function that is negligible in κ.

In this work we deal with (non-interactive) methods
for releasing information about a database. For a given
database x, a (randomized) non-interactive database
access mechanism M computes an output M(x) that
can later be used to reconstruct information about x. We
will be concerned with mechanisms M that are private
according to various privacy notions described below.

We think of a database x as an ordered multiset of
rows, each from a data universe X . Intuitively, each row
contains the data of a single individual. We will often
view a database of size n as a tuple x ∈ Xn for some
n ∈ N (the number of individuals whose data is in the
database). We treat n as public information throughout.

We say databases x, x′ of size n are adjacent if they
agree on at least n − 1 rows. That is, two databases
are adjacent if they are of the same size and their edit
distance is at most 1. To handle worst case pairs of
databases, our probabilities will be over the random
choices made by the privacy mechanism.

Definition II.1 (Differential Privacy [10]). A random-
ized algorithm M is ε-differentially private if for all
pairs of adjacent databases x, x′, and for all sets S ⊆
Supp(M(x)) ∪ Supp(M(x′))

Pr[M(x) ∈ S] ≤ eε · Pr[M(x′) ∈ S],

where the probabilities are over the coin flips of the
algorithm M.

Intuitively, this captures the idea that no individual’s
data has a large effect on the output distribution of the
mechanism. Typically, we think of ε as a small constant.
A basic example of a differentially private algorithm is
the Laplace mechanism [10], which yields differentially
private approximations to real-valued functions. Specif-
ically, for a real-valued function f , the (global) sensitiv-
ity of f is the maximal absolute difference in its values
on adjacent databases: maxadjacent x,x′ |f(x)−f(x′)|.
The Laplace distribution Lap(t) has density function
h(y) ∝ e−y/t, has mean 0 and standard deviation t. We
usually refer to the Laplace distribution over integers.
Dwork et al. [10] showed that if a real-valued function
f has global sensitivity at most s then the function
f(x) + Lap(s/ε) is ε-differentially private. See [7], [6]
for more properties and results concerning differential
privacy.

We will also consider a relaxation of differential
privacy, which allows us to ignore events of very low
probability:

Definition II.2 ((ε, δ)-Differential Privacy [8]). A ran-
domized algorithm M gives (ε, δ)-differential privacy
if for all pairs of adjacent databases x and x′ and all
S ⊆ Range(M), Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈
S]+ δ, where the probabilities are over the coin flips of
the algorithm M.

Observe that ε-differential privacy implies (ε, δ)-
differential privacy. There is a simple example showing
the converse implication does not hold. We note that
there is another notion, known as (ε, δ)-probabilistic dif-
ferential privacy [18], [14], which lies strictly between
ε-differential privacy and (ε, δ)-differential privacy.

Auxiliary parameters and synopsis generators. Of-
ten our privacy mechanism M will take some auxiliary
parameters w as input, in addition to the database x. For
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example, w may specify a query qw on the database x,
or a collection Qw of queries. The Mechanism M(w, x)
might (respectively) respond with a differentially private
approximation to qw(x) or to some or all of the queries
in Qw. We say that a mechanism M(·, ·) satisfies ε-
differential privacy if for every w, M(w, ·) satisfies
ε-differential privacy; and analogously for the other
notions of privacy.

Another example of a parameter that may be included
in w is a security parameter κ to govern how small
δ = δ(κ) should be. That is, M(κ, ·) should be (ε, δ(κ))
differentially private for all κ. Typically, and throughout
this paper, we require that δ be a negligible function
in κ, i.e. δ = κ−ω(1). Thus, we think of δ as being
cryptographically small, whereas ε is typcially thought
of as a moderately small constant.

In the case where the auxiliary parameter w specifies
a collection Qw = {q : Xn → R} of queries, we call
the mechanism M a synopsis generator. A synopsis
generator outputs a (differentially private) synopsis A
which can be used to compute answers to all the queries
in Qw. I.e., we require that there exists a reconstruction
procedure R such that for each input v specifying a
query qv ∈ Qw, the reconstruction procedure outputs
R(A, v) ∈ R. Typically, we will reuqire that with high
probabilityM produces a synopsis A s.t. the reconstruc-
tion procedure, using A, computes accurate answers.
I.e., for all or most (weighted by some distribution) of
the queries qv ∈ Qw, the error |R(A, v) − qv(x)| will
be bounded. We will occasionally abuse notation and
refer to the reconstruction procedure taking as input the
actual query q (rather than some representation v of it),
and outputting R(A, q).

