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Abstract

Generalized Second Price Auction, also knows as Ad Word auctions, and its variants has been the
main mechanism used by search companies to auction positions for sponsored search links. In this paper
we study the social welfare of the Nash equilibria of this game. It is known that socially optimal Nash
equilibria exists (i.e., that the Price of Stability for this game is 1). This paper is the first to prove bounds
on the price of anarchy.

Our main result is to show that under some mild assumptions the price of anarchy is small. For pure
Nash equilibria we bound the price of anarchy by1.618, assuming all bidders are playing un-dominated
strategies. For mixed Nash equilibria we prove a bound of 4 under the same assumption. We also extend
the result to the Bayesian setting when bidders valuations are also random, and prove a bound of 8 for
this case.

Our proof exhibits a combinatorial structure of Nash equilibria and use this structure to bound the
price of anarchy. While establishing the structure is simple in the case of pure and mixed Nash equilibria,
the extension to the Bayesian setting requires the use of novel combinatorial techniques that can be of
independent interest.
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1 Introduction

Search engines and other online information sources use sponsored search auction, or AdWord auctions,
to monetize their services. These actions allocate advertisement slots to companies, and companies are
charged pay per click, that is, they are charged a fee for any user that clicks on the link associated with the
advertisement. Mehta, Saberi, Vazirani, and Vazirani [9, 10] considered AdWord auctions in the algorithmic
context, studying the problem of assigning AdWords to advertisers online as the word shows up in a search
query. Since the introduction of the model, there has been much work in the area, see the survey of Lahaie
et al [7].

Here we consider AdWords in a game theoretic context: consider the game played by advertisers in
bidding for an AdWord. The bids are used to determine both theassignment of bidders to slots, and also
the fees charged. The bidders are assigned to slots in order of bids, and the fee for each click is decided
by variant of the so-calledGeneralized Second PriceAuction (GSP), a simple generalization of the well-
known Vickrey auction [14] for a single item (or a single advertising slot). The Vickrey auction [14] for
a single item, and its generalization, the Vickrey-Clarke-Groves Mechanism (VCG) [3, 5], make truthful
behavior (when the advertisers reveal their true valuation) dominant strategy, and make the resulting outcome
maximize the social welfare.

Generalized Second Price Auction, the mechanism adopted byall search companies, is a simple and
natural generalization of the Vickrey auction for a single slot, but it is neither truthful nor maximizes social
welfare. In this paper we will consider the social welfare ofthe GSP auction outcomes. Our goal in this
paper is to show that the intuition based on the similarity ofGSP to the truthful Vickrey auction is not so
far from truth: we prove that the social welfare is within a small constant factor of the optimal in any Nash
equilibrium under mild assumption that the players use un-dominated strategies.

We consider both full information games when player valuations are known, and also consider the
Bayesian setting when the values are independent random variables. Our results differ significantly from
the existing work on the price of anarchy in a number of ways. Many of the known results can be summa-
rized via a smoothness argument, as observed by Roughgarden[11]. In contrast, we show in Appendix B
that the GSP game is not smooth in the sense of [11]. Second, most known price of anarchy results are for
the case of full information games. The full information setting assumes that all advertisers are aware of the
valuations of all other players. This is a very strong assumption and is not realistic. In contrast, the Bayesian
setting requires only much weaker assumption that valuations are drawn from independent distributions, and
these distributions are known to the other players. Provingthe price of anarchy bound for the Bayesian
setting requires the use of novel combinatorial techniques.

We use a standard model of separable click-though rates: where the probability of clicking on an ad-
vertisementj displayed in sloti is αiγj, i.e., the probability is a product of two separable components:
depending on the slot, and on the advertiser respectively. To simplify the presentation, for the main part of
the paper, we will focus on the simple case whenγj = 1 for all j, that is, the probability of a click depends
only on the slot. In Appendix A we show that it is easy to extendour results to the model with separable
click-through rates.

For both our simple model, and the case of separable click-through rates, it is known that there exists
Nash equilibria that are socially optimal [4, 13], i.e., that the price of stability is 1. It is not hard to give simple
examples of Nash equilibria where the social welfare is arbitrarily smaller than the optimum. However, these
equilibria are unnatural, as some bid exceeds the players valuations, and hence the player takes unnecessary
risk. We show that bidding above the valuation is a dominatedstrategy, and define conservative bidders as
bidders who won’t bid above their valuations. Our results assume that players are conservative.

Our results The main results of this paper are Price of anarchy bounds forpure, mixed and Bayesian Nash
equilibria for the GSP game assuming conservative bidders.To motivate the conservative assumption, we
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observe that bidding above the players valuation is dominated strategy in all settings.
For each setting we exhibit a combinatorial structure of Nash equilibria that can be of independent

interest. To state this structure we need the following notation. For an advertiserk let vk be the value of
advertiserk for a click (a random variable in the Bayesian case). For a slot i let π(i) be the advertiser
assigned to sloti in a Nash equilibrium (a random variable, in the case of mixedNash, or in the Bayesian
setting).

• For the case of pure Nash equilibria the social welfare in a Nash equilibrium with conservative bidders
is at most a factor of1.618 above the optimum. We achieve this bound via a structural characterization
of such equilibria: for any two slotsi andj, we show that in a Nash equilibrium with conservative
bidders, we must have that

αj
αi

+
vπ(i)

vπ(j)
≥ 1.

It is not hard to see that this structure implies that the assignment cannot be too far from the optimal:
if two advertisers are assigned to positions not in their order of bids, then either (i) the two advertisers
have similar values for a click; or (ii) the click-through rates of the two slots are not very different,
and hence in either case their relative order doesn’t affectthe social welfare very much.

• We also bound the quality of mixed Nash equilibria. For a mixed Nash equilibriumπ(i) is a random
variable, indicating the bidder assigned to sloti, and similarly let the random variableσ(i) denote
the slot assigned to bidderi. For notational convenience we number players in order of decreasing
valuation, and number slots in order of decreasing click rates. By this notation, bidderi should be
assigned to sloti in the optimal solution. We derive the structure of pure Nashequilibria by thinking
about a pair of bidders that are assigned to slots in reverse order. Such pairs are harder to define in the
mixed case. Instead, we will consider bideri and his optimal sloti, and get the following condition
for mixed Nash equilibria.

