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COMPUTATIONAL TRANSITION AT THE UNIQUENESS THRESHOLD

ALLAN SLY

Abstract. The hardcore model is a model of lattice gas systems which has received much atten-

tion in statistical physics, probability theory and theoretical computer science. It is the probability

distribution over independent sets I of a graph weighted proportionally to λ|I| with fugacity pa-

rameter λ. We prove that at the uniqueness threshold of the hardcore model on the d-regular

tree, approximating the partition function becomes computationally hard on graphs of maximum

degree d.

Specifically, we show that unless NP=RP there is no polynomial time approximation scheme for

the partition function (the sum of such weighted independent sets) on graphs of maximum degree

d for fugacity λc(d) < λ < λc(d) + ε(d) where

λc =
(d− 1)d−1

(d− 2)d

is the uniqueness threshold on the d-regular tree and ε(d) > 0 is a positive constant. Weitz [34]

produced an FPTAS for approximating the partition function when 0 < λ < λc(d) so this result

demonstrates that the computational threshold exactly coincides with the statistical physics phase

transition thus confirming the main conjecture of [28]. We further analyze the special case of

λ = 1, d = 6 and show there is no polynomial time approximation scheme for approximately

counting independent sets on graphs of maximum degree d = 6, which is optimal, improving the

previous bound of d = 24.

Our proof is based on specially constructed random bi-partite graphs which act as gadgets in

a reduction to MAX-CUT. Building on the involved second moment method analysis of [28] and

combined with an analysis of the reconstruction problem on the tree our proof establishes a strong

version of “replica” method heuristics developed by theoretical physicists. The result establishes

the first rigorous correspondence between the hardness of approximate counting and sampling with

statistical physics phase transitions.
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1. Introduction

The hardcore model is a model from statistical physics representing hardcore interaction of

gas particles. It is a probability distribution on independent sets I of a graph weighted as 1
Zλ

|I|

where λ is a positive parameter called the fugacity and Z is a normalizing constant called the

partition function. Physicists and probabilists have done extensive work towards identifying the

phase transitions and other properties of the model.

In computational complexity approximately counting (weighted) independent sets is a central

problem. The hardcore model is of key importance as this is exactly the problem of producing

an FPRAS (fully polynomial randomized approximation scheme) for Z, the partition function.

When λ is small the hardcore model has rapid decay of correlations and the partition function

can be approximated either using MCMC or through computational tree methods [34]. For larger

fugacities long range dependencies may appear and the problem is known to be hard when λ is

sufficiently large.

In this paper we determine a computational threshold where approximating Z becomes hard.

Using an ingenious computational tree approach Weitz [34] produced a PTAS for approximating Z

when λ < λc(d) where

λc(d) =
(d− 1)d−1

(d− 2)d

is the uniqueness threshold for the hardcore model on the infinite d-regular tree [17], the point

at which long range dependencies become possible. Mossel, Weitz and Wormald [28] showed that

beyond this phase transition local MCMC algorithms fail and conjectured that it gives the threshold

for computations hardness. While such statistical physics phase transitions are believed to coincide

with the transition in computational hardness of approximating the partition function for a number

of important models no such examples had been proven. Our main result essentially confirms the

conjecture of [28] giving the first such rigorous example.

Theorem 1. For every d ≥ 3 there exists ε(d) > 0 such that when λc(d) < λ < λc(d) + ε(d),

unless NP=RP, there does not exist an FPRAS for the partition function of the hardcore model

with fugacity λ for graphs of maximum degree at most d.

While we believe the result holds for all λ > λc, for technical reasons (specifically showing that an

explicit function of three variables attains its maximum at a prescribed location, see Section 1.3.1

for details) the result is limited to λ close to criticality. This limitation notwithstanding, it clearly

demonstrates the central role played by the uniqueness threshold.

When λ = 1 the hardcore model is simply the uniform distribution over independent sets and the

partition function is simply the number of independent sets and as such this case is of particular

interest. When d ≤ 5 Weitz’s result provides a FPRAS as λc(d) > 1. Conversely it is known

that with d ≥ 25 the problem is computationally hard [9]. While the case d = 6, λ = 1 does not

fall within the scope of Theorem 1, using a computer assisted proof, we establish the necessary

technical condition and prove the following result.

Theorem 2. Unless NP=RP for every d ≥ 6 there does not exist a fully polynomial approximation

scheme for counting independent sets on graphs of maximum degree at most d.

1.1. Background and Previous Results. Even on graphs of maximum degree 3 the problem

of exactly counting independent sets is #P hard [13] and as such one can at most ask when it is
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possible to approximately count independent sets, that is when an FPRAS exists. As the model

is self-reducible, approximate counting is equivalent to approximately sampling from the partition

function [29]. This has led to a major line of research in analyzing the performance of MCMC

techniques, particularly the Glauber dynamics.

When λ ≤ 2
d−2 the Glauber dynamics mixes rapidly [20] which in particular gives an FPRAS for

counting independent sets on graphs of maximum degree at most 4 (see [10] for similar bounds).

Weitz [34] showed that the hardcore model has a decay of correlation property called strong spatial

mixing whenever λ < λc which implies rapid mixing on graphs of sub-exponential growth. Moreover,

his paper gives a deterministic polynomial time approximation scheme on all graphs when λ < λc
through a computational tree approximation.

Finding the ground state of the hardcore model, the largest independent set, is of course a

canonical NP-hard problem and is hard to approximate even on regular graphs of degree 3 [4].

Intuitively the problem of counting becomes harder as λ grows as this places more mass on the

larger, harder to find, independent sets and indeed such hardness results have been established.

In [20] it was shown that there is no FPRAS (assuming NP=RP) when λ ≤ c/d for c ≈ 10000.

In the case of λ = 1 this was improved to d ≥ 25 in [9] using random regular bi-partite graphs as

basic gadgets in a hardness reduction. They further showed that with high probability the mixing

time of the Glauber dynamics on a random bipartite d-regular graph is exponential in the size of

the graph. Calculations of [9] led the authors there to speculate that λc may be the threshold for

hardness but the evidence was not conclusive enough to make such a conjecture.

1.1.1. Replica Heuristics. The replica and cavity methods and heuristics have provided powerful

tools (often non-rigorous) in the study of a wide range of random optimization problems and

predictions for the behavior of spin glasses and dilute mean fields spin systems [22,23]. Developed

by theoretical physcicits, in in some cases these heuristics have been made rigorous, notably the

SK model [33], solution space of solutions to random constraint satisfaction problems [1] and the

assignment problem [2]. In dilute spin glass models such methods have given rise to powerful new

algorithms such as survey propagation (see e.g. [19]).

Random regular bi-partite graphs are widely known to be locally tree-like with only a small

number of short cycles. The statistical physics theory makes the following predictions for the

hardcore model on typical random bi-partite d-regulars. The first is that the model is expected to

exhibit spontaneous symmetry breaking for λ > λc. When λ < λc correlations decay exponentially

and the configuration (independent set) is essentially balanced between the two halves of the bi-

partite graph. By contrast when λ > λc the configuration separates its mass unevenly placing Ω(n)

more mass on one side or the other. Configurations with a roughly equal proportion of sites on each

side make up only an exponentially small fraction of the distribution. This is intuitively plausible

as the largest bi-partite sets will be those containing most of one side of the graph or the other.

The second is that this symmetry breaking splits the configuration space into two “pure states” of

roughly equal probability. We will denote the “phase” of the configuration as the side of the graph

with more sites. Conditional on the phase the spins of randomly chosen vertices are assumed to be

asymptotically independent and the local neighbourhood of the configuration are given by extremal

measures. This conditional independence is a crucial element of cavity-method type arguments.

A first moment analysis of [9] suggested that configurations obey the first prediction but their

proof proceeded without specifically proving it. In a technical tour de force the prediction was

rigorously established for λc(d) < λ < λc(d) + ε(d) in [28] using an involved second moment
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method analysis together with the small graph conditioning method. The restriction to the region

λ < λc(d) + ε(d) is somewhat surprising at first as the problem ought to become easier as λ grows.

It is the result of a technical difficulty in estimating the second moment bound. Even establishing

this for λ close to the critical value took up fully a third of the proof. As a central part of our proof

is a modification of this method the same restriction applies.

Based on establishing the symmetry breaking [28] showed that any local reversible Markov Chain

has mixing time exponential in the number of vertices by establishing a bottleneck in the mixing

on asymptotically almost all random d-regular bi-partite graphs. This bound is tight as subsequent

results [27, Theorem 4] imply rapid mixing on almost all random bi-partite graphs when λ < λc(d).

Based on these finding they made the following conjecture.

Conjecture 1.1. ([28]) Unless NP=RP for every d ≥ 4 and λc(d) < λ there does not exist a fully

polynomial approximation scheme for the partition function of the hardcore model with fugacity λ

for graphs of maximum degree at most d.

Phase transitions of spin systems have been known to exactly determine the region of rapid

mixing in a number of systems including the ferromagnetic Ising model on Z2 [21] and on the d-

regular tree [3]. The first such example on completely general bounded degree graphs was recently

established by Mossel and the present author [27] showing rapid mixing of the Glauber dynamics

of the ferromagnetic Ising model on graphs of maximum degree d when (d − 1) tanh β < 1. The

threshold (d − 1) tanh β = 1 is a statistical physics phase transition, the uniqueness threshold for

the Ising model on the d-regular tree.

Slow mixing of MCMC algorithms do not by themselves imply hardness of approximating the

partition function. Indeed, in the ferromagnetic Ising model the mixing time of local reversible

Markov chains may be exponential but nonetheless there is an FPRAS by the famous algorithm

of Jerrum and Sinclair [16]. However, unlike the hardcore model or indeed the anti-ferromagnetic

Ising model which do exhibit phase transitions, the ground states of the ferromagnetic Ising model

are trivially found.

While phase transitions exists on many infinite graphs, it is the uniqueness threshold on the

tree that appears to determine the onset of computational hardness in general graphs in a number

of models as they represent the extreme case for correlation decay in graphs for many models.

Sokal [30] conjectured that uniqueness on the d-regular tree for the hardcore model implies unique-

ness on any graph of maximum degree d. This conjecture was established in [34] which further

showed that for any 2-spin system strong spatial mixing on the d-regular tree implies strong spatial

mixing on all graphs of maximum degree d. Indeed for most, although not all, spin systems the

regular tree is expected to be the limiting case for extreme correlations amongst all graphs of max-

imum degree d (see e.g. [31] for more details). The emergence of long range correlations appears

to be a necessary prerequisite for hardness of sampling and this motivates the conjectures that the

uniqueness threshold on the tree determines the onset of computational hardness.

In this paper we establish a form of the second heuristic prediction on a modified random bipartite

graph. We show that on a polynomial sized set of vertices the spins are close to a product measure,

conditional on the phase in the L∞ distance on measures. Being able to treat large numbers of

vertices as conditionally independent given the phase plays a key role in our reduction. While some

results of this nature have been established previously (see e.g. [8, 25]) this is the first example we

are aware of where the number of conditionally independent sites grows polynomially in the size of

the graph.
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1.2. Proof Techniques. Following the approach of [9] and as suggested in [28] we utilize random

bi-partite graphs as basic gadgets in a hardness reduction. In those papers the basic unit of the

construction is the random d-regular bipartite graph. To obtain a sharp result we cannot afford to

add edges to such graphs (creating degree d+1 vertices) so our basic gadgets are bi-partite random

graphs, most of whose vertices are degree d but with a small number of degree d− 1 vertices which

are used to connect to other gadgets.

We begin by constructing a graph G̃ which is a random bipartite graph with n vertices of degree d

and m′ ≈ nθ+ψ vertices of degree d−1 where θ, ψ are small positive parameters. We label the sides

as “plus” and “minus” and edges are chosen according to random matchings of the vertices on the

two sides. We denote the phase of the configuration (the random independent set) to be plus or

minus according to the side which has more elements of the set amongst the degree d vertices.