Divergence. One can rephrase the privacy notions
above in terms of distance measures between distribu-
tions. In the fractional quantities below, if the denom-
inator is 0, then we define the value of the fraction
to be infinite (the numerators will always be positive).
For two discrete random variables Y and Z, their KL
divergence (i.e. relative entropy) is defined to be

D(Y ||Z) def= Ey←Y

[
ln

Pr[Y = y]
Pr[Z = y]

]
.

It is known that D(Y ||Z) ≥ 0, with equality iff Y
and Z are identically distributed. (However, D is not
symmetric, does not satisfy the triangle inequality, and
can even be infinite, specifically when Supp(Y ) is not
contained in Supp(Z).) We can obtain a worst-case ana-
logue of KL divergence by taking a maximum instead
of an expectation (analogous to how min-entropy relates

to Shannon entropy):

D∞(Y ||Z) def= max
y∈Supp(Y )

[
ln

Pr[Y = y]
Pr[Z = y]

]

= max
S⊆Supp(Y )

[
ln

Pr[Y ∈ S]
Pr[Z ∈ S]

]
.

We refer to D∞(Y ||Z) as the max-divergence of Y and
Z. This is a rather brittle measure, in that a change
in even a small portion of probability space can affect
D∞(Y ||Z) dramatically. Thus it is natural to allow
ourselves to discard a small fraction of the probability
space, leading to δ-approximate max-divergence, which
we define by:

Dδ
∞(Y ||Z) def= max

S

[
ln

Pr[Y ∈ S]− δ

Pr[Z ∈ S]

]
,

where S ⊆ Supp(Y ) : Pr[Y ∈ S] > δ.
We have: (i) A randomized algorithm M gives ε-

differential privacy iff for all pairs of adjacent databases
x and x′, we have D∞(M(x)||M(x′)) ≤ ε. And
(ii) A randomized algorithm M gives (ε, δ)-differential
privacy iff for all pairs of adjacent databases x and x′,
we have Dδ

∞(M(x)||M(x′)) ≤ ε.
One other distance measure that will be useful is

statistical distance between two random variables Y and
Z, defined as

∆(Y, Z) def= max
S
|Pr[Y ∈ S]− Pr[Z ∈ S]|.

We say that Y and Z are δ-close if ∆(Y,Z) ≤ δ.

III. COMPOSITION THEOREMS

In this section, we provide general results about the
composition of differentially private mechanisms. There
are several reasons for studying composition (analogous
to the reasons that researchers have studied the compo-
sition of cryptographic protocols):

1) Composition can be used for the modular de-
sign of complex private mechanisms from simpler
ones.

2) Composition models repeated use of the same
mechanism on the same database; we want to
be assured that its privacy guarantees will not
degrade too much.

3) Composition models the interaction between
many different privacy mechanisms. If Alice’s
data is used in many differentially private data
releases over her lifetime, involving different
databases and different mechanisms, we still
would like to assure her that her privacy will not
be compromised too much.
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Previous composition results for differential privacy
have primarily been concerned with the first two items.
Here we introduce a form of composition that captures
the very general setting suggested in Item 3, and prove
composition results for it. Moreover, we revisit the “evo-
lution of confidence” arguments due to Dinur, Dwork,
and Nissim [5], [12] and show that, for achieving (ε, δ)
differential privacy of k-fold composition, the privacy
parameter ε degrades as kε2 +

√
kε rather than linearly

as kε. Previously this was shown only for specific
mechanisms, and only when all k applications were on
the same database.

A. Modeling Composition

We want to model composition where the adversary
can adaptively affect the databases being input to future
mechanisms, as well as the queries to those mecha-
nisms. We do this by introducing a differentially private
analogue of the “left or right” notion of security for
encryption schemes, due to Bellare, Desai, Jokipii, and
Rogaway [1]. Let M be a family of database access
mechanisms. (For example M could be the set of all
ε-differentially private mechanisms.) For a probabilistic
adversary A, we consider two experiments, Experiment
0 and Experiment 1, defined as follows.

k-fold Composition Experiment b for mechanism
family M and adversary A:1 For i = 1, . . . , k:

1) A outputs two adjacent databases x0
i and x1

i , a
mechanism Mi ∈M, and parameters wi.

