
On the Insecurity of Parallel Repetition for Leakage Resilience

Allison Lewko ∗

University of Texas at Austin
alewko@cs.utexas.edu

Brent Waters †

University of Texas at Austin
bwaters@cs.utexas.edu

Abstract

A fundamental question in leakage-resilient cryptography is: can leakage resilience always
be amplified by parallel repetition? It is natural to expect that if we have a leakage-resilient
primitive tolerating ` bits of leakage, we can take n copies of it to form a system tolerating n`
bits of leakage. In this paper, we show that this is not always true. We construct a public key
encryption system which is secure when at most ` bits are leaked, but if we take n copies of
the system and encrypt a share of the message under each using an n-out-of-n secret-sharing
scheme, leaking n` bits renders the system insecure. Our results hold either in composite order
bilinear groups under a variant of the subgroup decision assumption or in prime order bilinear
groups under the decisional linear assumption. We note that the n copies of our public key
systems share a common reference parameter.

1 Introduction

Traditional security definitions for cryptographic schemes address an adversary who only has black
box access to the scheme, assuming that the secret key and other internal state remains completely
hidden. In practice, the adversary might gain partial knowledge of the secret key or other internal
state through various side-channel and memory attacks [31, 8, 5, 7, 35, 6, 32, 40, 24, 27]. Such
attacks might leverage physical phenomena like computation time, power use, etc. to deduce partial
information about the secret key or state. The cold-boot attack of [27] also demonstrates that an
adversary can learn noisy information about the memory contents of a machine after the machine
is powered down.

Devising specific countermeasures for each known kind of attack is an unsatisfying approach,
since it may require frequent updates to cryptographic systems and always leaves them potentially
vulnerable to new attacks which have not yet been anticipated. A relatively new alternative ap-
proach is to develop new cryptographic security definitions that model a wide class of attacks by
allowing the adversary to specify a leakage function f and learn the output of f applied to the
secret key or other portions of the internal state. Clearly, there must be limits placed on the leak-
age function, or the adversary could learn the entire secret key and the system would be insecure.
Typically, we assume that the leakage function must be efficiently computable and that the size of
∗Supported by a National Defense Science and Engineering Graduate Fellowship.
†Supported by NSF CNS-0716199, CNS-0915361, and CNS-0952692, Air Force Office of Scientific Research (AFO

SR) under the MURI award for “Collaborative policies and assured information sharing” (Project PRESIDIO),
Department of Homeland Security Grant 2006-CS-001-000001-02 (subaward 641), and the Alfred P. Sloan Foundation.

1

its output is bounded by ` bits, where ` is a function of the security parameter and is less than the
bit-length of the secret key.

This approach has yielded leakage-resilient constructions of many cryptographic primitives,
including stream ciphers, signatures, symmetric key encryption, and public key encryption [34, 30,
21, 39, 17, 2, 3, 22, 19, 16, 12, 20, 4]. Given a construction that can tolerate ` bits of leakage, it
is natural to ask: what if we expect even greater leakage? Recently, Alwen, Dodis, and Wichs [4]
and Alwen, Dodis, Naor, Segev, Walfish, and Wichs [3] successfully employed parallel repetition to
amplify leakage resilience for particular schemes and raised the fundamental question of whether
leakage resilience can always be amplified by parallel repetition. More concretely, suppose we are
given a public key encryption scheme which remains secure when ` bits are leaked (i.e. against
an adversary who obtains ` bits of information about the secret key before seeing a challenge
ciphertext). We can take n independent copies of the system corresponding to n public key, private
key pairs. To encrypt, we now split the message into n shares, and encrypt the ith share under the
ith public key. One may expect that this new system will remain secure up to n` bits of leakage.
Alwen et. al. [3] successfully apply this technique for specific schemes. As explained by [4, 3], it
would seem quite difficult to prove this works in general, since a general reduction would need to
simulate n` bits of leakage for the parallel scheme using only ` bits of leakage from the original
scheme.

We note that parallel repetition does hold generically if we weaken the definition of leakage
resilience by restricting the leakage to a be subset of the bits representing the secret key, instead of
allowing more complicated functions. This model was previously considered in [11, 18, 29]. In this
setting, parallel repetition can be proven via the pigeonhole principle, since if ≤ n` bits are leaked
from n keys, then there is some key for which at most ` bits are leaked, and security can then be
proven via a reduction. (In fact, if < n(`+ 1) bits are leaked from n keys, then there is some key
for which ≤ ` bits are leaked.)

Though posed in the context of public key encryption, parallel repetition naturally extends
to other primitives, and would be a powerful general tool for amplifying leakage resilience while
preserving reasonable levels of efficiency. We note that a more basic approach to improving resilience
might be to artificially increase the security parameter, λ. The success of this approach will depend
on how ` grows as a function of λ, and it also leads to an unacceptable loss in efficiency, since many
common operations require time O(λ3) to compute.

Our Contribution We show that there exist public key encryption schemes which are `-leakage-
resilient, but for which parallel repetition fails to yield an n`-leakage-resilient system for any n > 1.
In fact, the parameters of our schemes can be chosen to rule out Ω(n`)-leakage-resilience of the
parallel schemes. Our results hold either under a variant of the subgroup decision assumption in
composite order bilinear groups or under the decisional linear assumption in prime order bilinear
groups. In both cases, our n parallel copies of the system share common setup parameters (i.e. are
instantiated over the same group). Assuming a common group is natural in many settings, e.g.
when using curves recommended by NIST [37].

Often, leakage resilience is established by employing mostly information-theoretic techniques,
e.g. leveraging the fact that a function f with bounded output length cannot leak enough useful
information about a key with sufficient min-entropy even if f is computationally unbounded. This
approach is employed by [30, 34, 4, 3], for example. In the arguments of [3, 34], a computational
assumption is used to argue that a valid ciphertext can be replaced by an invalid ciphertext.

2

However, since the adversary does not receive the ciphertext until after the leakage, it is not clear
that even a computationally unbounded leakage function would allow the adversary to distinguish
the two cases.1For these kinds of arguments, it seems plausible that if ` bits of leakage is not enough
to compromise the security of one key, then 2` bits of leakage should not be enough to compromise
the security of 2 keys. (We consider the case n = 2 here for concreteness and will later generalize.)
However, security against computationally unbounded functions f is not strictly necessary. It is
possible instead to have keys with less than ` bits of entropy, but where it is computationally hard
to compress all of the information needed for decryption into only ` bits.

The main idea of our approach is to design a system where it is computationally hard to
represent the needed information about a single key in ` bits, but where two keys can be efficiently
compressed into 2` bits. As a first attempt at creating keys with less than ` bits of entropy which
are computationally hard to compress, one might try using pseudorandom generators. However,
it is not clear how one might find suitable structure to allow compression of two keys using this
approach. Instead, we use the structure of bilinear groups. We describe our approach in terms of
composite order groups for ease of exposition. We suppose we have a bilinear group G of order
N = p1p2q, which is a product of 3 distinct primes. This group has subgroups Gp1 , Gp2 , and
Gq of orders p1, p2, and q respectively, and whenever elements of these different subgroups are
paired together under the bilinear map, the result is the identity. In this sense, the subgroups are
orthogonal to each other. In our system, keys and ciphertexts will take on one of two types: type
1 keys and ciphertexts will involve only elements of Gp1 , while type 2 keys and ciphertexts will
involve only elements of Gp2 . Ciphertext elements are paired with key elements in order to decrypt.
A key of type 1 and a key of type 2 can be efficiently compressed into a single key by multiplying
them together in the group. This new key will now decrypt ciphertexts for both of the private keys,
since the multiplied Gp2 elements will not affect the result of the pairing with the type 1 ciphertext,
and the multiplied Gp1 elements will not affect the result of the pairing with the type 2 ciphertext.
Assuming for simplicity that group elements are represented by approximately log(N) bits, we can
set ` = 1

2 log(N) so that 2` bits is enough to leak a group element, but ` bits is not.
We now have a system that is attackable when parallelized, but it is not clear that it is leakage-

resilient in the first place. To prove that a single key cannot be compromised by the leakage of `
bits, we cannot simply make an information-theoretic argument, since either log(p1) or log(p2) will
be less than ` (hence there is min-entropy < ` in at least one type of secret key). To overcome
this difficulty, we introduce an expansion technique which leverages the computational bound on
the leakage function. More specifically, we use the Gq subgroup as what we call an “expansion
space” to argue that the secret keys have sufficiently high pseudo-entropy (i.e. their distribution is
computationally indistinguishable from a distribution with high min-entropy). Relying on a close
variant of the subgroup decision assumption, we expand the keys into the Gq space, and argue
that an attacker cannot distinguish between elements of Gp1 and Gp1q, where Gp1q denotes the
subgroup of order p1q in G (and similarly cannot distinguish between elements of Gp2 and Gp2q).
We note that the expansion space Gq is shared by both key types. In this computational step of the
proof, it is crucial that the leakage function f is computationally bounded (since a computationally
unbounded function could distinguish the subgroups). We next expand the ciphertexts into the Gq
subgroup as well, and we are then able to finish our proof with an information-theoretic argument.

1In fact, we conjecture that their schemes could be proven secure against a computationally unbounded leakage
function under the stronger assumption that the computational problem remains hard against an adversary who is
allowed unlimited preprocessing, given only the public parameters.

3

Prime Order Groups We also provide a system following this framework in prime order bilinear
groups, under the decisional linear assumption. Again, we expand keys into an expansion space to
obtain sufficient entropy. As in our composite order system, we accomplish this expansion through
a computational step, this time relying on the decisional linear assumption.

Extension to Signatures and Other Primitives While we state and prove our formal result
in the context of public key encryption, our methodology is broader and can be applied to show
negative results for parallel repetition in other contexts. A natural application is to parallel rep-
etition for signature systems, where one realizes parallel repetition by signing the same message
under n different signing keys.

