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Abstract

It has been shown by Indyk and Sidiropoulos [IS07] that any graph of genus g > 0
can be stochastically embedded into a distribution over planar graphs with distortion
2O(g). This bound was later improved to O(g2) by Borradaile, Lee and Sidiropoulos
[BLS09]. We give an embedding with distortion O(log g), which is asymptotically
optimal.

Apart from the improved distortion, another advantage of our embedding is that
it can be computed in polynomial time. In contrast, the algorithm of [BLS09] requires
solving an NP-hard problem.

Our result implies in particular a reduction for a large class of geometric opti-
mization problems from instances on genus-g graphs, to corresponding ones on planar
graphs, with a O(log g) loss factor in the approximation guarantee.

ar
X

iv
:1

00
4.

16
66

v2
  [

cs
.C

G
] 

 2
0 

M
ay

 2
01

0



1 Introduction

Planar graphs constitute an important class of combinatorial structures, since they can be
used to model a wide variety of natural objects. At the same time, they have properties that
give rise to improved algorithmic solutions for numerous graph problems, if one restricts the
set of possible inputs to planar graphs (see, for example [Bak94]).

One natural generalization of planarity involves the genus of a graph. Informally, a graph
has genus g, for some g ≥ 0, if it can be drawn without any crossings on the surface of a
sphere with g additional handles (see Section 1.3). For example, a planar graph has genus
0, and a graph that can be drawn on a torus has genus at most 1.

In a way, the genus of a graph quantifies how far it is from being planar. Because of
their similarities to planar graphs, graphs of small genus usually exhibit nice algorithmic
properties. More precisely, algorithms for planar graphs can usually be extended to graphs
of bounded genus, with a small loss in efficiency or quality of the solution (e.g. [CEN09]).
Unfortunately, many such extensions are complicated and based on ad-hoc techniques.

Inspired by Bartal’s stochastic embedding of general metrics into trees [Bar96], Indyk
and Sidiropoulos [IS07] showed that every metric on a graph of genus g can be stochastically
embedded into a planar graph with distortion at most exponential in g (see Section 1.3 for a
formal definition of stochastic embeddings). Since the distortion measures the ability of the
probabilistic mapping to preserve metric properties of the original space, it is desirable to
make this quantity as small as possible. The above bound was later improved by Borradaile,
Lee, and Sidiropoulos [BLS09], who obtained an embedding with distortion polynomial in
g. In the present paper, we give an embedding with distortion O(log g), which matches the
Ω(log g) lower bound from [BLS09]. The statement of our main result follows.

Theorem 1.1 (Stochastic planarization). Any graph G of genus g, admits a stochastic
embedding into a distribution over planar graphs, with distortion O(log g). Moreover, given
a drawing of G into a genus-g surface, the embedding can be computed in polynomial time.

We note that Theorem 1.1 can be equivalently stated for compact 2-dimensional simplicial
manifolds, i.e. continuous spaces obtained by glueing together finitely many triangles, with
every point having a neighborhood homeomorphic to a disk. The shortest-path metrics
of genus-g graphs, are precisely the metrics supported on the 0-simplices of such genus-g
manifolds. The result for these spaces can be obtained via a careful affine extension of our
embedding over simplices. Since our focus is on algorithmic applications, we omit the details,
and restrict our discussion to the discrete case (i.e. finite graphs).

1.1 Our techniques

In [IS07] it was shown that a graph of genus g can be stochastically embedded into a distri-
bution over graphs of genus g − 1, with constant distortion. Repeating this g times results
in a planar graph, but yields distortion exponential in g. The improvement of [BLS09] was
obtained by giving an algorithm that removes all handles at once. The main technical tool
used to achieve this was the Peeling Lemma from [LS09]. The idea is that given a graph G
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of genus g, one can find a subgraph H ⊂ G, which we refer to as the cut graph, such that (i)
G \H is planar, (ii) H has dilation gO(1), and (iii) H can be stochastically embedded into a
planar graph. The resulting distortion of the embedding produced via the Peeling Lemma
is proportional to the dilation of H, and therefore polynomial in g.