2) A receives yi←Mi(wi, xi,b).
We allow the adversary A above to be stateful through-
out the experiment, and thus it may choose the
databases, mechanisms, and the parameters adaptively
depending on the outputs of previous mechanisms. We
define A’s view of the experiment to be A’s coin tosses
and all of the mechanism outputs (y1, . . . , yk). (The
xj

i ’s, Mi’s, and wi’s can all be reconstructed from
these.)

For intuition, consider an adversary who always
chooses x0

i to hold Bob’s data and x1
i to differ only in

that Bob’s data is replaced with junk. Then experiment
0 can be thought of as the “real world,” where Bob
allows his data to be used in many data releases, and
Experiment 1 as an “ideal world,” where the outcomes
of these data releases do not depend on Bob’s data. Our
definitions of privacy still require these two experiments

1We remark that allowing both a mechanism familyM and auxiliary
parameters w is redundant. The parameters w can be removed
by expanding the family M to M′ = {M(·, w)}M∈M,w , and
conversely, we can use the parameters to collapse M to a single
mechanism M∗(x, (M, w)) that outputs M(x, w) if M ∈ M and
outputs ⊥ otherwise.

to be “close” to each other, in the same way as required
by the definitions of differential privacy. The intuitive
guarantee to Bob is that the adversary “can’t tell”, given
the output of all k mechanisms, whether Bob’s data was
ever used.

Definition III.1. We say that the family M of database
access mechanisms satisfies ε-differential privacy under
k-fold adaptive composition if for every adversary A,
we have D∞(V 0||V 1) ≤ ε where V b denotes the view
of A in k-fold Composition Experiment b above.

(ε, δ)-differential privacy under k-fold adaptive com-
position instead requires that Dδ

∞(V 0||V 1) ≤ ε.

B. Composition Theorems

Speaking colloquially, it is already known that when
we compose differentially private mechanisms “the ep-
silons and deltas add up” (cf. [10] for ε-differential
privacy and [9], [19], [8] for (ε, δ)-differential privacy).
This also extends to our general model of composition:

Theorem III.1. For every ε, δ ≥ 0 and k ∈ N,

1) The family of ε-differentially private mecha-
nisms satisfies kε-differential privacy under k-fold
adaptive composition.

2) The family of (ε, δ)-differentially private mecha-
nisms satisfies (kε, kδ)-differential privacy under
k-fold adaptive composition.

Thus, if Bob’s data is to be involved in k data releases
over his lifetime, the above theorem suggests that he
should require both ε and δ to be smaller than 1/k. For
δ, this is not problematic as we anyhow take δ to be very
small (negligible). But requiring ε to be this small can
cause a significant price in utility (e.g. expected error
Θ(k) is incurred in the Laplace mechanism).

For specific mechanisms applied on a single database,
there are “evolution of confidence” arguments due to
Dinur, Dwork, and Nissim [5], [12] showing that the
privacy parameter need only deteriorate like

√
k if we

are willing to tolerate a (negligible) loss in δ (for
k < 1/ε2). Here we generalize those arguments to
arbitrary differentially private mechanisms, as well as
to the general form of composition described above.

Our key technical contribution shows that a bound of
ε on the worst-case privacy loss (as captured by max-
divergence) implies a bound of O(ε2) on the expected
privacy loss (as captured by KL divergence).

Lemma III.2. Suppose that random variables Y and
Z satisfy D∞(Y ||Z) ≤ ε and D∞(Z||Y ) ≤ ε. Then
D(Y ||Z) ≤ ε · (eε − 1).
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Note that eε ≤ 1 + 2ε for ε ∈ [0, 1], so we get a
bound of D(Y ||Z) ≤ 2ε2. Next we apply concentration
bounds to show that with high probability the “privacy
loss” is close to the expectation (which, by the above,
is O(ε2k) rather than εk), and thus giving us (ε′, δ) for
privacy for ε′ ¿ kε for composing k ε-differentially
private mechanisms. Due to the adaptivity of the ad-
versary, the outputs of mechanisms M1, . . . ,Mk are
not independent. Following [5], [12], we use Azuma’s
Inequality to establish the concentration we want.