Eασ(i)

αi
+

Evπ(i)

vi
≥ 1

2
,

and use this inequality to show that the social welfare of a mixed Nash equilibrium is at least an fourth
fraction of the social welfare of the socially optimal assignment. Note that an analogous inequality
with bound 1 holds also for pure Nash, which implies a bound of2 on the pure price of anarchy. We
used a different characterization above to be able to prove the stronger bound/

• We prove a bound of 8 on the price of anarchy for the Bayesian setting, and the valuationsvk are
random. We do this via a slightly more complicated, structural property, showing that an expression
similar to the one used in the case of mixed Nash must be at least 1/4th in expectation. However,
establishing this inequality in the Bayesian setting in much harder. In the context of pure and mixed
Nash, the inequality follows from the Nash property by considering a simple deviation by a player.
E.g., a player who would be assigned to sloti in the optimum, may want to try to bid high enough to
take over sloti. In contrast, we are not aware of a single deviating bid that can help establish a useful
structure. Instead, we obtain our structural result by considering many different bids, and show that
the inequalities established by the different bids can be combined to show the structure.

In the process we use a number of new techniques of independent interest. The bids we use for player
i are closely related to2E[bπk|vi; ν(i) = k], twice the expected value of the bid in slotk where the
expectation is conditioned both on the valuevi of playeri, and the fact that its optimal position isk.
These expectations as defined here depend on playeri both through the conditioning and though the
position bidderi gets in the permutationπ. This dual dependence makes it hard to prove any properties
of them. For example, it would be natural to assume that for any valuevi the values monotone increase
with k, but that is not always the case. To get around this problem, we will use instead slightly smaller
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values for the bids. We show via an interesting combinatorial argument using the max-flow min-cut
theorem, that the modified values do increase withk. Then we use a novel averaging technique (using
linear programming) to combine the resulting inequalitiesto establish the simple structural property.

Related work Sponsored search has been a very active area of research in the last several years. Mehta
et al. [10, 9] considered AdWord auctions in the algorithmiccontext. Since the original models, there has
been much work in the area, see the survey of Lahaie et al [7] for a general introduction. Here we use the
game theoretic model of the AdWord auctions of Edelman et al [4] and Varian [13], for a truthful auction
see Aggarwal et all [1].

We use the model of separable click-though rates, where the click through rate for bidderj in slot i can
be expressed in a simple product formγjαi. For these models Edelman et al [4] and Varian [13] show that
the price of Stability for this game is 1, that is, there exists Nash equilibria that are socially optimal.

Lahaie [6] also considers the problem of quantifying the social efficiency of an equilibrium. He makes
the strong assumption that click-through-rateαi decays exponentially along the slots with a factor of1

δ , and
proves a price of anarchy ofmin{1

δ , 1− 1
δ }. In this paper, we make no assumptions on the click-through-rates.

Thompson and Leyton-Brown [12] study the efficiency loss of equilibria empirically in various models.
We assume that bidders are conservative, in the sense that nobidder is bidding above their own valuation.

We can justify this assumption by noting that bidding above his valuation is a dominated strategy. Lucier and
Borodin [8] and Christodoulou at al [2] also use the conservative assumption to establish price-of-anarchy
results in the context of combinatorial auctions. Without any additional requirement Nash equilibria, even
in the case of the single item Vickrey auction, can have social welfare that is arbitrarily bad compared to
the optimal social welfare. However, we show that Nash equilibria of conservative bidders is within small
constant factor of the optimum.

The paper by Lucier and Borodin [8] on greedy auctions is alsoclosely related to our work. They
analyze the Price of Anarchy of the auction game induced by Greedy Mechanisms. The consider in a
general combinatorial auction setting, greedy algorithmswith payments are computed using the critical price.
They show via a type of smoothness argument (see [11]) that ofthe greedy algorithm is ac-approximation
algorithm, then the Price of Anarchy of the resulting mechanism isc+ 1 - for pure and mixed Nash and for
Bayes-Nash equilibria. The Generalized Second Price mechanism is a type of greedy mechanism, but is not
a combinatorial auction, and hence it does not fit the framework of Lucier and Borodin, and further the GSP
game does not satisfy the smoothness condition. The key to proving thec+ 1 bound of Lucier and Borodin
[8] is to consider possible bids, such as a single minded bid for the slot in the optimal solution, or modifying a
bit by changing it only on a single slot (the one allocated in the optimal solution). The combinatorial auction
framework allows such complex bids; in contrast, the bids inGSP have limited expressivity, as bid is a single
number, and hence bidders cannot make single-minded declarations for a certain slot, or modify their bid
only on one of the slots. Like the GSP game, many natural bidding languages have limited expressivity,
as typically allowing arbitrary complex bids makes the optimization problem hard. However, the limited
expressivity of the bidding language can increase the set ofNash equilibria (as there are fewer deviating bids
to consider). It is important to understand if such natural bidding languages result in greatly increased price
of anarchy.

2 Preliminaries

We consider an auction withn advertisers andn slots (if there are less slots than advertisers, consider
additional virtual slots with click-through-rate zero). We model this auction as a game withn players, where
each advertiser is one player. The types of the advertisers are given by their valuationvi, which expresses
their value for one click. The strategy for each advertiser is a bidbi ∈ [0,∞).
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There aren slots and based on the bids, we decide where to allocate each advertiser. In the most simple
model, thek-th slot containsαk clicks andαk is a monotone non-increasing sequece, i.e.,α1 ≥ α2 ≥ . . . ≥
αn. We prove our results for this simple model, but they extend naturally to the more realistic model of
separable click-through-rates, as we show in Appendix A. The game proceeds as follows:

1. each advertiser submits a bidbi ≥ 0, which is his declared value for a click
2. the advertiser are sorted by their bids (ties are broken arbitrarily). Call π(k) the advertiser with the
k-th highest bid

3. advertiserπ(k) is placed on slotk and therefore receivedαk clicks
4. for each click, advertiserk paysbπ(k+1), which is the next highest bid

The vectorπ is a permutation that indicates to which slot each player is assigned - it is completely
determined by the set of bids. We define theutility of a useri when occupying slotj as given byui(b) =
αj(vi − bπ(j+1)). We define thesocial welfareof this game as the total value the bidders get from playing
it, which is:

