
Polylogarithmic Approximation for Edit Distance

and the Asymmetric Query Complexity

Alexandr Andoni∗

Princeton University/C.C.I.
Robert Krauthgamer†

Weizmann Institute
Krzysztof Onak‡

MIT

May 21, 2010

Abstract

We present a near-linear time algorithm that approximates the edit distance between two
strings within a polylogarithmic factor; specifically, for strings of length n and every fixed ε > 0,
it can compute a (log n)O(1/ε) approximation in n1+ε time. This is an exponential improvement

over the previously known factor, 2Õ(
√

log n), with a comparable running time [OR07, AO09].
Previously, no efficient polylogarithmic approximation algorithm was known for any computa-
tional task involving edit distance (e.g., nearest neighbor search or sketching).

This result arises naturally in the study of a new asymmetric query model. In this model,
the input consists of two strings x and y, and an algorithm can access y in an unrestricted
manner, while being charged for querying every symbol of x. Indeed, we obtain our main result
by designing an algorithm that makes a small number of queries in this model. We then provide
a nearly-matching lower bound on the number of queries.

Our lower bound is the first to expose hardness of edit distance stemming from the input
strings being “repetitive”, which means that many of their substrings are approximately identi-
cal. Consequently, our lower bound provides the first rigorous separation between edit distance
and Ulam distance, which is edit distance on non-repetitive strings, such as permutations.

∗Supported in part by NSF CCF 0832797.
†Supported in part by The Israel Science Foundation (grant #452/08), and by a Minerva grant.
‡Supported in part by NSF grants 0732334 and 0728645.

1

1 Introduction

Manipulation of strings has long been central to computer science, arising from the high demand
to process texts and other sequences efficiently. For example, for the simple task of comparing two
strings (sequences), one of the first methods emerged to be the edit distance (aka the Levenshtein
distance) [Lev65], defined as the minimum number of character insertions, deletions, and substitu-
tions needed to transform one string into the other. This basic distance measure, together with its
more elaborate versions, is widely used in a variety of areas such as computational biology, speech
recognition, and information retrieval. Consequently, improvements in edit distance algorithms
have the potential of major impact. As a result, computational problems involving edit distance
have been studied extensively (see [Nav01, Gus97] and references therein).

The most basic problem is that of computing the edit distance between two strings of length n
over some alphabet. It can be solved in O(n2) time by a classical algorithm [WF74]; in fact this
is a prototypical dynamic programming algorithm, see, e.g., the textbook [CLRS01] and references
therein. Despite significant research over more than three decades, this running time has so far
been improved only slightly to O(n2/ log2 n) [MP80], which remains the fastest algorithm known
to date.1

Still, a near-quadratic runtime is often unacceptable in modern applications that must deal
with massive datasets, such as the genomic data. Hence practitioners tend to rely on faster heuris-
tics [Gus97, Nav01]. This has motivated the quest for faster algorithms at the expense of approxi-
mation, see, e.g., [Ind01, Section 6] and [IM03, Section 8.3.2]. Indeed, the past decade has seen a
serious effort in this direction.2 One general approach is to design linear time algorithms that ap-
proximate the edit distance. A linear-time

√
n-approximation algorithm immediately follows from

the exact algorithm of [LMS98], which runs in time O(n+d2), where d is the edit distance between
the input strings. Subsequent research improved the approximation factor, first to n3/7 [BJKK04],

then to n1/3+o(1) [BES06], and finally to 2Õ(
√

log n) [AO09] (building on [OR07]). Predating some
of this work was the sublinear-time algorithm of [BEK+03] achieving nε approximation, but only
when the edit distance d is rather large.

Better progress has been obtained on variants of edit distance, where one either restricts the
input strings, or allows additional edit operations. An example from the first category is the edit
distance on non-repetitive strings (e.g., permutations of [n]), termed the Ulam distance in the
literature. The classical Patience Sorting algorithm computes the exact Ulam distance between
two strings in O(n log n) time. An example in the second category is the case of two variants of the
edit distance where certain block operations are allowed. Both of these variants admit an Õ(log n)
approximation in near-linear time [CPSV00, MS00, CM07, Cor03].

Despite the efforts, achieving a polylogarithmic approximation factor for the classical edit dis-
tance has eluded researchers for a long time. In fact, this is has been the case not only in the
context of linear-time algorithms, but also in the related tasks, such as nearest neighbor search,
ℓ1-embedding, or sketching. From a lower bounds perspective, only a sublogarithmic approximation
has been ruled out for the latter two tasks [KN06, KR06, AK10], thus giving evidence that a sublog-

1The result of [MP80] applies to constant-size alphabets. It was recently extended to arbitrarily large alphabets,
albeit with an O(log log n)2 factor loss in runtime [BFC08].

2We shall not attempt to present a complete list of results for restricted settings (e.g., average-case/smoothed
analysis, weakly-repetitive strings, and bounded distance-regime), for variants of the distance function (e.g., allowing
more edit operations), or for related computational problems (such as pattern matching, nearest neighbor search,
and sketching). See also the surveys of [Nav01] and [Sah08].

2

arithmic approximation for the distance computation might be much harder or even impossible to
attain.

1.1 Results

Our first and main result is an algorithm that runs in near-linear time and approximates edit
distance within a polylogarithmic factor. Note that this is exponentially better than the previously
known factor 2Õ(

√
log n) (in comparable running time), due to [OR07, AO09].

Theorem 1.1 (Main). For every fixed ε > 0, there is an algorithm that approximates the edit
distance between two input strings x, y ∈ Σn within a factor of (log n)O(1/ε), and runs in n1+ε time.

This development stems from a principled study of edit distance in a computational model that
we call the asymmetric query model, and which we shall define shortly. Specifically, we design a
query-efficient procedure in the said model, and then show how this procedure yields a near-linear
time algorithm. We also provide a query complexity lower bound for this model, which matches or
nearly-matches the performance of our procedure.

A conceptual contribution of our query complexity lower bound is that it is the first one to
expose hardness stemming from “repetitive substrings”, which means that many small substrings
of a string may be approximately equal. Empirically, it is well-recognized that such repetitiveness is
a major obstacle for designing efficient algorithms. All previous lower bounds (in any computational
model) failed to exploit it, while in our proof the strings’ repetitive structure is readily apparent.
More formally, our lower bound provides the first rigorous separation of edit distance from Ulam
distance (edit distance on non-repetitive strings). Such a separation was not previously known in
any studied model of computation, and in fact all the lower bounds known for the edit distance
hold to (almost) the same degree for the Ulam distance. These models include: non-embeddability
into normed spaces [KN06, KR06, AK10], lower bounds on sketching complexity [AK10, AJP10],
and (symmetric) query complexity [BEK+03, AN10].

Asymmetric Query Complexity. Before stating the results formally, we define the problem and
the model precisely. Consider two strings x, y ∈ Σn for some alphabet Σ, and let ed(x, y) denote the
edit distance between these two strings. The computational problem is the promise problem known
as the Distance Threshold Estimation Problem (DTEP) [SS02]: distinguish whether ed(x, y) > R
or ed(x, y) ≤ R/α, where R > 0 is a parameter (known to the algorithm) and α ≥ 1 is the
approximation factor. We use DTEPβ to denote the case of R = n/β, where β ≥ 1 may be a
function of n.

In the asymmetric query model, the algorithm knows in advance (has unrestricted access to)
one of the strings, say y, and has only query access to the other string, x. The asymmetric query
complexity of an algorithm is the number of coordinates in x that the algorithm has to probe in
order to solve DTEP with success probability at least 2/3.

We now give complete statements of our upper and lower bound results. Both exhibit a smooth
tradeoff between approximation factor and query complexity. For simplicity, we state the bounds
in two extreme regimes of approximation (α = polylog(n) and α = poly(n)). See Theorem 3.1 for
the full statement of the upper bound, and Theorems 4.15 and 4.16 for the full statement of the
lower bound.

3

Theorem 1.2 (Query complexity upper bound). For every β = β(n) ≥ 2 and fixed 0 < ε < 1
there is an algorithm that solves DTEPβ with approximation α = (log n)O(1/ε), and makes βnε

asymmetric queries. This algorithm runs in time O(n1+ε).
For every β = O(1) and fixed integer t ≥ 2 there is an algorithm for DTEPβ achieving approx-

imation α = O(n1/t), with O(logt−1 n) queries into x.

It is an easy observation that our general edit distance algorithm in Theorem 1.1 follows im-
mediately from the above query complexity upper bound theorem, by running the latter for all β
that are a power of 2.

Theorem 1.3 (Query complexity lower bound). For a sufficiently large constant β > 1, every
algorithm that solves DTEPβ with approximation α = α(n) > 2 has asymmetric query complexity

2
Ω

“

log n
log α+log log n

”

. Moreover, for every fixed non-integer t > 1, every algorithm that solves DTEPβ

with approximation α = n1/t has asymmetric query complexity Ω(log⌊t⌋ n).

We summarize in Table 1 our results and previous bounds for DTEPβ under edit distance and
Ulam distance. For completeness, we also present known results for a common query model where
the algorithm has query access to both strings (henceforth referred to as the symmetric query
model). We point out two implications of our bounds on the asymmetric query complexity:

• There is a strong separation between edit distance and Ulam distances. In the Ulam metric,
a constant approximation is achievable with only O(log n) asymmetric queries (see [ACCL07],
which builds on [EKK+00]). In contrast, for edit distance, we show an exponentially higher
complexity lower bound, of 2Ω(log n/ log log n), even for a larger (polylogarithmic) approximation.

• Our query complexity upper and lower bounds are nearly-matching, at least for a range of
parameters. At one extreme, approximation O(n1/2) can be achieved with O(log n) queries,
whereas approximation n1/2−ε already requires Ω(log2 n) queries. At the other extreme,
approximation α = (log n)1/ε can be achieved using nO(ε) queries, and requires nΩ(ε/ log log n)

queries.

Model Metric Approx. Complexity Remarks

Near-linear
time

Edit (log n)O(1/ε) n1+ε Theorem 1.1

Edit 2Õ(
√

log n) n1+o(1) [AO09]

Symmetric
query
complexity

Edit nε Õ(nmax{1−2ε,(1−ε)/2}) [BEK+03] (fixed β > 1)

Ulam O(1) Õ(β +
√

n) [AN10]

Ulam+edit O(1) Ω̃(β +
√

n) [AN10]

Asymmetric
query
complexity

Edit n1/t O(logt−1 n) Theorem 1.2 (fixed t ∈ N, β > 1)

Edit n1/t Ω(log⌊t⌋ n) Theorem 1.3 (fixed t /∈ N, β > 1)

Edit (log n)1/ε βnO(ε) Theorem 1.2

Edit (log n)1/ε nΩ(ε/ log log n) Theorem 1.3 (fixed β > 1)
Ulam 2 + ε Oε(β log log β · log n) [ACCL07]

Table 1: Known results for DTEPβ and arbitrarily 0 < ε < 1.

4

1.2 Connections of Asymmetric Query Model to Other Models

The asymmetric query model is connected and has implications for two previously studied models,
namely the communication complexity model and the symmetric query model (where the algorithm
has query access to both strings). Specifically, the former is less restrictive than our model (i.e.,
easier for algorithms) while the latter is more restrictive (i.e., harder for algorithms). Our upper
bound gives an O(βnε) one-way communication complexity protocol for DTEPβ for polylogarithmic
approximation.

Communication Complexity. In this setting, Alice and Bob each have a string, and they need
to solve the DTEPβ problem by way of exchanging messages. The measure of complexity is the
number of bits exchanged in order to solve DTEPβ with probability at least 2/3.

The best non-trivial upper bound known is 2Õ(
√

log n) approximation with constant commu-
nication via [OR07, KOR00]. The only known lower bound says that approximation α requires

Ω(log n / log log n
α) communication [AK10, AJP10].

The asymmetric model is “harder”, in the sense that the query complexity is at least the
communication complexity, up to a factor of log |Σ| in the complexity, since Alice and Bob can
simulate the asymmetric query algorithm. In fact, our upper bound implies a communication
protocol for the same DTEPβ problem with the same complexity, and it is a one-way communication
protocol. Specifically, Alice can just send the O(βnε) characters queried by the query algorithm in
the asymmetric query model. This is the first communication protocol achieving polylogarithmic
approximation for DTEPβ under edit distance with o(n) communication.

Symmetric Query Complexity. In another related model, the measure of complexity is the
number of characters the algorithm has to query in both strings (rather than only in one of the
strings). Naturally, the query complexity in this model is at least as high as the query complexity
in the asymmetric model. This model has been introduced (for the edit distance) in [BEK+03],
and its main advantage is that it leads to sublinear-time algorithms for DTEPβ. The algorithm
of [BEK+03] makes Õ(n1−2ε + n(1−ε)/2) queries (and runs in the same time), and achieves nε

approximation. However, it only works for β = O(1).
In the symmetric query model, the best query lower bound is of Ω(

√

n/α) for any approximation
factor α > 1 for both edit and Ulam distance [BEK+03, AN10]. The lower bound essentially arises
from the birthday paradox. Hence, in terms of separating edit distance from the Ulam metric, this
symmetric model can give at most a quadratic separation in the query complexity (since there exists
a trivial algorithm with 2n queries). In contrast, in our asymmetric model, there is no lower bound
based on the birthday paradox, and, in fact, the Ulam metric admits a constant approximation with
O(log n) queries [EKK+00, ACCL07]. Our lower bound for edit distance is exponentially bigger.

1.3 Techniques

This section briefly highlights the main techniques and tools used in the course of proving our
results. A more informative proof overview for the algorithmic results, including the near-linear
time algorithm and the query upper bounds, appears in Section 2.1. The proof overview for
the query lower bounds appears in Section 2.2. The complete proofs are on Sections 3 and 4,
respectively.

5

Algorithm and Query Complexity Upper Bound. A high-level intuition for the near-linear
time algorithm is as follows. The classical dynamic programming for edit distance runs in time that
is the product of the lengths of the two strings. It seems plausible that, if we manage to “compress”
one string to size nε, we may be able to compute the edit distance in time only nε ·n. Indeed, this is
exactly what we accomplish. Specifically, our “compression” is achieved via a sampling procedure,
which subsamples ≈ nε positions of x, and then computes ed(x, y) in time n1+ε. Of course, the
main challenge is, by far, subsampling x so that the above is possible.

Our asymmetric query upper bound has two major components. The first component is a
characterization of the edit distance by a different “distance”, denoted E , which approximates
ed(x, y) well. The characterization is parametrized by an integer parameter b ≥ 2 governing the
following tradeoff: a small b leads to a better approximation, whereas a large b leads to a faster
algorithm. The second component is a sampling algorithm that approximates E for some settings
of the parameter b, up to a constant factor, by querying a small number of positions in x.

Our characterization is based on a hierarchical decomposition of the edit distance computation,
which is obtained by recursively partitioning the string x, each time into b blocks. We shall view
this decomposition as a b-ary tree. Then, intuitively, the E-distance at a node is the sum, over all
b children, of the minima of the E-distances at these children over a certain range of displacements
(possible “shifts” with respect to the other strings). At the leaves (corresponding to single characters
of x), the E-distance is simply the Hamming distance to corresponding positions in y.

We show that our characterization is an O(b
log b log n) approximation to ed(x, y). Intuitively,

the characterization manages to break-up the edit distance computation into independent distance
computations on smaller substrings. The independence is crucial here as it removes the need to
find a global alignment between the two strings, which is one of the main reasons why computing
edit distance is hard. We note that while the high-level approach of recursively partitioning the
strings is somewhat similar to the previous approaches from [BEK+03, OR07, AO09], the technical
development here is quite different. The previous hierarchical approaches all relied on the following
recurrence relation for the approximation factor α:

α(n) = c · α(n/b) + O(b),

for some c ≥ 2. It is easy to see that one obtains α(n) ≥ 2Ω(
√

log n) for any choice of b ≥ 2.
In contrast, our characterization is much more refined and has no multiplicative factor loss, i.e.,
c = 1 and hence α(n) = O(b logb n). We note that our characterization achieves a logarithmic
approximation for b = O(1) (although, we do not know efficient algorithms for this setting of b).