For composition of (ε, δ)-differential privacy, we
use a characterization of approximate max-divergence
in terms of statistical difference and standard max-
divergence to reduce the analysis to the same situation
as in the case of ε-differential privacy. Specifically,
the characterization says that if Dδ

∞(Y ||Z) ≤ ε and
Dδ
∞(Z||Y ) ≤ ε, then Y is δ-close to a random variable

Y ′ such that D∞(Y ′||Z) ≤ ε and D∞(Z||Y ′) ≤ ε.
(This can be viewed as an information-theoretic ana-
logue of the “dense model theorems” of [15], [25], [21],
[20].)

This yields the following theorem (which includes the
case of ε-differential privacy by setting δ = 0):

Theorem III.3. For every ε > 0, δ, δ′ > 0, and k ∈ N,
the class of (ε, δ)-differentially private mechanisms is
(ε′, kδ + δ′)-differentially private under k-fold adaptive
composition, for

ε′ =
√

2k ln(1/δ′) · ε + k · εε0,

where ε0 = eε − 1.

IV. BOOSTING FOR QUERIES

In this section we present a query-boosting algorithm
for arbitrary low-sensitivity queries. The algorithm takes
a weak, sometimes-accurate, differentially private “base
synopsis generator” (i.e. one that outputs privacy-
preserving answers to most of the mass of a given
query distribution), and “boosts” it to get an always (or
often) accurate synopsis generator. This is done while
maintaining differential privacy. We begin with a more
formal treatment of the setup, follow with an overview,
and then present the query-boosting algorithm in Figure
1. Its accuracy and privacy guarantees are described in
Theorem IV.1.

The Setup. Recall the framework outlined in the
introduction: We are given a database x ∈ Xn and a
class Q = {q : X∗ → R} of queries, and we wish to
answer all the queries in a differentially private manner.

Our databases will be of size n, with rows, or data
elements, drawn from a data universe X . We are given
a query set Q = {q : Xn → R} of real-valued queries.

Definition IV.1 (sensitivity of a query family). The
sensitivity of the query family Q will be denoted by
ρ = ρ(n). It is defined to be ρ(n) = max{|q(x) −
q(x′)| : q ∈ Q, adjacent x, x′ ∈ Xn} (the maximum
over all queries in the family of their sensitivities).

High-sensitivity queries are inherently problematic
for preserving privacy, as, by definition, changing the
value of one data element can radically affect the out-
come of the query. Responses to such queries therefore
seem to require large distortion in order to ensure
privacy. We are therefore interested in small values of
ρ.

Definition IV.2 ((k, λ, η, β)-base synopsis generator).
For a fixed database size n, data universe X and
query set Q, consider a synopsis generator M, that
takes as input k queries from the query family Q and
outputs a synopsis. We say that M is a (k, λ, η, β)-
base synopsis generator if for any distribution D on
Q, when M is activated on a database x ∈ Xn and
on k queries sampled independently from D, with all
but β probability (over the k queries drawn from D
and the coins of M) the synopsis that M outputs is
λ-accurate (w.r.t x) for a (1/2 + η)-fraction of mass of
Q as weighted by D.

We will be interested in differentially private base
synopsis generators. The goal is to “boost” such a
base synopsis generator into a strong synopsis generator
that, with high probability, accurately answers all or
almost all of the queries (on the same database x), while
still preserving (ε, δ)-differential privacy. Given these
parameters, we would like to optimize the accuracy
of the resulting synopsis generator (aiming to stay
as close as possible to λ-accuracy). We let µ denote
the additional error incurred by the resulting synopsis
generator.

Overview. We use the base synopsis generator, run-
ning it repeatedly for T rounds, generating a synopsis
At in round t. We maintain a distribution D on the
queries (initially this distribution is uniform), and re-
weight so that in each round queries for which the base
synopsis generator failed to produce an accurate answer
get higher probability. The objects A are combined
by taking the median: given A1, . . . ,AT , the quantity
q(DB) is estimated by taking the approximate values
for q(DB) computed using each of the Ai, and then
computing their median. The algorithm will run for a
fixed number T of rounds (roughly T ∈ O(log(|Q|)).