With U denoting the set of vertices of degree (d− 1) we consider the random partition functions

Z±(η) giving the sum over λ|σ| over all configurations with phase ± and with σU = η where η ∈
{0, 1}U . We show that in expectation the EZ±(η) are essentially proportional to the probabilities

of a product measure on U whose marignals are given by the marginals of extremal Gibbs measures

for the hardcore model on the (d − 1)-ary tree. Our proof requires that this holds approximately

for the Z±(η) themselves and adopt the second moment approach of [28] including their use of the

small graph conditioning method [35]. While still involved, by estimating ratios of quantities in our

model to quantities calculated in [28] we greatly simplify these computations. We are, however,

still left with the same technical condition as [28] which we describe in the next subsection.

Even this approximate conditional independence is not sufficient for our reduction. To this end

we construct a new random graph G by appending (d−1)-ary trees of height ψ logd−1 n onto U and

denote the set of m ≈ nθ roots of the trees as V which are of degree d− 1. Our proof proceeds to

show that, conditional on the phase, σV is very close to a product measure. We note that appending

the trees reweights the probabilities on configurations σU but it does so in a quantifiable way.

By construction the spins σV are conditionally independent given σU . Moreover, the statistical

physics heuristics imply that the configuration of the neighbourhood around σV should be given by

an extremal semi-translation invariant Gibbs measure on the tree with strong decay of correlation

from the root to the leaves of the tree. Based on this intuition, we show that after conditioning on

the phase the probability that σU has a non-negligible influence on σV is doubly exponential small

in the height. Through this we can establish its distribution with bounds in the L∞ norm. This is

done by bounding the probability that the spins in a distant level influence the root using methods

from the “reconstruction problem on the tree” (see e.g. [24, 32]).

The random graph G constitutes our gadget. Given a graphH on up to nθ/4 vertices we construct

HG by taking a copy of G for each vertex of H. Then for every edge in H we connect n3θ/4 vertices

between each side of V in the corresponding copies of G maintaining the maximum degree d.

Since the spins in V are almost conditionally independent given the phase we can estimate the

effect of adding these edges. An easy calculation shows that the most efficient arrangement is to

have connected gadgets have opposite phases. The hardcore model on HG puts most of its mass

on configurations whose phases are solutions to MAX-CUT on H. Hence, by the equivalence of

approximate counting and approximate sampling, this gives a randomized reduction to MAX-CUT.

1.3. Preliminaries. For a finite graph G with edge set E(G) the independent sets are subsets of

the vertices containing no adjacent vertices or equivalently elements of the set of configurations

I(G) = {σ ∈ [0, 1]G : ∀(u, v) ∈ E(G), σuσv = 0}.
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The Hardcore Model is a probability distribution over independent sets of a graph G defined by

PG(σ) =
1

ZG(λ)
λ
∑
v∈G σv

1σ∈I(G) (1.1)

where ZG(λ) =
∑

σ∈I(G) λ
|σ| =

∑
σ∈I(G) λ

∑
v∈G σv is a normalizing constant known as the partition

function and is a weighted counting of the independent sets. When λ = 1 the hardcore model is the

uniform measure on independent sets and ZG(1) is the number of independent sets of the graph.

The definition of the hardcore model can be extended to infinite graphs by way of the DLR

condition which essentially says that for every finite set A the configuration on A is given by the

Gibbs distribution given by a random boundary generated by the measure outside of A. Such a

measure is called a Gibbs measure and there may be more one or infinitely many such measures

(see e.g. [12] for more details). When there is exactly one Gibbs measure we say the model has

uniqueness. Our main result relates the uniqueness threshold on Td, the infinite d-regular tree, to

the hardness of approximating the partition function on graphs of maximum degree d.

The hardcore model on Td undergoes a phase transition at λc(d) = (d−1)d−1

(d−2)d
with uniqueness

when λ ≤ λc and non-uniqueness when λ > λc [17]. The following picture is described in [28].

For every λ there exists a unique translation invariant Gibbs measure µ = µd,λ known as the free

measure with occupation density p∗ = µ(σρ) for ρ the root of the tree. When λ > λc there also

exist two semi-translation invariant (that is invariant under parity preserving automorphisms of

Td) measures µ+ and µ− whose occupation densities we denote by p+ = µ+(σρ), p
− = µ−(σρ).

These measures are obtained by conditioning on level 2ℓ (resp. 2ℓ+1) of the tree to be completely

occupied and taking the weak limit as ℓ→ ∞.

It will also be of use to discuss related measures on the infinite (d− 1)-ary tree T̂d rooted at ρ.

We define analogously the measures µ̂+ and µ̂− obtained by conditioning on level 2ℓ (resp. 2ℓ+1)

of T̂d to be completely occupied and taking the weak limit as ℓ→ ∞. We set q+ and q− to be the

respective occupation densities q+ = µ̂+(σρ), q
− = µ̂−(σρ) of the root ρ.

The measure µ± and µ̂± are naturally related as follows. Let v be a child of ρ and denote Tv to

be the subtree of Td rooted at v. There is a natural identification of Td \Tv with the (d− 1)-ary

tree T̂d and under this identification the measures satisfy

µ̂±(σ ∈ ·) = µ±(σ
T

d\Tv ∈ ·|σv = 0). (1.2)

In particular since σρ = 1 implies σv = 0 for an independent set in Td it follows that

q± =
p±

1− p∓
. (1.3)

Furthermore, standard tree recursions for Gibbs measures (see e.g. [28]) establish that

q± =
λ(1− q∓)d−1

1 + λ(1− q∓)d−1

and consequently by equation (1.3),

q±

1− q±
= λ(1− q∓)d−1 = λ

(
1− p± − p∓

1− p±

)d−1

. (1.4)

It is shown in [28, Section 4] and [9, Claim 2.2] that the following hold for λ > λc:



COMPUTATIONAL TRANSITION AT THE UNIQUENESS THRESHOLD 7

(1) The solutions to h(α) = β, h(β) = α with (α, β) ∈ T = {(α, β) : α, β ≥ 0, α+ β ≤ 1} where

h(x) = (1− x)

[
1−

(
x

λ(1− x)

)1/d
]

are exactly (p+, p−), (p−, p+) and (p∗, p∗). These densities satisfy p− < p∗ < p+ and when

λ ↓ λc we have that p∗, p+, p− → 1/d.

(2) The points (p+, p−) and (p−, p+) are the maxima of Φ1(α, β) in T where

Φ1(α, β) = (α+ β) log λ− α log α− β log β − d(1− α− β) log(1− α− β)

+ (d− 1) ((1− α) log(1− α) + (1− β) log(1− β)) .

1.3.1. Technical Conditions. We now describe the technical condition necessary for our result. The

function in question is

f(α, β, γ, δ, ε) = 2(α + β) log λ+H(α) +H1(γ, α) +H1(α− γ, 1− α) +H(β) +H1(δ, β)

+H1(β − δ, 1 − β) + d

[
H1(γ, 1− 2β + δ)−H(γ) +H1(ε, 1 − 2β + δ − γ)

+H1(α− γ − ε, β − δ) −H1(α− γ, 1− γ) +H1(α− γ, 1 − β − γ − ε)−H1(α− γ, 1− α)

]

(1.5)

where H1(x, y) = −x(log x− log y) + (x− y)(log(y− x)− log(y)) and H(x) = H(x, 1) and where f

is defined in the range (α, β) ∈ T and

α− γ − ε ≥ 0, β − δ ≥ 0, 1 − 2β + δ − γ − ε ≥ 0. (1.6)

which emerges naturally when calculating the second moment of the partition function.

Condition 1.2. The technical condition is that there exists a constant χ > 0 such that when when

|p+ − β|, |p− − α| < χ the function gα,β(γ, δ, ε) = f(α, β, γ, δ, ε) attains its unique maximum in the

set (1.6) at the point (γ∗, δ∗, ε∗) = (α2, β2, α(1 − α− β)).

The following result of [28] establishes Condition 1.2 when λc < λ < λc(d) + ε(d).

Lemma 1.3 ([28, Lemma 6.10, Lemma 5.1]). For each d ≥ 3 there exists χ > 0 such that when

|α − 1
d |, |β − 1

d | < χ then gα,β(γ, δ, ε) has a unique maximum at (γ∗, δ∗, ε∗) where γ∗ = α2, δ∗ =

β2, ε∗ = α(1 − α− β).

In Section 5 we give a computer assisted proof which establishes Condition 1.2 in the special

case of λ = 1 and d = 6. Two other technical conditions we make use of in the proof are that

q+q−(d− 1) < 1 and q+ <
3

5
. (1.7)

Both conditions holds in the regions of interest as we have that q+, q− → 1
d−1 when λ ↓ λc and

q+ ≈ 0.423, q− ≈ 0.056 when λ = 1 and d = 6. The first can be shown to hold for all λ > λc with

a somewhat involved proof while the latter is unnecessary but somewhat simplifies the proof.
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1.4. Comments and Open Problems. The main open problem, of course, is to remove the

λ < λc(d)+ε(d) condition, ideally with a proof avoiding the second moment analysis. Alternatively,

one could try and establish the Condition 1.2 for all λ > λc and d ≥ 3.

Another natural problem is to establish the correspondence between computational hardness and

phase transitions in the anti-ferromagnetic Ising model. While calculations of the style of [28] are

not available and are likely to be even more challenging, it may be possible to avoid them. Indeed

results of [25] already imply conditional local weak convergence of the configuration but not in a

strong enough form to complete necessary reduction.

In Section 2.1 we detail the construction for G and show how it. In Section 3 we analyze the first

and second moments of the partition functions Z±(η). In Section 4 we analyse the reconstruction

problem on the tree and establish the conditional distributions of σV . Finally in Section 5 we sketch

the computer assisted proof that Condition 1.2 holds when d = 6 and λ = 1.

1.5. Acknowledgements. A.S. would like to thank Elchanan Mossel for his generous encourage-

ment, guidance, support and advice with this project and also Dror Weitz for helpful discussions.

The worked was initiated when the A.S. was a student at UC Berkeley where he was supported by

NSF CAREER grant DMS-0548249 and by DOD ONR grant (N0014-07-1-05-06) 1300/08.

2. Proof of Theorem 1 and 2

In this section we first describe the construction of our base random graph G which will be the

basic gadget in our reduction. We state a theorem describing the properties of the hardcore model

on G and then proceed to show how this establishes the reduction for Theorems 1 and 2.

2.1. Construction of G. We begin by constructing a random bi-partite (multi)graph G̃ = G̃(n, θ, ψ)

where n is a positive integer and 0 < θ,ψ < 1
8 are positive constants which will be chosen to depend

on λ and d. This graph will be the basis of our construction of G.

• The bipartite graph is constructed in two halves which we will call respectively the plus

half and the minus half each with n+m′ vertices where m′ = (d− 1)⌊θ logd−1 n⌋+2⌊ψ
2
logd−1⌋n.

• The vertices of each side are split into two sets W± and U± of size n and m′ respectively.
We label the vertices of U± by u±1 , . . . , u

±
m′ .

• We connect d−1 edges to each vetex by taking d−1 random perfect matchings ofW+∪U+

with W− ∪ U− and adding an edge between each pair of matched vertices.

• We take one more perfect matching of W+ with W− and add an edge between each pair of

matched vertices.

In this construction the vertices in W = W+ ∪ W− are of degree d and the vertices in U =

U+ ∪W− are of degree d− 1. Note that in this construction there will be multiple edges between

vertices with asymptotically constant probability bounded away from 1. However, in the hardcore

model multiple edges are irrelevant and we simply treat them as single edges (some degrees will be

decreased but this will not affect our proof).

We now complete our construction of G = G(n, θ, ψ) by adjoining trees onto U+ and to U−.

