
ar
X

iv
:1

00
8.

05
41

v1
 [

cs
.D

S]
 3

 A
ug

 2
01

0

Determinant Sums for Undirected Hamiltonicity

Andreas Björklund

Abstract

We present a Monte Carlo algorithm for Hamiltonicity detection in an n-vertex undi-
rected graph running in O∗(1.657n) time. To the best of our knowledge, this is the first
superpolynomial improvement on the worst case runtime for the problem since the O∗(2n)
bound established for TSP almost fifty years ago (Bellman 1962, Held and Karp 1962).
It answers in part the first open problem in Woeginger’s 2003 survey on exact algorithms
for NP-hard problems.

For bipartite graphs, we improve the bound to O∗(1.414n) time. Both the bipartite
and the general algorithm can be implemented to use space polynomial in n.

We combine several recently resurrected ideas to get the results. Our main techni-
cal contribution is a new reduction inspired by the algebraic sieving method for k-Path
(Koutis ICALP 2008, Williams IPL 2009). We introduce the Labeled Cycle Cover Sum in
which we are set to count weighted arc labeled cycle covers over a finite field of characteris-
tic two. We reduce Hamiltonicity to Labeled Cycle Cover Sum and apply the determinant
summation technique for Exact Set Covers (Björklund STACS 2010) to evaluate it.

1 Introduction

An undirected graph G = (V,E) on n vertices is said to be Hamiltonian if it has a Hamil-
tonian cycle, a vertex order (v0, v1, · · · , vn−1) such that vivi+1 ∈ E for all i. The indices are
enumerated modulo n requiring also that vn−1v0 is an edge. The problem of detecting if a
graph is Hamiltonian is called the Hamiltonicity problem and was one of the first identified
as NP-hard. It is on Karp’s original list [16], but is perhaps best known as a special case
of the Traveling Salesman Problem (TSP). The TSP asks for a tour visiting every vertex
of an edge weighted graph exactly once that minimizes the total weight. Bellman [3, 4] and
independently Held and Karp [11] described in the early 1960’s a dynamic programming re-
currence that solves the general TSP in O(n22n) time. Their bound also holds for the special
case of Hamiltonicity and is still the strongest known. Under the widely acknowledged Ex-
ponential Time Hypothesis, the Hamiltonicity problem has exp(Ω(n)) runtime [14]. There
is however no known reason to expect the exponential base to be precisely two. Woegin-
ger in his survey on exact algorithms for NP-Hard problems [22] observes this and asks in
Open problem 3.1 for a O∗(cn) time algorithm for TSP and Hamiltonicity for some c < 2.
O∗(f(n)) suppresses polylogarithmic functions in f(n). We solve the latter problem.

Theorem 1 There is a Monte Carlo algorithm detecting whether an undirected graph on n
vertices is Hamiltonian or not running in O∗(1.657n) time, with no false positives and false

negatives with probability exponentially small in n.

For graphs having an induced subgraph with many disconnected components, most no-
tably bipartite graphs, we get an even stronger bound.

1

http://arxiv.org/abs/1008.0541v1

Theorem 2 There is a Monte Carlo algorithm detecting whether an undirected graph on n
vertices with a given independent set of size i is Hamiltonian or not running in O∗(2n−i)
time, with no false positives and false negatives with probability exponentially small in n.

We also note that our algorithm can be used to solve TSP with integer weights via self-
reducibility at the cost of a runtime blow-up by roughly a factor of the sum of all edges’
weights.

Theorem 3 There is a Monte Carlo algorithm finding the weight of the lightest TSP tour in

a positive integer edge weighted graph on n vertices in O∗(w1.657n) time, where w is the sum

of all weights, with error probability exponentially small in n.

1.1 Previous Work

Bellman’s [3, 4] and Held and Karp’s [11] algorithm for TSP in an n-vertex complete graph
G = (V,E) with edge weights ℓ : E → R

+ is based on defining ws,t(X) for s, t ∈ X ⊆ V as
the weight of the lightest path from s to t in the induced graph G[X] visiting all vertices in
X exactly once. This quantity obeys the simple recursion

ws,t(X)=

{

minu∈X\{s,t} ws,u(X \ {t}) + ℓ(ut) : |X| > 2

ℓ(st) : |X| = 2

Using bottom-up dynamic programming with s fixed, the lightest tour can be evaluated
by mint∈V \{s} ws,t(V) + ℓ(st) in total O(n22n) time. An Hamiltonicity instance G can
naturally be embedded in a TSP instance on the same number of vertices. Simply let the
weight function ℓ take the value 0 for vertex pairs corresponding to an edge in G, and 1
otherwise.

Another algorithm amenable to Hamiltonicity with (almost) the same running time
is the inclusion–exclusion counting over n-long closed walks in the induced subgraphs. The
algorithm has been (re)discovered at least three times [18, 17, 2]. Let s be any vertex in the
graph, then the number of Hamiltonian cycles is given by

∑

X⊆V \{s}

(−1)|V \(X∪{s})|(A[X ∪ {s}]n)s,s

Here, A[Y] denotes the adjacency matrix of the induced graph G[Y], and (A[Y]n)s,s the entry
at row and column s of the matrix A[Y]n. The idea behind the algorithm is that crossing
walks will be canceled since they are counted equally many times with the sign factor +1 as
with −1.

In restricted graph classes the general O(2n) bound has been sharpened. Broersma et
al. [8] proved that Hamiltonicity in claw–free graphs has an O∗(1.682n) time algorithm.
Iwama and Nakashima [15] improving slightly on Eppstein [12], showed that TSP in cubic
graphs admits an O∗(1.251n) time algorithm. In graphs of maximum degree four, Gebauer [13]
described how to count the Hamiltonian cycles in O∗(1.715n) time. For larger degrees, only
minuscule improvements are known. Björklund et al. [7] observed that both the Bellman-
Held-Karp dynamic programming and the inclusion–exclusion algorithm need to look only at
X for which G[X] is connected and include s. These are at most (2 − ǫ)n with ǫ depending
inversely exponentially on the maximum degree.

2

Another line of research addresses a natural parameterized version of the problem called
the k-Path problem: how much time is required to find a simple (noncrossing) path on k
vertices in an n vertex graph. Alon et al. [1] showed the first cknO(1) time algorithm for
some constant c for the problem. The constant c has since been improved several times
culminating in the work of Koutis [19] introducing an interesting algebraic sieving technique.
His algorithm was subsequently refined by Williams [21] to yield a 2knO(1) time algorithm
for the k-Path problem. In the extreme k = n, their algorithm’s runtime coincides with the
previously best O∗(2n) time bound for Hamiltonicity.