There are “standard” methods for updating D, for
example, increasing the weight of poorly handled el-
ements, in our case, queries, by a factor of e and
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decreasing the weight of well-handled elements by the
same factor. However, we need to protect the privacy
of the database rows, and a single database row can
have a substantial effect on D if it makes the differ-
ence between being “well approximated” or “poorly
approximated” for many queries. We therefore need to
mitigate the effect of any database row. This is done by
attenuating the re-weighting procedure. Instead of al-
ways using a fixed ratio either for increasing the weight
(when the answer is “accurate”) or decreasing it (when
it is not), we set separate thresholds for “accuracy” and
“inaccuracy”. Queries for which the error is below or
above these thresholds have their weight decreased or
increased (respectively) by a fixed factor. For queries
whose error lies between these two thresholds, we
scale the (logarithm of the) weight change linearly. The
attenuated scaling reduces the effect of any individual
on a the re-weighting of any query. This is because any
individual can only affect the true answer to a given
query, and thus also the accuracy of the base synopsis
generator’s output, by a small amount.

The larger the gap between the “accurate” and “in-
accurate” thresholds, the smaller the effect of each
individual on a query’s weight can be. This means
that larger gaps are better for privacy. For accuracy,
however, large gaps are bad. If the inaccuracy threshold
is large, we can only guarantee that queries for which
the base synopsis generator is very inaccurate have their
weight increased during re-weighting. This degrades the
accuracy guarantee of the boosted synopsis generator:
it is roughly equal to the “inaccuracy” threshold.

The query-boosting algorithm is general. It can be
used for any class of queries (not only counting queries)
and any differentially private base synopsis generator.
The running time is, to a large extent, inherited from the
base synopsis generator, which need only be run roughly
log |Q| times (assuming it has constant advantage η over
1/2). The booster invests additional time that is quasi-
linear in |Q| in the boosting process, and in particular
its running time does not depend directly on the size of
the data universe from which data items come.

Notation. Throughout the algorithm’s operation, we
keep track of several variables (explicitly or implicitly).
Variables indexed by q ∈ Q hold information pertaining
to query q in the query set. We run T rounds of boosting.
Variables indexed by t ∈ [T ], usually computed in round
t, will be used to construct the distribution Dt+1 used
for sampling in time period t+1. For a predicate P we
use [[P ]] to denote 1 if the predicate is true and 0 if it
is false.

Theorem IV.1 (Boosting for Queries). Let Q be a query

family with sensitivity at most ρ. For an appropriate
setting of parameters, and with T = O(log |Q|/η2)
rounds, the algorithm of Figure 1 is an accurate and
differentially private query-boosting algorithm:

1) When instantiated with a (k, λ, η, exp(−κ))-base
synopsis generator, the output of the boosting
algorithm gives (λ + µ)-accurate answers to
all the queries in Q with probability at least
1− T · exp(−κ).

2) For ε ∈ [0, 1], if the base synopsis generator
is (εbase , δbase)-differentially private and µ =
O((log3/2 |Q| ·

√
k · √κ · ρ)/(ε · η2)), then the

boosting algorithm is ((ε + T · εbase), T · (k ·
exp(−κ) + δbase))-differentially private.

The proof of accuracy follows the structure of Ad-
aboost’s accuracy analysis in [24]. The proof of privacy
considers adjacent databases x and x′. In each of the T
rounds of boosting, fixing the past answers A1, . . . ,At,
we use Dt+1 to denote the next round’s distribution
computed using database x and D′

t+1 to denote the next
round’s distribution computed using database x′. For the
various quantities computed by the algorithm in round
t using database x, such as ut,q or Zt, we use ut,q

′ or
Z ′t to denote their counterparts computed using database
x′.

In Claim IV.2 below, we show that (fixing the
previously computed Aj’s), for adjacent x, x′, the
max-divergence of the distributions Dt+ and D′

t+1 is
bounded.

Claim IV.2. Let x and x′ be adjacent databases. After
t ∈ [T ] rounds of boosting, fix A1, . . . ,At. Let Dt+1

and D′
t+1 be the corresponding distributions for the (t+

1)-th round of boosting. Then D∞(Dt+1||D′
t+1) ≤ 4α ·

T · ρ/µ.

