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Abstract

We present a general method of designing fast approximation algorithms for cut-based min-
imization problems in undirected graphs. In particular, we develop a technique that given
any such problem that can be approximated quickly on trees, allows approximating it almost
as quickly on general graphs while only losing a poly-logarithmic factor in the approximation
guarantee.

To illustrate the applicability of our paradigm, we focus our attention on the undirected
sparsest cut problem with general demands and the balanced separator problem. By a simple
use of our framework, we obtain poly-logarithmic approximation algorithms for these problems
that run in time close to linear.

The main tool behind our result is an efficient procedure that decomposes general graphs
into simpler ones while approximately preserving the cut-flow structure. This decomposition is
inspired by the cut-based graph decomposition of Räcke that was developed in the context of
oblivious routing schemes, as well as, by the construction of the ultrasparsifiers due to Spielman
and Teng that was employed to preconditioning symmetric diagonally-dominant matrices.

1 Introduction

Cut-based graph problems are ubiquitous in optimization. They have been extensively studied –
both from theoretical and applied perspective – in the context of flow problems, theory of Markov
chains, geometric embeddings, clustering, community detection, VLSI layout design, and as a basic
primitive for divide-and-conquer approaches (cf. [38]). For the sake of concreteness, in this paper
we define an optimization problem P to be an (undirected) cut-based (minimization) problem if
its every instance P ∈ P can be cast as a task of finding – for a given input undirected graph
G = (V,E, u) – a cut C∗ such that:

C∗ = argmin∅6=C⊂V u(C)fP (C), (1)

where u(C) is the capacity of the cut C in G and fP is a non-negative function that depends
on P , but not on the graph G. It is not hard to see that a large number of graph problems fits this
definition. For illustrative purposes, in this paper we focus on two of them that are fundamental
in graph partitioning: the generalized sparsest cut problem and the balanced separator problem.
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In the generalized sparsest cut problem, we are given a graph G = (V, E, u) and a demand graph
D = (V,ED, d). Our task is to find a cut C∗ that minimizes the (generalized) sparsity u(C)/d(C)
among all the cuts C of G. Here, d(C) is the total demand

∑
e∈ED(C) d(e) of the demand edges

ED(C) of D cut by the cut C. Casted in our terminology, the problem is to find a cut C∗ being
argminCu(C)fP (C) with fP (C) := 1/d(C).

An important problem that is related to the generalized sparsest cut problem is the spars-
est cut problem. In this problem one aims at finding a cut C∗ that minimizes the sparsity
u(C)/min{|C|, |C|} among all the cuts C of G. Note that if we considered an instance of gen-
eralized sparsest cut problem corresponding to the demand graph D being complete and each
demand being 1/|V | (this special case is sometimes called the uniform sparsest cut problem) then
the corresponding generalized sparsity of every cut C is within factor of two of its sparsity. There-
fore, up to this constant factor, one can view the sparsest cut problem as a special case of the
generalized sparsest cut problem.

The balanced separator problem corresponds to a task of finding a cut that minimizes the sparsity
among all the c-balanced cuts C in G, i.e. among all the cuts C with min{|C|, |C|} ≥ c|V |, for some
specified constant c > 0 called the balance constant of the instance. In our framework, the function
fP (C) corresponding to this problem is equal to 1/min{|C|, |C|} if min{|C|, |C|} ≥ c|V | and equal
to +∞ otherwise.

1.1 Previous Work on Graph Partitioning

The captured by the above-mentioned problems task of partitioning a graph into relatively large
pieces while minimizing the number of edges cut is a fundamental combinatorial problem (see [38])
with a long history of theoretical and applied investigation. Since most of the graph partitioning
problems – in particular, the ones we consider – are NP-hard, one needs to settle for approximation
algorithms. In case of the sparsest cut problem and the balanced separator problem, there were
two main types of approaches to approximating them.

First type of approach was based on spectral methods. Inspired by Cheeger’s inequality [17]
discovered in the context of Riemannian manifolds, Alon and Milman [4] transplanted it to discrete
setting and presented an algorithm for the sparsest cut problem that can be implemented to run
in nearly-linear time1, but its approximation ratio depends on the conductance2 Φ(G) of the graph
and can be as large as Ω(n) in the worst case. Later, Spielman and Teng [40, 42] (see also [5]
and [6] for a follow-up work) used this approach to design an algorithm for the balanced separator
problem. However, both the running time and the approximation guarantee still depend on the
conductance of the graph, leading to an Ω(n) approximation ratio and large running time in the
worst case.

The second type of approach relies on flow methods. It was started by Leighton and Rao [32]

1The key algorithmic step of [4] is computation of a vector that is orthogonal to all-ones vector and (up to
sufficient precision) minimizes the energy of the Laplacian of the graph. The canonical approach to this task leads
to an algorithm running in Õ(m/Φ2) time. To get no dependence on Φ in the running time, one notes that finding
a vector that, say, 1/2-approximately maximizes the energy of the pseudo-inverse of the Laplacian is sufficient for
[4] to work. One can compute such a vector in Õ(m) time by employing the algorithm of [31] and avoiding explicit
computation of the pseudo-inverse via appropriate use of the nearly-linear Laplacian system solver of Spielman and
Teng [40].

2Conductance Φ(G) of a graph G = (V, E, u) is defined as Φ(G) := min∅6=C⊂V
u(C)

U(C)U(C)
, where U(C) :=∑

(v,w)∈E,v∈C u((v, w)) is the total capacity-weighted degree of the vertices in C.

2



who used linear programming relaxation of the maximum concurrent flow problem to establish first
poly-logarithmic approximation algorithms for many graph partitioning problems. In particular,
an O(log n)-approximation for the sparsest cut and the balanced separator problems. Both these
algorithms can be implemented to run in Õ(n2) time.

These spectral and flow-based approaches were combined in a seminal result of Arora, Rao, and
Vazirani [10] to give an O(

√
log n)-approximation for the sparsest cut and the balanced separator

problems.
In case of the generalized sparsest cut problem, the results of Linial, London, and Rabinovich

[33], and of Aumann and Rabani [11] give a O(log r)-approximation algorithms, where r is the num-
ber of vertices of the demand graph that are endpoints of some demand edge. Subsequently, Chawla,
Gupta, and Räcke [16] extended the techniques from [10] to obtain an O(log3/4 r)-approximation.
This approximation ratio was later improved by Arora, Lee, and Naor [9] to O(

√
log r log log r).

1.2 Fast Approximation Algorithms for Graph Partitioning Problems

More recently, a lot of effort was put into designing algorithms for the graph partitioning problems
that are very efficient while still having poly-logarithmic approximation guarantee. Arora, Hazan,
and Kale [7] combined the concept of expander flows that was introduced in [10] together with
multicommodity flow computations to obtain O(

√
log n)-approximation algorithms for the sparsest

cut and the balanced separator problems that run in Õ(n2) time.
Subsequently, Khandekar, Rao, and Vazirani [30] designed a primal-dual framework for graph

partitioning algorithms and used it to achieve O(log2 n)-approximations for the same two problems
running in Õ(m + n3/2) time needed to perform graph sparsification of Benczúr and Karger [14]
followed by a poly-logarithmic number of maximum single-commodity flow computations. In [8],
Arora and Kale introduced a general approach to approximately solving semi-definite programs
which, in particular, led to O(log n)-approximation algorithms for the sparsest cut and the balanced
separator problems that also run in Õ(m + n3/2) time. Later, Orecchia, Schulman, Vazirani, and
Vishnoi [34] obtained the same approximation ratio and running time as [8] by extending the
framework from [30]. Recently, Sherman [37] presented an algorithm that for any ε > 0 works
in Õ(m + n3/2+ε) time – corresponding to performing sparsification and Õ(nε) maximum single-
commodity flow computations – and achieves an approximation ratio of O(

√
log n/ε). Therefore,

for any fixed ε > 0, his algorithm has the best-known approximation guarantee while still having
running time close to the time needed for maximum single-commodity flow computation.

Unfortunately, despite this substantial progress in designing efficient poly-logarithmic approx-
imation algorithms for the sparsest cut problem, if one is interested in the generalized sparsest
cut problem then a folklore O(log r)-approximation algorithm running in Õ(n2 log U) time is still
the fastest one known. This folklore result is obtained by combining an efficient implementation
[14, 24] of the algorithm of Leighton and Rao [32] together with the results of Linial, London, and
Rabinovich [33], and of Aumann and Rabani [11].

1.3 Our Contribution

In this paper we present a general method of designing fast approximation algorithms for undirected
cut-based minimization problems.3 In particular, we design a procedure that given an integer

3In fact, as we briefly mention in section 4.4, our framework can be applied to even more general class of problems:
the multicut-based minimization problems.
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(Uniform) sparsest cut and balanced separator problem:
Algorithm Approximation ratio Running time

Alon-Milman [4] O(Φ−1/2) (Ω(n) worst-case) Õ(m/Φ2) (Õ(m) using [40])
Andersen-Peres [6] Õ(Φ−1/2) (Ω̃(n) worst-case) Õ(m/Φ3/2)
Leighton-Rao [32] O(log n) Õ(n2)
Arora-Rao-Vazirani [10] O(

√
log n) polynomial time

Arora-Hazan-Kale [7] O(
√

log n) Õ(n2)
Khandekar-Rao-Vazirani [30] O(log2 n) Õ(m + n3/2)
Arora-Kale [8] O(log n) Õ(m + n3/2)
Orecchia-Schulman-Vazirani-Vishnoi [34] O(log n) Õ(m + n3/2)
Sherman [37] O(

√
log n/ε) Õ(m + n3/2+ε)

this paper k = 1 (log3/2+o(1) n)/
√

ε Õ(m + n6/5+ε)
this paper k = 2 (log5/2+o(1) n)/

√
ε Õ(m + n12/11+ε)

this paper k ≥ 1 (log(1+o(1))(k+1/2) n)/
√

ε Õ(m + 2kn1+1/(3·2k−1)+ε)

Generalized sparsest cut problem:
Algorithm Approximation ratio Running time

Folklore ([32, 33, 11, 14, 24]) O(log r) Õ(n2 log U)
Chawla-Gupta-Räcke [16] O(log3/4 r) polynomial time
Arora-Lee-Naor [9] O(

√
log r log log r) polynomial time

this paper k = 2 log2+o(1) n Õ(m + |ED|+ n4/3 log U)
this paper k = 3 log3+o(1) n Õ(m + |ED|+ n8/7 log U)
this paper k ≥ 1 log(1+o(1))k n Õ(m + |ED|+ 2kn1+1/(2k−1) log U)

Figure 1: Here, n denotes the number of vertices of the input graph G, m the number of its edges,
Φ its conductance, U is its capacity ratio, and r is the number of vertices of the demand graph
D = (V, ED, d) that are endpoints of some demand edges. Also, Õ(·) notation suppresses poly-
logarithmic factors. The algorithm of Alon and Milman applies only to the sparsest cut problem.

parameter k ≥ 1 and any undirected graph G with m edges, n vertices, and having integral edge
capacities in the range [1, . . . , U ], produces in Õ(m + 2kn1+1/(2k−1) log U) time a small number of
trees {Ti}i. These trees have a property that, with high probability, for any α ≥ 1, we can find an
(α log(1+o(1))k n)-approximation to given instance of any cut-based minimization problem on G by
just obtaining some α-optimal solution for each Ti and choosing the one among them that leads
to the smallest objective value in G (see Theorem 4.1 for more details). As a consequence, we
are able to transform any α-approximation algorithm for a cut-based problem that works only on
tree instances, to an (α log(1+o(1))k n)-approximation algorithm for general graphs, while paying a
computational overhead of Õ(m+2kn1+1/(2k−1) log U) time that, as k grows, quickly becomes close
to linear.