The second component of our query algorithm is a careful sampling procedure that approximates
E-distance up to a constant factor. The basic idea is to prune the above tree by subsampling at
each node a subset of its children. In particular, for a tree with arity b = (log n)1/ε, the hope
is to subsample (log n)O(1) children and use Chernoff-type bounds to argue that the subsample
approximates well the E-distance at that node. We note that Ω(log n) samples of children seem
necessary due to the minimum operation taken at each node. The estimate at each node has to
hold with high probability so that we can apply the union bound. After such a pruning of the tree,
we would be left with only (log n)O(logb n) = nO(ε) leaves, i.e., nO(ε) positions of x to query.

However, this natural approach of subsampling (log n)O(1) children at each node does not work
when β ≫ 1. Instead, we develop a non-uniform subsampling technique: for different nodes we
subsample children at different, carefully-chosen rates. From a high-level, our deployed technique
is somewhat reminiscent of the hierarchical decomposition and subsampling technique introduced
by Indyk and Woodruff [IW05] in the context of sketching and streaming algorithms.

6

Query Complexity Lower Bound. The gist of our lower bound is designing two “hard distri-
butions” D0 and D1, on strings in Σn, for which it is hard to distinguish with only a few queries to
x whether x ∈ D0 or x ∈ D1. At the same time, every two strings x, y in the support of the same
Di are at a small edit distance: ed(x, y) ≤ n/(αβ); but for a mixed pair x ∈ D0 and y ∈ D1, the
distance is large: ed(x, y) > n/β.

We start by making the following core observation. Take two random strings z0, z1 ∈ {0, 1}n.
Each Di, i ∈ {0, 1}, is generated by applying a cyclic shift by a random displacement r ∈ [1, n/100]
to the corresponding zi. We show that in order to discover, for an input string, from which Di

it came from, one has to make at least Ω(log n) queries. Intuitively, this follows from the fact
that if the number q of queries is small (q = o(log n)) then the algorithm’s view is close to the
uniform distribution on {0, 1}q , no matter which positions are queried. Nevertheless, the edit
distance between the two random strings is likely to be large, and a small shift will not change this
significantly.

We then amplify the above query lower bound by applying the same idea recursively. In a
string generated according to Di’s, we replace every symbol a ∈ {0, 1} by a random string selected
independently from Da. This way we obtain two distributions on strings of length n′ = n2, that
require Ω(log2 n) = Ω(log2 n′) queries to be told apart. We call the above operation of replacing
symbols by strings that come from other distributions a substitution product. Strings created
this way consist of n blocks of length n each. Intuitively, to distinguish from which of the new
distributions an input string comes from, one has to discover for at least Ω(log n) blocks which
distribution Da the respective block comes from. By applying the recursive step multiple times, we

obtain a 2Ω(log n
log log n

) lower bound for a polylogarithmic approximation factor.
To formally prove our result, we develop several tools. First, we need tools for analyzing the

behavior of edit distance under the product substitution. It turns out that to control edit distance
under the substitution product, we need to work with a large alphabet Σ. In the final step of
the construction, we map the large alphabet to sufficiently long random binary strings, thereby
extending the lower bound to the binary alphabet as well.

Second, we need tools for analyzing indistinguishability of our distributions under a small num-
ber of queries. For this, we introduce a notion of similarity of distributions. This notion smoothly
composes with the substitution product operation, which amplifies the similarity. We also show
that random acyclic shifts of random strings are likely to produce strings with high similarity.
Finally, we show that if an algorithm is able to distinguish distributions meeting our similarity
notion, then it must make many queries. We believe that these tools and ideas behind them may
find applications in showing query lower bounds for other problems.

1.4 Future Directions

We study a new query model that seems to tap into the hardness stemming from “repetitiveness” of
strings, obtaining eventually the first algorithm that computes a polylogarithmic approximation for
edit distance in near-linear time. We believe that our techniques may pave the way to significantly
improved algorithms for other tasks involving edit distance, such as the nearest neighbor search.
We mention below a few natural goals for future investigation.

Symmetric Model. Extend our results to the symmetric query model. A lower bound would
show a separation between edit and Ulam distances in this model as well. It seems plausible
that a variation of our hard distribution leads to a lower bound of the form n1/2+Ω(1/ log log n) for

7

polylogarithmic approximation. The current lower bound is of the form Ω(
√

n/α). A query upper
bound would likely lead to improved sub-linear time algorithms.

Embedding Lower Bounds. Is there an ω(log n) lower bound for the distortion required to embed
edit distance into ℓ1? Such a lower bound would answer a well-known open question [Mat07]. Note
that the core component of our hard distribution, the shift metric (i.e., hamming cube augmented
with cyclic shift operations), is known to require distortion Ω(log n) [KR06].

Communication Complexity. Prove a communication complexity upper bound of nε for all dis-
tance regimes, i.e., independent of β (instead of the current β ·nε), for DTEPβ with polylogarithmic
approximation.

Improved Algorithms. Tighten the asymmetric query complexity upper bound to n
ε log log log n

log log n

for approximation (log n)O(1/ε), perhaps by a more careful subsampling procedure. In particular, it
seems plausible that one may only sample (log log n)O(1) children at each node, instead of the present
(log n)O(1). This may ultimately lead to an algorithm that runs in time n1+o(1) and approximates
edit distance within a factor of, say, O(log2 n).

Perhaps more ambitiously, can one directly use our edit distance characterization to compute
an O(log n) approximation in subquadratic time?

2 Outline of Our Results

We now sketch the proofs of our results.

2.1 Outline of the Upper Bound

In this section, we provide an overview of our algorithmic results, in particular of the proof of
Theorem 1.2. Full statements and proofs of the results appear in Section 3.

Our proof has two major components. The first one is a characterization of edit distance by
a different “distance”, denoted E , which approximates edit distance well. The second component
is a sampling algorithm that approximates E up to a constant factor by making a small number
of queries into x. We describe each of the components below. In the following, for a string x and
integers s, t ≥ 1, x[s : t] denotes the substring of x comprising of x[s], . . . , x[t − 1].

2.1.1 Edit Distance Characterization: the E-distance

Our characterization of ed(x, y) may be viewed as computation on a tree, where the nodes corre-
spond to substrings x[s : s + l], for some start position s ∈ [n] and length l ∈ [n]. The root is the
entire string x[1 : n + 1]. For a node x[s : s + l], we obtain its children by partitioning x[s : s + l]
into b equal-length blocks, x[s+j · l/b : s+(j+1) · l/b], where j ∈ {0, 1, . . . b−1}. Hence b ≥ 2 is the

arity of the tree. The height of the tree is h
def
= logb n. We also use the following notation: for level

i ∈ {0, 1, . . . h}, let li
def
= n/bi be the length of strings at that level. Let Bi

def
= {1, li + 1, 2li + 1, . . .}

be the set of starting positions of blocks at level i.
The characterization is asymmetric in the two strings and is defined from a node of the tree to

a position u ∈ [n] of the string y. Specifically, if i = h, then the E-distance of x[s] to a position u is
0 only if x[s] = y[u] and u ∈ [n], and 1 otherwise. For i ∈ {0, 1, . . . h−1} and s ∈ Bi, we recursively
define the E-distance E(i, s, u) of x[s : s + li] to a position u as follows. Partition x[s : s + li] into

8

b blocks of length li+1 = li/b, starting at positions s + tj, where tj
def
= j · li+1, j ∈ {0, 1, . . . b − 1}.

Intuitively, we would like to define the E-distance E(i, s, u) as the summation of the E-distances
of each block x[s + tj : s + tj + li+1] to the corresponding position in y, i.e., u + tj. Additionally,
we allow each block to be displaced by some shift rj, incurring an additional charge of |rj | in the
E-distance. The shifts rj are chosen such as to minimize the final distance. Formally,

E(i, s, u)
def
=

b−1∑

j=0

min
rj∈Z

E(i + 1, s + tj, u + tj + rj) + |rj | . (1)

The E-distance from x to y is just the E-distance from x[1 : n + 1] to position 1, i.e., E(0, 1, 1).
We illustrate the E-distance for b = 4 in Figure 1. Notice that without the shifts (i.e., when

all rj = 0), the E-distance is exactly equal to the Hamming distance between the corresponding
strings. Hence the shifts rj are what differentiates the Hamming distance and E-distance.

x[s+li+1:s+2li+1]x[s:s+li+1] x[s+3li+1:s+4li+1]

r2 r3

x[s+2li+1:s+3li+1]

x

︸ ︷︷ ︸

x[s:s+li]

y[u:u+li]
︷ ︸︸ ︷

y

r0 r1

Figure 1: Illustration of the E-distance E(i, s, u) for b = 4. The pairs of blocks of the same shading
are the blocks whose E-distance is used for computing E(i, s, u).

We prove that the E-distance is a O(bh) = O(b
log b log n) approximation to ed(x, y) (see Theo-

rem 3.3). For b = 2, the E-distance is a O(log n) approximation to ed(x, y), but unfortunately, we
do not know how to compute it or approximate it well in better than quadratic time. It is also
easy to observe that one can compute a 1 + ε approximation to E-distance in Õε(n

2) time via a
dynamic programming that considers only rj’s which are powers of 1 + ε. Instead, we show that,
using the query algorithm (described next), we can compute a 1 + ε approximation to E-distance
for b = (log n)O(1/ε) in n1+ε time.

2.1.2 Sampling Algorithm

We now describe the ideas behind our sampling algorithm. The sampling algorithm approximates
the E-distance between x and y up to a constant factor. The query complexity is Q ≤ β·(log n)O(h) =
β · (log n)logb n for distinguishing E(0, 1, 1) > n/β from E(0, 1, 1) ≤ n/(2β). For the rest of this

9

overview, it is instructive to think about the setting where β = n0.1 and b = n0.01, although our
main result actually follows by setting b = (log n)O(1/ε).

The idea of the algorithm is to prune the characterization tree, and in particular prune the
children of each node. If we retain only polylog n children for each node, we would obtain the
claimed Q ≤ (log n)O(h) leaves at the bottom, which correspond to the sampled positions in x. The
main challenge is how to perform this pruning.

A natural idea is to uniformly subsample polylog n out of b children at each node, and use
Chernoff-type concentration bounds to argue that Equation (1) may be approximated only from
the E-distance estimates of the subsampled children. Note that, since we use the minimum operator
at each node, we have to aim, at each node, for an estimate that holds with high probability.

How much do we have to subsample at each node? The “rule of thumb” for a Chernoff-type
bound to work well is as follows. Suppose we have quantities a1, . . . am ∈ [0, ρ] respecting an upper
bound ρ > 0, and let σ =

∑

j∈[m] aj . Suppose we subsample several j ∈ [m] to form a set J . Then,
in order to estimate σ well (up to a small multiplicative factor) from aj for j ∈ J , we need to
subsample essentially a total of |J | ≈ ρ

σ ·m log m positions j ∈ [m]. We call this Uniform Sampling
Lemma (see Lemma 3.11 for complete statement).

With the above “sampling rule” in mind, we can readily see that, at the top of the tree, until
a level i, where li = n/β, there is no pruning that may be done (with the notation from above, we
have ρ = li = n/β and σ = n/β). However, we hope to prune the tree at the subsequent levels.

It turns out that such pruning is not possible as described. Specifically, consider a node v
at level i and its children vj, for j = 0, . . . b − 1. Suppose each child contributes a distance aj

to the sum E at node v (in Equation (1), for fixed u). Then, because of the bound on length
of the strings, we have that aj ≤ li+1 = (n/β)/b. At the same time, for an average node v, we

have
∑b−1

j=0 aj ≈ li/β = n/β2. By the Uniform Sampling Lemma from above, we need to take

a subsample of size |J | ≈ n/(βb)
n/β2 · b log b = β log b. If β were constant, we would obtain |J | ≪ b

and hence prune the tree (and, indeed, this approach works for β ≪ b). However, once β ≫ b,
such pruning does not seem possible. In fact, one can give counter-examples where such pruning
approach fails to approximate the E-distance.

To address the above challenge, we develop a way to prune the tree non-uniformly. Specifically,
for different nodes we will subsample its children at different, well-controlled rates. In fact, for each
node we will assign a “precision” w with the requirement that a node v, at level i, with precision
w, must estimate its E-distances to positions u up to an additive error li/w. The pruning and
assignment of precision will proceed top-bottom, starting with assigning a precision 4β to the root
node. Intuitively, the higher the precision of a node v, the denser is the subsampling in the subtree
rooted at v.

Technically, our main tool is a Non-uniform Sampling Lemma, which we use to assign the
necessary precisions to nodes. It may be stated as follows (see Lemma 3.12 for a more complete
statement). The lemma says that there exists some distribution W and a reconstruction algorithm
R such that the following two conditions hold:

• Fix some aj ∈ [0, 1] for j ∈ [m], with σ =
∑

j aj. Also, pick wj i.i.d. from the distribution
W for each j ∈ [m]. Let âj be estimators of aj, up to an additive error of 1/wj , i.e.,
|aj − âj | ≤ 1/wj . Then the algorithm R, given âj and wj for j ∈ [m], outputs a value that is
inside [σ − 1, σ + 1], with high probability.

• Ew∈W [w] = polylog m.

10

To internalize this statement, fix σ = 10, and consider two extreme cases. At one extreme, consider
some set of 10 j’s such that aj = 1, and all the others are 0. In this case, the previous uniform
subsampling rule does not yield any savings (to continue the parallel, uniform sampling can be
seen as having wj = m for the sampled j’s and wj = 1 for the non-sampled j’s). Instead, it would
suffice to take all j’s, but approximate them up to “weak” (cheap) precision (i.e., set wj ≈ 100 for
all j’s). At the other extreme is the case when aj = 10/m for all j. In this case, subsampling would
work but then one requires a much “stronger” (expensive) precision, of the order of wj ≈ m. These
examples show that one cannot choose all wj to be equal. If wj’s are too small, it is impossible
to estimate σ. If wj’s are too big, the expectation of w cannot be bounded by polylog m, and the
subsampling is too expensive.

The above lemma is somewhat inspired by the sketching and streaming technique introduced
by Indyk and Woodruff [IW05] (and used for the Fk moment estimation), where one partitions
elements aj by weight level, and then performs corresponding subsampling in each level. Although
related, our approach to the above lemma differs: for example, we avoid any definition of the weight
level (which was usually the source of some additional complexity of the use of the technique). For
completeness, we mention that the distribution W is essentially the distribution with probability
distribution function f(x) = ν/x2 for x ∈ [1,m3] and a normalization constant ν. The algorithm R
essentially uses the samples that were (in retrospect) well-approximated, i.e., âj ≫ 1/wj , in order
to approximate σ.

In our E-distance estimation algorithm, we use both uniform and non-uniform subsampling
lemmas at each node to both prune the tree and assign the precisions to the subsampled children.
We note that the lemmas may be used to obtain a multiplicative (1+ε′)-approximation for arbitrary
small ε′ > 0 for each node. To obtain this, it is necessary to use ε ≈ ε′/ log n, since over h ≈ log n
levels, we collect a multiplicative approximation factor of (1 + ε)h, which remains constant only as
long as ε = O(1/h).

2.2 Outline of the Lower Bound

In this section we outline the proof of Theorem 1.3. The full proof appears in Section 4. Here, we
focus on the main ideas, skipping or simplifying some of the technical issues.

As usual, the lower bound is based on constructing “hard distributions”, i.e., distributions
(over inputs) that cannot be distinguished using few queries, but are very different in terms of edit
distance. We sketch the construction of these distributions in Section 2.2.1. The full construction
appears in Section 4.4.1. In Section 2.2.2, we sketch the machinery that we developed to prove that
distinguishing these distributions requires many queries; the details appear in Section 4.2. We then
sketch in Section 2.2.3 the tools needed to prove that the distributions are indeed very different in
terms of edit distance; the detailed version appears in Section 4.3.

2.2.1 The Hard Distributions

We shall construct two distributions D0 and D1 over strings of a given length n. The distributions
satisfy the following properties. First, every two strings in the support of the same distribution Di,
denoted supp(Di), are close in edit distance. Second, every string in supp(D0) is far in edit distance
from every string in supp(D1). Third, if an algorithm correctly distinguishes (with probability at
least 2/3) whether its input string is drawn from D0 or from D1, it must make many queries to the
input.

11

Given two such distributions, we let x be any string from supp(D0). This string is fully known
to the algorithm. The other string y, to which the algorithm only has query access, is drawn from
either D0 or D1. Since distinguishing the distributions apart requires many queries to the string,
so does approximating edit distance between x and y.