1.2 Our Approach

The inclusion–exclusion algorithm in the previous section has several desirable properties: It
uses space polynomial in the input size, it works also for directed graphs, it is deterministic,
and it is capable of counting the solutions. Our algorithm also manages with only polynomial
space after some extra care, but does not have the other three properties. Indeed, we crucially
depend on the graph being undirected and that polynomial identity testing has an efficient
randomized algorithm (whereas no deterministic is known). Moreover, our strategy does not
even seem to be able to approximate the number of solutions.

The inclusion–exclusion algorithm can be thought of as first counting too much (all closed
n-walks through s) and then canceling out every false contribution (crossing n-walks). We
will take a similar approach, but count instead weighted cycle covers in directed graphs over
fields of characteristic two. A cycle cover in a directed n-vertex graph is a set of n arcs such
that every vertex is the origin of one arc, and the end of another. The arcs together describe
disjoint cycles covering all vertices of the graph. In particular, the cycle covers contain the
Hamiltonian cycles.

Our algorithm is much inspired by the recent work of Koutis [19] and Williams [21] for
k-Path. Although we don’t apply their work directly, we use several of their ideas. In
particular we evaluate multivariate polynomials over fields of characteristic two to sieve for
the Hamiltonian cycles, just as they do for k-paths.

The main new technical ingredient is the introduction of determinants to count weighted
cycle covers. This is an extension of the idea of using determinants to count perfect matchings
recently employed by Björklund [5] for Exact Set Cover. Unlike Koutis–Williams we are
unable to construct small arithmetic circuits. Instead we depend on the efficient algorithms
for computing a matrix determinant numerically.

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we introduce the technical machinery
needed. In particular we define our weighted cycle cover problem, hint at how it relates to
the Hamiltonicity problem, and presents a way to compute it. In Section 3 we describe
how we can reduce a Hamiltonicity instance to the weighted cycle cover problem and prove
our main claims Theorem 1 and 2 given exponential space. In Section 4 we argue how the
algorithm can be modified to use only polynomial space. Finally, in Section 5 we note how
the technique can be extended in a known way to solve TSP to prove Theorem 3.

3

2 Preliminaries

In a directed graph D = (V,A) a cycle cover is a subset C ⊆ A such that for every vertex
v ∈ V there is exactly one arc av1 ∈ C starting in v, and exactly one arc av2 ∈ C ending in
v. The graphs in this paper have no loops, i.e. arcs connecting a vertex to itself, and thus
we also have that av1 6= av2. We denote by cc(D) the family of all cycle covers of D, and by
hc(D) ⊆ cc(D) the set of Hamiltonian cycle covers. A Hamiltonian cycle cover consists of one
big cycle passing through all vertices. The remaining cycle covers (which have more than one
cycle), cc(D)\hc(D), are called non-Hamiltonian cycle covers. Although an element of hc(D)
is formally a subset of arcs, we will sometimes write it as a vertex order (v0, v1, · · · , vn−1)
implicitly referring to the arcs vivi+1 as the actual Hamiltonian cycle. For undirected graphs
G, hc(G) includes the Hamiltonian cycles with orientation, i.e. traversed in both directions.
Hence we will for a Hamiltonian cycle H ∈ hc(G) for an undirected graph G, talk about arcs
uv ∈ H inferring that the cycle is oriented from u to v along the edge uv.

We write g : A ։ B for a surjective function g from the domain A to the codomain
B. For a function g : A ։ B we associate the function g−1 : B → 2A as its preimage,
g−1(b) = { a ∈ A : g(a) = b}. For a matrix A, we denote by Ai,j the element at row i
and column j. For a polynomial p(r) in an indeterminate r we write [rl]p(r) to address the
coefficient of the monomial rl in p(r).

We will reduce Hamiltonicity to a variant of cycle cover counting defined next. We
introduce the Labeled Cycle Cover Sum. The name stems from the fact that every arc
in the cycle cover is labeled by a nonempty subset of a set of labels.

Definition The Labeled Cycle Cover Sum for a directed graph D = (V,A), a label set
L, and a function f : A× 2L \ {∅} → R on some codomain ring R is

Λ(D,L, f) =
∑

C∈cc(D)

∑

g:L։C

∏

a∈C

f(a, g−1(a)). (1)

Note in particular that the inner sum is over all surjective functions g, meaning that the
label g−1(a) is a nonempty subset of L for all arcs a ∈ C. In words the computation is over
all arc labeled cycle covers of the graph such that all arc labels are nonempty, are pairwise
disjoint, and together exhaust all of the labels L.

2.1 Cycle Cover Cancelation in Characteristic Two

In this section we show that restrictions on the graph, the computation ring, and the function
f can be imposed so that the resulting summation in a Labeled Cycle Cover Sum instance
is over the Hamiltonian cycle covers only. The contributions of the non-Hamiltonian cycle
covers are canceled out. First, we say a directed graph is bidirected if it for every arc uv
has an arc in the opposite direction, vu. Second, we let the ring R have characteristic two.
Third, for an arbitrarily chosen special vertex s, f : A× 2L \ {∅} → R is an s-oriented mirror

function if f(uv, Z) = f(vu, Z) for all Z and all u 6= s, v 6= s. This definition asymmetry
around the vertex s is a first precaution to avoid that everything cancels. We still want the
contributions of the Hamiltonian cycle covers to leave a nonzero result. We will address this
aspect further in Section 2.2.

The following lemma captures how the non-Hamiltonian cycle covers vanish, which also
will imply the nonexistence of false positives in our resulting algorithms.

4

•
•

••

•

s•

•

••

•
��

DD

��

##

tt

NN
a **

b

��c

OO
d

C

TT

(a)

•
•

••

•

s•

•

••

•
��

DD

��

##

tt

NN

d
C{{

c **

b

PP
a

��

(b)

•
•

••

•

s•

•

••

• ��

��

OO

TT

oo

[[

44

b
C

OOa

��

(c)

•
•

••

•

s•

•

••

• ��

��

OO

TT

oo

[[

44

a
44

b
C

tt

(d)

Figure 1: Two pairs of labeled non-Hamiltonian cycle covers mapped by M in the proof of
Lemma 4. (a) and (b) are dual, the arcs along the cycle C in (a) are reversed in (b) but keep
the same labeling. The fixed–point free duality works also when the cycle consists of only
two vertices as shown in the pair (c) and (d). Note also that this would not be the case if the
labels a and b were allowed to be the empty set, since if so they would coincide.

Lemma 4 Given a bidirected graph D = (V,A), a finite set L, and special vertex s ∈ V , let

f be an s-oriented mirror function with a codomain ring of characteristic two. Then

Λ(D,L, f) =
∑

H∈hc(D)

∑

g:L։H

∏

a∈H

f(a, g−1(a)).