We illustrate the applicability of our paradigm on two fundamental graph partitioning problems:
the undirected (generalized) sparsest cut and the balanced separator problems. By a simple use
of our framework we obtain, for any integral k ≥ 1, a (log(1+o(1))k n)-approximation algorithm
for the generalized sparsest cut problem that runs in time Õ(m + |ED| + 2kn1+1/(2k−1) log U),
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where |ED| is the number of the demand edges in the demand graph. Furthermore, in case of the
sparsest cut and the balanced separator problems, we combine our techniques with the algorithm
of Sherman [37] to obtain approximation algorithms that have even better dependence on k in the
running time. Namely, for any k ≥ 1 and ε > 0, we present (log(1+o(1))(k+1/2) n/

√
ε)-approximation

algorithms4 for these problems that run in time Õ(m + 2kn1+1/(3·2k−1)+ε). We summarize our
results together with the previous work in Figure 1. One can see that even for small values of
k, the running times of our algorithms beat the multicommodity flow barrier of Ω(n2) and the
bound of Ω(m + n3/2) time corresponding to performing sparsification and single-commodity flow
computation. Unfortunately, in the case of the generalized sparsest cut problem our approximation
guarantee has poly-logarithmic dependence on n. This is in contrast to the previous algorithms for
this problem that have their approximation guarantee depending on r.

1.4 Overview of Our Techniques

Our approach is inspired by the cut-based graph decomposition of Räcke [36] that was developed
in the context of oblivious routing schemes (see [35, 12, 15, 28] for some previous work on this
subject). This decomposition is a powerful tool in designing approximation algorithms for various
undirected cut-based problem. It is based on finding for a given graph G with n vertices and m
edges, a convex combination {λi}i of decomposition trees {Ti}i such that: G is embeddable into
each Ti, and this convex combination can be embedded into G with O(log n) congestion. One
employs this decomposition by first approximating the desired cut-based problem on each tree Ti

– this usually yields much better approximation ratio than general instances – and then extracting
from obtained solutions a solution for the graph G while incurring only additional O(log n) factor
in the approximation guarantee.

The key question motivating our results is: can the above paradigm be applied to obtain very
efficient approximation algorithms for cut-based graph problems? After all, one could envision
a generic approach to designing fast approximation algorithms for such problems in which one
decomposes first an input graph G into a convex combination of structurally simple graphs Gi

(e.g. trees), solves the problem quickly on each of these easy instances and then combines these
solutions to obtain a solution for the graph G, while losing some (e.g. poly-logarithmic) factor in
approximation guarantee as a price of this speed-up. Clearly, the viability of such scenario depends
critically on how fast a suitable decomposition can be computed and how ’easy’ are the graphs Gis
from the point of view of the problems we want to solve.

We start investigation of this approach by noticing that if one is willing to settle for approxi-
mation algorithms that are of Monte Carlo-type then, given a decomposition of the graph G into
a convex combination {(λi, Gi)}i, one does not need to compute the solution for each of Gis to
get the solution for G. It is sufficient to just solve the problem on a small number of Gis that are
sampled from the distribution described by λis.

However, even after making this observation, one still needs to compute the decomposition
of the graph to be able to sample from it and, unfortunately, Räcke’s decomposition – that was
aimed at obtaining algorithms that are just polynomial-time – has serious limitations when one
is interested in time-efficiency. In particular, the running time of his decomposition procedure is

4As was the case in all the previous work we described, we only obtain a pseudo-approximation for the balanced
separator problem. Recall that an α-pseudo-approximation for the balanced separator problem with balance constant
c is a c′-balanced cut C – for some other constant c′ – such that C’s sparsity is within α of the sparsest c-balanced cut.
For the sake of convenience, in the rest of the paper we don’t differentiate between pseudo- and true approximation.
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dominated by Õ(m) all-pair shortest path computations and is thus prohibitively large from our
point of view – see section 3.1 for more details.

To circumvent this problem, we design an alternative and more general graph decomposition
(see Theorem 3.6). Similarly to the case of Räcke’s decomposition, our construction is based
on embedding graph metrics into tree metrics. However – instead of the embedding result of
Fakcharoenphol, Talwar, and Rao [23] that was used by Räcke – we employ the nearly-linear time
algorithm of Abraham, Bartal, and Neiman [1] for finding low-average-stretch spanning trees. This
choice allows for a much more efficient implementation of our decomposition procedure at a cost
of decreasing the quality of provided approximation from O(log n) to Õ(log n). Also, even more
crucially, inspired by the notion of the ultrasparsifiers of Spielman and Teng [40, 41], we allow
flexibility in choosing the type of graphs into which our graph is decomposed. In this way, we are
able to offer a trade-off between the structural simplicity of these graphs and the time needed to
compute the corresponding decomposition.

Finally, by recursive use of our decomposition – together with sparsification technique – we are
able to leverage the above-mentioned flexibility to design a procedure that can have its running
time be arbitrarily close to nearly-linear and, informally speaking, allows us to sample from a
decomposition of our input graph G into graphs whose structure is arbitrarily simple, but at a cost
of getting proportionally worse quality of the reflection of the cut structure of G – see Theorem 3.7
for more details.

1.5 Outline of the Paper

We start with some preliminaries in section 2. Next, in section 3, we introduce the key concepts
of our paper and state the main theorems. In section 4 we show how our framework leads to
fast approximation algorithms for undirected cut-based minimization problems. We also construct
there our algorithms for the (generalized) sparsest cut and balanced separator problems and remark
on extending our framework to make it handle multicut-based minimization problems. Section 5
contains the description of our decomposition procedure that allows expressing general graphs as
a convex combinations of simpler ones while approximately preserving cut-flow structure. We
conclude in section 6 with showing how a recursive use of this decomposition procedure together
with sparsification leads to the sampling procedure underlying our framework.

2 Preliminaries

In this paper we will be concerned with an undirected graphs G = (V, E, u) having vertex set V ,
edge set E, and integer capacities u : E → Z+ on the edges. By capacity ratio U of G we mean the
maximum possible ratio between capacities of two edges of G i.e. U := maxe,e′∈E u(e)/u(e′).

For a given graph G = (V,E, u), by a cut C in G we mean any vertex set ∅ 6= C ⊂ V . We
denote by E(C) the set of all the edges of G with exactly one endpoint in C – we say that these
edges are cut by C. By C we will denote the set V \ C. Also, we define the capacity u(C) of a cut
in G to be the total capacity u(E(C)) of all the edges in E(C). Finally, for some V ′ ⊆ V , we say
that a subgraph G′ = (V ′, E′, u′) is a subgraph of G induced by V ′ if E′ consists of all the edges of
G whose both endpoints are in V ′ and the capacity function u′ on these edges is inherited from the
capacity function u of G.
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2.1 Maximum Concurrent Flow Problem

For a given graph G = (V, E, u), by a multicommodity flow f = (f1, . . . , fk) we mean a set of k
flows f i in G, where each flow f i routes a commodity i from some source si to some sink ti. Let us
also define |f(e)| as the total flow routed along the edge e by f , i.e. |f(e)| :=

∑
i |f i(e)|. We say

that a multicommodity flow f is feasible if for every edge e, |f(e)| ≤ u(e).
One of the most popular multicommodity flow problems is the maximum concurrent flow prob-

lem. In this problem, in addition to the graph G = (V, E, u), we are given a demand graph
D = (V, ED, d). The objective is to find a feasible multicommodity flow f in G such that for each
demand edge e = (v, w) ∈ ED there is a flow fe that routes θd(e) units of corresponding commodity
from v to w and the flow rate θ is maximized. Another important flow problem – that can be viewed
as a special case of the maximum concurrent flow problem – is the maximum s-t flow problem (or
just the maximum flow problem) that corresponds to a task of finding a feasible single-commodity
flow that maximizes the throughput being the amount of flow pushed from the source s to the sink
t.

2.2 Embedability

A notion we will be dealing extensively with is the notion of graph embedding.

Definition 2.1. For given graphs G = (V, E, u) and G = (V,E, u), by an embedding f of G into
G we mean a multicommodity flow f = (fe1 , . . . , fe|E|) in G with |E| commodities indexed by the
edges of G, such that for each 1 ≤ i ≤ |E|, the flow fei routes in G u(ei) units of flow between
endpoints of ei.

One may view an embedding f of G into G as a concurrent flow in G whose source-sink pairs and
corresponding demands are given by the endpoints of edges of G and their corresponding capacities.
Note that the above definition does not require that f is feasible. We proceed to the definition of
embedability.

Definition 2.2. For given t ≥ 1, graphs G = (V, E, u), and G = (V,E, u), we say that G is t-
embeddable into G if there exists an embedding f of G into G such that for all e ∈ E, |f(e)| ≤ tu(e).
We say that G is embeddable into G if G is 1-embeddable into G.

Intuitively, the fact that G is t-embeddable into G means that we can fractionally pack all the
edges of G into G with all its capacities u multiplied by t. Also, it is easy to see that for given
graphs G and G, one can always find the smallest possible t such that G is t-embeddable into G by
just solving maximum concurrent flow problem in G in which we treat G as a demand graph with
the demands given by its capacities.

2.3 Graph Sparsification

A powerful tool in designing fast algorithms for cut-related problems is graph sparsification – this
procedure allows approximation of all the cuts of any – possibly dense – graph by its sparse subgraph
with appropriately chosen capacities. In particular, the following theorem was proved by Benczúr
and Karger [14] (see also [43], [39], and [13] for more general results on sparsification).

Theorem 2.3 ([14]). Given graph G = (V, E, u) and an accuracy parameter δ > 0, there is a
Monte Carlo algorithm that finds in Õ(|E|) time a subgraph G̃ = (V, Ẽ, ũ) of G such that
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(i) G̃ has O(|V | log |V |δ−2) edges;

(ii) for any cut ∅ 6= C ⊂ V of G, we have u(C) ≤ ũ(C) ≤ (1 + δ)u(C) i.e. the cuts of G are
(1 + δ)-approximately preserved in G̃;

(iii) the capacity ratio of G̃ is at most O(|V |) times the capacity ratio of G.

3 Graph Decompositions and Fast Approximation Algorithms for
Cut-based Problems

The central concept of our paper is the notion of (α,G)-decomposition. This notion is a general-
ization of the cut-based graph decomposition introduced by Räcke [36].

Definition 3.1. For any α ≥ 1 and some family of graphs G, by an (α,G)-decomposition of a
graph G = (V,E, u) we mean a set of pairs {(λi, Gi)}i, where for each i, λi > 0 and Gi = (V, E, ui)
is a graph in G, such that:

(a)
∑

i λi = 1

(b) G is embeddable into each Gi

(c) There exist embeddings fi of each Gi into G such that for each e ∈ E,
∑

i λi|fi(e)| ≤ αu(e).

Moreover, we say that such decomposition is k-sparse if it consists of at most k different Gi.

The crucial property of (α,G)-decomposition is that it captures α-approximately the cut struc-
ture of the graph G. We formalize this statement in the following easy to prove fact.

Fact 3.2. For any α ≥ 1, graph G = (V, E, u), and a family of graphs G, if {(λi, Gi)}i is an
(α,G)-decomposition of G then for any cut C of G:

(lowerbounding) for all i, the capacity ui(C) of C in Gi is at least its capacity u(C) in G;

(upperbounding in expectation) E~λ
[u(C)] :=

∑
i λiui(C) ≤ αu(C).

Note that the condition (a) from Definition 3.1 implies that {(λi, Gi)}i is a convex combination
of the graphs {Gi}i. Therefore, one of the implications of the Fact 3.2 is that for any cut C in G,
not only the capacity of C in every Gi is lowerbounded by its capacity u(C) in G, but also there
always exists a graph Gj in which the capacity of C is at most αu(C). As one can easily convince
oneself, for any β ≥ 1, this property alone allows to reduce a task of αβ-approximation of any
cut-based minimization problem in G to a task of β-approximating this problem in each of Gis.

In fact, if one is willing to settle for Monte Carlo-type approximation guarantees, one can reduce
the task of approximation of such problem to a task of approximating it in only a small number of
Gis. To make this statement precise, let us introduce the following definition.

Definition 3.3. For given G = (V,E, u), α ≥ 1, and 1 ≥ p > 0, we say that a collection {Gi}i of
random graphs5 Gi = (V, Ei, ui), α-preserves the cuts of G with probability p if for every cut C of
G:

5We formalize the notion of random graphs by viewing each Gi as a graph on vertex set V chosen according to
some underlying distribution over all such graphs.
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(lowerbounding) for all i, the capacity ui(C) of C in Gi is at least its capacity u(C) in G;

(probabilistic upperbounding) with probability at least p, there exists i such that ui(C) ≤
αu(C).