∑

j αjvπ(j). Here in this paper we are concerned about bounding the social welfare in an
equilibrium of this game relative to the optimal. This measure is called Price of Anarchy. We analyze the
Price of Anarchy in three different settings of increasing complexity:

• Pure Nash equilibrium: The valuation of each playervi is a fixed value. We consider without loss of
generality thatv1 ≥ v2 ≥ . . . ≥ vn. Each player chooses a pure strategy, i.e., a deterministicbid bi.
We say that a set of bidsb = (b1, . . . , bn) is aPure Nash Equilibrium if any bidder can change his
bid an increase his utility, i.e.:

ui(bi, b−i) ≥ ui(b
′
i, b−i),∀b′i ∈ [0,∞)

To gain some intuition, suppose advertiseri is currently biddingbi and occupying slotj. Changing
his bid to something betweenbπ(j−1) andbπ(j+1) won’t change the permutationπ and therefore won’t
change the allocation nor his payment. So, he could try to increase his utility by doing one of two
things:

– increasing his bid to get a slot with a better click-through-rate. If he wants to get a slotk < j he
needs to overbid advertiserπ(k), say by biddingbπ(k) + ǫ. This way he would get slotk for the
pricebπ(k) per click, getting utilityαk(vi − bπ(k)).

– decreasing his bid to get a worse but cheaper slot. If he wantsto get slotk > j he needs to
bid below advertiserπ(k). This way he would get slotk for the pricebπ(k+1) per click, getting
utility αk(vi − bπ(k+1)).

We are interested in bounding thePure Price of Anarchy, which is the ratio
∑

j αjvj/
∑

j αjvπ(j),
between the social welfare in the optimal and in a Nash equilibrium.

• Mixed Nash equilibrium: The valuationvi are still fixed and we can assume (without loss of gen-
erality) thatv1 ≥ . . . ≥ vn, but each player is allowed to pick a distribution over strategies. We can
think that each player chooses a random variablebi and the Nash equilibrium means that the chosen
random variable maximizes the expected utility. In other words:

E[ui(bi, b−i)] ≥ E[ui(b
′
i, b−i)],∀b′i

where expectation is with respect to the distribution of bids. Now, the assignmentπ is a random
variable determined byb and therefore the social welfare is also a random variable (even though the
optimal is fixed). The Price of Anarchy is the ratio:

∑

j αjvj/E[
∑

j αjvπ(j)].
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• Bayes-Nash equilibrium: In a more realistic model, the player’s don’t know the valuations of other
players, but they have beliefs about it. This is modeled as follows: the valuationvi are drawn from
independent distributions. A player chooses a bid (possibly in a randomized fashion) based on his
own valuation. Therefore, the strategy of playeri is a bidding functionbi(vi) that associates for each
valuationvi a distribution of bids. A set of bidding functions is said to be a Bayes-Nash equilibrium
if:

E[ui(bi(vi), b−i(v−i))|vi] ≥ E[ui(b
′
i(vi), b−i(v−i)|vi],∀b′i(vi) ∀vi

where expectations are taken over values and randomness used by players.

The Nash assignmentπ is a random variable, since it is dependent on the bids, whichare random. The
optimal allocation is also a random variable, and we define itby ν: let ν(k) be the slot occupied by
playeri in the optimal assignment. Therefore,ν is a random variable such thatvi > vj ⇒ ν(i) < ν(j).
The optimal social welfare is therefore

∑

j αν(j)vj . In this setting the quantity we want to bound is
the Bayes-Nash price of Anarchy, given by the ratio:E[

∑

j αν(j)vj]/E[
∑

j αjvπ(j)]

2.1 Equilibria with Low Social Welfare

Even for two slots the gap between the best and the worse Nash equilibrium can be arbitrarily large. For
example, consider two slots with click-through-ratesα1 = 1 andα2 = r and two advertisers with valuations
v1 = 1 andv2 = 0. It is easy to check that the bidsb1 = 0 andb2 = 1 − r are a Nash equilibrium where
advertiser1 gets the second slot and advertiser2 gets the first slot. The social welfare in this equilibrium is
r while the optimal is1. The price of anarchy is therefore1/r. Sincer can be any number from0 to 1, the
gap between the optimal and the worse Nash can be arbitrarilylarge.

Notice however that this Nash equilibrium seems very artificial: advertiser2 is exposed to the risk of
negative utility: if advertiser1 (or another advertiser) adds a bid somewhere between0 and1−r this imposes
a negative utility on advertiser2. For advertiser2, bidding anything greater than zero is clearly a dominated
strategy. It is not hard to see that for anyvi, biddingbi > vi is dominated by the bidvi.

3 Pure Nash Equilibrium

We say pure bidbi for advertiseri is conservative if bi ≤ vi. Next we show that non-conservative bids are
dominated. We say that a strategybi is dominated if there is someb′i such thatui(bi, b−i) ≤ ui(b

′
i, b−i) for

all b−i and for at least one value ofb−i it holds strictly.

Lemma 3.1 A bid bi > vi is dominated by b′i = vi.

Proof. Decreasing the bid frombi to vi changes allocation and or payment only if there is a bidderj 6= i
with vi < bj < vj. However, in this case, bidderi getting negative utility for each click, and with bidvi, he
cannot get negative utility.

Given the parametersα, v, we say thatb is aconservative bidder equilibrium if it is a Nash equilibrium
andbi ≤ vi for all biddersi.

Theorem 3.2 For 2 slots, if all advertisers are conservative, then the price of anarchy is exactly 1.25.

Proof. We can suppose without loss of generality (by scalingα andv) thatα1 = 1, α2 = r andα1v1 +
α2v2 = 1. In any non-optimal Nash equilibriumb1 ≤ b2 and by the Nash conditionr(v1 − 0) ≥ 1(v1 − b2)
and by the conservative conditionb2 ≤ v2. Substitutingv1 = 1−rv2 in those two expressions and combining
them to eliminate theb2 term we get:v2 ≥ 1−r

1−r(r−1) . Therefore the social welfare in any non-optimal Nash
is α1v2 + α2v1 = 1v2 + r(1 − rv2) ≥ 1 + r(1 − r) ≤ 1.25.
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3.1 Weakly Feasible Assignments

Next we show that equilibria with conservative bidders satisfies the simple property mentioned in the intro-
duction. We will call the assignments satisfying this property weakly feasible. In the next section we analyze
the welfare properties of weakly feasible equilibria.