Proof Confer the definition of Labeled Cycle Cover Sum (1). A labeled cycle cover is a
tuple (C, g) with C ∈ cc(D) and g : L ։ C. We will argue that the labeled non-Hamiltonian
cycle covers can be partitioned into dual pairs such that both cycle covers in every pair
contribute the same term to the sum. Since we are working in a ring of characteristic two, all
these terms cancel. To this end we define a mapping M from the labeled non-Hamiltonian
cycle covers onto themselves.

Consider a labeled non-Hamiltonian cycle cover (C, g). We define M(C, g) = (C ′, g′) as
follows. Let C be the first cycle of C not passing through s. Note that there must exist one
since the cycle cover consists of at least two cycles and all cycles are vertex disjoint. Here
first refers to any fixed order of the cycles. Let C ′ = C except for the cycle C which is
reversed in C ′, i.e. every arc uv ∈ C is replaced by the arc in the opposite direction vu in
C ′. Note that this arc exists since the graph D is assumed to be bidirected. In the special
case when C consists of only two arcs, C ′ is identical to C. The function g′−1 is identical to
g−1 on C \C, and is defined by g′−1(uv) = g−1(vu) for all arcs uv ∈ C. In other words, the
reversed arcs preserve their original labeling. Note in particular that (C, g) 6= M(C, g) and
(C, g) = M(M(C, g)). Hence the mapping M uniquely pairs up the labeled non-Hamiltonian
cycle covers (cf. Fig. 1).

Since f is an s-oriented mirror function and has f(uv, Z) = f(vu, Z) for all arcs uv not
incident to s and all Z ∈ 2L \ {∅}, (C, g) and M(C, g) contribute the same product term to
the sum in (1) and hence cancel.

2.2 Detecting the Hamiltonian Cycles

In the previous section we argued that the non-Hamiltonian cycle covers’ contributions to the
sum in the Labeled Cycle Cover Sum cancel if certain requirements are met. For this to

5

be useful we also need that the Hamiltonian cycle covers don’t vanish. To this end, it will be
instructive to think of the elements of f as nonconstant multivariate polynomials in variables
associated with the argument arc and label set. In particular for elements adjacent to the
special vertex s, f(su,X) and f(us,X) will not share variables for any su, us ∈ A. This will
ensure that the Hamiltonian cycles oriented in opposite directions will contribute different
terms to the sum.

In Section 3.1 and 3.2 we will define f such that the associated Labeled Cycle Cover

Sum seen as a polynomial in the underlying variables will have at least one unique monomial
per (oriented) Hamiltonian cycle. Moreover, there will be no monomials resulting from non-
Hamiltonian cycle covers, as a consequence of Lemma 4.

To detect if the polynomial resulting from the Labeled Cycle Cover Sum is identically
zero (=no Hamiltonian cycles) or not (=at least one Hamiltonian cycle), we will employ the
old fingerprint idea often attributed to Freivalds (see [20] for a historical account). We will
evaluate the polynomial in a randomly chosen point. If the fingerprint result is nonzero we
know for sure the polynomial couldn’t possibly be the zero polynomial. If the result is zero
we guess that so is the polynomial. The Schwartz-Zippel Lemma (see e.g [20, p. 165]) ensures
that with great probability we will succeed:

Lemma 5 (Schwartz-Zippel) Let P (x1, x2, ..., xn) be a nonzero n-variate polynomial of

total degree d over a field F . Pick r1, r2, ..., rn ∈ F uniformly at random, then

Pr(P (r1, r2, ..., rn) = 0) ≤ d

|F |

Note that the algorithms’ actual computations in this paper will be over a finite field
GF (2k) for some k after replacing the variables for values. In the analysis in Section 3.1 and
3.2 though, the function f will be treated as a multivariate polynomial with coefficients from
GF (2).

2.3 Determinants and Inclusion–Exclusion

Björklund in [5] presented a computation technique which suitably tuned can be used to
solve Labeled Cycle Cover Sum relatively quickly. It relies on the well-known fact that
the determinant of an n × n-matrix A over a ring of characteristic two coincides with the
permanent.

det(A) = per(A) =
∑

σ:[n]→[n]

n
∏

i=1

Ai,σ(i) (2)

The summation is over all permutations σ of n elements.
Permanents have a natural interpretation as the sum of weighted cycle covers in a directed

graph. Formally let D = (V,A) be a directed graph with weights w : A → R, and define a
|V | × |V | matrix with rows and columns representing the vertices V

Ai,j =

{

w(ij) : ij ∈ A
0 : otherwise

then
per(A) =

∑

C∈cc(D)

∏

a∈C

w(a). (3)

6

We will see that Labeled Cycle Cover Sum can be evaluated through a sum of an
exponential number of determinants. To this end we define for every Z ⊆ L the matrices

Mf (Z)i,j =

{

f(ij, Z) : ij ∈ A,Z 6= ∅
0 : otherwise.

(4)

We introduce a polynomial in an indeterminate r, with r aimed at controlling the total
rank of the subsets used as labels in our labeled cycle covers.

p(f, r) =
∑

Y⊆L

det





∑

Z⊆Y

r|Z|Mf (Z)



 (5)

This polynomial can be thought of as an inclusion–exclusion formula in disguise, which actu-
ally computes an associated Labeled Cycle Cover Sum in characteristic two.

Lemma 6 For a directed graph D, a set L of labels, and any f : A× 2L \ {∅} → GF (2k)

[r|L|]p(f, r) = Λ(D,L, f).

Proof Rewriting the expression for p(f, r) (5) using the equivalence of the determinant and
the permanent in rings of characteristic two (2), the cycle cover interpretation of the perma-
nent (3), and the matrices Mf (4), we get

p(f, r) =
∑

Y⊆L

∑

C∈cc(D)

∑

q:C→2Y \{∅}

∏

a∈C

r|q(a)|f(a, q(a))

Changing the order of summation, we have

p(f, r)=
∑

C∈cc(D)

∑

q:C→2L\{∅}

∑

⋃
a∈C q(a)⊆Y

Y⊆L

∏

a∈C

r|q(a)|f(a, q(a))

For functions q : C → 2L \ {∅} such that
⋃

a∈C q(a) ⊂ L, i.e. whose union over the elements
doesn’t cover all of L, we note that the innermost summation is run an even number of times
with the same term (there are 2|L\

⋃
a∈C q(a)| equal terms). Again, since the ring characteristic

is two, these cancel. We are left with

p(f, r) =
∑

C∈cc(D)

∑

q:C→2L\{∅}⋃
a∈C q(a)=L

r
∑

a∈C |q(a)|
∏

a∈C

f(a, q(a))

and in particular, the coefficient of r|L|

[r|L|]p(f, r) =
∑

C∈cc(D)

∑

q:C→2L\{∅}⋃
a∈C q(a)=L

∀a6=b:q(a)∩q(b)=∅

∏

a∈C

f(a, q(a))

since
⋃

a∈C q(a) = L and
∑

a∈C |q(a)| = |L| implies ∀a 6= b : q(a) ∩ q(b) = ∅. Inverting the
function q we arrive at the Labeled Cycle Cover Sum definition (1).