To analyze the effect of T iterations we use the
composition model developed in Section III-A. A nat-
ural approach would be to analyze the privacy loss
incurred by a single iteration of the algorithm, and
then use the composition theorems to bound the total
privacy loss. However, the algorithm maintains state
between iterations in the form of the distributions Dt,
t = 1, 2, . . . , T . This can be avoided by having the
algorithm release the hypotheses At as, given the hy-
potheses A1,A2, . . . , At−1 (which are in any case made
public at the end of the algorithm), a straightforward and
deterministic computation on the database yields Dt.

In fact, a different decomposition of the steps in the
algorithm’s T rounds yields a better privacy bound.
Specifically, we we separately analyze the privacy losses
due to the T executions of the base generator and the
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Boosting for Queries(k, λ, η, ρ, µ, T )
Given: database x ∈ Xn, query set Q, where each q ∈ Q is a function q : Xn → R with sensitivity at most ρ.
Initialize D1 to be the uniform distribution over Q.
For t = 1, . . . , T :

1) Sample a sequence St ⊆ Q of k samples chosen independently and at random from Dt.
Run the base synopsis generator to compute an answer data structure At : Q → R that is w.h.p. accurate for
at least (1 + η)/2 of the mass of Dt.

2) Reweight the queries. For each q ∈ Q:
a) If At is λ-accurate, then at,q ← 1

If At is (λ + µ)-inaccurate, then at,q ← −1
Otherwise, let dq,t = |q(x)−At(q)| be the error of At (between λ and λ + µ) on q:

at,q ← 1− 2(dt,q − λ)/µ

b) ut,q ← exp(−α ·∑t
j=1 aj,q), where α = 1/2 ln((1 + 2η)/(1− 2η)).

3) Renormalize:
Zt ←

∑
q∈Q

ut,q

Dt+1[q] = ut,q/Zt

Output the data structure A = (A1, . . . ,AT ). For q ∈ Q:

A(q) = median{A1(q), . . . ,AT (q)}

Figure 1. Boosting for Queries (a variant of AdaBoost [24])

Tk samples taken from the distributions D1, . . . , DT ,
and add the results together via Theorem III.1.

In more detail, each database access takes as input
the synopses generated in previous rounds: there are T
executions of the base synopsis generator, a mechanism
which is (εbase , δbase)-differentially private, and we also
sample k ·T times from the distributions {Dt}T

t=1, each
such sample is a (4α · T · ρ/µ)-differentially private
mechanism (by Claim IV.2). Using the composition
theorems (Theorems III.1 and III.3), we conclude that
the boosting algorithm in its entirety is: (εboost , δboost)-
differentially private, where

εboost = (T · εbase) + O(
√

T · k · κ · ((α · T · ρ)/µ))

δboost = T · (δbase + k · exp(−κ)))

To get the parameters claimed in the theorem statement
we can take:

µ = O((T 3/2 ·
√

k · √κ · α · ρ)/ε)

The algorithm sets α = (1/2) ln((1 + 2η)/(1− 2η)) =
O(η). For accuracy, we need the number of rounds to
be T = O(log |Q|/η2). This yields the accuracy bound
claimed in the theorem.

V. APPLICATIONS OF BOOSTING FOR QUERIES

In this section we detail applications of the query
boosting algorithm. We construct base synopsis gen-
erators using a generalization argument due to [11],

see Section V-A. In Section V-B we use this bound
to construct base synopsis generators for arbitrary low-
sensitivity queries (with high running time) and count-
ing queries (with better running time and accuracy).
Plugging these base synopsis generators into the boost-
ing for queries algorithm yields new boosted mecha-
nisms for answering large numbers of low-sensitivity
queries, we detail the parameters that are obtained in
Section V-C.

A. A Generalization Bound

We have a distribution D over a large set Q of
queries to be approximated. If we wanted accurate and
differentially private answers to all the queries in Q,
then the standard approach of adding (say Gaussian)
noise would yield error roughly proportional to

√
|Q|.

If, however, we only want accurate answers to most of
the queries in Q (weighted by the distribution D), we
can (in some settings) employ a generalization argument
of [11]. They show that if a small enough synopsis
(a synthetic database or some other data structure)
gives good enough approximations to the answers of
a randomly selected subset S ⊂ Q of queries sampled
by D, then with high probability (over the choice of
S) it also gives good approximations to the answers to
most queries in Q (weighted by D). As they showed,
this observation can lead to significantly better approx-
imations.
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We use R(y, q) to denote the answer given by the
synopsis y (when used as input for the reconstruction
procedure) on query q. Formally, we say that a syn-
opsis y λ-fits a database x w.r.t a set S of queries if
maxq∈S |R(y, q)−q(x )| ≤ λ. The generalization bound
shows that if y λ-fits x w.r.t a large enough (larger than
|y|) randomly chosen set S of queries sampled from a
distribution D, then w.h.p y λ-fits x for most of D’s
query mass.