Randomly Shifted Random Strings. The starting point for constructing these distributions
is the following idea. Choose at random two base strings z0, z1 ∈ {0, 1}n. These strings are likely
to satisfy some “typical properties”, e.g. be far apart in edit distance (at least n/10). Now let each
Di be the distribution generated by selecting a cyclic shift of zi by r positions to the right, where r
is a uniformly random integer between 1 and n/1000. Every two strings in the same supp(Di) are
at distance at most n/500, because a cyclic shift by r positions can be produced by r insertions
and r deletions. At the same time, by the triangle inequality, every string in supp(D0) and every
string in supp(D1) must be at distance at least n/10 − 2 · n/500 ≥ n/20.

How many queries are necessary to learn whether an input string is drawn from D0 or from D1?
If the number q of queries is small, then the algorithm’s view is close to a uniform distribution on
{0, 1}q under both D0 and D1. Thus, the algorithm is unlikely to distinguish the two distributions
with probability significantly higher than 1/2. This is the case because each base string zi is chosen
at random and because we consider many cyclic shifts of it. Intuitively, even if the algorithm knows
z0 and z1, the random shift makes the algorithm’s view a nearly-random pattern, because of the
random design of z0 and z1. Below we introduce rigorous tools for such an analysis. They prove,
for instance, that even an adaptive algorithm for this case, and in particular every algorithm that
distinguishes edit distance ≤ n/500 and ≥ n/20, must make Ω(log n) queries.

One could ask whether the Ω(log n) lower bound for the number of queries in this construction
can be improved. The answer is negative, because for a sufficiently large constant C, by querying
any consecutive C log n symbols of z1, one obtains a pattern that most likely does not occur in z0,
and therefore, can be used to distinguish between the distributions. This means that we need a
different construction to show a superlogarithmic lower bound.

Substitution Product. We now introduce the substitution product, which plays an important
role in our lower bound construction. Let D be a distribution on strings in Σm. For each a ∈ Σ,
let Ea be a distribution on (Σ′)m

′
, and denote their entire collection by E def

= (Ea)a∈Σ. Then
the substitution product D ⊛ E is the distribution generated by drawing a string z from D, and
independently replacing every symbol zi in z by a string Bi drawn from Ezi .

Strings generated by the substitution product consist of m blocks. Each block is independently
drawn from one of the Ea’s, and a string drawn from D decides which Ea each block is drawn from.

Recursive Construction. We build on the previous construction with two random strings
shifted at random, and extend it by introducing recursion. For simplicity, we show how this
idea works for two levels of recursion. We select two random strings z0 and z1 in {0, 1}

√
n. We

use a sufficiently small positive constant c to construct two distributions E0 and E1. E0 and E1 are
generated by taking a cyclic shift of z0 and z1, respectively, by r symbols to the right, where r is a
random integer between 1 and c

√
n. Let E def

= (Ei)i∈{0,1}.

Our two hard distributions on {0, 1}n are D0
def
= E0⊛E , and D1

def
= E1⊛E . As before, one can show

that distinguishing a string drawn from E0 and a string drawn from E1 is likely to require Ω(log n)
queries. In other words, the algorithm has to know Ω(log n) symbols from a string selected from

12

one of E0 and E1. Given the recursive structure of D0 and D1, the hope is that distinguishing them
requires at least Ω(log2 n) queries, because at least intuitively, the algorithm “must” know for at
least Ω(log n) blocks which Ei they come from, each of the blocks requiring Ω(log n) queries. Below,
we describe techniques that we use to formally prove such a lower bound. It is straightforward to
show that every two strings drawn from the same Di are at most 4cn apart. It is slightly harder
to prove that strings drawn from D0 and D1 are far apart. The important ramification is that for
some constants c1 and c2, distinguishing edit distance < c1n and > c2n requires Ω(log2 n) queries,
where one can make c1 much smaller than c2. For comparison, under the Ulam metric, O(log n)
queries suffice for such a task (deciding whether distance between a known string and an input
string is < c1n or > c2n, assuming 2c1 < c2 [ACCL07]).

To prove even stronger lower bounds, we apply the substitution product several times, not just
once. Pushing our approach to the limit, we prove that distinguishing edit distance O(n/polylog n)
from Ω(n) requires nΩ(1/log log n) queries. In this case, Θ (log n/log log n) levels of recursion are used.
One slight technical complication arises in this case. Namely, we need to work with a larger alphabet
(rather than binary). Our result holds true for the binary alphabet nonetheless, since we show that
one can effectively reduce the larger alphabet to the binary alphabet.

2.2.2 Bounding the Number of Queries

We start with definitions. Let D0, . . . , Dk be distributions on the same finite set Ω with p1, . . . , pk :
Ω → [0, 1] as the corresponding probability mass functions. We say that the distributions are
α-similar, where α ≥ 0, if for every ω ∈ Ω,

(1 − α) · max
i=1,...,k

pi(ω) ≤ min
i=1,...,k

pi(ω).

For a distribution D on Σn and Q ⊆ [n], we write D|Q to denote the distribution created by
projecting every element of Σn to its coordinates in Q. Let this time D1, . . . , Dk be probability
distributions on Σn. We say that they are uniformly α-similar if for every subset Q of [n], the
distributions D1|Q, . . . , Dk|Q are α|Q|-similar. Intuitively, think of Q as a sequence of queries that
the algorithm makes. If the distributions are uniformly α-similar for a very small α, and |Q| ≪ 1/α,
then from the limited point of view of the algorithm (even an adaptive one), the difference between
the distributions is very small.

In order to use the notion of uniform similarity for our construction, we prove the following
three key lemmas.

Uniform Similarity Implies a Lower Bound on the Number of Queries (Lemma 4.4).
This lemma formalizes the ramifications of uniform α-similarity for a pair of distributions. It shows
that if an algorithm (even an adaptive one) distinguishes the two distributions with probability at
least 2/3, then it has to make at least 1/(6α) queries. The lemma implies that it suffices to bound
the uniform similarity in order to prove a lower bound on the number of queries.

The proof is based on the fact that for every setting of the algorithm’s random bits, the algorithm
can be described as a decision tree of depth q, if it always makes at most q queries. Then, for every
leaf, the probability of reaching it does not differ by more than a factor in [1 − αq, 1] between
the two distributions. This is enough to bound the probability the algorithm outputs the correct
answer for both the distributions.

Random Cyclic Shifts of Random Strings Imply Uniform Similarity (Lemma 4.7). This
lemma constructs block-distributions that are uniformly similar using cyclic shifts of random base

13

strings. It shows that if one takes n random base strings in Σn and creates n distributions by shifting
each of the strings by a random number of indices in [1, s], then with probability at least 2/3 (over
the choice of the base strings) the created distributions are uniformly O(1/ log|Σ|

s
log n)-similar.

It is easy to prove this lemma for any set Q of size 1. In this case, every shift gives an independent
random bit, and the bound directly follows from the Chernoff bound. A slight obstacle is posed by
the fact that for |Q| ≥ 2, sequences of |Q| symbols produced by different shifts are not necessarily
independent, since they can share some of the symbols. To address this issue, we show that there is
a partition of shifts into at most |Q|2 large sets such that no two shifts of Q in the same set overlap.
Then we can apply the Chernoff bound independently to each of the sets to prove the bound.

In particular, using this and the previous lemmas, one can show the result claimed earlier that
shifts of two random strings in {0, 1}n by an offset in [1, cn] produce distributions that require
Ω(log n) queries to be distinguished. It follows from the lemma that the distributions are likely to
be uniformly O(1/ log n)-similar.

Substitution Product Amplifies Uniform Similarity (Lemma 4.8). Perhaps the most
surprising property of uniform similarity is that it nicely composes with the substitution product.
Let D1, . . . , Dk be uniformly α-similar distributions on Σn. Let E = (Ea)a∈Σ, where Ea, a ∈ Σ,
are uniformly β-similar distributions on (Σ′)n

′
. The lemma states that D1 ⊛ E , . . . , Dk ⊛ E are

uniformly αβ-similar.
The main idea behind the proof of the lemma is the following. Querying q locations in a string

that comes from Di ⊛ E , we can see a difference between distributions in at most βq blocks in
expectation. Seeing the difference is necessary to discover which Ej each of the blocks comes from.
Then only these blocks can reveal the identity of Di ⊛ E , and the difference in the distribution if q′

blocks are revealed is bounded by αq′.
The lemma can be used to prove the earlier claim that the two-level construction produces

distributions that require Ω(log2 n) queries to be told apart.

2.2.3 Preserving Edit Distance

It now remains to describe our tools for analyzing the edit distance between strings generated by our
distributions. All of these tools are collected in Section 4.3. In most cases we focus in our analysis
on ed, which is the version of edit distance that only allows for insertions and deletions. It clearly
holds that ed(x, y) ≤ ed(x, y) ≤ 2 · ed(x, y), and this connection is tight enough for our purposes.
An additional advantage of ed is that for any strings x and y, 2 LCS(x, y) + ed(x, y) = |x| + |y|.

We start by reproducing a well known bound on the longest common substring of randomly
selected strings (Lemma 4.9). It gives a lower bound on LCS(x, y) for two randomly chosen strings.
The lower bound then implies that the distance between two strings chosen at random is large,
especially for a large alphabet.

Theorem 4.10 shows how the edit distance between two strings in Σn changes when we substitute
every symbol with a longer string using a function B : Σ → (Σ′)n

′
. The relative edit distance (that

is, edit distance divided by the length of the strings) shrinks by an additive term that polynomially
depends on the maximum relative length of the longest common string between B(a) and B(b) for
different a and b. It is worth to highlight the following two issues:

• We do not need a special version of this theorem for distributions. It suffices to first bound
edit distance for the recursive construction when instead of strings shifted at random, we use

14

strings themselves. Then it suffices to bound by how much the strings can change as a result
of shifts (at all levels of the recursion) to obtain desired bounds.

• The relative distance shrinks relatively fast as a result of substitutions. This implies that we
have to use an alphabet of size polynomial in the number of recursion levels. The alphabet
never has to be larger than polylogarithmic, because the number of recursion levels is always
o(log n).

Finally, Theorem 4.12 and Lemma 4.14 effectively reduce the alphabet size, because they show
that a lower bound for the binary alphabet follows immediately from the one for a large alphabet,
with only a constant factor loss in the edit distance. It turns out that it suffices to map every
element of the large alphabet Σ to a random string of length Θ(log |Σ|) over the binary alphabet.

The main idea behind proofs of the above is that strings constructed using a substitution
product are composed of rather rigid blocks, in the sense that every alignment between two such
strings, say x⊛E and y ⊛E , must respect (to a large extent) the block structure, in which case one
can extract from it an alignment between the two initial strings x and y.

3 Fast Algorithms via Asymmetric Query Complexity

In this section we describe our near-linear time algorithm for estimating the edit distance between
two strings. As we mentioned in the introduction, the algorithm is obtained from an efficient query
algorithm.

The main result of this section is the following query complexity upper bound theorem, which
is a full version of Theorem 1.2. It implies our near-linear time algorithm for polylogarithmic
approximation (Theorem 1.1).

Theorem 3.1. Let n ≥ 2, β = β(n) ≥ 2, and integer b = b(n) ≥ 2 be such that (logb n) ∈ N.
There is an algorithm solving DTEPβ with approximation α = O(b logb n) and β · (log n)O(logb n)

queries into x. The algorithm runs in n · (log n)O(logb n) time.
For every constant β = O(1) and integer t ≥ 2, there is an algorithm for solving DTEPβ with

O(n1/t) approximation and O(log n)t−1 queries. The algorithm runs in Õ(n) time.

In particular, note that we obtain Theorem 1.1 by setting b = (log n)c/ε for a suitably high
constant c > 1.

The proof is partitioned in three stages. (The first stage corresponds to the first “major com-
ponent” mentioned in Introduction, and Section 2.1, and the next two stages correspond to the
second “major component”.) In the first stage, we describe a characterization of edit distance by a
different quantity, namely E-distance, which approximates edit distance well. The characterization
is parametrized by an integer parameter b ≥ 2. A small b leads to a small approximation factor (in
fact, as small as O(log n) for b = 2), whereas a large b leads to a faster algorithm. In the second
stage, we show how one can design a sampling algorithm that approximates E-distance for some
setting of the parameter b, up to a constant factor, by making a small number of queries into x.
In the third stage, we show how to use the query algorithm to obtain a near-linear time algorithm
for edit distance approximation.

The three stages are described in the following three sections, and all together give the proof of
Theorem 3.1.

15

3.1 Edit Distance Characterization: the E-distance

Our characterization may be viewed as computation on a tree, where the nodes correspond to
substrings x[s : s + l], for some start position s ∈ [n] and length3 l ∈ [n]. The root is the entire
string x[1 : n + 1]. For a node x[s : s + l], the children are blocks x[s + j · l/b : s + (j + 1) · l/b],
where j ∈ {0, 1, . . . b − 1}, and b is the arity of the tree. The E-distance for the node x[s : s + l] is
defined recursively as a function of the distances of its children. Note that the characterization is
asymmetric in the two strings.

Before giving the definition we establish further notation. We fix the arity b ≥ 2 of the tree,
and let h

def
= logb n ∈ N be the height of the tree. Fix some tree level i for 0 ≤ i ≤ h. Consider

some substring x[s : s + li] at level i, where li
def
= n/bi. Let Bi

def
= {1, li + 1, 2li + 1, . . .} be the set of

starting positions of blocks at level i.

Definition 3.2 (E-distance). Consider two strings x, y of length n ≥ 2. Fix i ∈ {0, 1, . . . h}, s ∈ Bi,
and a position u ∈ Z.

If i = h, then the E-distance of x[s : s + li] to the position u is 1 if u 6∈ [n] or x[s] 6= y[u], and
0 otherwise.

For i ∈ {0, 1, . . . h − 1}, we recursively define the E-distance Ex,y(i, s, u) of x[s : s + li] to the
position u as follows. Partition x[s : s + li] into b blocks of length li+1 = li/b, starting at positions
s + jli+1, where j ∈ {0, 1, . . . b − 1}. Then

Ex,y(i, s, u)
def
=

b−1∑

j=0

min
rj∈Z

Ex,y(i + 1, s + jli+1, u + jli+1 + rj) + |rj| .

The E-distance from x to y is just the E-distance from x[1 : n+1] to position 1, i.e., Ex,y(0, 1, 1).

We illustate the E-distance for b = 4 in Figure 1. Since x and y will be clear from the context,
we will just use the notation E(i, s, u) without indices x and y.

The main property of the E-distance is that it gives a good approximation to the edit distance
between x and y, as quantified in the following theorem, which we prove below.

Theorem 3.3 (Characterization). For evry b ≥ 2 and two strings x, y ∈ Σn, the E-distance between
x and y is a 6 · b

log b · log n approximation to the edit distance between x and y.

We also give an alternative, equivalent definition of the E-distance between x and y. It is
motivated by considering the matching (alignment) induced by the E-distance when computing
E(0, 1, 1). In particular, when computing E(0, 1, 1) recursively, we can consider all the “matching
positions” (positions u + jli+1 + rj for rj’s achieving the minimum). We denote by Z a vector of
integers zi,s, indexed by i ∈ {0, 1, . . . h} and s ∈ Bi, where z0,1 = 1 by convention. The coordinate
zi,s should be understood as the position to which we match the substring x[s : s + li] in the
calculation of E(0, 1, 1). Then we define the cost of Z as

cost(Z)
def
=

h−1∑

i=0

∑

s∈Bi

b−1∑

j=0

|zi,s + jli+1 − zi+1,s+jli+1
|.

3We remind that the notation x[s : s + l] corresponds to characters x[s], x[s + 1], . . . x[s + l − 1]. More generally,
[s : s + l] stands for the interval {s, s + 1, . . . , s + l − 1}. This convention simplifies subsequent formulas.

16

The cost of Z can be seen as the sum of the displacements |rj | that appear in the calculation
of the E-distance from Definition 3.2. The following claim asserts an alternative definition of the
E-distance.