With a slight abuse of notation, we will say that a random graph G′ is α-preserving the cuts of G
with probability p if the corresponding singleton family {G′} is doing it. Now, a useful connection
between (α,G)-decomposition of graph G and obtaining graphs O(α)-preserving the cuts of G with
some probability is given by the following fact whose proof is a straight-forward application of
Markov’s inequality.

Fact 3.4. Let G = (V, E, u), α ≥ 1, 1 > p > 0 and let {(λi, Gi)}i be some (α,G)-decomposition of
G. If G′ is a random graph chosen from the set {Gi}i according to distribution given by λis i.e.
Pr[G′ = Gi] = λi, then G′ 2α-preserves cuts of G with probability 1/2.

Therefore – as we will formally prove later – for any β ≥ 1, we can obtain a Monte Carlo
2αβ-approximation algorithm for any minimization cut-based problem in G, by β-approximating
it in a sample of O(ln |V |) Gis that were chosen according to distribution described by λis.

3.1 Finding a Good (α,G)-decomposition Efficiently

In the light of the above discussion, we focus our attention on the task of developing a (α,G)-
decomposition of graphs into some family G of structurally simple graphs that enjoys relatively
small value of α. Of course, since our emphasis is on obtaining algorithms that are very efficient,
an important aspect of the decomposition that we will be interested in is the time needed to compute
it.

With this goal in mind, we start by considering the following theorem due to Räcke [36] that
describes the quality of decomposition one can achieve when decomposing the graph G into a family
GT of its decomposition trees (cf. [36] for a formal definition of a decomposition tree).

Theorem 3.5 ([36]). For any graph G = (V, E, u), an Õ(m)-sparse (O(log n),GT )-decomposition
of G can be found in polynomial time, where n = |V | and m = |E|.

Due to structural simplicity of decomposition trees, as well as, the quality of cut preservation
being the best – up to a constant – achievable in this context, this theorem was used to design
good approximation algorithms for a number of cut-based minimization problems.

Unfortunately, from our point of view, the usefulness of Räcke’s decomposition is severely
limited by the fact that the time needed to construct it is not acceptable when one is aiming
at obtaining fast algorithms. More precisely, the running time of the decomposing algorithm of
[36] is dominated by Õ(m) executions of the algorithm of Fakcharoenphol, Talwar and Rao [23]
that solves the minimum communication cost tree problem with respect to a cost function devised
from the graph G (cf. [36] for details). Each such execution requires, in particular, computation
of the shortest-path metric in G with respect to some length function, which employs the well-
known all-pair shortest path algorithm [25, 44, 2] running in O(min{mn,n2.376}) time. This results
in – entirely acceptable when one is just interested in obtaining polynomial-time approximation
algorithms, but prohibitive in our case – Õ(m min{mn,n2.376}) total running time.

One could try to obtain a faster implementation of Räcke’s decomposition by using a nearly-
linear time low-average-stretch spanning tree construction due to Abraham, Bartal, and Neiman
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[1] in place of the algorithm of [23]. This would lead to an Õ(m2) time decomposition of G into
its spanning trees that has a – slightly worse – quality of Õ(log n) instead of the previous O(log n).
However, although we will use [1] in our construction (cf. section 5.2), Õ(m2) time is still not
sufficiently fast for our purposes.

Our key idea for circumventing this running time bottleneck is allowing ourselves more flexibility
in the choice of the family of graphs into which we will decompose G. Namely, we will be considering
(α,G)-decompositions of G into objects that are still structurally simpler than G, but not as simple
as trees.

H
′

H

F

Figure 2: An example of a j-tree H, its core H ′, and its envelope F consisting of bold edges.

To this end, for j ≥ 1, we say that a graph H = (VH , EH , uH) is a j-tree (cf. Figure 2) if it is a
connected graph being a union of: a subgraph H ′ of H induced by some vertex set V ′

H ⊆ VH with
|V ′

H | ≤ j; and of a forest F on VH whose each connected component has exactly one vertex in V ′
H .

We will call the subgraph H ′ the core of H and the forest F the envelope of H.6

Now, if we define GV [j] to be the family of all the j-trees on the vertex set V , the following
theorem – being the heart of our framework – holds. Its proof appears in section 5.

Theorem 3.6. For any graph G = (V, E, u) and t ≥ 1, we can find in time Õ(tm) a t-sparse
(Õ(log n),GV [Õ(m log U

t )])-decomposition {(λi, Gi)}i of G, where m = |E|, n = |V |, and U is the
capacity ratio of G. Moreover, the capacity ratio of each Gi is O(mU).

Intuitively, the above theorem shows that if we allow j = Õ(m log U
t ) to grow, the sparsity of

the corresponding decomposition of G into j-trees – and thus the time needed to compute it – will
decrease proportionally.7

Note that a 1-tree is just an ordinary tree, so by taking t in the above theorem sufficiently large,
we obtain a decomposition of G into trees in time Õ(m2 log U).8 Therefore, we see that compared

6Note that given a j-tree we can find its envelope in linear time. Therefore, throughout the paper we always
assume that the j-trees we are dealing with have their envelopes and cores explicitly marked.

7Interestingly, such a trade-off is somewhat reminiscent of the trade-off achieved by Spielman and Teng [40, 41]
between the number of additional edges of an ultrasparsifier and the quality of spectral approximation provided by
it.

8In fact, one might show that if our goal is to decompose G into trees then the running time of our algorithm is
just Õ(m2).
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to the decomposition result of Räcke (cf. Theorem 3.5), we obtain in this case a decomposition of
G with more efficient implementation and into objects that are even simpler than decomposition
trees, but at a cost of slightly worse quality.

However, the aspect of this theorem that we will find most useful is the above-mentioned trade-
off between the simplicity of the j-trees into which the decomposition decomposes G and the time
needed to compute it. This flexibility in the choice of t can be utilized in various ways.

For instance, one should note that, in some sense, the core of a j-tree H captures all the non-
trivial cut-structure of H. In particular, it is easy to see that maximum flow computations in
H essentially reduce to maximum flow computations in H’s core. So, one might hope that for
some cut-based problems the complexity of solving them in H is proportional to the complexity of
solving them in the – possibly much smaller than H – core of H (this is, for example, indeed the
case for the balanced separator and the sparsest cut problems – see section 4.3). Thus one could
use Theorem 3.6 – for appropriate choice of t – to get a faster algorithm for this kind of problems by
just computing first the corresponding decomposition and then leveraging the existing algorithms to
solve the given problem on a small number of sampled j-trees, while paying an additional Õ(log n)
factor in the approximation quality for this speed-up.

Even more importantly, our ability to choose in Theorem 3.6 sufficiently small value of t, as
well as, the sparsification technique (cf. Theorem 2.3) and recursive application of the theorem
to the cores of Õ(m log U

t )-trees sampled from the computed decomposition, allows establishing the
following theorem – its proof appears in section 6.

Theorem 3.7. For any 1 ≥ l ≥ 0, integral k ≥ 1, and any graph G = (V, E, u), we can find in

Õ(m+2kn
(1+ 1−l

2k−1
) log U) time a collection of (2k+1 ln n) nl-trees {Gi}i that (log(1+o(1))k n)-preserve

the cuts of G with high probability. Moreover, the capacity ratio of each Gi is n(2+o(1))kU , where U
is the capacity ratio of G, n = |V |, and m = |E|.

As one can see, the above theorem allows obtaining a collection of j-trees that α-preserve cuts
of G – for arbitrary j = nl – in time arbitrarily close to nearly-linear, but at a price of α growing
accordingly as these two parameters decrease.

Note that one can get a cut-preserving collection satisfying the requirements of the theorem by
just finding an (Õ(log n), nl)-decomposition of G via Theorem 3.6 and sampling – in the spirit of
Fact 3.4 – O(log n) nl-trees from it so as to ensure that each cut is preserved with high probability.
Unfortunately, the running time of such procedure would be too large. Therefore, our approach to
establishing Theorem 3.7 can be heuristically viewed as an algorithm that in case when the time
required by Theorem 3.6 to compute a decomposition of G into nl-trees is not acceptable, does not
try to compute and sample from such decomposition directly. Instead, it performs its sampling
by finding a decomposition of G into j-trees, for some value of j bigger than nl, then samples a
j-tree from it and recurses on this sample. Now, the desired collection of nl-trees is obtained by
repeating this sampling procedure enough times to make sure that the cut preserving probability is
high enough, with the value of j chosen so as to bound the number of recursive calls by k−1. Since
each recursive call introduces an additional Õ(log n) distortion in the faithfulness of the reflection
of the cut structure of G, the quality of the cut preservation of the collection generated via such
algorithm will be bounded by log(1+o(1))k n.
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4 Applications

We proceed to demonstrating how the tools and ideas presented in the previous section lead to a
fast approximation algorithms for cut-based graph problems. In particular, we apply our techniques
to the (generalized) sparsest cut and the balanced separator problems. Later we remark on the fact
that our framework is also applicable to multicut-based minimization problems.

The following theorem encapsulates our way of employing our framework.

Theorem 4.1. For any α ≥ 1, integral k ≥ 1, 1 ≥ l ≥ 0, and undirected graph G = (V, E, u) with

n = |V |, m = |E|, and U being its capacity ratio, we can find in Õ(m + 2kn
(1+ 1−l

2k−1
) log U) time, a

collection of 2k+1 ln n nl-trees {Gi}i, such that for any instance P of any cut-based minimization
problem P the following holds with high probability. If {C∗

i }i is a collection of cuts of G with
each C∗

i being some α-optimal solution to P on the nl-tree Gi, then at least one of C∗
i is an

(α log(1+o(1))k n)-optimal solution to P on the graph G.

When we take l equal to zero, the above theorem implies that if we have an α-approximation
algorithm for a given cut-based problem on trees that runs in T (m,n, U) time then, for any k ≥ 1, we
can get an (α log(1+o(1))k n)-approximation algorithm for it in general graphs and the running time
of this algorithm will be just Õ(m + k2kn(1+1/(2k−1) log U) + (2k+1 ln n)T (m,n, U). Note that the
computational overhead introduced by our framework, as k grows, quickly approaches nearly-linear.
Therefore, if we are interested in designing fast poly-logaritmic approximation algorithms for some
cut-based minimization problem, we can just focus our attention on finding a fast approximation
algorithm for its tree instances.

Also, an interesting feature of our theorem is that the procedure producing the graphs {Gi}i is
completely oblivious to the cut-based problem we want to solve – the fact that this problem is a
cut-based minimization problem is all we need to make our approach work.
Proof of Theorem 4.1: We produce the desired collection {Gi}i by just employing Theorem 3.7

with the desired value of k ≥ 1 to find in time Õ(m + 2kn
(1+ 1−l

2k−1
) log U) a set of t = (2k+1 lnn)

nl-trees that (log(1+o(1))k n)-preserve the cuts of G with high probability and output them as {Gi}i.
Now, to prove the theorem, let C∗ be the cut that minimizes the quantity u(C∗

i )fP (C∗
i ) among

all the t solutions C∗
1 , . . . , C∗

t found, where fP is the function corresponding to the instance P of a
problem P we are solving (cf. equation (1)). Clearly, by definition of (log(1+o(1))k n)-preservation
of the cuts, the capacity of C∗ – and thus the quality of the solution corresponding to it – can only
improve in G i.e.

u(C∗)fP (C∗) ≤ uj(C∗)fP (C∗),

where Gj is the nl-tree to which C∗ corresponds and, for any i, ui denotes the capacity function of
Gi.

Moreover, if we look at an optimum solution COPT to our problem in G – i.e. COPT =
arg min∅6=C⊂V u(C)fP (C) – then, with high probability, in at least one of the Gis, say in Gj′ , COPT

has the capacity at most (log(1+o(1))k n) times larger than its original capacity u(COPT ) in G. As
a result, for the α-optimal solution C∗

j′ found by the algorithm in this Gj′ it will be the case that

u(C∗
j′)fP (C∗

j′) ≤ uj′(C∗
j′)fP (C∗

j′) ≤ αuj′(COPT )fP (COPT ) ≤ α(log(1+o(1))k n)u(COPT )fP (COPT ),

where the first inequality follows from the fact that {Gi}i (log(1+o(1))k n)-preserve cuts of G.
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But, by definition of C∗, u(C∗)fP (C∗) ≤ u(C∗
j′)fP (C∗

j′) and – by noting that u(COPT )fP (COPT )
is the objective value of an optimal solution to our instance – we get that C∗ is indeed an
(α log(1+o(1))k n)-optimal solution to P with high probability.