7

The above lemma is the base identity enabling a relatively efficient algorithm for comput-
ing Labeled Cycle Cover Sum. The runtime is exponential in the number of labels, but
polynomial in the size of the input graph.

Lemma 7 The Labeled Cycle Cover Sum Λ(D,L, f) for a function f with codomain

GF (2k) on a directed graph D on n vertices, and with 2k > |L|n, can be computed in

O((|L|2n + |L|n1+ω)2|L| + |L|2n2) arithmetic operations over GF (2k), where ω is the square

matrix multiplication exponent.

Proof We evaluate the Labeled Cycle Cover Sum via the identity in Lemma 6. We ob-
serve that p(f, r) as a polynomial in r has maximum degree |L|n. To recover one of its coeffi-
cients (the one for r|L|), we need to evaluate the polynomial for |L|n choices of r and use inter-
polation to solve for the sought coefficient. We can for instance use a generator g of the multi-
plicative group in GF (2k) and evaluate the polynomial in the points r = g0, g1, g2,, g|L|n−1.
The requirement 2k > |L|n ensures the points are distinct, and hence that the interpolation
is possible. For every fixed r, our algorithm begins by tabulating T (Y) =

∑

Z⊆Y r|Z|Mf (Z)
for all Y ⊆ L through Yates’ fast zeta transform [23] (see also [6] for a recent treatment)
in O(|L|2|L|) field operations. Next we evaluate p(f, r) =

∑

Y⊆L det(T (Y)) in O(nω2|L|) op-
erations using the determinant algorithm by Bunch and Hopcroft [9], with ω = 2.376 the
Coppersmith-Winograd square matrix multiplication exponent [10], and store the value ob-
tained. Summing up the number of field operations required over all |L|n values of r, the first
part of the runtime bound follows. Once all values are computed, we employ the O(|L|2n2)
time Lagrange interpolation.

3 The Reduction

We will reduce Hamiltonicity to Labeled Cycle Cover Sum. The overall idea is to
partition the vertices of the input undirected graph G into two equal halves. We construct a
smaller bidirected graph D on one of the halves, and use the other half as labels in a Labeled

Cycle Cover Sum on D. An especially simple reduction is possible for bipartite graphs,
which we describe next, even though the result will also follow directly from Theorem 2.

3.1 Warm-up: Hamiltonicity in Bipartite Graphs

We are given an undirected bipartite graph G = (V1, V2, E) on n vertices. We describe an
O∗(2n/2) time algorithm detecting if G is Hamiltonian. We know a Hamiltonian cycle if it
exists will alternate vertices from V1 and V2 along the cycle. Thus we can safely assume |V1| =
|V2| = n/2 since otherwise the graph is not Hamiltonian. We will follow the setup outlined
in the previous section and imagine a symbolic Labeled Cycle Cover Sum describing a
multivariate polynomial over a ring of characteristic two. We fix a special vertex s ∈ V1

and introduce variables xuv and xvu for every edge uv ∈ E. We equate xuv = xvu except
when u = s or v = s. For every pair of different vertices u, v ∈ V1, we define the set
N(u, v) = {w : w ∈ V2, uw ∈ E,wv ∈ E}. We set D = (V1, F) with F including arcs in
both direction for every pair of different vertices u, v ∈ V1 such that N(u, v) 6= ∅. For an arc
uv ∈ F , and a vertex w ∈ N(u, v), we set f(uv, {w}) = xuwxwv. In all other points f is set
to zero.

Lemma 8 With G,D, V2, and f defined as above,

8

I Λ(D,V2, f) =
∑

H∈hc(G)

∏

uv∈H xuv

II Λ(D,V2, f) is the zero polynomial if and only if hc(G) = ∅.

Proof I. Since D is bidirected and f is easily seen to be an s-oriented mirror function, we
have from Lemma 4 that

Λ(D,V2, f) =
∑

H∈hc(D)

∑

g:V2։H

∏

a∈H

f(a, g−1(a))

Since f(a,X) is nonzero only when X is a single vertex in V2, we can rewrite the identity as

Λ(D,V2, f) =
∑

H∈hc(D)

∑

q:H→V2

∏

a∈H

f(a, q(a))

Here the summation is over all functions q which are one-to-one. Replacing f by its definition
we get

Λ(D,V2, f) =
∑

H∈hc(D)

∑

q:H→V2

∀uv∈H:
q(uv)∈N(u,v)

∏

wz∈H

xwq(wz)xq(wz)z

Since q is one-to-one, every vertex in V2 is mapped to by precisely one arc uv ∈ F on a
Hamiltonian cycle in D, and we have

Λ(D,V2, f) =
∑

H∈hc(G)

∏

uv∈H

xuv

as claimed (remembering that hc(G) contains all oriented Hamiltonian cycles in an undirected
graph G).

II. Clearly from I, Λ(D,V2, f) is zero if G is non-Hamiltonian. In the other direction,
we argue that every undirected Hamiltonian cycle will contribute two different monomials
each to the sum. This is again because of the special vertex s. Every monomial term in
the summation corresponds to an oriented Hamiltonian cycle in G and the variables of the
polynomial are uniquely associated with one edge of the graph. Two monomials resulting
from two different undirected Hamiltonian cycles will have some variable the other doesn’t
have. Thus the only chance of two monomials being identical would be the pair of monomials
resulting from the same undirected Hamiltonian cycle in opposite orientations. Since the
variables tied to the oppositely directed arcs incident to s are different, these are also unique
monomials in the sum.

3.1.1 Algorithm and Analysis

The algorithm repeats the following process, called a run, a number of times linear in n:
The setup for Lemma 8 shows how to transform the input graph G = (V1, V2, E) with

|V1| = |V2| = n/2 into a symbolic Labeled Cycle Cover Sum Λ(D,L, f) on a graph D on
n/2 vertices and n/2 labels L. We set k large enough, say 2k > cn for some c > 1. Next we
evaluate Λ(D,L, f) in a randomly chosen assignment point p to the variables over the field
GF (2k) with the algorithm from Lemma 7. Lemma 5 tells us it will with probability at least
1 − 1/c result in a nonzero answer if and only if Λ(D,L, f) was a nonzero polynomial (and
G Hamiltonian). If any run results in a nonzero answer, we output that G is Hamiltonian,

9

otherwise not. Since the algorithm uses a linear number of runs in n the probability of false
negatives is brought down to exp(−Ω(n)).