Claim 3.4 (Alternative definition of E-distance). The E-distance between x and y is the minimum
of

cost(Z) +
∑

s∈[n]

H(x[s], y[zh,s]) (2)

over all choices of the vector Z = (zi,s)i∈{0,1,...h},s∈Bi
with z0,1 = 1, where H(·, ·) is the Hamming

distance, namely H(x[s], y[zh,s]) is 1 if zh,s 6∈ [n] or x[s] 6= y[zh,s], and 0 otherwise.

Proof. The quantity (2) simply unravels the recursive formula from Definition 3.2. The equiva-
lence between them follows from the fact that |zi,s + jli+1 − zi+1,s+jli+1

| directly corresponds to
quantities |rj| in the Ex,y(i, s, zi,s) definition, which appear in the computation on the tree, and the
∑

s∈[n] H(x[s], y[zh,s]) term corresponds to the summation of Ex,y(h, s, zh,s) over all s ∈ [n].

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Fix n, b ≥ 2 and let h
def
= logb n. We break the proof into two parts, an upper

bound and a lower bound on the E-distance (in terms of edit distance). They are captured by the
following two lemmas, which we shall prove shortly.

Lemma 3.5. The E-distance between x and y is at most 3hb · ed(x, y).

Lemma 3.6. The edit distance ed(x, y) is at most twice the E-distance between x and y.

Combining these two lemmas gives 1
2 ed(x, y) ≤ Ex,y(0, 1, 1) ≤ 5hb · ed(x, y), which proves

Theorem 3.3.

We proceed to prove these two lemmas.

Proof of Lemma 3.5. Let A : [n] → [n] ∪ {⊥} be an optimal alignment from x to y. Namely A is
such that:

• If A(s) 6= ⊥, then x[s] = y[A(s)].

• If A(s1) 6= ⊥, A(s2) 6= ⊥, and s1 < s2, then A(s1) < A(s2).

• L
def
= |A−1(⊥)| is minimized.

Note that n − L is the length of the Longest Common Subsequence (LCS) of x and y. It clearly
holds that 1

2 ed(x, y) ≤ L ≤ ed(x, y).
To show an upper bound on the E-distance, we use the alternative characterization from

Claim 3.4. Specifically, we show how to construct a vector Z proving that the E-distance is small.
At each level i ∈ {1, 2, . . . h}, for each block x[s : s + li] where s ∈ Bi, we set zi,s

def
= A(j), where

j is the smallest integer j ∈ [s : s + li] such that A(j) 6= ⊥ (i.e., to match a block we use the first in

it that is aligned under the alignment A). If no such j exists, then zi,s
def
= zi−1,s′ + (s − s′), where

s′
def
= li−1 · ⌊(s − 1)/li−1⌋ + 1, that is, s′ is such that x[s′ : s′ + li−1] is the parent of x[s : s + li] in

the tree.

17

Note that it follows from the definition of zh,s and L that
∑

s∈[n] H(x[s], y[zh,s]) = L. It remains
to bound the other term cost(Z) in the alternative definition of E-distance.

To accomplish this, for every i ∈ {0, 1, 2, . . . , h− 1} and s ∈ Bi, we define di,s as the maximum
of |zi,s + jli+1−zi+1,s+jli+1

| over j ∈ {0, . . . , b−1}. Although we cannot bound each di,s separately,
we bound the sum of di,s for each level i.

Claim 3.7. For each i ∈ {0, 1, . . . h}, we have that
∑

s∈Bi
di,s ≤ 2L.

Proof. We shall prove that each di,s is bounded by Xi,s +Yi,s, where Xi,s and Yi,s are essentially the
number of unmatched positions in x and in y, respectively, that contribute to di,s. We then argue
that both

∑

s∈Bi
Xi,s and

∑

s∈Bi
Yi,s are bounded by L, thus completing the proof of the claim.

Formally, let Xi,s be the number of positions j ∈ [s : s + li] such that A(j) = ⊥. If Xi,s = li,
then clearly di,s = 0. It is also easily verified that if Xi,s = li − 1, then di,s ≤ li − 1. In both cases,

di,s ≤ Xi,s, and we also set Yi,s
def
= 0.

If Xi,s ≤ li − 2, let j′ be the largest integer j′ ∈ [s : s + li] for which A(j′) 6= ⊥ (note
that j′ exists and it is different from the smallest such possible integer, which was called j when
we defined zi,s, because Xi,s ≤ li − 2). In this case, let Yi,s be A(j′) − zi,s + 1 − (li − Xi,s),
which is the number of positions in y between zi,s and A(j′) (inclusive) that are not aligned

under A. Let ∆i,s,j
def
= zi,s + jli+1 − zi+1,s+jli+1

for j ∈ {0, . . . , b − 1}. By definition, it holds
di,s = maxj |∆i,s,j|. Now fix j. If ∆i,s,j 6= 0, then there is an index k ∈ [s + jli+1 : s + (j + 1)li+1]
such that A(k) = zi+1,s+jli+1

. If ∆i,s,j > 0 (which corresponds to a shift to the left), then at least
∆i,s,j indices j′ ∈ [s : k] are such that A(j′) = ⊥, and therefore, |∆i,s,j| ≤ Xi,s. If ∆i,s,j < 0 (which
corresponds to a shift to the right), then at least |∆i,s,j| positions in y between zi,s and zi+1,s+jli+1

are not aligned in A. Thus, |∆i,s,j| ≤ Yi,s.
In conclusion, for every s ∈ Bi, di,s ≤ Xi,s+Yi,s. Observe that

∑

s∈Bi
Xi,s = L and

∑

s∈Bi
Yi,s ≤

L (because they correspond to distinct positions in x and in y that are not aligned by A). Hence,
we obtain that

∑

s∈Bi
di,s ≤

∑

s∈Bi
Xi,s + Yi,s ≤ 2L.

We now claim that cost(Z) ≤ 2hbL. Indeed, consider a block x[s : s + li] for some i ∈
{0, 1, . . . h−1} and s ∈ Bi, and one of its children x[s+ jli+1 : s+(j+1)li+1] for j ∈ {0, 1, . . . b−1}.
The contribution of this child to the sum cost(Z) is |zi,s + jli+1 − zi+1,s+jli+1

| ≤ di,s by definition.
Hence, using Claim 3.7, we conclude that

cost(Z) ≤
h−1∑

i=0

∑

s∈Bi

b−1∑

j=0

di,s ≤
h−1∑

i=0

∑

s∈Bi

di,s · b ≤ h · 2L · b.

Finally, by Claim 3.4, we have that the E-distance between x and y is at most 2hbL + L ≤
2hb · ed(x, y) + ed(x, y) ≤ 3hb · ed(x, y).

Proof of Lemma 3.6. We again use the alternative characterization given by Claim 3.4. Let Z be
the vector obtaining the minimum of Equation (2). Define, for i ∈ {0, 1, . . . h} and s ∈ Bi,

δi,s
def
=

∑

s′∈[s:s+li]

H(x[s′], y[zh,s′]) +
∑

i′:i≤i′<h

∑

s′∈Bi′∩[s:s+li]

b−1∑

j=0

∣
∣
∣zi′,s′ + jli′+1 − zi′+1,s′+jli′+1

∣
∣
∣ .

18

Note that δ0,1 equals the E-distance by Claim 3.4. Also, we have the following inductive equality
for i ∈ {0, 1, . . . h − 1} and s ∈ Bi:

δi,s =
b−1∑

j=0

(
δi+1,s+jli+1

+ |zi,s + jli+1 − zi+1,s+jli+1
|
)
. (3)

We now prove inductively for i ∈ {0, 1, 2 . . . h} that for each s ∈ Bi, the length of the LCS of
x[s : s + li] and y[zi,s : zi,s + li] is at least li − δi,s.

For the base case, when i = h, the inductive hypothesis is trivially true. If x[s] = y[zi,s], then
the LCS is of length 1 and δh,s = 0. If x[s] 6= y[zi,s], then the LCS is of length 0 and δh,s = 1.

Now we prove the inductive hypothesis for i ∈ {0, 1, . . . h − 1}, assuming it holds for i + 1. Fix
a string x[s : s + li], and let sj = s + jli+1 for j ∈ {0, 1, . . . b− 1}. By the inductive hypothesis, for
each j ∈ {0, 1, . . . b− 1}, the length of the LCS between x[sj : sj + li+1] and y[zi+1,sj : zi+1,sj + li+1]
is at least li+1−δi+1,sj . In this case, the substring in y starting at zi,s + jli+1, namely y[zi,s + jli+1 :
zi,s+(j+1)li+1], has an LCS with x[sj : sj+li+1] of length at least li+1−δi+1,sj−|zi,s+jli+1−zi+1,sj |.
Thus, by Equation (3), the LCS of x[s : s + li] and y[zi,s : zi,s + li] is of length at least

b−1∑

j=0

(
li+1 − δi+1,sj − |zi,s + jli+1 − zi+1,sj |

)
= li − δi,s,

which finishes the proof of the inductive step.
For i = 0, this implies that ed(x, y) ≤ 2δ0,1 = 2Ex,y(0, 1, 1).

3.2 Sampling Algorithm

We now describe the sampling and estimation algorithms that are used to obtain our query complex-
ity upper bounds. In particular, our algorithm approximates the E-distance defined in the previous
section. The guarantee of our algorithms is that the output Ê satisfies (1 − o(1))E(0, 1, 1) − n/β ≤
Ê ≤ (1 + o(1))E(0, 1, 1) + n/β. This is clearly sufficient to distinguish between E(0, 1, 1) ≤ n/β and
E(0, 1, 1) ≥ 4n/β. After presenting the algorithm, we prove its correctness and prove that it only
samples β · nO(ε) positions of x in order to make the decision.

3.2.1 Algorithm Description

We now present our sampling algorithm, as well as the estimation algorithm, which given y and
the sample of x, decides DTEPβ.

Sampling algorithm. To subsample x, we start by partitioning x recursively into blocks as
defined in Definition 3.2. In particular, we fix a tree of arity b, indexed by pairs (i, s) for i ∈
{0, 1, . . . h}, and s ∈ Bi. At each level i = 0, . . . h, we have a subsampled set Ci ⊆ Bi of vertices at
that level of the tree. The set Ci is obtained from the previous one by extending Ci−1 (considering
all the children), and a careful subsampling procedure. In fact, for each element in Ci, we also
assign a number w ≥ 1, representing a “precision” and describing how well we want to estimate the
E distance at that node, and hence governing the subsampling of the subtree rooted at the node.

Our sampling algorithm works as follows. We use a (continuous) distribution W on [1, n3],
which we define later, in Lemma 3.12.

19

Algorithm 1: Sampling Algorithm

Take C0 to be the root vertex (indexed (i, s) = (0, 1)), with precision w(0,1) = β.1

for each level i = 1, . . . , h, we construct Ci as follows do2

Start with Ci being empty.3

for each node v = (i − 1, s) ∈ Ci−1 do4

Let wv be its precision, and set pv = wv
b · O(log3 n).5

If pv ≥ 1, then set Jv = {(i, s + jli) | 0 ≤ j < b} to be the set of all the b children of v,6

and add them to Ci, each with precision pv.
Otherwise, when pv < 1, sample each of the b children of v with probability pv, to7

form a set Jv ⊆ {i} × ([s : s + li−1] ∩ Bi). For each v′ ∈ Jv, draw wv′ i.i.d. from W,
and add node v′ to Ci with precision wv′ .

Query the characters x[s] for all (h, s) ∈ Ch — this is the output of the algorithm.8

Estimation Algorithm. We compute a value τ(v, z), for each node v ∈ ∪iCi and position
z ∈ [n], such that τ(v, z) is a good approximation (1 + o(1) factor) to the E-distance of the node v
to position z.

We also use a “reconstruction algorithm” R, defined in Lemma 3.12. It takes as input at most
b quantities, their precision, and outputs a positive number.

Algorithm 2: Estimation Algorithm

For each sampled leaf v = (h, s) ∈ Ch and z ∈ [n] we set τ(v, z) = H(x[s], y[z]).1

for each level i = h − 1, j − 2, . . . , 0, position z ∈ [n], and node v ∈ Ci with precision wv do2

We apply the following procedure P (v, z) to obtain τ(v, z).3

For each v′ ∈ Jv , where v′ = (i + 1, s + jli+1) for some 0 ≤ j < b, let4

δv′
def
= min

k:|k|≤n
τ(v′, z + jli+1 + k) + |k|.

If pv ≥ 1, then let τ(v, z) =
∑

v′∈Jv
δv′ .5

If pv < 1, set τ(v, z) to be the output of the algorithm R on the vector (
δv′

li+1
)v′∈Jv with6

precisions (wv′)v′∈Jv , multiplied by li+1/pv.

The output of the algorithm is τ(r, 1) where r = (0, 1) is the root of the tree.7

3.2.2 Analysis Preliminaries: Approximators and a Concentration Bound

We use the following approximation notion that captures both an additive and a multiplicative
error. For convenience, we work with factors eε instead of usual 1 + ε.

Definition 3.8. Fix ρ > 0 and some f ∈ [1, 2]. For a quantity τ ≥ 0, we call its (ρ, f)–
approximator any quantity τ̂ such that τ/f − ρ ≤ τ̂ ≤ fτ + ρ.

It is immediate to note the following additive property: if τ̂1, τ̂2 are (ρ, f)-approximators to
τ1, τ2 respectively, then τ̂1 + τ̂2 is a (2ρ, f)-approximator for τ1 + τ2. Also, there’s a composion

20

property: if τ̂ ′ is an (ρ′, f ′)-approximator to τ̂ , which itself is a (ρ, f)-approximator to τ , then τ̂ ′ is
a (ρ′ + f ′ρ, ff ′)-aproximator to τ .

The definition is motivated by the following concentration statement on the sum of random
variables. The statement is an immediate application of the standard Chernoff/Hoeffding bounds.

Lemma 3.9 (Sum of random variables). Fix n ∈ N, ρ > 0, and error probability δ. Let Zi ∈ [0, ρ]
be independent random variables, and let ζ > 0 be a sufficiently large absolute constant. Then for

every ε ∈ (0, 1), the summation
∑

i∈[n] Zi is a (ζρ log 1/δ
ε2 , eε)-approximator to E

[
∑

i∈[n] Zi

]

, with

probability ≥ 1 − δ.

Proof of Lemma 3.9. By rescaling, it is sufficient to prove the claim for ρ = 1. Let µ = E

[
∑

i∈[n] Zi

]

.

If µ > ζ
4 · log 1/δ

ε2 , then, a standard application of the Chernoff implies that
∑

i Zi is a eε approxi-
mation to µ, with ≥ 1 − δ probability, for some sufficiently high ζ > 0.

Now assume that µ ≤ ζ
4 ·

log 1/δ
ε2 . We use the following variant of the Hoeffding inequality, which

can be derived from [Hoe63].

Lemma 3.10 (Hoeffding bound). Let Zi be n independent random variables such that Zi ∈ [0, 1],

and E

[
∑

i∈[n] Zi

]

= µ. Then, for any t > 0, we have that Pr [
∑

i Zi ≥ t] ≤ e−(t−2µ).

We apply the above lemma for t = ζ · log 1/δ
ε2 . We obtain that Pr[

∑

i Zi ≥ t] ≤ e−t/2 =

e−Ω(log 1/δ) < δ, which completes the proof that
∑

i Zi is a (ζ log 1/δ
ε2 , eε)-approximator to µ (when

ρ = 1).

3.2.3 Main Analysis Tools: Uniform and Non-uniform Sampling Lemmas

We present our two main subsampling lemmas that are applied, recursively, at each node of the
tree. The first lemma, on Uniform Sampling, is a simple Chernoff bound in a suitable regime.

The second lemma, called Non-uniform Sampling Lemma, is the heart of our sampling, and
is inspired by a sketching/streaming technique introduced in [IW05] for optimal estimation of Fk

moments in a stream. Although a relative of their method, our lemma is different both in intended
context and actual technique. We shall use the constant ζ > 0 coming from Lemma 3.9.

Lemma 3.11 (Uniform Sampling). Fix b ∈ N, ε > 0, and error probability δ > 0. Consider
some aj, j ∈ [b], such that aj ∈ [0, 1/b]. For arbitrary w ∈ [1,∞), construct the set J ⊆ [b] by

subsampling each j ∈ [b] with probability pw = min{1, w
b · ζ log 1/δ

ε2 }. Then, with probability at least

1 − δ, the value 1
pw

∑

j∈J aj is a (1/w, eε)-approximator to
∑

j∈[b] aj, and |J | ≤ O(w · log 1/δ
ε2).