We sketch how our technique can be extended to provide a counterexample to parallel repetition
for signature schemes, using the framework developed by Katz and Vaikuntanathan [30]. Katz and
Vaikuntanathan construct signature schemes such that each public key corresponds to exponentially
many secret keys, and given a public key, secret key pair, it is hard to compute a different secret
key corresponding to the same public key. They obtain this property by using a universal one-way
hash function H with domain {0, 1}n and range {0, 1}nε . The secret key of the signature scheme is
an n-bit string x, and the public key is (y = H(x), pk, r), where pk is a public key for a CPA-secure
public key encryption scheme, and r is a common reference string for an unbounded simulation-
sound NIZK proof system [15, 41]. To sign a message m, the signer computes C = Enc(pk,m||x),
and also supplies a proof π that C is an encryption of m||x′ for some x′ such that H(x′) = y.
Note that for most choices of x, H(x) will have many pre-images and that finding two secret keys
for the same public key here corresponds to finding a collision for H. To show leakage resilience,
Katz and Vaikuntanathan prove that the secret key used by the signer has high min-entropy in the
adversary’s view, even after the adversary has observed signatures on its chosen messages. They
then show how to use a forgery to compute a new secret key for the public key. When the leakage
is bounded below the min-entropy of the secret key, this new secret key will not match the original
with a non-negligible probability, which contradicts the hardness of finding a different secret key.

We define a similar signature scheme as follows. We use a bilinear group G of order N = p1p2q.
Our keys will be either of type 1 or type 2. A type t secret key is a random element u ∈ Gpt , and
the corresponding public key is comprised of A = e(u, gpt), pk, and r, where pk is a public key for
a CPA-secure public key encryption scheme, and r is a common reference string for an unbounded
simulation-sound NIZK proof system. To sign a message, the signer computes C = Enc(pk,m||u),
and also supplies a proof π that C is an encryption of m||u′ for some u′ such that e(u′, gpt) = A. We
note that there are many such u′ ∈ Gptq, since the part of u′ in the subgroup Gq is unconstrained.
Also, finding such a u′ 6= u violates the subgroup decision assumption, since it would allow us
to produce an element u/u′ of Gq. To prove leakage resilience of this scheme, we first apply our
expansion technique to expand all private keys into Gq. We then employ the proof of [30]. To
attack a parallel version of this system with two copies constructed from a common bilinear group
G, we assume the first secret key, u1, is type 1 and the second secret key, u2, is type 2. We let the
leakage function be f(u1, u2) = u1 · u2. This value now serves as a secret key for either copy of the
system, since Gp1 and Gp2 are orthogonal.

An alternate counterexample for signatures (due to Wichs [43]) is also discussed in Section 9.

Related Work Alwen et. al. [3] provide a counterexample to the security of parallel repetition in
a more restricted setting where the public key setup is done by a single trusted authority holding

4

a master secret key who additionally employs an n-out-of-n secret sharing scheme. In this system,
leakage resilience cannot be amplified beyond the size of the master secret key. Such a setup occurs,
for example, when an IBE scheme is employed. In contrast, our counterexample requires only that
the n copies of the PKE scheme share the same underlying group.

Once our keys occupy the expansion space, the rest of our proof strategy is very similar to the
machinery of hash proof systems (HPS), a primitive introduced by Cramer and Shoup [14] and
used by Naor and Segev [34] to obtain leakage resilient PKE schemes.

More generally, various forms of leakage resilience have been studied in many previous works
[42, 38, 30, 4, 12, 16, 20, 18, 29, 19, 34, 2, 3, 11, 17, 21, 28, 33, 39, 22]. Several models of leakage
resilience have been proposed, differing primarily in the restrictions placed on the leakage functions
and the internal state they are applied to. We discuss the key features and distinctions of these
approaches below, organizing references according to their models.

Exposure-resilient cryptography [11, 18, 29] considered an adversary who could only learn a
limited subset of the secret key bits, while [28] considered an adversary who could only learn the
values on certain wires of the circuit implementing a computation. For models allowing arbitrary
efficiently computable leakage functions f , one can choose to bound the amount of leakage totally
(bounding the total leakage over the lifetime of the system) or locally (bounding the amount of
leakage per usage, e.g. per signature generated by a leakage-resilient signature scheme). A local
bound is only reasonable if the internal state is continually updated, and the amount of leakage
between updates is bounded. (If the secret key is unchanging, and one can leak an arbitrary ` bits
of it many times, then an attacker will eventually learn the entire secret key.) A total bound is
employed e.g. by [2, 30, 34, 4, 3], while a local bound is employed e.g. by [22, 21, 39].

There is also a distinction between models which allow the leakage function to depend only on
the secret key and models where the leakage function can depend on additional internal state. For
schemes where the secret key is the only internal state, the secret key is a natural choice for the
input to the leakage functions. For signatures, for example, the signer may maintain additional
state. Micali and Reyzin [33] introduce the assumption that “only computation leaks information”.
Under this assumption, one may define the input to the leakage function to be the portion of the
internal state which is accessed on that particular invocation. This approach is employed by [22]
for stateful signatures with a local leakage bound, for example.

A general approach to tolerating leakage that is less than the length of the secret key is to
guarantee that the secret key will have sufficient min-entropy conditioned on the leakage. The
works [30, 2, 4, 3, 21, 39], for example, fall into this framework. Another possibility is considered
by [17], who present schemes that can tolerate leakage of arbitrary length if the secret key remains
sufficiently difficult to compute from the leakage (in this case, it is possible the secret key is
information-theoretically determined by the leakage). One difficulty with this approach is that it
may be hard to decide if a particular collection of possible leakage functions satisfy this criterion.

2 Organization

In Section 3, we give the necessary background. In Section 4, we give our PKE system in composite
order bilinear groups. In Section 5, we prove it is leakage-resilient up to ` bits of leakage. In
Section 6, we present an attack on the parallel version of our system with n` bits of leakage.
In Section 7, we give our PKE system in prime order bilinear groups. In Section 8, we discuss
instantiations of our system in specific groups. In Section 9, we discuss variations on our system

5

and attack and an alternative counterexample for signatures. In Section 10, we discuss possible
extensions of our work.

3 Background

3.1 Leakage-resilient Public Key Encryption

We define IND-CPA leakage-resilient public key encryption schemes in terms of the following game
between a challenger and an attacker. We let λ denote the security parameter, ` denote the leakage
parameter, and (KeyGen, Encrypt, Decrypt) denote the algorithms of the PKE scheme. (Typically,
` is a function of λ.)

Key Generation The challenger computes (PK, SK) ← KeyGen(λ, `) and gives PK to the at-
tacker.

Leakage The attacker chooses a function f : {0, 1}∗ → {0, 1}` that can be computed in polyno-
mial time and receives f(SK) from the challenger.

Challenge The attacker chooses two messages, M0 andM1, and gives these to the challenger. The
challenger chooses a uniformly random bit β ∈ {0, 1}, and gives the attacker CT→ Encrypt(Mβ, PK).

Guess The attacker outputs a bit β′ ∈ {0, 1}.

The attacker succeeds if β = β′. We define the advantage of an attacker A in this game to be
AdvA(λ, `) := |Pr[β = β′]− 1

2 |.

Definition 3.1. A public key encryption system (KeyGen, Encrypt, Decrypt) is `-leakage-resilient
if all polynomial time attackers A have a negligible advantage in the above game.

3.2 Parallel Repetition

We now formally state the parallel repetition question introduced by [4, 3]. We let (KeyGen,
Encrypt, Decrypt) denote the algorithms of a PKE scheme. For each positive integer n, we define
a new scheme, (KeyGenn, Encryptn, Decryptn) as follows. KeyGenn calls KeyGen n times to
produce n pairs of public and secret keys: (PK1,SK1), . . . , (PKn,SKn). The public key is PK =
(PK1, . . . ,PKn) and the secret key is SK = (SK1, . . . ,SKn). Encryptn(M,PK) first splits the
message M into n shares M1, . . . ,Mn, using an n-out-of-n secret-sharing scheme. It then produces
the ciphertext as: CT = (Encrypt(M1, PK1), . . . ,Encrypt(Mn, PKn)). Decryptn(CT, SK) calls
Decrypt(Encrypt(Mi, PKi), SKi) for each i to produce Mi, and then reconstructs the secret M
from its shares.

Question 3.2. If (KeyGen, Encrypt, Decrypt) is `-leakage-resilient, then is (KeyGenn, Encryptn,
Decryptn) necessarily n`-leakage-resilient for each positive integer n?

Below, we answer this question in the negative, even for n` replaced by Ω(n`).

6

3.3 Bilinear Groups

We define bilinear groups by using a group generator G, an algorithm which takes a security
parameter λ as input and outputs a description of a bilinear group G. For prime order bilinear
groups, G outputs (p,G,GT , e) where p is prime, G and GT are cyclic groups of order p, and
e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ Zp, e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order p in GT .

We will also use composite order bilinear groups (first introduced in [10]), where G outputs (N =
p1p2q,G,GT , e) such that p1, p2, q are distinct primes, G and GT are cyclic groups of order N , and
e : G2 → GT is a bilinear map.

We further require that the group operations in G and GT as well as the bilinear map e are
computable in polynomial time with respect to λ. Also, we assume the group descriptions of G
and GT include generators of the respective cyclic groups. For composite order groups, we let Gp1 ,
Gp2 , and Gq denote the subgroups of order p1, p2 and q in G respectively. We note that when two
elements coming from different prime order subgroups are paired together under e, the result is
the identity element in GT . In this sense, the subgroups Gp1 , Gp2 , and Gq are orthogonal to each
other.

3.4 Complexity Assumptions

We will first present a version of our system in composite order bilinear groups and prove its security
under the following assumption, which is a variant of the subgroup decision problem from [10].