The time to compute Λ(D,L, f) in p is dominated by the runtime in Lemma 7 and is in
O∗(2n/2). Summing over all runs, the total time bound only grows by a factor linear in n.

3.2 The General Case

In a general Hamiltonian undirected graph G = (V,E), unlike the bipartite case, we don’t
know a priori which subset of the vertices will be traversed every other vertex along a Hamil-
tonian cycle in G. Hence it is difficult to partition the vertices in two equal parts of which
one could serve as labels as in the previous section. Still, a uniformly randomly chosen par-
tition V = V1 ∪ V2 with |V1| = |V2| has with large enough probability a property that we can
exploit: The number of transitions along a fixed Hamiltonian cycle from a vertex in one part
to a vertex in the other part is n/2 in expectation. Note that in the bipartite case it was n.
The vertices in V1 in the bipartite case were handled at a polynomial time cost whereas the
ones in V2 came at a price of a factor 2 each in the runtime. In the same vein, the vertices
in V1 followed by a vertex in V2 along a fixed Hamiltonian cycle in the general case will be
computationally cheap. To see how, we need to distinguish arcs along the fixed Hamiltonian
cycle according to the partition.

For a Hamiltonian cycle H, we call arcs connecting adjacent vertex pairs vi, vi+1 along
H unlabeled by V2 if both vi and vi+1 belong to V1. The remaining arcs are referred to as
labeled by V2. We partition the arcs of H in L(H) as the set of labeled, and U(H) as the
set of unlabeled arcs by V2. We will use that there aren’t too many arcs unlabeled by V2.
Define hcmV2

(G) as the subset of hc(G) of Hamiltonian cycles H which have precisely m arcs
unlabeled by V2 along H.

We introduce variables xuv and xvu for every edge uv ∈ E such that u ∈ V2 or v ∈ V2 (or
both). We identify xuv with xvu except when u = s or v = s.

We consider a complete bidirected graph D = (V1, F) and use V2 as some of the labels. In
addition to V2 we will add a set Lm of size m of extra labels aimed at handling arcs unlabeled
by V2. For each edge uv in G[V1] and every element d ∈ Lm we also introduce new variables
xuv,d and xvu,d. Again we let xuv,d coincide with xvu,d except when u = s or v = s.

For two vertices u, v ∈ V , and a nonempty subset X ⊆ V we define Pu,v(X) as the family
of all simple paths in G from u to v passing through exactly the vertices in X (in addition to
u and v). For uv ∈ F and ∅ ⊂ X ⊆ V2, we set

f(uv,X) =
∑

P∈Pu,v(X)

∏

wz∈P

xwz

For every arc uv ∈ F such that uv is an edge in G[V1], and every d ∈ Lm, we set

f(uv, {d}) = xuv,d

In all other points f is set to zero.

Lemma 9 With G,D, V2,U ,L,m,Lm and f defined as above,

I Λ(D,V2 ∪ Lm, f) =
∑

H∈hcm
V2

(G)

(

∑

σ:U(H)→Lm

∏

uv∈U(H) xuv,σ(uv)

)(

∏

uv∈L(H) xuv

)

with σ one-to-one.

10

II Λ(D,V2 ∪ Lm, f) is the zero polynomial if and only if hcmV2
(G) = ∅.

Proof I. Since D is bidirected and f is an s-oriented mirror function, we have from Lemma 4
that

Λ(D,V2 ∪ Lm, f) =
∑

H∈hc(D)

∑

g:V2∪Lm։H

∏

a∈H

f(a, g−1(a))

A Hamiltonian cycle H ∈ hc(G) is naturally associated with a Hamiltonian cycle in D by
simply omitting the vertices along H which belong to V2. We want to go the other way, to
expand the Hamiltonian cycles in D into Hamiltonian cycles of G. To do this we observe
that the arcs of a Hamiltonian cycle in D in the sum above either are labeled by an element
of Lm or a nonempty subset of V2, since these are the only subsets of the labels for which
f is nonzero. We extend the definition of labeled and unlabeled arcs (which were defined
previously for Hamiltonian cycles in G only). For a Hamiltonian cycle H ∈ hc(D) labeled by
the function g : V2 ∪ Lm ։ H we say an arc uv ∈ H is labeled by V2 if g−1(uv) ⊆ V2, and
unlabeled by V2 if g−1(uv) ∈ Lm.

Since every arc unlabeled by V2 along a Hamiltonian cycle consumes exactly one of the
m labels in Lm, and all labels are used, we have that only the Hamiltonian cycles in D with
exactly m arcs unlabeled by V2 leave a nonzero contribution. We expand the summation in
all possible labeled and unlabeled arcs of the Hamiltonian cycles in D. We note that a cycle
H leaves a nonzero result only if the m arcs unlabeled by V2 along the cycle are also edges in
G.

Λ(D,V2 ∪ Lm, f) =
∑

H∈hc(D)

∑

HU∪HL=H
HU∩HL=∅
|HU |=m

∀a∈HU :a∈E

ΛHU
(Lm)ΛHL

(V2)

with

ΛHU
(Lm) =





∑

σ:HU→Lm

∏

a∈HU

f(a, σ(a))





and

ΛHL
(V2) =





∑

g:V2։HL

∏

a∈HL

f(a, g−1(a))





Here the summation is over all functions σ which are one-to-one. Replacing f by its definition
we further expand the inner expressions to

ΛHU
(Lm) =





∑

σ:HU→Lm

∏

uv∈HU

xuv,σ(uv)





and

ΛHL
(V2) =





∑

g:V2։HL

∏

uv∈HL

∑

P∈Pu,v(g−1(uv))

∏

wz∈P

xwz





Every vertex in V2 is mapped to by precisely one arc in F on a Hamiltonian cycle H in D.
Rewriting the expression as a sum of Hamiltonian cycles in G we have

Λ(D,V2 ∪ Lm, f) =
∑

H∈hcm
V2

(G)





∑

σ:U(H)→Lm

∏

uv∈U(H)

xuv,σ(uv)









∏

uv∈L(H)

xuv





11

as claimed.
II. If the graph G has no Hamiltonian cycles, the sum is clearly zero. For the other

direction, we see that each Hamiltonian cycle contributes a set of m! different monomials
per orientation of the cycle (one for each permutation σ), in which there are one variable
per edge along the cycle. Monomials resulting from different Hamiltonian cycles thus are
different since two different Hamiltonian cycles each has an edge the other has not. Every
pair of oppositely oriented Hamiltonian cycles along the same undirected Hamiltonian cycle
also traverse s through oppositely directed arcs. Since the variables tied to the oppositely
directed arcs incident to s are different, these are also unique monomials in the sum.