Proof. If pw = 1, then J = [b] and there is nothing to prove; so assume that pw = w
b · ζ log 1/δ

ε2 < 1
for the rest.

The bound on |J | follows from a standard application of the Chernoff bound: E [|J |] = pwb ≤
O(w · log 1/δ

ε2), hence the probability that |J | exceeds twice the quantity is at most e−Ω(log 1/δ) ≤ δ/2.
We are going to apply Lemma 3.9 to the variables Zj = aj/pw · χ[j ∈ J], where the indicator

variable χ[j ∈ J] is 1 iff j ∈ J . Note that 0 ≤ Zj ≤ ε2

w·ζ log 1/δ . We thus obtain that
∑

j∈[b] Zj is a

(ζε−2 log 1/δ
w·ζε−2 log 1/δ , eε)-approximator, and hence (1/w, eε)-approximator, to E

[
∑

j Zj

]

=
∑

j∈[b] pw · aj

pw
=

∑

j∈[b] aj .

21

We now present and prove the Non-uniform Sampling Lemma.

Lemma 3.12 (Non-uniform Sampling). Fix integers n ≤ N , approximation ε > 0, factor 1 < f <
1.1, error probability δ > 0, and an “additive error bound” ρ > 6n/ε/N3. There exists a distribution

W on the real interval [1, N3] with Ew∈W [w] ≤ O(1
ρ · log 1/δ

ε3 · log N), as well as a “reconstruction
algorithm” R, with the following property.

Take arbitrary ai ∈ [0, 1], for i ∈ [n], and let σ =
∑

i∈[n] ai. Suppose one draws wi i.i.d. from
W, for each i ∈ [n], and let âi be a (1/wi, f)-approximator of ai. Then, given âi and wi for all
i ∈ [n], the algorithm R generates a (ρ, f · eε)-approximator to σ, with probability at least 1 − δ.

For concreteness, we mention that W is the maximum of O(1
ρ ·

log 1/δ
ε3) copies of the (truncated)

distribution 1/x2 (essentially equivalent to a distribution of x where the logarithm of x is distributed
geometrically).

Proof. We start by describing the distribution W and the algorithm R. Fix k = 2ζ
ρ · log 1/δ

(ε/2)3
. We

first describe a related distribution: let W1 be distribution on x such that the pdf function is
p1(x) = ν/x2 for 1 ≤ x ≤ N3 and p1(x) = 0 otherwise, where ν = (

∫∞
1 p1(x) dx)−1 = (1− 1/N3)−1

is a normalization constant. Then W is the distribution of x where we choose k i.i.d. variables
x1, . . . xk from W1 and then set x = maxi∈[k] xi. Note that the pdf of W is p(x) = νk k

x2 (1−1/x)k−1.
The algorithm R works as follows. For each i ∈ [n], we define k “indicators” si,j ∈ {0, 1/k}

for j ∈ [k]. Specifically, we generate the set of random variables wi,j ∈ W1, j ∈ [k], conditioned
on the fact that maxj∈[k] wi,j = wi. Then, for each i ∈ [n], j ∈ [k], we set si,j = 1/k if âi ≥ t/wi

for t = 3/ε, and si,j = 0 otherwise. Finally, we set s =
∑

i∈[n],j∈[k] si,j and the algorithm outputs
σ̂ = st/ν (as an estimate for σ).

We note that the variables wi,j could be thought as being chosen i.i.d. from W1. For each, the
value âi is an (1/wi,j , f)-approximator to ai since âi is a (1/maxj wi,j , f)-approximator to ai.

It is now easy to bound Ew∈W [w]. Indeed, we have Ew∈W1 [w] =
∫ N3

1 x · ν/x2 dx ≤ O(log N).

Hence Ew∈W [w] ≤∑j∈[k] Ew∈W1 [w] ≤ O(k log N) = O(1
ρ · log 1/δ

ε3 · log N).
We now need to prove that σ̂ is an approximator to σ, with probability at least 1 − δ. We

first compute the expectation of si,j, for each i ∈ [n], j ∈ [k]. This expectation depends on the
approximator values âi, which itself may depend on wi. Hence we can only give upper and lower
bounds on the expectation E [si,j]. Later, we want to apply a concentration bound on the sum of
si,j. Since si,j may be interdependent, we will apply the concentration bound on the upper/lower
bounds of si,j to give bounds on s =

∑
si,j.

Formally, we define random variables si,j , si,j ∈ {0, 1/k}. We set si,j = 1/k iff wi,j ≥ (t −
1)/(fai), and 0 otherwise. Similarly, we set si,j = 1/k iff wi,j < f(t + 1)/ai, and 0 otherwise. We
now claim that

si,j ≤ si,j ≤ si,j. (4)

Indeed, if si,j = 1/k, then âi ≥ t/wi,j , and hence, using the fact that âi is a (1/wi,j , f)-approximator
to ai, we have wi,j ≥ (t − 1)/(fai), or si,j = 1/k. Similarly, if si,j = 0, then âi < t/wi,j , and hence
wi,j < f(t + 1)/ai, or si,j = 0. Note that each collection {si,j} and {si,j} is a collection of
independent random variables.

We now bound E [si,j] and E
[
si,j

]
. For the first quantity, we have:

E [si,j] =

∫ N3

(t−1)/(fai)

1
kp1(x) dx ≤ fai

k(t−1)

∫ ∞

1
ν/x2 dx = ν/k · fai

t−1 .

22

For the second quantity, we have:

E
[
si,j

]
=

∫ N3

f(t+1)/ai

p1(x) dx = ν/k · (ai/f
t+1 − 1/N3).

Finally, using Eqn. (4) and the fact that E [s] =
∑

i,j E [si,j], we can bound E [σ̂] = E [st/ν] as
follows:

t
f(t+1)

∑

i∈[n]

ai − nt/N3 ≤ t
ν

∑

i,j

E
[
si,j

]
≤ E [ts/ν] ≤ t

ν

∑

i,j

E [si,j] ≤ f
∑

i∈[n]

ai · t
t−1 .

Since each si,j , si,j ∈ [0, 1/k] for k = O(t
ρ · log 1/δ

ε2), we can apply Lemma 3.9 to obtain a high
concentration bound. For the upper bound, we obtain, with probability at least 1 − δ/2:

ts/ν ≤ eε/2 · E



t/ν ·
∑

i,j

si,j



+ ρ ≤ eε/2 · f
∑

ai · t
t−1 + ρ ≤ eε · f · σ + ρ.

Similarly, for the lower bound, we obtain, with probability at least 1 − δ/2:

ts/ν ≥ e−ε/2 · (
∑

ai · t
f(t+1) − nt/N3) − ρ/2 ≥ e−ε/f · σ − ρ,

using that ρ/2 ≥ nt/N3. This completes the proof that σ̂ is a (ρ, f · eε)-approximator to σ, with
probability at least 1 − δ.

3.2.4 Correctness and Sample Bound for the Main Algorithm

Now, we prove the correctness of the algorithms 1, 2 and bound its query complexity. We note
that we use Lemmas 3.11 and 3.12 with δ = 1/n3, ε = 1/ log n, and N = n (which in particular,
completely determine the distribution W and algorithm R used in the algorithms 1 and 2).

Lemma 3.13 (Correctness). For b = ω(1), the output of the Algorithm 2 (Estimation), is a
(n/β, 1 + o(1))-approximator to the E-distance from x to y, w.h.p.

Proof. From a high level view, we prove inductively from i = 0 to i = h that expanding/subsampling
the current Ci gives a good approximator, namely a eO((h−i)/ log n) factor approximation, with
probability at least 1−i/nΩ(1). Specifically, at each step of the induction, we expand and subsample
each node from the current Ci to form the set Ci+1 and use Lemmas 3.11 and 3.12 to show that
we don’t loose on the approximation factor by more than eO(1/ log n).

In order to state our main inductive hypothesis, we define a hybrid distance, where the E-
distance of nodes at high levels (big i) is computed standardly (via Definition 3.2), and the E-
distance of the low-level nodes is estimated via sets Ci. Specifically, for fixed f ∈ [1, 1.1], and
i ∈ {0, 1, . . . h}, we define the following (C0, C1 . . . Ci, f)-E-distance. For each vertex v = (i, s) such
that v ∈ Ci has precision wv, and z ∈ [n], let τi(v, z) to be some (li/wv, f)–approximator to the
distance E(i, s, z). Then, iteratively for i′ = i−1, i−2, . . . , 0, for all v ∈ Ci′ and z ∈ [d], we compute
τi(v, z) by applying the procedure P (v, z) (defined in the Algorithm 2), using τi instead of τ .

We prove the following inductive hypothesis, for some suitable constants t = 2 and r = Θ(1)
(sufficiently high r suffices).

23

IHi: For any f ∈ [1, 1.1], the (C0, C1, . . . Ci, f)–E–distance is a (n/β, f · ei·t/ log n)-approximator to
the E–distance from x to y, with probability at least 1 − i · e−r log n.

Base case is i = 0, namely that (C0, f)-E-distance is a (n/β, f)-approximator to the E-distance
between x and y. This case follows immediately from the definition of the (C0, f)-E-distance and
the initialization step of the Sampling Algorithm.

Now we prove the inductive hypothesis IHi+1, assuming IHi holds for some given i ∈ {0, 1, . . . h−
1}. We remind that we defined the quantity τi+1(v, z), for all v ∈ Ci+1 ⊆ Ci, where Ci =
{(i + 1, s + jli+1) | (i, s) ∈ Ci, j ∈ {0, . . . b − 1}} and z ∈ [n], to be a (li+1/wv , f)–approximator of
the corresponding E-distance, namely E(v, z). The plan is to prove that, for all v ∈ Ci with precision
wv, the quantity τi+1(v, z) is a (li/wv , f · e2/ log n)–approximator to E(v, z) with good probability —
which we do in the claim below. Then, by definition of τi and IHi, this implies that τi+1((0, 1), 1)
is equal to the (C0, . . . Ci, f · e2/ log n · ei·t/ log n)–E–distance, and hence is a (n/β, f · e(2+it)/ log n)–
approximator to the E–distance from x to y. This will complete the proof of IHi+1. We now prove
the main technical step of the above plan.

Claim 3.14. Fix v ∈ Ci with precision w
def
= wv, where v = (i, s), and some z ∈ [n]. For

j ∈ {0, . . . b−1}, let vj be the jth child of v; i.e., vj = (i+1, s+ jli+1). For vj ∈ Ci+1 with precision

wj
def
= wvj , and z′ ∈ [n], let τi+1(vj , z

′) be a (li+1/wj , f)–approximator to E(vj , z
′).

Apply procedure P (v, z) using τi+1(vj , z
′) estimates, and let δ be the output. Then δ is a

(li/w, fe2/ log n)–approximator to E(v, z), with probability at least 1 − e−Ω(log n).

Proof. For each vj ∈ Jv , where Jv is as defined in Algorithm 1, we define the following quantities:

δvj

def
= min

k:|k|≤n
E(vj , z + jli+1 + k) + |k| δ̂vj

def
= min

k:|k|≤n
τi+1(vj , z + jli+1 + k) + |k|.

It is immediate to see that δ̂vj is a (li+1/wj , f)–approximator to δvj by the definition of τi+1.

If pv ≥ 1, then we have that wj = w
b · O(log3 n) for all vj ∈ Jv. Then, by the additive property

of (li+1/wj , f)–approximators, δ =
∑

vj∈Jv
δ̂vj is a (li/w, f)–approximator to

∑

vj∈Jv
δvj = E(v, z).

Now suppose pv < 1. Then, by Lemma 3.11, δ′ = 1
pv

∑

vj∈Jv
δvj is a (li/2w, e1/ log n)–approximator

to
∑b−1

j=0 δvj = E(v, z), with high probability. Furthermore, by Lemma 3.12 for ρ = 1, since wj ∈ W
are i.i.d. and

δ̂vj

li+1
are each an (1/wj , f)–approximator to

δvj

li+1
respectively, then R outputs a value

δ′′ that is a (1, f · e1/ log n)–approximator to
∑

vj∈Jv

δvj

li+1
= pv

li+1
δ′. In other words, δ = li+1

pv
δ′′ is a

(li+1/pv, f · e1/ log n)–approximator to δ′. Since li+1/pv ≤ li/(3w), combining the two approximator
guarantees, we obtain that δ is a (li/w, f · e2/ log n)–approximator to E(v, z), w.h.p.

We now apply a union bound over all v ∈ Ci and z ∈ [n], and use the above Claim 3.14. We now
apply IHi to deduce that τi+1((0, 1), 1) is a (n/β, f ·eti/ log n ·e2/ log n)–approximator with probability
at least

1 − ie−r log n − e−Ω(log n) ≥ 1 − (i + 1)e−r log n,

for some suitable r = Θ(1). This proves IHi+1.
Finally we note that IHh implies that (C0, . . . Ch, f)–E–distance is a (n/β, f ·eth/ log n)–approximator

to the E–distance between x and y. We conclude the lemma with the observation that our Estima-
tion Algorithm 2 outputs precisely the (C0, . . . Ch, 1)–E–distance.

24

It remains to bound the number of positions that Algorithm 2 queries into x.

Lemma 3.15 (Sample size). The Sampling Algorithm queries Qb = β(log n)O(logb n) positions of
x, with probability at least 1− o(1). When b = n1/t for fixed constant t ∈ N and β = O(1), we have
Qb = (log n)t−1 with probability at least 2/3.

Proof. We prove by induction, from i = 0 to i = h, that E [|Ci|] ≤ β · (log n)ic, and E
[∑

v∈Ci
wv

]
≤

β ·(log n)ic+5 for a suitable c = Θ(1). The base case of i = 0 is immediate by the initialization of the
Sampling Algorithm 1. Now we prove the inductive step for i, assuming the inductive hypothesis for

i−1. By Lemma 3.11, E [|Ci|] ≤ E

[
∑

v∈Ci−1
wv

]

·O(log3 n) ≤ β(log n)ic by the inductive hypothesis.

Also, by Lemma 3.12, E
[∑

v∈Ci
wv

]
≤ E [|Ci|]·O(log4 n)+E

[
∑

v∈Ci−1
wv

]

·O(log3 n) ≤ β(log n)ic+5.

The bound then follows from an application of the Markov bound.
The second bound follows from a more careful use of the parameters of the two sampling lemmas,

Lemmas 3.11 and 3.12. In fact, it suffices to apply these lemmas with ε = eΘ(1/t) and δ = 0.1 for
the first level and δ = 1/n3 for subsequent levels.

These lemmas, 3.13 and 3.15, together with the characterization theorem 3.3, almost complete
the proof of Theorem 3.1. It remains to bound the run time of the resulting estimation algorithm,
which we do in the next section.

3.3 Near-Linear Time Algorithm

We now discuss the time complexity of the algorithm, and show that the Algorithm 2 (Estimation)
may be implemented in n · (log n)O(h) time. We note that as currently described in Algorithm 2,
our reconstruction technique takes time Õ(hQb ·n) time, where Qb = β(log n)O(logb n) is the sample
complexity upper bound from Lemma 3.15 (note that, combined with the algorithm of [LMS98],
this already gives a n4/3+o(1) time algorithm). The main issue is the computation of the quantities
δv′ , as, naively, it requires to iterate over all k ∈ [n].

To reduce the time complexity of the Algorithm 2, we define the following quantity, which
replaces the quantity δv′ in the description of the algorithm:

δ′v′ = min
k=ei/ log n:i∈[log n·ln(3n/β)]

(

|k| + min
k′:|k′|≤k

τ(v′, z + jli+1 + k′)

)

.

Lemma 3.16. If we use δ′v′ instead of δv′ in Algorithm 2, the new algorithm outputs at most a
1 + o(1) factor higher value than the original algorithm.

Proof. First we note that it is sufficient to consider only k ∈ [−3n/β, 3n/β], since, if the algorithm
uses some k with |k| > 3n/β, then the resulting output is guaranteed to be > 3n/β. Also, the
estimate may only increase if one restricts the set of possible k’s.

Second, if we consider k’s that are integer powers of e1/ log n, we increase the estimate by only
a factor e1/ log n. Over h = O(logb n) levels, this factor accumulates to only eh/ log n ≤ 1 + o(1).

