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Abstract

We give sublinear-time approximation algorithms for some optimization problems arising
in machine learning, such as training linear classifiers and finding minimum enclosing balls.
Our algorithms can be extended to some kernelized versions of these problems, such as SVDD,
hard margin SVM, and L2-SVM, for which sublinear-time algorithms were not known before.
These new algorithms use a combination of a novel sampling techniques and a new multiplicative
update algorithm. We give lower bounds which show the running times of many of our algorithms
to be nearly best possible in the unit-cost RAM model. We also give implementations of our
algorithms in the semi-streaming setting, obtaining the first low pass polylogarithmic space and
sublinear time algorithms achieving arbitrary approximation factor.

1 Introduction

Linear classification is a fundamental problem of machine learning, in which positive and negative
examples of a concept are represented in Euclidean space by their feature vectors, and we seek to
find a hyperplane separating the two classes of vectors.

The Perceptron Algorithm for linear classification is one of the oldest algorithms studied in
machine learning [Nov62, MP88]. It can be used to efficiently give a good approximate solution,
if one exists, and has nice noise-stability properties which allow it to be used as a subroutine in
many applications such as learning with noise [Byl94, BFKV98], boosting [Ser99] and more general
optimization [DV04]. In addition, it is extremely simple to implement: the algorithm starts with
an arbitrary hyperplane, and iteratively finds a vector on which it errs, and moves in the direction
of this vector by adding a multiple of it to the normal vector to the current hyperplane.

The standard implementation of the Perceptron Algorithm must iteratively find a “bad vector”
which is classified incorrectly, that is, for which the inner product with the current normal vector has
an incorrect sign. Our new algorithm is similar to the Perceptron Algorithm, in that it maintains a
hyperplane and modifies it iteratively, according to the examples seen. However, instead of explicitly
finding a bad vector, we run another dual learning algorithm to learn the “most adversarial”
distribution over the vectors, and use that distribution to generate an “expected bad” vector.
Moreover, we do not compute the inner products with the current normal vector exactly, but
instead estimate them using a fast sampling-based scheme.

Thus our update to the hyperplane uses a vector whose “badness” is determined quickly, but
very crudely. We show that despite this, an approximate solution is still obtained in about the
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Problem Previous time Time Here Lower Bound

classification/perceptron Õ(ε−2M) [Nov62] Õ(ε−2(n+ d)) §2 Ω(ε−2(n+ d)) §7.1

min. enc. ball (MEB) Õ(ε−1/2M) [SV09] Õ(ε−2n+ ε−1d) §3.1 Ω(ε−2n+ ε−1d) §7.2

QP in the simplex O(ε−1M) [FW56] Õ(ε−2n+ ε−1d) §3.3
Las Vegas versions additive O(M) Cor 2.11 Ω(M) §7.4

kernelized MEB and QP factors O(s4) or O(q) §6

Figure 1: Our results, except for semi-streaming and parallel

same number of iterations as the standard perceptron. So our algorithm is faster; notably, it can
be executed in time sublinear in the size of the input data, and still have good output, with high
probability. (Here we must make some reasonable assumptions about the way in which the data is
stored, as discussed below.)

This technique applies more generally than to the perceptron: we also obtain sublinear time
approximation algorithms for the related problems of finding an approximate Minimum Enclosing
Ball (MEB) of a set of points, and training a Support Vector Machine (SVM), in the hard margin
or L2-SVM formulations.

We give lower bounds that imply that our algorithms for classification are best possible, up to
polylogarithmic factors, in the unit-cost RAM model, while our bounds for MEB are best possible
up to an Õ(ε−1) factor. For most of these bounds, we give a family of inputs such that a single
coordinate, randomly “planted” over a large collection of input vector coordinates, determines the
output to such a degree that all coordinates in the collection must be examined for even a 2/3
probability of success.

We show that our algorithms can be implemented in the parallel setting, and in the semi-
streaming setting; for the latter, we need a careful analysis of arithmetic precision requirements
and an implementation of our primal-dual algorithms using lazy updates, as well as some recent
sampling technology [MW10].

Our approach can be extended to give algorithms for the kernelized versions of these problems,
for some popular kernels including the Gaussian and polynomial, and also easily gives Las Vegas
results, where the output guarantees always hold, and only the running time is probabilistic. 1 Our
approach also applies to the case of soft margin SVM (joint work in progress with Nati Srebro).

Our main results, except for semi-streaming and parallel algorithms, are given in Figure 1. The
notation is as follows. All the problems we consider have an n × d matrix A as input, with M
nonzero entries, and with each row of A with Euclidean length no more than one. The parameter
ε > 0 is the additive error; for MEB, this can be a relative error, after a simple O(M) preprocessing
step. We use the asymptotic notation Õ(f) = O(f · polylogndε ). The parameter σ is the margin of
the problem instance, explained below. The parameters s and q determine the standard deviation
of a Gaussian kernel, and degree of a polynomial kernel, respectively.

The time bounds given for our algorithms, except the Las Vegas ones, are under the assumption
of constant error probability; for output guarantees that hold with probability 1 − δ, our bounds
should be multiplied by log(n/δ).

The time bounds also require the assumption that the input data is stored in such a way that
a given entry Ai,j can be recovered in constant time. This can be done by, for example, keeping

1For MEB and the kernelized versions, we assume that the Euclidean norms of the relevant input vectors are known.
Even with the addition of this linear-time step, all our algorithms improve on prior bounds, with the exception of
MEB when M = o(ε−3/2(n + d)).
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each row Ai of A as a hash table. (Simply keeping the entries of the row in sorted order by column
number is also sufficient, incurring an O(log d) overhead in running time for binary search.)

By appropriately modifying our algorithms, we obtain algorithms with very low pass, space, and
time complexity. Many problems cannot be well-approximated in one pass, so a model permitting a
small number of passes over the data, called the semi-streaming model, has gained recent attention
[FKM+08, Mut05]. In this model the data is explicitly stored, and the few passes over it result in
low I/O overhead. It is quite suitable for problems such as MEB, for which any algorithm using a
single pass and sublinear (in n) space cannot approximate the optimum value to within better than
a fixed constant [AS10]. Unlike traditional semi-streaming algorithms, we also want our algorithms
to be sublinear time, so that in each pass only a small portion of the input is read.

We assume we see the points (input rows) one at a time in an arbitrary order. The space
is measured in bits. For MEB, we obtain an algorithm with Õ(ε−1) passes, Õ(ε−2) space, and
Õ(ε−3(n + d)) total time. For linear classification, we obtain an algorithm with Õ(ε−2) passes,
Õ(ε−2) space, and Õ(ε−4(n+ d)) total time. For comparison, prior streaming algorithms for these
problems [AS10, ZZC06] require a prohibitive Ω(d) space, and none achieved a sublinear o(nd)
amount of time. Further, their guarantee is an approximation up to a fixed constant, rather than
for a general ε (though they can achieve a single pass).

Formal Description: Classification In the linear classification problem, the learner is given
a set of n labeled examples in the form of d-dimensional vectors, comprising the input matrix A.
The labels comprise a vector y ∈ {+1,−1}n.

The goal is to find a separating hyperplane, that is, a normal vector x in the unit Euclidean ball
B such that for all i, y(i) · Aix ≥ 0; here y(i) denotes the i’th coordinate of y. As mentioned, we
will assume throughout that Ai ∈ B for all i ∈ [n], where generally [m] denotes the set of integers
{1, 2, . . . ,m}.

As is standard, we may assume that the labels y(i) are all 1, by taking Ai ← −Ai for any i with
y(i) = −1. The approximation version of linear classification (which is necessary in case there is
noise), is to find a vector xε ∈ B that is an ε-approximate solution, that is,

∀i′ Ai′xε ≥ max
x∈B

min
i
Aix− ε. (1)

The optimum for this formulation is obtained when ‖x‖ = 1, except when no separating hyperplane
exists, and then the optimum x is the zero vector.

Note that miniAix = minp∈∆ p
>Ax, where ∆ ⊂ Rn is the unit simplex {p ∈ Rn | pi ≥ 0,

∑
i pi =

1}. Thus we can regard the optimum as the outcome of a game to determine p>Ax, between a
minimizer choosing p ∈ ∆, and a maximizer choosing x ∈ B, yielding

σ ≡ max
x∈B

min
p∈∆

p>Ax,

where this optimum σ is called the margin. From standard duality results, σ is also the optimum
of the dual problem

min
p∈∆

max
x∈B

p>Ax,

and the optimum vectors p∗ and x∗ are the same for both problems.
The classical Perceptron Algorithm returns an ε-approximate solution to this problem in 1

ε2

iterations, and total time O(ε−2M).
For given δ ∈ (0, 1), our new algorithm takes O(ε−2(n + d)(log n) log(n/δ)) time to return an

ε-approximate solution with probability at least 1 − δ. Further, we show this is optimal in the
unit-cost RAM model, up to poly-logarithmic factors.
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Formal Description: Minimum Enclosing Ball (MEB) The MEB problem is to find the
smallest Euclidean ball in Rd containing the rows of A. It is a special case of quadratic programming
(QP) in the unit simplex, namely, to find minp∈∆ p

>b + p>AA>p, where b is an n-vector. This
relationship, and the generalization of our MEB algorithm to QP in the simplex, is discussed in
§3.3; for more general background on QP in the simplex, and related problems, see for example
[Cla08].

1.1 Related work

Perhaps the most closely related work is that of Grigoriadis and Khachiyan [GK95], who showed
how to approximately solve a zero-sum game up to additive precision ε in time Õ(ε−2(n + d)),
where the game matrix is n× d. This problem is analogous to ours, and our algorithm is similar in
structure to theirs, but where we minimize over p ∈ ∆ and maximize over x ∈ B, their optimization
has not only p but also x in a unit simplex.

Their algorithm (and ours) relies on sampling based on x and p, to estimate inner products x>v
or p>w for vectors v and w that are rows or columns of A. For a vector p ∈ ∆, this estimation is
easily done by returning wi with probability pi.

For vectors x ∈ B, however, the natural estimation technique is to pick i with probability x2
i ,

and return vi/xi. The estimator from this `2 sample is less well-behaved, since it is unbounded,
and can have a high variance. While `2 sampling has been used in streaming applications [MW10],
it has not previously found applications in optimization due to this high variance problem.

Indeed, it might seem surprising that sublinearity is at all possible, given that the correct
classifier might be determined by very few examples, as shown in figure 2. It thus seems necessary
to go over all examples at least once, instead of looking at noisy estimates based on sampling.

Figure 2: The optimum x∗ is determined by the vectors near the horizontal axis.

However, as we show, in our setting there is a version of the fundamental Multiplicative Weights
(MW) technique that can cope with unbounded updates, and for which the variance of `2-sampling
is manageable. In our version of MW, the multiplier associated with a value z is quadratic in z, in
contrast to the more standard multiplier that is exponential in z; while the latter is a fundamental
building block in approximate optimization algorithms, as discussed by Plotkin et al. [PST91], in
our setting such exponential updates can lead to a very expensive dΩ(1) iterations.
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We analyze MW from the perspective of on-line optimization, and show that our version of MW
has low expected expected regret given only that the random updates have the variance bounds
provable for `2 sampling. We also use another technique from on-line optimization, a gradient
descent variant which is better suited for the ball.

For the special case of zero-sum games in which the entries are all non-negative (this is equivalent
to packing and covering linear programs), Koufogiannakis and Young [KY07] give a sublinear-
time algorithm which returns a relative approximation in time Õ(ε−2(n + d)). Our lower bounds
show that a similar relative approximation bound for sublinear algorithms is impossible for general
classification, and hence general linear programming.

2 Linear Classification and the Perceptron

Before our algorithm, some reminders and further notation: ∆ ⊂ Rn is the unit simplex {p ∈ Rn |
pi ≥ 0,

∑
i pi = 1}, B ⊂ Rd is the Euclidean unit ball, and the unsubscripted ‖x‖ denotes the

Euclidean norm ‖x‖2. The n-vector, all of whose entries are one, is denoted by 1n.
The i’th row of the input matrix A is denoted Ai, although a vector is a column vector unless

otherwise indicated. The i’th coordinate of vector v is denoted v(i). For a vector v, we let v2

denote the vector whose coordinates have v2(i) ≡ v(i)2 for all i.

2.1 The Sublinear Perceptron

Our sublinear perceptron algorithm is given in Figure 1. The algorithm maintains a vector wt ∈ Rn,
with nonnegative coordinates, and also pt ∈ ∆, which is wt scaled to have unit `1 norm. A vector
yt ∈ Rd is maintained also, and xt which is yt scaled to have Euclidean norm no larger than one.
These normalizations are done on line 4.

In lines 5 and 6, the algorithm is updating yt by adding a row of A randomly chosen using pt.
This is a randomized version of Online Gradient Descent (OGD); due to the random choice of it,
Ait is an unbiased estimator of p>t A, which is the gradient of p>t Ay with respect to y.

In lines 7 through 12, the algorithm is updating wt using a column jt of A randomly chosen
based on xt, and also using the value xt(jt). This is a version of the Multiplicative Weights (MW)
technique for online optimization in the unit simplex, where vt is an unbiased estimator of Axt, the
gradient of p>Axt with respect to p.

Actually, vt is not unbiased, after the clip operation: for z, V ∈ R, clip(z, V ) ≡ min{V,max{−V, z}},
and our analysis is helped by clipping the entries of vt; we show that the resulting slight bias is not
harmful.

As discussed in §1.1, the sampling used to choose jt (and update pt) is `2-sampling, and that
for it, `1-sampling. These techniques, which can be regarded as special cases of an `p-sampling
technique, for p ∈ [1,∞), yield unbiased estimators of vector dot products. It is important for us
also that `2-sampling has a variance bound here; in particular, for each relevant i and t,

E[vt(i)
2] ≤ ‖Ai‖2‖xt‖2 ≤ 1. (2)

First we note the running time.

Theorem 2.1. The sublinear perceptron takes O(ε−2 log n) iterations, with a total running time of
O(ε−2(n+ d) log n).

Proof. The algorithm iterates T = O( logn
ε2

) times. Each iteration requires:

1. One `2 sample per iterate, which takes O(d) time using known data structures.
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Algorithm 1 Sublinear Perceptron

1: Input: ε > 0, A ∈ Rn×d with Ai ∈ B for i ∈ [n].
2: Let T ← 2002ε−2 log n, y1 ← 0, w1 ← 1n,

η ← 1
100

√
logn
T .

3: for t = 1 to T do
4: pt ← wt

‖wt‖1 , xt ← yt
max{1,‖yt‖} .

5: Choose it ∈ [n] by it ← i with prob. pt(i).
6: yt+1 ← yt + 1√

2T
Ait

7: Choose jt ∈ [d] by
jt ← j with probability xt(j)

2/‖xt‖2.
8: for i ∈ [n] do
9: ṽt(i)← Ai(jt)‖xt‖2/xt(jt)

10: vt(i)← clip(ṽt(i), 1/η)
11: wt+1(i)← wt(i)(1− ηvt(i) + η2vt(i)

2)
12: end for
13: end for
14: return x̄ = 1

T

∑
t xt

2. Sampling it ∈R pt which takes O(n) time.

3. The update of xt and pt, which takes O(n+ d) time.

The total running time is O(ε−2(n+ d) log n).

Next we analyze the output quality. The proof uses new tools from regret minimization and
sampling that are the building blocks of most of our upper bound results.

Let us first state the MW algorithm used in all our algorithms.

Definition 2.2 (MW algorithm). Consider a sequence of vectors q1, . . . , qT ∈ Rn. The Multiplica-
tive Weights (MW) algorithm is as follows. Let w1 ← 1n, and for t ≥ 1,

pt ← wt/‖wt‖1, (3)

and for 0 < η ∈ R
wt+1(i)← wt(i)(1− ηqt(i) + η2qt(i)

2), (4)

The following is a key lemma, which proves a novel bound on the regret of the MW algorithm
above, suitable for the case where the losses are random variables with bounded variance. This is
proven below, after a concentration lemma, and the main theorem and its proof.

Lemma 2.3 (Variance MW Lemma). The MW algorithm satisfies∑
t∈[T ]

p>t qt ≤ mini∈[n]

∑
t∈[T ] max{qt(i),− 1

η}

+ logn
η + η

∑
t∈[T ] p

>
t q

2
t .

The following three lemmas give concentration bounds on our random variables from their
expectations. The first two are based on standard martingale analysis, and the last is a simple
Markov application. The proofs are deferred to Appendix B.
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Lemma 2.4. For η ≤
√

logn
10T , with probability at least 1−O(1/n),

max
i

∑
t∈[T ]

[vt(i)−Aixt] ≤ 90ηT.

Lemma 2.5. For η ≤
√

logn
10T , with probability at least 1−O(1/n), it holds that

∣∣∣∑t∈[T ]Aitxt −
∑

t p
>
t vt

∣∣∣ ≤
100ηT.

Lemma 2.6. With probability at least 1− 1
4 , it holds that

∑
t p
>
t v

2
t ≤ 8T.

Theorem 2.7 (Main Theorem). With probability 1/2, the sublinear perceptron returns a solution
x̄ that is an ε-approximation.

Proof. First we use the regret bounds for lazy gradient descent to lower bound
∑

t∈[T ]Aitxt, next
we get an upper bound for that quantity using the Weak Regret lemma above, and then we combine
the two.

By definition, Aix
∗ ≥ σ for all i ∈ [n], and so, using the bound of Lemma A.2,

Tσ ≤ max
x∈B

∑
t∈[T ]

Aitx ≤
∑
t∈[T ]

Aitxt + 2
√

2T , (5)

or rearranging, ∑
t∈[T ]

Aitxt ≥ Tσ − 2
√

2T . (6)

Now we turn to the MW part of our algorithm. By the Weak Regret Lemma 2.3, and using the
clipping of vt(i), ∑

t∈[T ]

p>t vt ≤ min
i∈[n]

∑
t∈[T ]

vt(i) + (log n)/η + η
∑
t∈[T ]

p>t v
2
t .

By Lemma 2.4 above, with high probability, for any i ∈ [n],∑
t∈[T ]

Aixt ≥
∑
t∈[T ]

vt(i)− 90ηT,

so that with high probability∑
t∈[T ]

p>t vt ≤ mini∈[n]

∑
t∈[T ]Aixt + (log n)/η

+η
∑

t∈[T ] p
>
t v

2
t + 90Tη. (7)

Combining (6) and (7) we get

min
i∈[n]

∑
t∈[T ]

Aixt ≥ −(log n)/η − η
∑
t∈[T ]

p>t v
2
t − 90Tη

+ Tσ − 2
√

2T − |
∑
t∈[T ]

p>t vt −
∑
t∈[T ]

Aitxt|
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By Lemmas 2.5, 2.6 we have w.p at least 3
4 −O( 1

n) ≥ 1
2

min
i∈[n]

∑
t∈[T ]

Aixt ≥ −(log n)/η − 8ηT − 90Tη + Tσ − 2
√

2T − 100ηT

≥ Tσ − log n

η
− 200ηT.