It was further shown in [BLS09] that any cut graph has dilation Ω(g), imposing a lim-
itation on their technique. We overcome this barrier as follows. We first find a cut graph
consisting of O(g) shortest paths with a common end-point. These paths are obtained from
the generators of the fundamental group of the underlying surface, due to Erickson and Whit-
tlesey [EW05]. In the heart of our analysis, we show how to embed a collection of shortest
paths with a common end-point, into a random tree with distortion O(log g). This result
can be viewed as a generalization of the tree-embedding theorem due to Fakcharoenphol,
Rao, and Talwar [FRT03], who showed that any n-point metric space admits a stochastic
embedding into a tree with distortion O(log n).

This connection with tree embeddings seems surprising, since planar graphs appear to be
significantly more complicated topologically. For instance, even embedding the n × n grid
into a random tree, requires distortion Ω(log n), due to a lower bound of Alon, Karp, Peleg,
and West [AKPW91]. Gupta, Newman, Rabinovich, and Sinclair [GNRS99] have shown that
the same lower bound of Ω(log n) holds even for embedding very simple classes of planar
graphs into trees, such as series-parallel graphs (i.e. even for planar graphs of treewidth 2).

Our tree-embedding result is obtained by combining the approach from [FRT03] with the
algorithm of Lee and Sidiropoulos [LS10] for computing random partitions for graphs of small
genus. We remark however that the algorithm of [FRT03] computes an embedding into an
ultrametric1, and it can be shown that even a single shortest path cannot be embedded into
a random ultrametric with distortion better than Ω(log n). We therefore need new ideas to
obtain distortion O(log g). One key ingredient towards this is a new random decomposition
scheme, which we refer to as alternating partitions, and which takes into account the topology
of the paths that we wish to partition. These techniques might be of independent interest.

1.2 Applications

Optimization As in the case of stochastic embeddings of arbitrary metrics into trees
[Bar96], we obtain a general reduction from a class of optimization problems on genus-g
graphs, to their restriction on planar graphs. We now state precisely the reduction. Let
V be a set, I ⊂ RV×V

+ a set of non-negative vectors corresponding all feasible solutions for
a minimization problem, and c ∈ RV×V

+ . Then, we define the linear minimization problem
(I, c) to be the computational problem where we are given a graph G = (V,E), and we are
asked to find s ∈ I, minimizing ∑

{u,v}∈V×V

cu,v · su,v · d(u, v)

Observe that this definition captures a very general class of problems. For example, MST
can be encoded by letting I be the set of indicator vectors of the edges of all spanning trees

1A metric space (X, d) where for every x, y, z ∈ X, d(x, y) ≤ max{d(x, z), d(z, y)}.
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on V , and c the all-ones vector. Similarly, one can easily encode problems such as TSP,
Facility-Location, k-Server, Bi-Chromatic Matching, etc.

We can now state an immediate Corollary of our embedding result.

Corollary 1.2. Let Π = (I, c) be a linear minimization problem. If there exists a polynomial-
time α-approximation algorithm for Π on planar graphs, then there exists a randomized
polynomial-time O(α · log g)-approximation algorithm for Π on graphs of genus g.

Metric embeddings One of the most intriguing open problems in the theory of metric em-
beddings is determining the optimal distortion for embedding planar graphs, and more gener-
ally graphs that exclude a fixed minor, into L1 (see e.g. [LLR94, GNRS99, CGN+03, LS09]).
We remark that by the work of Linial, London, and Rabinovich [LLR94], this distortion
equals precisely the maximum multi-commodity max-flow/min-cut gap on these graphs,
and is therefore of central importance in divide-and-conquer algorithms that are based on
Sparsest-Cut [LR99, ARV04]. Our embedding result immediately implies the following corol-
lary. The first proof of this statement was given in [LS10], where it was derived via a fairly
complicated argument.