The equations (??) are not very easy to work with, since they are not very symmetric and they depend
on b. We propose a cleaner form of representing an equilibrium that just usesα, v and the permutationπ.
Although it is a weaker property it still captures most of thetrade-offs:

1. if valuesvi are very close then the order of the bidders doesn’t influencethe social welfare that much
2. if valuesvi are very well separated, then permutations that would produce a bad social welfare are not

feasible because they violate Nash constraints

Lemma 3.3 Given v, α and a Nash permutation π, if i < j and π(i) > π(j) then:

αj
αi

+
vπ(i)

vπ(j)
≥ 1 (1)

in particular, αj

αi
≥ 1

2 or
vπ(i)

vπ(j)
≥ 1

2 .

Proof. Since it is a Nash equilibrium bidder in slotj is happy with his condition and don’t want to increase
his bid to take sloti, so:αj(vπ(j) − bπ(j+1)) ≥ αi(vπ(j) − bπ(i)) sincebπ(j+1) ≥ 0 andbπ(i) ≤ vπ(i) then:
αjvπ(j) ≥ αi(vπ(j) − vπ(i))

Inspired by the last lemma, given parametersα, v we say that permutationπ is weakly feasible if equation
1 holds for eachi < j, π(i) > π(j). From Lemma 3.3 we know that:

Corollary 3.4 Given α, v, any permutation corresponding to a Nash equilibrium with conservative bids is
weakly feasible.

Our main results follow from analyzing the price of anarchy ratio
∑

j αjvj/
∑

j αjvπ(j) over all weakly
feasible permutationsπ.

3.2 Price of Anarchy Bound

Here we present the bound on the price of anarchy for weakly feasible permutations, and hence for GSP
for conservative bidders. We prove it is bounded by1.618. We will prove this bound for weakly feasible
permutations and it will automatically be deduced to a boundfor feasible permutations. Notice that the
weakly feasible permutation nicely capture the fact that ifadvertisersi and j are in the ”wrong relative
position” (i.e. different to the one in the optimal) then either their values are close (within a factor of2)
or their click-through-rates are close (within a factor of2). The proof of the1.618 factor can be found in
Appendix C.

Theorem 3.5 For conservative bidders, the price of anarchy for pure Nash equilibria of GSP is bounded by
1+

√
5

2 ≈ 1.618.

Proof. As a warm-up we will prove that the price of anarchy is boundedby 2, since the proof is easier and
captures the main ideas. We show this by induction onn. For 2 advertisers and2 slots we know that the
worst possible social welfare for a weakly feasible permutation is at most a1.25 times the optimum. So,
now we need to prove the inductive step. Consider parametersv, α and a weakly feasible permutationπ. Let
i = π−1(1) be the slot occupied by the advertiser of higher value andj = π(1) be the advertiser occupying
the first slot. Ifi = j = 1 then we can apply the inductive hypothesis right away. If not, equation 1 tells us
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that: αi

α1
≥ 1

2 or vj

v1
≥ 1

2 . Supposeαi

α1
≥ 1

2 and consider an input with sloti and advertiser1 deleted. This
input hasn− 1 advertisers andn− 1 slots and the permutationπ restricted to those is still weakly feasible,
so by the inductive hypothesis:

∑

k 6=i
αkvπ(k) ≥

1

2
(α1v2 + ...+ αi−1vi + αi+1vi+1 + ...+ αnvn)

≥ 1

2
(α2v2 + ...+ αivi + αi+1vi+1 + ...+ αnvn)

therefore:
∑

k

αkvπ(k) = αiv1 +
∑

k 6=i
αkvπ(k) ≥

1

2
α1v1 +

1

2

∑

k>1

αkvk

If vj

v1
≥ 1

2 we just do the same but deleting slot1 and advertiserj from the input. This finishes the bound of
2.

The above analysis is not tight. For example, when the ratioαi/αj is equal to 1/2, our inequality states
that we also havevi/vj ≥ 1/2. We prove the stronger bound in Appendix C by a more careful analysis using
the full strength of the inequality. As before, we prove the conclusion for all weakly feasible permutations.
We define a sequence of valuesrk so that fork slots social welfare is at least anrk times the optimum. We
know thatr2 = 1.25, and use a similar but more careful induction proof to set up arecursion ofrk, and then
show (in Appendix C) thatrk converges to the desired bound of1+

√
5

2 .

4 Mixed Nash equilibrium

All our results so far dealt with Pure Nash equilibria of the GSP. Here we prove a bound on the Price
of Anarchy of4 for the mixed Nash equilibria. Consider the same setting: players with valuationsv1 ≥
. . . ≥ vn and slots with click-through-ratesα1 ≥ . . . ≥ αn. Now, the strategy of playeri is a probability
distribution on[0, vi] represented by a random variablebi.

Lemma 4.1 A randomized bid bi where P (bi > vi) > 0 is dominated by b′i = min(vi, bi).

Now, the allocation, represented by the permutationπ is also a random variable. For notational conve-
nience, letσ = π−1. A random vectorb = (b1, . . . , bn) is a mixed Nash equilibrium if for each deterministic
bid b′i: Eui(bi, b−i) ≥ Eui(b

′
i, b−i). We begin by proving a bound similar to Lemma 3.3 for mixed Nash

and then using that to prove a weaker bound. Note that the bound is different as it involves a bidderi and its
locationi in the optimal allocation, rather than two bidders that are allocated to “wrong relative positions”.

Lemma 4.2 If the random vector b is a mixed Nash equilibrium for GSP then for each player i:

Eασ(i)

αi
+

Evπ(i)

vi
≥ 1

2

Proof. Bidder i by our notation has theith highest valuation, and hence would be in theith slot in the
optimal assignment. We will consider whether playeri benefits by deviating to the deterministicb′i =
min(vi, 2Ebπ(i)), whereEbπ(i) is the expected value of the bid that gets sloti.

