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Abstract

Generalized Second Price Auction, also knows as Ad Wordans;tand its variants has been the
main mechanism used by search companies to auction pasitioaponsored search links. In this paper
we study the social welfare of the Nash equilibria of this gart is known that socially optimal Nash
equilibria exists (i.e., that the Price of Stability fordlgame is 1). This paper is the first to prove bounds
on the price of anarchy.

Our main result is to show that under some mild assumptiomgtice of anarchy is small. For pure
Nash equilibria we bound the price of anarchylb§18, assuming all bidders are playing un-dominated
strategies. For mixed Nash equilibria we prove a bound ofdeuthe same assumption. We also extend
the result to the Bayesian setting when bidders valuatiomsilao random, and prove a bound of 8 for
this case.

Our proof exhibits a combinatorial structure of Nash eduidi and use this structure to bound the
price of anarchy. While establishing the structure is sanplthe case of pure and mixed Nash equilibria,
the extension to the Bayesian setting requires the use @l wowmbinatorial techniques that can be of
independent interest.
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1 Introduction

Search engines and other online information sources usesepad search auction, or AdWord auctions,
to monetize their services. These actions allocate adeengnt slots to companies, and companies are
charged pay per click, that is, they are charged a fee for aaythat clicks on the link associated with the
advertisement. Mehta, Saberi, Vazirani, and Vazirani (§ cbnsidered AdWord auctions in the algorithmic
context, studying the problem of assigning AdWords to atilsens online as the word shows up in a search
guery. Since the introduction of the model, there has beechmwork in the area, see the survey of Lahaie
etal [7].

Here we consider AdWords in a game theoretic context: cenglie game played by advertisers in
bidding for an AdWord. The bids are used to determine bothadsgnment of bidders to slots, and also
the fees charged. The bidders are assigned to slots in ofrddsy and the fee for each click is decided
by variant of the so-calleeneralized Second PricéAuction (GSP), a simple generalization of the well-
known Vickrey auction [14] for a single item (or a single adiging slot). The Vickrey auction [14] for
a single item, and its generalization, the Vickrey-Clatikeves Mechanism (VCG) [3, 5], make truthful
behavior (when the advertisers reveal their true valuaiominant strategy, and make the resulting outcome
maximize the social welfare.

Generalized Second Price Auction, the mechanism adopteal lsgarch companies, is a simple and
natural generalization of the Vickrey auction for a sindtat,sout it is neither truthful nor maximizes social
welfare. In this paper we will consider the social welfarettoed GSP auction outcomes. Our goal in this
paper is to show that the intuition based on the similaritys&P to the truthful Vickrey auction is not so
far from truth: we prove that the social welfare is within aahconstant factor of the optimal in any Nash
equilibrium under mild assumption that the players use amidated strategies.

We consider both full information games when player vabrei are known, and also consider the
Bayesian setting when the values are independent randdabkes. Our results differ significantly from
the existing work on the price of anarchy in a number of wayani¥of the known results can be summa-
rized via a smoothness argument, as observed by Roughgdrtlerin contrast, we show in Appendix B
that the GSP game is not smooth in the sense of [11]. Secorst,kmown price of anarchy results are for
the case of full information games. The full informationtset assumes that all advertisers are aware of the
valuations of all other players. This is a very strong asgion@nd is not realistic. In contrast, the Bayesian
setting requires only much weaker assumption that valusigoe drawn from independent distributions, and
these distributions are known to the other players. Prothegprice of anarchy bound for the Bayesian
setting requires the use of novel combinatorial techniques

We use a standard model of separable click-though ratesrewthe probability of clicking on an ad-
vertisement; displayed in slot is «;;, i.e., the probability is a product of two separable commbsie
depending on the slot, and on the advertiser respectivelgimplify the presentation, for the main part of
the paper, we will focus on the simple case when= 1 for all j, that is, the probability of a click depends
only on the slot. In Appendix A we show that it is easy to extend results to the model with separable
click-through rates.