3.2.1 Algorithm

We are given an n vertex undirected graph G = (V,E) as input, assuming n even for simplicity.
The algorithm repeats the following process, called a run, several times r to be specified later
in Section 3.2.2:

In each run, a partition V1∪V2 = V is picked uniformly at random, with |V1| = |V2| = n/2.
Next the algorithm loops over m, the number of edges unlabeled by V2 along a Hamiltonian
cycle, from 0 through mmax, where mmax is specified in Section 3.2.2. For each value of m,
the setup for Lemma 9 describes how to transform the input graph G given m,V1, V2 into a
symbolic Labeled Cycle Cover Sum Λ(D,V2 ∪ Lm, f) on a bidirected graph D on n/2
vertices and n/2 +m labels V2 ∪ Lm. We operate over a field GF (2k) with k again set large
enough, say 2k > cn for some c > 1.

Next in each run, a point p assigning values from the field GF (2k) to the variables in f is
chosen uniformly at random. The function f in p is tabulated for all subsets of V2 (in other
points the function is easy to compute). This can be achieved by running a variant of the
Bellman-Held-Karp recursion. Formally, let f̂ : (V ×V)× 2V2 → GF(2k) be defined for u 6= v
and ∅ ⊂ X ⊆ V2 by

f̂(uv,X) =
∑

P∈Pu,v(X)

∏

wz∈P

xwz

then f(uv,X) = f̂(uv,X) for uv ∈ F and ∅ ⊂ X ⊆ V2.
For |X| > 1 the recursion

f̂(uv,X) =
∑

w∈X,uw∈E

xuwf̂(wv,X \ {w})

can be used to tabulate f(.,X) for all ∅ ⊂ X ⊆ V2.
Finally, in each run, we evaluate Λ(D,V2 ∪Lm, f) in p through Lemma 7. If the result in

any of the runs is nonzero we conclude and output that G is Hamiltonian, otherwise not.

3.2.2 Analysis

Since the tabulation for f is in O∗(20.5n) time, the runtime of each run is dominated by
the runtime in Lemma 7. The worst case occurs for m = mmax in which case we get a
O∗(20.5n+mmax) time bound. The total runtime is in O∗(r20.5n+mmax), and the probability of
false negatives is at most Pr(

∑mmax

m=0 |hcmV2
(G)| = 0)r.

Lemma 5 tells us that every run will with probability at least 1− 1/c result in a nonzero
answer if and only if Λ(D,V2 ∪ Lm, f) was a nonzero polynomial (and G has a Hamiltonian

12

cycle with m edges unlabeled by V2). A straightforward application of Markov’s inequality
bounding the probability that a fixed Hamiltonian cycle gets more than n/4 edges unlabeled

by V2 shows that Pr(
∑n/4

m=0 |hcmV2
(G)| = 0) ≤ n/(4+n). From this we can deduce that setting

mmax = n/4 and r = Ω(n2), will give a total runtime bound of O∗(2
3

4
n) ≈ O∗(1.682n) and

exponentially small probability of failure in n.
A slightly better runtime bound is obtained by trading the probability of success in a

single run for more runs (suggested to the author by Ryan Williams and Petteri Kaski,
independently of each other). To see just how much better we need a stronger bound on the
probability.

Lemma 10 Let G = (V,E) be a Hamiltonian undirected graph, and V1
⋃

V2 = V with |V1| =
|V2| = n/2. Then

Pr(|hcmV2
(G)| > 0) ≥

(n/2−1
m−1

)2

(n
n/2

) ∈ Θ

(

m
(

1
2 − m

n

)2m−n−1

(

m
n

)2m
4n

√
2πn1.5

)

Proof We will obtain the first bound by counting the probability that one fixed Hamiltonian
cycle H = (v0, v1, · · · , vn−1) has exactly m arcs unlabeled by V2, and moreover has v0 ∈ V1

and vn−1 ∈ V2. For such a H there are exactly n/2 − m indices i such that xi ∈ V1 and
xi+1 ∈ V2, and just as many indices i where xi ∈ V2 and xi+1 ∈ V1. The ordered list of these
transition indices i1, i2, · · · , in−2m uniquely describes the partition, and in the other direction
any such list with 0 ≤ i1, ∀j : ij < ij+1, and in−2m = n− 1 corresponds to a unique partition.
Set i0 = −1 and define the positive integers dj = ij − ij−1 for all 0 < j ≤ n− 2m. Note that
d1, d3, · · · , dn−2m−1 describes a partition of the vertices in V1 in n/2−m groups. Analogously,
d2, d4, · · · , dn−2m describes a partition of the vertices in V2 in n/2−m groups. The number
of ways to write a positive integer p as a sum of k positive integers is

(

p−1
k−1

)

. Multiplying the
number of ways to partition the vertices in V1 with the number of ways for V2, and dividing
with the total number of balanced partitions

(

n
n/2

)

, the first result follows.
The second bound is derived by replacing the binomial coefficients with their factorial

definition and using Stirling’s approximation for n! ∈ Θ((n/e)n
√
2πn).

To bring the probability of false negatives down to exp(−Ω(n)), we need the number of
runs r = nO(1)Pr−1(|hcmmax

V2
(G)| > 0). Solving for the local minimum of the total runtime,

using Lemma 10 to bound the probability, we get mmax = 0.205 and r = nO(1)20.024n runs.
Altogether, a runtime bound of O∗(1.657n).

For Theorem 2, we set V2 equal to the independent set of size i given as input instead of
the random partition in the first step of the algorithm above. We note that a Hamiltonian
cycle must have at least 2i arcs labeled by V2. This is because every vertex of the independent
set must be incident to two arcs along the cycle, and no arc is connected to more than one
of them since they are disconnected by definition. Hence, if i > n/2 the graph is surely
non-Hamiltonian, and if i ≤ n/2 we only need the loop over m in the above algorithm to
count to mmax = n− 2i, and let r be linear in n. This gives us the O∗(2n−i) time bound.

4 Polynomial Space

The algorithm in Lemma 7 invokes Yates’ fast zeta transform which uses almost as much space
as time. The tabulation of the function f also uses space exponential in n. Here we describe

13

an alternative way of solving the problem with an algorithm using only polynomial space.
This also enables the summation task in the Labeled Cycle Cover Sum to be divided on
several processors in parallel. We adopt the notation from Section 3.2. There we described
f as a function of simple paths in G[V2]. The idea here is to embed the inclusion–exclusion
counting over walks to sieve for the simple paths. We let Wu,v(X, l) be the set of walks of
length l in G starting in u and ending in v but in-between visiting only vertices from X. For
a walk W ∈ Wu,v(X, l) we define its support on X, denoted SX(W), as the set of vertices in

X traversed by the walk. With W = (u,w1, w2, . . . , wl−1, v) we have SX(W) =
⋃l−1

i=1wi.
Note that Pu,v(X) ⊆ Wu,v(X, |X| + 1). We will derive an analogue g of the function

f . We replace simple paths for walks. The point being that the inner summation in p(f, r)
in (5) will take the form of counting over walks, which we know how to do fast using only
polynomial space.