4.1 Computing Maximum Concurrent Flow Rate on Trees

As Theorem 4.1 suggests, we should focus on designing fast approximation algorithms for tree
instances of our problems. The basic tool we will use in this task is the ability to compute maximum
concurrent flow rate on trees in nearly-linear time. The main reason why such a fast algorithm exists
stems from the fact that if we have a demand graph D = (V, ED, d) and a tree T = (V, ET , uT ),
there is a unique way of satisfying these demands in T . Namely, for each demand edge e ∈ ED the
flow of d(e) units of corresponding commodity has to be routed along the unique path pathT (e)
joining two endpoints of e in the tree T . As a result, we know that if we want to route in T a
concurrent flow of rate θ = 1 then the total amount of flow flowing through a particular edge h of
T is equal to

uT [D](h) :=
∑

e∈ED,h∈pathT (e)

d(e).

Interestingly, we can compute uT [D](h) for all h ∈ ET in nearly-linear time.

Lemma 4.2. For any tree T = (V, ET , ut) and demand graph D = (V, ED, d), we can compute
uT [D](h), for all h ∈ ET , in Õ(|ED|+ |V |) time.

Proof: To compute all the values uT [D](h), we adapt the approach to computing the stretch of
edges outlined by Spielman-Teng in [41].

For a given tree T ′ = (V ′, ET ′ , uT ′) and a demand graph D′ = (V ′, ED′ , d
′) corresponding to it,

let us define the size SD′(T ′) of T ′ (with respect to D′) as SD′(T ′) :=
∑

v∈V ′(1 + dD′(v)), where
dD′(v) is the degree of the vertex v in D′. Let us define a splitter v∗D′(T

′) of T ′ (with respect to D′)
to be a vertex of T ′ such that each of the trees T ′1, . . . , T

′
q obtained from T ′ by removal of v∗D′(T

′)
and all the adjacent edges has its size SD′(T ′i ) being at most one half of the size of T ′ i.e.

SD′(T ′i ) ≤ SD′(T ′)/2 = |ED′ |+ |V ′|/2,

for each i. It is easy to see that such a splitter v∗(T ′) can be computed in a greedy fashion in
O(|V ′|) = O(SD′(T ′)) time.

Our algorithm for computing uT [D]s works as follows. It starts with finding a splitter v∗ =
v∗D(T ) of T . Now, let E0 be the set of demand edges e ∈ ED such that pathT (e) contains v∗. Also,
for 1 ≤ i ≤ q, let Ei ⊆ ED be the set of edges e ∈ D for which pathT (e) is contained entirely within
Ti. Note that this partition of edges can be easily computed in O(|ED|+ |V |) = O(SD′(T ′)) time.
Also, let us define Di to be the demand graph being the subgraph of D spanned by the demand
edges from Ei (with demands inherited from D).

As a next step, our algorithm computes in a simple bottom-up fashion uT [D0](h) for each
h ∈ ET . Then, for 1 ≤ i ≤ q, it computes recursively the capacities uTi [Di] of all the edges of
Ti – note that, by definition of Di, uTi [Di](h) = uT [Di](h) for any edge h of Ti. Finally, for each
h ∈ ET , we output uT [D](h) =

∑
i u

T [Di](h). Note that, since for i ≥ 1, uT [Di](h) 6= 0 only if h is
a part of Ti, the sum

∑
i u

T [Di](h) has at most two non-zero components and thus all the values
uT [D](h) can be computed in O(|ED|+ |V |) = O(SD(T )) time. Furthermore, the fact that, by our
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choice of v∗, SDi(Ti) ≤ SD(T )/2 implies that the depth of recursion is at most log SD(T ) and the
whole algorithm runs in Õ(SD(T )) = Õ(|ED|+ |V |) time, as desired.

Now, the crucial thing to notice is that the best achievable flow rate θ∗ of the maximum
concurrent flow is equal to minh∈ET

uT (h)
uT [D](h)

. Therefore, Lemma 4.2 implies the following corollary.

Corollary 4.3. For any tree T = (V, ET , uT ) and demand graph D = (V, ED, d), we can find in
Õ(|ED| + |V |) time the optimal maximum concurrent flow rate θ∗ and an edge h∗ ∈ ET such that
θ∗ = uT (h∗)

uT [D](h∗) .

Note that we only compute the optimal flow rate of the concurrent flow and not the actual flows.
In some sense, this is unavoidable – one can easily construct an example of maximum concurrent
flow problem on tree, where the representation of any (even only approximately) optimal flow has
size Ω(|ED||V |).

4.2 Generalized Sparsest Cut Problem

We proceed to designing a fast approximation algorithm for the generalized sparsest cut problem.
We start by noticing that for a given tree T = (V,ET , uT ), demand graph D = (V,ED, d), and
an edge h of this tree, the quantity uT (h)

uT [D](h)
is exactly the (generalized) sparsity of the cut that

cuts in T only the edge h. Therefore, Corollary 4.3 together with the fact that the sparsity of the
sparsest cut is always an upper bound on the maximum flow rate achievable, gives us the following
corollary.

Corollary 4.4. For any given tree T = (V, E, u) and demand graph D = (V, ED, d), an optimal
solution to the generalized sparsest cut problem can be computed in Õ(|ED|+ |V |) time.

Now, by applying Theorem 4.1 together with a preprocessing step of sparsification of D, we are
able to obtain a poly-logarithmic approximation for the generalized sparsest cut problem in time
close to linear.

Theorem 4.5. For any graph G = (V, E, u), demand graph D = (V,ED, d), and integral k ≥
1, there exists a Monte Carlo log(1+o(1))k n-approximation algorithm for generalized sparsest cut
problem that runs in time Õ(m + |ED|+ 2kn(1+1/(2k−1)) log U), where n = |V |, m = |E|, and U is
the capacity ratio of G.

Proof: We start by employing Theorem 2.3 with δ equal to 1, to sparsify both G – to obtain a
graph G̃ = (V, Ẽ, ũ)) – and the demand graph D – to obtain a demand graph D̃ = (V, ẼD, d̃) – in
total time of Õ(m + |ED|). Note that computing sparsity of a cut with respect to these sparsified
versions of G and D leads to a 4-approximate estimate of the real sparsity of that cut. Since this
constant-factor error is acceptable for our purposes, we can focus on approximating the sparsest cut
problem with respect to G̃ and D̃. To this end, we just use Theorem 4.1 together with Corollary
4.4 and, since both |Ẽ| and |ẼD| have Õ(n) edges, our theorem follows.

4.3 Balanced Separator and Sparsest Cut Problem

We turn our attention to the balanced separator problem. Analogously to the case of the generalized
sparsest cut problem above, to employ our approach we need an efficient algorithm for the tree
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instances of the balanced separator problem. Unfortunately, although we can solve this problem
on trees optimally via dynamic programming, there seems to be no algorithm that does it very
efficiently – ideally, in nearly-linear time. Therefore, we circumvent this problem by settling for a
fast but approximate solution.

Namely, we use the result of Sherman [37] who shows that, for any ε > 0, the balanced separator
problem – as well as the sparsest cut problem – can be O(

√
log n/ε)-approximated in a graph G –

with n vertices and m edges – in time Õ(m+n3/2+ε). This running time corresponds to sparsifying
G and then using the fastest known algorithm for the maximum flow problem due to Goldberg and
Rao [27] to perform maximum flow computations9 on a sequence of nε graphs that are derived in
a certain way from the sparsified version of G.

Unfortunately, Õ(m + n3/2+ε) running time is still not sufficiently fast for our purposes. At
this point, however, we recall that maximum flow computation in a j-tree reduces to the task of
finding the maximum flow in its core. So, if we want to perform a maximum flow computation on
a j-tree that has its core sparsified (i.e. the core has only Õ(j) edges), the real complexity of this
task is proportional to j as opposed to being proportional to n. This motivates us to obtaining an
implementation of Sherman’s algorithm on j-trees that achieves better running time. The proof of
the following lemma appears in Appendix A.1.

Lemma 4.6. For any j-tree G = (V, E, u) and ε > 0, we can O(
√

log n/ε)-approximate the
balanced separator and the sparsest cut problems in Õ(m + nε(n + j3/2)) time, where m = |E| and
n = |V |.

Before we proceed further, we note the following lemma whose proof is presented in Appendix
A.2.

Lemma 4.7. For any graph G = (V, E, u), we can find a |V |2-approximation to the sparsest cut
and the balanced separator problems in time Õ(|E|).

Now, we can use Theorem 4.1 and Lemma 4.6 – for the right choice of j = nl – together with
a simple preprocessing making the capacity ratio of the graphs we are dealing with polynomially
bounded, to obtain the following result.

Theorem 4.8. For any ε > 0, integral k ≥ 1, and graph G = (V, E, u), we can (log(1+o(1))(k+1/2) n/
√

ε)-

approximate the sparsest cut and the balanced separator problems in time Õ(m + 2kn
1+ 1

3·2k−1
+ε),

where m = |E| and n = |V |.
Proof: Let us assume first that the capacity ratio of G is polynomially bounded i.e. it is nO(1). In
this case, we just use Theorem 4.1 on G with l = 2k+1

3·2k−1
to obtain a collection of (2k+1 ln n) nl-trees

{Gi}i in time

Õ(m + 2kn
(1+ 1−l

2k−1
)) = Õ(m + 2kn

(1+ 1

3·2k−1
)).

9Technically, when the input graph has Õ(n) edges, the algorithm of Goldberg and Rao finds in time Õ(n3/2 log 1/δ)
an integral s-t flow and a s-t cut with values of respective throughput and capacity being within (1+δ) of each other.
So, to ensure that this flow is optimal, one needs to use δ smaller than the inverse of the value of minimum s-t cut
of the graph. In principle, this value could be as large as Ω(nU) which would result in Õ(n3/2 log U) running time.
However, the graphs that are considered in Sherman’s algorithm have the value of minimum s-t cut always bounded
by n/2.
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Next, we compute – using the algorithm from Lemma 4.6 – O(
√

log n/ε)-approximately optimal
solutions to our desired problem – being either the sparsest cut or the balanced separator problem
– on each of Gis in total time of

Õ(m + (2k+1 ln n)nε(n + n3l/2)) = Õ(m + 2kn
1+ 1

3·2k−1
+ε).

By Theorem 4.1 we know that choosing the best one among these solutions will give, with high
probability, a (log(1+o(1))(k+1/2) n/

√
ε)-approximately optimal solution that we are seeking.

To ensure that G has its capacity ratio always polynomially bounded, we devise the following
pre-processing procedure. First we use Lemma 4.7 to find a cut C being n2-approximation to the
optimal solution of our desired problem. Let ζ be the sparsity of C. We remove all the edges in G
that have capacity smaller than ζ/mn2 and, for all the edge with capacity bigger than ζn, we trim
their capacity to ζn. Clearly, the resulting graph G′ has its capacity ratio polynomially bounded.
Also, the capacity of any cut in G can only decrease in G′.

Now, we just run the approximation algorithm described above on G′ instead of G. Also, in the
case of approximating the balanced separator problem, we set as our balance constant the value
c′′ := min{c, c′}, where c′ := min{|C|, |C|}/n and c is the balance constant of our input instance.
Since the capacity ratio of G′ is polynomially bounded, the running time of this algorithm will
be as desired. Moreover, we can assume that the α-approximately optimal cut C ′ output will
have sparsity at most ζ in G′ - otherwise, we can just output C as our solution. This means
that C ′ does not cut any edges with trimmed capacity and thus the capacity of C ′ in G (after
putting the removed edges back) can be only by an additive factor of ζ/n2 larger than in G′. But
since ζ/n2 is a lower bound on the sparsity of the optimal solution, we see that C ′ is our desired
(log(1+o(1))(k+1/2) n/

√
ε)-approximately optimal solution.