The proof of Lemma V.1 is a generalization to
arbitrary distributions of the statement in [11] (that
statement was made for the uniform distribution).

Lemma V.1. [11] Let D be an arbitrary distribu-
tion on a query set Q = {q : X∗ → R}. For
all m ∈ N , β ∈ (0, 1), η ∈ [0, 1/2), take a =
2(log(1/β) + m)/(m · (1− 2η)). Then with probability
at least 1 − β over the choice of S ∼ Da·m, every
synopsis y of size at most m bits that λ-fits x w.r.t. the
query set S, also λ-fits x w.r.t. at least a (1/2 + η)-
fraction of D.

B. Base Synopsis Generators

We now use the generalization bound to construct
privacy-preserving base synopsis generators. Given a
query distribution D, the idea is to sample a small set
of queries from D, answer them by adding independent
noise, and then output a synopsis (a synthetic database
of bounded size) that “fits” the noisy answers. By
Lemma V.1, if the number of queries we sampled was
large enough (larger than the synopsis size), this syn-
opsis will also (w.h.p.) “accurately answer” a random
query sampled from D. As mentioned above, here our
synopses will be synthetic databases. We show how to
find a database that fits the noisy answers for arbitrary
queries (in large time), and for counting queries (more
efficiently, following [11]). These base synopses appear
in the theorems below.

Theorem V.2 (Base Synopsis Generator for Arbitrary
Queries). For any data universe X , database size n,
and class Q : {Xn → R} of queries of sensitivity
at most ρ, for any ε ∈ [0, 1] and κ > 0, there
exists a (k, λ, η = 1/3, β = exp(−κ))-base synopsis
generator for Q, where k = O(n · log(|X|) · κ) and
λ = Õ((

√
n · log |X| · ρ · κ3/2)/ε) Moreover, this

base synopsis generator is (ε, exp(−κ))-differentially
private. Its running time is |X|n · poly(n, κ, log(1/ε)).

Theorem V.3 (Base Synopsis Generator for Counting
Queries [11]). For any data universe X , database size
n, and class Q : {Xn → R} of counting queries
(with sensitivity at most 1/n), for any ε ∈ [0, 1] and

κ > 0, there exists a (k, λ, η = 1/3, β = exp(−κ))-
base synopsis generator for Q, where k = Õ(n ·
log(|X|)·κ/ log |Q|) and λ = Õ((

√
log |Q|+

√
log |X|·

κ3/2)/(ε·√n)). Moreover, this bases synopsis generator
is (ε, exp(−κ))-differentially private. Its running time is
poly(|X|, n, κ, log(1/ε)).

C. Putting It Together

Plugging the base synopsis generators of Section V-B
together into the query boosting algorithm, we obtain
the following boosted algorithms for answering large
sets of low-sensitivity queries:

Theorem V.4 (Boosted Synopsis Generator for Arbi-
trary Queries). For any data universe X , database size
n, and class Q : {Xn → R} of queries of sensitivity
at most ρ, for any ε ∈ [0, 1] and κ > 0, there exists an
(ε, exp(−κ))-differentially private synopsis generator
for Q. With all but exp(−κ) probability its answers
are λ-accurate for every query in Q, where

λ = Õ

(√
n · log |X| · ρ · log3/2 |Q| · κ3/2

ε

)

Its running time is |X|n · |Q| · poly(n, κ, log(1/ε)).

Theorem V.5 (Boosted Synopsis Generator for Count-
ing Queries). For any data universe X , database size
n, and class Q : {Xn → R} of counting queries
(with sensitivity at most 1/n), for any ε ∈ [0, 1]
and κ > 0, there exists an (ε, exp(−κ))-differentially
private synopsis generator for Q. With all but exp(−κ)
probability its answers are λ-accurate for every query
in Q, where

λ = Õ

(√
log |X| · log |Q| · κ3/2

ε · √n

)

Its running time is poly(|X|, |Q|, n, κ, log(1/ε)).
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