For an arc uv ∈ F , and a subset ∅ ⊂ X ⊆ V2 we set

g(uv,X, r) =

n
∑

k=|X|

rk
∑

W∈Wu,v(X,k+1)
SX(W)=X

∏

wz∈W

xwz

For every arc uv ∈ F such that uv is an edge in G[V1], and every d ∈ Lm, we set

g(uv, {d}, r) = rxuv,d

In all other points g is set to zero.
Remembering the definition of M from (4), we define an analogue of p(f, r) from (5).

q(g, r) =
∑

Y⊆L

det





∑

Z⊆Y

Mg(.,.,r)(Z)



 (6)

Lemma 11 For an undirected graph G = (V,E), a vertex partition V1 ∪ V2 = V , and with f
defined in Section 3.2 and g defined as above, it holds that

[rL]q(g, r) = [rL]p(f, r)

Proof Rewriting the expression for q(g, r) (6) using the equivalence of the determinant and
the permanent in rings of characteristic two (2), the cycle cover interpretation of the perma-
nent (3), and the matrices Mg(.,.,r) (4), we get

q(g, r) =
∑

Y⊆L

∑

C∈cc(G)

∑

h:C→2Y \{∅}

∏

a∈C

g(a, h(a), r)

Changing the order of summation, we have

q(g, r)=
∑

C∈cc(G)

∑

h:C→2L\{∅}

∑

⋃
a∈C h(a)⊆Y⊆L

∏

a∈C

g(a, h(a), r)

For functions h : C → 2L \ {∅} such that
⋃

a∈C h(a) ⊂ L, i.e. whose union over the elements
doesn’t cover all of L, we note that the innermost summation is run an even number of times

14

with the same term (there are 2|L\
⋃

a∈C h(a)| equal terms). Again, since the characteristic is
two, these cancel.

q(g, r) =
∑

C∈cc(G)

∑

h:C→2L\{∅}⋃
a∈C h(a)=L

∏

a∈C

g(a, h(a), r)

Restricted to the monomial for r|L|, the only monomial (in r) in any g(a,X, r) which con-
tributes to the final sum is the one for r|X|, since there are no nonzero monomials of smaller
degree in g(a,X, r), and the total degree of the monomial product should be L. We have

[r|L|]q(g, r)=
∑

C∈cc(G)

∑

h:C→2L\{∅}⋃
a∈C h(a)=L

∑
a∈C |h(a)|=|L|

∏

a∈C

[r|h(a)|]g(a, h(a), r)

Since [r|X|]g(a,X, r) = f(a,X) and
⋃

a∈C h(a) = L together with
∑

a∈C |h(a)| = |L| implies
∀a 6= b : h(a) ∩ h(b) = ∅, we get

[r|L|]q(g, r) =
∑

C∈cc(G)

∑

h:C→2L\{∅}⋃
a∈C h(a)=L

∀a6=b:h(a)∩h(b)=∅

∏

a∈C

f(a, h(a))

which is the same expression as for [r|L|]p(f, r) at the end of the proof of Lemma 6.

The above lemma offers an alternative route to compute [r|L]]p(f, r) by evaluating the
coefficient of r|L| in q(g, r) instead. To achieve this, we again compute q(g, r) for |L|n values
on r and use Lagrange interpolation to retrieve the coefficient. To compute q(g, r) for a fixed
r, we don’t tabulate the values of g as we did for f in the evaluation of p(f, r). Instead
we note that the inner sum in (6),

∑

Y⊆X Mg(.,.,r)(Y), can be evaluated in time and space
polynomial in |X|. To see how, let X1 = X ∩ V2 and X2 = X ∩ Lm and note that

∑

Y⊆X

Mg(.,.,r)(Y) =
∑

Y⊆X1

Mg(.,.,r)(Y) +
∑

Y⊆X2

Mg(.,.,r)(Y) (7)

This decomposition is valid since g(a, Y, r) takes by definition the value 0 for all Y such that
both Y ∩X1 6= ∅ and Y ∩X2 6= ∅. The second sum in the rhs of (7) is easily evaluated since
g(a, Y, r) also by definition takes the value zero for all Y such that |Y ∩X2| > 1. In the first
sum of the rhs of (7) the coefficient of rl in row u and column v in the resulting matrix equals
zero if u = v and otherwise evaluates to

∑

Y⊆X1

∑

W∈Wu,v(Y,l+1)
SX(W)=Y

∏

wz∈W

xwz=
∑

W∈Wu,v(X1,l+1)

∏

wz∈W

xwz (8)

i.e. the number of weighted walks from u to v passing through l vertices (possibly with
repetition) in X1. These can be evaluated efficiently. Simple let an |X1|× |X1| matrix A with
rows and columns representing vertices of X1 be defined by

Au,v =

{

xuv : uv ∈ E
0 : otherwise

15

and an |V1| × |X1| matrix B with rows representing vertices of V1 and columns vertices of X1

by

Bu,v =

{

xuv : uv ∈ E
0 : otherwise

Then, the element at row u and column v of the matrix product BAlBT by matrix multipli-
cation definition equals the rhs of (8). This product can trivially be computed in time and
space polynomial in n.

5 TSP with Bounded Integer Weights

In the TSP edges have weights ℓ : E → Z
+ and we seek the Hamiltonian cycle with the

smallest total weight. Since our approach is algebraic, in particular operating on a sum–
product ring, it is not evident how to handle a minimum query efficiently. For small weights
though, there is an embedding solution. We note that the monomials in the polynomials we
evaluate is a product over all edges along a Hamiltonian cycle. We introduce yet an auxiliary
indeterminate y, meant to sort the Hamiltonian cycles after total weight. For every actual
edge uv we represent, we also multiply it with yℓ(uv). Formally, we extend the definition of f
from Section 3.2. For uv ∈ F and ∅ ⊂ X ⊆ V2, we set

fy(uv,X) =
∑

P∈Pu,v(X)

∏

wz∈P

yℓ(wz)xwz

For every arc uv ∈ F such that uv is an edge in G[V1], and every d ∈ Lm, we set

fy(uv, {d}) = yℓ(uv)xuv,d

Now
∑mmax

i=0 Λ(D,V2 ∪ Li, fy) seen as a polynomial in y, has a nonzero coefficient for the
monomial yl only if there is a Hamiltonian cycle of total weight l. This idea of embedding
a min-sum semi-ring on a sum-product ring is quite old. It was used by Kohn et al. [18] for
TSP, and earlier by Yuval [24] for all-pairs shortest paths.