Finally, we mention that computing all δ′v′ may be performed in O(log2 n) time after we perform
the following (standard) precomputation on the values τ(v′, z′) for z′ ∈ [n] and v′ ∈ Ci+1. For each
dyadic interval I, compute minz∈I τ(v, z). Then, for each (not necessarily dyadic) interval I ′ ⊂ [n],
computing minz′∈I′ τ(v′, z′) may be done in O(log n) time. Hence, since we consider only O(log n)
values of k, we obtain O(log2 n) time per computation of δ′v′ .

25

Total running time becomes O(hQb · n · log2 n) = n · (log n)O(logb n).
A more technical issue that we swept under the carpet is that distribution W defined in

Lemma 3.12 is a continuous distribution on [1, n3]. However this is not an issue since a n−Ω(1)

discretization suffices to obtain the same result, with only O(log n) loss in time complexity.

4 Query Complexity Lower Bound

We now give a full proof of our lower bound, Theorem 1.3. After some preliminaries, this section
contains three rather technical parts: tools for analyzing indistinguishability, tools for analyzing
edit distance behavior, and a finally a part where we put together all elements of the proof. The
precise and most general forms of our lower bound appear in that final part as Theorem 4.15 and
Theorem 4.16.

4.1 Preliminaries

We assume throughout that |Σ| ≥ 2. Let x and y be two strings. Define ed(x, y) to be the minimum
number of character insertions and deletions needed to transform x into y. Character substitution
are not allowed, in contrast to ed(x, y), but a substitution can be simulated by a deletion followed
by an insertion, and thus ed(x, y) ≤ ed(x, y) ≤ 2 ed(x, y). Observe that

ed(x, y) = |x| + |y| − 2LCS(x, y), (5)

where LCS(x, y) is the length of the longest common subsequence of x and y.

Alignments. For two strings x, y of length n, an alignment is a function A : [n] → [n]∪{⊥} that
is monotonically increasing on A−1([n]) and satisfies x[i] = y[A(i)] for all i ∈ A−1([n]). Observe
that an alignment between x and y corresponds exactly to a common subsequence to x and y.

Projection. For a string x ∈ Σn and Q ⊆ [n], we write x|Q for the string that is the projection
of x on the coordinates in Q. Clearly, x|Q ∈ Σ|Q|. Similarly, if D is a probability distribution over
strings in Σn, we write D|Q for the distribution that is the projection of D on the coordinates in
Q. Clearly, D|Q is a distribution over strings in Σ|Q|.

Substitution Product. Suppose that we have a “mother” string x ∈ Σn and a mapping B :
Σ → (Σ′)n

′
of the original alphabet into strings of length n′ over a new alphabet Σ′. Define the

substitution product of x and B, denoted x ⊛ B, to be the concatenation of B(x1), · · · , B(xn).
Letting Ba = B(a) for each a ∈ Σ (i.e., B defines a collection of |Σ| strings), we have

x ⊛ B
def
= Bx1Bx2 · · ·Bxn ∈ (Σ′)nn′

.

Similarly, for each a ∈ Σ, let Da be a probability distribution over strings in (Σ′)n
′
. The substitution

product of x and D def
= (Da)a∈Σ, denoted x⊛D, is defined as the probability distribution over strings

in (Σ′)nn′
produced by replacing every symbol xi, 1 ≤ i ≤ n, in x by an independent sample Bi

from Dxi .
Finally, let E be a “mother” probability distribution over strings in Σn, and for each a ∈ Σ, let Da

be a probability distribution over strings in (Σ′)n
′
. The substitution product of E and D def

= (Da)a∈Σ,

26

denoted E ⊛D, is defined as the probability distribution over strings in (Σ′)nn′
produced as follows:

first sample a string x ∼ E , then independently for each i ∈ [n] sample Bi ∼ Dxi , and report the
concatenation B1B2 . . . Bn.

Shift. For x ∈ Σn and integer r, let Sr(x) denote a cyclic shift of x (i.e. rotating x) to the left by
r positions. Clearly, Sr(x) ∈ Σn. Similarly, let Ss(x) the distribution over strings in Σn produced
by rotating x by a random offset in [s], i.e. choose r ∈ [s] uniformly at random and take Sr(x).

For integers i, j, define i +n j to be the unique z ∈ [n] such that z = i + j (mod n). For a set
Q of integers, let Q +n j = {i +n j : i ∈ Q}.

Fact 4.1. Let x ∈ Σn and Q ⊂ [n]. For every integer r, we have Sr(x)|Q = x|Q+nr. Thus, for
every integer s, the probability distribution Ss(x)|Q is identical to x|Q+nr for a random r ∈ [s].

4.2 Tools for Analyzing Indistinguishability

In this section, we introduce tools for analyzing indistinguishability of distributions we construct.
We introduce a notion of uniform similarity, show what it implies for query complexity, give quan-
titative bounds on it for random cyclic shifts of random strings, and show how it composes under
the substitution product.

4.2.1 Similarity of Distributions

We first define an auxiliary notion of similarity. Informally, a set of distributions on the same set are
similar if the probability of every element in their support is the same up to a small multiplicative
factor.

Definition 4.2. Let D1, . . . , Dk be probability distributions on a finite set Ω. Let pi : Ω → [0, 1],
1 ≤ i ≤ k, be the probability mass function for Di. We say that the distributions are α-similar if
for every ω ∈ Ω,

(1 − α) · max
i=1,...,k

pi(ω) ≤ min
i=1,...,k

pi(ω).

We now define uniform similarity for distributions on strings. Uniform similarity captures how
the similarity between distributions on strings changes as a function of the number of queries.

Definition 4.3. Let D1, . . . , Dk be probability distributions on Σn. We say that they are uniformly
α-similar if for every subset Q of [n], the distributions D1|Q, . . . , Dk|Q are α|Q|-similar.

Finally, we show that if two distributions on strings are uniformly similar, then an algorithm
distinguishing strings drawn from them has to make many queries.

Lemma 4.4. Let D0 and D1 be uniformly µ-similar distributions on Σn. Let A be a randomized
algorithm that makes q (adaptive) queries to symbols of a string selected according to either D0 or
D1, and outputs either 0 or 1. Let pj, for j ∈ {0, 1}, be the probability that A outputs j when the
input is selected according to Dj . Then

min{p0, p1} ≤ 1 + µq

2
.

27

Proof. Once the random bits of A are fixed, A can be seen as a decision tree with depth q the
following properties. Every internal node corresponds to a query to a specific position in the input
string. Every internal node has |Σ| children, and the |Σ| edges outgoing to the children are labelled
with distinct symbols from Σ. Each leaf is labelled with either 0 or 1; this is the algorithm’s output,
i.e. the computation ends up in a leaf if and only if the sequence of queries on the path from the
root to the leaf gives the sequence described by the edge labels on the path.

Fix for now A’s random bits. Let t be the probability that A outputs 0 when the input is
chosen from D0, and let t′ be defined similarly for D1. We now show an upper bound on t− t′. t is
the probability that the computation ends up in a leaf v labelled 0 for an input chosen according to
D0. Consider a specific leaf v labelled with 0. The probability of ending up in the leaf equals the
probability of obtaining a specific sequence of symbols for a specific sequence of at most q queries.
Let tv be this probability when the input is selected according to D0. The same probability for D1

must be at least (1− qµ)tv, due to the uniform µ-similarity of the distributions. By summing over
all leaves v labelled with 0, we have t′ ≥ (1 − µq)t, and therefore, t − t′ ≤ qµ · t ≤ qµ.

Note that p0 is the expectation of t over the choice of A’s random bits. Analogously, 1 − p1 is
the expectation of t′. Since t − t′ is always at most µq, we have p0 − (1 − p1) ≤ µq. This implies
that p0 + p1 ≤ 1 + µq, and min{p0, p1} ≤ 1+µq

2 .

4.2.2 Random Shifts

In this section, we give quantitative bounds on uniform similarity between distributions created by
random cyclic shifts of random strings.

Making a query into a cyclic shift of a string is equivalent to querying the original string in a
position that is shifted, and thus, it is important to understanding what happens to a fixed set of q
queries that undergoes different shifts. Our first lemma shows that a sufficiently large set of shifts
of q queries can be partitioned into at most q2 large sets, such that no two shifts in the same set
intersect (in the sense that they query the same position).

Lemma 4.5. Let Q be a subset of [n] of size q, and let Qi
def
= Q+n i be its shift by i modulo n. Every

I ⊂ [n] of size t ≥ 16q4 ln q admits a q2-coloring C : I → [q2] with the following two properties:

• For all i 6= j with Qi ∩ Qj 6= ∅, we have C(i) 6= C(j).

• For all i ∈ [n], we have |C−1(i)| ≥ n/(2q4).

Proof. Let x ∈ [n]. There are exactly q different indices i such that x ∈ Qi. For every Qi such that
x ∈ Qi, x is an image of a different y ∈ Q after a cyclic shift. Therefore, each Qi can intersect with
at most q(q − 1) other sets Qj.

Consider the following probabilistic construction of C. For consecutive i ∈ I, we set C(i) to be
a random color in [q2] among those that were not yet assigned to sets Qj that intersect Qi. Each
color c ∈ [q2] is considered at least t/q2 times: each time c is selected it makes c not be considered
for at most q(q − 1) other i ∈ I. Each time c is considered, it is selected with probability at least
1/q2. By the Chernoff bound, the probability that a given color is selected less than t/(2q4) times
is less than

exp

(

− t

q4
· 1

22
· 1

2

)

≤ 1

q2
.

By the union bound, the probability of selecting the required coloring is greater than zero, so it
exists.

28

Fact 4.6. Let n and k be integers such that 1 ≤ k ≤ n. Then
∑k

i=1

(n
i

)
≤ nk.

The following lemma shows that random shifts of random strings are likely to result in uniformly
similar distributions.

Lemma 4.7. Let n ∈ Z+ be greater than 1. Let k ≤ n be a positive integer. Let xi, 1 ≤ i ≤ k,
be uniformly and independently selected strings in Σn, where 2 ≤ |Σ| ≤ n. With probability 2/3

over the selection of xi’s, the distributions Ss(x1), . . . , Ss(xk) are uniformly 1
A -similar, for A

def
=

max
{

log|Σ| 6
√

s
400 lnn , 1

}

.

Proof. Let pi,Q,ω be the probability of selecting a sequence ω ∈ Σ|Q| from the distribution Ss(xi)|Q,
where Q ⊆ [n] and 1 ≤ i ≤ k. We have to prove that with probability at least 2/3 over the choice
of xi’s, it holds that for every Q ⊆ Q and every ω ∈ Σ|Q|,

(1 − |Q|/A) · max
i=1,...,k

pi,Q,ω ≤ min
i=1,...,k

pi,Q,ω.

The above inequality always holds when Q is empty or has at least A elements. Let Q ⊆ [n] be
any choice of queries, where 0 < |Q| < A. By Fact 4.6, there are at most nA such different choices

of queries. Let q
def
= |Q|. Note that 8q4 ln q ≤ 8q5 ≤ 8A5 ≤ 8|Σ|5A ≤ 8 · s

400 ln n ≤ s. This implies
that we can apply Lemma 4.5, which yields the following. We can partition all s shifts of Q over
xi that contribute to the distribution Ss(xi)|Q into q2 sets σj such that the shifts in each of the
sets are disjoint, and each of the sets has size at least s/(2q4). For each of the sets σj, and for each
ω ∈ Σq, the probability that fewer than (1 − q

2A)|σj |/|Σ|q shifts give ω is bounded by

exp

(

−1

2
·
(q

2A

)2
· |σj |
|Σ|q

)

≤ exp

(

− s

16q2A2|Σ|q
)

≤ exp

(

− s

16A4|Σ|A
)

≤ exp

(

− s

16|Σ|5A

)

≤ exp

(

− 1

16
· 6
√

s · (400 ln n)5
)

≤ exp
(

−9.2 6
√

s(ln n)5
)

,

where the first bound follows from the Chernoff bound. Analogously, the probability that more
than (1 + q

2A)|σj |/|Σ|q shifts give ω is bounded by

exp

(

−1

4
·
(q

2A

)2
· |σj |
|Σ|q

)

≤ exp

(

− s

32q2A2|Σ|q
)

≤ exp

(

− s

32A4|Σ|A
)

≤ exp

(

− s

32|Σ|5A

)

≤ exp

(

− 1

32
· 6
√

s · (400 ln n)5
)

≤ exp
(

−4.6 6
√

s(ln n)5
)

,

29

where the first inequality follows from the version of the Chernoff bound that uses the fact that
q

2A ≤ 1
2 ≤ 2e − 1.

We now apply the union bound to all xi, all choices of Q ⊆ [n] with |Q| < A, all corresponding
sets σj , and all settings of ω ∈ Σ|Q| to bound the probability that pi,Q,ω does not lie between
|Σ|−|Q| · (1− q

2A) and |Σ|−|Q| · (1+ q
2A). Assuming that A > 1 (otherwise, the lemma holds trivially),

note first that

n · nA · A2 · |Σ|A ≤ n5A

≤ exp (5A ln n)

≤ exp
(
5|Σ|A ln n

)

≤ exp

(

5
6

√

s(ln n)5

400

)

≤ exp
(

2.4 · 6
√

s(ln n)5
)

.

Our bound is

exp
(

2.4 · 6
√

s(ln n)5
)

·
(

exp
(

−9.2 · 6
√

s(ln n)5
)

+ exp
(

−4.6 · 6
√

s(ln n)5
))

≤ exp
(

−6.8 · 6
√

s(ln n)5
)

+ exp
(

−2.2 · 6
√

s(ln n)5
)

≤ 0.01 + 0.2 ≤ 1/3.

Therefore, all pi,Q,ω of interest lie in the desired range with probability at least 2/3. Then, we know
that for any Q of size less than A, and any ω ∈ Σ|Q|, we have

(

1 − |Q|
A

)

· max
i=1,...,k

pi,Q,ω ≤ ·
(

1 − |Q|
A

)

·
(

1 +
|Q|
2A

)

· |Σ|−|Q|

=

(

1 − |Q|
2A

− |Q|2
2A2

)

· |Σ|−|Q|

≤
(

1 − |Q|
2A

)

· |Σ|−|Q|

≤ min
i=1,...,k

pi,Q,ω.

This implies that Ss(x1), . . . , Ss(xk) are uniformly 1
A -similar with probability at least 2/3.

4.2.3 Amplification of Uniform Similarity via Substitution Product

One of the key parts of our proof is the following lemma that shows that the substitution product
of uniformly similar distributions amplifies uniform similarity.

Lemma 4.8. Let Da for a ∈ Σ, be uniformly α-similar distributions on (Σ′)n
′
. Let D def

= (Da)a∈Σ.
Let E1, . . . , Ek be uniformly β-similar probability distributions on Σn, for some β ∈ [0, 1]. Then
the k distributions (E1 ⊛ D), . . . , (Ek ⊛ D) are uniformly αβ-similar.

Proof. Fix t, t′ ∈ [k], let X be a random sequence selected according to Et ⊛ D, and let Y be a
random sequence selected according to Et′⊛D. Fix a set S ⊆ [n·n′] of indices, and the corresponding
sequence s of |S| symbols from Σ′. To prove the lemma, it suffices to show that

Pr[X|S = s] ≥ (1 − αβ|S|) · Pr[Y |S = s], (6)

30

since in particular the inequality holds for t that minimizes Pr[X|S = s], and for t′ that maximizes
Pr[Y |S = s].

Recall that each (Ej ⊛ D) is generated by first selecting a string x according to Ej , and then
concatenating n blocks, where the i-th block is independently selected from Dxi . For i ∈ [n] and
b ∈ Σ, let pi,b be the probability of drawing from Db a sequence that when used as the i-th block,
matches s on the indices in S (if the block is not queried, set pi,b = 1). Let qi be the number
of indices in S that belong to the i-th block. Since Db for b ∈ Σ are α-similar, for every i ∈ [n],

it holds that (1 − αqi) · maxb∈Σ pi,b ≤ minb∈Σ pi,b. For every i ∈ [n], define α⋆
i

def
= minb∈Σ pi,b and

β⋆
i

def
= maxb∈Σ pi,b. We thus have

(1 − αqi)β
⋆
i ≤ α⋆

i . (7)

The following process outputs 1 with probability Pr[Y |S = s]. Whenever we say that the process
outputs a value, 0 or 1, it also terminates. First, for every block i ∈ [n], the process independently
picks a random real ri in [0, 1]. It also independently draws a random sequence c ∈ Σn according
to Et′ . If ri > β⋆

i for at least one i, the process outputs 0. Otherwise, let Q = {i ∈ [n] : ri > α⋆
i }.