We claim that with probability at least12 , the bidder gets one of the slots of{1, . . . , i}. If b′i = vi then
it for sure gets at least thei-th slot as our conservative assumption guarantees that only the previousi − 1

players can bid more. Ifb′i = 2Ebπ(i) by Markov’s inequality:P (bπ(i) ≥ b′i) ≤ Ebπ(i)

b′i
= 1

2 . Therefore we
have:
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Eασ(i)vi ≥ Eui(b) ≥ Eui(b
′
i, b−i) ≥

1

2
αi(vi − b′i) ≥

≥ 1

2
αi(vi − 2Ebπ(i)) ≥

1

2
αi(vi − 2Evπ(i))

Now it is just a matter of rearranging the expression.

Theorem 4.3 The Price of Anarchy for the mixed Nash equilibria of GSP with conservative bidders is ≤ 4.

Proof. The proof is a simple application of Lemma 4.2 and some algebraic manipulation:

E[
∑

i

ui(b)] =
1

2

[

E

∑

i

ασ(i)vi + E

∑

i

αivπ(i)

]

=
1

2
E

∑

i

αivi

(

ασ(i)

αi
+
vπ(i)

vi

)

=

=
1

2

∑

i

αivi

(

Eασ(i)

αi
+

Evπ(i)

vi

)

≥ 1

4

∑

i

αivi

5 Bayes-Nash equilibrium

Recall that in the Bayesian setting, the valuesvi are independent random variables and their distributions
are public knowledge. A strategy for a playeri is a bidding functionbi(vi) (or a probability distribution
of such functions) wherebi(vi) is the players bid when his value isvi. For simplicity of presentation we
will consider only pure bidding functions, but our results extend to randomized bids also. As before, we
will assume that the bidbi(vi) is in the range[0, vi]. Here we are assuming that players don’t overbid (as
overbidding is dominated strategy).

As before, we will useπ andσ = π−1 to denote the permutation representing the allocation, andwe will
useν to denote the random permutation (defined byv) such that playeri occupies slotν(i) in the optimal
solution. The expected social welfare isE[

∑

i αivπ(i)] = E[
∑

i ασ(i)vi] and the social optimum is given by
E[
∑

i αν(i)vi]. The goal of this section is to bound the price of anarchy, theratio of these two expectations.

5.1 Price of Anarchy bound

Theorem 5.1 If a set of bids b1, . . . , bn are a Bayes Nash equilibrium in conservative strategies then:

E[
∑

i

αivπ(i)] ≥
1

8
E[
∑

i

αν(i)vi]

in other words, GSP has a Bayes-Nash Price of Anarchy in conservative strategies bounded by 8.

The proof of the theorem is based on a structural characterization analogous to the one used for Mixed
Nash equilibria, which is similar in form to the previous ones, but much harder to prove. We can state the
inequality used to bound the price of anarchy for mixed Nash as viEασ(i) + αiEvπ(i) ≥ 1

2viαi. To extend
this expression we need to take expectations over valuations.

Playeri knows his own valuationvi, so in considering alternate bids for the player, we need to consider
expectations conditioned on the valuevi. To be able to deal with the conditioning of the playeri on his
own valuationvi we make the terms on the expression independent ofi. To do this, letπi(k) be the bidder
occupying slotk in the casei didn’t participate in the auction, i.e.,πi(k) = π(k) if σ(i) > σ(k) πi(k) =
π(k+1) otherwise. Now we can state the claimed inequality. Note that the bound is stronger than suggested
by the case of mixed Nash, asbπi(ν(i)) ≥ bπ(ν(i)).

8



Lemma 5.2 If {bi(·)}i is a Bayes-Nash equilibrium of the GSP then:

viE[ασ(i)|vi] + E[αν(i)bπi(ν(i))|vi] ≥
1

4
viE[αν(i)|vi]

As before the price of anarchy bound follows easily from the lemma.

Proof of Theorem 5.1 : The proof follows the lines of the proof of theorem 4.3:

SW =
1

2
E

∑

i

(αivπ(i) + ασ(i)vi) ≥
1

2
E

∑

i

(αibπ(i) + ασ(i)vi) =

=
1

2
E

∑

i

(αν(i)bπ(ν(i)) + ασ(i)vi) ≥
1

2
E

∑

i

(αν(i)bπi(ν(i)) + ασ(i)vi) =

=
1

2
E

[

∑

i

E[αν(i)bπi(ν(i))|vi] + viE[ασ(i)|vi]
]

≥ 1

8
E

[

∑

i

viαν(i)

]

recalling thatπi(k) is eitherπ(k) or π(k + 1) implying the inequality in the second line.

The hard part of the proof is proving Lemma 5.2. The main difficulty in the Bayesian setting is that the
inequality is not established by a single deviating bid. In the base of pure Nash we considered the bidder in
slot j biddingb′ = bπ(i) for a pair of slotsi < j. In the case of mixed Nash, we considered bidderi bidding
b′ = min(vi, 2Ebπ(i)). In both cases the structural inequality followed by considering a single deviation.
In contrast, we obtain our structural result by consideringmany different bids, and using a novel averaging
argument, and a structural property to show that the inequalities established by the different bids can be
combined to show a simple structure.

It would be natural to consider a set of bids2E[bπ(k)|vi; ν(i) = k] twice the expected value of the bid in
slot k where the expectation is conditioned on the valuevi of playeri, and the fact that its optimal position
is k. The bids as defined depend on playeri both through the conditioning and though the position bidder i
gets in the permutationi, which makes it hard to prove any properties of them. For example, these bids may
not be monotone functions ofk. To get around this problem, we will use instead the slightlysmaller bids

Bk = 2E[bπi(k)|vi; ν(i) = k]

which gets rid of this second dependence. Notice thatBk is defined as a conditional expectation, so it is a
function ofvi. Notice therefore that it is a bidding function and not a constant function.

The proof of Lemma 5.2, depends on two combinatorial results. The first, is a structural property: we
claim that the bidsBk as now defined are monotone ink. This will allows us to argue that bidBk has a good
chance of taking a slotk′ > k whenν(i) = k′, asBk ≥ Bk′ .