Dividing through by T , and using our choice of η, we have miniAix̄ ≥ σ − ε/2 w.p. at least
least 1/2 as claimed.

Proof of Lemma 2.3, Weak Regret. We first show an upper bound on log‖wT+1‖1, then a lower
bound, and then relate the two.

From (4) and (3) we have

‖wt+1‖1 =
∑
i∈[n]

wt+1(i)

=
∑
i∈[n]

pt(i)‖wt‖1(1− ηqt(i) + η2qt(i)
2)

= ‖wt‖1(1− ηp>t qt + η2p>t q
2
t ).

This implies by induction on t, and using 1 + z ≤ exp(z) for z ∈ R, that

log‖wT+1‖1 = log n+
∑
t∈[T ]

log(1− ηp>t qt + η2p>t q
2
t ) ≤ log n−

∑
t∈[T ]

ηp>t qt + η2p>t q
2
t . (8)

Now for the lower bound. From (4) we have by induction on t that

wT+1(i) =
∏
t∈[T ]

(1− ηqt(i) + η2qt(i)
2),

and so

log‖wT+1‖1 = log

∑
i∈[n]

∏
t∈[T ]

(1− ηqt(i) + η2qt(i)
2)


≥ log

max
i∈[n]

∏
t∈[T ]

(1− ηqt(i) + η2qt(i)
2)


= max

i∈[n]

∑
t∈[T ]

log(1− ηqt(i) + η2qt(i)
2)

≥ max
i∈[n]

∑
t∈[T ]

[min{−ηqt(i), 1}],

where the last inequality uses the fact that 1 + z + z2 ≥ exp(min{z, 1}) for all z ∈ R.
Putting this together with the upper bound (8), we have

max
i∈[n]

∑
t∈[T ]

[min{−ηqt(i), 1}] ≤ log n−
∑
t∈[T ]

ηp>t qt + η2p>t q
2
t ,

7



Changing sides ∑
t∈[T ]

ηp>t qt ≤ −max
i∈[n]

∑
t∈[T ]

[min{−ηqt(i), 1}] + log n+ η2p>t q
2
t ,

= min
i∈[n]

∑
t∈[T ]

[max{ηqt(i),−1}] + log n+ η2p>t q
2
t ,

and the lemma follows, dividing through by η.

Corollary 2.8 (Dual solution). The vector p̄ ≡
∑

t eit/T is, with probability 1/2, an O(ε)-
approximate dual solution.

Proof. Observing in (5) that the middle expression maxx∈B
∑

t∈[T ]Aitx is equal to T maxx∈B p̄
>Ax,

we have T maxx∈B p̄
>Ax ≤

∑
t∈[T ]Aitxt + 2

√
2T , or changing sides,∑

t∈[T ]

Aitxt ≥ T max
x∈B

p̄>Ax− 2
√

2T

Recall from (7) that with high probability,∑
t∈[T ]

p>t vt ≤ min
i∈[n]

∑
t∈[T ]

Aixt + (log n)/η + η
∑
t∈[T ]

p>t v
2
t + 90Tη. (9)

Following the proof of the main Theorem, we combine both inequalities and use Lemmas 2.5,2.6,
such that with probability at least 1

2 :

T max
x∈B

p̄>Ax ≤ min
i∈[n]

∑
t∈[T ]

Aixt + (log n)/η + η
∑
t∈[T ]

p>t v
2
t + 90Tη + 2

√
2T + |

∑
t∈[T ]

p>t vt −
∑
t∈[T ]

Aitxt|

≤ Tσ +O(
√
T log n)

Dividing through by T we have with probability at least 1
2 that maxx∈B p̄

>Ax ≤ σ + O(ε) for our
choice of T and η.

2.2 High Success Probability and Las Vegas

Given two vectors u, v ∈ B, we have seen that a single `2-sample is an unbiased estimator of their
inner product with variance at most one. Averaging 1

ε2
such samples reduces the variance to ε2,

which reduces the standard deviation to ε. Repeating O(log 1
δ ) such estimates, and taking the

median, gives an estimator denoted Xε,δ, which satisfies, via a Chernoff bound:

Pr[|Xε,δ − v>u| > ε] ≤ δ

As an immediate corollary of this fact we obtain:

Corollary 2.9. There exists a randomized algorithm that with probability 1 − δ, successfully de-
termines whether a given hyperplane with normal vector x ∈ B, together with an instance of linear
classification and parameter σ > 0, is an ε-approximate solution. The algorithm runs in time
O(d+ n

ε2
log n

δ ).

8



Proof. Let δ′ = δ/n. Generate the random variable Xε,δ′ for each inner product pair 〈x,Ai〉, and
return true if and only if Xε,δ′ ≥ σ − ε for each pair. By the observation above and taking union
bound over all n inner products, with probability 1 − δ the estimate Xε,δ′ was ε-accurate for all
inner-product pairs, and hence the algorithm returned a correct answer.
The running time includes preprocessing of x in O(d) time, and n inner-product estimates, for a
total of O(d+ n

ε2
log n

δ ).

Hence, we can amplify the success probability of Algorithm 1 to 1 − δ for any δ > 0 albeit
incurring additional poly-log factors in running time:

Corollary 2.10 (High probability). There exists a randomized algorithm that with probability 1−δ
returns an ε-approximate solution to the linear classification problem, and runs in expected time
O(n+d

ε2
log n

δ ).

Proof. Run Algorithm 1 for log2
1
δ times to generate that many candidate solutions. By Theorem

2.7, at least one candidate solution is an ε-approximate solution with probability at least 1 −
2− log2

1
δ = 1− δ.

For each candidate solution apply the verification procedure above with success probability
1− δ2 ≥ 1− δ

log 1
δ

, and all verifications will be correct again with probability at least 1− δ. Hence,

both events hold with probability at least 1− 2δ. The result follows after adjusting constants.
The worst-case running time comes to O(n+d

ε2
log n

δ log 1
δ ). However, we can generate the can-

didate solutions and verify them one at a time, rather than all at once. The expected number of
candidates we need to generate is constant.

It is also possible to obtain an algorithm that never errs:

Corollary 2.11 (Las Vegas Version). After O(ε−2 log n) iterations, the sublinear perceptron returns
a solution that with probability 1/2 can be verified in O(M) time to be ε-approximate. Thus with
expected O(1) repetitions, and a total of expected O(M + ε−2(n + d) log n) work, a verified ε-
approximate solution can be found.

Proof. We have
min
i
Aix̄ ≤ σ ≤ ‖p̄>A‖,

and so if
min
i
Aix̄ ≥ ‖p̄>A‖ − ε, (10)

then x̄ is an ε-approximate solution, and x̄ will pass this test if it and p̄ are (ε/2)-approximate
solutions, and the same for p̄.

Thus, running the algorithm for a constant factor more iterations, so that with probability
1/2, x̄ and p̄ are both (ε/2)-approximate solutions, it can be verified that both are ε-approximate
solutions.

2.3 Further Optimizations

The regret of OGD as given in Lemma A.2 is smaller than the dual strategy of random MW. We can
take advantage of this and improve the running time slightly, by replacing line [6] of the sublinear
algorithm with the line shown below.

This has the effect of increasing the regret of the primal online algorithm by a log n factor, which
does not hurt the number of iterations required to converge, since the overall regret is dominated
by that of the MW algorithm.

9



[6’] With probability 1
log T , let yt+1 ← yt + 1

2
√
T
Ait (else do nothing).

Since the primal solution xt is not updated in every iteration, we improve the running time
slightly to

O(ε−2 log n(n+ d/(log 1/ε+ log log n))).

We use this technique to greater effect for the MEB problem, where it is discussed in more detail.

2.4 Implications in the PAC model

Consider the “separable” case of hyperplane learning, in which there exists a hyperplane classifying
all data points correctly. It is well known that the concept class of hyperplanes in d dimensions
with margin σ has effective dimension at most min{d, 1

σ2 } + 1. Consider the case in which the
margin is significant, i.e. 1

σ2 < d. PAC learning theory implies that the number of examples needed
to attain generalization error of δ is O( 1

σ2δ
).

Using the method of online to batch conversion (see [CBCG04]), and applying the online gradient
decent algorithm, it is possible to obtain δ generalization error in time O( d

σ2δ
) time, by going over

the data once and performing a gradient step on each example.
Our algorithm improves upon this running time bound as follows: we use the sublinear per-

ceptron to compute a σ/2-approximation to the best hyperplane over the test data, where the
number of examples is taken to be n = O( 1

σ2δ
) (in order to obtain δ generalization error). As

shown previously, the total running time amounts to Õ(
1
σ2δ

+d

σ2 ) = O( 1
σ4δ

+ d
σ2 ).

This improves upon standard methods by a factor of Õ(σ2d), which is always an improvement
by our initial assumption on σ and d.

3 Strongly convex problems: MEB and SVM

3.1 Minimum Enclosing Ball

In the Minimum Enclosing Ball problem the input consists of a matrix A ∈ Rn×d. The rows are
interpreted as vectors and the problem is to find a vector x ∈ Rd such that

x∗ ≡ argminx∈Rd max
i∈[n]
‖x−Ai‖2

We further assume for this problem that all vectors Ai have Euclidean norm at most one. Denote
by σ = maxi∈[n]‖x−Ai‖2 the radius of the optimal ball, and we say that a solution is ε-approximate
if the ball it generates has radius at most σ + ε.

As in the case of linear classification, to obtain tight running time bounds we use a primal-dual
approach; the algorithm is given below.

(This is a “conceptual” version of the algorithm: in the analysis of the running time, we use
the fact that we can batch together the updates for wt over the iterations for which xt does not
change.)

Theorem 3.1. Algorithm 2 runs in O( logn
ε2

) iterations, with a total expected running time of

Õ

(
n

ε2
+
d

ε

)
,

and with probability 1/2, returns an ε-approximate solution.

10



Algorithm 2 Sublinear Primal-Dual MEB

1: Input: ε > 0, A ∈ Rn×d with Ai ∈ B for i ∈ [n] and ‖Ai‖ known.
2: Let T ← Θ(ε−2 log n) , y1 ← 0, w1 ← 1, η ←

√
(log n)/T , α← log T√

T logn
.

3: for t = 1 to T do
4: pt ← wt

‖wt‖1
5: Choose it ∈ [n] by it ← i with probability pt(i).
6: With probability α, update yt+1 ← yt +Ait , xt+1 ← yt+1

t . (else do nothing)
7: Choose jt ∈ [d] by jt ← j with probability xt(j)

2/‖xt‖2.
8: for i ∈ [n] do
9: ṽt(i)← −2Ai(jt)‖xt‖2/xt(jt) + ‖Ai‖2 + ‖xt‖2.

10: vt(i)← clip(ṽt(i),
1
η ).

11: wt+1(i)← wt(i)(1 + ηvt(i) + η2vt(i)
2).

12: end for
13: end for
14: return x̄ = 1

T

∑
t xt

Proof. Except for the running time analysis, the proof of this theorem is very similar to that of
Theorem 2.7, where we take advantage of a tighter regret bound for strictly convex loss functions
in the case of MEB, for which the OGD algorithm with a learning rate of 1

t is known to obtain a

tighter regret bound of O(log T ) instead of O(
√
T ). For presentation, we use asymptotic notation

rather than computing the exact constants (as done for the linear classification problem).

Let ft(x) = ‖x − Ait‖2. Notice that arg minx∈B
∑t

τ=1 fτ (x) =
∑t
τ=1 Aiτ
t . By Lemma A.5 such

that ft(x) = ‖x−Ait‖2, with G ≤ 2 and H = 2, and x∗ being the solution to the instance, we have

E{ct}[
∑
t

‖xt −Ait‖2] ≤ E{ct}[
∑
t

‖x∗ −Ait‖2] +
4

α
log T ≤ Tσ +

4

α
log T, (11)

where σ is the squared MEB radius. Here the expectation is taken only over the random coin tosses
for updating xt, denoted ct, and holds for any outcome of the indices it sampled from pt and the
coordinates jt used for the `2 sampling.

Now we turn to the MW part of our algorithm. By the Weak Regret Lemma 2.3, using the
clipping of vt(i), and reversing inequalities to account for the change of sign, we have∑

t∈[T ]

p>t vt ≥ max
i∈[n]

∑
t∈[T ]

vt(i)−O(
log n

η
+ η

∑
t∈[T ]

p>t v
2
t ).

Using Lemmas B.4,B.5 with high probability

∀i ∈ [n] .
∑
t∈[T ]

vt(i) ≥
∑
t∈[T ]

‖Ai − xt‖2 −O(ηT ),

∣∣∣∣∣∣
∑
t∈[T ]

‖xt −Ait‖2 −
∑
t

p>t vt

∣∣∣∣∣∣ = O(ηT ).

Plugging these two facts in the previous inequality we have w.h.p∑
t∈[T ]

‖xt −Ait‖2 ≥ max
i∈[n]

∑
t∈[T ]

‖Ai − xt‖2 −O(
log n

η
+ η

∑
t∈[T ]

p>t v
2
t + Tη).

11



This holds w.h.p over the random choices of {it, jt}, and irrespective of the coin tosses {ct}. Hence,
we can take expectations w.r.t {ct}, and obtain

E{ct}[
∑
t∈[T ]

‖xt −Ait‖2] ≥ E{ct}[max
i∈[n]

∑
t∈[T ]

‖Ai − xt‖2]−O(
log n

η
+ η

∑
t∈[T ]

p>t v
2
t + Tη). (12)

Combining with equation (11), we obtain that w.h.p. over the random variables {it, jt}

Tσ +
4

α
log T ≥ E{ct}[max

i∈[n]

∑
t∈[T ]

‖xt −Ai‖2]−O(
log n

η
+ η

∑
t∈[T ]

p>t v
2
t + Tη)

Rearranging and using Lemma B.8, we have w.p. at least 1
2

E{ct}[max
i∈[n]

∑
t∈[T ]

‖xt −Ai‖2] ≤ O(Tσ +
log T

α
+

log n

η
+ Tη)

Dividing through by T and applying Jensen’s inequality, we have

E[max
j
‖x̄−Aj‖2] ≤ 1

T
E[max

i∈[n]

∑
t∈[T ]

‖xt −Ai‖2] ≤ O(σ +
log T

Tα
+

log n

Tη
+ η).

Optimizing over the values of α, η, and T , this implies that the expected error is O(ε), and so using
Markov’s inequality, x̄ is a O(ε)-approximate solution with probability at least 1/2.

Running time The algorithm above consists of T = O( logn
ε2

) iterations. Naively, this would
result in the same running time as for linear classification. Yet notice that xt changes only an
expected αT times, and only then do we perform an O(d) operation. The expected number of
iterations in which xt changes is αT ≤ 16ε−1 log T , and so the running time is

O(ε−1(log T ) · d+
log n

ε2
· n)) = Õ(ε−2n+ ε−1d).

The following Corollary is a direct analogue of Corollary 2.8.

Corollary 3.2 (Dual solution). The vector p̄ ≡
∑

t eit/T is, with probability 1/2, an O(ε)-
approximate dual solution.

3.2 High Success Probability and Las Vegas

As for linear classification, we can amplify the success probability of Algorithm 2 to 1− δ for any
δ > 0 albeit incurring additional poly-log factors in running time.

Corollary 3.3 (MEB high probability). There exists a randomized algorithm that with probability
1−δ returns an ε-approximate solution to the MEB problem, and runs in expected time Õ( n

ε2
log n

εδ+
d
ε log 1

ε ). There is also a randomized algorithm that returns an ε-approximate solution in Õ(M +
n
ε2

+ d
ε ) time.

12



Proof. We can estimate the distance between two points in B in O(ε−2 log(1/δ)) time, with er-
ror at most ε and failure probability at most δ, using the dot product estimator described in
§2.2. Therefore we can estimate the maximum distance of a given point to every input point in
O(nε−2 log(n/δ)) time, with error at most ε and failure probability at most δ. This distance is
σ − ε, where σ is the optimal radius attainable, w.p. 1− δ.

Because Algorithm 2 yields an ε-dual solution with probability 1/2, we can use this solution to
verify that the radius of any possible solution to the farthest point is at least σ − ε.

So, to obtain a solution as described in the lemma statement, run Algorithm 2, and verify that
it yields an ε-approximation, using this approximate dual solution; with probability 1/2, this gives
a verified ε-approximation. Keep trying until this succeeds, in an expected 2 trials.

For a Las Vegas algorithm, we simply apply the same scheme, but verify the distances exactly.

3.3 Convex Quadratic Programming in the Simplex

We can extend our approach to problems of the form

min
p∈∆

p>b+ p>AA>p, (13)

where b ∈ Rn, A ∈ Rn×d, and ∆ is, as usual, the unit simplex in Rn. As is well known, and as
we partially review below, this problem includes the MEB problem, margin estimation as for hard
margin support vector machines, the L2-SVM variant of support vector machines, the problem of
finding the shortest vector in a polytope, and others.

Applying ‖v − x‖2 = v>v + x>x− 2v>x ≥ 0 with v ← A>p, we have

max
x∈Rd

2p>Ax− ‖x‖2 = p>AA>p, (14)

with equality at x = A>p. Thus (13) can be written as

min
p∈∆

max
x∈Rd

p>(b+ 2Ax− 1n‖x‖2). (15)

The Wolfe dual of this problem exchanges the max and min:

max
x∈Rd

min
p∈∆

p>(b+ 2Ax− 1n‖x‖2). (16)

Since
min
p∈∆

p>(b+ 2Ax− 1n‖x‖2) = min
i
b(i) + 2Aix+ ‖x‖2, (17)

with equality when pî = 0 if î is not a minimizer, the dual can also be expressed as

max
x∈Rd

min
i
b(i) + 2Aix− ‖x‖2 (18)

By the two relations (14) and (17) used to derive the dual problem from the primal, we have
immediately the weak duality condition that the objective function of the dual (18) is always no
more than the objective function value of the primal (13). The strong duality condition, that the
two problems take the same optimal value, also holds here; indeed, the optimum x∗ also solves (14),
and the optimal p∗ also solves (17).
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To generalize Algorithm 2, we make vt an unbiased estimator of b + 2Axt − 1n‖xt‖2, and set
xt+1 to be the minimizer of ∑

t′∈[t]

b(it′) + 2Ait′xt′ − ‖xt′‖
2,

namely, as with MEB, yt+1 ←
∑

t′∈[t]Ait′ , and xt+1 ← yt+1/t. (We also make some sign changes to
account for the max-min formulation here, versus the min-max formulation used for MEB above.)
This allows the use of Lemma A.4 for essentially the same analysis as for MEB; the gradient bound
G and Hessian bound H are both at most 2, again assuming that all Ai ∈ B.