If ri ≤ pi,ci for all i ∈ Q, the process outputs 1. Otherwise, it outputs 0. The correspondence
between the probability of outputting 1 and Pr[Y |S = s] directly follows from the fact that each of
the random variables ri simulates selecting a sequence that matches s on indices in S with the right
success probability, i.e., pi,ci, and the fact that block substitutions are independent. The important
difference, which we exploit later, is that not all symbols of c have always impact on whether the
above process outputs 0 or 1.

For every Q ⊆ [n], let p′Q be the probability that the above process selected Q. Furthermore, let
p′′Q,c be the conditional probability of outputting 1, given that the process selected a given Q ⊆ [n],
and a given c ∈ Σn. It holds

Pr [Y |S = s] =
∑

Q⊆[n]

p′Q · Ec←Et′
[
p′′Q,c

]
.

Notice that for two different c1, c2 ∈ Σn, we have p′′Q,c1
= p′′Q,c1

if c1|Q = c2|Q, since this probability

only depends on the symbols at indices in Q. Thus, for c̃ ∈ Σ|Q| we can define p̃Q,c̃ to be equal to
p′′Q,c for any c ∈ Σ such that c|Q = c̃. We can now write

Pr [Y |S = s] =
∑

Q⊆[n]

p′Q · Ec̃←Et′ |Q [p̃Q,c̃] ,

and analogously,

Pr [X|S = s] =
∑

Q⊆[n]

p′Q · Ec̃←Et|Q [p̃Q,c̃] .

Due to the uniform β-similarity of Et′ and Et, we know that for every Q ⊂ [n], the probability of
selecting each c̃ ∈ Σ|Q| from Et|Q is at least (1 − β|Q|) times the probability of selecting the same
c̃ from Et′ |Q. This implies that

Ec̃←Et|Q [p̃Q,c̃] ≥ (1 − β|Q|) · Ec̃←Et′ |Q [p̃Q,c̃] .

31

We obtain

Pr [Y |S = s] − Pr [X|S = s] =
∑

Q⊆[n]

p′Q ·
(

Ec̃←Et′ |Q [p̃Q,c̃] − Ec̃←Et|Q [p̃Q,c̃]
)

.

≤
∑

Q⊆[n]

p′Q · β|Q| · Ec̃←Et′ |Q [p̃Q,c̃]

= β ·
∑

Q⊆[n]

p′Q · |Q| · Ec←Et′
[
p′′Q,c

]

= β · Ec←Et′




∑

Q⊆[n]

p′Q · p′′Q,c · |Q|



 . (8)

Fix now any c ∈ Σn for which the process outputs 1 with positive probability. The expected
size of Q for the fixed c, given that the process outputs 1, can be written as

E

[

|Q|
∣
∣
∣ process outputs 1

]

=

∑

Q⊆[n] p
′
Q · p′′Q,c · |Q|

∑

Q⊆[n] p
′
Q · p′′Q,c

The probability that a given i ∈ [n] belongs to Q for the fixed c, given that the process outputs

1 equals
pi,ci
−α⋆

i

pi,ci
. This follows from the two facts (a) if the process outputs 1 then ri is uniformly

distributed on [0, pi,ci]; and (b) i ∈ Q if and only if ri ∈ (α⋆
i , β

⋆
i]. We have

pi,ci − α⋆
i

pi,ci

≤ β⋆
i − α⋆

i

β⋆
i

≤ αqi · β⋆
i

β⋆
i

= αqi. (9)

By the linearity of expectation, the expected size of Q in this setting is at most
∑

i∈[n] αqi = α · |S|.
Therefore,

∑

Q⊆[n]

p′Q · p′′Q,c · |Q| ≤ α · |S| ·
∑

Q⊆[n]

p′Q · p′′Q,c. (10)

Note that the inequality trivially holds also for c for which the process always outputs 0; both sides
of the inequality equal 0.

By plugging (10) into (8), we obtain

Pr [Y |S = s] − Pr [X|S = s] ≤ β · Ec←Et′



α · |S| ·
∑

Q⊆[n]

p′Q · p′′Q,c





= αβ · |S| · Ec←Et′




∑

Q⊆[n]

p′Q · p′′Q,c





= αβ · |S| · Pr [Y |S = s] .

This proves (6) and completes the proof of the lemma.

4.3 Tools for Analyzing Edit Distance

This section provides tools to analyze how the edit distance changes under a under substitution
product. We present two separate results with different guarantees, one is more useful for a large
alphabet, the other for a small alphabet. The latter is used in the final step of reduction to binary
alphabet.

32

4.3.1 Distance between random strings

The next bound is well-known, see also [CS75, BGNS99, Lue09]. We reproduce it here for com-
pleteness.

Lemma 4.9. Let x, y ∈ Σn be chosen uniformly at random. Then

Pr
[

LCS(x, y) ≥ 5n/
√

|Σ|
]

≤ e−5n/
√
|Σ|.

Proof. Let c
def
= 5 > e1.5 and t

def
= cn/

√

|Σ|. The number of potential alignments of size t between

two strings of length n is at most
(
n
t

)2 ≤ (ne
t)2t. Each of them indeed becomes an alignment of

x, y (i.e. symbols that are supposed to align are equal) with probability at most 1/|Σ|t. Applying
a union bound,

Pr[LCS(x, y) ≥ t] ≤ (ne
t)2t/|Σ|t ≤ (e2c−2|Σ|)t · |Σ|−t ≤ e−t.

4.3.2 Distance under substitution product (large alphabet)

We proceed to analyze how the edit distance between two strings, say ed(x, y), changes when
we perform a substitution product, i.e. ed(x ⊛ B, y ⊛ B). The bounds we obtain are additive,
and are thus most effective when the edit distance ed(x, y) is large (linear in the strings length).
Furthermore, they depend on λB ∈ [0, 1], which denotes the maximum normalized LCS between
distinct images of B : Σ → (Σ′)n

′
, hence they are most effective when λB is small, essentially

requiring a large alphabet Σ′.

Theorem 4.10. Let x, y ∈ Σn and B : Σ → (Σ′)n
′
. Then

n′ · ed(x, y) − 8nn′
√

λB ≤ ed(x ⊛ B, y ⊛ B) ≤ n′ · ed(x, y),

where λB
def
= max

{
LCS(B(a),B(b))

n′ : a 6= b ∈ Σ
}

.

Before proving the theorem, we state a corollary that will turn to be most useful. The corollary
follows from Theorem 4.10 by letting Σ′ = Σ, and using Lemma 4.9 together with a union bound
over all pairs B(a), B(b) (while assuming n′ ≥ |Σ|).

Corollary 4.11. Assume |Σ| ≥ 2 and n′ ≥ |Σ| is sufficiently large (i.e. at least some absolute
constant c′). Let B : Σ → (Σ)n

′
be a random function, i.e. for each a ∈ Σ choose B(a) uniformly

at random. Then with probability at least 1 − 2−n′/|Σ|, for all n and all x, y ∈ Σn,

0 ≤ n′ · ed(x, y) − ed(x ⊛ B, y ⊛ B) ≤ O(nn′/|Σ|1/4).

Proof of Theorem 4.10. By using the direct connection (5) between ed(x, y) and LCS(x, y), it
clearly suffices to prove

n′ · LCS(x, y) ≤ LCS(x ⊛ B, y ⊛ B) ≤ n′ · LCS(x, y) + 4nn′
√

λB. (11)

Throughout, we assume the natural partitioning of x, y into n blocks of length n′.
The first inequality above is immediate. Indeed, give an (optimal) alignment between x and y,

do the following; for each (i, j) such that xi is aligned with yj, align the entire i-th block in x ⊛ B

33

with the entire j-th block in y ⊛ B. It is easily verified that the result is indeed an alignment and
has size n′ · ed(x, y).

To prove the second inequality above, fix an optimal alignment A between x ⊛ B and y ⊛ B;
we shall construct an Â alignment for x, y in three stages, namely, first pruning A into A′, then
pruning it further into A′′, and finally constructing Â. Define the span of a block b in either x ⊛ B
or y ⊛ B (under the current alignment) to be the number of blocks in the other string to which it
is aligned in at least one position (e.g. the span of block i in x ⊛ B is the number of blocks j for
which at least one position p in block i satisfies that A(p) is in block j.)

Now iterate the following step: “unalign” a block (in either x⊛B or y⊛B) completely whenever

its span is greater than s
def
= 2/

√
λB. Let A′ be the resulting alignment; its size is |A′| ≥ |A|−4nn′/s

because each iteration is triggered by a distinct block, the total span of all these blocks is at most
4n, hence the total number of iterations is at most 4n/s.

Next, iterate the following step (starting with A′ as the current alignment): remove alignments
between two blocks (one in x⊛B and one in y⊛B) if, in one of the two blocks, at most λBn′ positions
are aligned to the other block. Let A′′ be the resulting alignment; its size is |A′′| ≥ |A′| − ns · λBn′

because each iteration is triggered by a distinct pair of blocks, out of at most ns pairs (by the span
bound above).

This alignment A′′ has size |A′′| ≥ |A| − 4nn′/s− nn′sλB . Furthermore, if between two blocks,
say block i in x⊛ B and block j in y ⊛ B, the number of aligned positions is at least one, then this
number is actually greater than λBn′ (by construction of A′′) and thus x[i] = y[j] (by definition of
λBn′).

Finally, construct an alignment Â between x and y, where initially, Â(i) = ⊥ for all i ∈ [n].
Think of the alignment A′′ as the set of aligned positions, namely {(p, q) ∈ [n] × [n] : A′′(p) = q}.
Let blkx⊛B(p) denote the number of the block in x⊛B which contains p, and similarly for positions
q in y ⊛ B. Now scan A′′, as a set of pairs, in lexicographic order. More specifically, initialize
(p, q) to be the first edge in A′′, and iterate the following step: assign Â(blkx⊛B(p)) = blky⊛B(q),
and advance (p, q) according to the lexicographic order so that both coordinates now belong to
new blocks, i.e. set it to be the next pair (p′, q′) ∈ A′′ for which both blkx⊛B(p′) > blkx⊛B(p)
and blky⊛B(q′) > blky⊛B(q). We claim that Â is an alignment between x and y. To see this,

consider the moment when we assign some Â(i) = j. Then the corresponding blocks in x ⊛ B and
y ⊛ B contain at least one pair of positions that are aligned under A′′, and thus, as argued above,
x[i] = y[j]. In addition, all subsequent assignments of the form Â(i′) = j′ satisfy that both i′ > i
and j′ > j. Hence Â is indeed an alignment.

En route to bounding the size of Â, we claim that each iteration scans (i.e. advances the
current pair by) at most n′ pairs from A′′. To see this, consider an iteration where we assign some
Â(i) = j. Every pair (p, q) ∈ A′′ that is scanned in this iteration satisfies that either i = blkx⊛B(p)
or j = blkx⊛B(p). Each of these two requirements can be satisfied by at most n′ pairs, and together
at most 2n′ pairs are scanned. By the fact that A′′ is monotone, it can be easily verified that at
least one of the two requirements must be satisfied by all scanned pairs, hence the total number of
scanned pairs is at most n′.

Using the claim, we get that |Â| ≤ |A′′|/n′ (recall that each iteration also makes one assignment
to Â). It immediately follows that

n′ · LCS(x, y) ≥ n′ · |Â| ≥ |A′′| ≥ |A| − 4nn′/s − nn′sλB = LCS(x ⊛ B, y ⊛ B) − 4nn′
√

λB,

which completes the proof of (11) and of Theorem 4.10.

34

4.3.3 Distance under substitution product (any alphabet)

We give another analysis for how the edit distance between two strings, say ed(x, y), changes
when we perform a substitution product, i.e. ed(x ⊛ B, y ⊛ B). The bounds we obtain here are
multiplicative, and may be used as a final step of alphabet reduction (say, from a large alphabet
to the binary one).

Theorem 4.12. Let B : Σ → (Σ′)n
′
, and suppose that (i) for every a 6= b ∈ Σ, we have

LCS(Ba, Bb) ≤ 15
16n′;

and (ii) for every a, b, c ∈ Σ (possibly equal), and every substring B′ of (the concatenation) BbBc

that has length n′ and overlaps each of Bb and Bc by at least n′/10, we have

LCS(Ba, B
′) ≤ 0.98n′.

Then for all x, y ∈ Σn,

c1n
′ · ed(x, y) ≤ ed(x ⊛ B, y ⊛ B) ≤ n′ · ed(x, y), (12)

where 0 < c1 < 1 is an absolute constant.

Before proving the theorem, let us show that it is applicable for a random mapping B, by
proving two extensions of Lemma 4.9. Unlike the latter, the lemmas below are effective also for
small alphabet size.

Lemma 4.13. Suppose |Σ| ≥ 2 and let x, y ∈ Σn be chosen uniformly at random. Then with
probability at least 1− |Σ|−l/8, the following holds: for every substring x′ in x of length l ≥ 24, and
every length l substring y′ in Bb, we have

LCS(x′, y′) ≤ 15
16 l.

Proof. Set α
def
= 1/16. Fix l and the positions of x′ inside x and of y′ inside y. Then x′ and y′ are

chosen at random from Σl, hence

Pr[LCS(x′, y′) ≥ (1 − α)l] ≤
(

l
(1−α)l

)2|Σ|−(1−α)l ≤ (e
α)2αl|Σ|−(1−α)l ≤ |Σ|−l/4,

where the last inequality uses |Σ| ≥ 2.
Now apply a union bound over all possible positions of x′ and y′ and all values of l. It follows that

the probability that x and y contain length l substrings x′ and y′ (respectively) with LCS(x′, y′) ≥
(1 − α)l is at most |Σ|3 · |Σ|−l/4 ≤ |Σ′|−l/8, if only l is sufficiently large.

The next lemma is an easy consequence of Lemma 4.13. It follows by applying a union bound
and observing that disjoint substrings of B(a) are independent.

Lemma 4.14. Let B : Σ → (Σ′)n
′
be chosen uniformly at random for |Σ′| ≥ 2 and n′ ≥ 1000 log |Σ|.

Then with probability at least 1 − |Σ′|−Ω(n′), B satisfies the properties (i) and (ii) described in
Theorem 4.12.

35

Proof of Theorem 4.12. The last inequality in (12) is straightforward. Indeed, whenever xi is
aligned against yj, we have xi = yj and B(xi) = B(yj), hence we can align the corresponding
blocks in x ⊛ B and y ⊛ B. We immediately get that LCS(x ⊛ B, y ⊛ B) ≥ n′ · LCS(x, y).

Let us now prove the first inequality. Denote R
def
= ed(x ⊛ B, y ⊛ B), and fix a corresponding

alignment between the two strings. The string x⊛B is naturally partitioned into n blocks of length
n′. The total number of coordinates in x ⊛ B that are unaligned (to y ⊛ B) is exactly R/2, which
is R/2n in an average block.

We now prune this alignment in two steps. First, “unaliagn” each block in x ⊛ B with at least
(nn′/100R) · (R/2n) = n′/200 unaligned coordinates. By averaging (or Markov’s inequality), this
step applies to at most 100R/nn′-fraction of the n blocks.

Next, define the gap of a block in x ⊛ B to be the difference (in the positions) between the first
and last positions in y ⊛ B that are aligned against a coordinate in x ⊛ B. The second pruning
step is to unalign every block in x ⊛ B whose gap is at least 1.01n′. Every such block can be
identified with a set of at least n′/100 unaligned positions in y ⊛ B (sandwiched inside the gap),
hence these sets (for different blocks) are all disjoint, and the number of such blocks is at most
(R/2)/(n′/100) = 50R/n′.