Lemma 5.3 Given bidding functions bi, E[bπiν(i)|vi, ν(i) = k] in non-increasing in k

We will prove the lemma above using a combinatorial argumentand max-flow min-cut theorem.
To be able to combine the inequalities we get by a consideringthe different bidsBk we use a novel way

to combine inequalities via a ’dual averaging argument’. The combination will simultaneously guarantee
that one average is not too low, and a different average is notto hight. We expect that this Lemma 5.4, which
prove using linear programming duality can have other applications.

Lemma 5.4 Given any positive values γk and Bk There are xk ≥ 0,
∑

k xk = 1 such that:

∑

k

xk

n
∑

j=k

γj ≥
1

2

n
∑

j=1

γj

9



∑

k

xkBk

n
∑

j=k

γj ≤
n
∑

j=1

γjBj

before we prove these key lemmas, we show how to use them for proving the main Lemma 5.2:

Proof of Lemma 5.2 : As outlined above we will considern deviation for playeri at bidsBk for all
possible slotsk. Since it is a Nash equilibrium playeri can’t benefit from changing his strategy each will
give us an inequality on the utility. We the will use Lemma 5.4to average them to get the claimed inequality.
Consider bidderi deviates toBk = max{vi, 2E[bπi(k)|vi; ν(i) = k]}. Notice that by Lemma 5.3 we have
thatB1 ≥ B2 ≥ . . . ≥ Bn. Let pk = P (ν(i) = k|vi) and letα′ be the random variable that means the
click-through-rate of the slot he occupies by biddingBk, then:

viE[ασ(i)|vi] ≥ E[α′(vi −Bk)|vi] =
∑

j

pjE[α′(vi −Bk)|vi, ν(i) = j] ≥
∑

j≥k

1

2
pjαj(vi −Bk)

where the last inequality will follow by estimating the probability that by biddingBk the player gets the slot
j or better whenν(i) = j for somej > k. In the caseBk = vi it is trivial. If Bk = 2E[bπik|vi; ν(i) = k],
then we use thatBj ≥ Bk by Lemma 5.3, and we get:

P (α′ ≥ αj |vi, ν(i) = j) = P (Bk ≥ bπi(j)|vi, ν(i) = j) ≥ P (Bj ≥ bπi(j)|vi, ν(i) = j) ≥ 1

2

by Markov’s Inequality. Now, we use the Lemma 5.4 applied with Bk andγk = pkαk. Using thexk from
the Lemma, we get:

viE[ασ(i)|vi] ≥
∑

k

xk
∑

j≥k

1

2
pjαj(vi −Bk) ≥

1

4
vi
∑

j

αjpj −
1

2

∑

j

pjαjBj ≥

≥ 1

4
viE[αν(i)|vi] − E[αν(i)bπi(ν(i))|vi]

5.2 Proving that bidsBk are non-increasing ink

We will prove Lemma 5.3 in several steps. First we prove bounds assuming all but a single player has a
deterministic value, and take expectations to get a conditional version. Then we use a max-flow min-cut
argument to average these bounds get the claimed overall bound.

Proof of Lemma 5.3 : We want to prove that:E[bπi(k)|vi, ν(i) = k] ≥ E[bπi(k+1)|vi, ν(i) = k + 1]. The
valuevi is in positionk in the optimum if exactlyn−k values are belowvi. Consider such a setS of agents,
i /∈ S, and the corresponding event:

AS = {vj ≤ vi;∀j ∈ S, vj > vi;∀j /∈ S}

The eventν(i) = k can now be stated as∪|S|=n−kAS , and so what we are trying to prove is:

E[bπi(k)|vi,∪|S|=n−kAS ] ≥ E[bπi(k+1)|vi,∪|S′|=n−k−1AS′ ]

Take a setS′ ⊆ S, i.e.,S = S′ ∪ {t} for some agentt 6= i. The first claim is that:

Claim 5.5 For a set S′, and S = S′ ∪ {t} for t 6= i

E[bπi(k)|vi, AS ] ≥ E[bπi(k+1)|vi, AS′ ]

10



To see this notice that:

E[bπi(k)|vi, AS , {vj}j 6=i,t] ≥ E[bπi(k+1)|vi, AS′ , {vj}j 6=i,t]

The conditioning on the two sides differs only by the value ofbiddert. In identical conditioning the bid of
positionk is clearly higher than the bid of positionk+ 1, and by letting one bidder change, we can’t violate
the above inequality. Taking the expectation over{vj}j 6=i,t we get the inequality in of Claim 5.5.

To finish the proof of Lemma 5.3, we would like to add the inequalities for different set pairs(S, S′).
The next combinatorial lemma states that there are valuesλS,S′ ≥ 0 for S′ ⊆ S such that:

∑

S

λS,S′ = P (AS′ |vi,∪|S′|=n−k−1AS′) and
∑

S′

λS,S′ = P (AS |vi,∪|S|=n−kAS)

Taking the a linear combination of the inequalities (5.5) for set pair(S, S′) with coefficientsλS,S′ lets the
claimed bound.

Lemma 5.6 There exists values λS,S′ ≥ 0 for set pairs S′ ⊆ S with |S′| = n− k− 1 and |S| = n− k such
that the equations above hold.

Proof. We will use network flows to prove that theλS,S′ values exist. Before we do that, consider the
following characterization ofP (AS |vi,∪|S|=n−kAS): let pj = P (vj ≥ vi), then we can write:

P (AS |vi,∪|S|=n−kAS) =

∏

j∈S pj
∏

j /∈S+i(1 − pj)
∑

|T |=n−k
∏

j∈T pj
∏

j /∈T+i(1 − pj)

If we defineφj =
pj

1−pj
andφ(S) =

∏

j∈S φj then we can rewrite:

P (AS |vi,∪|S|=n−kAS) =
φ(S)

∑

|T |=n−k φ(T )

The existence of theλS,S′ is equivalent to the existence of a max-flow in the following network: consider a

bipartite graph with left nodes corresponding to setsS′ of |S′| = n−k−1 and inflow φ(S′)
P

S′ φ(S′) and the right

nodes corresponding to setsS of |S| = n − k and outflow φ(S)
P

S φ(S) . We add an edge(S′, S) if S′ ⊆ S with
capacity∞. We need to prove that there max-flow in this graph has size1 (and then the flow values define
λS′,S). We use the min-cut/max-flow theorem (in this case, this is aweighted version of Hall’s Theorem):
there is a max-flow of size1 if and only if for each collection of setsA′