In the assumption below, we let Gp1q denote the subgroup of order p1q in G.

Subgroup Decision Assumption Given a group generator G for composite order bilinear
groups, we define the following distribution:

G = (N = p1p2q,G,GT , e)
R←− G,

gp1 , Y1
R←− Gp1 , gp2

R←− Gp2 , Yq
R←− Gq

P = (G, gp1 , gp2 , Y1Yq),

T1
R←− Gp1q, T2

R←− Gp1 .

We define the advantage of an algorithm A in breaking the subgroup decision assumption to
be:

AdvSDG,A(λ) :=
∣∣Pr[A(P, T1) = 1]− Pr[A(P, T2) = 1]

∣∣.
Definition 3.3. We say that G satisfies the subgroup decision assumption if AdvSGG,A(λ) is a
negligible function of λ for any polynomial time algorithm A.

We also provide a translation of our system into prime order groups, where security is proven
from the decisional linear assumption.

7

Decisional Linear Assumption Given a group generator G for prime order bilinear groups, we
define the following distribution:

G = (p,G,GT , e)
R←− G,

g0, g1, g2
R←− G, r1, r2

R←− Zp,

D = (G, g0, g1, g2, gr11 , g
r2
2),

T1 = gr1+r2
0 , T2

R←− G.

We define the advantage of an algorithm A in breaking the decisional linear assumption to be:

AdvDLinG,A(λ) :=
∣∣Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]

∣∣.
Definition 3.4. We say that G satisfies the decisional linear assumption if AdvDLinG,A(λ) is a
negligible function of λ for any polynomial time algorithm A.

3.5 Min-Entropy and Extractors

For a random variable (or distribution) X taking values in a finite set, we define the min-entropy
of X to be:

H∞(X) := − log(maxxPr[X = x]).

We define the min-entropy of X conditioned on an event E to be:

H∞(X|E) := − log(maxxPr[X = x|E]).

We define the statistical distance between two distributions X1 and X2 taking values in the
same finite set to be:

1
2

∑
x

|Pr[X1 = x]− Pr[X2 = x]|.

If the statistical distance between X1 and X2 is at most ε, we write X1 ≈ε X2.

Definition 3.5. A function E : {0, 1}S × {0, 1}d → {0, 1}m is called a strong (k, ε)-extractor if
for any distribution X on {0, 1}S with min-entropy ≥ k, the distribution (E(X,D), D) (where D
is uniformly distributed over {0, 1}d) is within statistical distance ε from the uniform distribution
of {0, 1}m × {0, 1}d.

The existence of extractors sufficient for our purposes is established in the following lemma from
[36]:

Lemma 3.6. [36] For any parameters δ = δ(S) and ε = ε(S) with 1
S ≤ δ ≤ 1

2 and 2−δS ≤ ε ≤ 1
S ,

there exists a polynomial-time computable strong (δS, ε)-extractor

E : {0, 1}S × {0, 1}d → {0, 1}m,

where d = O(log ε−1 log2 S log δ−1/δ), and m = Ω(δ2S/ log δ−1).

We will also need the following lemma about min-entropy [30]. (This lemma is standard, but
we include its short proof for completeness.)

8

Lemma 3.7. Let X be a random variable with min-entropy h and let f be an arbitrary function
with range {0, 1}`. For any τ ∈ [0, h− `], we define the set

Vτ := {v ∈ {0, 1}` | H∞(X | v = f(X)) ≤ h− `− τ}.

Then:
Pr[f(X) ∈ Vτ] ≤ 2−τ .

Proof. We note that for any x in the range of X and v = f(x), we have:

Pr[X = x] = Pr[X = x | v = f(X)]Pr[v = f(X)].

(This follows from the definition of conditional probability and the fact that f is deterministic.) If
v ∈ Vτ , this yields:

Pr[v = f(X)] ≤ 2−h2h−`−τ = 2−`−τ .

Since f(X) can only take on 2` values, we may conclude that Pr[f(X) ∈ Vτ] ≤ 2−τ .

4 Construction for Composite Order Groups

Our PKE system for composite order groups consists of four algorithms, (Setup, KeyGen, Encrypt,
Decrypt). We assume the messages to be encrypted are elements of {0, 1}m. We build our system
in a bilinear group whose order is a product of three primes, N = p1p2q, and prove its security for
leakage parameter ` (sufficiently smaller than log(q)) based on the subgroup decision assumption.
We will state the precise conditions on ` that are needed in the following section. The main idea is
that secret keys in the system will have less than ` bits of entropy, but since the leakage function
is constrained to be computationally efficient, it cannot be used to break the system with only `
bits of leakage. More specifically, the secret key and ciphertext will be in subgroup Gp1 (or Gp2)
in the real system, but the subgroup decision assumption allows us to expand them to be in Gp1q
(or Gp2q), and now we have min-entropy greater than `. However, if we make two copies of our
system with a common setup phase, leakage of 2` bits will allow us to leak a complete element of
the group G, and we can obtain a “compressed” secret key that can decrypt for both copies of the
system at once. The details of this will be given Section 6.

Setup(λ) → PP The setup algorithm takes in the security parameter λ, and chooses distinct,
sufficiently large primes p1, p2, q (it will choose q to be much larger p1, p2 - we will discuss this
more precisely later). It chooses a bilinear group G of order N = p1p2q, along with generators
gp1 , gp2 of the subgroups Gp1 and Gp2 respectively. (We let Gp1 denote the subgroup of G of
order p1, and Gp2 denote the subgroup of G of order p2.) We let S(G) denote the number of
bits used to represent an element of G, and S(GT) denote the number of bits used to represent
an element of GT . It also chooses a uniformly random seed D ∈ {0, 1}d for a (k, ε)-extractor
E : {0, 1}S(GT) × {0, 1}d → {0, 1}m, where m is the bit length of the messages. We assume the
parameters k, ε,m are chosen so that ε is negligible with respect to the security parameter λ, and
k is significantly smaller than log(q). It outputs the public parameters:

PP := {N,G, gp1 , gp2 , E,D}.

9

KeyGen(PP) → (PK,SK) The key generation algorithm produces two types of keys: type 1
and type 2. It chooses a type t ∈ {1, 2} randomly, and then chooses a random u ∈ Gpt . It sets
A = e(u, gpt). The public key is PK = (t, A), and the secret key is SK = u.

Encrypt(PP,PK,M) → CT The encryption algorithm takes in the public parameters PP, a
public key PK, and a message M ∈ {0, 1}m. It chooses a random s ∈ ZN and computes C1 = gspt
(where t is the type of the public key PK) and C2 = E(As, D) ⊕M . It outputs the ciphertext
CT = (C1, C2).

Decrypt(CT,SK)→M The decryption algorithm computes:

E(e(C1, SK), D)⊕ C2 = M.

5 Leakage Resilience of our PKE system in Composite Order
Groups

We will prove our system is `-leakage-resilient for ` ≤ log(q) − k − τ (where λ is our security
parameter, k is the min-entropy required by our extractor E, and τ is a parameter chosen so that
2−τ is negligible in λ). We note that an attacker A who has a non-negligible advantage against the
scheme must have a non-negligible advantage against type 1 or type 2 keys. Since we treat p1 and p2

symmetrically, we can assume without loss of generality that such an adversary has a non-negligible
advantage against type 1 keys. Therefore, it suffices to prove security considering only type 1 keys
(the proof for type 2 keys is exactly the same, with the roles of p1 and p2 interchanged). Our proof
will proceed by a hybrid argument over the following sequence of games:

Game0: The real security game. Here the private key SK is a random group element in Gp1 .

Game1: The private key SK is chosen as a random element in Gp1q.

Game2: The challenge CT is generated by choosing a random C1 ∈ Gp1 and setting C2 =
E(e(SK, C1), D)⊕Mβ. (SK is generated as in Game 1.)

Game3: The challenge CT is generated by choosing a random C1 ∈ Gp1q and setting C2 =
E(e(SK, C1), D)⊕Mβ. (SK is generated as in Game 1.)

Game4: The challenge CT is generated by choosing a random C1 ∈ Gp1q and setting C2 as a
uniformly random string.

To transition from Game0 to Game1, we employ our expansion technique: private keys are
expanded into the Gq space, and an adversary cannot notice this without violating the subgroup
decision assumption. The transition to Game2 is made easily, since it is identically distributed
to Game1. To transition from Game2 to Game3, we again employ our expansion technique, this
time expanding the ciphertext into the Gq space. We note that e(SK, C1) now involves a term
from the Gq subgroup, and this term provides sufficient min-entropy to transition to Game4 via an
information-theoretic argument. The attacker has advantage 0 in Game4, since the ciphertext is
independent of the bit β. We prove these games are indistinguishable in the following lemmas.

10

Lemma 5.1. Suppose there exists a polynomial time algorithm A such that Game0AdvA−Game1AdvA =
δ. Then we can build a polynomial time algorithm B with advantage δ in breaking the subgroup
decision assumption.

Proof. B receives N,G, gp1 , gp2 , Y1Yq, T . It chooses a uniformly random seed D ∈ {0, 1}d and a
(k, ε)-extractor E : {0, 1}S(GT) × {0, 1}d → {0, 1}m. It sets the public parameters as

PP := {N,G, gp1 , gp2 , E,D}

and gives these to A. Next, it sets u = T , i.e. SK = T , and PK = (1, A = e(u, gp1)). It gives PK
to A. When A chooses the leakage function, B computes f(T) and sends this to A. A then sends
B two messages, M0 and M1. B chooses a random bit β and a random s ∈ ZN . It sets C1 = gsp1
and C2 = E(As, D)⊕Mβ. It gives A the ciphertext CT = (C1, C2).