MEB When the b(i)← −‖Ai‖2, we have

−max
x∈Rd

min
i
b(i) + 2Aix− ‖x‖2 = min

x∈Rd
max
i
‖Ai‖2 − 2Aix+ ‖x‖2 = min

x∈Rd
max
i
‖x−Ai‖2,

the objective function for the MEB problem.

Margin Estimation When b← 0 in the primal problem (13), that problem is one of finding the
shortest vector in the polytope {A>p | p ∈ ∆}. Considering this case of the dual problem (18), for
any given x ∈ Rd with miniAix ≤ 0, the value of β ∈ R such that βx maximizes mini 2Aiβx−‖βx‖2
is β = 0. On the other hand if x is such that miniAix > 0, the maximizing value β is β = Aix/‖x‖2,
so that the solution of (18) also maximizes mini(Aix)2/‖x‖2. The latter is the square of the margin
σ, which as before is the minimum distance of the points Ai to the hyperplane that is normal to x
and passes through the origin.

Adapting Algorithm 2 for margin estimation, and with the slight changes needed for its analysis,
we have that there is an algorithm taking Õ(n/ε2 + d/epsilon) time that finds x̄ ∈ Rd such that,
for all i ∈ [n],

2Aix̄− ‖x̄‖2 ≥ σ2 − ε.

When σ2 ≤ ε, we don’t appear to gain any useful information. However, when σ2 > ε, we have
mini∈[n]Aix̄ > 0, and so, by appropriate scaling of x̄, we have x̂ such that

σ̂2 = min
i∈[n]

(Aix̂)2/‖x̂‖2 = min
i∈[n]

2Aix̂− ‖x̂‖2 ≥ σ2 − ε,

and so σ̂ ≥ σ−ε/σ. That is, letting ε ≡ ε′σ, if ε′ ≤ σ, there is an algorithm taking Õ(n/(εσ)2+d/ε′σ)
time that finds a solution x̂ with σ̂ ≥ σ − ε′.

4 A Generic Sublinear Primal-Dual Algorithm

We note that our technique above can be applied more broadly to any constrained optimization
problem for which low-regret algorithms exist and low-variance sampling can be applied efficiently;
that is, consider the general problem with optimum σ:

max
x∈K

min
i
ci(x) = σ. (19)

Suppose that for the set K and cost functions ci(x), there exists an iterative low regret algorithm,

denoted LRA, with regret R(T ) = o(T ). Let Tε(LRA) be the smallest T such that R(T )
T ≤ ε. We

denote by xt+1 ← LRA(xt, c) an invocation of this algorithm, when at state xt ∈ K and the cost
function c is observed.
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Algorithm 3 Generic Sublinear Primal-Dual Algorithm

1: Let T ← max{Tε(LRA), logn
ε2
} ,

x1 ← LRA(initial), w1 ← 1n, η ← 1
100

√
logn
T .

2: for t = 1 to T do
3: for i ∈ [n] do
4: Let vt(i)← Sample(xt, ci)
5: vt(i)← clip(ṽt(i), 1/η)
6: wt+1(i)← wt(i)(1− ηvt(i) + η2vt(i)

2)
7: end for
8: pt ← wt

‖wt‖1 ,

9: Choose it ∈ [n] by it ← i with probability pt(i).
10: xt ← LRA(xt−1, cit)
11: end for
12: return x̄ = 1

T

∑
t xt

Let Sample(x, c) be a procedure that returns an unbiased estimate of c(x) with variance at
most one, that runs in constant time. Further assume |ci(x)| ≤ 1 for all x ∈ K , i ∈ [n].

Applying the techniques of section 2 we can obtain the following generic lemma.

Lemma 4.1. The generic sublinear primal-dual algorithm returns a solution x that with probability
at least 1

2 is an ε-approximate solution in max{Tε(LRA), logn
ε2
} iterations.

Proof. First we use the regret bounds for LRA to lower bound
∑

t∈[T ] cit(xt), next we get an
upper bound for that quantity using the Weak Regret Lemma, and then we combine the two in
expectation.

By definition, ci(x
∗) ≥ σ for all i ∈ [n], and so, using the LRA regret guarantee,

Tσ ≤ max
x∈B

∑
t∈[T ]

cit(x) ≤
∑
t∈[T ]

cit(xt) +R(T ), (20)

or rearranging, ∑
t∈[T ]

cit(xt) ≥ Tσ −R(T ). (21)

Now we turn to the MW part of our algorithm. By the Weak Regret Lemma 2.3, and using the
clipping of vt(i), ∑

t∈[T ]

p>t vt ≤ min
i∈[n]

∑
t∈[T ]

vt(i) + (log n)/η + η
∑
t∈[T ]

p>t v
2
t .

Using Lemma B.4 and Lemma B.5, since the procedure Sample is unbiased and has variance at
most one, with high probability:

∀i ∈ [n] ,
∑
t∈[T ]

vt(i) ≤
∑
t∈[T ]

ci(xt) +O(ηT ),

∣∣∣∣∣∣
∑
t∈[T ]

cit(xt)−
∑
t

p>t vt

∣∣∣∣∣∣ = O(ηT ).
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Plugging these two facts in the previous inequality we have w.h.p,∑
t∈[T ]

cit(xt) ≤ min
i∈[n]

∑
t∈[T ]

ci(xt) +O(
log n

η
+ η

∑
t∈[T ]

p>t v
2
t + ηT ) (22)

Combining (21) and (22) we get w.h.p

min
i∈[n]

∑
t∈[T ]

ci(xt) ≥ −O(
log n

η
+ ηT + η

∑
t∈[T ]

p>t v
2
t )−R(T )

And via Lemma B.8 we have w.p. at least 1
2 that

min
i∈[n]

∑
t∈[T ]

ci(xt) ≥ −O(
log n

η
+ ηT )−R(T )

Dividing through by T , and using our choice of η, we have mini cix̄ ≥ σ − ε/2 w.p. at least least
1/2 as claimed.

High-probability results can be obtained using the same technique as for linear classification.

4.1 More applications

The generic algorithm above can be used to derive the result of Grigoriadis and Khachiyan [GK95]
on sublinear approximation of zero sum games with payoffs/losses bounded by one (up to poly-
logarithmic factors in running time). A zero sum game can be cast as the following min-max
optimization problem:

min
x∈∆d

max
i∈∆n

Aix

That is, the constraints are inner products with the rows of the game matrix. This is exactly the
same as the linear classification problem, but the vectors x are taken from the convex set K which
is the simplex - or the set of all mixed strategies of the column player.

A low regret algorithm for the simplex is the multiplicative weights algorithm, which attains
regret R(T ) ≤ 2

√
T log n. The procedure Sample(x,Ai) to estimate the inner product Aix is much

simpler than the one used for linear classification: we sample from the distribution x and return
Ai(j) w.p. x(j). This has correct expectation and variance bounded by one (in fact, the random
variable is always bounded by one). Lemma 4.1 then implies:

Corollary 4.2. The sublinear primal-dual algorithm applied to zero sum games returns a solution
x that with probability at least 1

2 is an ε-approximate solution in O( logn
ε2

) iterations and total time

Õ(n+d
ε2

).

Essentially any constrained optimization problem which has convex or linear constraints, and
is over a simple convex body such as the ball or simplex, can be approximated in sublinear time
using our method. The particular application to soft margin SVM, together with its practical
significance, is explored in ongoing work with Nati Srebro.
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5 A Semi-Streaming Implementation

In order to achieve space that is sublinear in d, we cannot afford to output a solution vector. We
instead output both the cost of the solution, and a set of indices i1, . . . , it for which the solution is
a linear combination (that we know) of Ai1 , . . . , Ait . We note that all previous algorithms for these
problems, even to achieve this notion of output, required Ω(d) space and/or Ω(nd) time, see, e.g.,
the references in [AS10].

We discuss the modifications to the sublinear primal-dual algorithm that need to be done for
classification and minimum enclosing ball problems.

Our algorithm assumes it sees entire points at a time, i.e., it sees the entries of A row at a
time, though the rows may be ordered arbitrarily. It relies on two streaming results about a d-
dimensional vector x undergoing updates to its coordinates. We assume that each update is of
the form (i, z), where i ∈ [d] is a coordinate of x and z ∈ {−P,−P + 1, . . . , P} indicates that
xi ← xi + z. The first is an efficient `2-sketching algorithm of Thorup and Zhang. This algorithm
allows for (1+ε)-approximation of ‖x‖2 with high probability using 1-pass, Õ(ε−2) space, and time
proportinal to the length of the stream.

Theorem 5.1. ([TZ04]) There is a 1-pass algorithm which outputs a (1±ε)-approximation to ‖x‖2
with probability ≥ 1 − δ using O(ε−2 log(PdQ) log 1/δ) bits of space and O(Q log 1/δ) time, where
Q is the total number of updates in the stream.

The second component is due to Monemizadeh and Woodruff [MW10]. We are given a stream of
updates to a d-dimensional vector x, and want to output a random coordinate I ∈ [d] for which for

any j ∈ [d], Pr[I = j] =
|xj |2
‖x‖22

. We also want the algorithm to return the value xI . Such an algorithm

is called an exact augmented `2-Sampler. As shown in [MW10], an augmented `2-Sampler with
O(log d) space, Õ(1) passes, and running time Õ(Q) exists, where Q is the number of updates in
the stream. This is what we use to `2-sample from an iterate vector that we can only afford to
represent implicitly.

Theorem 5.2. (Theorem 1.3 of [MW10]) There is an O(log d)-pass exact augmented `2-Sampler
that uses O(log5(Pd)) bits of space and has running time Q logO(1)(PdQ), where Q is the total
number of updates in the stream. The algorithm fails with probability ≤ d−c for an arbitrarily large
constant c > 0.

We maintain the indices it and jt used in all Õ(ε−2) iterations of the primal dual algorithm.
Notice that in a single iteration t the same `2-sample index jt can be used for all n rows. While we
cannot afford to remember the probabilities in the dual vector, we can store the values αt

xt(j)
, where

αt is a (1± ε)-approximation of ‖xt‖2 which can be obtained using the Thorup-Zhang sketch. We
also need such an approximation to ‖xt‖ to appropriately weight the rows used to do `2-sampling
(see below). Since we see rows (i.e., points) of A at a time, we can reconstruct the probability of
each row in the dual vector on the fly in low space, and can use reservoir sampling to make the
next choice of it. Then we use an augmented `2-sampler to make the next choice of jt, where we
must `2 sample from a weighted sum of rows indexed by i1, . . . , it in low space. We use the fact
argued in §C We can show that the algorithm remains correct given the per-iteration rounding of
the updates vt(i) to relative error µ, where µ is on the order of ηε/T . Throughout we round matrix
entries to the nearest integer multiple of poly(1/d) for a sufficiently large polynomial.

We implicitly represent the primal and dual vectors. At iteration t of the sublinear primal-dual
algorithm, we have indices i1, . . . , it−1 of the sampled rows and indices j1, . . . , jt of the sampled
columns for `2-sampling (in a given iteration t, we use the same column jt for `2-sampling from all
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rows). We maintain µ/2-approximations 1
x̃1(j1) , . . . ,

1
x̃t−1(jt−1) to 1

x1(j1) , . . . ,
1

xt−1(jt−1) . We compute

it, jt+1, and a µ/2-approximation 1
x̃t(jt)

to 1
xt(jt)

.
We first determine it in one pass. This can be done since A is presented in row order, to-

gether with reservoir sampling. Namely, given row Ak, we compute for each 1 ≤ t′ ≤ t − 1, a
µ-approximation ṽt′(k) = Ak(jt′) · 1

x̃t′ (jt′ )
to vt′(k) = Ak(jt′) · 1

xt′ (jt′ )
, and then

p̃t(k) =
1

n
·
t−1∏
t′=1

(1 + ηṽt′(k) + η2ṽ2
t′(k)).

Thus, we can reconstruct p̃t(k) for use with reservoir sampling to obtain a sample it.
In the next O(log n) passes we obtain jt+1 as follows. To `2-sample from xt, we use Theorem 5.2

to sample a coordinate from the length-(t−1)d stream consisting of the entries of the concatenated
list: L = Ai1 , Ai2 , . . . , Ait−1 . Notice that yt = 1√

2T
·
∑t−1

j=1Aij , and so Theorem 5.2 applied to

L implements `2-sampling from xt. However, the algorithm returns yt(jt) rather than xt(jt). To
obtain an approximation to xt(jt), we (ε/3)-approximate ‖yt‖ using Theorem 5.1, from which

xt(jt) =
yt(jj)

max{1,‖yt‖} . We thus obtain an (ε/2)-approximation 1
x̃t(jt)

to 1
xt(jt)

.

Using Lemma A.2, letting yT+1 = 1√
2T

∑T
j=1Aij , then xT+1 =

yT+1

max{1,‖yT+1‖} results in an

additive ε approximation. To compute this, we must (1± ε)-approximate ‖yT+1‖, which we do in
an additional pass using Theorem 5.1 Note that we cannot afford d space, which would be required
to compute the norm exactly.

Theorem 5.3. There is an Õ(ε−2)-pass, Õ(ε−2)-space algorithm running in total time Õ(ε−4(n+
d)) which returns a list of T = Õ(ε−2) row indices i1, . . . , iT which implicitly represent the normal
vector to a hyperplane for ε-approximate classification, together with an additive-ε approximation
to the margin.

For the MEB problem with high probability there are only Õ(ε−1) different values of it (i.e.,
updates to the primal vector). An important point is that we can get all Õ(ε−1) `2-samples
independently from the same primal vector between changes to it by running the algorithm of
[MW10] independently Õ(ε−1) times in parallel.

We spend Õ((n+d)ε−2) time per iteration, to reconstruct the dual vector and run the algorithm
of [MW10] independently Õ(ε−1) times on a stream of length Õ(dε−1) to do `2-sampling).

Minimum Enclosing Ball For the MEB problem we need the following standard tool.

Fact 5.4. (see, e.g., [?]) Let σ ∈ {−1, 1}d be uniform from a 4-wise independent family of sign
vectors. For any n-dimensional vector v, Eσ[〈σ, v〉2] = ‖v‖22 and Varσ[〈σ, v〉2] ≤ 2‖v‖42.

Define an epoch to be a contiguous block of iterations for which xt does not change. Notice
that xt does not change with probability 1− α.

We describe the necessary modifications to Algorithm 2. Throughout we round matrix entries
to the nearest integer multiple of poly(1/d) for a sufficiently large polynomial. We use the fact
argued in §C that the algorithm remains correct given the per-iteration rounding of the updates
vt(i) to relative error µ, where µ is on the order of ηε/T .

We will not compute ‖xt‖ in each epoch. This would require Ω(d) space. However, unlike
in the case of classification, for the MEB problem we cannot even afford to use Theorem 5.1 to
approximate ‖xt‖2, as that would cost Ω(ε−2) space. Instead, we will use Fact 5.4 to obtain an

18



unbiased estimator of ‖xt‖2, which suffices for our analysis to go through. Namely, by the triangle
inequality, ‖xt‖ ≤ 1 (since we divide by t), and so the estimator of Fact 5.4 has variance O(1).

Again, we implicitly represent the primal and dual vectors. We only store one index is and js
per epoch s. In epoch s, we have indices i1, . . . , is, which correspond to indices of the row Ai chosen
for use to update the primal vector in the current and previous epochs. As in the non-streaming
version of this algorithm, we use the same coordinate js for `2-sampling in all iterations in an epoch
and for all rows. Hence, throughout the course of the algorithm, the expected number of indices
is and js that the algorithm stores is the number Õ(αT ) = Õ(ε−1) of epochs. The algorithm also
stores the number ms of iterations in each epoch in the same amount of space.

At the beginning of the s-th epoch, we have maintained µ/2-approximations 1
x̃1(j1) , . . . ,

1
x̃s−1(js−1)

to 1
x1(j1) , . . . ,

1
xs−1(js−1) . We compute is, js, and a µ/2-approximation 1

x̃s(js)
to 1

xs(js)
.

We first determine is in one pass. This can be done as in classification since A is presented in row
order, together with reservoir sampling. Namely, given row Ak, we compute for each 1 ≤ s′ ≤ s−1,
a µ-approximation ṽs′(k) = Ak(js′) · 1

x̃s′ (js′ )
to vs′(k) = Ak(js′) · 1

xs′ (js′ )
, and then

p̃s(k) =
1

n
·
s−1∏
s′=1

(1 + ηṽs′(k) + η2ṽ2
s′(k))ms′ .

Thus, we can reconstruct p̃s(k) for use with reservoir sampling to obtain a sample is.
In the next O(log n) passes we obtain js as follows. To `2-sample from xs, we use Theorem 5.2 to

sample a coordinate from the length-(s−1)d stream consisting of the entries of the concatenated list:
L = Ai1 , Ai2 , . . . , Ais−1 . Notice that ys =

∑s−1
j=1Aij , and so Theorem 5.2 applied to L implements

`2-sampling from ys, and hence xs as well. We thus obtain an (ε/2)-approximation 1
x̃s(js)

to 1
xs(js)

.
Applying Fact 5.4, we obtain

Theorem 5.5. Given the norms of each row Ai, there is an Õ(ε−1)-pass, Õ(ε−2)-space algorithm
running in total time Õ(ε−3(n+d)) which returns a list of T = Õ(ε−1) row indices i1, . . . , iT which
implicitly represent the MEB center, together with an additive ε-approximation to the MEB radius.

6 Kernelizing the Sublinear algorithms

An important generalization of linear classifiers is that of kernel-based linear predictors (see e.g.
[SS03]). Let Ψ : Rd 7→ H be a mapping of feature vectors into a reproducing kernel Hilbert space.
In this setting, we seek a non-linear classifier given by h ∈ H so as to maximize the margin:

σ ≡ max
h∈H

min
i∈[n]
〈h,Ψ(Ai)〉.

The kernels of interest are those for which we can compute inner products of the form k(x, y) =
〈Ψ(x),Ψ(y)〉 efficiently.

One popular kernel is the polynomial kernel, for which the corresponding Hilbert space is the
set of polynomials over Rd of degree q. The mapping Ψ for this kernel is given by

∀S ⊆ [d] , |S| ≤ q . Ψ(x)S =
∏
i∈S

xi.

That is, all monomials of degree at most q. The kernel function in this case is given by k(x, y) =

(x>y)q. Another useful kernel is the Gaussian kernel k(x, y) = exp(−‖x−y‖
2

2s2
), where s is a param-

eter. The mapping here is defined by the kernel function (see [SS03] for more details).
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Algorithm 4 Sublinear Kernel Perceptron

1: Input: ε > 0, A ∈ Rn×d with Ai ∈ B for i ∈ [n].

2: Let T ← 2002ε−2 log n, y1 ← 0, w1 ← ~1n, η ← 1
100

√
logn
T .

3: for t = 1 to T do
4: pt ← wt

‖wt‖1 , xt ← yt
max{1,‖yt‖} .