• Construct a collection of m = (d − 1)⌊θ logd−1 n⌋ disconnected (d − 1)-ary trees of depth

2⌊ψ2 logd−1 n⌋ rooted at v+1 , . . . , v
+
m. The total number of leaves of the trees is m′.

• Adjoin this collection of trees to U+ by identifying each vertex of U+ with the leaf of one

of the trees. Denote the set of roots as V + which are vertices of degree d− 1.
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• Perform the analogous construction on U− to complete G.

This construction yields a bi-partite graph of maximum degree d with m vertices of degree d−1 on

each side. We now consider a the Hardcore model PG(σ) on G. Our construction is a modification

of the model considered in [28] where they showed that on a.a.a random bi-partite d-regular graphs

the probability of “balanced” sets is exponentially small. This is also the case for our construction

and we define the phase of the configuration as

Y = Y (σ) :=

{
+1 if

∑
w∈W+ σw ≥∑w∈W− σw,

−1 if
∑

w∈W+ σw <
∑

w∈W− σw.

We define the product measure Q+
V (respectively Q−) on configurations on V = V + ∪ V − so that

the spins are iid Bernoulli with probability q+ (resp. q−) on V + and q− (resp. q+) on V −, i.e.,

Q±
V (σV ) := (q±)

∑
v∈V+ σv (1− q±)m−

∑
v∈V+ σv(q∓)

∑
v∈V− σv (1− q∓)m−

∑
v∈V− σv .

We define QU on U = U+ ∪ U− similarly. With these definitions we establish the following result

about hardcore model on G.

Theorem 2.1. For every d ≥ 3 when λc(d) < λ and when Condition 1.2 and equation (1.7) hold

there exists constants θ(λ, d), ψ(λ, d) > 0 such that the graph G(n, θ, ψ) has (2+o(1))n vertices and

satisfies the following with high probability:

• The phases occur with roughly balanced probability so that

PG(Y = +) ≥ 1

n
,PG(Y = −) ≥ 1

n
. (2.1)

• The conditional distribution of the configuration on V satisfies

max
σV

∣∣∣∣
PG(σV |Y = ±)

Q±
V (σV )

− 1

∣∣∣∣ ≤ n−2θ. (2.2)

The proof of this theorem is deferred to Section 4.

2.2. Reduction to Max-Cut. We now demonstrate how to use Theorem 2.1 to establish a re-

duction from sampling from the hardcore model to Max-Cut. Let H be a graph on up to 1
d−1n

θ/4

vertices. With a random bi-partite graph G = G(n, θ, ψ) constructed as above we define HG as

follows.

• Take the graph comprising |H| disconnected copies of G and identify each copy with with

a vertex in H labeling the copies (Gx)x∈H . Denote this graph by ĤG. We let V +
x and V −

x

denote the vertices of Gx corresponding to V + and V −.
• For every edge (x, y) in the graph H add n3θ/4 edges between V +

x and V +
y and similarly

add n3θ/4 edges between and V −
x and V −

y . This can be done deterministically in such a way

that no vertex in ĤG has its degree increased by more than 1. Denote the resulting graph

by HG.

The resulting graph has maximum degree d. For each x ∈ H we let Yx = Yx(σ) denote the phase

of a configuration σ on Gx. Let Y = (Yx)x∈H ∈ {0, 1}H denote the vector of phases of the Gx.

Denote the partition function given the phase Y by

ZHG(Y ′) =
∑

σ∈I(HG)

λ|σ|1
(
Y(σ) = Y ′) .
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Lemma 2.2. Suppose that G satisfies equations (2.1) and (2.2) of Theorem 2.1. Then

ZĤG(Y ′)

Z
ĤG

= PG(Y = +)
∑
x∈H 1Y ′

x=+ · PG(Y = −)
∑
x∈H 1Y ′

x=− ≥ n−n
θ/4
, (2.3)

and

ZHG(Y ′)
ZĤG(Y ′)

= (CH + o(1))

[
(1− q+q−)2

(1− (q+)2)(1 − (q−)2)

]n3θ/4Cut(Y ′)

, (2.4)

where CH =
[
(1− (q+)2)(1− (q−)2)

]n3θ/4E(H)
and where Cut(Y ′) = #{(x, y) ∈ E(H) : Y ′

x 6= Y ′
y}

denotes the number of edges in cut of H induced by Y ′.

Proof. Since the graph ĤG consists of a collection of disconnected copies of G, the distribution

of a configuration on ĤG is given by the product measure of configurations on the (Gx)x∈H . In

particular the phases are independent and so

ZĤG(Y ′)

ZĤG

= P
ĤG

(
Y(σ) = Y ′) = PG(Y = +)

∑
x∈H 1Y ′

x=+ · PG(Y = −)
∑
x∈H 1Y ′

x=− ≥ n−n
θ/4
,

which establishes equation (2.3). Now the ratio of the partition functions in (2.4) is exactly the

probability that the configuration σ sampled under PĤG is also an independent set for HG after

adding in the extra edges, that is

ZHG(Y ′)
ZĤG(Y ′)

= P
ĤG

(
σ ∈ I(HG) | Y(σ) = Y ′)

= PĤG

(
∀(v, v′) ∈ E(HG) \ E(ĤG), σvσv′ 6= 1 | Y(σ) = Y ′

)
.

Now by equation (2.2), conditional on the phase Y ′ the spins of σ∪x∈HVx are asymptotically condi-

tionally independent with probabilities q+ or q− depending on the phase. It follows that

PĤG

(
∀(v, v′) ∈ E(HG) \ E(ĤG), σvσv′ 6= 1 | Y(σ) = Y ′

)

= (1 + o(1))
∏

(v,v′)∈E(HG)

P
ĤG(σvσv′ 6= 1 | Y(σ) = Y ′).

If (x, x′) ∈ E(H) then by direction calculations and equation (2.2)
∏

v∈Gx,v′∈Gx′ :(v,v′)∈E(HG)

P
ĤG(σvσv′ 6= 1 | Y(σ) = Y ′)

=




(1 +O(n−θ))

(
(1− (q+)2)(1− (q−)2)

)n3θ/4

if Yx = Yx′ ,

(1 +O(n−θ))
(
(1− q+q−)2

)n3θ/4

if Yx 6= Yx′ .

Combining the above estimates we have that

ZHG(Y ′)
Z
ĤG(Y ′)

= (CH + o(1))

[
(1− q+q−)2

(1− (q+)2)(1 − (q−)2)

]n3θ/4Cut(Y ′)

,

which completes the proof. �

Given the previous lemma we now show how to produce the randomized reduction to Max-Cut

establishing Theorems 1 and 2.
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Theorem 1 and 2. Let H be a graph on at most 1
d−1n

θ vertices. Take an instance of a random

graph G = G(n, θ, ψ) according to the construction in Section 2.1. By Theorem 2.1 with probability

tending to 1 the graph satisfies equations (2.1) and (2.2). Assume that it does and construct the

graph HG which has at most O(n1+θ) vertices and maximum degree d.

Now suppose there exists an FPRAS for the partition function for the hardcore model with

fugacity λ on graphs of maximum degree d. We now use the equivalence of approximating the

partition function and approximately sampling for the hardcore model described in the introduction.

In polynomial time we may approximately sample from the hardcore model on HG to within

δ of the Gibbs distribution in total-variation distance for any δ > 0. Let σ′ denote such an

approximate sample. We may couple σ′ and with σ distributed according to the Gibbs measure so

that P(σ′ 6= σ) ≤ δ. We now consider the phase of σ. Let Y ′,Y ′′ ∈ {0, 1}H such that

Cut(Y ′) > Cut(Y ′′).

Then by Lemma 2.2 we have that

P(Y(σ) = Y ′)
P(Y(σ) = Y ′′)

=
ZHG(Y ′)
ZHG(Y ′′)

≥
(1 + o(1))Z

ĤG(Y ′)

Z
ĤG(Y ′′)

[
(1− q+q−)2

(1− (q+)2)(1− (q−)2)

]n3θ/4[Cut(Y ′)−Cut(Y ′′)]

≥ (1 + o(1))n−n
θ/4

[
(1− q+q−)2

(1− (q+)2)(1− (q−)2)

]n3θ/4[Cut(Y ′)−Cut(Y ′′)]

.

(2.5)

As we have that 0 < q− < q+ < 1 if follows that (1−q+q−)2−(1−(q+)2)(1−(q−)2) = (q+−q−)2 > 0

and hence

(1− q+q−)2

(1− (q+)2)(1− (q−)2)
> 1.

Therefore, for large enough n by equation (2.5) it follows that

P(Y(σ) = Y ′)
P(Y(σ) = Y ′′)

≥
[

(1− q+q−)2

(1− (q+)2)(1− (q−)2)

] 1
2
n3θ/4

≥ 4n
θ/4
.

Since the size of {0, 1}|H| is only 2n
θ/4

it follows that with probability at least 1−2|H| that Cut(Y(σ))
attains the maximum value. Hence with probability at least 1 − δ − o(1) the phases Y(σ′) of the
approximate sample σ′ also attains a maximum cut inH. As such we have constructed a randomized

polynomial-time reduction from approximating the partition function of the hardcore model to

constructing a maximum cut. It follows that unless RP=NP there is no polynomial-time algorithm

for approximating the partition function of the hardcore model for λc(d) < λ < λc(d) + ε(d) on

graphs of maximum degree d or when λ = 1 on graphs of maximum degree 6 or more. �



12 ALLAN SLY

3. The partition function of G̃

In this section we analyse the hardcore model on the random bi-partite graph G̃ and in particular

consider the effect of conditioning on the spins in U = U+ ∪ U−. For η ∈ {0, 1}U we define ZG̃(η)

to be the partition function over configurations whose restriction to U is η, that is

ZG̃(η) =
∑

σ∈I(G̃):σU=η

λ|σ|.

Our analysis borrows heavily on hard computations carried out in [28]. There they considered a

random d-regular bipartite graph where each side has n vertices and the edges are chosen according

to d independent perfect matchings of the vertices of the sides. They denote Zα,β to be the weighted

sum over configurations of the graph with αn and βn vertices on the plus and minus sides of the

configuration (for α, β such that αn, βn are integers). We will denote their quantity by Zα,βMWW. In

the same spirit define

Zα,β
G̃

(η) =
∑

σ:σU=η,
∑
w∈W+ σw=αn,

∑
w∈W− σw=βn

λ|σ|.

Lemma 3.1. For any (α, β) in the interior of T and all η ∈ {0, 1}U we have that:

EZα,β
G̃

(η) = (1 +O(n−1/2))C∗
(
λ

(
1− α− β

1− β

)d−1
)η− (

λ

(
1− α− β

1− α

)d−1
)η+

EZα,βMWW (3.1)

where

C∗ =

(
(1− α)(1 − β)

1− α− β

)m′

and where η± denotes
∑

u∈U± ηu.

Proof. We follow the approach of [28] in estimating these quantities. In total there are
(
n
αn

)(
n
βn

)

choices of configurations on W with αn sites on the top and βn sites on the bottom. Then by

calculating the probability that a perfect matching does not connect two 1’s of the configuration

we have that

EZα,β
G̃

(η) = λαn+βn+η
++η−

(
n

αn

)(
n

βn

)

(n+m′−βn−η−

αn+η+

)
(
n+m′

αn+η+

)



d−1 (n−βn

αn

)
( n
αn

) , (3.2)

while by [28] we have that

Zα,βMWW = λαn+βn
(
n

αn

)(
n

βn

)[(n−βn
αn

)
(
n
αn

)
]d
.

Now since |U | = O(n1/4) it follows from Lemma 3.2 below that

EZα,β
G̃

(η)

EZα,βMWW

= (1 +O(n−1/2))C∗
(
λ

(
1− α− β

1− β

)d−1
)η− (

λ

(
1− α− β

1− α

)d−1
)η+

.