Recall that our main motivation to establishing Lemma 4.6 was our inability to solve the bal-
anced separator problem on trees efficiently. However, the obtained trade-off between the running
time of the resulting algorithm and the quality of the approximation provided for both the balanced
separator and the sparsest cut problems is much better than the one we got for the generalized
sparsest cut problem (cf. Theorem 4.5). This shows us that sometimes it is beneficial to take
advantage of the flexibility in the choice of l given by Theorem 4.1 by combining it with an existing
fast approximation algorithm for our cut-based problem that allows a faster implementation on
j-tree instances.

4.4 Extension to Multicut-based Problems

We briefly remark on the applicability of our framework to a class of undirected multicut-based
minimization problems which generalize the undirected cut-based minimization ones we consider in
the paper. To this end, let us define a problem P to be an (undirected) multicut-based (minimiza-
tion) problem if its every instance P ∈ P on a graph G = (V,E, u) can be cast as a task of finding
a partition {C∗

i }k∗
i=1 of vertices of V that minimizes the quantity u({Ci}k

i=1)fP ({Ci}k
i=1) over all

partitions {Ci}k
i=1 of the vertex set V . Here, u({Ci}k

i=1) is the total capacity of all the edges of
G whose endpoints are in different Cis. Once again, we require fP to be a non-negative function
that can depend on P , but does not depend on the graph G. Note that in our definition we do not
restrict a priori the number of sets into which V is partitioned in considered partitions – this can be
however specified by appropriate choice of the function fP . Two important examples of problems
that are captured by this definition are the multiway cut problem (cf. [20, 21, 18, 19, 29]) and the
multicut problem (cf. [26]).
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To see why our framework can be extended to handle multicut-based problems, note that for
any partition {Ci}k

i=1, we can express the total capacity of edges cut by it as a linear combination
of the capacities of the cuts corresponding to each set Ci. Namely, u({Ci}k

i=1) = 1
2

∑k
i=1 u(Ci).

Therefore, if G is our input graph then any graph that approximates the cuts of G also approximates
its multicuts. This implies, in particular, that sparsification (cf. Theorem 2.3) preserves the multi-
cuts up to a factor of (1 + δ). Furthermore, by linearity of expectation, the analogs of Fact 3.2 and
3.4 hold for multicuts as well. One can check, however, that this is all that we need to prove an
extension of Theorem 4.1 that handles minimization multicut-based problems.

5 Proof of Theorem 3.6

Let us fix throughout this section t ≥ 1, the graph G = (E, V, u) to be (Õ(log n),GV [Õ(m log U
t )])-

decomposed, m = |E|, n = |V |, and U equal to the capacity ratio of G. Our proof of Theo-
rem 3.6 consists of two main steps. First, we show how to quickly decompose G into a t-sparse
(Õ(log n),H[Õ(m log U

t )])-decomposition {(λi,Hi)}i, where H[j] is a family of graphs that we will
define shortly. Then, as a second step, we prove that for any graph H ∈ H[j] we can efficiently
find a graph G ∈ GV [O(j)] (i.e. a graph G being a O(j)-tree) such that H is embeddable into G
and G is 9-embeddable into H. This will imply that both these graphs are equivalent (up to a
constant) with respect to their cut-flow structure. As a result, if we consider a decomposition of G
into convex combination {(λi, Gi)}i, where each graph Gi is the graph from GV [O(j)] equivalent –
in the above sense – to the graph Hi ∈ H[j], then we will be able to show that this constitutes the
t-sparse (Õ(log n),GV [Õ(m log U

t )])-decomposition of G that we are seeking.

5.1 Graphs H(T, F ) and the Family H[j]

To define the family H[j], consider some spanning tree T = (V, ET ) of G. There is a unique way of
embedding G into T . Namely, for each edge e = (u, v) of G we route the corresponding u(e) units
of flow along the unique u-v path pathT (e) in T . This implies that if we want G to be embeddable
into T then each edge e of the tree T has to have capacity of at least uT (e), where we define

uT (e) :=
∑

e′∈E:e∈pathT (e′)

u(e′).

Now, for a subset of edges F ⊆ ET , let us define

E[T ](F ) := {e ∈ E : pathT (e) ∩ F 6= ∅}.

Finally, let H(T, F ) = (V,E, u) be a graph (cf. Figure 3) with edge set E := ET ∪E[T ](F ) and
the capacities u(e), for e ∈ E, being equal to:

u(e) :=

{
u(e) if e ∈ E[T ](F )
uT (e) otherwise.

In other words, H(T, F ) is a graph obtained by taking the forest corresponding to the tree T
with edges of F removed and adding to it all the edges that are in the set E[T ](F ) containing the
edges of E whose endpoints are in different components of this forest (note that F ⊆ E[T ](F )).
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a) b)

G

T

F

T \ F

H(T, F )

E[T ](F )

Figure 3: a) An example of a graph G (solid edges), its spanning tree T (bold edges), and a subset
F of edges of T (dotted edges). b) Graph H(T, F ) corresponding to the example from a). The
edges of T \ F are bold and the edges of the set E[T ](F ) are dashed.

The capacity u(e) of an edge e of H(T, F ) is equal to the capacity uT (e) inherited from the tree T
– if e is from the forest T \ F ; and it is just the original capacity u(e) of e otherwise.

An observation that will turn out to be useful later is that both the capacity function uT and
the graph H(T, F ) can be constructed very efficiently – cf. Appendix B.1 for the proof of the
following lemma.

Lemma 5.1. Given a spanning tree T = (V, ET ) of G and some F ⊆ ET , we can compute uT (e)
for all e ∈ ET and construct the graph H(T, F ) in Õ(m) time.

Now, we define H[j] to be the family of all the graphs H(T, F ) arising from all the possible
choices of a spanning tree T of G and of a subset F of edges of T such that |F | ≤ j.

5.2 Obtaining an (Õ(log n),H[Õ(m log U
t

)])-decomposition of G

For a given length function l on G and a subgraph H = (V,EH , uH) of G, let us define the
volume l(H) of H (with respect to l) to be l(H) :=

∑
e∈EH

l(e)uH(e). Also, for an edge e ∈ EH , let

γH(e) := u(e)
uH(e) and let us denote by γ(H) the minimum value of γH(e), i.e. γ(H) := mine∈EH

γH(e).
Furthermore, let us define a set κ(H) as

κ(H) := {e ∈ EH : γH(e) ≤ 2γ(H)}.

Intuitively, γ(H) corresponds to the inverse of maximal congestion incurred on edges of G by
an identity embedding of H into G – this identity embedding just routes the flow corresponding to
given edge e of H along its counterpart edge in G. Now, κ(H) is the set of all the edges e of H
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such that the inverse of the congestion incurred on e in this identity embedding is within a factor
of at most two of γ(H).

The tool we will use to obtain an (Õ(log n),H[Õ(m log U
t )])-decomposition of G is the following

theorem that was implicitly proved by Räcke in [36] by adapting an algorithm of Young [45]. The
proof of the following theorem can be found in Appendix B.2.

Theorem 5.2. If there is an α ≥ lnm and a family of graphs G such that for any length function
l on G we can find in Õ(m) time a subgraph Hl = (V, EHl

, uHl
) of G that belongs to G and:

(i) l(Hl) ≤ αl(G),

(ii) G is embeddable into Hl,

(iii) |κ(Hl)| ≥ 4αm
t

then a t-sparse (2α,G)-decomposition of G can be computed in Õ(tm) time.

Note that in the theorem we insist that the graph Hl is a subgraph of G. This, together with
our requirement that G is embeddable into H, implies in particular that γ(Hl) ≤ 1.

At the high level, the way the decomposition is obtained in the above theorem is by iterative
packing into G of a γ(Hl) fraction of the graph Hl with the length functions l changing from
iteration to iteration. In this process, the length function models the congestion incurred on edges
of G by the subgraphs packed so far, i.e. the length l(e) of an edge e will grow exponentially with
e’s hitherto congestion.

Recall that, by definition of γ(Hl), we know that the packing of the γ(Hl) fraction of the graph
Hl alone will not overflow the capacity of any edge of G. Furthermore, by insisting on each Hl

having relatively small volume we make sure that the whole packing does not congest any edge of
G by a factor greater than α on average.

Finally, by lower-bounding of the cardinality of κ(Hl) we make sure that whenever we pack
some γ(Hl) fraction of Hl we make sufficient progress – the congestion of at least |κ(Hl)| of edges
of G increases by at least 1/2. This allows us to bound the sparsity of the final decomposition,
since in the end no edge has congestion bigger than 2α.

In the light of the above, we proceed to presenting an efficient construction that for any
length function l produces a graph Hl ∈ H[Õ(m log U

t )] that satisfies the requirements of Theo-
rem 5.2. Clearly, such a construction will immediately yield our desired (Õ(log n),H[Õ(m log U

t )])-
decomposition of G.

Construction of the Graph Hl

Let us fix the length function l throughout this section. To explain our construction of the graph
Hl that satisfies the requirements of the Theorem 5.2, we first introduce the notion of low-average-
stretch spanning trees – as we will see shortly such spanning trees will be the base of our construction
of the graph Hl.

To this end, let l′ be some length function on a graph G′ = (V ′, E′) and let us define dl′
G′ to be

the shortest-path metric in G′ with respect to this length function. Similarly, for a given spanning
tree T ′ of G′, let dl′

T ′ be the shortest-path metric in T ′ with respect to l′. Now, for an edge e = (v, w)
of G′ we define the stretch stretchl′

T ′(e) of e as

stretchl′
T ′(e) :=

dl′
T ′(v, w)

dl′
G′(v, w)

.
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The following theorem was proved by Abraham, Bartal, and Neiman [1] (see also [3] and [22]
for previous results on this topic and [23] for a related result).

Theorem 5.3 ([1]). There is an algorithm working in Õ(|E′|) time that for any length func-
tion l′ on a graph G′ = (V ′, E′) generates a spanning tree T ′ of G′ such that the average stretch

1
|E′|

∑
e∈E′ stretch

l′
T ′(e) of edges in T ′ is Õ(log |V ′|).

The following lemma uses the above low-average-stretch tree construction to obtain a spanning
tree Tl of G that – after we impose capacities uTl on it – has its volume l(Tl) relatively small.

Lemma 5.4. We can find in Õ(m) time a spanning tree Tl = (V,ETl
) of G such that if we impose

capacities uTl on the edges of Tl then l(Tl) ≤ 2αl(G), for some α being Õ(log n).

Proof: Consider some spanning tree T = (V, ET ) of G with capacities uT on its edges.
Note that

l(T ) =
∑

f∈ET

l(f)uT (f) =
∑

f∈ET

l(f)
∑

e∈E,f∈pathT (e)

u(e) =
∑

e=(v,w)∈E

dl
T (v, w)u(e).

Now, since dl
G(e) ≤ l(e) for any edge e, we have

l(T ) =
∑

e=(v,w)∈E

dl
Tl

(v, w)u(e) ≤
∑

e∈E

stretchl
T (e)l(e)u(e).

Thus we see that to establish the lemma it is sufficient to find in Õ(m) time a tree T such that
∑

e

stretchl
T (e)l(e)u(e) ≤ 2αl(G).

To this end, let us follow a technique used in [3] and define a multigraph G on vertex set V that
contains r(e) := 1 + b l(e)u(e)|E|

l(G) c copies of each edge e ∈ E. Note that the total number of edges of

G – when counting multiple copies separately – is

∑
e

r(e) ≤ |E|+
∑

e

l(e)u(e)|E|
l(G)

≤ 2|E|.

Now, we use the algorithm10 from Theorem 5.3 on G with length function l and obtain in
Õ(

∑
e r(e)) = Õ(m) time a spanning tree Tl of G – that also must be a spanning tree of G – such

that:

∑
e stretchl

Tl
(e)r(e)∑

e r(e)
≤ α,

for an α being Õ(log n).
But, by the fact that for any e

r(e) ≥ l(e)u(e)|E|
l(G)

≥ l(e)u(e)
∑

e′ r(e
′)

2l(G)
,

10Technically, the algorithm of [1] is designed for simple graphs, but it is straight-forward to adapt it to work on
multigraphs with a running time being nearly-linear in the total number of edges.
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we get

∑
e stretchl

Tl
(e)l(e)u(e)

2l(G)
≤

∑
e stretchl

Tl
(e)r(e)∑

e′ r(e′)
≤ α.