If T ∈ Gp1 , then B has properly simulated Game0. If T ∈ Gp1q, then B has properly simulated
Game1. Thus, B can use the output of A to achieve advantage δ in breaking the subgroup decision
assumption.

Lemma 5.2. For any algorithm A, Game1AdvA = Game2AdvA.

Proof. This simply follows from the fact that Game1 and Game2 are identically distributed (note
that the additional component of Gq now included in SK will not effect the value of e(SK, C1),
since C1 ∈ Gp1 , and Gp1 and Gq are orthogonal under the pairing e).

Lemma 5.3. Suppose there exists a polynomial time algorithm A such that Game2AdvA−Game3AdvA =
δ. Then we can build a polynomial time algorithm B with advantage δ in breaking the subgroup
decision assumption.

Proof. B receives N,G, gp1 , gp2 , Y1Yq, T . It chooses a uniformly random seed D ∈ {0, 1}d and a
(k, ε)-extractor E : {0, 1}S(GT) × {0, 1}d → {0, 1}m. It sets the public parameters as

PP := {N,G, gp1 , gp2 , E,D}

and gives these to A. It sets u = Y1Yq, i.e. SK = Y1Yq, and PK = (1, e(u, gp1)), and gives PK to
A. When A chooses the leakage function, B computes f(u) and sends this to A. A then sends B
two messages, M0 and M1. B chooses a random bit β and a random s′ ∈ ZN . It sets C1 = T s

′
and

C2 = E(e(SK, C1), D)⊕Mβ. It gives CT = (C1, C2) to A.
If T ∈ Gp1 , then B has properly simulated Game2. If T ∈ Gp1q, then B has properly simulated

Game3. Thus, B can use the output of A to achieve advantage δ in breaking the subgroup decision
assumption.

Lemma 5.4. For any polynomial time algorithm A, Game3AdvA −Game4AdvA is negligible.

Proof. We prove that with all but negligible probability, the distributions of Game3 and Game4

are negligibly close in A’s view. In Game3, the value u can be written as u = u1uq, where u1 ∈ Gp1
and uq ∈ Gq. By the orthogonality of Gp1 and Gq, the public key element e(u, gp1) only contains
information about u1, and reveals no information about uq, which is distributed as a random
element of Gq. Thus, even conditioned on PK and C1, the value e(SK, C1) has min-entropy log(q)
from the attacker’s perspective.

11

Since the attacker also receives f(u) for the leakage function f with range {0, 1}`, we invoke
Lemma 3.7 to assert that with probability ≥ 1− 2−τ , e(SK, C1) will still have min-entropy ≥ k as
long as log(q)−`−τ ≥ k, i.e. ` ≤ log(q)−k−τ . Therefore, when ` ≤ log(q)−k−τ , E(e(SK, C1), D)
has statistical distance at most ε from a uniformly random string of length m with all but negligible
probability. Since ε and 2−τ are chosen to be negligible in the security parameter λ, we have that
Game3AdvA −Game4AdvA is negligible as well. (We note here that it is crucial for the adversary
to choose the leakage function before seeing the ciphertext. Otherwise, the leakage function f could
change when we replace E(e(SK, C1), D) with a random string of length m, and we would not be
able to argue the indistinguishability of the games.)

This completes our proof of the following theorem:

Theorem 5.5. For ` ≤ log(q)− k − τ , our PKE system is `-leakage-resilient.

6 Attack on the Parallel System for n > 1 with Leakage n`

We first describe our attack for n = 2 when 2` bits of leakage is sufficient to return a whole group
element. We then generalize the attack to higher values of n. We recall that S(G) denotes the
number of bits representing an element of G, and we will discuss the value of S(G) for particular
groups in Section 8.

6.1 Attack for n = 2 when 2` ≥ S(G)

We define the system (Setup, KeyGen2, Encrypt2, Decrypt2) as before, except we additionally
assume that the two copies of the system are generated by a common setup phase, so the public
parameters are shared. In other words, Setup is called only once, and outputs a single set of public
parameters PP. KeyGen2 then calls KeyGen twice on the same public parameters PP to generate
two keys, (PK1, SK1) and (PK2,SK2). Encrypt2 splits the message M into two shares M1 and
M2. It encrypts the first share by calling Encrypt(PK1,M1) and encrypts the second share by
calling Encrypt(PK2,M2). Decrypt2 calls Decrypt on the first encrypted share with SK1 to obtain
the share M1, and calls Decrypt on the second encrypted share with SK2 to obtain M2. It then
reconstructs M from its shares.

The attacker receives the public parameters, PP, and two public keys, PK1 and PK2. If the two
public keys are of the same type, the attacker aborts (this occurs with probability 1

2) and guesses
β′ randomly. Otherwise, we assume PK1 is of type 1 and PK2 is of type 2. The attacker chooses
the leakage function

f(SK1, SK2) = SK1 · SK2,

which is permitted as long as 2` ≥ S(G) (recall that S(G) denotes the number of bits used to
represent an element of the group G). Assuming this holds, the attacker receives the value SK1 ·SK2,
and can use this to decrypt both ciphertexts. For example, to decrypt the ciphertext (C1, C2) for
PK1, the attacker computes:

E(e(C1,SK1 · SK2), D)⊕ C2 = E(e(C1, SK1), D)⊕ C2,

since C1 ∈ Gp1 and SK2 ∈ Gp2 . This yields the first message share, and the second message share
is obtained similarly, since the first ciphertext value for PK2 will be orthogonal to SK1. Hence, the

12

attacker can reconstruct the encrypted message and succeed with probability 1 when the keys are
of different types. This gives the attacker an overall advantage of 1

4 .
When S(G) ≤ 2(log(q)−k−τ), we can choose a single value of ` such that ` ≤ log(q)−k−τ and

2` ≥ S(G). This will yield a PKE system (Setup, KeyGen, Encrypt, Decrypt) that is `-leakage-
resilient, but (Setup, KeyGen2, Encrypt2, Decrypt2) is not 2`-leakage-resilient. We note that we
will choose q to be significantly larger than p1 and p2 in order to satisfy S(G) ≤ 2(log(q)− k − τ)
for groups G of order N = p1p2q.

6.2 General Values of n

We now consider attacking the more general case, where we have n public and secret key pairs, with
a common setup phase. On average, the attacker can expect that close to half of the n keys will be
of type 1 and the others will be of type 2. More specifically, a Chernoff bound implies that for any
positive constant c, there will be at least n

2 − c
√
n keys of each type with probability ≥ 1− 2e−2c2 .

When this distribution of keys occurs, the attacker can organize the keys into at least n
2 − c

√
n

pairs of keys and at most 2c
√
n individual keys, where each pair of keys contains one key of type

1 and one key of type 2. The attacker then defines the leakage function so that it reveals the
product of each pair of secret keys and all of the remaining unpaired secret keys. This requires
(n2 − c

√
n)S(G) + 2c

√
nS(G) = S(G)(n2 + c

√
n) bits of leakage. We note that the attacker can now

decrypt messages encrypted under any of the n public keys.
As long as

n` ≥ S(G)
(n

2
+ c
√
n
)
⇔ ` ≥ S(G)

(
1
2

+
c√
n

)
holds, this is a valid attack with n` bits of leakage that succeeds with probability ≥ 1− 2e−2c2 .

We recall that ` ≤ log(q) − k − τ is required for our proof that a single copy of our system
is `-leakage-resilient. For this condition and the attack condition ` ≥ S(G)(1

2 + c√
n

) to hold
simultaneously for some value of `, it suffices to have a group G such that:

S(G) ≤ 2
1 + 2c√

n

(log(q)− k − τ).

Improving the Compression Factor We have thus far described a system with two key types
and a corresponding attack where two keys of different types can essentially be “compressed” into
one key of the same size. This will work well for leakage n` when S(G) < 2 log(N) and q is chosen
to be sufficiently large with respect to p1 and p2. To adapt our attack to work with leakage γ`n for
any fixed constant γ > 0 or for groups where S(G) may be larger than 2 log(N), we can improve the
compression factor by allowing T > 2 key types, where T keys of distinct types can be compressed
into one key (assuming n ≥ T). We discuss this more in Section 9.

7 Realizing our Construction in Prime Order Groups

We now describe a realization of our system in prime order groups, and prove it is `-leakage-resilient
from the decisional linear assumption. The main idea of our construction is unchanged: we begin
with keys that have less than ` bits of entropy, and we use the decisional linear assumption to
expand them into a larger space, where they will have entropy much greater than `.

13

We start with a bilinear group G of prime order p, generated by g. Previously, we made use
of the orthogonal subgroups Gp1 , Gp2 , and Gq in our bilinear group of order N . To make suitable
analogs of these subgroups using the prime order group G, we will construct “orthogonal” subgroups
of Gj for some (relatively small) positive integer j. For a vector ~x = (x1, . . . , xj) ∈ Zjp, we write g~x

to denote the j-tuple of elements (gx1 , . . . , gxj) in Gj . We let

< g~x, g~y > := {(gax1+by1 , gax2+by2 , . . . , gaxj+byj) | a, b ∈ Zj}

denote the subgroup of Gj generated by g~x and g~y. When we write an expression of the form g~xg~y,
we mean componentwise multiplication, i.e. g~xg~y = g~x+~y.

We define the map ej : Gj ×Gj → GT by:

ej(g~x, g~y) =
j∏
i=1

e(gxi , gyi) = e(g, g)~x·~y,

where e is the bilinear map from G × G into GT . We note that ej(g~x, g~y) is the identity element
in GT when ~x and ~y are orthogonal as vectors over Zp. The orthogonal subgroups Gp1 and Gp2
in composite order groups can now be replaced with subgroups < g~x, g~y > and < g~v, g~z > in Gj

where ~v, ~z are each orthogonal to both ~x and ~y. Gq will be replaced by the subgroup comprised
of elements g ~w ∈ Gj where ~w is orthogonal to all of ~x, ~y,~v, ~z. The technique of using orthogonal
vectors over Zp to simulate orthogonal subgroups in a prime order group was also employed by
Freeman [23], though his results do not encompass our construction.