Corollary 1.3. If all planar graphs embed into L1 with distortion at most α, then all graphs
of genus g embed into L1 with distortion O(α · log g).

1.3 Preliminaries

Throughout the paper, we consider graphs G = (V,E) with a non-negative length function
len : E → R. For a pair u, v ∈ V (G), we denote the length of the shortest path between u
and v in G, with the lengths of edges given by len, by dG(u, v). Unless otherwise stated, we
restrict our attention to finite graphs.

Graphs on surfaces Let us recall some notions from topological graph theory (an in-
depth exposition can be found in [MT01]). A surface is a compact connected 2-dimensional
manifold, without boundary. For a graph G we can define a one-dimensional simplicial
complex C associated with G as follows: The 0-cells of C are the vertices of G, and for each
edge {u, v} of G, there is a 1-cell in C connecting u and v. A drawing of G on a surface S is
a continuous injection f : C → V . The orientable genus of a graph G is the smallest integer
g ≥ 0 such that C can be drawn into a sphere with g handles. Note that a graph of genus 0
is a planar graph.

Metric embeddings A mapping f : X → Y between two metric spaces (X, d) and (Y, d′)
is non-contracting if d′(f(x), f(y)) ≥ d(x, y) for all x, y ∈ X. If (X, d) is any finite metric
space, and Y is a family of finite metric spaces, we say that (X, d) admits a stochastic
D-embedding into Y if there exists a random metric space (Y, d′) ∈ Y and a random non-
contracting mapping f : X → Y such that for every x, y ∈ X,

E
[
d′(f(x), f(y))

]
≤ D · d(x, y). (1)
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Figure 1: Example of systems of loops for surfaces of genus one and two.

The infimal D such that (1) holds is the distortion of the stochastic embedding. A detailed
exposition of results on metric embeddings can be found in [Ind01] and [Mat02].

1.4 Organization

The rest of the paper is organized as follows. In Section 2 we show that in any graph of
genus g, we can find a collection of O(g) shortest paths with a common end-point, whose
removal leaves a planar graph. In Section 3 we define alternating partitions for the metric
space M induced on these paths. Using these partitions, we show in Section 4 how to embed
M into a random tree, with distortion O(log g). Finally, in Section 5 we combine this tree
embedding with the Peeling Lemma, to obtain our main result.

2 Homotopy generators

Let G be a genus-g graph embedded into an orientable genus-g surface S, and let r be a vertex
of G. A system of loops with basepoint r is a collection of 2g cycles C1, . . . , C2g containing r,
such that the complement of

⋃2g
i=1Ci in S is homeomorphic to a disk. Examples of systems

of loops are depicted in figure 1 (see also [EW05] for a detailed exposition). The set of cycles
in a system of loops generate the fundamental group π1(S, r).

A system of loops is called optimal if every Ci is the shortest cycle in its homotopy class.
Algorithms for computing optimal systems of loops have been given by Colin de Verdière
and Lazarus [dVL02] and by Erickson and Whittlesey [EW05]. The later algorithm has the
property that each cycle Ci can be decomposed into either two shortest paths with common
end-point r, or two such shortest paths, and an edge between the other two end-points. We
therefore have the following.

Lemma 2.1 (Greedy homotopy generators [EW05]). Let G be a graph embedded into an
orientable surface S of genus g. Then, there exists a subgraph H of G satisfying the following
properties:

(i) The complement of H in S is homeomorphic to a disk.

(ii) There exists r ∈ V (G), and a collection of 4g shortest-paths Q1, . . . , Q4g in G, having
r as a common end-point, such that V (H) =

⋃
i∈[4g] V (Qi).
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3 Alternating partitions

Let G be a graph. By rescaling the edge-lengths we may assume w.l.o.g. that the minimum
distance in G is one. Let P = {P1, . . . , Pk} be a collection of shortest paths in G, with a
common end-point r ∈ V (G). Let X =

⋃k
i=1 V (Pi). We consider the metric space (X, dG).