�

To complete Lemma 3.1 we give the following lemma which a simple expansion of factorials

which will use repeatedly throughout this section.
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Lemma 3.2. When 0 < b < a are integers and x2 + y2 ≤ min{b, a− b} then
(
a+x
b+y

)
(
a
b

) =

(
1 +O

(
x2 + y2

min{b, a− b}

))(
a

a− b

)x(a− b

b

)y
. (3.3)

Proof. By expanding out factorials we have that
(a+x
b+y

)
(a
b

) =
(a+ x)!

a!

b!

(b+ y)!

(a− b)!

(a− b+ x− y)!

=

(
ax

x∏

i=1

(1 +
i

a
)

)(
b−y

y∏

i=1

(1− i

b
)

)(
(a− b)x−y

x−y∏

i=0

(1 +
i

a− b
)

)

=

(
1 +O

(
x2 + y2

min{b, a− b}

))(
a

a− b

)x(a− b

b

)y
.

�

We now sum over (α, β) and define the conditional partition functions as

Z+
G̃
(η) =

∑

α≥β
Zα,β
G̃

(η) =
∑

σ:σU=η,
∑
w∈W+ σw≥

∑
w∈W− σw

λ|σ|

Z−
G̃
(η) =

∑

α<β

Zα,β
G̃

(η) =
∑

σ:σU=η,
∑
w∈W+ σw<

∑
w∈W− σw

λ|σ|

and Z±
G̃

=
∑

η Z
±
G̃
(η).

Lemma 3.3. For every d ≥ 3 there exists constants θ∗(λ, d), ψ∗(λ, d) > 0 such that when λc(d) < λ

and 0 < θ(λ, d) < θ∗(λ, d), 0 < ψ(λ, d) < ψ∗(λ, d) then the expected partition functions satisfy

sup
η

∣∣∣∣∣
EZ±

G̃
(η)

EZ±
G̃

−Q±
U (η)

∣∣∣∣∣ = o(1) (3.4)

and

EZ+
G̃
= (1 + o(1))EZ−

G̃
. (3.5)

Proof. Recall from Lemma 3.1 that

EZα,β
G̃

(η) = (1 +O(n−1/2))C∗
(
λ

(
1− α− β

1− β

)d−1
)η− (

λ

(
1− α− β

1− α

)d−1
)η+

EZα,βMWW (3.6)

and that by [28, Proposition 3.1],

EZα,βMWW ≈ exp(Φ1(α, β)n)

where the approximation holds up to a polynomial factor in n. In the proof of [9, Claim 2.2] it

is shown that for fixed α (resp. β) Φ1 is maximized by setting β = h(α) (resp. α = h(β)) where

h(x) = (1 − x)[1 − (x/(λ(1 − x)))1/d] was defined in the Section 1.3. Recall that in {(α, β) ∈ T :

α ≥ β} the function Φ1 is maximized at (p+, p−). Clearly we have that the functions Φ1(α, h(α))

(resp. Φ1(h(β), β)) are analytic in α (resp. β) when in a neighbourhood of p+ (resp. p−). It follows
by expanding as a Taylor series and noting that (p+, p−) is a local maxima that for some integer

ℓ ≥ 2 and constants C, ε > 0 we have that
∣∣Φ1(α, h(α)) − Φ1(p

+, p−)
∣∣ ≥ C|α− p+|ℓ
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when |α − p+| ≤ ε and similarly for Φ1(h(β), β). This of course implies that when ‖(α, β) −
(p+, p−)‖∞ ≤ ε then

∣∣Φ1(α, β) − Φ1(p
+, p−)

∣∣ ≥ C‖(α, β) − (p+, p−)‖ℓ∞.

Hence it follows that for large n,

∑

α≥β,‖(α,β)−(p+,p−)‖∞>n− 1
2ℓ

Zα,β
G̃

(η) ≤ exp

(
−C

2
n1/2

)
EZ+

G̃
(η). (3.7)

Setting θ∗(λ, d) = ψ∗(λ, d) = 1
5ℓ we have that |U | ≤ n

2
5ℓ and hence

(
λ

(
1− α− β

1− α

)d−1
)η+

= (1 + o(1))

(
λ

(
1− p+ − p−

1− p+

)d−1
)η+

,

(
λ

(
1− α− β

1− β

)d−1
)η−

= (1 + o(1))

(
λ

(
1− p+ − p−

1− p−

)d−1
)η−

. (3.8)

Combining equations (3.6), (3.7) and (3.8) we establish that

EZ+
G̃
(η) = (1 + o(1))C∗

(
λ

(
1− p+ − p−

1− p−

)d−1
)η− (

λ

(
1− p+ − p−

1− p+

)d−1
)η+

EZ+
MWW

= (1 + o(1))C∗
(

q−

1− q−

)η− (
q+

1− q+

)η+
EZ+

MWW

=
(1 + o(1))C∗

(1 − q+)m
′
(1− q−)m′Q

+
U (η)EZ

+
MWW (3.9)

where EZ+
MWW denotes

∑
α≥β EZ

α,β
MWW, where the second line follows by equation (1.3) and the

final equality holds by the definition of Q+
U . Hence we have that

EZ+
G̃
=

(1 + o(1))C∗

(1− q+)m′(1− q−)m′ EZ
+
MWW

and that

sup
η

∣∣∣∣∣
EZ+

G̃
(η)

EZ±
G̃

−Q±
U (η)

∣∣∣∣∣ = o(1)

The analogous bound holds for Z−
G̃
(η) which establishes equation (3.4).

Note that because of the slight asymmetry in the definition of Z+
G̃

and Z−
G̃

equation (3.5) is not

immediate by symmetry. It follows from the fact that when λ > λc by symmetry we have that
∑

α

EZα,α
G̃

= EZ+
G̃
− EZ−

G̃

and ∑

α

EZα,α
G̃

≤ exp(−Ω(n))EZ+
G̃

since the maxima of Φ1(α, β) is not achieved with α = β. This completes the lemma. �
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3.1. Second Moment Analysis. We now proceed to analyze the second moment of the partition

function. In [28] they showed that the second moment is given by

E

[
Zα,βMWW(η)

]2
= λ2(α+β)

(
n

αn

)(
n

βn

)∑

γ,δ

(
αn

γn

)(
(1− α)n

(α− γ)n

)(
βn

δn

)(
(1− β)n

(β − δ)n

)

·



((1−2β+δ)n

γn

)
( n
γn

)
∑

ε

((1−2β+δ−γ)n
εn

)( (β−δ)n
(α−γ−ε)n

)
((1−γ)n
(α−γ)n

)
((1−β−γ−ε)n

(α−γ)n
)

((1−α)n
(α−γ)n

)



d

(3.10)

where the sums run over γ, δ, ε such that γn, δn, εn and equation (1.6) holds. Equation (3.10)

should be interpreted as follows: The first line represents the number of ways of choosing a pair

of configurations, both with size α on the plus side and β on the minus side with overlaps of γ

on the plus side and δ on the minus side. The second line gives the probability that the pair of

configurations are both independent sets in the random graph (see [28] for the interpretation of the

sum). Here the role of Condition 1.2 comes into play. A simple approximation gives that

exp(nf(α, β, γ, δ, ε)) ≈ λ2(α+β)
(
n

αn

)(
n

βn

)(
αn

γn

)(
(1− α)n

(α− γ)n

)(
βn

δn

)(
(1− β)n

(β − δ)n

)

·



((1−2β+δ)n

γn

)
( n
γn

)
(
(1−2β+δ−γ)n

εn

)( (β−δ)n
(α−γ−ε)n

)

((1−γ)n
(α−γ)n

)

((1−β−γ−ε)n
(α−γ)n

)

((1−α)n
(α−γ)n

)



d

up to polynomial terms in n. As such the maximum of f plays a crucial role in the second moment

analysis. The following result is by [28, Lemma 3.3]. While they only stated their result for (α, β)

close to (1/d, 1/d) it is easy to verify that their proof holds in a neighbourhood of (p−, p+) whenever
Condition 1.2 holds.

Lemma 3.4 ([28, Lemma 3.3]). For each d ≥ 3 suppose that Condition 1.2 holds. Then there

exists some χ > 0 such that when |α− p−|, |β − p+| < χ we have that,

E

(
Zα,βMWW

)2

(
EZα,βMWW

)2 → τα,β

where

τα,β =
(1− α− β − αβ)d

[(1− α− β + 2αβ)(1 − α− β)]
d−1
2 [(1 − α− β + dαβ)(1 − α− β − (d− 2)αβ)]

1
2

.

Next we show the analogous result for G̃ conditioned on σU by estimating the ratio of the second

moments of the partition functions of the graphs.

Lemma 3.5. For each d ≥ 3 suppose that Condition 1.2 holds. Then there exists some χ > 0 such

that when |α− p−|, |β − p+| < χ we have that for all η ∈ {0, 1}U ,

E

(
Zα,β
G̃

(η)
)2

E

(
Zα,βMWW

)2 = (1 + o(1))(C∗)2
(
λ

(
1− α− β

1− β

)d−1
)2η− (

λ

(
1− α− β

1− α

)d−1
)2η+

, (3.11)
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and hence

E

(
Zα,β
G̃

(η)
)2

(
EZα,β

G̃
(η)
)2 → τα,β.

Proof. Repeating the analysis of [28] the analogous

E

(
Zα,β
G̃

(η)
)2

= λ2(α+β)
(
n

αn

)(
n

βn

)∑

γ,δ

(
αn

γn

)(
(1− α)n

(α− γ)n

)(
βn

δn

)(
(1− β)n

(β − δ)n

)

·



((1−2β+δ)n+m−η−

γn+η+

)
( n+m
γn+η+

)
∑

ε

(
(1−2β+δ−γ)n+m−η+−η−

εn

)( (β−δ)n
(α−γ−ε)n

)

((1−γ)n+m−η+−η−
(α−γ)n

)

((1−β−γ−ε)n+m−η+
(α−γ)n

)

((1−α)n+m−η−
(α−γ)n

)



d

(3.12)

By Lemma 1.3 the unique maxima of gα,β(γ, δ, ε) is (γ∗, δ∗, ε∗) and it was shown in [28] that gα,β
decays quadratically from this point. Consequently, with

A = {(γ, δ, ε) : |γ − γ∗|, |δ − δ∗|, |ε− ε∗| ≤ n−1/4}

the contribution from terms with (γ, δ, ε) 6∈ A is exp(−Ω(n1/2)) and so can be omitted. Setting

κα,β
G̃

(η) = λ2(α+β)

((1−2β+δ)n+m−η−
γn+η+

)
( n+m
γn+η+

)
((1−2β+δ−γ)n+m−η+−η−

εn

)( (β−δ)n
(α−γ−ε)n

)

((1−γ)n+m−η+−η−
(α−γ)n

)

((1−β−γ−ε)n+m−η+
(α−γ)n

)

((1−α)n+m−η−
(α−γ)n

)

κα,βMWW =

(
(1−2β+δ)n

γn

)
(
n
γn

)
((1−2β+δ−γ)n

εn

)( (β−δ)n
(α−γ−ε)n

)
((1−γ)n
(α−γ)n

)
((1−β−γ−ε)n

(α−γ)n
)

((1−α)n
(α−γ)n

)

and recalling that γ∗ = α2, δ∗ = β2, ε∗ = α(1 − α− β) we have that for (γ, δ, ε) ∈ A

κα,β
G̃

(η)

κα,βMWW

= (1 + o(1))λ2(η
++η−)

(
1− 2β + δ

1− 2β + δ − γ

)m−η−

·
(
1− 2β + δ − γ

γ

)η+
(1− γ)m

(
γ

1− γ

)η+ ( 1− 2β + δ − γ

1− 2β + δ − γ − ε

)m−η+η−

·
(
1− β − γ − ε

1− β − α− ε

)m−η+−η− (1− α

1− γ

)m−η+ (1− 2α+ γ

1− α

)m−η+

= (1 + o(1))(C∗)2
(
λ

(
1− α− β

1− β

)d−1
)2η− (

λ

(
1− α− β

1− α

)d−1
)2η+

(3.13)

where the first line follows by equation (3.3) and the second follows by approximating (γ, δ, ε) with

(γ∗, δ∗, ε∗) and simplifying. Now comparing equations (3.10) and (3.12) (noting here that we can

neglect terms with (γ, δ, ε) 6∈ A) we have that

E

(
Zα,β
G̃

(η)
)2

E

(
Zα,βMWW

)2 = (1 + o(1))(C∗)2
(
λ

(
1− α− β

1− β

)d−1
)2η− (

λ

(
1− α− β

1− α

)d−1
)2η+

,

which establishes equation (3.11). Equation (3.12) then follows from Lemmas 3.1 and 3.4. �
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3.2. Small Graph Conditioning Method. As we showed in the previous section the ratio of

second moment and the first moment squared of Zα,β
G̃

(η) converges to a constant τα,β. Unfortu-

nately, since τα,β > 1 we can not directly apply the second moment method to get high probability

bounds. Instead we follow the approach of [28] and use the small graph conditioning method. Our

proofs differ very minimally from theirs and as such we only comment on the necessary changes. At

a high level, the method says that small cycles in the graph “explain” the variance which provides

good lower bounds on Zα,β
G̃

(η). The following is taken from [28] which itself is presented as a special

case of a results of [35] and [15].