This means that
l(Tl) ≤

∑
e

stretchl
Tl

(e)l(e)u(e) ≤ 2αl(G)

with α = Õ(log n), as desired.
The crucial fact to note at this point is that the definition of uTl ensures that G is embeddable

into Tl and thus the tree Tl is guaranteed to satisfy all the requirements of Theorem 5.2 – with α
equal to 2α – except condition (iii). To illustrate our way of alleviating with this shortcoming of
Tl, consider a hypothetical situation in which κ(Tl) = {e} for some edge e and for all the other
edges f 6= e of Tl we have γTl

(f) = γ for some γ À γ(Tl) = γTl
(e). Clearly, in this case Tl is a bad

candidate for the graph Hl (at least when t is not very large).
However, the key thing to notice in this situation is that if – instead of Hl = Tl – we consider the

graph Hl = H(Tl, F ) with F = {e} then for all the edges f of Tl other than e we have γHl
(f) = γ.

Furthermore, for each edge f ∈ E[Tl]({e}) it is the case that γHl
(f) = u(f)

u(f) = 1 ≥ γ. This means
that γ(Hl) = γ and thus |κ(Hl)| ≥ n− 2, which makes Hl satisfy condition (iii) for even very small
values of t.

We see, therefore, that in this case by adding only one bottlenecking edge e to F and considering
the graph Hl = H(Tl, F ) – as opposed to Hl = Tl – we managed to make the size of the set κ(Hl)
really large. It turns out that by utilizing the fact that 1 ≥ γTl

(e) ≥ 1/mU and thus there is at
most dlog mUe different values of γTl

(e) such that no two of them is within a factor of two of one
another, we can always make the above approach work. Namely, as we will see in the following
lemma, we can get the size of κ(Hl) to be at least 4(2α+1)m

t while fixing in the above manner only
Õ(m log U

t ) edges of the tree Tl.

Lemma 5.5. We can construct in Õ(m) time a graph Hl = H(Tl, Fl), for some Fl ⊆ ETl
with

|Fl| = Õ(m log U
t ), that satisfies all the requirement of Theorem 5.2 with α equal to (2α + 1).

Proof: First, we prove that no matter what is our choice of the set Fl the graph Hl = H(Tl, Fl)
satisfies condition (i) and (ii) for α = (2α + 1). To this end, note that

l(Hl) =
∑

e∈(ETl
\Fl)

l(e)uTl(e) +
∑

e∈E[Tl](Fl)

l(e)u(e) ≤ l(Tl) + l(G) ≤ (2α + 1)l(G).

So, the condition (i) holds. Furthermore, it is easy to see that G is embeddable into Hl i.e. that
the condition (ii) holds as well. We can just embed each e ∈ E[Tl](Fl) by routing corresponding
flow along the same edge e in Hl and each e /∈ E[Tl](Fl) is embed by routing u(e) units of flow
along the path pathTl

(e) that – by definition of E[Tl](Fl) – is contained entirely in ETl
\ Fl.

We proceed to finding the subset Fl of edges of the tree Tl that will make Hl = H(Tl, Fl) satisfy
also the condition (iii). Let us define for 0 ≤ j ≤ blog mUc Fj(Tl) to be the set of edges e of Tl

such that 2j

mU ≤ γTj (e) < 2j+1

mU .

Note that for any edge e of Tl
1

mU ≤ u(e)

uTl (e)
≤ 1 – the first inequality follows since in the worst

case all m edges will be routed in Tl over e and the second one since e itself has to be routed in Tl
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over e. Therefore, the union
⋃blog mUc

j=0 Fj(Tl) of all the Fj(Tl) partitions the whole set ETl
of the

edges of the tree Tl.
Now, let us take j∗ to be the largest j such that

j∑

j′=0

|Fj′(Tl)| ≤ 4(2α + 1)m(blog mUc+ 1)
t

.

In other words, j∗ is the largest j such that we could afford to take as Fl the union of all the
sets F0(Tl), . . . , Fj∗(Tl) and still have the size of Fl not exceed the desired cardinality bound of

4(2α + 1)m(blog mUc+ 1)
t

= Õ(
m log U

t
).

Note that we can assume that j∗ < blog mUc. Otherwise, we could just afford to take Fl to be
the union of all the sets Fj(Tl) i.e. Fl = ETl

. This would mean that Hl = H(Tl, ETl
) is just the

graph G itself and thus γ(Hl) = 1 and |κ(Hl)| = m, which would satisfy the condition (iii).
Once we know that j∗ < blog mUc, the definition of j∗ implies that

j∗+1∑

j′=0

|Fj′(Tl)| > 4(2α + 1)m(blog mUc+ 1)
t

.

However, since this sum has j∗ + 2 ≤ blog mUc + 1 summands, pigeon-hole principle asserts
existence of 0 ≤ j ≤ j∗ such that

|Fj+1(Tl)| ≥ 4(2α + 1)m
t

.

Now, we define Fl to be the union
⋃j

j=0 Fj(Tl). By the fact that j ≤ j∗ we know that the size of
such Fl obeys the desired cardinality bound. Furthermore, we claim that if we take Hl = H(Tl, Fl)
with such choice of Fl then |κ(Hl)| is large enough.

To see this, note that the fact that γHl
(e) = 1 for all edges e in E[Tl](Fl) implies that γ(Hl) is

at least 2j+1

mU . But this means that all the edges from Fj+1(Tl) are in κ(Hl) and thus

|κ(Hl)| ≥ |Fj+1(Tl)| ≥ 4(2α + 1)m
t

,

as desired.
Now, to conclude the proof, we notice that Lemma 5.4 and Lemma 5.1 imply that the graph

Hl as above can indeed be constructed in Õ(m) time – to find the set Fl we just sort the edges of
Tl according to γTl

(e) and choose the appropriate value of j.
By combining Theorem 5.2, Lemma 5.5, and the fact that – by definition – Hl ∈ H[Õ(m log U

t )],
we get the following corollary.

Corollary 5.6. A t-sparse (α′,H[Õ(m log U
t )])-decomposition of G can be found in Õ(tm) time for

some α′ being Õ(log n).
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5.3 Obtaining an (Õ(log n),GV [Õ(m log U
t

)])-decomposition of G

Let us call G′ an almost-j-tree if it is a union of a tree and of an arbitrary graph on at most j
vertices. Now, let us consider a graph H(T, F ) for some choice of the spanning tree T of G and
of a subset F of edges of T . A property of this graph that we will find useful is that the cut-flow
structure of H(T, F ) is similar to a cut-flow structure of an almost-O(|F |)-tree G(T, F ) and this
G(T, F ) can be found efficiently.

Lemma 5.7. For any spanning tree T = (V, ET ) of G and F ⊆ ET , we can find in Õ(m) time an
almost-O(|F |)-tree G(T, F ) such that the graph H(T, F ) is embeddable into G(T, F ) and G(T, F ) is
efficiently 3-embeddable into H(T, F ). Furthermore, the capacity ratio of G(T, F ) is at most mU .

Proof: Consider some edge e = (v, v′) from E[T ](F ). Let us define v1(e) (resp. v2(e)) to be
the vertex that corresponds to the first (resp. last) moment we encounter an endpoint of an edge
from F while moving along the path pathT (e) from v to v′. Also, let us denote by path1

T (e) (resp.
path2

T (e)) the fragment of pathT (e) between v and v1(e) (resp. between v′ and v2(e)).

a) b)

T \ FT \ F

H(T, F )

E[T ](F )

G(T, F )

e
f

h

Figure 4: a) An example of a graph H(T, F ) from Figure 3. b) The corresponding graph G(T, F )
with three projected edges e, f , and h. The set Proj(e) consist of edges of H(T, F ) marked as
dashed, the edges of the set Proj(f) are solid, and Proj(h) contains all the edges that are dotted.

We define the graph G(T, F ) = (V,E′, u′) as follows. We make the edge set E′ of G(T, F ) to
consist of the edges from ET \ F and of an edge f = (w,w′) for each w, w′ such that (w, w′) =
(v1(e), v2(e)) for some edge e ∈ E[T ](F ). We will call such edge f projected and define Proj(f)
to be the set of all e ∈ E[T ](F ) with (v1(e), v2(e)) = (w, w′). Now, we set the capacity u′(e) in
G(T, F ) to be:

u′(e) :=

{
2uT (e) if e ∈ ET \ F ;∑

e′∈Proj(e) u(e′) otherwise (i.e. if e is projected).
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See Figure 4 for an example of a graph H(T, F ) and the graph G(T, F ) corresponding to it.
To see that this construction of G(T, F ) can be performed quickly, note that by Lemma 5.1 we

can find the set E[T ](F ) and capacity function uT in Õ(m) time. Moreover, by employing a simple
adaptation of the divide-and-conquer approach that was used in Lemma 4.2 to compute uT [D], we
can compute all v1(e), v2(e) for each e ∈ E[T ](F ) also in Õ(m) time.

By noting that if a vertex v is equal to v1(e) or v2(e) for some edge e then v has to be an
endpoint of an edge in F , we conclude that the subgraph of G(T, F ) induced by projected edges
is supported on at most 2|F | vertices. This means that G(T, F ) – as a connected graph being a
union of a forest ET \ F and a graph on 2|F | vertices – is an almost-2|F |-tree. Furthermore, note
that uT (e) ≤ m maxe′∈E u(e′) for each edge e and that the capacity u′(f) of an projected edge f
is upperbounded by

∑
e′∈E u(e′) ≤ mmaxe′∈E u(e′). So, the fact that no edge e in G(T, F ) has its

capacity smaller than u(e) implies that the capacity ratio of G(T, F ) is at most mU .
To relate the cut-flow structure of H(T, F ) and G(T, F ), one can embed H(T, F ) into G(T, F )

by embedding each edge e ∈ ET \ F of H(T, F ) into its counterpart edge in G(T, F ) and by
embedding each edge e ∈ E[T ](F ) by routing the corresponding flow of u(e) units along the path
formed from paths path1

T (e) and path2
T (e) connected through the projected edge (v1(e), v2(e)). It

is easy to see that our definition of u′ ensures that this embedding does not overflow any capacities
of edges of G(T, F ).

On the other hand, to 3-embed G(T, F ) into H(T, F ), we embed each non-projected edge of
G(T, F ) into the same edge in H(T, F ). Moreover, we embed each projected edge f by splitting
the corresponding u′(f) =

∑
e∈Proj(f) u(e) units of flow into |Proj(f)| parts. Namely, for each

e ∈ Proj(f), we route u(e) units of this flow along the path constituted by paths path1
T (e), path2

T (e)
and the edge e. Once again, it is not hard to convince oneself that such a flow does not overflow
the capacities of edges of H(T, F ) by a factor of more than three. The lemma follows.

It is easy to see that every j-tree is an almost-j-tree, however the converse does not necessarily
hold – one can consider an almost-2-tree corresponding to a cycle. Fortunately, the following lemma
proves that every almost-j-tree G is close – with respect to its cut structure – to some O(j)-tree G
and this G can be found efficiently.

Lemma 5.8. Let G′ = (V ′, E′, u′) be an almost-j-tree, we can obtain in Õ(|E′|) time an O(j)-tree
G = (V ′, E, u) such that G′ is embeddable into G and G is 3-embeddable into G′. Furthermore, the
capacity ratio of G is at most twice the capacity ratio of G′.

Proof: Let us assume first that G′ does not have vertices of degree one - we will deal with this
assumption later. Let W ⊂ V ′ be the set of all vertices of degree two in G′. It is easy to see that
we can find in O(|E′|) time a collection of edge-disjoint paths p1, . . . , pk covering all vertices in W
such that in each pi all the internal vertices are from W and the two endpoints v1(pi) and v2(pi)
of pi are not in W , i.e. they have degree at least three in G′.

We construct G by first taking the subgraph H ′ of G′ induced by the vertex set V ′ \ W and
an empty forest F . Next, for each path pi, we repeat the following. Let emin(pi) be the edge of pi

that has minimal capacity u′(e) among all the edges e of pi. We add to both G and F the path pi

with emin(pi) removed . We set the capacities u of these added edges to be equal to their capacity
in G′ increased by the capacity u′(emin(pi)) of emin(pi). Finally, we add an edge (v1(pi), v2(pi)) to
G with capacity equal to u′(emin(pi)). See Figure 5. Clearly, such a construction can be performed
in O(|E′|) time and the capacity ratio of G can be at most twice the capacity ratio of G′.