1, . . . , A
′
p of sizen − k − 1, it is

the case that he total flow that needs to enter the set is at least as big as the outflow that is available at the
neighbors of the set:

p
∑

i=1

φ(A′
i)

∑

S′ φ(S′)
≤

∑

A′
i⊆A,|A|=n−k

φ(A)
∑

S φ(S)

which can be rewritten as:
∑

S

φ(S) ·
∑

i

φ(A′
i) ≤

∑

A′
i
⊆A,|A|=n−k

φ(A) ·
∑

S′

φ(S′)

Notice that both sides have sums of products of2(n − k) − 1 terms of typeφj . If we can prove that all
terms in the LHS appear in the RHS with the at least same multiplicity we are done. We prove it based on a
combinatorial construction.
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The products on the two sides consist products ofφ values for pairs of sets(S,Ai) and(S − j,Aj + j)
respectively. We want to map each pair(S,Ai) to (S − j,Aj + j) without collisions. If we can do this,
it proves the claim. We say the pairs(S1, Ai) and(S2, Aj) are equivalent ifS1 ∪ Ai andS2 ∪ Aj are the
same (including multiplicities of the elements). Now, justneed to map each equivalence class of elements in
a collision-free manner. The Lemma 5.7 below shows that the following construction satisfies the property:
taket = 1

2 (|S∪Ai|−|S∩Ai|−1), identify (S∪Ai)\(S∩Ai) with [2t+1] and choose takej = ft(Ai\S)\Ai.

Lemma 5.7 For all t, then there is a bijective function ft :
([2t+1]

t

)

→
([2t+1]
t+1

)

such that S ⊆ ft(S), where

[n] = {1, . . . , n} and
(S
t

)

= {T ⊆ S; |T | = t}.

Proof. Consider a bipartite graph where the left nodes are
([2t+1]

t

)

and the right nodes are
([2t+1]
t+1

)

and there
is an(A,B) edge ifA ⊆ B. Notice this is a regulark + 1-graph. Since all regular bipartite graphs have
perfect matchings, which prove the claim.

5.3 Proving the dual averaging Lemma

Proof of Lemma 5.4 : We want to prove that the following linear programming problem is feasible:

max 0 s.t.

−
∑

k

xk

n
∑

j=k

γj ≤ −1

2

n
∑

j=1

γj

∑

k

xkBk

n
∑

j=k

γj ≤
n
∑

j=1

γjBj

∑

k

xk = 1

xk ≥ 0

Verifying that this program is feasible is the same as verifying that the dual is feasible and bounded. The
dual is:

min−φ1

2

n
∑

j=1

γj + ψ

n
∑

j=1

γjBj + ξ s.t.

− φ





n
∑

j=k

γj



+ ψBk





n
∑

j=k

γj



+ ξ ≥ 0, ∀k

φ, ψ ≥ 0

This linear problem has a solution for anyφ,ψ ≥ 0 by settingξ sufficiently low. So the linear program
is the same as the following optimization problem:

min
φ,ψ≥0

−φ1

2

n
∑

j=1

γj + ψ

n
∑

j=1

γjBj + max
k









n
∑

j=k

γj



 (φ− ψBk)





Our goal is to prove that for any fixedγk, Bk ≥ 0, for any values ofφ,ψ ≥ 0 this is a non-negative
expression, and establishing that its bounded. We claim that one of the following must be non-negative for
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sum value ofk:

−φ1

2

n
∑

j=1

γj + ψ
n
∑

j=1

γjBj +





n
∑

j=k

γj



 (φ− ψBk)

We will show this by summing the above expressions weighted by γk, and showing that the result is non-
negative. Therefore, at least one of the summands must be non-negative. The sum is

∑

k

γk



−φ1

2

n
∑

j=1

γj + ψ

n
∑

j=1

γjBj +





n
∑

j=k

γj



 (φ− ψBk)



 .

And this expression is nonnegative, asφ is multiplied by
∑

k

∑

j≥k γjγk− 1
2

∑

k

∑

j γjγk which is≥ 0 and
ψ is multiplied by

∑

k

∑

j γkγjBj −
∑

k

∑

j≥k γjγkBk, which is also≥ 0.
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Appendix A: Extension to separable click-through-rates

So far, we have considered that the click-through-rates of advertiseri placed on slotj depends only on the
slot in which he is placed. A more general model calledseparable click-through-ratesassumes it depends
on a product of two factors: one depending on the bidder and other depending on the slot. Let’s say that if
advertiseri is placed on slotj, it will get click-through-rateγiαj whereγi is some ”quality factor” attributed
to each advertiser. The generalization of Second Price Auction for this setting ranks the advertisers in order
of γibi and charges an advertiser the minimum value it needed to bid to conserve his position. For example,
if π is the permutation defined by sortingγibi (i.e, π(k) is the advertiser with thekth highest value ofγibi)
then we charge advertiserπ(j) the amount of:bπ(j+1)γπ(j+1)/γπ(j).

In this setting the utility of bidderi assigned to slotj is ui = γiαj

(

vi −
bπ(j+1)γπ(j+1)

γi

)

and the social

welfare is given by
∑

k αkγπ(k)vπ(k). Consider thatα1 ≥ ... ≥ αn and thatγ1v1 ≥ ... ≥ γnvn. The
definition of Nash equilibrium is analogous. Notice we can obtain a result very similar with Lemma 3.3 just
by repeating the same calculations for this model:

Lemma 5.8 Given v, α, γ and a feasible permutation π (a permutation from a Nash equilibrium) in the
separable click-through-rate model, if i < j and π(i) > π(j) then:

αj
αi

+
γπ(i)vπ(i)

γπ(j)vπ(j)
≥ 1 (2)

Proof. Since advertiserπ(j) can’t increase his utility by taking sloti, we have that:

γπ(j)αj

(

vπ(j) −
bπ(j+1)γπ(j+1)

γπ(j)

)

≥ γπ(j)αi

(

vπ(j) −
bπ(i)γπ(i)

γπ(j)

)

using thatbπ(j+1) ≥ 0 andbπ(i) ≤ vπ(i) we get the desired result.
Similarly, the structure characterization for Mixed and Bayes-Nash equilibria can be rephrased in the

context of separable click-through-rates, effectively replacing the valuesvi for bider i with the productviγi
in all expressions.