For both our simple model, and the case of separable click/h rates, it is known that there exists
Nash equilibria that are socially optimal [4, 13], i.e.,tttiee price of stability is 1. Itis not hard to give simple
examples of Nash equilibria where the social welfare istiably smaller than the optimum. However, these
equilibria are unnatural, as some bid exceeds the play&rati@ans, and hence the player takes unnecessary
risk. We show that bidding above the valuation is a dominatestegy, and define conservative bidders as
bidders who won't bid above their valuations. Our resulsuage that players are conservative.

Ourresults The main results of this paper are Price of anarchy boundsuii@, mixed and Bayesian Nash
equilibria for the GSP game assuming conservative biddesanotivate the conservative assumption, we



observe that bidding above the players valuation is doméhstrategy in all settings.

For each setting we exhibit a combinatorial structure ofiNeguilibria that can be of independent
interest. To state this structure we need the following timta For an advertisek let v, be the value of
advertiserk for a click (a random variable in the Bayesian case). For aislet (i) be the advertiser
assigned to slot in a Nash equilibrium (a random variable, in the case of miXegh, or in the Bayesian
setting).

e For the case of pure Nash equilibria the social welfare in shNguilibrium with conservative bidders

is at most a factor of.618 above the optimum. We achieve this bound via a structurabcherization
of such equilibria: for any two slotsand j, we show that in a Nash equilibrium with conservative
bidders, we must have that
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It is not hard to see that this structure implies that thegassent cannot be too far from the optimal:
if two advertisers are assigned to positions not in theieod bids, then either (i) the two advertisers
have similar values for a click; or (ii) the click-throughtea of the two slots are not very different,
and hence in either case their relative order doesn't atffectocial welfare very much.

e We also bound the quality of mixed Nash equilibria. For a miXash equilibriumr (i) is a random
variable, indicating the bidder assigned to sloand similarly let the random variabte(i) denote
the slot assigned to biddeér For notational convenience we number players in order ofedesing
valuation, and number slots in order of decreasing clicksaBy this notation, biddershould be
assigned to slotin the optimal solution. We derive the structure of pure Neghilibria by thinking
about a pair of bidders that are assigned to slots in revedss.&Such pairs are harder to define in the
mixed case. Instead, we will consider bideand his optimal slot, and get the following condition
for mixed Nash equilibria.
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and use this inequality to show that the social welfare ofxeehNash equilibrium is at least an fourth

fraction of the social welfare of the socially optimal assigent. Note that an analogous inequality

with bound 1 holds also for pure Nash, which implies a boun#@ oh the pure price of anarchy. We
used a different characterization above to be able to ptwetronger bound/

e We prove a bound of 8 on the price of anarchy for the Bayesittingeand the valuations, are
random. We do this via a slightly more complicated, struadtproperty, showing that an expression
similar to the one used in the case of mixed Nash must be atl1ééh in expectation. However,
establishing this inequality in the Bayesian setting in mbarder. In the context of pure and mixed
Nash, the inequality follows from the Nash property by cdasng a simple deviation by a player.
E.g., a player who would be assigned to slot the optimum, may want to try to bid high enough to
take over slot. In contrast, we are not aware of a single deviating bid thathelp establish a useful
structure. Instead, we obtain our structural result by iclemgg many different bids, and show that
the inequalities established by the different bids can pettoed to show the structure.

In the process we use a number of new techniques of indepeimtierest. The bids we use for player

i are closely related tRE[b,|v;; v(i) = k], twice the expected value of the bid in slowhere the
expectation is conditioned both on the valyeof playeri, and the fact that its optimal position is
These expectations as defined here depend on pldah through the conditioning and though the
position bidderi gets in the permutation. This dual dependence makes it hard to prove any properties
of them. For example, it would be natural to assume that fpvatuev; the values monotone increase
with £, but that is not always the case. To get around this problemwilluse instead slightly smaller
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values for the bids. We show via an interesting combindtargument using the max-flow min-cut
theorem, that the modified values do increase Witfihen we use a novel averaging technique (using
linear programming) to combine the resulting inequalit@esstablish the simple structural property.