Theorem 3.6 ([28, Theorem 7.1]). Let λi > 0 and δi > 0 be real numbers for i = 1, 2, . . . Let

ω(n) → 0 and suppose that for each n there are random variables Xi = Xi(n), i = 1, 2, . . . and

Y = Y (n), all defined on the same probability space G = Gn such that Xi are nonnegative integer

valued, Y is nonnegative and EY > 0 (for n sufficiently large). Suppose furthermore that

(1) For each k ≥ 1, the variables X1, . . . ,Xk are asymptotically independent Poisson random

variables with EXi → λi
(2) For every finite sequence m1, . . . ,mk of nonnegative integers,

E

(
Y
∏k
i=1[Xi]mk

)

EY
→

k∏

i=1

(λi(1 + δi))
mi (3.14)

where [X]m =
∏m−1
i=0 (X − i), denotes the falling factorial.

(3) That
∑
λiδ

2
i <∞,

(4) That EY 2/(EY )2 ≤ exp(
∑
λiδ

2
i ) + o(1) as n→ ∞.

Then P(Y > ω(n)EY ) → 1.

We set Y = λ−(α+β)nZα,β
G̃

(η) and let Xi be the number of cycles of length i whose vertices lie in

W (which is of course 0 when i is odd). The following lemma has an essentially identical proof to

the proof of [28, Lemma 7.3] and follows from standard methods.

Lemma 3.7. For even i the number of cycles are asymptotically Poisson with means λi = r(d, i)/i

where r(d, i) counts the number of proper d-colourings of a cycle of size i.

Next, the main step is to determine the limit of equation (3.14). The proof of the following

lemma follows with only very minor modifications form that of [28, Lemma 7.4 and 7.5].

Lemma 3.8. For all (α, β) in the interior of T and all η ∈ {0, 1}U we have that:

E

(
Y
∏k
i=1[Xi]mk

)

EY
→

k∏

i=1

(λi(1 + δi))
mi

where λi = r(d, i)/i and

δi =

(
αβ

(1− α)(1 − β)

)i/2

for even i.

Proof. We follow as far as possible the proof of [28, Lemma 7.4]. We consider just the case where

a single mi = 1 and the others are all as the extension to general mi’s is exactly as in [28, Lemma

7.5]. We follow the notation is from [28] with only slight modifications to our setting
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• Let Υ ∈ {0, 1}W with
∑

w∈W+ Υw = αn and with
∑

w∈W− Υw = βn.

• Denote by ξ a proper d-edge-coloured rooted, oriented i-cycle (from amongst the r(d, i)

possibilities), in which the vertices are 2-coloured, black and white, with no two black

vertices adjacent. The color of the edges will prescribe which of the d perfect matchings

an edge of a (potential) cycle will belong to. The black vertices will prescribe which of the

cycle vertices are members of {w ∈W : Υw = 1}.
• We let ζ denotes a position that an i-cycle can be in (i.e. the exact vertices ofW it traverses,

in order) such that the prescription of the vertex colors of ξ is satisfied. (Note this was

denoted as η in [28]).

• Denote by P1 is the probability that a random graph G̃ contains a cycle C in the given

position ζ with the edge colors prescribed by ξ in accordance with which matchings contain

the edges of C.

• We denote by P2 the conditional probability that in the random graph G̃ that the set

{w ∈W : Υw = 1} ∪ {u ∈ U : ηu = 1} is an independent set, given that it contains C as in

the definition of P1.

• Denote by P3 the probability that in the random graph G̃ the set {w ∈W : Υw = 1}∪{u ∈
U : ηu = 1} is an independent set.

Analogously to equation (18) of [28] we have that

EY Xi

EY
=

1

i

∑

ξ

∑

ζ

P1 P2

P3
(3.15)

as the probabilities are independent of Υ. It is immediate from the definition that P1 = (1 +

o(1))n−i.

Now closely following the notation of [28] for k = 1, . . . , d let e(k) denote the number of edges

of colour k in ξ. Denote by f±(k) the number of black vertices adjacent to edges of colour k in

the sets {w ∈ W± : Υw = 1}. Assuming that ξ is compatible with {w ∈ W± : Υw = 1} then the

probability that the remaining edges also respect the independents sets is given by,

P2 =

(∏d−1
k=1

(n+m′−βn−η−−e(k)+f−(k)
αn+η+−f+(k)

)) (n−βn−e(d)+f−(d)
αn−f+(d)

)
(∏d−1

k=1

( n+m′−e(k)
αn+η+−f+(k)

)) ( n−e(d)
αn−f+(d)

) . (3.16)

Now by Lemma 3.2 we have that

(n+m′−βn−η−−e(k)+f−(k)
αn+η+−f+(k)

)
(n+m′−βn−η−

αn+η+

) = (1 + o(1))

(
n+m′ − βn− η−

n+m′ − βn− η− − αn − η+

)−e(k)+f−(k)

·
(
n+m′ − βn− η− − αn− η+

αn+ η+

)−f+(k)

= (1 + o(1))

(
1− β

1− β − α

)−e(k)+f−(k)(1− β − α

α

)−f+(k)

(3.17)
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where we used the fact that m, η+, η− = O(n−1/4) and e(k), f−(k), f+(k) = O(1). Similarly we

have that
(n−βn−e(d)+f−(d)

αn−f+(d)

)
(
n−βn
αn

) = (1 + o(1))

(
1− β

1− β − α

)−e(d)+f−(d)(1− β − α

α

)−f+(d)

( n+m′−e(k)
αn+η+−f+(k)

)
(
n+m′

αn+η+

) = (1 + o(1))

(
1

1− α

)−e(k)(1− α

α

)−f+(k)

( n−e(d)
αn+−f+(d)

)
( n
αn

) = (1 + o(1))

(
1

1− α

)−e(d)(1− α

α

)−f+(d)

(3.18)

By equation (3.2) we have that

P3 =



(n+m′−βn−η−

αn+η+

)
( n+m′

αn+η+

)



d−1 (n−βn

αn

)
( n
αn

) (3.19)

Now let j±(ξ) =
1
2

∑d
k=1 f±(k) denote the number of black vertices in V ± according to ξ and recall

that i =
∑d

k=1 e(k). Combining equations (3.16),(3.17),(3.18) and (3.19) we have that

P2

P3
= (1 + o(1))

(1− α− β)i−2j−−2+

(1− α)i−2j+(1− β)i−2j−
.

Now letting PkMWW denote the corresponding probabilities in Lemma 7.4 of [28] we note that

P1 = (1 + o(1))P1MWW,
P2

P3
= (1 + o(1))

P2MWW

P3MWW

Hence
EY Xi

EY
= (1 + o(1))

1

i

∑

ξ

∑

ζ

P1 P2

P3

= (1 + o(1))
1

i

∑

ξ

∑

ζ

P1MWW P2MWW

P3MWW

= (1 + o(1))λi(1 + δi),

where the final term is the main result of [28, Lemma 7.4]. The complete result for general mi’s

follows similarly to [28, Lemma 7.5] which completes the lemma. �

Lemma 3.9. If d ≥ 3 and (α, β) is in the interior of T and the function gα,β achieves its unique

maxima in (1.6) at (α2, β2, α(1 − α− β)) then for all η ∈ {0, 1}U ,

sup
η

P

(
Zα,β
G̃

(η) <
2√
n
EZα,β

G̃
(η)

)
→ 0. (3.20)

Proof. The result follows from an application of Theorem 3.6, taking the i to be even, λi = r(d, i)/i

and δi =
(

αβ
(1−α)(1−β)

)i/2
. Condition (1) of the theorem holds by Lemma 3.7. Condition (2) holds

by Lemma 3.8. Conditions (3) and (4) hold as a consequence of Lemma 3.5 and [28, Lemma 7.6].

Taking ω(n) = 2√
n
, the result follows. �

In Lemma 3.3 we gave estimates of the expected conditional partition functions. In this sub-

section we of the small graph conditioning method results and give with high probability type

estimates for the conditional partition functions.
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Theorem 3.10. For every d ≥ 3 and λ > λc such that Condition 1.2 holds there exists a positive

constant ε(d) > 0 and constants θ∗(λ, d), ψ∗(λ, d) > 0 such that the partition functions satisfy the

following asymptotic almost sure statements,

sup
η∈{0,1}U

P

(
Z±
G̃
(η) <

1√
n
EZ±

G̃
(η)

)
→ 0. (3.21)

Proof. Condition 1.2 guarantees that for (α, β) in a neighborhood of (p−, p+) that gα,β achieves its

unique maxima in (1.6) at (α2, β2, α(1 − α − β)). For sufficiently small δ > 0 then by Lemma 3.9

we have that

sup
η

sup
(α,β)∈S

P

(
Zα,β
G̃

(η) <
2√
n
EZα,β

G̃
(η)

)
→ 0

where S = {(α, β) : ‖(α, β) − (p+, p−)‖∞ < δ} and hence

sup
η

P


 ∑

(α,β)∈S
Zα,β
G̃

(η) <
3

2
√
n

∑

(α,β)∈S
EZα,β

G̃
(η)


→ 0.

By equation (3.7) we have that for all η ∈ {0, 1}U ,
∑

α≥β,(α,β)6∈S
Zα,β
G̃

(η) ≤ exp

(
−C

2
n1/2

)
EZ+

G̃
(η).

and hence we have that

sup
η

P

(
Z+
G̃
(η) <

1√
n
EZ+

G̃
(η)

)
→ 0.

The analogous statement for Z−
G̃
(η) holds similarly which completes the lemma. �

4. Reconstruction on the tree

Our proof now takes a detour through the reconstruction problem on the tree. This problem

concerns determining which Gibbs measures on the tree are extremal, or equivalently when the

tail σ-algebra is trivial or when point-to-set correlations converge to 0 in the distance of the point

to the set [26]. In our setting the measures µ̂± are extremal so we automatically have that non-

reconstruction holds. We will use facts about the rate of decay of point-to-set correlations to

establish that σV is essentially independent of σU conditioned on the phase. In most cases the

reconstruction problem has been considered in the case of the translation invariant free measure

(see [5] for recent progress on the hardcore model) but we will be interested in the case of the semi-

translation invariant measures µ̂± on T̂d and as such results from the literature do not directly

apply here.

The reconstruction problem has for the most part been studied in the case of Markov models on

trees with a single transition kernel M . In this theory the key role is played by the λ∗ the second

eigenvalue of the transition matrix. The famous Kesten-Stigum bound [18,26] states that there is

reconstruction when λ2∗(d − 1) > 1 while results of [14] show that if non-reconstruction holds and

λ2∗(d−1) < 1 then point to set correlations decay exponentially quickly. In our setting, however, the

Gibbs measure is semi-translation invariant and the Markov model is given by a pair of alternating

Markov transition kernels, M± defined below.