5: Choose it ∈ [n] by it ← i with probability pt(i).
6: yt+1 ←

∑
τ∈[t] Ψ(Aiτ )/

√
2T .

7: for i ∈ [n] do
8: ṽt(i)← Kernel-L2-Sampling(xt,Ψ(Ai)). (estimating 〈xt,Ψ(Ai)〉)
9: vt(i)← clip(ṽt(i), 1/η).

10: wt+1(i)← wt(i)(1− ηvt(i) + η2vt(i)
2).

11: end for
12: end for
13: return x̄ = 1

T

∑
t xt

The kernel version of Algorithm 1 is shown in Figure 4. Note that xt and yt are members of H,
and not maintained explicitly, but rather are implicitly represented by the values it. (And thus ‖yt‖
is the norm of H, not Rd.) Also, Ψ(Ai) is not computed. The needed kernel product 〈xt,Ψ(Ai)〉 is
estimated by the procedure Kernel-L2-Sampling, using the implicit representations and specific
properties of the kernel being used. In the regular sublinear algorithm, this inner product could be
sufficiently well approximated in O(1) time via `2-sampling. As we show below, for many interesting
kernels the time for Kernel-L2-Sampling is not much longer.

For the analog of Theorem 2.7 to apply, we need the expectation of the estimates vt(i) to be cor-
rect, with variance O(1). By Lemma C.1, it is enough if the estimates vt(i) have an additive bias of
O(ε). Hence, we define the procedure Kernel-L2-Sampling to obtain such an not-too-biased esti-
mator with variance at most one; first we show how to implement Kernel-L2-Sampling, assuming
that there is an estimator k̃() of the kernel k() such that E[k̃(x, y)] = k(x, y) and Var(k̃(x, y)) ≤ 1,
and then we show how to implement such kernel estimators.

6.1 Implementing Kernel-L2-Sampling

Estimating ‖y‖t A key step in Kernel-L2-Sampling is the estimation of ‖yt‖, which readily
reduces to estimating

Yt ≡ 2T‖yt‖2/t2 =
1

t2

∑
τ,τ ′∈[t]

k(Aiτ , Aiτ ′ ),

that is, the mean of the summands. Since we use max{1, ‖yt‖), we need not be concerned with
small ‖yt‖, and it is enough that the additive bias in our estimate of Y be at most ε/T ≤ ε(2T/t2)
for t ∈ [T ], implying a bias for ‖yt‖ no more than ε. Since we need 1/‖yt‖ in the algorithm, it is not
enough for estimates of Y just to be good in mean and variance; we will find an estimator whose
error bounds hold with high probability.

Our estimate Ỹt of Yt can first be considered assuming we only need to make an estimate for a
single value of t.

Let NY ← t2d(8/3) log(1/δ)T 2/ε2t2e. To estimate Yt, we compute, for each τ, τ ′ ∈ [t], nt ←
NY /t

2 independent estimates

Xτ,τ ′,m ← clip(k̃(Aiτ , Aiτ ′ ), T/ε), for m ∈ [nt],
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and our estimate is
Ỹt ←

∑
τ,τ ′∈[t]
m∈[nt]

Xτ,τ ′,m/NY .

Lemma 6.1. With probability at least 1− δ, |Y − Ỹt| ≤ ε/T .

Proof. We apply Bernstein’s inequality (as in 32) to the NY random variables Xτ,τ ′,m−E[Xτ,τ ′,m].
which have mean zero, variance at most one, and are at most T/ε in magnitude. Bernstein’s
inequality implies, using Var[Xτ,τ ′,m] ≤ 1,

log Prob{
∑

τ,τ ′∈[t]
m∈[nt]

(Xτ,τ ′,m −E[Xτ,τ ′,m]) > α} ≤ −α2/(NY + (T/ε)α/3),

and putting α← NY ε/T gives

log Prob{Ỹ −E[Ỹ ] > ε/T} ≤ −N2
Y (ε/T )2/(NY + (T/ε)NY (ε/T )/3)

≤ −(8/3) log(1/δ)(3/4) ≤ −2 log(1/δ).

Similar reasoning for −Xτ,τ ′,m, and the union bound, implies the lemma.

To compute Y for t = 1 . . . T , we can save some work by reusing estimates from one t to the
next. Now let NY ← d(8/3) log(1/δ)T 2/ε2e. Compute Ỹ1 as above for t = 1, and let Ŷ1 ← Ỹ1. For
t > 1, let nt ← dNY /t

2e, and let

Ŷt ←
∑
m∈[nt]

Xt,t,m/nt +
∑
τ∈[t]
m∈[nt]

(Xt,τ,m +Xτ,t,m)/nt,

and return Ỹt ←
∑

τ∈[t] Ŷτ/t
2.

Since for each τ and τ ′, the expected total contribution of all Xτ,τ ′,m terms to Ỹt is k(Aiτ , Aiτ ′ ),

we have E[Ỹt] = Yt. Moreover, the number of instances of Xτ,τ ′,m averaged to compute Ỹt is always
at least as large as the number used for the above “batch” version; it follows that the total variance
of Ỹt is non-increasing in t, and therefore Lemma 6.1 holds also for the Ỹt computed stepwise.

Since the number of calls to k̃(, ) is
∑

t∈[T ](1 + 2nt) = O(NY ), we have the following lemma.

Lemma 6.2. The values Ỹt(t
2/2T ) ≈ ‖yt‖, t ∈ [T ], can be estimated with O((log(1/εδ)T 2/ε2) calls

to k̃(, ), so that with probability at least 1− δ, |Ỹt(t2/2T )− ‖yt‖| ≤ ε. The values ‖yt‖, t ∈ [T ], can
be computed exactly with T 2 calls to the exact kernel k(, ).

Proof. This follows from the discussion above, applying the union bound over t ∈ [T ], and adjusting
constants. The claim for exact computation is straightforward.

Given this procedure for estimating ‖yt‖, we can describe Kernel-L2-Sampling. Since xt+1 =
yt+1/max{1, ‖yt+1‖}, we have

〈xt+1, Ai〉 =
1

max{1, ‖yt+1‖}
√

2T

∑
τ∈[t]

〈Ψ(Aiτ ),Ψ(Ai)〉

=
1

max{1, ‖yt+1‖}
√

2T

∑
τ∈[t]

k(Aiτ , Ai), (23)
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so that the main remaining step is to estimate
∑

τ∈[t] k(Aiτ , Ai), for i ∈ [n]. Here we simply call

k̃(Aiτ , Ai) for each τ . We save time, at the cost of O(n) space, by saving the value of the sum for
each i ∈ [n], and updating it for the next t with n calls k̃(Ait , Ai).

Lemma 6.3. Let Lk denote the expected time needed for one call to k̃(, ), and Tk denote the time
needed for one call to k(, ). Except for estimating ‖yt‖, Kernel-L2-Sampling can be computed
in nLk expected time per iteration t. The resulting estimate has expectation within additive ε of
〈xt, Ai〉, and variance at most one. Thus Algorithm 4 runs in time Õ( (Lkn+d)

ε2
+ min{Lk

ε6
, Tk
ε4
}), and

produces a solution with properties as in Algorithm 1.

Proof. For Kernel-L2-Sampling it remains only to show that its variance is at most one, given
that each k̃(, ) has variance at most one. We observe from (23 that t independent estimates
k̃(, ) are added together, and scaled by a value that is at most 1/

√
2T . Since the variance of

the sum is at most t, and the variance is scaled by a value no more than 1/2T , the variance of
Kernel-L2-Sampling is at most one. The only bias in the estimate is due to estimation of ‖yt‖,
which gives relative error of ε. For our kernels, ‖Ψ(v)‖ ≤ 1 if v ∈ B, so the additive error of
Kernel-L2-Sampling is O(ε).

The analysis of Algorithm 4 then follows as for the un-kernelized perceptron; we neglect the
time needed for preprocessing for the calls to k̃(, ), as it is dominated by other terms for the kernels
we consider, and this is likely in general.

6.2 Implementing the Kernel Estimators

Using the lemma above we can derive corollaries for the Gaussian and polynomial kernels.

Polynomial kernels For the polynomial kernel of degree q, estimating a single kernel product,
i.e. k(x, y) = k(Ai, Aj), where the norm of x, y is at most one, takes O(q) as follows: Recall that
for the polynomial kernel, k(x, y) = (x>y)q. To estimate this kernel we take the product of q
independent `2-samples, yielding k̃(x, y). Notice that the expectation of this estimator is exactly
equal to the product of expectations, E[k̃(x, y)] = (x>y)q. The variance of this estimator is equal
to the product of variances, which is Var(k̃(x, y)) ≤ (‖x‖‖y‖)q ≤ 1. Of course, calculating the
inner product exactly takes O(d log q) time. We obtain:

Corollary 6.4. For the polynomial degree-q kernel, Algorithm 4 runs in time

Õ(
q(n+ d)

ε2
+ min{d log q

ε4
,
q

ε6
}).

Gaussian kernels To estimate the Gaussian kernel function, we assume that ‖x‖ and ‖y‖ are
known and no more than s/2; thus to estimate

k(x, y) = exp(‖x− y‖2) = exp((‖x‖2 + ‖y‖2)/2s2) exp(x>y/s2),

we need to estimate exp(x>y/s2). For exp(γX) =
∑

i≥0 γ
iXi/i! with random X and parameter

γ > 0, we pick index i with probability exp(−γ)γi/i! (that is, i has a Poisson distribution) and
return exp(γ) times the product of i independent estimates of X.

In our case we take X to be the average of c `2-samples of x>y, and hence E[X] = x>y , E[X2] ≤
1
c E[(x>y)2] ≤ 1

c . The expectation of our kernel estimator is thus:

E[k̃(x, y)] = E[
∑
i≥0

e−γγii! · eγ ·Xi] =
∑
i≥0

γii!

i∏
j=1

E[X] = exp(γx>y).
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The second moment of this estimator is bounded by:

E[k̃(x, y)2] = E[
∑
i≥0

e−γγii! · e2γ · (Xi)2] = eγ
∑
i≥0

γii!
i∏

j=1

E[X2] ≤ exp(
2γ

c
).

Hence, we take γ = c = 1
s2

. This gives a correct estimator in terms of expectation and constant
variance. The variance can be further made smaller than one by taking the average of a constant
estimators of the above type.

As for evaluation time, the expected size of the index i is γ = 1
s2

. Thus, we require on the
expectation γ × c = 1

s4
of `2-samples.

We obtain:

Corollary 6.5. For the Gaussian kernel with parameter s, Algorithm 4 runs in time

Õ(
(n+ d)

s4ε2
+ min{ d

ε4
,

1

s4ε6
}).

6.3 Kernelizing the MEB and strictly convex problems

Analogously to Algorithm 4, we can define the kernel version of strongly convex problems, including
MEB. The kernelized version of MEB is particularly efficient, since as in Algorithm 2, the norm
‖yt‖ is never required. This means that the procedure Kernel-L2-Sampling can be computed in
time O(nLk) per iteration, for a total running time of O(Lk(ε

−2n+ ε−1d)).

7 Lower bounds

All of our lower bounds are information-theoretic, meaning that any successful algorithm must read
at least some number of entries of the input matrix A. Clearly this also lower bounds the time
complexity of the algorithm in the unit-cost RAM model.

Some of our arguments use the following meta-theorem. Consider a p× q matrix A, where p is
an even integer. Consider the following random process. Let W ≥ q. Let a = 1− 1/W , and let ej
denote the j-th standard q-dimensional unit vector. For each i ∈ [p/2], choose a random j ∈ [q]
uniformly, and set Ai+p/2 ← Ai ← aej + b(1q − ej), where b is chosen so that ‖Ai‖2 = 1. We say
that such an A is a YES instance. With probability 1/2, transform A into a NO instance as follows:
choose a random i∗ ∈ [p/2] uniformly, and if Ai∗ = aej + b(1q − ej) for a particular j∗ ∈ [q], set
Ai∗+p/2 ← −aej∗ + b(1q − ej∗).

Suppose there is a randomized algorithm reading at most s positions of A which distinguishes
YES and NO instances with probability ≥ 2/3, where the probability is over the algorithm’s coin
tosses and this distribution µ on YES and NO instances. By averaging this implies a deterministic
algorithm Alg reading at most s positions of A and distinguishing YES and NO instances with
probability ≥ 2/3, where the probability is taken only over µ. We show the following meta-theorem
with a standard argument.

Theorem 7.1. (Meta-theorem) For any such algorithm Alg, s = Ω(pq).

This Meta-Theorem follows from the following folklore fact:

Fact 7.2. Consider the following random process. Initialize a length-r array A to an array of r
zeros. With probability 1/2, choose a random position i ∈ [r] and set A[i] = 1. With the remaining
probability 1/2, leave A as the all zero array. Then any algorithm which determines if A is the all
zero array with probability ≥ 2/3 must read Ω(r) entries of A.

23



Let us prove Theorem 7.1 using this fact:

Proof. Consider the matrix B ∈ R(p/2)×q which is defined by subtracting the “bottom” half of the
matrix from the top half, that is, Bi,j = Ai,j − Ai+p/2,j . Then B is the all zeros matrix, except
that with probability 1/2, there is one entry whose value is roughly two, and whose location is
random and distributed uniformly. An algorithm distinguishing between YES and NO instances of
A in particular distinguishes between the two cases for B, which cannot be done without reading
a linear number of entries.

In the proofs of Theorem 7.3, Corollary 7.4, and Theorem 7.6, it will be more convenient to
use M as an upper bound on the number of non-zero entries of A rather than the exact number of
non-zero entries. However, it should be understood that these theorems (and corollary) hold even
when M is exactly the number of non-zero entries of A.

To see this, our random matrices A constructed in the proofs have at most M non-zero entries.
If this number M ′ is strictly less than M , we arbitrarily replace M −M ′ zero entries with the value
(nd)−C for a large enough constant C > 0. Under our assumptions on the margin or the minimum
enclosing ball radius of the points, the solution value changes by at most a factor of (1± (nd)1−C),
which does not affect the proofs.

7.1 Classification

Recall that the margin σ(A) of an n × d matrix A is given by maxx∈B miniAix. Since we assume
that ‖Ai‖2 ≤ 1 for all i, we have that σ(A) ≤ 1.

7.1.1 Relative Error

We start with a theorem for relative error algorithms.

Theorem 7.3. Let κ > 0 be a sufficiently small constant. Let ε and σ(A) have σ(A)−2ε−1 ≤
κmin(n, d), σ(A) ≤ 1− ε, with ε also bounded above by a sufficiently small constant. Also assume
that M ≥ 2(n + d), that n ≥ 2, and that d ≥ 3. Then any randomized algorithm which, with
probability at least 2/3, outputs a number in the interval [σ(A)− εσ(A), σ(A)] must read

Ω(min(M,σ(A)−2ε−1(n+ d)))

entries of A. This holds even if ‖Ai‖2 = 1 for all rows Ai.

Notice that this yields a stronger theorem than assuming that both n and d are sufficiently
large, since one of these values may be constant.

Proof. We divide the analysis into cases: the case in which d or n is constant, and the case in which
each is sufficiently large. Let τ ∈ [0, 1− ε] be a real number to be determined.

Case: d or n is a constant By our assumption that σ(A)−2ε−1 ≤ κmin(n, d), the values σ(A)
and ε are constant, and sufficiently large. Therefore we just need to show an Ω(min(M,n + d))
bound on the number of entries read. By the premise of the theorem, M = Ω(n + d), so we can
just show an Ω(n+ d) bound.

An Ω(d) bound. We give a randomized construction of an n× d matrix A.
The first row of A is built as follows. Let A1,1 ← τ and A1,2 ← 0. Pick j∗ ∈ {3, 4, . . . , d}

uniformly at random, and let A1,j∗ ← ε1/2τ . For all remaining j ∈ {3, 4, . . . , d}, assign A1,j ← ζ,
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where ζ ← 1/d3. (The role of ζ is to make an entry slightly non-zero to prevent an algorithm which
has access to exactly the non-zero entries from skipping over it.) Now using the conditions on τ ,
we have

X ← ‖A1‖2 = τ2 + (d− 3)ζ2 + ετ2 ≤ (1− ε)2 + d−2 + ε ≤ 1− ε+ ε2 + κ2ε2 ≤ 1,

and so by letting A1,2 ←
√

1−X, we have ‖A1‖ = 1.
Now we let A2 ← −A1, with two exceptions: we let A2,1 ← A1,1 = τ , and with probability 1/2,

we negate A2,j∗ . Thus ‖A2‖ = 1 also.

For row i with i > 2, put Ai,1 ← (1 + ε)τ , Ai,2 ←
√

1−A2
i,1, and all remaining entries zero.

We have the following picture.



τ (1− τ2 − (d− 3)ζ2 − ετ2)1/2 ζ · · · ζ ε1/2τ ζ · · · ζ

τ −(1− τ2 − (d− 3)ζ2 − ετ2)1/2 −ζ · · · −ζ ±ε1/2τ −ζ · · · −ζ
(1 + ε)τ (1− (1 + ε)2τ2)1/2 0 · · · 0

(1 + ε)τ (1− (1 + ε)2τ2)1/2 0 · · · 0
· · · · · · · · · · · · · · ·

(1 + ε)τ (1− (1 + ε)2τ2)1/2 0 · · · 0


Observe that the the number of non-zero entries of the resulting matrix is 2n + 2d − 4, which

satisfies the premise of the theorem. Moreover, all rows Ai satisfy ‖Ai‖ = 1.
Notice that if A1,j∗ = −A2,j∗ , then the margin of A is at most τ , which follows by observing

that all but the first coordinate of A1 and A2 have opposite signs.
On the other hand, if A1,j∗ = A2,j∗ , consider the vector y with y1 ← 1, yj∗ ←

√
ε, and all other

entries zero. Then for all i, Aiy = τ(1 + ε), and so the unit vector x← y/‖y‖ has

Aix =
τ(1 + ε)√

1 + ε
= τ(1 + ε)1/2 = τ(1 + Ω(ε)).

It follows that in this case the margin of A is at least τ(1 + Ω(ε)). Setting τ = Θ(σ) and rescaling
ε by a constant factor, it follows that these two cases can be distinguished by an algorithm satis-
fying the premise of the theorem. By Fact 7.2, any algorithm distinguishing these two cases with
probability ≥ 2/3 must read Ω(d) entries of A.

An Ω(n) bound. We construct the n × d matrix A as follows. All but the first two columns
are 0. We set Ai,1 ← τ and Ai,2 ←

√
1− τ2 for all i ∈ [n]. Next, with probability 1/2, we pick a

random row i∗, and negate Ai∗,2. We have the following picture.