We define a collection {Ci}2+log ∆
i=0 , where each Ci is a random partition of X into sets of

diameter less than 2i, and such that for any i ∈ {1, . . . , 1 + log ∆}, Ci is a refinement of Ci+1.
We refer to the resulting collection {Ci}i as alternating partitions for (X, dG).

Pick a permutation σ ∈ Sg, and reals2 α ∈ [0, 1), β ∈ [1, 2), uniformly, and independently
at random. This is all the randomness that will be used in the construction.

We set C2+log ∆ = {X}, i.e. the trivial partition that places all points into the same
cluster. For i = 1+log ∆, . . . , 1, given Ci+1 we define Ci by performing two partitioning steps
that we describe below (see also figure 2).

Horizontal partitioning step: Let A ∈ Ci+1. We partition A into clusters {As}ks=1. We
consider the paths in P in the order Pσ(1), . . . , Pσ(k). For each s ∈ {1, . . . k}, we form
the cluster

As =
(
A ∩NG(Pσ(s), β · 2i−2)

)
\
s−1⋃
t=1

At,

where NG(Pl, δ) = {x ∈ X : dG(x, Pl) ≤ δ}. We say that the path Pσ(s) is the trunk
of As. For notational convenience, we also refer to Pσ(1) as the trunk of the unique
cluster {X} in the partition C2+log ∆. We refer to the clusters {As}ks=1 as the horizontal
children of A.

Vertical partitioning step: Next, we proceed to partition each horizontal child As of A
into a set of clusters {As,j}j∈N0 , so that for any integer j ≥ 0,

As,j = {x ∈ As : (j − 1 + α) · 2i−2 ≤ dG(r, x) < (j + α) · 2i−2}

We refer to the clusters {As,j}j∈N0 as the vertical children of As. We also say that Pσ(s)

is the trunk of As,j. Finally, we add all non-empty clusters As,j to Ci.

This concludes the description of the construction of the alternating partitions {Ci}i for
(X, dG).

Lemma 3.1. For any i ∈ {0, . . . , 2 + log ∆}, and A ∈ Ci, we have diamG(A) < 2i.

Proof. Let Ps be the trunk of A. Let Q be the subpath of Ps that is contained in A. By the
construction of the vertical children we have len(Q) < 2i−1. Moreover, by the construction
of the horizontal children we have that for any x ∈ A, dG(x,Q) < 2i−1. Therefore, for any
x, y ∈ A we have dG(x, y) ≤ dG(x,C) + dG(y, C) + len(Q) < 2i.

2It suffices to chose α and β within O(log n) bits of precision.
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Figure 2: Alternating horizontal and vertical partitioning steps.

4 Embedding the cut graph into a random tree

As in the previous section, let G be a graph, and r ∈ V (G). Let P1, . . . , Pk be shortest paths
in G with common end-point r, and define X =

⋃k
i=1 V (Pk). We will use the alternating

partitions {Ci}i constructed in the previous section to obtain a stochastic embedding of
(X, dG) into a distribution over trees, with distortion O(log k).

For any Y ⊆ V (G), let top(Y ) = minv∈Y dG(r, v), and bottom(Y ) = maxv∈Y dG(r, v).
We proceed by induction on the partitions {Ci}i∈N0 , starting from C0. For every cluster

A ∈ Ci we construct a tree TA and an injection fA : A → V (TA). We inductively maintain
the following invariant:

(I) For every cluster A with trunk Ps, there exists in TA a copy of the subpath of Ps
containing all vertices v ∈ V (Ps) with top(A) ≤ dG(r, v) ≤ bottom(A). We refer to this
path as the stem of A. We denote by rA the vertex in the stem of A which is closest
to r in G. We refer to rA as the root of A.

By Lemma 3.1 we have that every cluster A ∈ C0 has diameter less than the minimum
distance in G, and therefore contains a single vertex. We set TA to be the trivial tree
containing that vertex. The map fA sends the unique vertex in A to its copy in TA.