7.1 Construction

Our system in a prime order group G can now be described as follows:

Setup(λ)→ PP The setup algorithm takes in the security parameter, and chooses a sufficiently
large prime p. It chooses a bilinear group G of order p, along with a generator g and a suitable
integer j > 5. We let S(G) denote the number of bits used to represent an element of G, and
S(GT) denote the number of bits used to represent an element of GT . It also chooses a uniformly
random seed D ∈ {0, 1}d for a (k, ε)-extractor E : {0, 1}S(GT) × {0, 1}d → {0, 1}m, where m is the
bit length of the messages. We assume the parameters k, ε,m are chosen so that ε is negligible with
respect to the security parameter λ, and k is ≤ 1

4 log p. It next chooses uniformly random vectors
~x, ~y ∈ Zjp. Vectors ~v, ~z are then chosen uniformly at random from the space of vectors which are
orthogonal to both ~x and ~y.

It outputs the public parameters:

PP := {G, p, g, j, g~x, g~y, g~v, g~z, E,D}.

KeyGen(PP)→ (PK,SK) The key generation algorithm produces two types of keys: type 1 and
type 2. It chooses a type t ∈ {1, 2} randomly, and then chooses random values u1, u2 ∈ Zp. If the
type t = 1, it sets

A1 = ej(gu1~x+u2~y, g~x), A2 = ej(gu1~x+u2~y, g~y).

The public key is PK = (1, A1, A2), and the secret key is SK = g(u1~x+u2~y). If the type t = 2, it sets

A1 = ej(gu1~v+u2~z, g~v), A2 = ej(gu1~v+u2~z, g~z).

The public key is PK = (2, A1, A2), and the secret key is SK = g(u1~v+u2~z).

14

Encrypt(PP,PK,M) → CT The encryption algorithm takes in the public parameters PP, a
public key PK, and a message M ∈ {0, 1}m. It chooses random values s1, s2 ∈ Zp. If the type
t = 1, it computes

C1 = gs1~x+s2~y, C2 = E(As11 ·A
s2
2 , D)⊕M.

If the type t = 2, it computes

C1 = gs1~v+s2~z, C2 = E(As11 ·A
s2
2 , D)⊕M.

Decrypt(CT, SK)→M The decryption algorithm computes:

E(ej(C1, SK), D)⊕ C2 = M.

This system is leakage-resilient up to ` = (j − 5) log p bits of leakage:

Theorem 7.1. For ` ≤ (j− 5) log(p), our PKE system in prime order groups is `-leakage-resilient
under the decisional linear assumption.

The proof of this theorem is contained in Appendix A.1, and employs the same strategy as
our proof for the composite order case. The attack on the parallel system for n` bits of leakage is
described in Appendix A.2, and is analogous to the attack for composite order groups. For n = 2
(for example), the attack is applicable whenever 2` ≥ jS(G).

7.2 Correctness

Correctness of the algorithm is verified by observing (e.g. for type 1 keys):

ej(C1, SK) = ej(gs1~x+s2~y, gu1~x+u2~y)

= e(g, g)(s1~x+s2~y)·(u1~x+u2~y)

= e(g, g)s1((u1~x+u2~y)·~x)+s2((u1~x+u2~y)·~y)

= As11 A
s2
2 .

8 Achieving Suitable Parameters in Practical Groups

To find suitable bilinear groups in which to instantiate our prime order construction, we use super-
singular elliptic curves as in Boneh and Franklin [9]. To construct these curves, we choose primes
p and q such that q = 6p − 1. (This implies q ≡ 2 mod 3.) We then consider the elliptic curve
defined by the equation y2 = x3 +1 over Fq. As noted in [9], this curve has the following properties:

• It has q + 1 points over Fq.

• The points of order p = (q + 1)/6 form a group of order p, which we denote by G.

• Since q ≡ 2 mod 3, every element of Zq has precisely one cube root. Thus, for each y0 ∈ Fq,
there is exactly one point (x0, y0) on the curve, where x0 = (y2

0 − 1)
1
3 .

• We let GT be the subgroup of F∗q2 containing all elements of order p = (q + 1)/6. Then the
modified Weil pairing gives an efficiently computable bilinear map e : G×G→ GT .

15

Since cube roots are efficiently computable modulo q, we can represent a group element (x0, y0)
of G by simply storing y0 (since x0 can be efficiently computed from y0). This means that S(G) =
log q = log(6p− 1), which is log(p) plus a small constant.

Choosing j > 10, we then have that S(G) ≤ 2(j−5)
j log p holds. This allows us to set ` =

(j − 5) log p and obtain a system which is `-leakage-resilient, but which is not 2`-leakage-resilient
when we take two parallel copies of the system. We can choose the parameters of our extractor E as
k = 1

4 log p and ε = 2−k. This ensures that ε is negligible in λ. We can then set d,m appropriately
by relying on Lemma 3.6.

To instantiate our composite order group construction, we can use the similar algorithm given
in [10] for constructing a bilinear group G of a particular order N :

1. Find the smallest positive integer a ∈ Z such that p = aN − 1 is prime and p ≡ 2 mod 3.

2. Consider the group of points on the elliptic curve y2 = x3 + 1 over Fp. This curve has
p+ 1 = aN points over Fp. Thus, there is a subgroup of order N , which we will designate as
G.

3. We let GT be the subgroup of F∗p2 of order N . The modified Weil pairing on the curve gives
an efficiently computable bilinear map e : G×G→ GT .

We consider our attack for N = p1p2q. Our attack is applicable as long as 2` ≥ S(G) (i.e.
` ≥ S(G)

2), where ` ≤ log q − k − τ , for some k and τ such that 2−k, 2−τ are negligible in the
security parameter. Now, when the a in the algorithm above happens to be quite small, log p
will be approximately log(N) = log p1 + log p2 + log q. To represent a point (x0, y0) on the curve,
we can use a single element in Fp (we can compute x0 from y0 in Fp), which will give us S(G)
approximately log(N). If we choose the size of q to be sufficiently large with respect to the size of
p1, p2 (and a is sufficiently small), we can obtain S(G) ≤ 2(log q − k − τ). This gives us a system
which is secure for ` = log q− k− τ bits of leakage, but the parallel version of the system for n = 2
is insecure with 2` bits of leakage.

9 Discussion

Improving the Compression Factor We could improve the compression factor for both prime
and composite order groups by constructing our systems with T key types, allowing T keys of
distinct types to be compressed at once. In composite order groups, this would be done by choosing
a group order N = p1p2 · · · pT q, where q is much larger than each of the pi’s. A key of type i would
be in the subgroup Gpi . The product of T keys, one of each type, would yield a single element that
could be substituted for any of the T input keys in the decryption algorithm.

This system would still be `-leakage-resilient for ` ≤ log(q) − k − τ , under the analog of the
subgroup decision assumption for groups of order N = p1 · · · pT q. For the parallel version of the
system with n ≥ T keys, the attacker can expect roughly n

T keys of each type. More precisely, for

any constant c > 0, there will be at least n
T −

c
T

√
n keys of each type with probability ≥ 1−Te−

c2

2T

(by a Chernoff bound). When this occurred, the attacker could group the n keys into ≥ n
T −

c
T

√
n

sets of T keys of distinct types, with at most c
√
n individual keys remaining. With leakage at least

S(G)(nT + c(1− 1
T)
√
n), the attacker could learn the products of all the groups of keys and all the

remaining individual keys, and hence decrypt all the shares of the ciphertext.

16

For any fixed constant γ > 0, we can then mount our attack on the parallel system with leakage
γ`n as long as:

S(G) ≤ γT

1 + c(T−1)√
n

(log(q)− k − τ) .

For prime order groups (of order p), having T key types instead of T would simply require setting
j > 2T + 1 to create enough space to simulate T + 1 orthogonal subgroups in Zjp with our method.
Our system is leakage resilient up to ` bits of leakage for ` = (j − (2T + 1)) log p, for each value of
T . We note the underlying security assumption (decision linear) is independent of the number of
simulated subgroups and the value of j. Our attack then requires jS(G)

(
n
T + c

(
1− 1

T

)√
n
)

bits
of leakage, and this will be ≤ γn` for ` = (j − (2T + 1)) log p as long as:

S(G) ≤ γ(j − (2T + 1))T

j
(

1 + c(T−1)√
n

) log(p).

For any fixed γ > 0, we can choose T and j large enough to meet this requirement. Hence, our
counterexample shows that leakage Ω(n`) is not always achieved by parallel repetition.

An Alternate Counterexample for Signatures One can also obtain a counterexample to
parallel repetition for signatures from any multi-signature scheme secure against “rogue-key at-
tacks”, as observed by Wichs [43]. One defines an ordinary signature scheme by using the same
key generation algorithm, and having a signer simply sign each message under a set of size 1, con-
taining only its own public key. The verification algorithm will accept as valid any signature under
a set containing the correct public key which verifies under the multi-signature scheme verification
algorithm (note that this accepts signatures which would never be generated by a honest signer).
This scheme is secure up to some ` bits of leakage (at least logarithmic). The parallel system (with
n copies) can then be broken for any leakage exceeding the size of a single signature under the
multi-signature scheme (which is independent of n). The attacker simply asks for leakage which is
a multi-signature of some message under the set containing all n public keys: this will then verify
as a valid signature for each of the n signers individually. This allows the attacker to forge on only
one message. In contrast, a counterexample for signatures obtained using our techniques will allow
the attacker to forge as many messages as desired.

10 Future Directions

We now discuss a few approaches for avoiding or extending our counterexample.