Appendix B: GSP is not a smooth game

This paper gave the firstO(1) bound for the Price of Anarchy of the GSP. As Roughgarden points out in
[11], games studied so far (as congestion games, facility location, valid utility games, ...) have their Price
of Anarchy proof based on a smoothness argument. In this section we note that this proof is essentially
different from all previous Price of Anarchy analysis as theGSP game is not smooth.

A game is said to be(λ, µ)-smooth if the following property holds:
∑

i

ui(s
∗
i , s−i) ≥ λSW (s∗) − µSW (s)
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for all possible strategiess, s∗, whereui are utilities of each player andSW is the social welfare function
which is given bySW =

∑

i ui. To model GSP as one of this games, we consider a game ofn+ 1 players -
then advertisers and the search engine. Each advertiser has one valuevi and its strategies are bids in[0, vi],
still supposing them conservative. The search engine has only one strategy, which is ”run GSP”, and its
utility are the payments it receives. The search engine is clearly not really playing the game, it is just there
to make the social welfare the sum of the utilities. The following theorem shows that GSP is not a smooth
game:

Theorem 5.9 Conservative GSP is not (λ, µ)-smooth for any parameters λ, µ.

Proof. Consider the game with2 slots with click-through-rates1 andα and two advertisers with values1
andv. Let s = (b1, b2) ands∗ = (b3, b4) where1 > v > b2 > b3 > b4 > b1. For this case, the expression
∑

i ui(s
∗
i , s−i) ≥ λSW (s∗) − µSW (s) becomes:

b1 + α(1 − 0) + 1(v − b1) ≥ λ(1 + αv) − µ(v + α)

Simplifying we get:
(1 + µ)(α + v) ≥ λ(1 + αv)

Sinceα andv are parameters, for anyλ, µ, we can make them arbitrarily small violating the inequality for
anyλ > 0,

Appendix C: 1.618 bound for the Pure Price of Anarchy

Theorem 5.10 For conservative bidders, the price of anarchy for pure Nash equilibria is bounded by
1+

√
5

2 ≈ 1.618.

Proof. As before, we prove the conclusion for all weakly feasible permutations. We define a sequence of
valuesrk so that we can prove that fork slots social welfare is at least anrk fraction of the optimum, and
prove thatrk converges to the desired bound. Letr2 = 1.25 and suppose we haver2, r3, ..., rn−1 and that
this property holds for them. Let’s calculate some ”small” value ofrn so that the property still holds.

Again, consider parameterα, v, a weakly feasible permutationπ and let’s assumei = π−1(1) and
j = π(1) . If i = j = 1, this is an easy case and it is straightforward to see that in this case the price of
anarchy can be bounded byrn−1. If not, assume without loss of generality thati ≤ j (since equation 1 is
symmetric inα andv we can just interchange the roles of them in the proof ifi > j). Let β = α1

αi
and

γ = v1
vj

. We know that1β + 1
γ ≥ 1. Following the lines of the proof of the last theorem we have:

∑

k

αkvπ(k) = αiv1 +
∑

k 6=i
αkvπ(k) ≥

1

β
α1v1 +

1

rn−1

(

i
∑

k=2

αk−1vk +
n
∑

k=i+1

αkvk

)

≥

=
1

β
α1v1 +

1

rn−1

[

i
∑

k=2

(αk−1 − αk)vk +
∑

k>1

αkvk

]

≥

≥ 1

β
α1v1 +

1

rn−1
(α1 − αi)vi +

1

rn−1

∑

k>1

αkvk

Now, we can usei ≤ j to say:vi ≥ vj = 1
γ v1 ≥

(

1 − 1
β

)

v1.

∑

k

αkvπ(k) ≥
[

1

β
+

1

rn−1

(

1 − 1

β

)2
]

α1v1 +
1

rn−1

∑

k>1

αkvk
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So, we would like to find somern such that we can say that
∑

k αkvπ(k) ≥ 1
rn

∑

k αkvk for all β ≥ 1, so we

would like to have: 1
rn

≤ min

{

1
rn−1

, 1
β + 1

rn−1

(

1 − 1
β

)2
}

for anyβ ≥ 1. But notice some other bound

we can get is:

∑

k

αkvπ(k) ≥
1

γ
α1v1 +

1

rn−1

∑

k>1

αkvk ≥
(

1 − 1

β

)

α1v1 +
1

rn−1

∑

k>1

αkvk

by following the lines of the proof of last theorem, but removing slot1 and advertiserj in the inductive step.

So another alternative is to get:1rn ≤ min
{

1
rn−1

, 1 − 1
β

}

for everyβ ≥ 1. So if we can get1/rn bounded

by the maximum of those two quantities, we are done. Summarizing that, we need:

rn ≥ max







rn−1,

[

max

{

1 − 1

β
,
1

β
+

1

rn−1

(

1 − 1

β

)2
}]−1







for all β ≥ 1.

Now we need to evaluate for which value of1
β ∈ (0, 1] we have the minimum formax

{

1 − 1
β ,

1
β + 1

rn−1

(

1 − 1
β

)2
}

.

The minimum can be in two points: the minimum of the quadraticfunction or the intersection between those
two functions. They intersect at1β = −r + 1 +

√
r2 − r (wherer stands forrn−1) and the quadratic min-

imum is at1 − 1
2r. So, forr ≥ 4

3 , the minimum occurs in the intersection and forr < 4
3 , it occurs in the

quadratic minimum. So:

rn =















(

1 − rn−1

4

)−1
, rn−1 <

4

3
(

rn−1 −
√

r2n−1 − rn−1

)−1

, rn−1 ≥ 4

3

since we want the smallest possible ratio. This allows to define rk recursively fromr2 = 1.25 and it is
easy to see that the sequence monotonically converges to thefixed point of that function which is the golden
rationϕ = 1+

√
5

2 ≈ 1.618. This happens because the function that mapsrn−1 to rn is non-decreasing and
has a fixed point inϕ, so if rn−1 ≤ ϕ thenrn ≤ ϕ.
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