Suppose now that we have constructed a tree for every cluster in Ci−1, for some i ≥ 1.
We will show how to obtain a tree for every cluster in Ci. Let A ∈ Ci, and let {As}ks=1 be
the horizontal children of A. For a horizontal child As, let {As,j}j∈N0 be its vertical children.
Recall that each such As,j is a cluster in Ci−1. Therefore, by the induction hypothesis we
have already computed a tree TAs,j

for every As,j, and an injection fAs,j
: As,j → V (TAs,j

).
We construct the tree TA in two steps:

Vertical composition step: We first combine the graphs of the vertical children of each
As, to obtain an intermediate tree TAs . This is done as follows. Recall that Ps is the
trunk of A. By the inductive invariant (I) we have that for every vertical child As,j,
its stem Qs,j is a path in TAs,j

, and each such Qs,j is a copy of a subpath of Ps. In
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particular, since for all i we have bottom(As,i) < top(As,i+1), it follows that the stems of
distinct vertical children correspond to disjoint subpaths of Ps. Let Qs be the subpath
containing all vertices v ∈ Ps with top(As) ≤ dG(r, v) ≤ bottom(As). Since As,j ⊆ As
it follows that Qs,j ⊆ Qs. We form the tree TAs by taking a copy of Qs and identifying
for every vertical child As,j, the stem Qs,j in TAs,j

with its copy in Qs. The path Qs

becomes the stem of As. The mapping fAs is defined by composing each fAs,j
with the

natural inclusion V (TAs,j
)→ V (TAs).

Horizontal composition step: Next, we combine the trees TAs for all horizontal children
{As}ks=1 of A, to obtain TA. Let Pt be the trunk of A. Observe that there exists a
non-empty horizontal child At of A. For any l ∈ {1, . . . , k}, with l 6= t, we connect rAl

with rAt via an edge of length 2i. Let TA be the resulting tree, and fA be the induced
injection from

⋃k
s=1As to V (TA). Note that the root of A is rA = rAt .

It is easy to verity that the inductive invariant (I) is maintained. Finally, we set T = T{X},
and f = f{X}. This concludes the description of the embedding f : X → V (T ).

4.1 Bounding the distortion

It is straight-forward to verify that the mapping f : X → V (T ) is non-contracting, so it
remains to bound the expected expansion for every pair of vertices. We begin with a useful
Lemma.

Lemma 4.1. Let i ∈ {0, . . . , 2 + log ∆}, let A ∈ Ci, and let Q be the stem of A. Then, for
any v ∈ A, we have dT (f(v), Q) ≤ 2i+2.
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Proof. For any j ∈ {0, . . . , i}, let Aj = Cj(v). We have that TA0 is the tree containing
only f(v). For any j ∈ {0, . . . , i}, let Qj be the stem of Aj. We have len(Qj) < 2j−2, and
dT (rAj

, Qj+1) ≤ dT (rAj
, rAj+1

) = 2j+1. Thus dT (f(v), Q) ≤
∑i−1

j=0

(
len(Qj) + dT (rAj

, Qj+1)
)
<∑i−1

j=0 (2j−2 + 2j+1) < 2i+2

For the remaining of the analysis, we fix two vertices u, v ∈ X. We wish to bound
E[dT (f(u), f(v))], where the expectation is taken over the randomness used in constructing
the alternating partitions {Ci}i (i.e. α, β, and σ).

We begin by introducing some notation. We say that a path Ps ∈ P settles {u, v} at
level i if u and v are in the same cluster in Ci+1, and Ps is the first path w.r.to the ordering
σ such that Ps is the trunk of at least one of the clusters Ci(u), Ci(v). Moreover, we say
that Ps cuts horizontally {u, v} at level i if it settles {u, v} at level i, and exactly one of the
clusters Ci(u), Ci(v) has Ps as its trunk.

Similarly, we say that Ps saves {u, v} at level i if u and v are in the same cluster in
Ci+1, and Ps is the trunk of a cluster in Ci containing both u and v. We say that Ps cuts
vertically {u, v} at level i if it saves {u, v} at level i, there is a horizontal child of a cluster
in Ci containing both u and v, and Ci+1(u) 6= Ci+1(v).