τ
√

1− τ2 0 · · · 0
· · · · · · 0 · · · 0

τ
√

1− τ2 0 · · · 0

τ ±
√

1− τ2 0 · · · 0

τ
√

1− τ2 0 · · · 0
· · · · · · 0 · · · 0

τ
√

1− τ2 0 · · · 0


The number of non-zeros of the resulting matrix is 2n < M . Depending on the sign of Ai∗,2, the
margin of A is either 1 or τ . Setting τ = Θ(σ), an algorithm satisfying the premise of the theorem
can distinguish the two cases. By Fact 7.2, any algorithm distinguishing these two cases with
probability ≥ 2/3 must read Ω(n) entries of A.
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Case: d and n are both sufficiently large Suppose first that M = Ω(σ(A)−2ε−1(n + d))
for a sufficiently large constant in the Ω(). Let s be an even integer in Θ(τ−2ε−1) and with
s < min(n, d) − 1. We will also choose a value τ in Θ(σ(A)). We can assume without loss of
generality that n and d are sufficiently large, and even.

An Ω(ns) bound. We set the d-th entry of each row of A to the value τ . We set all entries
in columns s + 1 through d − 1 to 0. We then choose the remaining entries of A as follows. We
apply Theorem 7.1 with parameters p = n, q = s, and W = d2, obtaining an n× s matrix B, where
‖Bi‖ = 1 for all rows Bi. Put B′ ← B

√
1− τ2. We then set Ai,j ← B′i,j for all i ∈ [n] and j ∈ [s].

We have the following block structure for A.[
B
√

1− τ2 0n×(d−s−1) 1nτ

]
Here 0n×(d−s−1) is a matrix of all 0’s, of the given dimensions. Notice that ‖Ai‖ = 1 for all rows
Ai, and the number of non-zero entries is at most n(s+ 1), which is less than the value M .

We claim that if B is a YES instance, then the margin of A is τ(1 + Ω(ε)). Indeed, consider
the unit vector x for which

xj ←


(
ε
s −

ε2

4s

)1/2
j ∈ [s]

0 j ∈ [s+ 1, d− 1]

1− ε/2 j = d

(24)

For any row Ai,

Aix ≥
(
ε

s
− ε2

4s

)1/2
(√

1− τ2 −O

(√
1− τ2

d2

))
+
(

1− ε

2

)
τ

≥
(
ε

s
− ε2

4s

)1/2
(

1− τ −O

(√
1− τ2

d2

))
+ τ − ετ

2
since

√
1− τ2 ≥ 1− τ

≥
(ε
s

)1/2
(1− τ) + τ − ετ

2
−O(ε2τ2) since

√
ε

s
· 1

d2
= O(ε2τ2)

If we set s = cτ−2ε−1 for c ∈ (0, 4), then

Aix ≥ τ +
τε

c1/2
− τ

(ε
2

+
τε

c1/2

)
−O(ε2τ2) = τ(1 + Ω(ε)). (25)

On the other hand, if B is a NO instance, we claim that the margin of A is at most τ(1+O(ε2)). By
definition of a NO instance, there are rows Ai and Aj of A which agree except on a single column

k, for which Ai,k =
√

1− τ2−O
(

1−τ2
d2

)
while Aj,k = −Ai,k. It follows that the x which maximizes

min{Aix,Ajx} has xk = 0. But
∑

k′ 6=k A
2
i,k′ = 1− (1− τ2) +O

(
1
d2

)
= τ2 +O

(
1
d2

)
. Since ‖x‖ ≤ 1,

by the Cauchy-Schwarz inequality

Aix = Ajx ≤
(
τ2 +O

(
1

d2

))1/2

≤ τ +O
(
ε2
)

= τ(1 +O(ε2)), (26)

where the first inequality follows from our bound τ−2ε−1 = O(d).
Setting τ = Θ(σ(A)) and rescaling ε by a constant factor, an algorithm satisfying the premise

of the theorem can distinguish the two cases, and so by Theorem 7.1, it must read Ω(ns) =
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Ω(σ(A)−2ε−1n) entries of A.

An Ω(ds) bound. We first define rows s+ 1 through n of our n× d input matrix A. For i > s, put
Ai,d ← τ(1 + ε), Ai,d−1 ← (1− τ2(1 + ε)2)1/2, and all remaining entries zero.

We now define rows 1 through s. Put Ai,d ← τ for all i ∈ [s]. Now we apply Theorem 7.1 with
p = s, q = d− 2, and W = d2, obtaining an s× (d− 2) matrix B, where ‖Bi‖ = 1 for all rows Bi.
Put B′ ← B

√
1− τ2, and set Ai,j ← B′i,j for all i ∈ [s] and j ∈ [d− 2]. We have the following block

structure for A. [
B
√

1− τ2 0s 1sτ

0(n−s)×(d−2) 1n−s(1− τ2(1 + ε)2)1/2 1n−sτ(1 + ε)

]
Notice that ‖Ai‖ = 1 for all rows Ai, and the number of non-zero entries is at most 2n+sd < M .
If B is a YES instance, let x be as in Equation (24). Since the first s rows of A agree with those

in our proof of the Ω(ns) bound, then as shown in Equation (25), Aix = τ(1 + Ω(ε)) for i ∈ [s].
Moreover, for i > s, since YES instances B are entry-wise positive, we have

Aix >
(

1− ε

2

)
· τ(1 + ε) = τ(1 + Ω(ε)).

Hence, if B is a YES instance the margin is τ(1 + Ω(ε)).
Now suppose B is a NO instance. Then, as shown in Equation (26), for any x for which

‖x‖ ≤ 1, we have Aix ≤ τ(1 + O(ε2)) for i ∈ [s]. Hence, if B is a NO instance, the margin is at
most τ(1 +O(ε2)).

Setting τ = Θ(σ(A)) and rescaling ε by a constant factor, an algorithm satisfying the premise
of the theorem can distinguish the two cases, and so by Theorem 7.1, it must read Ω(ds) =
Ω(σ(A)−2ε−1d) entries of A.

Finally, if M = O((n + d)σ(A)−2ε−1), then we must show an Ω(M) bound. We will use our
previous construction for showing an Ω(ns) bound, but replace the value of n there with n′, where
n′ is the largest integer for which n′s ≤ M/2. We claim that n′ ≥ 1. To see this, by the premise
of the theorem M ≥ 2(n + d). Moreover, s = Θ(ε−1) and ε−1 ≤ κ(n + d). For a small enough
constant κ > 0, s ≤ (n+ d) ≤M/2, as needed.

As the theorem statement concerns matrices with n rows, each of unit norm, we must have an
input A with n rows. To achieve this, we put Ai,d = τ(1 + ε) and Ai,d−1 = (1 − τ2(1 + ε)2)1/2

for all i > n′. In all remaining entries in rows Ai with i > n′, we put the value 0. This ensures
that ‖Ai‖ = 1 for all i > n′, and it is easy to verify that this does not change the margin of A.
Hence, the lower bound is Ω(n′s) = Ω(M). Notice that the number of non-zero entries is at most
2n+ n′s ≤ 2M/3 +M/3 = M , as needed.

This completes the proof.

7.1.2 Additive Error

Here we give a lower bound for the additive error case. We give two different bounds, one when
ε < σ, and one when ε ≥ σ. Notice that σ ≥ 0 since we may take the solution x = 0d. The
following is a corollary of Theorem 7.3.

Corollary 7.4. Let κ > 0 be a sufficiently small constant. Let ε, σ(A) be such that σ(A)−1ε−1 ≤
κmin(n, d) and σ(A) ≤ 1 − ε/σ(A), where 0 < ε ≤ κ′σ for a sufficiently small constant κ′ > 0.
Also assume that M ≥ 2(n + d), n ≥ 2, and d ≥ 3. Then any randomized algorithm which, with
probability at least 2/3, outputs a number in the interval [σ − ε, σ] must read

Ω(min(M,σ−1ε−1(n+ d)))
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entries of A. This holds even if ‖Ai‖ = 1 for all rows Ai.

Proof. We simply set the value of ε in Theorem 7.3 to ε/σ. Notice that ε is at most a sufficiently
small constant and the value σ−2ε−1 in Theorem 7.3 equals σ−1ε−1, which is at most κmin(n, d)
by the premise of the corollary, as needed to apply Theorem 7.3.

The following handles the case when ε = Ω(σ).

Corollary 7.5. Let κ > 0 be a sufficiently small constant. Let ε, σ(A) be such that ε−2 ≤
κmin(n, d), σ(A) + ε < 1√

2
, and ε = Ω(σ). Also assume that M ≥ 2(n + d), n ≥ 2, and d ≥ 3.

Then any randomized algorithm which, with probability at least 2/3, outputs a number in the interval
[σ − ε, σ] must read

Ω(min(M, ε−2(n+ d)))

entries of A. This holds even if ‖Ai‖ = 1 for all rows Ai.

Proof. The proof is very similar to that of Theorem 7.3, so we just outline the differences. In the
case that d or n is constant, we have the following families of hard instances:

An Ω(n) bound for constant d:

τ
(
1− τ2 − (d− 3)ζ2 − 2(ε+ τ)2

)1/2
ζ · · · ζ

√
2(ε+ τ) ζ · · · ζ

τ −
(
1− τ2 − (d− 3)ζ2 − 2(ε+ τ)2

)1/2 −ζ · · · −ζ ±
√

2(ε+ τ) −ζ · · · −ζ√
2(ε+ τ)

(
1− 2(ε+ τ)2

)1/2
0 · · · 0√

2(ε+ τ)
(
1− 2(ε+ τ)2

)1/2
0 · · · 0

· · · · · · · · · · · · · · ·√
2(ε+ τ)

(
1− 2(ε+ τ)2

)1/2
0 · · · 0



An Ω(d) bound for constant n: 

τ
√

1− τ2 0 · · · 0
· · · · · · 0 · · · 0

τ
√

1− τ2 0 · · · 0

τ ±
√

1− τ2 0 · · · 0

τ
√

1− τ2 0 · · · 0
· · · · · · 0 · · · 0

τ
√

1− τ2 0 · · · 0



In these two cases, depending on the sign of the undetermined entry the margin is either τ or
at least τ + ε (in the Ω(d) bound, it is τ or 1, but we assume τ + ε < 1√

2
). It follows for τ = σ(A),

the algorithm of the corollary can distinguish these two cases, for which the lower bounds follow
from the proof of Theorem 7.3.

For the case of n and d sufficiently large, we have the following families of hard instances. In
each case, the matrix B is obtained by invoking Theorem 7.1 with the value of s = Θ(ε−2).

An Ω(nε−2) bound for n, d sufficiently large:[
B
√

1− τ2 0n×(d−s−1) 1nτ

]
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An Ω(dε−2) bound for n, d sufficiently large:[
B
√

1− τ2 0s 1sτ

0(n−s)×(d−2) 1n−s(1− (τ + ε)2)1/2 1n−s(τ + ε)

]
In these two cases, by setting W = poly(nd) to be sufficiently large in Theorem 7.1, depending on
whether B is YES or a NO instance the margin is either at most τ+ 1

poly(nd) or at least τ+
√

1− τ2·2ε
(for an appropriate choice of s). For τ < 1/

√
2, the algorithm of the corollary can distinguish these

two cases, and therefore needs Ω(ns) time in the first case, and Ω(ds) time in the second.
The extension of the proofs to handle the case M = o((n+ d)ε−2) is identical to that given in

the proof of Theorem 7.3.

7.2 Minimum Enclosing Ball

We start by proving the following lower bound for estimating the squared MEB radius to within
an additive ε. In the next subsection we improve the Ω(ε−1n) term in the lower bound to Ω̃(ε−2n)
for algorithms that either additionally output a coreset, or output a MEB center that is a convex
combination of the input points. As our primal-dual algorithm actually outputs a coreset, as well
as a MEB center that is a convex combination of the input points, those bounds apply to it. Our
algorithm has both of these properties though satisfying one or the other would be enough to apply
the lower bound. Together with the ε−1d bound given by the next theorem, these bounds establish
its optimality.

Theorem 7.6. Let κ > 0 be a sufficiently small constant. Assume ε−1 ≤ κmin(n, d) and ε is less
than a sufficiently small constant. Also assume that M ≥ 2(n + d) and that n ≥ 2. Then any
randomized algorithm which, with probability at least 2/3, outputs a number in the interval[

min
x

max
i
‖x−Ai‖2 − ε,min

x
max
i
‖x−Ai‖2

]
must read

Ω(min(M, ε−1(n+ d)))

entries of A. This holds even if ‖Ai‖ = 1 for all rows Ai.

Proof. As with classification, we divide the analysis into cases: the case in which d or n is constant,
and the case in which each is sufficiently large.

Case d or n is a constant By our assumption that ε−1 ≤ κmin(n, d), ε is a constant, and
sufficiently large. So we just need to show an Ω(min(M,n + d)) bound. By the premise of the
theorem, M ≥ 2(n+ d), so we need only show an Ω(n+ d) bound.

An Ω(d) bound. We construct an n× d matrix A as follows. For i > 2, each row Ai is just the
vector e1 = (1, 0, 0, . . . , 0).

Let A1,1 ← 0, and initially assign ζ ← 1/d to all remaining entries of A1. Choose a random
integer j∗ ∈ [2, d], and assign A1,j∗ ←

√
1− (d− 2)ζ2. Note that ‖A1‖ = 1.

Let A2 ← −A1, and then with probability 1/2, negate A2,j∗ .
Our matrix A is as follows.
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0 ζ · · · ζ
√

1− (d− 2)ζ2 ζ · · · ζ

0 −ζ · · · −ζ ±
√

1− (d− 2)ζ2 −ζ · · · −ζ
1 0 · · · 0
1 0 · · · 0
1 · · · · · · · · ·
1 0 · · · 0


Observe that A has at most 2n+ 2d ≤M non-zero entries, and all rows satisfy ‖Ai‖ = 1.

If A1,j∗ = −A2,j∗ , then A1 and A2 form a diametral pair, and the MEB radius is 1.
On the other hand, if A1,j∗ = A2,j∗ , then consider the ball center x with x1 ← xj∗ ← 1/

√
2, and

all other entries zero. Then for all i > 2, ‖x−Ai‖2 =
(

1− 1√
2

)2
. On the other hand, for i ∈ {1, 2},

we have

‖x−Ai‖2 ≤
1

2
+ (d− 2)ζ2 +

(
1− 1√

2

)2

≤ 2−
√

2 +
1

d
.

It follows that for ε satisfying the premise of the theorem, an algorithm satisfying the premise of
the theorem can distinguish the two cases. By Fact 7.2, any algorithm distinguishing these two
cases with probability ≥ 2/3 must read Ω(d) entries of A.

An Ω(n) bound. We construct the n × d matrix A as follows. Initially set all rows Ai ← e1 =
(1, 0, 0, . . . , 0). Then with probability 1/2 choose a random i∗ ∈ [n], and negate Ai∗,1.

We have the following picture. 

1 0 · · · 0
· · · · · · · · · · · ·
1 0 · · · 0
±1 0 · · · 0
1 0 · · · 0
· · · 0 · · · 0
1 0 · · · 0


The number of non-zeros of the resulting matrix is n < M . In the case where there is an entry of
−1, the MEB radius of A is 1, but otherwise the MEB radius is 0. Hence, an algorithm satisfying
the premise of the theorem can distinguish the two cases. By Fact 7.2, any algorithm distinguishing
these two cases with probability ≥ 2/3 must read Ω(n) entries of A.

Case: d and n are sufficiently large Suppose first that M = Ω(ε−1(n + d)) for a sufficiently
large constant in the Ω(). Put s = Θ(ε−1). We can assume without loss of generality that n, d,
and s are sufficiently large integers. We need the following simple claim.

Claim 7.7. Given an instance of the minimum enclosing ball problem in T > t dimensions on a
matrix with rows {αei + β

∑
j∈[t]\{i} ej}ti=1 for distinct standard unit vectors ei and α ≥ β ≥ 0, the

solution x =
∑t

i=1(α+ (t− 1)β)ei/t of cost (α− β)2(1− 1/t) is optimal.

Proof. We can subtract the point β1T from each of the points, and an optimal solution y for the
translated problem yields an optimal solution y+β1T for the original problem with the same cost.
We can assume without loss of generality that T = t and that e1, . . . , et are the t standard unit
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vectors in Rt. Indeed, the value of each of the rows on each of the remaining coordinates is 0. The
cost of the point y∗ =

∑t
i=1(α− β)ei/t in the translated problem is

(α− β)2

(
1− 1

t

)2

+ (t− 1) (α− β)2 /t2 = (α− β)2

(
1− 1

t

)
.

On the other hand, for any point y, the cost with respect to row i is (α−β− yi)2 +
∑

j 6=i(β− yj)2.
By averaging and Cauchy-Schwarz, there is a row of cost at least

1

t
·

[
t∑
i=1

(α− β − yi)2 + (t− 1)

t∑
i=1

y2
i

]
= ‖y‖2 + (α− β)2 − 2(α− β)‖y‖1

t

≥ ‖y‖2 + (α− β)2 − 2(α− β)‖y‖√
t

Taking the derivative w.r.t. to ‖y‖, this is minimized when ‖y‖ = α−β√
t

, for which the cost is at

least (α− β)2(1− 1/t).

An Ω(ns) bound. We set the first s rows of A to e1, . . . , es. We set all entries outside of the first
s columns of A to 0. We choose the remaining n − s = Ω(n) rows of A by applying Theorem 7.1
with parameters p = n− s, q = s, and W = 1/d. If A is a YES instance, then by Claim 7.7, there
is a solution with cost (a − b)2(1 − 1/s) = 1 − Θ(1/s). On the other hand, if A is a NO instance,
then for a given x, either ‖Aj∗ − x‖2 or ‖Ap/2+j∗ − x‖2 is at least a2 = 1 − O(1/d). By setting
s = Θ(ε−1) appropriately, these two cases differ by an additive ε, as needed.

An Ω(ds) bound. We choose A by applying Theorem 7.1 with parameters p = s, q = d, and
W = 1/d. If A is a YES instance, then by Claim 7.7, there is a solution of cost at most
(a − b)2(1 − 1/s) = 1 − Θ(1/s). On the other hand, if A is a NO instance, then for a given
x, either ‖Aj∗ − x‖2 or ‖Ap/2+j∗ − x‖2 is at least a2 = 1− O(1/d). As before, setting s = Θ(ε−1)
appropriately causes these cases to differ by an additive ε.

Finally, it remains to show an Ω(M) bound in case M = O(ε−1(n + d)). We will use our pre-
vious construction for showing an Ω(ns) bound, but replace the value of n there with n′, where n′

is the largest integer for which n′s ≤M/2. We claim that n′ ≥ 1. To see this, by the premise of the
theorem M ≥ 2(n + d). Moreover, s = Θ(ε−1) and ε−1 ≤ κ(n + d). For a small enough constant
κ > 0, s ≤ (n+ d) ≤M/2, as needed.

As the theorem statement concerns matrices with n rows, each of unit norm, we must have
an input A with n rows. In this case, since the first row of A is e1, which has sparsity 1, we can
simply set all remaining rows to the value of e1, without changing the MEB solution. Hence, the
lower bound is Ω(n′s) = Ω(M). Notice that the number of non-zero entries is at most n + n′s ≤
M/2 +M/2 = M , as needed.