Related work Sponsored search has been a very active area of researehlastlseveral years. Mehta
et al. [10, 9] considered AdWord auctions in the algorithmanitext. Since the original models, there has
been much work in the area, see the survey of Lahaie et al {§ &eneral introduction. Here we use the
game theoretic model of the AdWord auctions of Edelman edlghnd Varian [13], for a truthful auction
see Aggarwal et all [1].

We use the model of separable click-though rates, wherdittetiarough rate for biddey in slot: can
be expressed in a simple product fofiry;. For these models Edelman et al [4] and Varian [13] show that
the price of Stability for this game is 1, that is, there exidash equilibria that are socially optimal.

Lahaie [6] also considers the problem of quantifying thaaafficiency of an equilibrium. He makes
the strong assumption that click-through-ratedecays exponentially along the slots with a factor}§ pénd
proves a price of anarchy Oﬁn{%, 1— %}. In this paper, we make no assumptions on the click-throatgs.
Thompson and Leyton-Brown [12] study the efficiency lossafiloria empirically in various models.

We assume that bidders are conservative, in the sense thitder is bidding above their own valuation.
We can justify this assumption by noting that bidding abadge/aluation is a dominated strategy. Lucier and
Borodin [8] and Christodoulou at al [2] also use the cond@reaassumption to establish price-of-anarchy
results in the context of combinatorial auctions. Withooy additional requirement Nash equilibria, even
in the case of the single item Vickrey auction, can have soogdfare that is arbitrarily bad compared to
the optimal social welfare. However, we show that Nash éurial of conservative bidders is within small
constant factor of the optimum.

The paper by Lucier and Borodin [8] on greedy auctions is alssely related to our work. They
analyze the Price of Anarchy of the auction game induced Be@r Mechanisms. The consider in a
general combinatorial auction setting, greedy algoritkitls payments are computed using the critical price.
They show via a type of smoothness argument (see [11]) thiieafreedy algorithm is aapproximation
algorithm, then the Price of Anarchy of the resulting mecsmnsc + 1 - for pure and mixed Nash and for
Bayes-Nash equilibria. The Generalized Second Price méxrhds a type of greedy mechanism, but is not
a combinatorial auction, and hence it does not fit the framnkewbLucier and Borodin, and further the GSP
game does not satisfy the smoothness condition. The keytangrthec + 1 bound of Lucier and Borodin
[8]is to consider possible bids, such as a single mindeddsithe slot in the optimal solution, or modifying a
bit by changing it only on a single slot (the one allocatechimdptimal solution). The combinatorial auction
framework allows such complex bids; in contrast, the bidS8P have limited expressivity, as bid is a single
number, and hence bidders cannot make single-minded dBalas for a certain slot, or modify their bid
only on one of the slots. Like the GSP game, many natural bgdtiinguages have limited expressivity,
as typically allowing arbitrary complex bids makes the optiation problem hard. However, the limited
expressivity of the bidding language can increase the 9¢ash equilibria (as there are fewer deviating bids
to consider). Itis important to understand if such natuiddliing languages result in greatly increased price
of anarchy.

2 Preliminaries

We consider an auction with advertisers and: slots (if there are less slots than advertisers, consider
additional virtual slots with click-through-rate zero).eWwhodel this auction as a game witlplayers, where
each advertiser is one player. The types of the advertisergieen by their valuatiom;, which expresses
their value for one click. The strategy for each advertisex bidb; € [0, o).



There aren slots and based on the bids, we decide where to allocate daettiaer. In the most simple
model, thek-th slot containsy, clicks anday, is a monotone non-increasing sequece, ie.> as > ... >
ay,. We prove our results for this simple model, but they exteatirally to the more realistic model of
separable click-through-rates, as we show in Appendix A game proceeds as follows:

1. each advertiser submits a Bid> 0, which is his declared value for a click

2. the advertiser are sorted by their bids (ties are brokbitrarily). Call =(k) the advertiser with the
k-th highest bid