Let γis, resp. δis, be the supremum of dT (f(u), f(v)) when s cuts {u, v} at level i hor-
izontally, resp. vertically, taken over all possible random choices of the algorithm. That
is,

γis = sup
α,β,σ
{dT (f(u), f(v)) : s cuts horizontally {u, v} at level i}

δis = sup
α,β,σ
{dT (f(u), f(v)) : s cuts vertically {u, v} at level i}

Then, we have
E[dT (f(u), f(v))] ≤ Φ1 + Φ2, (2)

where

Φ1 =
k∑
s=1

2+log ∆∑
i=0

γis · Pr[Ps cuts horizontally {u, v} at level i]

Φ2 =
k∑
s=1

2+log ∆∑
i=0

δis · Pr[Ps cuts vertically {u, v} at level i]

We will bound each one of these quantities separately.

Lemma 4.2. Φ1 ≤ O(log k) · dG(u, v).

Proof. Define the interval

Is = [min{dG(u, Ps), dG(v, Ps)},max{dG(u, Ps), dG(v, Ps)})

In order for Ps to cut horizontally {u, v} at level i it must be the case that β · 2i−2 ∈ Is.
Since β is chosen from [1, 2) uniformly at random, it follows by the triangle inequality that
this happens with probability at most

Pr[β · 2i−2 ∈ Is] ≤ |Is|/2i−2 ≤ dG(u, v)/2i−2 (3)
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Assume w.l.o.g. that dG(P1, {u, v}) ≤ . . . ≤ dG(Pk, {u, v}). Conditioned on the event
that β · 2i−2 ∈ Is, any of the paths P1, . . . , Ps can settle {u, v}. Therefore,

Pr[Ps settles {u, v} | β · 2i−2 ∈ Is] ≤ 1/s (4)

Next we bound γis. Suppose that a path Ps cuts horizontally {u, v} at level i. Let Q be
the stem of the cluster in Ci+1 containing both u and v. By Lemma 4.1 we conclude that

γis ≤ dT (f(u), f(v)) ≤ dT (f(u), Q) + len(Q) + dT (f(v), Q) ≤ 2i+5 (5)

Observe that since β ∈ [1, 2), it follows that for every s ∈ {1, . . . , k}, the path Ps can cut
{u, v} only at a single level is. Therefore

Φ1 ≤
k∑
s=1

2is+5 · Pr[Ps settles {u, v} at level is and β · 2is−2 ∈ Is]

≤
k∑
i=1

2is+5 · Pr[Ps settles {u, v} at level is | β · 2is−2 ∈ Is] · Pr[β · 2is−2 ∈ Is]

≤
k∑
s=1

2is+5 · 1

s
· dG(u, v)

2is−2

= O(log k) · dG(u, v)

Lemma 4.3. Φ2 ≤ O(log k) · dG(u, v).

Proof. Define
Js = [max{dG(u, Ps), dG(v, Ps)},∞)

Ri
s =

∞⋃
j=0

[
j · 2i−2 + min{dG(r, u), dG(r, v)}, j · 2i−2 + max{dG(r, u), dG(r, v)}

)
Denote by E i1 the event β · 2i−2 ∈ Js, and by E i2 the event α · 2i−2 ∈ Ri

s. In order for Ps to
cut vertically {u, v} at level i, both E i1 and E i2 must hold.