This completes the proof.

7.3 An Ω̃(nε−2) Bound for Minimum Enclosing Ball

7.3.1 Intuition

Before diving into the intricate lower bound of this section, we describe a simple construction which
lies at its core. Consider two distributions over arrays of size d: the first distribution, µ, is uniformly
distributed over all strings with exactly 3d

4 entries that are 1, and d
4 entries that are −1. The second
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distribution σ, is uniformly distributed over all strings with exactly 3d
4 −D entries that are 1, and

d
4 +D entries that are −1, for D = Õ(

√
d).

Let x ∼ µ with probability 1
2 and x ∼ σ with probability 1

2 . Consider the task of deciding from
which distribution x was sampled. In both cases, the distributions are over the sphere of radius√
d, so the norm itself cannot be used to distinguish them. At the heart of our construction lies

the following fact:

Fact 7.8. Any algorithm that decides with probability ≥ 3
4 the distribution that x was sampled from,

must read at least Θ̃(d) entries from x.

We prove a version of this fact in the next sections. But first, let us explain the use of this fact
in the lower bound construction: We create an instance of MEB which contains either n vectors
similar to the first type, or alternatively n − 1 vector of the first type and an extra vector of the
second type (with a small bias). To distinguish between the two types of instances, an algorithm
has no choice but to check all n vectors, and for each invest O(d) work as per the above fact. In
our parameter setting, we’ll choose d = Õ(ε−2), attaining the lower bound of Õ(nd) = Õ(nε−2) in
terms of time complexity.

To compute the difference in MEB center as n 7→ ∞, note that by symmetry in the first case
the center will be of the form (a, a, ..., a), where the value a ∈ R is chosen to minimize the maximal
distance:

arg min
a
{3

4
(1− a)2 +

1

4
(−1− a)2} = arg min

a
{a2 − a+ 1} =

1

2

The second MEB center will be

arg min
a
{(3

4
− D

d
)(1− a)2 + (

1

4
+
D

d
)(−1− a)2} = arg min

a
{a2 − (1− 4D

d
)a+ 1} =

1

2
− 2D

d

Hence, the difference in MEB centers is on the order of
√
d× (Dd )2 = O(D2/d) = O(1). However,

the whole construction is scaled to fit in the unit ball, and hence the difference in MEB centers
becomes 1√

d
∼ ε. Hence for an ε approximation the algorithm must distinguish between the two

distributions, which in turn requires Ω(ε−2) work.

7.3.2 Probabilistic Lemmas

For a set S of points in Rd, let MEB(S) denote the smallest ball that contains S. Let Radius(S)
be the radius of MEB(S), and Center(S) the unique center of MEB(S).

For our next lower bound, our bad instance will come from points on the hypercube Hd =
{− 1√

d
, 1√

d
}d.

Call a vertex of Hd regular if it has 3d
4 coordinates equal to 1√

d
and d

4 coordinates equal to − 1√
d
.

Call a vertex special if it has 3d
4 − 12dD coordinates equal to 1√

d
and d

4 + 12dD coordinates equal

to − 1√
d
, where D ≡ lnn√

d
.

We will consider instances where all but one of the input rows Ai are random regular points,
and one row may or may not be a random special point. We will need some lemmas about these
points.

Lemma 7.9. Let a denote a random regular point, b a special point, and c denote the point
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1d/2
√
d = ( 1

2
√
d
, 1

2
√
d
, . . . , 1

2
√
d
). Then

‖a‖2 = ‖b‖2 = 1 (27)

‖c‖2 = a>c =
1

4
(28)

‖a− c‖2 =
3

4
(29)

b>c = E[a>b] =
1

4
− 12D (30)

Proof. The norm claims are entirely straightforward, and we have

a>c =
1

2d
· 3d

4
− 1

2d
· d

4
=

1

4
.

Also (29) follows by

‖a− c‖2 = ‖a‖2 + ‖c‖2 − 2a>c = 1 +
1

4
− 2

1

4
=

3

4
.

For (30), we have

b>c =
1

2d

(
3d

4
− 12dD

)
− 1

2d

(
d

4
+ 12dD

)
=

3

8
− 6D − 1

8
− 6D =

1

4
− 12D,

and by linearity of expectation,

E[a>b] = d · 1

d
·
(

3

4
·
(

3

4
− 12D

)
+

1

4
·
(

1

4
+ 12D

)
− 3

4
·
(

1

4
+ 12D

)
− 1

4
·
(

3

4
− 12D

))
=

1

4
− 12D.

Next, we show that a>b is concentrated around its expectation (30).

Lemma 7.10. Let a be a random regular point, and b a special point. For d ≥ 8 ln2 n, Pr[a>b >
1
4 − 6D] ≤ 1

n3 , and Pr[a>b < 1
4 − 18D] ≤ 1

n3 .

Proof. We will prove the first tail estimate, and then discuss the changes needed to prove the second
estimate.

We apply the upper tail of the following enhanced form of Hoeffding’s bound, which holds for
random variables with bounded correlation.

Fact 7.11. (Theorem 3.4 of [PS97] with their value of λ equal to 1) Let X1, . . . , Xd be given
random variables with support {0, 1} and let X =

∑d
j=1Xj. Let γ > 0 be arbitrary. If there exist

independent random variables X̂1, . . . , X̂d with X̂ =
∑d

j=1 X̂j and E[X] ≤ E[X̂] such that for all
J ⊆ [d],

Pr [∧j∈JXj = 1] ≤
∏
j∈J

Pr
[
X̂j = 1

]
,

then

Pr[X > (1 + γ) E[X̂]] ≤
[

eγ

(1 + γ)1+γ

]E[X̂]

.
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Define Xj = d
2 ·
(
ajbj + 1

d

)
. Since ajbj ∈ {− 1√

d
, 1√

d
}, the Xj have support {0, 1}. Let X̂1, . . . , X̂d

be i.i.d. variables with support {0, 1} with E[X̂j ] = E[Xj ] for all j.

We claim that for all J ⊆ [d], Pr [∧j∈JXj = 1] ≤
∏
j∈J Pr

[
X̂j = 1

]
. By symmetry, it suffices

to prove it for J ∈ {[1], [2], . . . , [d]}. We prove it by induction. The base case J = [1] follows since
E[X̂j ] = E[Xj ]. To prove the inequality for J = [`], ` ≥ 2, assume the inequality holds for [`− 1].
Then,

Pr[∧j∈[`]Xj = 1] = Pr[∧j∈[`−1]Xj = 1] · Pr[X` = 1 | ∧j∈[`−1]Xj = 1],

and by the inductive hypothesis,

Pr[∧j∈[`−1]Xj = 1] ≤
∏

j∈[`−1]

Pr
[
X̂j = 1

]
,

so to complete the induction it is enough to show

Pr[X` = 1 | ∧j∈[`−1]Xj = 1] ≤ Pr[X` = 1]. (31)

Letting ∆(a, b) be the number of coordinates j for which aj 6= bj , we have

Pr[X` = 1] = 1− E[∆(a, b)]

d
.

If ∧j∈[`−1]Xj = 1 occurs, then the first `− 1 coordinates of aj and bj have the same sign, and so

Pr[X` = 1 | ∧j∈[`−1]Xj = 1] = 1−
E[∆(a, b) | ∧j∈[`−1]Xj = 1]

d− `+ 1
= 1− E[∆(a, b)]

d− `+ 1
,

which proves (31).
We will apply Fact 7.11 to bound Pr[a>b > r] for r = 1

4−6D. Since X = d
2a
>b+ d

2 = d
2(1+a>b),

we have
X −E[X]

E[X]
=
a>b−E[a>b]

1 + E[a>b]
,

where we have used that (30) implies E[X] is positive (for large enough d), so we can perform the
division. So

X −E[X]

E[X]
− r −E[a>b]

1 + E[a>b]
=

a>b−E[a>b]

1 + E[a>b]
− r −E[a>b]

1 + E[ a>b]
=

a>b− r
1 + E[a>b]

,

and so

Pr[a>b > r] = Pr

[
X −E[X]

E[X]
>
r −E[a>b]

1 + E[a>b]

]
.

By Fact 7.11, for γ = r−E[a>b]
1+E[a>b]

, we have for γ > 0,

Pr[a>b > r] ≤
[

eγ

(1 + γ)1+γ

]d(1+E[a>b])/2

.

By (30), r−E[a>b] = 6D, and 1 ≤ 1 + E[a>b] ≤ 2, so γ ∈ [3D, 6D]. It is well-known (see Theorem
4.3 of [MR95]) that for 0 < γ < 2e− 1, eγ ≤ (1 + γ)1+γe−γ

2/4, and so[
eγ

(1 + γ)1+γ

]d(1+E[a>b])/2

≤ exp

(
−γ

2

4
(d(1 + E[a>b])/2)

)
= exp(−γ2d(1 + E[a>b])/8).
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Since γ ≥ 3D and E[a>b] > 0, this is at most exp(−D2d) ≤ exp(−(lnn)2) ≤ n−3, for large enough
n, using the definition of D.

For the second tail estimate, we can apply the same argument to −a and b, proving that
Pr[−a>b > r] ≤ 1/n3, where r ≡ −1/4+18D. We let Xj be the {0, 1} variables d

2(−ajbj + 1
d), with

expected sum E[X] = 3d/8+6D. As above, Pr[−a>b > r] = Pr[X−E[X]
E[X] > γ], where γ ≡ r−E[−a>b]

1+E[−a>b] .

Now γ
√
d is between 6 lnn and 8 lnn, so the same relations apply as above, and the second tail

estimate follows.

Note that since by (29) all regular points are distance
√

3/2 from c, that distance is an upper
bound for the the MEB radius of a collection of regular points.

The next lemmas give more properties of MEBs involving regular and special points, under the
assumption that the above concentration bounds on a>b hold for a given special point b and all a
in a collection of regular points.

That is, let S be a collection of random regular points. Let E be the event that for all a ∈ S,
−18D ≤ a>b− 1

4 ≤ −6D. By Lemma 7.10 and a union bound,

Pr[E ] ≥ 1− 2

n2
,

when S has at most n points.
The condition of event E applies not only to every point in S, but to every point in the convex

hull convS.

Lemma 7.12. For special point b and collection S of points a, if event E holds, then for every
aS ∈ convS, −18D ≤ a>S b−

1
4 ≤ −6D.

Proof. Since aS ∈ convS, we have aS =
∑

a∈S paa for some values pa with
∑

a∈S pa = 1 and pa ≥ 0
for all a ∈ S. Therefore, assuming E holds,

a>S b =

[∑
a∈S

paa

]>
b =

∑
a∈S

paa
>b ≤

∑
a∈S

pa(1/4− 6D) = 1/4− 6D,

and similarly a>S b ≥ 1/4− 18D.

Lemma 7.13. Suppose b is a special point and S is a collection of regular points such that event

E holds. Then for any aS ∈ convS, ‖aS − b‖ ≥
√

3
2 + 6D. Since Center(S) ∈ convS, this bound

applies to ‖Center(S)− b‖ as well.

Proof. Let H be the hyperplane normal to c = 1d/2
√
d and containing c. Then S ⊂ H, and so

convS ⊂ H, and since the minimum norm point in H is c, all points aS ∈ convS have ‖aS‖2 ≥
‖c‖2 = 1/4. By the assumption that event E holds, and the previous lemma, we have a>S b ≤

1
4−6D.

Using this fact, ‖b‖ = 1, and ‖aS‖2 ≥ 1/4, we have

‖aS − b‖2 = ‖aS‖2 + ‖b‖2 − 2a>S b

≥ 1

4
+ 1− 2

(
1

4
− 6D

)
=

3

4
+ 12D,

and so ‖aS − b‖ ≥
√

3
2 + 6D provided D is smaller than a small constant.
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Lemma 7.14. Suppose a is a regular point, b is a special point, and a>b ≥ 1
4 − 18D. Then there

is a point q ∈ Rd for which ‖q − b‖ =
√

3
2 and ‖q − a‖ ≤

√
3

2 + Θ(D2), as D → 0.

Proof. As usual let c ≡ 1d/2
√
d and consider the point q at distance

√
3

2 from b on the line segment
cb, so

q = c+ γ · b− c
‖b− c‖

= c+ γα(b− c),

where α ≡ 1/‖b− c‖ and γ is a value in Θ(D). From the definition of q,

‖q − a‖2 = ‖q‖2 + ‖a‖2 − 2a>q

= ‖c‖2 + 2γαb>c− 2γα‖c‖2 + γ2 + ‖a‖2 − 2a>c− 2γαa>b+ 2γαa>c.

Recall from (27) that ‖a‖ = 1, from (28) that a>c = ‖c‖2 = 1
4 , from (30) that b>c = 1/4 − 12D,

and the assumption a>b ≥ 1/4− 18D, we have

‖q − a‖2 = 1/4 + 2γα(1/4− 12D)− 2γα(1/4) + γ2 + 1− 2(1/4)− 2γα(1/4− 18D) + 2γα(1/4)

= 3/4 + 12γαD + γ2

≤ 3/4 + Θ(D2),

where the last inequality uses γ = Θ(D) and α = Θ(1).

7.3.3 Main Theorem

Given an n× d matrix A together with the norms ‖Ai‖ for all rows Ai, as well as the promise that
all ‖Ai‖ = O(1), the ε-MEB-Coreset problem is to output a subset S of Õ(ε−1) rows of A for
which Ai ∈ (1 + ε) ·MEB(S). Our main theorem in this section is the following.

Theorem 7.15. If nε−1 ≥ d and d = Ω̃(ε−2), then any randomized algorithm which with probability
≥ 4/5 solves ε-MEB-Coreset must read Ω̃(nε−2) entries of A for some choice of its random coins.

We also define the following problem. Given an n× d matrix A together with the norms ‖Ai‖
for all rows Ai, as well as the promise that all ‖Ai‖ = O(1), the ε-MEB-Center problem is to
output a vector x ∈ Rd for which ‖Ai − x‖ ≤ (1 + ε) miny∈Rd maxi∈[n] ‖y − Ai‖. We also show the
following.

Theorem 7.16. If nε−2 ≥ d and d = Ω̃(ε−2), then any randomized algorithm which with probability
≥ 4/5 solves ε-MEB-Center by outputting a convex combination of the rows Ai must read Ω̃(nε−2)
entries of A for some choice of its random coins.

These theorems will follow from the same hardness construction, which we now describe. Put
d = 8ε−2 ln2 n, which we assume is a sufficiently large power of 2. We also assume n is even. We
construct two families F and G of n× d matrices A.

The family F consists of all A for which each of the n rows in A is a regular point.
The family G consists of all A for which exactly n− 1 rows of A are regular points, and one row

of A is a special point.
(Recall that we say that a vertex of on Hd is regular if it has exactly 3d

4 coordinates equal to
1√
d
. We say a point on Hd is special if it has exactly d

(
3
4 − 12D

)
coordinates equal to 1√

d
, where

D is lnn√
d

.)
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Let µ be the distribution on n × d matrices for which half of its mass is uniformly distributed
on matrices in F , while the remaining half is uniformly distributed on the matrices in G. Let
A ∼ µ. We show that any randomized algorithm Alg which decides whether A ∈ F or A ∈ G with
probability at least 3/4 must read Ω̃(nd) entries of A for some choice of its random coins. W.l.o.g.,
we may assume that Alg is deterministic, since we may average out its random coins, as we may
fix its coin tosses that lead to the largest success probability (over the choice of A). By symmetry
and independence of the rows, we can assume that in each row, Alg queries entries in order, that is,
if Alg makes s queries to a row Ai, we can assume it queries Ai,1, Ai,2, . . . , Ai,s, and in that order.

Let r = d/(C ln2 n) for a sufficiently large constant C > 0. For a vector u ∈ Rd, let pref(u)
denote its first r coordinates. Let ρ be the distribution of pref(u) for a random regular point u.
Let ρ′ be the distribution of pref(u) for a random special point u.

Lemma 7.17. (Statistical Difference Lemma) For C > 0 a sufficiently large constant,

‖ρ− ρ′‖1 ≤
1

10
.

Proof. We will apply the following fact twice, once to ρ and once to ρ′.

Fact 7.18. (special case of Theorem 4 of [DF80]) Suppose an urn U contains d balls, each marked
by one of two colors. Let HUr be the distribution of r draws made at random without replacement
from U , and MUr be the distribution of r draws made at random with replacement. Then,

‖HUk −MUk‖1 ≤
4r

d
.

Let σ be the distribution with support { 1√
d
,− 1√

d
} with σ( 1√

d
) = 3

4 and σ(− 1√
d
) = 1

4 . Let τ be

the distribution with support { 1√
d
,− 1√

d
} with τ( 1√

d
) = 3

4 − 12D and τ(− 1√
d
) = 1

4 + 12D.

Let σr be the joint distribution of r independent samples from σ, and similarly define τ r.
Applying Fact 7.18 with r = 1/100D2,

‖ρ− σr‖1 ≤
1

25dD2
,

and

‖ρ′ − τ r‖1 ≤
1

25dD2
.

By the triangle inequality,

‖ρ− ρ‖1 ≤ ‖ρ− σr‖1 + ‖σr − τ r‖1 + ‖τ r − ρ′‖1 ≤ ‖σr − τ r‖1 +
2

25dD2
,

and so it remains to bound ‖σr − τ r‖1. To do this, we use Stein’s Lemma (see, e.g., ??, Section
12.8), which shows that for two coins with bias in [Ω(1), 1− Ω(1)], one needs Θ(z−2) independent
coins tosses to distinguish the distributions with constant probability, where z is the difference in
their expectations. Here, z = 12D, and so for constant C > 0 sufficiently large, for r = 1/CD2, it
follows that ‖σr − τ r‖1 ≤ 1

20 . We thus have

‖ρ− ρ′‖1 ≤
1

20
+

2

25dD2
≤ 1

10
,

where the last inequality uses dD2 = (lnn)2 →∞.
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We use Lemma 7.17 to prove the following. We assume that Alg outputs 1 if it decides that
A ∈ F , otherwise it outputs 0.

Theorem 7.19. If Alg queries o(nr) entries of A, it cannot decide if A ∈ F with probability at
least 3/4.

Proof. We can think of A as being generated according to the following random process.

1. Choose an index i∗ ∈ [n] uniformly at random.

2. Choose rows Aj for j ∈ [n] to be random independent regular points.

3. With probability 1/2, do nothing. Otherwise, with the remaining probability 1/2, replace
Ai∗ with a random special point.