Removing the Common Reference String The assumption of a common setup for the n
copies of a parallel system is natural, since it is typical to create several public keys from one group
in practical systems. For example, NIST recommends using certain elliptic curves [37]. However,
it would be interesting to construct a counterexample to parallel repetition that does not rely on a
common setup.

A Black-box Separation Alwen et. al. [3] suggest the potential direction of showing a black-
box separation for parallel repetition. Such a result would rule out the possibility of a general

17

reduction using an attacker who can break the parallel scheme with n` bits of leakage to break the
original scheme with ` bits of leakage. This would be incomparable to our result, since a black-box
separation does not imply the existence of a counterexample, and our result relies on unproven
(though commonly used) assumptions for security.

Alternate Assumptions We rely on either a variant of the subgroup decision assumption in
composite order bilinear groups or the decisional linear assumption in prime order bilinear groups.
We also suspect that our results could be adapted to provide a counterexample under lattice-based
assumptions, given that many results obtained using bilinear groups have also been instantiated
with lattices (e.g. [26, 25, 1, 13]). Obtaining additional counterexamples under a variety of as-
sumptions would provide stronger evidence for the insecurity of parallel repetition as a generic
tool.

A Looser Bound One might ask if parallel repetition holds for some sublinear bound on the
leakage as a function of n. In other words, can we take n copies of an `-leakage-resilient system
and always build an f(n, `)-leakage-resilient system for some sufficiently growing function f(n, `) =
o(n`)?

Alternative Leakage Models One can also ask if parallel repetition holds for other interesting
leakage models. For instance, we might strengthen the definition of leakage resilience by allowing
the leakage function f to be computationally unbounded. Our counterexample no longer applies
in this case. If we instead weaken the definition of leakage resilience by restricting the leakage to
being a subset of the bits representing the secret key, we recall that parallel repetition does hold.

References

[1] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (h)ibe in the standard model. In
EUROCRYPT, pages 553–572, 2010.

[2] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptog-
raphy against memory attacks. In TCC, pages 474–495, 2009.

[3] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-key encryption in
the bounded-retrieval model. In EUROCRYPT, pages 113–134, 2010.

[4] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the bounded-
retrieval model. In CRYPTO, pages 36–54, 2009.

[5] E. Biham, Y. Carmeli, and A. Shamir. Bug attacks. In CRYPTO, pages 221–240, 2008.

[6] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In CRYPTO,
pages 513–525, 1997.

[7] D. Boneh and D. Brumley. Remote timing attacks are practical. In Computer Networks,
volume 48, pages 701–716, 2005.

[8] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryptographic
protocols for faults. In EUROCRYPT, pages 37–51, 1997.

18

[9] D. Boneh and M. Franklin. Identity based encryption from the weil pairing. In CRYPTO,
pages 213–229, 2001.

[10] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC, pages
325–341, 2005.

[11] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient functions
and all-or-nothing transforms. In EUROCRYPT, pages 453–469, 2000.

[12] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton, and S. Walfish. Intrusion-resilient key
exchange in the bounded retrieval model. In TCC, pages 479–498, 2007.

[13] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis.
In EUROCRYPT, pages 523–552, 2010.

[14] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[15] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive
zero knowledge. In CRYPTO, pages 566–598, 2001.

[16] D. Di Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password protocols in the
bounded retrieval model. In TCC, pages 225–244, 2006.

[17] Y. Dodis, Y. Kalai, and S. Lovett. On cryptography with auxiliary input. In STOC, pages
621–630, 2009.

[18] Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security in exposure-resilient
cryptography. In EUROCRYPT, pages 301–324, 2001.

[19] S. Dziembowski. Intrusion-resilience via the bounded-storage model. In TCC, pages 207–224,
2006.

[20] S. Dziembowski and K. Pietrzak. Intrusion-resilient secret sharing. In FOCS, pages 227–237,
2007.

[21] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–302,
2008.

[22] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient signatures. In TCC,
pages 343–360, 2010.

[23] D. M. Freeman. Converting pairing-based cryptosystems from composite-order groups to
prime-order groups. In EUROCRYPT, pages 44–61, 2010.

[24] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results. In CHES,
number Generators, pages 251–261, 2001.

[25] C. Gentry, S. Halevi, and V. Vaikuntanathan. A simple bgn-type cryptosystem from lwe. In
EUROCRYPT, pages 506–522, 2010.

19

[26] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In STOC, pages 197–206, 2008.

[27] A. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Calandrino, A. Feldman,
J. Applebaum, and E. Felten. Lest we remember: Cold boot attacks on encryption keys. In
USENIX Security Symposium, pages 45–60, 2008.

[28] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks.
In CRYPTO, pages 463–481, 2003.

[29] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources and exposure-
resilient cryptography. In FOCS, pages 92–101, 2003.

[30] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In ASI-
ACRYPT, pages 703–720, 2009.

[31] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems.
In CRYPTO, pages 104–113, 1996.

[32] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO, pages 388–397,
1999.

[33] S. Micali and L. Reyzin. Physically observable cryptography. In TCC, pages 278–296, 2004.

[34] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO, pages
18–35, 2009.

[35] P. Q. Nguyen and I. Shparlinski. The insecurity of the digital signature algorithm with partially
known nonces. volume 15, pages 151–176, 2002.

[36] N. Nisan and D. Zuckerman. Randomness is linear in space. In J. Comput. Syst. Sci., vol-
ume 52, pages 43–52, 1996.

[37] National Institute of Standards and Technology. Digital signature standard (dss), June 2009.
http://csrc.nist.gov/publications/fips/fips186-3/fips 186-3.pdf.

[38] C. Petit, F.X. Standaert, O. Pereira, T. Malkin, and M. Yung. A block cipher based pseudo
random number generator secure against side-channel key recovery. In ASIACCS, pages 56–65,
2008.

[39] K. Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, pages 462–482, 2009.

[40] J. Quisquater and D. Samyde. Electromagnetic analysis (ema): Measures and counter-
measures for smart cards. In E-smart, pages 200–210, 2001.

[41] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity. In FOCS, pages 543–553, 1999.

[42] F.X. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis of side-channel
key recovery attacks. In EUROCRYPT, pages 443–461, 2009.

[43] D. Wichs. personal communication, 2010.

20

A Properties of Our System in Prime Order Groups

A.1 Leakage Resilience

We prove our system in prime order groups is `-leakage-resilient for ` ≤ (j − 5) log(p) under the
decisional linear assumption. We first present the simulated subgroup decision assumption, which
is a prime order analog of the subgroup decision assumption. We then show that the simulated
subgroup decision assumption follows from the decisional linear assumption. The proof of security
for our prime order group system under the simulated subgroup decision assumption then proceeds
similarly to the proof for our composite order group system under the subgroup decision assumption.

Simulated Subgroup Decision Assumption Given a group generator G for prime order bi-
linear groups, we define the following distribution. Below, j > 5 is a fixed integer, and O~x,~y ⊆ Zjp
denotes the space of vectors orthogonal to both ~x, ~y ∈ Zjp.

G = (p,G,GT , e)
R←− G,

~x, ~y
R←− Zjp, ~v, ~z

R←− O~x,~y,

g
R←− G, a, b R←− Zp, ~w,~γ

R←− O~v,~z,

P = (G, j, g, g~x, g~y, g~v, g~z, g~γ),

T1 = ga~x+b~y, T2 = g ~w.

We define the advantage of an algorithm A in breaking the simulated subgroup decision as-
sumption to be:

AdvSSDG,A(λ) :=
∣∣Pr[A(P, T1) = 1]− Pr[A(P, T2) = 1]

∣∣.
Definition A.1. We say that G satisfies the simulated subgroup decision assumption if AdvSSDG,A(λ)
is a negligible function of λ for any polynomial time algorithm A.

Theorem A.2. Suppose there exists a polynomial time algorithm A with non-negligible advantage
in breaking the simulated subgroup decision assumption. Then we can create a polynomial time
algorithm B with non-negligible advantage in breaking the decisional linear assumption.

Proof. Our proof will proceed by a hybrid argument with two steps. We let D1 denote the distribu-
tion (P, T1) as defined in the simulated subgroup decision assumption above, and we let D3 denote
the distribution (P, T2). We define an intermediate distribution, D2, and then we will show that
D1 and D2 are computationally indistinguishable under the decisional linear assumption, and that
the statistical distance between D2 and D3 is negligible. This shows that the simulated subgroup
decision assumption holds under the decisional linear assumption.

We define the distribution D2 as follows:

G = (p,G,GT , e)
R←− G,

~x1, ~y2, ~s
R←− Zjp, ~v, ~z

R←− O~x1,~y2,~s,

g
R←− G, r′1, r′2, b1, b2, b3

R←− Zp, ~γ
R←− O~v,~z,

21

~x := ~x1 +
r′1
b1
~s, ~y := ~y2 +

r′2
b2
~s,

P2 = (G, j, g, g~x, g~y, g~v, g~z, g~γ),

T = gb1~x+b2~y+b3~s.

D2 := (P2, T).

Lemma A.3. Suppose there exists a polynomial time algorithm A with non-negligible advantage
in distinguishing between distributions D1 and D2. Then there is a polynomial time algorithm B
with non-negligible advantage in breaking the decisional linear assumption.

Proof. B is given G, p, g0, g1, g2, gr11 , g
r2
2 , T . It sets g = g0, and chooses random vectors ~x1, ~y2, ~s ∈ Zjp.

It chooses b1, b2 ∈ Zp randomly. It implicitly sets ~x to be a multiple of ~x1 + r1
b1
~s by setting

g~x = g
~x1+

r1
b1
~s

1 (note it can compute this because it knows g1, gr11 , ~x1, ~s). It implicitly sets ~y to be a

multiple of ~y2 + r2
b2
~s by setting g~y = g

~y2+
r2
b2
~s

2 .
B next chooses random vectors ~v, ~z from the space of vectors orthogonal to ~x1, ~y2, ~s. We note

that ~v, ~z will also be orthogonal to ~x, ~y. B also chooses a random vector ~γ which is orthogonal to
~v and ~z. It sets

T ′ = gb1 ~x1+b2 ~y2
0 T~s.