Assume w.l.o.g. that dG(P1, {u, v}) ≤ . . . ≤ dG(Pk, {u, v}). Conditioned on E i1, any of
P1, . . . , Ps can save {u, v}. Therefore,

Pr[Ps saves {u, v} | E i1] ≤ 1/s (6)

By the triangle inequality we have

Pr[E i2] ≤ dG(u, v)/2i−2 (7)

We next upper bound δis. Suppose that Ps cuts vertically {u, v} at level i. Let Ls =
max{dG(u, Ps), dG(v, Ps))}, and js = 2 + dlogLse. Assume w.l.o.g. that dG(r, u) ≤ dG(r, v).
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If follows by the construction of T that Ps is the trunk of Cjs+1(u) and Cjs+1(v). Therefore,
there exist clusters U1, . . . , Ut ∈ Cjs+1 with u ∈ U1, v ∈ Ut, such that Ps is the trunk of every
Ui, and such that the stems of U1, . . . , Ut are consecutive subpaths of Ps. Let Qi be the stem
of Ui. For any j ∈ {1, . . . , t− 1}, the path Qj is connected to path Qj+1 via a path Wj, such
that len(Qj) + len(Wj) ≤ 2js−1. By lemma 4.1 we have

δis ≤ dT (f(u), Q1) + dT (f(v), Qt) +
t−1∑
j=1

(len(Qj) + len(Wj)) + len(Qt)

≤ 2js+4 + |dG(r, u)− dG(r, v)|+ 2 · 2js−1

≤ 28 · Ls + dG(u, v) (8)

Let τs = max{js, dlog dG(u, v)e − 1}. Observe that for any i < js, we have Pr[E i1] = 0.
Moreover, if Ps saves {u, v} at level i, it must be the case that there exists A ∈ Ci+1

containing both u and v, and thus with diamG(A) ≥ dG(u, v). By Lemma 3.1 we have
i ≥ dlog dG(u, v)e − 1. Therefore, for any i < τs we have Pr[Ps cuts {u, v} at level i] = 0.
Combining with (6), (7), and (8), we have

Φ2 ≤
k∑
s=1

2+log ∆∑
i=τs

δis · Pr[Ps saves {u, v} at level i | E i1 and E i2] · Pr[E i1 and E i2]

≤
k∑
s=1

1

s

2+log ∆∑
i=τs

δis ·
dG(u, v)

2i−2

≤ dG(u, v) ·
k∑
s=1

1

s

2+log ∆∑
i=τs

28 · Ls + dG(u, v)

2i−2

< dG(u, v) ·
k∑
s=1

1

s
· 28 · Ls + dG(u, v)

2τs−3

≤ O(log k) · dG(u, v)

Combining (2) with lemmas 4.2 and 4.3 we obtain the main result of this section.

Theorem 4.4. Let G be a graph, and let P = {P1, . . . , Pk} be a collection of shortest-

paths in G, sharing a common end-point. Then, the metric space
(⋃k

i=1 V (Pi), dG

)
admits

a stochastic embedding into a distribution over trees with distortion O(log k).

5 Planarization

Let (X, d) be a metric space. A distribution F over partitions of X is called (β,∆)-Lipschitz
if every partition in the support of F has only clusters of diameter at most ∆, and for every
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x, y ∈ X,

Pr
C∈F

[C(x) 6= C(y)] ≤ β · d(x, y)

∆
.

We denote by β(X,d) the infimum β such that for any ∆ > 0, the metric (X, d) admits a
(∆, β)-Lipschitz random partition, and we refer to β(X,d) as the modulus of decomposability of
(X, d). The following theorem is due to Klein, Plotkin, and Rao [KPR93], and Rao [Rao99].

Theorem 5.1 ([KPR93], [Rao99]). For any planar graph G, we have β(V (G),dG) = O(1).

Let G be a graph, and let A ⊆ V (G). The dilation of A is defined to be

dilG(A) = max
u,v∈V (G)

dG[A](u, v)

dG(u, v)

For a graph G and a graph family F we write G
D
 F to denote the fact that G

stochastically embeds into a distribution over graphs in F , with distortion D.
For two graphs G,G′, a 1-sum of G with G′ is a graph obtained by taking two disjoint

copies of G and G′, and identifying a vertex v ∈ V (G) with a vertex v′ ∈ V (G′). For a graph
family X , we denote by ⊕1X the closure of X under 1-sums.