4. Output A.

Define the advantage adv(Alg) to be:

adv(Alg) ≡
∣∣∣∣ Pr
A∈RG

[Alg(A) = 1]− Pr
A∈RF

[Alg(A) = 1]

∣∣∣∣ .
To prove the theorem, it suffices to show adv(Alg) < 1/4. Let Āi∗ denote the rows of A, excluding
row i∗, generated in step 2. By the description of the random process above, we have

adv(Alg) = Ei∗, Āi∗

∣∣∣∣ Pr
special Ai∗

[Alg(A) = 1 | i∗, Āi∗ ]− Pr
regular Ai∗

[Alg(A) = 1 | i∗, Āi∗ ]

∣∣∣∣ .
To analyze this quantity, we first condition on a certain event E(i, Āi∗) holding, which will occur
with probability 1−o(1), and allow us to discard the pairs (i, Āi∗) that do not satisfy the condition
of the event. Intuitively, the event is just that for most regular Ai∗ , algorithm Alg does not read
more than r entries in Ai∗ . This holds with probability 1 − o(1), over the choice of i∗ and Āi∗ ,
because all n rows of A are i.i.d., and so on average Alg can only afford to read o(r) entries in each
row.

More formally, we say a pair (i, Āi∗) is good if

Pr
regular Ai∗

[Alg queries at most r queries of Ai∗ | (i, Āi∗) = (i∗, Āi∗)].

Let E(i∗, Āi∗) be the event that (i, Āi∗) is good. Then, Pri∗,Āi∗
[E(i∗, Āi∗)] = 1− o(1), and we can

upper bound the advantage by

Ei∗,Āi∗

∣∣∣∣ Pr
special Ai∗

[Alg(A) = 1 | E(i∗, Āi∗), i
∗, Āi∗ ]− Pr

regular Ai∗
[Alg(A) = 1 | E(i∗, Āi∗), i

∗, Āi∗ ]

∣∣∣∣+o(1).

Consider the algorithm Alg ′i∗ , which on input A, makes the same sequence of queries to A as Alg
unless it must query more than r positions of Ai∗ . In this case, it outputs an arbitrary value in
{0, 1}, otherwise it outputs Alg(A).

Claim 7.20.∣∣∣∣ Pr
regular Ai∗

[Alg(A) = 1 | E(i∗, Āi∗), i
∗, Āi∗ ]− Pr

regular Ai∗
[Alg ′i∗(A) = 1 | i∗, Āi∗ ]

∣∣∣∣ = o(1),

38



Proof. Since E(i∗, Āi∗) occurs,

Pr
regular Ai∗

[Alg makes at most r queries to Ai∗ | i∗, Āi∗ ] = 1− o(1).

This implies that∣∣∣∣ Pr
regular Ai∗

[Alg(A) = 1 | E(i∗, Āi∗), i
∗, Āi∗ ]− Pr

regular Ai∗
[Alg ′i∗(A) = 1 | i∗, Āi∗ ]

∣∣∣∣ = o(1).

By Lemma 7.17, we have that∣∣∣∣ Pr
regular Ai∗

[Alg ′i∗(A) = 1 | i∗, Āi∗ ]− Pr
special Ai∗

[Alg ′i∗(A) = 1 | i∗, Āi∗ ]

∣∣∣∣ ≤ 1

10
.

Hence, by Claim 7.20 and the triangle inequality, we have that∣∣∣∣ Pr
regular Ai∗

[Alg(A) = 1 | E(i∗, Āi∗), i
∗, Āi∗ ]− Pr

special Ai∗
[Alg ′i∗(A) = 1 | i∗, Āi∗ ]

∣∣∣∣ ≤ 1

10
+ o(1).

To finish the proof, it suffices to show the following claim

Claim 7.21.∣∣∣∣ Pr
special Ai∗

[Alg(A) = 1 | E(i∗, Āi∗), i
∗, Āi∗ ]− Pr

special Ai∗
[Alg ′i∗(A) = 1 | i∗, Āi∗ ]

∣∣∣∣ ≤ 1

10
+ o(1).

Indeed, if we show Claim 7.21, then by the triangle inequality we will have that adv(Alg) ≤
1
5 + o(1) < 1

4 .

Proof of Claim 7.21: Since E(i∗, Āi∗) occurs,

Pr
regular Ai∗

[Alg makes at most r queries to Ai∗ | i∗, Āi∗ ] = 1− o(1).

Since ρ is the distribution of prefixes of regular points, this condition can be rewritten as

Pr
u∼ρ

[Alg makes at most r queries to the i∗-th row | i∗, Āi∗ , pref(Ai∗) = u] = 1− o(1).

By Lemma 7.17, we thus have,

Pr
u∼ρ′

[Alg makes at most r queries to the i∗-th row | i∗, Āi∗ , pref(Ai∗) = u] ≥ 9

10
− o(1).

Since ρ′ is the distribution of prefixes of special points, this condition can be rewritten as

Pr
special Ai∗

[Alg makes at most r queries to Ai∗ | i∗, Āi∗ ] ≥
9

10
− o(1).

This implies that∣∣∣∣ Pr
special Ai∗

[Alg(A) = 1 | E(i∗, Āi∗), i
∗, Āi∗ ]− Pr

special Ai∗
[Alg ′i∗(A) = 1 | i∗, Āi∗ ]

∣∣∣∣ ≤ 1

10
+ o(1).

This completes the proof of the theorem.
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7.3.4 Proofs of Theorem 7.15 and 7.16

Next we show how Theorem 7.19 implies Theorem 7.15 and Theorem 7.16, using the results on
MEBs of regular and special points.

Proof of Theorem 7.15: We set the dimension d = 4 · 36 · ε−2 ln2(n− 1). Let A′ denote the set
of regular rows of A. We condition on event E , namely, that every convex combination pTA, where
p ∈ ∆n−1,satisfies pTA′b ≤ 1

4 − 6D. This event occurs with probability at least 1− 2n−2. (We may
neglect the difference between n and n− 1 in some expressions.)

It follows by Lemma 7.13 that if A ∈ G, then for every S ⊆ A′,

‖Center(S)− b‖ ≥
√

3

2
+ 2ε.

By (29), Radius(A′) ≤
√

3
2 . It follows that any algorithm that, with probability at least 4/5, outputs

a subset S of Õ(ε−1) rows of A for which Ai ∈ (1 + ε) ·MEB(S) must include the point b ∈ S.
Given such an algorithm, by reading each of the Õ(ε−1) rows output, we can determine if A ∈ F

or A ∈ G with an additional Õ(ε−1d) time. By Theorem 7.19, the total time must be Ω̃(nε−2).
By assumption, nε−1 ≥ d, and so any randomized algorithm that solves ε-MEB-Coreset with
probability at least 4/5, can decide if A ∈ F with probability at least 4/5− 2n−2 ≥ 3/4, and so it
must read Ω̃(nε−2) entries for some choice of its random coins.

Proof of Theorem 7.16: We again set the dimension d = 4 · 36 · ε−2 ln2(n− 1). Let A′ denote
the set of regular rows of A. We again condition on the event E .

By Lemma 7.13, if A ∈ G, then for every convex combination pTA′,

‖pTA′ − b‖ ≥
√

3

2
+ 2ε,

and so the MEB radius returned by any algorithm that outputs a convex combination of rows of

A′ must be at least
√

3
2 + 2ε.

However, by (29), if A ∈ F , then Radius(A) ≤
√

3
2 . On the other hand, by Lemma 7.14, if

A ∈ G, then MEB-radius(A) ≤
√

3
2 + Θ(ε2).

It follows that if A ∈ G, then the convex combination pTA output by the algorithm must have
a non-zero coefficient multiplying the special point b. This, in particular, implies that pTA is not
on the affine hyperplane H with normal vector 1d containing the point c = 1d/2

√
d. However, if

A ∈ F , then any convex combination of the points is on H. The output pTA of the algorithm is

on H if and only if pTA1d =
√
d

2 , which can be tested in O(d) time.

By Theorem 7.19, the total time must be Ω̃(nε−2). By assumption, nε−2 ≥ d, and so any
randomized algorithm that solves ε-MEB-Center with probability ≥ 4/5 by outputting a convex
combination of rows can decide if A ∈ F with probability at least 4/5− 2n−2 ≥ 3/4, and so must
read Ω̃(nε−2) entries for some choice of its random coins.

7.4 Las Vegas Algorithms

While our algorithms are Monte Carlo, meaning they err with small probability, it may be desirable
to obtain Las Vegas algorithms, i.e., randomized algorithms that have low expected time but never
err. We show this cannot be done in sublinear time.
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Theorem 7.22. For the classification and minimum enclosing ball problems, there is no Las Vegas
algorithm that reads an expected o(M) entries of its input matrix and solves the problem to within
a one-sided additive error of at most 1/2. This holds even if ‖Ai‖ = 1 for all rows Ai.

Proof. Suppose first that n ≥ M . Consider n × d matrices A,B1, . . . BM , where for each C ∈
{A,B1, . . . , BM}, Ci,j = 0 if either j > 1 or i > M . Also, Ai,1 = 1 for i ∈ [M ], while for each j,

Bj
1,i = 1 if i ∈ [M ]\{j}, while Bj

1,j = −1. With probability 1/2 the matrix A is chosen, otherwise a

matrix Bj is chosen for a random j. Notice that whichever case we are in, each of the first M rows
of the input matrix has norm equal to 1, while all remaining rows have norm 0. It is easy to see
that distinguishing these two cases with probability ≥ 2/3 requires reading Ω(M) entries. As Ω(M)
is a lower bound for Monte Carlo algorithms, it is also a lower bound for Las Vegas algorithms.
Moreover, distinguishing these two cases is necessary, since if the problem is classification, if C = A
the margin is 1, otherwise it is 0, while if the problem is minimum enclosing ball, if C = A the cost
is 0, otherwise it is 1.

We now assume M > n. Let d′ be the largest integer for which nd′ < M . Here d′ ≥ 1. Let A
be the n × d′ matrix, where Ai,j = 1√

d′
for all i and j. The margin of A is 1, and the minimum

enclosing ball has radius 0.
Suppose there were an algorithm Alg on input A for which there is an assignment to Alg’s

random tape r for which Alg reads at most nd′/4 of its entries. If there were no such r, the
expected running time of Alg is already Ω(nd′) = Ω(M). Let A` be a row of A for which Alg reads
at most d′/4 entries of A` given random tape r, and let S ⊂ [d′] be the set of indices in A` read,
where |S| ≤ d′/4. Consider the n× d′ matrix B for which Bi,j = Ai,j for all i 6= `, while B`,j = A`,j
for all j ∈ S, and B`,j = −A`,j for all j ∈ [d′] \ S. Notice that all rows of A and B have norm 1.

To bound the margin of B, consider any vector x of norm at most 1. Then

(A` +B`)x ≤ ‖x‖ · ‖A` +B`‖ ≤ ‖A` +B`‖.

A`+B` has at least 3d′/4 entries that are 0, while the non-zero entries all have value 2/
√
d′. Hence,

‖A`+B`‖2 ≤ d′

4 ·
4
d′ = 1. It follows that either A`x or B`x is at most 1/2, which bounds the margin

of B. As Alg cannot distinguish A and B given random tape r, it cannot have one-sided additive
error at most 1/2.

For minimum enclosing ball, notice that ‖A` − B`‖2 · 1
4 ≥

3d′

4 ·
4
d′ ·

1
4 = 3

4 , which lower bounds
the cost of the minimum enclosing ball of B. As Alg cannot distinguish A and B given random
tape r, it cannot have one-sided additive error at most 3/4.

8 Concluding Remarks

We have described a general method for sublinear optimization of constrained convex programs,
and showed applications to classical problems in machine learning such as linear classification and
minimum enclosing ball obtaining improvements in leading-order terms over the state of the art.
The application of our sublinear primal-dual algorithms to soft margin SVM and related convex
problems is currently explored in ongoing work with Nati Srebro.

In all our running times the dimension d can be replaced by the parameter S, which is the
maximum over the input rows Ai of the number of nonzero entries in Ai. Note that d ≥ S ≥M/n.
Here we require the assumption that entries of any given row can be recovered in O(S) time, which
is compatible with keeping each row as a hash table or (up to a logarithmic factor in run-time) in
sorted order.
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A Main Tools

A.1 Tools from online learning

Online linear optimization The following lemma is essentially due to Zinkevich [Zin03]:

Lemma A.1 (OGD). Consider a set of vectors q1, . . . , qT ∈ Rd such that ‖qi‖2 ≤ c. Let x0 ← 0,
and x̃t+1 ← xt + 1√

T
qt , xt+1 ← x̃t+1

max{1,‖x̃t+1‖} . Then

max
x∈B

T∑
t=1

q>t x−
T∑
t=1

q>t xt ≤ 2c
√
T .

This is true even if each qt is dependent on x1, . . . , xt−1.

Proof. Assume c = 1, generalization is by straightforward scaling. Let η = 1√
T

. By definition and

for any ‖x‖ ≤ 1,

‖x− xt+1‖2 ≤ ‖x− x̃t+1‖2 = ‖x− xt − ηqt‖2 = ‖x− xt‖2 − 2ηq>t (x− xt) + η2‖qt‖2.

Rearranging we obtain

q>t (x− xt) ≤
1

2η
[‖x− xt‖2 − ‖x− xt+1‖2] + η/2.

Summing up over t = 1 to T yields∑
t

q>t x−
∑
t

q>t xt ≤
1

2η
‖x− x1‖2 + ηT/2 ≤ 2

η
+
η

2
T ≤ 2

√
T .

For our streaming and parallel implementation, a simpler version of gradient descent, also
essentially due to Zinkevich [Zin03], is given by:

Lemma A.2 (Lazy Projection OGD). Consider a set of vectors q1, . . . , qT ∈ Rd such that ‖qi‖2 ≤ 1.
Let

xt+1 ← arg min
x∈B

{
t∑

τ=1

q>τ · x+
√

2T‖x‖22

}
Then

max
x∈B

T∑
t=1

q>t x−
T∑
t=1

q>t xt ≤ 2
√

2T .

This is true even if each qt is dependent on x1, . . . , xt−1.

For a proof see Theorem 2.1 in [Haz10], where we take R(x) = ‖x‖22, and the norm of the linear
cost functions is bounded by ‖qt‖2 ≤ 1, as is the diameter of K - the ball in our case. Notice that
the solution of the above optimization problem is simply:

xt+1 =
yt+1

max{1, ‖yt+1‖}
, yt+1 =

−
∑t

τ=1 qτ√
2T
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Strongly convex loss functions The following Lemma is essentially due to [HKKA06].
For H ∈ R with H > 0, a function f : Rd → R is H-strongly convex in B if for all x ∈ B, all the

eigenvalues of ∇2f(x) are at least H.

Lemma A.3 (OGDStrictlyConvex). Consider a set of H-strongly convex functions f1, . . . , fT such
that the norm of their gradients is bounded over the unit ball B by G ≥ maxt maxx∈B‖∇ft(x)‖. Let
x0 ∈ B, and x̃t+1 ← xt − 1

t∇ft(xt) , xt+1 ← x̃t+1

max{1,‖x̃t+1‖} . Then

T∑
t=1

ft(xt)− min
‖x‖2≤1

T∑
t=1

ft(x) ≤ G2

H
log T.

This is true even if each ft is dependent on x1, . . . , xt−1.

Again, for the MEB application and its relatives it is easier to implement the lazy versions in
the streaming model. The following Lemma is the analogous tool we need:

Lemma A.4. Consider a set of H-strongly convex functions f1, . . . , fT such that the norm of their
gradients is bounded over the unit ball B by G ≥ maxt maxx∈B‖∇ft(x)‖. Let

xt+1 ← arg min
x∈B

{
t∑

τ=1

fτ (x)

}

Then
T∑
t=1

ft(xt)−min
x∈B

T∑
t=1

ft(x) ≤ 2G2

H
log T.

This is true even if each ft is dependent on x1, . . . , xt−1.

Proof. By Lemma 2.3 in [Haz10] we have:

T∑
t=1

ft(xt)− min
‖x‖2≤1

T∑
t=1

ft(x) ≤
∑
t

[ft(xt)− ft(xt+1)]

Denote by Φt(x) =
∑t

τ=1 fτ . Then by Taylor expansion at xt+1, there exists a zt ∈ [xt+1, xt] for
which

Φt(xt) = Φt(xt+1) + (xt − xt+1)>∇Φt(xt+1) +
1

2
‖xt − xt+1‖2zt

≥ Φt(xt+1) +
1

2
‖xt − xt+1‖2zt ,

using the notation ‖y‖2z = y>∇2Φt(z)y. The inequality above is true because xt+1 is a minimum
of Φt over K. Thus,

‖xt − xt+1‖2zt ≤ 2 Φt(xt)− 2 Φt(xt+1)

= 2 (Φt−1(xt)− Φt−1(xt+1)) + 2[ft(xt)− ft(xt+1)]

≤ 2[ft(xt)− ft(xt+1)] optimality of xt

≤ 2∇ft(xt)>(xt − xt+1) convexity of ft .
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By convexity and Cauchy-Schwarz:

ft(xt)− ft(xt+1) ≤ ∇ft(xt)(xt − xt+1) ≤ ‖∇ft(xt)‖∗zt‖xt − xt+1‖zt

≤ ‖∇ft(xt)‖∗zt
√

2∇ft(xt)>(xt − xt+1)

Shifting sides and squaring, we get

ft(xt)− ft(xt+1) ≤ ∇ft(xt)(xt − xt+1) ≤ 2‖∇ft(xt)‖∗ 2
zt

Since ft are assumed to be H-strongly convex, we have ‖ ·‖z ≥ ‖·‖Ht, and hence for the dual norm,

ft(xt)− ft(xt+1) ≤ 2‖∇ft(xt)‖∗ 2
zt ≤ 2

‖∇ft(xt)‖22
Ht

≤ 2G2

Ht

Summing over all iterations we get

T∑
t=1

ft(xt)− min
‖x‖2≤1

T∑
t=1

ft(x) ≤
∑
t

[ft(xt)− ft(xt+1)] ≤
∑
t

2G2

Ht
≤ 2G2

H
log T

Combining sampling and regret minimization

Lemma A.5. Consider a set of H-strongly convex functions f1, . . . , fT such that the norm of their
gradients is bounded over the unit ball by G ≥ maxt maxx∈B‖∇ft(x)‖. Let

yt+1 ←


arg minx∈B

{∑t
τ=1 fτ (x)

}
w.p. α

yt o/w

Then for a fixed x∗ we have

E[
T∑
t=1

ft(yt)−
T∑
t=1

ft(x
∗)] ≤ 1

α

2G2

H
log T.

This is true even if each ft is dependent on y1, . . . , yt−1.

Proof. Consider the sequence of functions f̃t defined as

f̃t ←


ft
α w.p. α

0 o/w

Where 0 denotes the all-zero function. Then the algorithm from Lemma A.4 applied to the functions
f̃t is exactly the algorithm we apply above to the functions ft. Notice that the functions f̃t are
H
α -strongly convex, and in addition their gradients are bounded by G

α . Hence applying Lemma A.4
we obtain

E[

T∑
t=1

ft(yt)−
T∑
t=1

ft(x
∗)] = E[

T∑
t=1

f̃t(xt)−
T∑
t=1

f̃t(x
∗)] ≤ 1

α

2G2

H
log T.
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B Auxiliary lemmas

First, some simple lemmas about random variables.