With minor modifications the proof of [7] (or also [32] or [14]) can be adapted to the semi-

translation invariant setting. Here the role of λ∗ is played by the second eigenvalue of M1M2 and

there is reconstruction when λ2∗(d − 1)2 > 1 and exponential decay of correlations when there is
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non-reconstruction and λ2∗(d − 1)2 < 1. The term (d − 1)2 is explained by the fact that this this

the branching from two levels of the tree. Using the methods of [32] which build on the work of [7]

we establish the necessary decay of correlations result.

While we will be interested in the measure µ̂ it will be most convenient to work first on an

adjusted Markov model ξ̃± on the tree T̂d taking values in {0, 1}T̂d and then transfer results to µ̂.

The spin ξ̃±ρ is chosen according to

P

[
ξ̃±ρ = 1

]
= 1− P

[
ξ̃±ρ = 1

]
= p±.

For the other vertices of the graph the values of ξ̃± will be propagated along the tree given though

Markov transitions given by alternating transition kernels. Specifically if vertex u is the parent of

v in the tree then the spin at v is defined according to the probabilities

P (ξ̃sv = j|σu = i) =M
s(−1)|v|

i+1,j+1 .

for s ∈ {−1,+1} and i, j ∈ 0, 1 and where |v| = d(ρ, v) and

M+1 =

(
1− q+ q+

1 0

)
, M−1 =

(
1− q− q−

1 0

)
.

Viewing T̂d ⊂ Td we have that the measure of ξ̃± is simply the projection of µ± to T̂d (had we

instead chosen P

[
ξ̃±ρ = 1

]
= q± the ξ̃± would be given by µ̂±). It follows that

P

[
ξ̃sv = 1

]
=

{
p+ if s(−1)|v| = +1

p− if s(−1)|v| = −1
.

For a vertex v ∈ T let T̂v
d denote the subtree of descendants of v (including v). Observe that the

measure ξ̃s restricted to T̂v
d is equal in distribution to ξ̃s(−1)|v| on T̂d appropriately shifted. Now let

Sv,ℓ denote the set of vertices in T̂d which are ℓ levels below v and let ξ±v,ℓ denote the configuration

on Sv,ℓ. For a configuration A on Sv,ℓ and s ∈ {−1,+1} define the posterior function h̃sv,ℓ as

h̃sv,ℓ(A) = P(ξ̃sv = 1|ξ̃sv,ℓ = A),

We set

X̃v,ℓ,s = h̃sv,ℓ(ξ̃
s
v,ℓ)

for s ∈ {+,−}. Now since the measures µ± are extremal it follows (see e.g. [24]) that

X̃v,ℓ,s
a.s→ ps(−1)|v| . (4.1)

Moreover, if u1, . . . , ud−1 are the children of ρ then by standard tree recursions for Gibbs measures,

X̃ρ,ℓ,s =
ps
∏d
i=1

1
1−p−s [1− X̃ui,ℓ−1,s]

ps
∏d
i=1(1− p−s)−1[1− X̃ui,ℓ−1,s] + (1− ps)

∏d
i=1

[
q−s

p−s
X̃ui,ℓ−1,s +

1−q−s
1−p−s [1− X̃ui,ℓ−1,s]

]

=
ps
∏d
i=1[1−

X̃ui,ℓ−1,s−p−s
1−p−s ]

ps
∏d
i=1[1−

X̃ui,ℓ−1,s−p−s
1−p−s ] + (1− ps)

∏d
i=1

[
1 + [X̃ui,ℓ−1,s − p−s] ps

(1−p−s)(1−ps)

] =:
A
B ,

(4.2)

where the second inequality follows from equation (1.3). Next, similarly to [32], we set

xℓ,s = E
1X̃ρ,ℓ,s − ps.
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We will let E
1 (resp. E

0) denote the expectation conditional on the ξ̃sρ = 1 (resp. ξ̃sρ = 0). With

u1, . . . , ud−1 the children of ρ we have the following relationships of the X̃u,ℓ,s.

Lemma 4.1. The following hold:

• Conditional on ξ̃sρ the X̃ui,ℓ,s are conditionally independent.

• Also E
1(X̃ui,ℓ,s − p−s) = −p−s

1−p−sxℓ,−s.

• We have that xℓ,s = (ps)−1
E(X̃ρ,ℓ,s − ps)2.

• For all integers k ≥ 1 we have that

E
1(X̃ui,ℓ,s − p−s)k = O(xℓ,−s).

Proof. The first part follows from the Markov property of ξ̃. The second follows from the fact that

EX̃ui,ℓ−1,s − p−s = 0. The third part follows from the proof of Lemma 2.2 of [32]. Finally for the

forth part we have that

E
1(X̃ui,ℓ,s − p−s)k = E

[
(X̃ui,ℓ,s − p−s)k | ξ̃vi = 0

]

= E
0
[
(X̃ρ,ℓ,−s − p−s)k

]
.

Now since |X̃ρ,ℓ,−s − p−s| ≤ 1 we have that

E
0
[
(X̃ρ,ℓ,−s − p−s)k

]
≤ E

0
[
(X̃ρ,ℓ,−s − p−s)2

]

for k ≥ 3. When k = 1 we have

E
0
[
(X̃ρ,ℓ,−s − p−s)

]
= − p−s

1− p−s
E
1
[
(X̃ρ,ℓ,−s − p−s)

]
= O(xℓ,−s)

while when k = 2 we have that

E
0
[
(X̃ρ,ℓ,−s − p−s)2

]
≤ (1− p−s)−1

E

[
(X̃ρ,ℓ,−s − p−s)2

]
= O(xℓ,−s)

which completes the proof. �

We now expand out equation (4.2) as

A
B = A−A(B − 1) + (B − 1)2

A
B ≤ A−A(B − 1) + (B − 1)2 (4.3)

since A ≤ B. We may expand out B − 1 and can express in the form

B − 1 =
∑

α∈{0,1}d−1

cα

d−1∏

i=1

(X̃ui,ℓ−1,s − p−s)αi

where for some constants cα. Moreover, cα = 0 if |α| ∈ {0, 1} where |α| =∑d−1
i=1 αi. Since

E
1
d−1∏

i=1

(X̃ui,ℓ−1,s − p−s)αi = O(x
|α|
ℓ−1,−s)

it follows from Lemma 4.1 that

E
1
[
−A(B − 1) + (B − 1)2

]
= O(x2ℓ−1,−s). (4.4)
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Similarly we have that

E
1A = ps +

d∑

i=1

E
1 ps

1− p−s
[X̃ui,ℓ−1,s − p−s] +O(x2ℓ−1,−s)

= ps +
(d− 1)psp−s

(1− p−s)2
xℓ−1,−s +O(x2ℓ−1,−s). (4.5)

Combining equations (4.3),(4.4) and (4.5) we have that

xℓ,s = E
1X̃ρ,ℓ,s − ps =

(d− 1)psp−s

(1− p−s)2
xℓ−1,−s +O(x2ℓ−1,−s).

and after iterating we have that

xℓ,s = E
1X̃ρ,ℓ,s − ps =

(d− 1)2(psp−s)2

(1− ps)2(1− p−s)2
xℓ−2,s +O(x2ℓ−2,s)

= (d− 1)2(q+q−)2xℓ−2,s +O(x2ℓ−2,s). (4.6)

Now by equation (4.1) we have that xℓ,s → 0 as ℓ → 0 and hence by equation (4.6) it converges

exponentially fast to 0 as one of our initial assumptions in equation (1.7) was that q+q−(d−1) < 1.

It follows that by the second part of Lemma 4.1 that there exist constants C̃1(λ, d), C̃2(λ, d) > 0

such that,

E|X̃v,ℓ,s − ps(−1)|v| |2 ≤ C̃1 exp(−C̃2ℓ). (4.7)

We now define ξs,v for s ∈ {−1,+1} and v ∈ T̂d as the Markov model on the subtree T̂v
d with the

same transition matrices but so that the initial distribution at v is given by

P [ξs,vv = 1] = 1− P [ξs,vv = 1] = qs(−1)|v| .

With this initial distribution ξs,v is distributed according to the extremal hardcore measure µ̂s(−1)|v|

on T̂v
d. Analogously to ξ̃, for a configuration A on Sv,ℓ and s ∈ {−1,+1} we define the posterior

function hsv,ℓ as

hsv,ℓ(A) = P(ξs,vv = 1|ξs,vv,ℓ = A),

for s ∈ {+,−}. By the definition of conditional probability and the Markov property of ξ and ξ̃,

P(ξs,vv = 1|ξs,vv,ℓ = A)

P(ξs,vv = 0|ξs,vv,ℓ = A)
=

P(ξs,vv,ℓ = A|ξs,vv = 1)

P(ξs,vv,ℓ = A|ξs,vv = 0)
· P(ξ

s,v
v = 1)

P(ξs,vv = 0)

=
P(ξ̃sv,ℓ = A|ξ̃sv = 1)

P(ξ̃sv,ℓ = A|ξ̃sv = 0)
· P(ξ

s,v
v = 1)

P(ξs,vv = 0)

=
P(ξ̃sv = 1|ξ̃sv,ℓ = A)

P(ξ̃sv = 0|ξ̃sv,ℓ = A)
· P(ξ

s,v
v = 1)P(ξ̃sv = 0)

P(ξs,vv = 0)P(ξ̃sv = 1)
.

It follows that for some constant C and any configuration A on Sv,ℓ that

|hsv,ℓ(A)− qs(−1)|v| | ≤ C|h̃sv,ℓ(A)− ps(−1)|v| |. (4.8)

We define

Xv,ℓ,s = hsv,ℓ(ξ
s,ρ
v,ℓ ).
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Note that we are taking the posterior function for v but the Markov model rooted at ρ which is a

standard object in the recursive analysis of Gibbs measures on trees. By the Markov property and

equation (4.8) we have that

E|Xv,ℓ,s − qs(−1)|v| |2 ≤ CE

[
|X̃v,ℓ,s − ps(−1)|v| |2 | ξs,ρv = 1

]
+ CE

[
|X̃v,ℓ,s − ps(−1)|v| |2 | ξs,ρv = 0

]

≤ 2C
(
min{ps(−1)|v| , 1− ps(−1)|v|}

)−1
E|X̃v,ℓ,s − ps(−1)|v| |2

and hence we may conclude that there exists constants, C1, C2 > 0 such that for all v ∈ T̂d and

s ∈ {−1,+1} we have that

E|Xv,ℓ,s − qs(−1)|v| | ≤ C1 exp(−C2ℓ). (4.9)

With this result we prove the following stronger version with strong concentration ofXρ,ℓ,s around

qs. Similar bounds on this quantity had previously been developed in the colouring model [6] to

establish fast mixing of the block dynamics on tree and our proof is partially adapted from theirs.

Lemma 4.2. When λ > λc, q
+ ≤ 3

5 and q+q− < 1/(d−1) there exist constants ζ1(λ, d), ζ2(λ, d) > 0

such that for s ∈ {+,−} and for large ℓ,

P (|Xρ,ℓ,s − qs| ≥ exp(−ζ1ℓ)) ≤ exp (− exp(ζ2ℓ)) .

Note that the condition q+ ≤ 3
5 is not necessary but simplifies the proof and holds in the regions

of interest.