It gives g, g~x, g~y, g~v, g~z, g~γ , T ′ to A.
If T = gr1+r2

0 , then T ′ is a uniformly random element of < g~x, g~y >. If T is a uniformly random
element of G, then T ′ = g ~w, where ~w is a uniformly random element of the 3 dimensional space in
Zjp spanned by ~x1, ~y2, ~s, and we note that is the same space spanned by ~x, ~y,~s (linear independence
of these vectors holds with all but negligible probability, so we will implicitly assume this).

It is clear that ~x, ~y,~v, ~z,~γ are distributed identically to their distribution in D2. We now show
that their distribution also matches D1: ~x and ~y are distributed as uniformly random vectors, and
~v and ~z are distributed as random vectors from O~x,~y (~γ can then be ignored, as the equivalence
of its distribution follows automatically). To see this, consider vectors ~x, ~y,~v, ~z such that ~v, ~z ∈
O~x,~y. With all but negligible probability, ~x, ~y are independent, so |O~v,~z| = pj−2. In this case, the
probability of obtaining these particular vectors from D1 is:

1
pj
· 1
pj
· 1
pj−2

· 1
pj−2

=
1

p4j−4
.

It is clear that ~x, ~y still occur with probability 1
pj
· 1
pj

under D2, since x1, y2 are uniformly
random. Now, ~v and ~z can be obtained from D2 whenever ~s happens to be in O~v,~z. With all
but negligible probability, ~v and ~z are linearly independent, in which case |O~v,~z| = pj−2. Thus, the
probability of ~s being chosen in this set is pj−2

pj
. Conditioning on the choice of ~x, ~y, and such a ~s, the

probability of choosing ~v, ~z from O~x,~y,~s is 1
pj−3 · 1

pj−3 (assuming that ~x, ~y,~s are linearly independent,
which occurs with all but negligible probability). Thus, the total probability of ~x, ~y,~v, ~z occurring
under D2 (ignoring negligible events) is:

pj−2

pj
· 1
pj−3

· 1
pj−3

· 1
pj
· 1
pj

=
1

p4j−4
.

This shows the distributions of ~x, ~y,~v, ~z under D1 and D2 are equivalent.

22

Therefore, when T = gr1+r2
0 , B has properly simulated distribution D1. When T is random, B

has properly simulated distribution D2. Thus, B can use the output of A to break the decisional
linear assumption with non-negligible advantage.

Lemma A.4. The statistical distance between distributions D2 and D3 is negligible.

Proof. We consider fixed vectors ~x, ~y,~v, ~z,~γ, ~w such that ~v, ~z ∈ O~x,~y, ~γ, ~w ∈ O~v,~z. We may assume
that ~x, ~y, ~w are linearly independent and that ~v, ~z are linearly independent, since this happens with
all but negligible probability under both distributions (recall that j > 4). The probability of these
vectors occurring under distribution D3 is:

1
pj
· 1
pj
· 1
pj−2

· 1
pj−2

· 1
pj−2

· 1
pj−2

=
1

p6j−8
,

since |O~x,~y| = pj−2 and |O~v,~z| = pj−2.
For distribution D2, we consider the probability of ~x, ~y,~v, ~z,~γ, ~w conditioned on the choice of

~s. This probability will be zero except when ~s ∈< ~x, ~y, ~w > \ < ~x, ~y >. The probability that such
an ~s is chosen is p3−p2

pj
. Conditioning on ~x, ~y, and such an ~s, the probability of ~w is then 1

p3
. Also,

since ~w is orthogonal to ~v, ~z, for any such ~s we also have that ~v, ~z are orthogonal to ~s. We note
that ~x, ~y are still uniformly distributed under D2. Thus, the probability of ~x, ~y,~v, ~z,~γ, ~w occurring
under distribution D2 is:

1
pj
· 1
pj
· p

3 − p2

pj
· 1
pj−3

· 1
pj−3

· 1
pj−2

· 1
p3
,

since |O~x,~y,~s| = pj−3 when ~x, ~y,~s are linearly independent. This equals:

1
p6j−5

(
p3 − p2

)
=

1
p6j−8

(
1− 1

p

)
.

This shows that the statistical distance between D2 and D3 is negligible.

The theorem then follows.

In summary, we have shown that if the decisional linear assumption holds, then the simulated
subgroup decision assumption holds as well. The proof of security for our system in prime order
groups under the simulated subgroup decision assumption now proceeds much like the proof of
security for our system in composite order groups under the subgroup decision assumption. We
note that an attacker A who has a non-negligible advantage against the scheme must have a non-
negligible advantage against type 1 or type 2 keys. Since we treat these types symmetrically, we
can assume without loss of generality that such an adversary has a non-negligible advantage against
type 1 keys. Therefore, it suffices to prove security considering only type 1 keys. We define the
following sequence of games:

Game0: The real security game. Here the private key SK is a random group element in < g~x, g~y >.

Game1: The private key SK is chosen as g ~w, where ~w is chosen randomly from O~v,~z. The public
key is still computed as A1 = ej(SK, g~x), A2 = ej(SK, g~y).

23

Game2: The challenge CT is generated by choosing a random C1 ∈ < g~x, g~y > and setting
C2 = E(ej(SK, C1), D)⊕Mβ. (SK,PK are generated as in Game1.)

Game3: The challenge CT is generated by choosing C1 = g~s, where ~s is chosen randomly from
O~v,~z, and setting C2 = E(ej(SK, C1), D)⊕Mβ. (SK,PK are generated as in Game1.)

Game4: The challenge CT is generated by choosing C1 = g~s, where ~s is chosen randomly from
O~v,~z, and setting C2 as a uniformly random string. (SK,PK are generated as in Game1).

In Game4, the ciphertext no longer depends on the message, so the attacker has advantage 0.
We will prove these games are indistinguishable in the following lemmas.

Lemma A.5. Suppose there exists a polynomial time algorithm A such that Game0AdvA−Game1AdvA =
δ. Then we can build a polynomial time algorithm B with advantage δ in breaking the simulated
subgroup decision assumption.

Proof. B receives G, p, j, g, g~x, g~y, g~v, g~z, g~γ , T . It chooses a uniformly random seed D ∈ {0, 1}d and
a (k, ε)-extractor E : {0, 1}S(GT) × {0, 1}d → {0, 1}m. It sets the public parameters as

PP := {G, p, g, j, g~x, g~y, g~v, g~z, E,D}.

and gives these to A.
Next, it sets SK = T , and PK = (1, A1 = ej(T, g~x), A2 = ej(T, g~y)). It gives PK to A. When A

chooses the leakage function, B computes f(T) and sends this to A. A then sends B two messages,
M0 and M1. B chooses a random bit β and random values s1, s2 ∈ Zp. It sets C1 = gs1~x+s2~y and
C2 = E(As11 A

s2
2 , D)⊕Mβ. It gives A the ciphertext CT = (C1, C2).

It T ∈< g~x, g~y >, then B has properly simulated Game0. If T = g ~w for ~w randomly chosen from
O~v,~z, then B has properly simulated Game1. Thus, B can use the output of A to achieve advantage
δ in breaking the simulated subgroup decision assumption.

Lemma A.6. For any algorithm A, Game1AdvA = Game2AdvA.

Proof. This simply follows from the fact that Game1 and Game2 are identically distributed. Since
A1 is computed as ej(g ~w, g~x) and A2 is computed as ej(g ~w, g~y), we have that

ej(SK, C1) = ej(g ~w, gs1~x+s2~y) = ej(g ~w, g~x)s1 · ej(g ~w, g~y)s2 = As11 A
s2
2 .

Lemma A.7. Suppose there exists a polynomial time algorithm A such that Game2AdvA−Game3AdvA =
δ. Then we can build a polynomial time algorithm B with advantage δ in breaking the simulated
subgroup decision assumption.

Proof. B receives G, p, j, g, g~x, g~y, g~v, g~z, g~γ , T . It chooses a uniformly random seed D ∈ {0, 1}d and
a (k, ε)-extractor E : {0, 1}S(GT) × {0, 1}d → {0, 1}m. It sets the public parameters as

PP := {G, p, g, j, g~x, g~y, g~v, g~z, E,D}.

and gives these to A.

24

B sets SK = g~γ , and PK = (1, A1 = ej(g~γ , g~x), A2 = ej(g~γ , g~y)). It gives PK to A. When A
chooses the leakage function, B computes f(g~γ) and sends this to A. A then sends B two messages,
M0 and M1. B chooses a random bit β, and sets C1 = T and C2 = E(ej(SK, C1), D)⊕Mβ. It gives
CT = (C1, C2) to A.

If T is a random element of < g~x, g~y >, then B has properly simulated Game2. If T = g ~w for ~w
chosen randomly from O~v,~z, then B has properly simulated Game3. Thus, B can use the output of
A to achieve advantage δ in breaking the simulated subgroup decision assumption.

Lemma A.8. For any polynomial time algorithm A, Game3AdvA −Game4AdvA is negligible.

Proof. We prove that with all but negligible probability, the distributions of Game3 and Game4

are negligibly close in A’s view. In both games, the secret key SK is distributed as g ~w, where
~w is chosen randomly from the space O~v,~z. We recall that j > 4, and that ~x, ~y,~v, ~z are linearly
independent with high (all but negligible) probability, so we may assume this. We now show that
O~x,~y,~v,~z ∩ < ~x, ~y,~v, ~z >= {0} holds with all but negligible probability. This will allow us to fix a
basis of Zjp consisting of ~x, ~y,~v, ~z and a basis for the O~x,~y,~v,~z.