Lemma 5.2 (Peeling Lemma [LS09]). Let G be a graph, and A ⊆ V (G). Let G′ = (V (G), E ′)
be a graph with E ′ = E(G) \ E(G[A]), and let β = β(V,dG′ ) be the corresponding modulus

of decomposability. Then, there exists a graph family F such that G
D
 F , where D =

O(β · dilG(A)), and every graph in F is a 1-sum of isometric copies of the graphs G[A] and
{G[V \ A ∪ {a}]}a∈A.

We will use the following auxiliary Lemma.

Lemma 5.3 (Composition Lemma). Let G be a graph, and let X , Y, Z be graph families.

If G
α
 ⊕1(X ∪ Y), and for any G′ ∈ X , G′ β

 Z, then G α·β
 ⊕1(Z ∪ Y).

Proof sketch. It follows by direct composition of the two embeddings.

Proof of Theorem 1.1. Let G be a genus-g graph, drawn on a genus-g surface S. Let H be
the subgraph of G given by Lemma 2.1. Recall that there exists r ∈ V (G) and shortest
paths P1, . . . , P4g in G, having r as a common end-point, such that V (H) =

⋃4g
i=1 V (Pi).

Let us write G1 = G, and X = V (H). By Theorem 4.4, we have

(X, dG1)
O(log g)
 Trees (9)

After scaling the lengths of the edges in G1, we may assume that the minimum distance
is one. Let G2 be the graph obtained from G1 as follows. For every edge {u, v} ∈ E(G1) with
u ∈ X1 and v /∈ X1, we replace {u, v} with two edges {u,w} and {w, v}, with len({u,w}) =
1/2, and len({w, v}) = len({u, v})− 1/2. Let Y = X ∪NG2(X), i.e. the set X, together with
all new vertices w introduced above.

11



Observe that for any x, y ∈ X, we have dG1(x, y) = dG2(x, y). Therefore by (9),

(X, dG2)
O(log g)
 Trees

This embedding can be extended to Y as follows. For every tree T in the support of the
distribution, and for every vertex w ∈ Y \X, we attach w to T by adding an edge of length
1/2 between w and the unique neighbor of w in X. Since we only add leaves to T , the new
graph is still a tree. It is straight-forward to verify that the resulting stochastic embedding
has distortion O(log g), and thus

(Y, dG2)
O(log g)
 Trees (10)

Let G3 be the graph obtained from G2 by adding an edge {u, v} of length dG(u, v),
between every pair of vertices u, v ∈ Y . Let E ′3 = E(G3) \E(G3[Y ]), and G′3 = (V (G3), E ′3).
By cutting the surface S along H we obtain a drawing of G \H into the interior of a disk.
Since every vertex in Y \X is attached to G \H via a single edge, it follows that this planar
drawing can be extended to G′3. Thus, the graph G′3 is planar, and by theorem 5.1 we have
β(V (G′

3),dG′
3
) = O(1).

Similarly, we have that for any y ∈ Y , the graph G3[V (G3) \ Y ∪ {y}] is planar.
Observe that dilG3(Y ) = 1. By the Peeling Lemma (Lemma 5.2) we have that G3 can

be stochastically embedded with distortion O(dilG3(Y ) ·βG′
3
) = O(1) into a distribution over

graphs J , where J is obtained by 1-sums of isometric copies of G3[Y3] and {G3[V (G3) \ Y ∪
{y}]}y∈Y . Each graph in {G3[V (G3) \ Y ∪ {y}]}y∈Y is planar, and therefore

G3
O(1)
 ⊕1(Planar, {G3[Y3]}) (11)

By (10), and since the metric (Y3, dG3) is the same as the metric (Y3, dG2), we have that

G3[Y3]
O(log g)
 Trees (12)

Note that the 1-sum of two planar graphs is also planar. Therefore, combining (11), (12)
and Lemma 5.3, we obtain

G3
O(log g)
 ⊕1(Trees ∪ Planar) = ⊕1Planar = Planar

Since G3 contains an isometric copy of G, this implies

G
O(log g)
 Planar,

concluding the proof.
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