3. advertiserr(k) is placed on slok and therefore received; clicks

4. for each click, advertisét paysb, ;1), which is the next highest bid

The vectorr is a permutation that indicates to which slot each playersggaed - it is completely
determined by the set of bids. We define thiity of a useri when occupying sloj as given byu;(b) =
aj(vi — br(j41))- We define thesocial welfareof this game as the total value the bidders get from playing
it, which is: Zj ajur;)- Here in this paper we are concerned about bounding thelseeltare in an
equilibrium of this game relative to the optimal. This meaasis called Price of Anarchy. We analyze the
Price of Anarchy in three different settings of increasiogplexity:

e Pure Nash equilibrium: The valuation of each playey is a fixed value. We consider without loss of
generality thaty > v > ... > v,. Each player chooses a pure strategy, i.e., a determibistit; .
We say that a set of bids= (by,...,b,) is aPure Nash Equilibrium if any bidder can change his
bid an increase his utility, i.e.:

ul(bl,b_z) > ul(b;,b_,),Vb; S [0,00)

To gain some intuition, suppose advertiseés currently biddingh; and occupying sloj. Changing
his bid to something betweén;_,) andb, ;) won't change the permutationand therefore won't
change the allocation nor his payment. So, he could try teease his utility by doing one of two
things:

— increasing his bid to get a slot with a better click-througte. If he wants to get a slét< j he
needs to overbid advertisefk), say by bidding, ;) + . This way he would get sldt for the
price by (i) per click, getting utilitya (v; — br))-

— decreasing his bid to get a worse but cheaper slot. If he wargget slotk > j he needs to
bid below advertiserr(k). This way he would get slat for the priceb, ;1) per click, getting

utility ag (v; — br(ry))-

We are interested in bounding tReire Price of Anarchy, which is the ratio) _; cjv;/ >~ ajvr ),

between the social welfare in the optimal and in a Nash dxyuilin.

e Mixed Nash equilibrium: The valuationv; are still fixed and we can assume (without loss of gen-
erality) thatv; > ... > vy, but each player is allowed to pick a distribution over siés. We can
think that each player chooses a random variabknd the Nash equilibrium means that the chosen
random variable maximizes the expected utility. In otherdso

Elui(bi, b—;)] > Elu; (b}, b_;)], Vb;

where expectation is with respect to the distribution ofsbidNow, the assignment is a random
variable determined by and therefore the social welfare is also a random varialen(éhough the
optimal is fixed). The Price of Anarchy is the ratip:; cjv; /E[>; ajvr ).
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e Bayes-Nash equilibrium: In a more realistic model, the player’s don’t know the valag of other
players, but they have beliefs about it. This is modeled Hews: the valuationv; are drawn from
independent distributions. A player chooses a bid (pogsibb randomized fashion) based on his
own valuation. Therefore, the strategy of playés a bidding functiorb;(v;) that associates for each
valuationv; a distribution of bids. A set of bidding functions is said ® & Bayes-Nash equilibrium
if:

Efu; (bi (v3), b—i(v—s))vs] > Elu (b} (v3), b—i(v—s)|vs], Vbi(vi) Vv,

where expectations are taken over values and randomnasbyipéayers.

The Nash assignmentis a random variable, since it is dependent on the bids, wdrelmandom. The
optimal allocation is also a random variable, and we defity it: let v(k) be the slot occupied by
playeri in the optimal assignment. Therefores a random variable such thgt> v; = v(i) < v(j).
The optimal social welfare is therefoEj a,(;j)vj. In this setting the quantity we want to bound is
the Bayes-Nash price of Anarchy, given by the raligy - ; v, (;)v;|/E[>_; ajvr ()]

2.1 Equilibria with Low Social Welfare

Even for two slots the gap between the best and the worse Npslibeum can be arbitrarily large. For
example, consider two slots with click-through-ratgs= 1 andas = r and two advertisers with valuations
v1 = 1 andvy = 0. It is easy to check that the bids = 0 andb, = 1 — r are a Nash equilibrium where
advertiserl gets the second slot and advertigagets the first slot. The social welfare in this equilibrium is
r while the optimal isl. The price of anarchy is therefoigr. Sincer can be any number frofto 1, the
gap between the optimal and the worse Nash can be arbittargg.