Proof. We first observe that the Xρ,ℓ,s also satisfy a standard recursive relationship. If v ∈ T̂d and

v1, . . . , vd−1 are its children then the standard tree recursion for Gibbs measures of the hardcore

model gives,

Xv,ℓ,s =
λ
∏d−1
i=1 (1−Xvi,ℓ,s)

1 + λ
∏d−1
i=1 (1−Xvi,ℓ,s)

. (4.10)

Now note that for any δ > 0 there exists ℓ′(d, λ, δ) such that for ℓ > ℓ′ we have that Xv,ℓ,s < q++ δ

since this is the case for even conditioning Sv,ℓ to be all 0 or 1. Now for 0 < L < ℓ write XL,ℓ,s for
the vector {Xv,ℓ−L,s : v ∈ Sρ,L}. Observe that by recursively applying equation (4.10) we can write

Xρ,ℓ,s = g(XL,ℓ,s).

Suppose that XL,ℓ,s,X ′
L,ℓ,s are two vectors which are equal except at some u ∈ Sρ,L. We will now

estimate |g(XL,ℓ,s)− g(X ′
L,ℓ,s)|. First consider one step of the recursion (4.10) (i.e. the case L = 1).

Let u1, . . . , ud−1 be the children of ρ and suppose that u = u1. This implies that

|g(X1,ℓ,s)− g(X ′
1,ℓ,s)| =

∣∣∣∣∣
1

1 + λ
∏d−1
i=1 (1−Xui,ℓ−1,s)

− 1

1 + λ
∏d−1
i=1 (1−X ′

ui,ℓ−1,s)

∣∣∣∣∣ .

Now for α > 0 we have that
∣∣∣ ddx

1
1+αx

∣∣∣ = α
(1+αx)2

. If x ≥ 1
3 then by a simple optimization we have

that α
(1+ 1

3
α)2

≤ 3
4 . Hence if ℓ− L > ℓ′(d, λ, 1/15) then

min{1 −Xui,ℓ−1,s, 1−X ′
ui,ℓ−1,s} > 1− (q+ +

1

15
) ≥ 1

3
.
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It follows that

|g(X1,ℓ,s)− g(X ′
1,ℓ,s)| =

∣∣∣∣∣

∫ 1−X′
u,ℓ−1,s

1−Xu,ℓ−1,s

λ
∏d−1
i=2 (1−Xui,ℓ−1,s)

(1 + xλ
∏d−1
i=2 (1−Xui,ℓ−1,s))2

dx

∣∣∣∣∣

≤
∣∣∣∣∣

∫ 1−X′
u,ℓ−1,s

1−Xu,ℓ−1,s

3

4
dx

∣∣∣∣∣ =
3

4

∣∣Xu,ℓ−1,s −X ′
u,ℓ−1,s

∣∣ .

Recursively applying this relation implies that for all L such that ℓ− L > ℓ′(d, λ, 1/15),

|g(XL,ℓ,s)− g(X ′
L,ℓ,s)| ≤

(
3

4

)L ∣∣Xu,ℓ−L,s −X ′
u,ℓ−L,s

∣∣ .

By the Markov property of the configuration we have that the elements of XL,ℓ,s are conditionally

independent given ξs,ρρ,L. Moreover, for u ∈ Sρ,L the Markov property also implies that Xu,ℓ,s

depends on ξs,ρρ,L only through ξs,ρu . Since P(ξs,ρu = 1) and P(ξs,ρu = 0) are strictly bounded away

from 0 independent of L we have that by equation (4.9),

E

[
|Xu,ℓ,s − qs(−1)|u| | ξs,ρρ,L

]
≤ C ′

1 exp(−C2ℓ). (4.11)

Now choose some constant 0 < r < 1 such that r log(d − 1) − C2(1 − r) < r log(5/4) and set

L = ⌊rℓ⌋. By Markov’s inequality,

P


 ∑

u∈Sρ,L

∣∣∣Xu,ℓ−L,s − qs(−1)L
∣∣∣ > (

5

4
)L | ξs,ρρ,L


 ≤

E

(
exp

(∑
u∈Sρ,L

∣∣∣Xu,ℓ−L,s − qs(−1)L
∣∣∣
)
| ξs,ρρ,L

)

exp((54 )
L)

≤
∏
u∈Sρ,L E

(
exp

(∣∣∣Xu,ℓ−L,s − qs(−1)L
∣∣∣
)
| ξs,ρρ,L

)

exp((54 )
L)

≤
∏
u∈Sρ,L (1 + eC ′

1 exp(−C2(ℓ− L)))

exp((54 )
L)

≤ exp

(
(d− 1)LeC ′

1 exp(−C2(ℓ− L))− (
5

4
)L
)

≤ exp (− exp(ζ2ℓ))

where the last inequality holds for large ℓ when 0 < ζ2 < r log 5
4 . Now if Xu,ℓ−L,s = qs(−1)L for all

u ∈ Sρ,L then g(XL,ℓ,s) = qs by the standard tree recursions. By equation (4.11) we have that if

∑

u∈Sρ,L

∣∣∣Xu,ℓ−L,s − qs(−1)L
∣∣∣ ≤ (

5

4
)L

then

|Xρ,ℓ,s − qs| ≤ O

(
(
3

4
· 5
4
)rℓ
)

and so the lemma holds taking ζ1 < r log 16
15 . �

4.1. The measure on σV . For compactness of notation we will write the results of this section

in terms of the plus phase but the analogous results will hold equally for the minus phase. Let Q̃+
U

denote measure on {0, 1}U given by

Q̃+
U (η) = PG̃ (σU = η | Y (σ) = +) .

Lemma 3.3 shows that in expectation at least Q̃+
U (η) behaves like Q

+
U (η).
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The graph G consists of G̃ together with a collection of (d − 1)-ary trees attached to U . Let

Iη(G \ G̃) denote the independent sets on G \ G̃ which are compatible with the boundary condition

η. Then the measure on the new part of G is given by

PG

(
σ(G\G̃)∪U | Y (σ) = +

)
=

Q̃+
U (σU )1{σG\G̃∈IσU (G\G̃)}λ

|σG\G̃|

∑
σ′∈{0,1}(G\G̃)∪U Q̃

+
U (σ

′
U )1{σ′

G\G̃
∈Iσ′

U
(G\G̃)}λ

|σ′
G\G̃

| .

Now since Q̃+
U (η) ≈ Q+

U (η), at least in expectation, it will also be of interest to consider the measure

P ∗(σ(G\G̃)∪U ) =
Q+
U (σU )1{σG\G̃∈IσU (G\G̃)}λ

|σG\G̃|

∑
σ′∈{0,1}(G\G̃)∪U Q

+
U(σ

′
U )1{σ′

G\G̃
∈Iσ′

U
(G\G̃)}λ

|σ′
G\G̃

| .

The graph (G \ G̃) ∪ U consists of (d − 1)-ary trees of depth 2⌊ψ2 logd−1 n⌋ rooted at each of the

vertices of V and the leaves constitute U . For each v ∈ V let Tv denote the tree attached to v.

Lemma 4.3. A configuration σ ∈ {0, 1}(G\G̃)∪U distributed according to P ∗ has the following

properties:

(1) The collection of projections {σTv}v∈V are independent.

(2) For each v ∈ V ± the measure on σTv is given by the projection of µ̂± onto the first

2⌊ψ2 logd−1 n⌋ rows of the infinite (d− 1)-ary tree.

Proof. Since the trees Tv are disconnected and Q+
U is a product measure the independence of the

σTv is immediate. Verifying the distribution of σTv can easily be calculated via direct computation

of the measure on the trees. However, we present a different proof which we feel better illustrates

the replica method intuition underlying the result.

Suppose that in the graph G̃ we had that Q̃+
U (η) = Q+

U (η) holds exactly. Then the projection of

the measure onto (G\G̃)∪U is exactly given by P ∗. Note that this did not depend on the structure

of G̃ except through Q̃+
U (η). So consider the graph G̃∗ which consists on 2m′ infinite (d − 1)-ary

trees whose roots we identify with U . Now take the Gibbs measure PG̃∗ on configurations on G̃∗

as follows: the measure is a product measure over the different trees and the measure restricted to

an individual tree is µ̂+ for trees rooted in U+ and µ̂− for trees rooted in U−.

Note that with this choice of graph and Gibbs measure the measure PG̃∗(σU ∈ ·) is Q+
U . Now

construct G∗ by appending trees onto U identically as in the construction of G. The resulting

graph is a collection of 2m disconnected (d− 1)-ary trees rooted at the vertices of V . The resulting

Gibbs measure PG∗ is a product measure over the trees of G∗ and restricted to individual trees

it corresponds to the measure µ̂+ for trees rooted in V+ and µ̂− for trees rooted in V −. By

construction the measure on (G∗ \ G̃∗) ∪ U is identical to P ∗ which completes the proof. �

Appending trees onto G̃ to construct G has the effect of reweighting the projection of the measure

on {0, 1}U . If we denote

κ(η) =
∑

σ∈Iη(G\G̃)

λ|σ|

for η ∈ {0, 1}U then

PG (σU = η | Y (σ) = +) =
Q̃+
U (η)κ(η)∑

η∈{0,1}U Q̃
+
U (η)κ(η)

.
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while

P
∗ (σU = η) =

Q+
U (η)κ(η)∑

η∈{0,1}U Q
+
U (η)κ(η)

. (4.12)

Let B denote the set of configurations η which have a large influence on σV by

B =

{
η ∈ {0, 1}U : sup

v∈V
|PG(σv = 1 | σU = η)−Q+

V (σv = 1)| > exp(−2ζ1⌊
ψ

2
logd−1 n⌋)

}
,

where ζ1 is as in Lemma 4.2 Observe that by the Markov property that the distribution of σv
depends only on η through the leaves of Tv and hence that B is independent of G̃. By Lemma 4.2

and a union bound we have that

P
∗ (σU ∈ B) ≤ |V | exp

(
− exp

(
2ζ2⌊

ψ

2
logd−1 n⌋

))
. (4.13)

We are now ready to prove Theorem 2.1.

Proof. (Theorem 2.1)

The number of vertices follows immediately from the construction. First choose θ small enough

so that

θ < min{ ζ1ψ

5 log(d− 1)
,
ζ2ψ

3
}. (4.14)

We will first prove equation (2.2). Since σV is conditionally a product measure given σU = η we

have that then for all η′ ∈ {0, 1}V that,

∣∣∣∣
PG (σV = η′ | σU = η)

Q+
V (η

′)
− 1

∣∣∣∣ ≤
∣∣∣∣∣
∏

v∈V

PG (σv = η′v | σU = η)

Q+
V (σv = η′v)

− 1

∣∣∣∣∣ .

Now if η ∈ {0, 1}U \ B then by the definition of B we have that

∣∣∣∣
PG (σv = η′v | σU = η)

Q+
V (σv = η′v)

− 1

∣∣∣∣ ≤ O

(
exp(−2ζ1⌊

ψ

2
logd−1 n⌋)

)
.

It follows that if we take θ according to (4.14) then for large n and all η ∈ {0, 1}U \B and η′ ∈ {0, 1}V
then, ∣∣∣∣

PG (σV = η′ | σU = η)

Q+
V (η

′)
− 1

∣∣∣∣ ≤ n−3θ, (4.15)

since |V | = O(nθ). Hence we have that

max
η′

∣∣∣∣
PG(σV = η′|Y = +)

Q+
V (σV )

− 1

∣∣∣∣ ≤ n−3θ +
PG(σU ∈ B | Y = +)

minη′ Q
+
V (η

′)
. (4.16)

Now since |V | = O(nθ) we have the inequality maxη′
(
Q+
V (η

′)
)−1

= exp
(
O(nθ)

)
. To get a bound

on PG(σU ∈ B | Y = +) recall that

PG (σU = η | Y (σ) = +) =

∑
η∈B PG̃ (σU = η | Y+) κ(η)

∑
η∈{0,1}U PG̃ (σU = η | Y = +)κ(η)

=

∑
η∈B Z

+
G̃
(η)κ(η)

∑
η∈{0,1}U Z

+
G̃
(η)κ(η)

(4.17)
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Now by Theorem 3.10

P




∑

η∈{0,1}U
Z+
G̃
(η)κ(η) <

1

2
√
n
E

∑

η∈{0,1}U
Z+
G̃
(η)κ(η)


 → 0 (4.18)

while by Markov’s inequality

P



∑

η∈B
Z+
G̃
(η)κ(η) >

1

2

√
nE
∑

η∈B
Z+
G̃
(η)κ(η)


 → 0. (4.19)

Further, recall that by Lemma 3.3 for all η,

EZ+
G̃
(η) = (1 + o(1))Q+

U (η)EZ
+
G̃
, (4.20)

and hence by equations (4.12) and (4.13)
∑

η∈B EZ+
G̃
(η)κ(η)

∑
η∈{0,1}U EZ+

G̃
(η)κ(η)

= (1 + o(1))

∑
η∈B EQ̃+

U(η)κ(η)∑
η∈{0,1}U EQ̃+

U(η)κ(η)

= P
∗ (σU ∈ B) ≤ |U | exp

(
− exp

(
2ζ2⌊

ψ

2
logd−1 n⌋

))
. (4.21)

Combining equations (4.17), (4.18), (4.19), (4.20) and (4.21) it follows that for large n,

PG(σU ∈ B | Y = +) ≤ n|V | exp
(
− exp

(
2ζ2⌊

ψ

2
logd−1 n⌋

))
.