We claim that the graph G obtained above is a (3j − 2)-tree with F being its envelope and its
core being the subgraph of G induced by vertex set V ′ \W (note that this subgraph consists of H ′
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a) b)

v1(pi) v2(pi)

emin(pi)

G
′

v1(pi) v2(pi)

G

F
pi

Figure 5: a) An example of a path pi found in G′. b) Transformed path pi in the resulting graph
G.

and all the edges {(v1(pi), v2(pi))}i). One can see that we only need to argue that |V ′\W | ≤ 3j+2,
the rest of the claim follows immediately from the above construction. To this end, note that since
G′ is an almost-j-tree at least |V ′| − j of its vertices is incident only to edges of the underlying
spanning tree on V ′. This means that the total sum of degrees of these vertices in G′ is at most
2(|V ′| − 1). But there is no vertices in G′ with degree smaller than two, thus a simple calculation
shows that at most 2(j − 1) of them can have degree bigger than two. We can conclude therefore
that |W | ≥ |V ′| − j − 2(j − 1) and |V ′ \W | ≤ 3j − 2, as desired.

Now, to see that G′ embeds into G, we note that H ′ is already contained in G. So, we only
need to take care of the paths {pi}i. For each path pi, G already contains all its edges except
emin(pi). But this edge can be embedded into G by just routing the corresponding flow from one of
its endpoints, along the fragment of path leading to v1(pi), then through the edge (v1(pi), v2(pi))
and finally back along the path to the other endpoint. It is easy to verify that our way of setting
up capacities ensures that this routing will not overflow any of them.

Similarly, to 3-embed G into G′ we first embed H ′ into G′ via identity embedding. Subsequently,
for each path pi, G′ already contains all its edges, so we can use identity embedding for them as
well. Furthermore, to embed the remaining edges {(v1(pi), v2(pi))}i we can just route, for each
i, the corresponding flow from v1(pi) to v2(pi) along the path pi. Once again, one can convince
oneself that by definition of emin(pi) the resulting embedding does not overflow any capacities in
G′ by a factor of more than three.

To conclude the proof, it remains to explain how to deal with graph G′ having vertices of degree
one. In this case one may preprocess G′ as follows. We start with an empty forest F

′
and as long

as there is a degree one vertex in G′ we remove it – together with the incident edge – from G′ and
we add both the vertex and the edge to F

′
. Once this procedure finishes the resulting graph G′ will

not have vertices of degree one and still will be an almost-j-tree. Thus, we can use our algorithm
described above and then just add F

′
to the (3j − 2)-tree that the algorithm outputs. It is easy

to see that the resulting graph will be still a (3j − 2)-tree – with F
′

being part of its envelope –
having all the desired properties.
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Note that the above lemmas can be combined to produce – in Õ(m) time – for a given graph
H(T, F ) an O(|F |)-tree that preserves the cut-flow structure of H(T, F ) up to a factor of nine.
This allows us to prove Theorem 3.6.
Proof of Theorem 3.6: By Corollary 5.6 we can compute in Õ(tm) time a t-sparse (α′,H[Õ(m log U

t )])-
decomposition {(λi,H(Ti, Fi))}i of G with α′ being Õ(log n). Now, consider a convex combination
{(λi, Gi)}i with each Gi being the Õ(m log U

t )-tree produced by applying Lemma 5.7 and then Lemma
5.8 to the graph H(Ti, Fi). Clearly, we can obtain this combination in Õ(tm) time.

We claim that this combination is a t-sparse (Õ(log n),G[Õ(m log U
t )])-decomposition of G. Ob-

viously,
∑

i λi = 1 and G is embeddable into each Gi since G is embeddable into each H(Ti, Fi)
and each H(Ti, Fi) is embeddable into corresponding Gi. Similarly, by composing the 9-embedding
of Gi into H(Ti, Fi) and the identity embedding of H(Ti, Fi) into G (cf. embeddings {fj}j in Defi-
nition 3.1), we get that {(λi, Gi)}i satisfies all the requirements of a t-sparse (9α′,GV [Õ(m log U

t )])-
decomposition. Furthermore, by Lemma 5.7 and Lemma 5.8 the capacity ratio of each Gi is at
most 2mU . The theorem follows.

6 Proof of Theorem 3.7

The heart of the algorithm that will prove Theorem 3.7 is the procedure Find Cut-preserving Trees(G, t, j)
described in Figure 6. On the high level, this procedure given an input graph G aims at finding a
j-tree that α-preserves the cuts of G with some probability p, where both α and p depend on the
parameters t and j. This is done by first sparsifying G (cf. Theorem 2.3) to reduce the number of
its edges, then using the decomposition of Theorem 3.6 to represent the resulting graph as a convex
combination of t simpler graphs (j′-trees, for some j′ ≥ j). Next, one of these simpler graphs H
is sampled – in the spirit of Fact 3.4 – and if H is already a j-tree then it is returned. Otherwise,
the procedure recursively finds a j-tree G

′
that approximates the cuts of the core of H – thus G

′

is only defined on the vertex set of this core – and returns a j-tree that approximates the cuts of
the whole H – and thus of G – by just adding the envelope of H to G

′
. An important detail is

that whenever we recurse, we increase the value of parameter t by squaring it. Intuitively, we may
employ this more aggressive setting of the value of t since the size of the problem – i.e. the size of
the core of H – decreased by a factor of at least t.

To justify our recursive step we prove the following lemma.

Lemma 6.1. Let H = (V, E, u) be a j′-tree and let H ′ = (V ′, E′, u) be its core. Also, let G
′ =

(V ′, E, u) be a j-tree on vertex set V ′ that α-preserves the cuts of H ′ with probability p, for some
α ≥ 1 and p > 0. Then the graph G being a union of G

′
and the envelope F of H is a j-tree on

vertex set V that α-preserves the cuts of H with probability p.

Proof: Note that for any cut ∅ 6= C ⊂ V , the capacity u(C) of this cut in H is equal to the capacity
uH′(C) of this cut with respect to edges of H ′ plus its capacity uF (C) with respect to edges of
F . Similarly, the capacity of C in G is equal to its capacity u(C) in G

′
plus the capacity uF (C).

Therefore, the lemma follows by the fact that G
′
α-preserves the cuts of H ′ with probability p and

that after adding an envelope F to it G
′

is still a j-tree.
We proceed to analyzing the running time and the quality of cut preservation offered by the

j-tree found by the procedure Find Cut-preserving Trees(G, t, j). The proof of the following lemma
can be found in Appendix C.1.
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Procedure Find Cut-preserving Trees(G, t, j):
Input : Graph G = (V, E, u), parameters t ≥ 1, and j ≥ 1
Output: A j-tree G on vertex set V

Obtain a sparsification G̃ of G as in Theorem 2.3 with δ = 1
Find a t′-sparse (Õ(log |V |),GV [max{ |V |t , 1}])-decomposition {(λi, G̃i)}i of G̃ as in Theorem 3.6,

where t′ is chosen so as to make the decomposition consist of max{ |V |t , 1}-trees

Sample a graph H by choosing G̃i with probability λi, as in Fact 3.4
if H is a j-tree then

G ← H
else

Let H ′ be the core of H and let F be the envelope of H

Invoke Find Cut-preserving Trees(H ′, t2, j) to obtain a j-tree G
′

on vertex set V ′ ⊆ V of the
graph H ′

Add F to G
′

to get a j-tree G on vertex set V

end
return G

Figure 6: Procedure Find Cut-preserving Trees(G, t, j)

Lemma 6.2. For a given graph G = (V,E, u) and j ≥ 1, and t ≥ 2, Procedure Find Cut-preserving Trees(G, t, j)
works in Õ(m + tnT 2 log U) time and returns a j-tree G that (log(1+o(1))T n)-preserves the cuts of
G with probability (1/2)T , where T ≤ max{dlog(logt(n/j)+1)e, 1}, n = |V |, m = |E|, and U is the
capacity ratio of G. Moreover, the capacity ratio of G is n(2+o(1))T U .

Now, proving Theorem 3.7 boils down to running the Find Cut-preserving Trees(G, t, j) for the
right setting of parameters and sufficiently many times, so as to boost the probability that the
obtained collection of j-trees preserves cuts with high probability.
Proof of Theorem 3.7: To obtain the desired collection of nl-trees, we just invoke procedure

Find Cut-preserving Trees(G, t, j) on G (2k+1 ln n) times with t := n
1−l

2k−1 . Note that for this choice
of parameters we get that in the statement of Lemma 6.2 T ≤ k.

Therefore, this lemma allows us to conclude that each invocation of the procedure takes
Õ(n(1+1/k) log U) time to execute and thus we obtain (2k+1 lnn) nl-trees {Gi}i in total time of

Õ(m + 2kn
1+ 1−l

2k−1 log U).

(We used here the fact that it is sufficient to sparsify G only once for all the procedure calls.)
Furthermore, Lemma 6.2 implies that the capacity ratio of the obtained trees is at most

n(2+o(1))kU and each particular nl-tree Gi (log(1+o(1))k n)-preserves the cuts of G with probabil-
ity (1/2)k. However, it is easy to see that this in turn means that the whole collection {Gi}i

(log(1+o(1))k n)-preserved the cuts of G with probability (1− (1− (1/2)k)2
k+1 ln n) = (1− 1/n2), as

desired. The theorem follows.
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[16] S. Chawla, A. Gupta, and H. Räcke. Embeddings of negative-type metrics and an improved
approximation to generalized sparsest cut. In SODA’05: Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 102–111, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

[17] J. Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In Problems in Analysis,
eds Gunning RC, 1970.
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A Appendix to section 4

A.1 Proof of Lemma 4.6

Proof: We start by using Theorem 2.3 with δ = 1 to sparsify the core of our j-tree G. This ensures
that the resulting j-tree G̃ has a core with Õ(j) edges. Also, it is easy to see that we can focus
on approximating our problems in this graph since any approximation obtained for G̃ leads to an
approximation for G that is only by at most a constant factor worse.

For given ε > 0, the algorithm of Sherman reduces the task of O(
√

log n/ε)-approximation of
the balanced partition and the sparsest cut problems in the graph G̃ to solving a sequence of nε

instances of the following problem11. We are given a graph Ĝ being G̃ with a source s and sink t
added to it. We also add auxiliary edges that connect these two vertices with the original vertices
corresponding to G̃. The capacities of the auxiliary edges can be arbitrary – in particular, they can
be zero which means that the corresponding edge is not present – but we require that the value of
the s-t cut C = {s} is at most n/2 (thus the throughput of the maximum s-t flow is also bounded
by this value). The task is to find the maximum s-t flow in the graph Ĝ.

Our goal is to show that we can solve any instance of the above problem in Õ(n + j3/2) time
– this will imply our desired Õ(m + nε(n + j3/2)) total running time of Sherman’s O(

√
log n/ε)-

approximation algorithm and thus yield the proof of the lemma.
To this end, we design a method of fast compression of the graph Ĝ to make it only consist of

the core of G̃, the source s and the sink t, and the corresponding auxiliary edges (with modified
capacities). This method will allow efficient – i.e. linear time – recovering from any maximum flow
in the compressed graph a maximum flow in the original graph Ĝ. Moreover, the throughput of the
maximum flow in the compressed graph will be at most n/2, as well. So, by running the algorithm
of Goldberg and Rao [27] on this compressed graph and extending the computed maximum flow
back, we will obtain a maximum flow in Ĝ in time Õ(n + j3/2), as desired.

Our compression procedure works in steps – each such step is a local transformation that reduces
the number of vertices and edges of the graph by at least one and can be implemented in constant
time. In each transformation we consider a vertex v in the current version Ĝ′ of Ĝ such that v has
exactly one non-auxiliary edge e incident to it and this edge is a part of an envelope of G̃. As we
will see, Ĝ′ will be always a subgraph of the graph Ĝ and thus one can convince oneself that – as
long as Ĝ′ still contains some edges of the envelope of G̃ – we can always find a vertex v as above.