Lemma B.1. Let X be a random variable with |E[X]| ≤ C, and let X̄ = clip(X,C) = min{C,max{−C,X}}
for some C ∈ R. Then

|E[X̄]−E[X]| ≤ Var[X]

C
.

Proof. By direct calculation:

E[X̄]−E[X] =

∫
x<−C

Pr[x](−C − x) +

∫
x>C

Pr[x](C − x),

≤
∫
x<−C

Pr[x]|x| −
∫
x<−C

Pr[x]C

≤
∫
x<−C

Pr[x]x2/C −
∫
x<−C

Pr[x]C

=

∫
x<−C

Pr[x]
x2 − C2

C

≤
∫
x<−C

Pr[x]
x2 −E[X]2

C
since |E[X]| ≤ C

=
Var[X2]

C

and similarly E[X̄]−E[X] ≥ −Var[X]/C, and the result follows.

Lemma B.2. For random variables X and Y , and α ∈ [0, 1],

E[(αX + (1− α)Y )2] ≤ max{E[X2],E[Y 2]}.

This implies by induction that the second moment of a convex combination of random variables
is no more than the maximum of their second moments.

Proof. We have, using Cauchy-Schwarz for the first inequality,

E[(αX + (1− α)Y )2] = α2 E[X2] + 2α(1− α) E[XY ] + (1− α)2 E[Y 2]

≤ α2 E[X2] + 2α(1− α)
√

E[X2] E[Y 2] + (1− α)2 E[Y 2]

= (α
√

E[X2] + (1− α)
√

E[Y 2])2

≤ max{
√

E[X2],
√

E[Y 2]}2

= max{E[X2],E[Y 2]}.

B.1 Martingale and concentration lemmas

The Bernstein inequality, that holds for random variables Zt, t ∈ [T ] that are independent, and
such that for all t, E[Zt] = 0, E[Z2

t ] ≤ s, and |Zt| ≤ V , states

log Prob{
∑
t∈[T ]

Zt ≥ α} ≤ −α2/2(Ts+ αV/3) (32)
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Here we need a similar bound for random variables which are not independent, but form a martin-
gale with respect to a certain filtration. Many concentration results have been proven for Mar-
tingales, including somewhere, in all likelihood, the present lemma. However, for clarity and
completeness, we will outline how the proof of the Bernstein inequality can be adapted to this
setting.

Lemma B.3. Let {Zt} be a martingale difference sequence with respect to filtration {St}, such that
E[Zt|S1, ..., St] = 0. Assume the filtration {St} is such that the values in St are determined using
only those in St−1, and not any previous history, and so the joint probability distribution

Prob{S1 = s1, S2 = s2, . . . , ST = st} =
∏

t∈[T−1]

Prob{St+1 = st+1 | St = st},

In addition, assume for all t, E[Z2
t |S1, ..., St] ≤ s, and |Zt| ≤ V . Then

log Prob{
∑
t∈T

Zt ≥ α} ≤ −α2/2(Ts+ αV/3).

Proof. A key step in proving the Bernstein inequality is to show an upper bound on the exponential
generating function E[exp(λZ)], where Z ≡

∑
t Zt, and λ > 0 is a parameter to be chosen. This

step is where the hypothesis of independence is applied. In our setting, we can show a similar
upper bound on this expectation: Let Et[] denote expectation with respect to St, and E[T ] denote
expectation with respect to St for t ∈ [T ]. This expression for the probability distribution implies
that for any real-valued function f of state tuples St,

E[T ][
∏
t∈[T ]

f(St)]

= f(s1)

∫
s2,...,sT

[
∏

t∈[T−1]

f(st+1)][
∏

t∈[T−1]

Prob{St+1 = st+1 | St = st}]

= f(s1)

∫
s2,...,sT−1

[
∏

t∈[T−2]

f(st+1)][
∏

t∈[T−2]

Prob{St+1 = st+1 | St = st}]∫
sT

f(sT ) Prob{ST = sT | ST−1 = sT−1}
]
,

where the inner integral can be denoted as the conditional expectation ET [f(ST ) | ST−1]. By
induction this is

f(s1)

[∫
s2

f(s2) Prob{S2 = s2 | S1 = s1}
[∫

s3

. . .

∫
sT

f(sT ) Prob{ST = sT | ST−1 = sT−1}
]
. . .

]
,

and by writing the constant f(S1) as the expectation with respect to the constant S0 = s0, and
using EX [EX [Y ]] = EX [Y ] for any random variables X and Y , we can write this as

E[T ][
∏
t∈[T ]

f(St)] = E[T ][
∏
t∈[T ]

Et[f(St) | St−1]].

For fixed i and a given λ ∈ R, we take f(S1) = 1, and f(St) ≡ exp(λZt−1), to obtain

E[T ]

exp(λ
∑
t∈[T ]

Zt)]

 = E[T ]

∏
t∈[T ]

Et[exp(λZt) | St−1]

 .
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Now for any random variable X with E[X] = 0, E[X2] ≤ s, and |X| ≤ V ,

E[exp(λX)] ≤ exp
( s

V 2
(eλV − 1− λV )

)
,

(as is shown and used for proving Bernstein’s inequality in the independent case) and therefore

E[T ] [exp(λZ)] ≤ E[T ]

∏
t∈[T ]

exp
( s

V 2
(eλV − 1− λV )

) = exp
(
T
s

V 2
(eλV − 1− λV )

)
.

where Z ≡
∑

t∈[T ] Zt. This bound is the same as is obtained for independent Zt, and so the
remainder of the proof is exactly as in the proof for the independent case: Markov’s inequality is
applied to the random variable exp(λZ), obtaining

Prob{Z ≥ α} ≤ exp(−λα) E[T ] [exp(λZ)] ≤ exp(−λα+ T
s

V 2
(eλV − 1− λV )),

and an appropriate value λ = 1
V log(1 + αV/Ts) is chosen for minimizing the bound, yielding

Prob{Z ≥ α} ≤ exp(−Ts
V 2

((1 + γ) log(1 + γ)− γ)),

where γ ≡ αV/Ts, and finally the inequality for γ ≥ 0 that (1 + γ) log(1 + γ) − γ ≥ γ2/2
1+γ/3 is

applied.

B.2 Proof of lemmas used in main theorem

We restate and prove lemmas 2.4,2.5 and 2.6, in slightly more general form. In the following we
only assume that vt(i) = clip(ṽt(i),

1
η ) is the clipping of a random variable ṽt(i). The variance of

ṽt(i) is at most one Var[ṽt(i)] ≤ 1, and we denote by µt(i) = E[ṽt(i)]. We also assume that the
expectations of ṽt(i) are bounded by an absolute constant |µt(i)| ≤ C ≤ 1

η . This constant is one
for the perceptron application, but at most two for MEB. Note that since the variance of ṽt(i) is
bounded by one, so is the variance of it’s clipping vt(i)

2.

Lemma B.4. For η ≤
√

logn
10T , with probability at least 1−O(1/n),

max
i

∑
t∈[T ]

[vt(i)− µt(i)] ≤ 90ηT.

Proof. Lemma B.1 implies that |E[vt(i)]− µt(i)| ≤ η, since Var[ṽt(i)] ≤ 1.
We show that for given i ∈ [n], with probability 1−O(1/n2),

∑
t∈[T ][vt(i)−E[vt(i)]] ≤ 80ηT , and

then apply the union bound over all i ∈ [n]. This together with the above bound on |E[vt(i)]−µt(i)|
implies the lemma via the triangle inequality.

Fixing i, let Zit ≡ vt(i)−E[vt(i)], and consider the filtration given by

St ≡ (xt, pt, wt, yt, vt−1, it−1, jt−1, vt−1 −E[vt−1]),

Using the notation Et[·] = E[·|St], Observe that

2This follows from the fact that the second moment only decreases by the clipping operation, and definition of
variance as Var(vt(i)) = minz E[vt(i)

2 − z2]. We can use z = E[ṽt(i)], and hence the decrease in second moment
suffices.
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1. ∀t . Et[(Z
i
t)

2] = Et[vt(i)
2]−Et[vt(i)]

2 = Var(vt(i)) ≤ 1.

2. |Zit | ≤ 2/η. This holds since by construction, |vt(i)| ≤ 1/η, and hence

|Zit | = |vt(i)−E[vt(i)]| ≤ |vt(i)|+ |E[vt(i)]| ≤
2

η

Using these conditions, despite the fact that the Zit are not independent, we can use Lemma B.3,
and conclude that Z ≡

∑
t∈T Z

i
t satisfies the Bernstein-type inequality with s = 1 and V = 2/η

log Prob{Z ≥ α} ≤ −α2/2(Ts+ αV/3) ≤ −α2/2(T + 2α/3η),

Letting α← 80ηT , we have

log Prob{Z ≥ 80ηT} ≤ −α2/2(T + 2α/3η) ≤ −20η2T

For η =
√

logn
10T , above probability is at most e−2 logn ≤ 1

n2 .

Lemma 2.5 can be restated in the following more general form:

Lemma B.5. For η ≤
√

logn
10T , with probability at least 1−O(1/n), it holds that

∣∣∣∑t∈[T ] µt(it)−
∑

t p
>
t vt

∣∣∣ ≤
100CηT.

It is a corollary of the following two lemmas:

Lemma B.6. For η ≤
√

logn
10T , with probability at least 1−O(1/n),∣∣∣∣∣∣

∑
t∈[T ]

p>t vt −
∑
t

p>t µt

∣∣∣∣∣∣ ≤ 90ηT.

Proof. This Lemma is proven in essentially the same manner as Lemma 2.4, and proven below for
completeness.

Lemma B.1 implies that |E[vt(i)]− µt(i)| ≤ η, using Var[ṽt(i)] ≤ 1. Since pt is a distribution,
it follows that |E[p>t vt]− p>t µt| ≤ η

Let Zt ≡ p>t vt−E[p>t vt] =
∑

i pt(i)Z
i
t , where Zit = vt(i)−E[vt(i)]. Consider the filtration given

by
St ≡ (xt, pt, wt, yt, vt−1, it−1, jt−1, vt−1 −E[vt−1]),

Using the notation Et[·] = E[·|St], the quantities |Zt| and Et[Z
2
t ] can be bounded as follows:

|Zt| = |
∑
i

pt(i)Z
i
t | ≤

∑
i

pt(i)|Zit | ≤ 2η−1 using |Zit | ≤ 2η−1 as in Lemma 2.4.

Also, using properties of variance, we have

E[Z2
t ] = Var[p>t vt] =

∑
i

pt(i)
2Var(vt(i)) ≤ max

i
Var[vt(i)] ≤ 1.

We can now apply the Bernstein-type inequality of Lemma B.3, and continue exactly as in
Lemma 2.4.
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Lemma B.7. For η ≤
√

logn
10T , with probability at least 1−O(1/n),∣∣∣∣∣∣

∑
t∈[T ]

µt(it)−
∑
t

ptµt

∣∣∣∣∣∣ ≤ 10CηT.

Proof. Let Zt ≡ µt(it)− ptµt, where now µt is a constant vector and it is the random variable, and
consider the filtration given by

St ≡ (xt, pt, wt, yt, vt−1, it−1, jt−1, Zt−1),

The expectation of µt(it), conditioning on St with respect to the random choice r(it), is ptµt. Hence
Et[Zt] = 0, where Et[·] denotes E[·|St]. The parameters |Zt| and E[Z2

t ] can be bounded as follows:

|Zt| ≤ |µt(i)|+ |ptµt| ≤ 2C

E[Z2
t ] = E[(µt(i)− p>t µt)2] ≤ 2 E[µt(i)

2] + 2(p>t µt)
2 ≤ 4C2

Applying Lemma B.3 to Z ≡
∑

t∈T Zt, with parameters s ≤ 4C2 , V ≤ 2C, we obtain

log Prob{Z ≥ α} ≤ −α2/(4C2T + 2Cα),

Letting α← 10CηT , we obtain

log Prob{Z ≥ 10ηT} ≤ − 100η2C2T 2

4C2T + 20C2ηT
≤ 5η2T ≤ log n

Where the last inequality holds assuming η ≤
√

logn
T .

Finally, we prove Lemma 2.6 by a simple application of Markov’s inequality:

Lemma B.8. w.p. at least 1− 1
4 it holds that

∑
t p
>
t v

2
t ≤ 8C2T.

Proof. By assumption, E[ṽ2
t (i)] ≤ C2, and using Lemma B.1, we have E[vt(i)

2] ≤ (C + 1
C )2 ≤ 2C2.

By linearity of expectation, we have E[
∑

t p
>
t v

2
t ] ≤ 2C2T , and since the random variables v2

t

are non-negative, applying Markov’s inequality yields the lemma.

C Bounded precision

All algorithms in this paper can be implemented with bounded precision.
First we observe that approximation of both the training data and the vectors that are “played”

does not increase the regret too much, for both settings we are working in.

Lemma C.1. Given a sequence of functions f1, . . . , fT and another sequence f̃1, . . . , f̃T all mapping
Rd to R, such that |f̃t(x) − ft(x)| ≤ αf for all x ∈ B and t ∈ [T ], suppose x1, . . . , xT ∈ B is a
sequence of regret R against {f̃t}, that is,

max
x∈B

∑
t∈[T ]

f̃t(x)−
∑
t∈[T ]

f̃t(xt) ≤ R.

Now suppose x̃1, . . . , x̃T ∈ Rd is a sequence with |ft(x̃t)− ft(xt)| ≤ αx for all t ∈ [T ]. Then

max
x∈B

∑
t∈[T ]

ft(x)−
∑
t∈[T ]

ft(x̃t) ≤ R+ T (αx + 2αf ).
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Proof. For x ∈ B, we have
∑

t∈[T ] ft(x) ≤
∑

t∈[T ] f̃t(x) + Tαf , and∑
t∈[T ]

ft(x̃t) ≥
∑
t∈[T ]

ft(xt)− Tαx ≥
∑
t∈[T ]

f̃t(xt)− Tαx − Tαf ,

and the result follows by combining these inequalities.

That is, xt is some sequence known to have small regret against the “training functions” f̃t(x),
which are approximations to the true functions of interest, and the x̃t are approximations to these
xt. The lemma says that despite these approximations, the x̃t sequence has controllable regret
against the true functions.

This lemma is stated in more generality than we need: all functions considered here have the
form ft(x) = bt+q>t x+γ‖x‖2, where |bt| ≤ 1, qt ∈ B, and |γ| ≤ 1. Thus if f̃t(x) = b̃t+ q̃>t x+γ‖x‖2,
then the first condition |f̃t(x)− ft(x)| ≤ αf holds when |bt − b̃t|+ ‖qt − q̃t‖ ≤ αf . Also, the second
condition |ft(x̃t)− ft(xt)| ≤ αx holds for such functions when ‖x̃t − xt‖ ≤ αx/3.

Lemma C.2. Given a sequence of vectors q1, . . . , qT ∈ Rn, with ‖qt‖∞ ≤ B for t ∈ [T ], and a
sequence q̃1, . . . , q̃T ∈ Rn such that ‖q̃t − qt‖∞ ≤ αq for all t ∈ [T ], suppose p1, . . . , pT ∈ ∆ is a
sequence of regret R against {q̃t}, that is,∑

t∈[T ]

p>t q̃t −min
p∈∆

∑
t∈[T ]

p>q̃t ≤ R.

Now suppose p̃1, . . . , p̃T ∈ Rn is a sequence with ‖p̃t − pt‖1 ≤ αp for all t ∈ [T ]. Then∑
t∈[T ]

p̃>t qt −min
p∈∆

∑
t∈[T ]

p>qt ≤ R+ T (Bαp + 2αq).

Proof. For p ∈ ∆ we have
∑

t∈[T ] p
>qt ≥

∑
t∈[T ] p

>q̃t + Tαq, and∑
t∈[T ]

p̃>t qt ≤
∑
t∈[T ]

p>t qt + TBαp ≤
∑
t∈[T ]

p>t q̃t + TBαp + Tαq,

The proof follows by combining the inequalities.

Note that to have ‖p̃t − pt‖1 ≤ αp, it is enough that the relative error of each entry of p̃t is αp.
The use of q̃t in place of qt (for either of the two lemmas) will be helpful for our semi-streaming

and kernelized algorithms (§5, §6), where computation of the norms ‖yt‖ of the working vectors yt
is a bottleneck; the above two lemmas imply that it is enough to compute such norms to within
relative ε or so.

C.1 Bit Precision for Algorithm 1

First, the bit precision needed for the OGD part of the algorithm. Let γ denote a sufficiently
small constant fraction of ε, where the small constant is absolute. From Lemma C.1 and following
discussion, we need only use the rows Ai up to a precision that gives an approximation Ãi that
is within Euclidean distance γ, and similarly for an approximation x̃t of xt. For the latter, in
particular, we need only compute ‖yt‖ to within relative error γ. Thus a per-entry precision of
γ/
√
d is sufficient.
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We need ‖xt‖ for `2 sampling; arithmetic relative error γ/
√
d in the sampling procedure gives

an estimate of ṽt(i) for which E[Aṽt] = Ax̂t, where x̂t is a vector within O(γ) Euclidean distance
of xt. We can thus charge this error to the OGD analysis, where x̂t is the x̃t of Lemma C.1.

For the MW part of the algorithm, we observe that due to the clipping step, if the initial
computation of ṽt(i), Line 9, is done with ηε/5 relative error, then the computed value is within ε/5
additive error. Similar precision for the clipping implies that the computed value of vt(i), which
takes the place of q̃t in Lemma C.2, is within ε/5 of the exact version, corresponding to qt in the
lemma. Here B of the lemma, bounding ‖qt‖∞, is 1/η, due to the clipping.

It remains to determine the arithmetic relative error needed in the update step, Line 11, to
keep the relative error of the computed value of pt, or p̃t of Lemma C.2, small enough. Indeed, if
the relative error is a small enough constant fraction of ηε/T , then the relative error of all updates
together can be ηε/3. Thus αp ≤ ηε/3 and αq ≤ ε/3 and the added regret due to arithmetic error
is at most Tε.

Summing up: the arithmetic precision needed is at most on the order of

− log min{ε/
√
d, ηε, ηε/T} = O(log(nd/ε)),

to obtain a solution with additive Tε/10 regret over the solution computed using exact computation.
This implies an additional error of ε/10 to the computed solution, and thus changes only constant
factors in the algorithm.

C.2 Bit Precision for Convex Quadratic Programming

From the remarks following Lemma C.1, the conditions of that lemma hold in the setting of convex
quadratic programming in the simplex, assuming that every Ai ∈ B. Thus the discussion of §C.1
carries over, up to constants, with the simplification that computation of ‖yt‖ is not needed.
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