Now provided that θ satisfies (4.14) then for large n,

PG(σU ∈ B | Y = +) ≤ exp(−n2θ).

Substituting this into (4.16)

max
η′

∣∣∣∣
PG(σV = η′|Y = +)

Q+
V (σV )

− 1

∣∣∣∣ ≤ 2n−3θ,

with room to spare for large n. The analogous statement for the minus phase

max
η′

∣∣∣∣
PG(σV = η′|Y = −)

Q−
V (σV )

− 1

∣∣∣∣ ≤ 2n−3θ,

holds similarly and combining the two establishes equation (2.2).

To establish (2.1) we will show that with high probability

Z+
G

Z−
G

>
2

n
,

Z−
G

Z+
G

≥ 2

n
.

By equation (3.5) EZ+
G̃

= (1 + o(1))EZ−
G̃

and (3.4) shows that for all η ∈ {0, 1}U we have that

EZ+
G̃
(η) = (1 + o(1))EZ−

G̃
(η). In particular we have that since

EZ±
G =

∑

η∈{0,1}U
EZ±

G̃
(η)κ(η)

and so

EZ+
G = (1 + o(1))EZ−

G .
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Now by Theorem 3.10

P

(
Z±
G <

1

2
√
n
EZ±

G

)
= P


 ∑

η∈{0,1}U
Z±
G (η)κ(η) <

1

2
√
n
E

∑

η∈{0,1}U
Z±
G (η)κ(η)


 → 0 (4.22)

while by Markov’s inequality

P

(
Z+
G >

1

3

√
nEZ+

G

)
→ 0. (4.23)

Combining the previous two equations establishes equation (2.1) and completes the proof. �

5. Technical Condition

Our last result is to verify Condition 1.2 in the case that λ = 1, d = 6. With gα,β(γ, δ, ε) =

f(α, β, γ, δ, ε) we use a computer assisted proof to show that gα,β attains its unique maximum in

the set (1.6) at the point (γ∗, δ∗, ε∗) = (α2, β2, α(1−α−β)) for (α, β) in a neighbourhood of (p−, p+).
These values are approximately p+ ≈ 0.40831988, q− ≈ 0.03546955 (see [9]). In [28, Lemma 6.3] it

is shown that gα,β is maximized as a function of ε by taking

ε̂(α, β, γ, δ) =
1

2

[
1 + α− β − 2γ −

√
(1− α− β)2 + 4(α− γ)(β − δ)

]
. (5.1)

It thus suffices to show that ĝα,β(·, ·) = gα,β(·, ·, ε̂) is maximized at (α2, β2) for

0 ≤ γ ≤ α, 0 ≤ δ ≤ β.

It is easy to establish that if

f∗(α, β, γ, δ) = f1(α, γ) + f2(β, δ)

where

f1(α, γ) = H(α) +H1(γ, α) +H1(α− γ, 1 − α)

f2(β, δ) = H(β) +H1(δ, β) +H1(β − δ, 1 − β)

then f ≤ f∗ since f − f∗ is the log of a probability. Now as a function of γ, f1(α, γ) is maximized

at is maximized at γ = α2. Similarly as a function of δ, f2(β, δ) is maximized at δ = β2 and is

increasing (resp. decreasing) in δ for δ < β2 (resp. δ > β2). Direct computation then shows that

ĝp−,p+((p
−)2, (p+)2) > 1.430 > 1.425 > f1(p−, (p−)2) + f2(p+, 0.015)

ĝp−,p+((p
−)2, (p+)2) > 1.430 > 1.414 > f1(p−, (p−)2) + f2(p+, 0.330)

so for (α, β) in a small enough neighbourhood of (p−, p+) and δ ∈ [0, 15
1000 ]∪[ 33

100 , β] and all 0 ≤ γ ≤ α

we have that

ĝα,β(α, β) > gα,β(γ, δ)

so it suffices to consider the set

0 ≤ γ ≤ α,
15

1000
≤ δ ≤ 33

100
(5.2)

which we will denote Υ = Υ(α, β). By [28, Lemma 5.1] the function ĝα,β(·, ·, ε̂) has a stationary

point at (α2, β2) so the result will follow by showing that the Hessian matrix D2ĝα,β(·, ·) is negative



30 ALLAN SLY

definite in the region defined by (5.2). This in turn follows as we have that D2gp−,p+ is negative

definite at ((p−)2, (p+)2) (via a direct computation) and that

detD2ĝα,β(·, ·) > 0 (5.3)

in the region defined by (5.2) for (α, β) sufficiently close to (p−, p+). This is performed using a

computer assisted proof. By [28, Lemma 6.4] this determinant is given by

detD2ĝα,β(·, ·, ε̂) =
(
∂f

∂2γ
+
∂ε̂

∂γ

∂f

∂γ∂ε

)(
∂f

∂2δ
+
∂ε̂

∂δ

∂f

∂δ∂ε

)
−
(

∂f

∂γ∂δ
+
∂ε̂

∂γ

∂f

∂δ∂ε

)2

(·, ·, ε̂).

where the expressions for the partial derivative are given in [28, Lemma 6.2 and 6.4] as follows,

∂f

∂2γ
= − 6

1− 2β + δ − γ − ε
− 6

α− γ − ε
+

5

1− 2α+ γ

− 6

β − δ − (α− γ − ε)
+

6

1− β − γ − ε
+

4

α− γ
− 1

γ

∂f

∂γ∂ε
= − 6

1− 2β + δ − γ − ε
− 6

α− γ − ε
− 6

β − δ − (α− γ − ε)
+

6

1− β − γ − ε

∂f

∂2δ
= − 6

1− 2β + δ − γ − ε
+

5

1− 2β + δ

− 6

β − δ − (α− γ − ε)
+

4

β − δ
− 1

δ

∂f

∂δ∂ε
=

∂f

∂γ∂δ
=

6

1− 2β + δ − γ − ε
+

6

β − δ − (α− γ − ε)

and

∂ε̂

∂γ
= −1 +

β − δ√
(1− α− β)2 + 4(α − γ)(β − δ)

∂ε̂

∂δ
=

α− γ√
(1− α− β)2 + 4(α − γ)(β − δ)

.

Showing that the determinant is always positive is done using a computer assisted proof. Mathe-

matica can perform interval arithmetic which given a function h(·) and an interval [x, y] will return

an interval containing the range of h([x, y]). This gives rigorous upper and lower bounds on the

function including rounding in a conservative (i.e. rigorous) manner. This approach is slightly

complicated by the fact that a couple of the terms go to infinity at the boundary of (5.2). We,

therefore, do our estimates in a couple of stages. First let

h1 =
∂f

∂2δ
+
∂ε̂

∂δ

∂f

∂δ∂ε
.

Then

max
(γ,δ)∈Υ

h1(p
−, p+, γ, δ, ε̂) ≤ max

0≤i≤99,1≤j≤32
h1

(
p−, p+,

[
αi

100
,
α(i+ 1)

100

]
,

[
j

100
,
j + 1

100

]
, ε̂

)
< −17.

where the last inequality is derived using mathematica’s interval arithmetic. In particular we can

always take h1 to be negative for (α, β) close to (p−, p+).

We now analyse the term 4
α−γ −

β−δ√
(1−α−β)2+4(α−γ)(β−δ)

6
α−γ−ε̂ which appears in

(
∂f
∂2γ

+ ∂ε̂
∂γ

∂f
∂γ∂ε

)
.

As γ goes to α this term diverges so we need some further estimates on it before applying interval
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arithmetic analysis. When 0 ≤ y ≤ 5
4 we have that

(
1 +

2

5
y

)2

≤ 1 + y

and so since
4(α− γ)(β − δ)

(1− α− β)2
≤ 4αβ

(1− α− β)2
≤ 0.19

when (α, β) is close to (p−, p+) we can take

1 +
2

5
· 4(α − γ)(β − δ)

(1− α− β)2
≤
√

1 +
4(α − γ)(β − δ)

(1− α− β)2
.

Rearranging we conclude that

√
(1− α− β)2 + 4(α − γ)(β − δ)− (1− α− β) ≤ 3

5

4(α − γ)(β − δ)√
(1− α− β)2 + 4(α − γ)(β − δ)

.

Now using this inequality and plugging in the definition of ε̂ we have that

α− γ − ε̂ = α− γ − 1

2

[
1 + α− β − 2γ −

√
(1− α− β)2 + 4(α − γ)(β − δ)

]

=
1

2

[√
(1− α− β)2 + 4(α − γ)(β − δ)− (1− α− β)

]

≤ 6

5

(α− γ)(β − δ)√
(1− α− β)2 + 4(α − γ)(β − δ)

and hence we have that

4

α− γ
− β − δ√

(1− α− β)2 + 4(α − γ)(β − δ)

6

α− γ − ε̂
≤ −1

α− γ
.

for (α, β) in a neighbourhood of (p−, p+). It follows that

∂f

∂2γ
+
∂ε̂

∂γ

∂f

∂γ∂ε
≤ − 6

1− 2β + δ − γ − ε̂
+

5

1− 2α + γ
− 6

β − δ − (α− γ − ε̂)
+

6

1− β − γ − ε̂

− 1

max{ 1
10000 , α− γ} − 1

max{ 1
10000 , γ}

+

(
−1 +

β − δ√
(1− α− β)2 + 4(α− γ)(β − δ)

)

·
(
− 6

1− 2β + δ − γ − ε̂
− 6

β − δ − (α− γ − ε̂)
+

6

1− β − γ − ε̂

)

where we denote the right hand side by Ψ(α, β, γ, δ). Denote

Φ(α, β, γ, δ) :=

[
Ψ(α, β, γ, δ)

(
∂f

∂2δ
+
∂ε̂

∂δ

∂f

∂δ∂ε

)
−
(

∂f

∂γ∂δ
+
∂ε̂

∂γ

∂f

∂δ∂ε

)2
]

Since h1(p
−, p+, γ, δ, ε̂) is negative throughout Υ we have that for (α, β) in a small neighbourhood

of (p−, p+),

max
(γ,δ)∈Υ

detD2ĝα,β ≥ max
(γ,δ)∈Υ

Φ(α, β, γ, δ).
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Now applying a computer assisted proof using interval arithmetics we get that

max
(γ,δ)∈Υ

Φ(p−, p+, γ, δ) ≥ max
0≤i≤99,1≤j≤32

Φ

(
p−, p+,

[
αi

100
,
α(i+ 1)

100

]
,

[
j

100
,
j + 1

100

])
> 1500.

By continuity of Φ this inequality also holds for (α, β) in a small neighbourhood of (p−, p+). This
then establishes Condition 1.2 in the case that λ = 1, d = 6.
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