Now consider one of the remaining blocks (at least n − 100R/n′ − 50R/n′ blocks). By our
pruning, for each such block i we can find a corresponding substring of length n′ in y ⊛ B with
at least n′ − n′/200 − n′/100 > 0.98n′ aligned pairs (between these two substrings). Using the
property (ii) of B, the corresponding substring in y ⊛ B must have overlap of at least 0.9n′ with
some block of y ⊛ B (recall that y ⊛ B is also naturally partitioned into length n′ blocks). Thus,
for each such block i in x ⊛ B there is a corresponding block j in y ⊛ B, such that these two blocks
contain at least 0.9n′ − 0.02n′ = 0.88n′ aligned pairs. By the property (i) of B, it follows that the
corresponding coordinates in x and in y are equal, i.e. xi = yj. Observe that distinct blocks i in
x⊛ B are matched in this way to distinct blocks j in y ⊛ B (because the initial substrings in y ⊛ B
were non-overlapping, and they each more than n′/2 overlap with a distinct block j).

It is easily verified that the above process gives an alignment between x and y. Recall that
the number of coordinates in x that are not aligned in this process is at most 150R/n′, hence
ed(x, y) ≤ 300R/n′, and this completes the proof.

4.4 The Lower Bound

We now put all the elements of our proof together. We start by describing hard distributions, and
then prove their properties. We also give a slightly more precise version of the lower bound for
polynomial approximation factors in a separate subsection.

4.4.1 The Construction of Hard Distributions

We give a probabilistic construction for the hard distributions. We have two basic parameters, n
which is roughly the length of strings, and α which is the approximation factor. We require that
2 < α ≪ n/ log n. The strings length is actually smaller than n (for n large enough), but our query
complexity lower bound hold also for length n, e.g., by a simple argument of padding by a fixed
string.

We now define the hard distributions.

1. Fix an alphabet Σ of size ⌈52 · 216 · log4
α n⌉.

36

2. Set:

• T
def
= ⌈1000 · log |Σ|⌉.

• β
def
=

{

α, if α < n1/3,
n

α ln n , otherwise.

• s
def
=
⌈
400β ln n · |Σ|12

⌉
, thus s = O(β · log n · log48

α n).

• B
def
= ⌈8αs · logα n⌉, implying that B = O(αβ log n · log49

α n). Notice that B < n
T for n

large enough. If α < n1/3, then B = Õ(n2/3). Otherwise, logα n ≤ 3, log |Σ| = O(1),
and B = o(n).

3. Select at random |Σ| strings of length B, denoted xa for a ∈ Σ.

4. Define |Σ| corresponding distributions Da. For each a ∈ Σ, let

Da
def
= Ss(xa),

and set
D def

= (Da)a∈Σ.

5. Define by induction on ia a collection of distributions Ei,a for a ∈ Σ. As the base case, set

E1,a
def
= Da.

For i > 1, set
Ei,a

def
= Ei−1,a ⊛ D.

6. Let i⋆
def
=
⌊
logB

n
T

⌋
. Note that the distributions Ei⋆,a are defined on strings of length Bi⋆ ,

which is is of course at most n
T , but due to an earlier observation, we also know that i⋆ ≥ 1,

for n large enough.

7. Fix distinct a⋆, b⋆ ∈ Σ. Let F0
def
= Ei⋆,a⋆ and F1

def
= Ei⋆,b⋆ .

8. Pick a random mapping R : Σ → {0, 1}T . Let F ′0
def
= F0 ⊛ R and F ′1

def
= F1 ⊛ R. Note that the

strings drawn from F ′0 and F ′1 are of length at most n.

Notice the construction is probabilistic only because of step #3 (the base strings xa), and #8
(the randomized reduction to binary alphabet).

4.4.2 Proof of the Query Complexity Lower Bound

The next theorem shows that:

• Every two strings selected from the same distribution Fi are always close in edit distance.

• With non-zero probability (recall the construction is probabilistic), distribution F0 produces
strings that are far, in edit distance, from strings produced by F1, yet distinguishing between
these cases requires many queries.

Essentially the same properties hold also for F ′0 and F ′1.

37

Theorem 4.15. Consider a randomized algorithm that is given full access to a string in Σn, and
query access to another string in Σn. Let 2 < α ≤ o(n/ log n). If the algorithm distinguishes, with
probability at least 2/3, edit distance ≥ n/2 from ≤ n/(4α), then it makes

(

2 + Ω

(
log α

log log n

))max
n

1,Ω
“

log n
log α+log log n

”o

queries for α < n1/3, and Ω
(
log n

α ln n

)
queries for α ≥ n1/3. The bound holds even for |Σ| =

O(log4
α n).

For Σ = {0, 1}, the same number of queries is required to distinguish edit distance ≥ c1n/2 and
≤ c1n/(4α), where c1 ∈ (0, 1) is the constant from Theorem 4.12.

Proof. We use the construction described in Section 4.4.1. Recall that i⋆ ≥ 1, for n large enough,
and that i⋆ ≤ logB n.

Let F : Σ → ΣB be defined as F (a)
def
= xa for every a ∈ Σ. We define yi,a inductively. Let

y1,a
def
= xa for every a ∈ Σ, then for i > 1 define yi,a

def
= yi−1,a ⊛ F .

We now claim that for every word z with non-zero probability in Ei,a for a ∈ Σ, we have

ed(z, yi,a)

Bi
≤ i · 2 · s

B
≤ i

4α logα n
.

This follows by induction on i, since every rotation by s can be “reversed” with at most s insertions
and s deletions. In particular,

ed(z, yi⋆,a)

Bi⋆
≤ logB n

4α logα n
=

log α

4α log B
≤ 1

4α
,

where the last inequality is because α ≤ B.
It follows from Lemma 4.9 and the union bound that with probability

1 − |Σ|2 · e−5B/
√
|Σ| ≥ 1 − |Σ|2 · e−5|Σ| ≥ 1 − e−3|Σ| ≥ 1 − e−3 ≥ 2/3

(over the choice of F , i.e. xa for a ∈ Σ), that for all a 6= b ∈ Σ we have LCS(xa, xb) ≤ 5B/
√

|Σ|,
that is, the value corresponding to

√
λB in Lemma 4.10 is at most

√

5/
√

|Σ| ≤ 1/(16 logα n). We
assume henceforth this event occurs. Then by Lemma 4.10 and induction, we have that for all
a 6= b,

ed(yi,a, yi,b) ≥ Bi

(

2 − i

2 logα n

)

which gives

ed(yi⋆,a⋆ , yi⋆,b⋆) ≥ 1

2
ed(yi⋆,a⋆ , yi⋆,b⋆) ≥ Bi⋆

(

1 − i⋆
4 logα n

)

≥ Bi⋆

(

1 − log α

4 log B

)

≥ Bi⋆

(

1 − 1

4

)

=
3

4
Bi⋆ .

Consider now an algorithm that is given full access to the string yi⋆,a⋆ and query access to some

other string z. If z comes from F0 = Ei⋆,a⋆ , then ed(yi⋆,a⋆ , z) ≤ Bi⋆

4α . If z comes from F1 = Ei⋆,b⋆ ,
then ed(yi⋆,a⋆ , z) ≥ 3

4Bi⋆ − 1
4αBi⋆ ≥ 1

2Bi⋆ by the triangle inequality.

38

We now show that the algorithm has to make many queries to learn whether z is drawn from
F0 or from F1. By Lemma 4.7, with probability at least 2/3 over the choice of xa’s, E1,a’s are
uniformly 1

A -similar, for

A
def
= log|Σ|

6

√
s

400 ln B
≥ log|Σ|

6
√

β · |Σ|12 = 2 +
log β

6 log |Σ| .

Note that both the above statement regarding 1
A -similarity as well as the earlier requirement that

LCS(xa, xb) be small for all a 6= b, are satisfied with non-zero probability.
Observe that log |Σ| = Θ(1 + log(log n

log α)). For α < n1/3,

A = 2 + Ω




log α

1 + log
(

log n
log α

)



 = 2 + Ω

(
log α

log log n

)

.

For α ≥ n1/3,

A ≥ 2 + Ω




log n

α ln n

1 + log
(

log n
log α

)



 ≥ Ω
(

log
n

α ln n

)

,

where the last transition follows since log n
log α = Θ(1) and α = o(n/ log n).

By using Lemma 4.8 over Ei,a’s, we have that Ei,a’s are uniformly 1
Ai -similar. It now follows

from Lemma 4.4 that an algorithm that distinguishes whether its input z is drawn from F0 = Ei⋆,a⋆

or from F1 = Ei⋆,b⋆ with probability at least 2/3, must make at least Ai⋆/3 queries to z. Consider

first the case of α < n1/3. We have i⋆ = Ω
(

log n
log B

)

= Ω
(

log n
log α+log log n

)

. The number of queries we

obtain is
(

2 + Ω

(
log α

log log n

))max
n

1,Ω
“

log n
log α+log log n

”o

.

For α ≥ n1/3 we have i⋆ ≥ 1, and the algorithm must make Ω
(
log n

α ln n

)
queries. This finishes the

prove of the first part of the theorem, which states a lower bound for an alphabet of size Θ(log4
α n).

For the second part of the theorem regarding alphabet Σ = {0, 1}, we use the distributions
from the first part, but we employ the mapping R : Σ → {0, 1}T to replace every symbol in Σ with
a binary string of length T . Lemma 4.14 and Theorem 4.12 state that if R is chosen at random,
then with non-zero probability, R preserves (normalized) edit distance up to a multiplicative c1.
Using such a mapping R and α/c1 instead of α in the entire proof, we obtain the desired gap in edit
distance between F ′0 and F ′1. The number of required queries remains the same after the mapping,
because every symbol in a string obtained from F ′0 or F ′1 is a function of a single symbol from a
string obtained from F0 or F1, respectively. An algorithm using few queries to distinguish F ′0 from
F ′1 would therefore imply an algorithm with similar query complexity to distinguish F0 from F1,
which is not possible.

4.4.3 A More Precise Lower Bound for Polynomial Approximation Factors

We now state a more precise statement that specifies the exponent for polynomial approximation
factors.

39

Theorem 4.16. Let λ be a fixed constant in (0, 1). Let t be the largest positive integer such that
λ · t < 1.

Consider an algorithm that is given a string in Σn, and query access to another string in Σn.
If the algorithm correctly distinguishes edit distance ≥ n/2 and ≤ n/(4nλ) with probability at least
2/3, then it needs Ω(logt n) queries, even for |Σ| = O(1).

For Σ = {0, 1}, the same number of queries is required to distinguish edit distance ≥ c1n/2 and
≤ c1n/(4nλ), where c1 ∈ (0, 1) is the constant from Theorem 4.12.

Proof. The proof is a modification of the proof of Lemma 4.15. We reuse the same construction
with the following differences:

• We set α
def
= nλ. This is our approximation factor.

• We set β
def
= n

1
2(

1
t
−λ). This is up to a logarithmic factor the shift at every level of recursion

T , s, B, |Σ| are defined in the same way as functions of α and β. Note that B = Θ
(

n
1
2(

1
t
+λ) log n

)

and T = Θ(1). This implies that for sufficiently large n, i⋆ = ⌊logB
n
T ⌋ = t, because Bt =

Θ̃
(

n
1+λt

2

)

= o(n), and Bt+1 = Θ̃
(

n
1
2
+ 1

2t
+

λ(t+1)
2

)

= Ω̃
(

n1+ 1
2t

)

= ω(n).

As in the proof of Lemma 4.15, we achieve the desired separation in edit distance. Recall that
the number of queries an algorithm must make is Ω(Ai⋆), where

A ≥ 2 +
log β

6 log |Σ| = Ω(log n).

Thus, the number of required queries equals Ω(logt n).

References

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to a
monotone function. Random Structures and Algorithms, 31:371–383, 2007. Previously appeared
in RANDOM’04.

[AJP10] Alexandr Andoni, T.S. Jayram, and Mihai Pǎtraşcu. Lower bounds for edit distance and prod-
uct metrics via Poincaré-type inequalities. Accepted to ACM-SIAM Symposium on Discrete
Algorithms (SODA’10), 2010.

[AK10] Alexandr Andoni and Robert Krauthgamer. The computational hardness of estimating edit
distance. SIAM Journal on Computing, 39(6):2398–2429, 2010. Previously appeared in FOCS’07.

[AN10] Alexandr Andoni and Huy L. Nguyen. Near-tight bounds for testing Ulam distance. Accepted to
ACM-SIAM Symposium on Discrete Algorithms (SODA’10), 2010.

[AO09] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. In
Proceedings of the Symposium on Theory of Computing (STOC), pages 199–204, 2009.

[BEK+03] Tuğkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Rahul Sami. A sublinear algorithm for weakly approximating edit distance. In Proceedings
of the Symposium on Theory of Computing (STOC), pages 316–324, 2003.

[BES06] Tuğkan Batu, Funda Ergün, and Cenk Sahinalp. Oblivious string embeddings and edit distance
approximations. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 792–801, 2006.

40

[BFC08] Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. Theoret-
ical Computer Science, 409(28):486–496, 2008.

[BGNS99] R. A. Baeza-Yates, R. Gavaldà, G. Navarro, and R. Scheihing. Bounding the expected length of
longest common subsequences and forests. Theory Comput. Syst., 32(4):435–452, 1999.

[BJKK04] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating edit dis-
tance efficiently. In Proceedings of the Symposium on Foundations of Computer Science (FOCS),
pages 550–559, 2004.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, 2nd edition, 2001.

[CM07] Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
ACM Trans. Algorithms, 3(1), 2007. Special issue on SODA’02.

[Cor03] Graham Cormode. Sequence Distance Embeddings. Ph.D. Thesis, University of Warwick. 2003.

[CPSV00] Graham Cormode, Mike Paterson, Suleyman Cenk Sahinalp, and Uzi Vishkin. Communication
complexity of document exchange. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 197–206, 2000.

[CS75] V. Chvatal and D. Sankoff. Longest common subsequences of two random sequences. J. Appl.
Probability, 12:306–315, 1975.

[EKK+00] Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Manesh Viswanathan.
Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000.

[Gus97] Dan Gusfield. Algorithms on strings, trees, and sequences. Cambridge University Press, Cam-
bridge, 1997.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, 1963.

[IM03] Piotr Indyk and Jǐŕı Matoušek. Low distortion embeddings of finite metric spaces. CRC Handbook
of Discrete and Computational Geometry, 2003.

[Ind01] Piotr Indyk. Algorithmic aspects of geometric embeddings (tutorial). In Proceedings of the
Symposium on Foundations of Computer Science (FOCS), pages 10–33, 2001.

[IW05] Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of data
streams. Proceedings of the Symposium on Theory of Computing (STOC), 2005.

[KN06] Subhash Khot and Assaf Naor. Nonembeddability theorems via Fourier analysis. Math. Ann.,
334(4):821–852, 2006. Preliminary version appeared in FOCS’05.

[KOR00] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. SIAM J. Comput., 30(2):457–474, 2000. Preliminary version
appeared in STOC’98.

[KR06] Robert Krauthgamer and Yuval Rabani. Improved lower bounds for embeddings into L1. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1010–1017,
2006.

[Lev65] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals
(in russian). Doklady Akademii Nauk SSSR, 4(163):845–848, 1965. Appeared in English as:
V. I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady 10(8), 707–710, 1966.

[LMS98] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM J. Comput., 27(2):557–582, 1998.

41

[Lue09] G. S. Lueker. Improved bounds on the average length of longest common subsequences. J. ACM,
56(3):1–38, 2009.

[Mat07] Jǐŕı Matoušek. Collection of open problems on low-distortion embeddings of finite metric spaces.
March 2007. Available online. Last access in August, 2007.

[MP80] William J. Masek and Mike Paterson. A faster algorithm computing string edit distances. J.
Comput. Syst. Sci., 20(1):18–31, 1980.

[MS00] S. Muthukrishnan and Cenk Sahinalp. Approximate nearest neighbors and sequence comparison
with block operations. Proceedings of the Symposium on Theory of Computing (STOC), pages
416–424, 2000.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv., 33(1):31–
88, 2001.

[OR07] Rafail Ostrovsky and Yuval Rabani. Low distortion embedding for edit distance. J. ACM, 54(5),
2007. Preliminary version appeared in STOC’05.

[Sah08] Süleyman Cenk Sahinalp. Edit distance under block operations. In Ming-Yang Kao, editor,
Encyclopedia of Algorithms. Springer, 2008.

[SS02] Michael Saks and Xiaodong Sun. Space lower bounds for distance approximation in the data
stream model. In Proceedings of the Symposium on Theory of Computing (STOC), pages 360–
369, 2002.

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal of
the ACM, 21(1):168 – 173, 1974.

42