We note that O~x,~y ∩ < ~x, ~y > 6= {0} can only happen if the matrix(
~x · ~x ~x · ~y
~x · ~y ~y · ~y

)
has determinant equal to 0 in Zp. This determinant is a nonzero degree 4 multivariate polynomial
in the coordinates of ~x, ~y, and since ~x, ~y are chosen randomly over Zjp, the probability that this
determinant is 0 is at most 4

p by the Schwartz-Zippel Lemma, which is negligible. The same holds for
~v, ~z, since these are also uniformly randomly distributed (note that choosing ~v, ~z uniformly randomly
and then choosing ~x, ~y randomly from O~v,~z yields the same distribution of ~x, ~y,~v, ~z). Thus, with
all but negligible probability, we have that O~x,~y ∩ < ~x, ~y >= {0} and O~v,~z ∩ < ~v, ~z >= {0}. Since
~v, ~z are orthogonal to ~x, ~y, any vector in < ~x, ~y,~v, ~z > which is also in O~x,~y,~v,~z can be written as a
sum of a vector in < ~x, ~y > ∩ O~x,~y and a vector in < ~v, ~z > ∩ O~v,~z, but such a vector must be 0.

Thus, we may assume that we can express any ~w ∈ O~v,~z as ~w = a~x+ b~y+~u, where ~u ∈ O~x,~y,~v,~z.
We note that the public key information-theoretically reveals a and b, but reveals nothing about
~u. Conditioned on the public key, there are pj−4 = |O~x,~y,~v,~z| equally likely possibilities for ~w. As a
consequence, ~u is a random variable with min-entropy (j − 4) log p in the adversary’s view, before
the adversary gets the leakage f(SK).

The leakage function f has range {0, 1}`, where ` = (j − 5) log p. Applying Lemma 3.7 (with
τ = 1

4 log p for concreteness), we have that with probability ≥ 1 − 1
p1/4

, SK conditioned on f(SK)

will have min-entropy at least 3
4 log p. More precisely, the possible values of SK which are consistent

with PK and f(SK) form a set of size ≥ p
3
4 , and each value is equally likely.

We let W denote the set of possible values of SK in the adversary’s view, after the adversary
has seen PP, PK, and f(SK). The distribution on this set is uniform, and we have shown that
|W | ≥ p

3
4 with all but negligible probability. Now, C1 = g~s, where ~s is chosen randomly from O~v,~z.

We let Y~s denote the random variable defined by ~s · ~w, where ~w is chosen randomly from W . We
will show that for any W of size ≥ p

3
4 , with all but negligible probability over the choice of ~s, the

random variable Y~s has min-entropy at least 1
4 log p.

We first note that we can choose ~s randomly from Zjp instead of O~v,~z without changing the
distribution. This is because we can write any ~s ∈ Zjp as the sum of an element in the span of ~v, ~z

25

and an element in O~v,~z, and the part in < ~v, ~z > has no effect on ~s · ~w when ~w ∈ O~v,~z. (Here we
have relied on our assumption that O~v,~z ∩ < ~v, ~z >= {0}.)

Now, every ~w ∈W is of the form ~w = a~x+ b~y + ~u, where a, b are fixed (needed for consistency
with PK), and ~u ∈ O~v,~z varies. As long as one of a, b is nonzero, we have that no two distinct
vectors in W are multiples of each other. Since one of a, b will be nonzero with all but negligible
probability, we may assume this is the case. We enumerate the elements of W as ~w1, . . . , ~w|W |.
We define random variables X1, . . . , X|W | by Xi := ~s · ~wi, where W is considered fixed and the
randomness is over the choice of ~s ∈ Zjp. We note the relevant properties of these random variables:

• ∀i = 1, . . . , |W |, ∀c ∈ Zp, P r~s[Xi = c] = 1
p .

• ∀i 6= h, ∀c1, c2 ∈ Zp, P r~s[Xi = c1 ∧Xh = c2] = 1
p2

.

The first property follows from the fact that a linear equation over j variables in Zp has pj−1

solutions in Zjp, and hence the probability that a randomly chosen vector satisfies the linear equation
is pj−1

pj
= 1

p . The second property follows from the fact that ~wi and ~wh are not multiples of each
other: hence the two linear equations ~s · ~wi = c1 and ~s · ~wh = c2 are linearly independent, so
the probability of a randomly chosen ~s satisfying them simultaneously is 1

p2
. This is equivalent to

saying that the random variables Xi are pairwise independent.
For each c in Zp, we define the random variable Xc

i to be 1 when Xi = c and 0 otherwise. Then,
Pr~s[Xc

i = 1] = E[Xc
i] = 1

p , for all i and c. We also define the random variable

Xc :=
|W |∑
i=1

Xc
i ,

which counts the number of elements of W whose dot product with ~s is equal to c. By linearity of
expectation, we have:

E[Xc] =
|W |∑
i=1

Xc
i =
|W |
p
.

By pairwise independence of the Xc
i ’s, we also have:

V ar[Xc] =
|W |∑
i=1

V ar[Xc
i].

For each i, V ar[Xc
i] = E[(Xc

i)
2)] − (E[Xc

i])
2 = 1

p −
1
p2

= 1
p

(
1− 1

p

)
, since (Xc

i)
2 = Xc

i . Thus,

V ar[Xc] = |W | · 1p
(

1− 1
p

)
. We note that Pr[Xc ≥ |W |p · p

3
4] = Pr[Xc−E[Xc] ≥ |W |p

(
p

3
4 − 1

)
]. By

Chebyshev’s inequality, we then obtain:

Pr

[
Xc ≥ |W |

p
· p

3
4

]
≤ p2V ar[Xc]

|W |2(p
3
4 − 1)2

=
p
(

1− 1
p

)
|W |(p

3
4 − 1)

.

By recalling our assumption that |W | ≥ p
3
4 and employing the trivial bounds (p

3
4 − 1)2 ≥ 1

2p
3
2 and

1− 1
p < 1, we can upper bound this quantity by 2p−1− 1

4 .

26

Since this holds for each value of c ∈ Zp, we can apply the union bound to obtain:

Pr~s

[
maxc∈ZpX

c ≥ |W |
p
· p

3
4

]
≤ 2p−

1
4 .

Therefore, will all but negligible probability over the choice of ~s, we will obtain a random variable
Y~s which takes on each value in Zp with probability at most p−

1
4 , and so has min-entropy at least

1
4 log p (recall the for a fixed ~s and W , Y~s is the random variable defined by choosing a vector
~w ∈W uniformly at random and computing ~s · ~w).

In summary, this means that with all but negligible probability, after PP,PK, f(SK), C1 have
been revealed, the input to the extractor E will still have min-entropy at least 1

4 log p, and so C2 can
be replaced by a uniformly random string, and the resulting statistical distance from the Game3

distribution will be negligible.

This completes our proof of Theorem 7.1

A.2 Attack on the Parallel System for n > 1 with Leakage n`

The same attack that applied to our composite order system applies here as well. For n = 2, the
attacker receives the public parameters, PP, and two public keys, PK1 and PK2. If the two public
keys are of the same type, the attacker aborts and guesses β′ randomly (this occurs with probability
1
2). Otherwise, we assume PK1 is of type 1 and PK2 is of type 2. The attacker chooses the leakage
function

f(SK1, SK2) = SK1 · SK2,

which multiples the two secret keys in Gj componentwise. This is permitted as long as 2` ≥ jS(G)
(since it will take jS(G) bits to represent an element of Gj). Assuming this holds, the attacker
receives the value SK1 · SK2, and can use this to decrypt both ciphertexts. For example, to decrypt
the ciphertext (C1, C2) for PK1, the attacker computes:

E(ej(C1,SK1 · SK2), D)⊕ C2 = E(ej(C1, SK1), D)⊕ C2,

since C1 is orthogonal to SK2 under ej . This yields the first message share, and the second message
share is obtained similarly, since the first ciphertext value for PK2 will be orthogonal to SK1. Hence,
the attacker can reconstruct the encrypted message and succeed with probability 1 when the keys
are of different types. This gives the attacker an overall advantage of 1

4 .
Whenever S(G) ≤ 2(j−5)

j log p, we can choose an ` such that ` ≤ (j − 5) log p and 2` ≥ jS(G)
simultaneously hold. We note that we can choose j freely, so as long as S(G) ≤ (2 − ε) log p for
some ε > 0, we can choose j sufficiently large and obtain S(G) ≤ 2(j−5)

j log p.
For general values of n, the attacker can expect that close to half of the n keys will be of type 1

and the others will be of type 2. More specifically, a Chernoff bound implies that for any positive
constant c, there will be at least n

2 − c
√
n keys of each type with probability ≥ 1− 2e−2c2 .

When this distribution of keys occurs, the attacker can organize the keys into at least n
2 − c

√
n

pairs of keys and at most 2c
√
n individual keys, where each pair of keys contains one key of type

1 and one key of type 2. The attacker then defines the leakage function so that it reveals the
(componentwise) product of each pair of secret keys and all of the remaining unpaired secret keys.
This requires (n2 − c

√
n)j · S(G) + 2c

√
n · j · S(G) = j · S(G)(n2 + c

√
n) bits of leakage. We note

that the attacker can now decrypt messages encrypted under any of the n public keys.

27

As long as

n` ≥ j · S(G)
(n

2
+ c
√
n
)
⇔ ` ≥ j · S(G)

(
1
2

+
c√
n

)
holds, this is a valid attack with n` bits of leakage that succeeds with probability ≥ 1− 2e−2c2 .

For ` ≤ (j − 5) log p and the attack condition ` ≥ j · S(G)(1
2 + c√

n
) to hold simultaneously for

some value of `, it suffices to have a group G such that:

S(G) ≤ 2(j − 5)
j

· 1
1 + 2c√

n

log p.

28