We can use the Fast Fourier Transform on GF (2k) to retrieve the smallest l for which
the coefficient of yl is nonzero. First of all, we need to have 2k larger than the maximum
degree of a monomial in the indeterminate y to avoid having monomial coefficients wrap
around y2

k−1. We note that the largest degree equals the weight of the heaviest Hamiltonian
cycle. This weight at least is less than w, the sum of all weights, and we set 2w ≥ 2k > w.
For a generator g of the multiplicative group in GF (2k), we compute and tabulate T (l) =
∑mmax

i=0 Λ(D,V2 ∪ Li, fy) evaluated at y = gl for every l = 0, 1, · · · , 2k − 2. The runtime of
this step is in O∗(w20.5n+mmax). Next we compute the inverse Fourier transform of T :

t(j) =
2k−2
∑

l=0

g−jlT (l)

The value t(j) equals the coefficient of yj in
∑mmax

i=0 Λ(D,V2 ∪ Li, fy), since for k > 1

2k−2
∑

l=0

g−jlgil =

{

1 : i = j
0 : i 6= j

16

By the Fast Fourier Transform, t(j) is computed for all j in O(w logw) time. Finally, we
search linearly in t(j) to find the smallest j such that the coefficient of yj is nonzero.

To increase the probability of the lightest cycle to show in the sum (remembering that we
only detect Hamiltonian cycles with at most mmax arcs unlabeled by V2 this way), we rerun
the algorithm r times with different partitions V1∪V2 = V as before. We output the smallest
j found for which the coefficient of yj was nonzero in any run. This proves Theorem 3.

Acknowledgment

The author is grateful to an anonymous referee, Thore Husfeldt, Petteri Kaski, Mikko Koivisto,
and Ryan Williams for extensive commenting on an earlier draft of the paper. This work was
supported in part by the Swedish Research Council project “Exact Algorithms”.

References

[1] N. Alon, R. Yuster, and U. Zwick. Color coding. Journal of the ACM (JACM) Volume
42, Issue 4, pp. 844–856, 1995.

[2] E. T. Bax. Inclusion and Exclusion algorithm for the Hamiltonian Path problem. Inf. Pro-
cess. Lett. 47(4), pp. 203–207, 1993.

[3] R. Bellman. Combinatorial processes and dynamic programming, Combinatorial Anal-
ysis (R. Bellman, M. Hall. Eds.), Proceedings of Symposia in Applied Mathematics 10,
American Mathematical Society, pp. 217–249, 1960.

[4] R. Bellman. Dynamic programming treatment of the travelling salesman problem, J.
Assoc. Comput. Mach. 9, pp. 61–63, 1962.

[5] A. Björklund. Exact Covers via Determinants. Proceedings of 27th STACS, pp. 95–106,
2010.

[6] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: Fast Subset
Convolution. Proceedings of the 39th STOC, pp. 67–74, 2007.

[7] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. The traveling salesman problem
in bounded degree graphs. Proceedings of the 35th ICALP, pp. 198–209, 2008.

[8] H. Broersma, F. V. Fomin, P. van t Hof, and D. Paulusma. Fast Exact Algorithms for
Hamiltonicity in Claw-Free Graphs, Proceedings of the 35th International Workshop on
Graph–Theoretic Concepts in Computer Science, pp. 44–53, 2009.

[9] J. R. Bunch and J. E. Hopcroft. Triangular factorization and inversion by fast matrix
multiplication, Mathematics of Computation, 28: 231–236, 1974.

[10] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9:251–280, 1990.

[11] M. Held and R. M. Karp. A dynamic programming approach to sequencing problems, J.
Soc. Indust. Appl. Math. 10, pp. 196–210, 1962.

17

[12] D. Eppstein. The traveling salesman problem for cubic graphs. J. Graph Algorithms
Appl. 11, pp. 61–81, 2007.

[13] H. Gebauer. On the number of Hamilton cycles in bounded degree graphs, Proceedings
of the Fourth Workshop on Analytic Algorithms and Combinatorics, ANALCO 2008.
SIAM, 2008.

[14] R. Impagliazzo, R. Paturi, and F. Zane. Which Problems Have Strongly Exponential
Complexity? Journal of Computer and System Sciences 63, pp. 512–530, 2001.

[15] K. Iwama and T. Nakashima. An Improved Exact Algorithm for Cubic Graph TSP.
COCOON: pp. 108–117, 2007.

[16] R. M. Karp. Reducibility Among Combinatorial Problems. Complexity of Computer
Computations. New York: Plenum. pp. 85–103, 1972.

[17] R. M. Karp. Dynamic programming meets the principle of inclusion and exclusion,
Oper. Res. Lett. 1 no. 2, pp. 49–51, 1982.

[18] S. Kohn, A. Gottlieb, and M. Kohn. A generating function approach to the traveling
salesman problem, Proceedings of the 1977 Annual Conference (ACM’77), Association
for Computing Machinery, pp. 294–300, 1977.

[19] I. Koutis. Faster Algebraic Algorithms for Path and Packing Problems. 35th ICALP, pp.
575–586, 2008.

[20] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press,
1995.

[21] R. Williams. Finding Paths of Length k in O∗(2k) Time. Inform. Process. Lett. 109(6)
pp. 315–318, 2009.

[22] G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial

Optimization - Eureka! You shrink! M. Juenger, G. Reinelt and G. Rinaldi (eds.). LNCS
2570, Springer, pp 185–207, 2003.

[23] F. Yates, The Design and Analysis of Factorial Experiments, Technical Communication
No. 35, Commonwealth Bureau of Soil Science, Harpenden, UK, 1937.

[24] G. Yuval, An algorithm for finding all shortest paths using N2.81 infinite-precision mul-
tiplications, Inform. Process. Lett. 4 pp. 155–156, 1976.

18

	1 Introduction
	1.1 Previous Work
	1.2 Our Approach
	1.3 Organization

	2 Preliminaries
	2.1 Cycle Cover Cancelation in Characteristic Two
	2.2 Detecting the Hamiltonian Cycles
	2.3 Determinants and Inclusion–Exclusion

	3 The Reduction
	3.1 Warm-up: Hamiltonicity in Bipartite Graphs
	3.1.1 Algorithm and Analysis

	3.2 The General Case
	3.2.1 Algorithm
	3.2.2 Analysis

	4 Polynomial Space
	5 TSP with Bounded Integer Weights