Assume first that there is at most one auxiliary edge that is incident to v. (For the sake of
the argument, let us use here a convention that this single auxiliary edge e′ is always present, but
might have a capacity of zero.) In this case, we just contract the edge e and set the new capacity
of e′ to be the minimum of its previous capacity and the capacity of e. We claim now that given
any maximum flow f ′′ in the graph Ĝ′′ obtained through this contraction of e, we can extend it in
constant time to a maximum flow f ′ in the graph Ĝ′. To achieve this, we just transplant the flow
of |f ′′(e′)| units that f ′′ routes over the edge e′ in Ĝ′′, to a flow in Ĝ′ routed through the edges e
and e′. Note that by definition of the capacity of e′ in Ĝ′′, the transplanted flow f ′ is feasible in Ĝ′

and has the same throughput as f ′′ had in Ĝ′′. Moreover, one can see that the throughput of the
maximum flow in Ĝ′ can be at most the throughput of the maximum flow in Ĝ′′ since any minimum
s-t cut in Ĝ′′ can be easily extended to a minimum s-t cut in Ĝ′ that has the same capacity. Thus
f ′ is indeed a maximum flow in Ĝ′.

11For our purposes, we use a slight generalization of the problem that is actually considered in [37].
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Now, we deal with the case when there are two auxiliary edges e′,e′′ incident to v – wlog, let
us assume that the capacity u′′ of e′′ is not bigger than the capacity u′ of e′. To this end, we note
that if we route u′′ units of flow from s to t along the path consisting of the edges e′,e′′ then there
still exists a maximum flow in Ĝ′ such that its flow-path decomposition contains the flow-path
corresponding to our pushing of u′′ units of flow over the edges e′, e′′. This implies that if we reduce
the capacity of e′ and e′′ by u′′ – thus reducing the capacity of e′′ to zero and removing it – and
find the maximum flow f ′′ in the resulting graph, we can still recover a maximum flow in Ĝ′ by
just adding the above-mentioned flow-path to f ′′. But, since in the resulting graph v has at most
one auxiliary edge incident to it – namely, e′ – we can use our transformation from the previous
case to compress this graph further. This will reduce the number of vertices and edges of Ĝ′ by
at least one while still being able to recover from a maximum flow in the compressed graph Ĝ′′ a
maximum flow in Ĝ′.

By noting that the compression procedure stops only when Ĝ′ contains no more edges of the
envelope of G̃ and thus the final compressed graph indeed consists of only (sparsified) core of G̃,
source s, and t, the lemma follows.

A.2 Proof of Lemma 4.7

Proof: Consider the case when we are interested in the sparsest cut problem – we will present
variation for the balanced separator problem shortly. We sort the edges of G non-increasingly
according to their capacities. Let e1, . . . , e|E| be the resulting ordering. Let r∗ be the smallest r
such that the set {e1, . . . , er} contains a spanning tree T of G. It is easy to see that we can find
such r∗ in Õ(|E|) time using union-find data structure.

Now, let us look at the cut C in G that cuts only the edge er∗ in T . Since no vertex of G can
have degree bigger than |V |, the sparsity of C is at most u(er∗)|V |. On the other hand, any cut in
G has to cut at least one edge er with r ≤ r∗. Therefore, we know that the sparsity of the optimal
cut in G has to be at least u(er∗)/|V |. This implies that C is the desired |V |2-approximation of the
sparsest cut of G.

In case of balanced separator problem, we define r∗ to be the smallest r such that the largest
connected component of the subgraph Er spanned by the edges {e1, . . . , er} has its size bigger than
(1 − c)|V |, where c is the desired balance constant of our instance of the problem. Once again,
one can easily find such r∗ in Õ(|E|) time by employing union-find data structure. Let F be the
connected component of Er∗ containing er∗ . Note that by minimality of r∗, removing er∗ from F
disconnects it into two connected pieces and at least one of these pieces, say F ′, has to have at least
(1 − c)|V |/2 and at most (1 − c)|V | vertices. Let C be the cut corresponding to F ′. Clearly, the
sparsity of C is at most u(er∗)|V |. Furthermore, any cut C∗ with min{|C∗|, |C∗} ≥ c|V | has to cut
some edge er with r ≥ r∗. Therefore, the optimal solution can have sparsity at most u(er∗)/|V |.
This implies that C is a c′-balanced separator with c′ = min{(1− c)/2, c} and thus constitutes our
desired |V |2-(pseudo-)approximation for our instance of the balanced separator problem.
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B Appendix to section 5

B.1 Proof of Lemma 5.1

Proof: First, we show how to construct the set E[T ](F ) in O(m). We do this by first associating
with each vertex v a label indicating the connected component of the forest T \ F to which v
belongs. This can be easily done in O(n) time. Next, we start with E′ := ∅ and for each e edge
of G we check whether its both endpoints belong to the same connected component. If this is not
the case, we add e to E′. Clearly, this procedure takes O(m) time and the resulting set E′ is equal
to E[T ](F ). Now, we obtain H(T, F ) by just taking the union of the edges from E[T ](F ) – with
capacities given by the capacity function u – and of the forest T \ F – with capacities given by
the capacities given by capacity function uT that, as we will see shortly, can be computed in Õ(m)
time.

To compute the capacity function uT , we just note that for any e ∈ ET , uT (e) = uT [G](e), where
uT [G](e) is defined in section 4.1. Thus we can use the algorithm from Lemma 4.2 to compute all
the uT (e) in Õ(m) time.

B.2 Proof of Theorem 5.2

Proof: Let {Gi}i be an enumeration of all the graphs from G into which G is embeddable. Also,
let us introduce a coefficient λi ≥ 0 for each such Gi – despite the fact that the number N of
such Gi’s can be very big, we will end up having only small number of λi’s non-zero. For a given
graph Gi = (V, Ei, ui) and an edge e ∈ E, let us define rloadGi(e) := ui(e)

u(e) = 1
γGi

(e) , where we use

a convention that ui(e) = 0 if e /∈ Ei (recall that we require Gi to be a subgraph of G and thus
Ei ⊆ E).

Following the approach from [36], let M be an |E| ×N matrix with Me,i := rloadGi(e). Clearly,
if we consider a vector ~λ = (λ1, . . . , λN ) then the inequality M · ~λ ≤ β~1, for some β > 0, ensures
that in the convex combination {(λi, Gi)}i of graphs Gi we will have

∑
i λirloadGi(e) ≤ β for each

edge e ∈ E. This in turn means that
∑

i λiui(e) ≤ βu(e). So, if we consider the following set of
inequalities

lmax(M~λ) ≤ β∑

i

λi ≥ 1

∀iλi ≥ 0

where lmax(~x) := ln
∑

e∈E exp(xe) ≥ maxe∈E xe, then a convex combination {(λi, Gi)}i corre-
sponding to any ~λ satisfying them will constitute a (β,G)-decomposition of G with the embeddings
fi’s being just the identity embeddings of Gi’s into G. Also, note that lmax(~x) ≥ ln m for any
non-negative ~x, thus β has to be always at least lnm.

The analysis from [36] shows that if for any length function l we are always able to find a graph
Gi(l) such that l(Gi(l)) ≤ αl(G) then a vector ~λ can be obtained that satisfies the above set of

inequalities with β equal to α + log m ≤ 2α.12 The vector ~λ is found as follows. We start with
~λ = ~0. Then, as long as

∑
i λi < 1, we define a length function l on G by setting

12To understand how this statement follows from the analysis presented in [36], one should note that when we
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l(e) :=
exp((M~λ)e)

u(e)
∑

e′∈E exp((M~λ)e′)
, (2)

for each e ∈ E, and find the corresponding graph Gi(l). Next, we increase the value of λi(l) by
min{γ(Gi(l)), 1−

∑
i λi} and repeat the procedure if

∑
i λi is still smaller than one.

We see therefore that if we use the above algorithm and each time, for the given length function
l, we supply Gi(l) corresponding to Hl from the assumptions of the theorem – note that Hl is in G
and G is embeddable into Hl, so Hl is enumerated among the graphs {Gi}i – then we will obtain
a vector ~λ that corresponds to a (2α,G)-decomposition of G.

To bound the time taken by this algorithm, we need to bound the number of iterations – by
the assumptions of the theorem, each iteration can be implemented in Õ(m) time. Also, note that
the number of iterations determines the sparsity of the obtained decomposition.

To this end, let us introduce a potential function φ(~λ) :=
∑

e∈E

∑
i λirloadGi(e) that was used

in [36]. Note that: initially φ(~λ) = φ(~0) = 0; the potential is only increasing throughout the
algorithm; and at the end

φ(~λ) =
∑

e∈E

∑

i

λirloadGi(e) ≤ 2αm,

since
∑

i λirloadGi(e) ≤ lmax(M~λ) ≤ 2α for every edge e.
However, by definition of Hl, whenever we increase λi(l) by γ(Hl) φ(~λ) increases by at least

|κ(Hl)|/2, since for each e ∈ κ(Hl),

γ(Hl)rloadGi(l)
(e) =

γ(Hl)
γHl

(e)
≥ 1

2
.

Therefore, by property (iii) of Hl, we have at most t iterations and the theorem follows.

C Appendix to section 6

C.1 Proof of Lemma 6.2

Proof: Let us define nl to be an upper bound on the number of the vertices of the graph that
we are dealing with at the beginning of the l-th recursive call of the procedure. Also, let tl be the
value of t and let Ul be the upper bound on the capacity ratio of this graph at the same moment.
Clearly, n0 = n, t0 = t, and U0 = U . By solving simple recurrence we see that

tl = t2
l

(3)

and thus

nl+1 ≤ nl

tl
≤ n

t2l+1−1
. (4)

consider the length function defined in (2) then – using the terminology of [36] – l(Gi) =
∑

e rloadGi(e)partial′e(M~λ) =

partiali(
~λ) and l(G) = 1.
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Now, by Theorem 2.3 and Theorem 3.6, we know that Ul+1 is O(n2
l Ul). Moreover, by the fact

that we sparsify G first and by Theorem 3.6, we know that in l-th iteration it is sufficient to take
t′ = tl t̂l, where t̂l is logO(1) n log Ul.

Note that every graph on at most j vertices is a j-tree thus the procedure stops issuing further
recursive calls once the number of vertices of G is at most j. So, the number of recursive calls of
our procedure is at most T − 1, where

T := max{dlog(logt(n/j) + 1)e, 1}.
As a result, the bound on the capacity ratio of G is UT ≤ n(2+o(1))T U , as desired.
To bound the total running time of the procedure, consider its modification in which we ad-

ditionally sparsify the graph H ′ before passing it to the recursive call. Clearly, running time of
such modification can only increase. Note that in this case all but the topmost invocation of the
procedure deals from the beginning till the end with sparsified version of the graph. Therefore,
the time need to execute l-th recursive call, for l ≥ 1, is Õ(t̂ltlnl). By equations (3) and (4), this
implies that the total time taken by the execution of our procedure is:

Õ(m) +
T−1∑

l=0

Õ(t̂ltlnl) ≤ Õ(m +
T−1∑

l=0

nt2
l
log Ul

t2l−1
) ≤ Õ(m + tn

T−1∑

l=0

log Ul) = Õ(m + tnT 2 log U),

where Õ(m) is the cost of the initial sparsification of G.
To establish the desired bound on the quality of the preservation of cuts of G by G, we prove

that for all l ≥ 0, if the execution of the procedure made l recursive calls then the graph G
(log(1+o(1))(l+1) n)-preserves the cuts of G with probability (1/2)l+1. Clearly, this claim implies the
desired bounds by combining it with the fact that l ≤ T − 1.

We prove the claim inductively. For l = 0 it follows from Theorem 2.3, Theorem 3.6, and Fact
3.4. Now, assume that the claim holds for l ≥ 0 and we will prove it for l + 1. By Theorem 2.3,
Theorem 3.6, and Fact 3.4, we know that H is (log1+o(1) n)-preserving the cuts of G with probability
1/2. So, by our inductive assumption we know that G

′ (log(1+o(1))(l+1) n)-preserves the cuts of
H ′ with probability (1/2)l+1. Therefore, by Lemma 6.1 we know that G also (log(1+o(1))(l+1) n)-
preserves the cuts of H with probability (1/2)l+1 which – by the above-mention relation of the
cut-structure of H to the cut-structure of G – implies that G (log(1+o(1))(l+2) n)-preserves the cuts
of H with probability (1/2)l+2. So, our claim holds for l + 1 and thus for all the values of l. This
concludes the proof of the lemma.
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