Notice however that this Nash equilibrium seems very aidificadvertiser2 is exposed to the risk of
negative utility: if advertiset (or another advertiser) adds a bid somewhere bet@eeid1 —r this imposes
a negative utility on advertis&. For advertiseR, bidding anything greater than zero is clearly a dominated
strategy. It is not hard to see that for anybiddingb; > v, is dominated by the bid,.

3 Pure Nash Equilibrium

We say pure bid; for advertiseri is conservative if b; < v;. Next we show that non-conservative bids are
dominated. We say that a stratelgyis dominated if there is somé) such thatu; (b;, b—;) < u;(b},b_;) for
all b_; and for at least one value 6f ; it holds strictly.

Lemma 3.1 Abid b; > v; is dominated by b} = v;.

Proof. Decreasing the bid fror; to v; changes allocation and or payment only if there is a bigdgr
with v; < b; < v;. However, in this case, biddegetting negative utility for each click, and with big, he
cannot get negative utility. |

Given the parameters, v, we say thab is aconservative bidder equilibrium if it is a Nash equilibrium
andb; < v; for all bidders:.

Theorem 3.2 For 2 dots, if all advertisers are conservative, then the price of anarchy is exactly 1.25.

Proof. We can suppose without loss of generality (by scatingndv) thata; = 1, as = r andajv; +
asvy = 1. In any non-optimal Nash equilibriut < b, and by the Nash conditionv; — 0) > 1(v; — b3)
and by the conservative conditiop < vo. Substitutingy; = 1—rwv5 in those two expressions and combining
them to eliminate thé, term we getwy > % Therefore the social welfare in any non-optimal Nash

iISaqvg + vy = lvg +7r(1 —rvg) > 1+ r(1 —7r) < 1.25. [ |



3.1 Weakly Feasible Assignments

Next we show that equilibria with conservative bidderss§egs the simple property mentioned in the intro-
duction. We will call the assignments satisfying this pmiyp&eakly feasible. In the next section we analyze
the welfare properties of weakly feasible equilibria.

The equationsq?) are not very easy to work with, since they are not very symimand they depend
onb. We propose a cleaner form of representing an equilibriuah jtist usesy, v and the permutation.
Although it is a weaker property it still captures most of trede-offs:

1. if valuesw; are very close then the order of the bidders doesn'’t influémesocial welfare that much
2. if valuesw; are very well separated, then permutations that would m®dlbad social welfare are not
feasible because they violate Nash constraints

Lemma 3.3 Given v, a and a Nash permutation =, if i < j and w(:) > m(j) then:

Yy @ >y (1)
Qi Un(j)

in particular, 22 > 1

Y4 > 1 Im(i)
«; 2 V(s

Proof. Since it is a Nash equilibrium bidder in slpis happy with his condition and don’'t want to increase

his bid to take slot, S0: a;(vx(j) — br(j+1)) = @i(Vr(j) — br()) SINCELL(j11) = 0 andb,;y < v then:

Vn(j) 2 4 (Vn(j) ~ Vn(i) u
Inspired by the last lemma, given parameters we say that permutationis weakly feasible if equation

1 holds for eachi < j, 7(i) > 7(j). From Lemma 3.3 we know that:

Corollary 3.4 Given «, v, any permutation corresponding to a Nash equilibrium with conservative bidsis
weakly feasible.

Our main results follow from analyzing the price of anarchgrcrzj a;v;/ Zj ajur () over all weakly
feasible permutations.

3.2 Price of Anarchy Bound

Here we present the bound on the price of anarchy for weaklsiliéee permutations, and hence for GSP
for conservative bidders. We prove it is boundedibyl8. We will prove this bound for weakly feasible
permutations and it will automatically be deduced to a bofordfeasible permutations. Notice that the
weakly feasible permutation nicely capture the fact thadbertisersi and j are in the "wrong relative
position” (i.e. different to the one in the optimal) thenheit their values are close (within a factor 2)f

or their click-through-rates are close (within a factor2pf The proof of thel.618 factor can be found in
Appendix C.

Theorem 3.5 For conservative bidders, the price of anarchy for pure Nash equilibria of GSP is bounded by
14V5 ~ 1.618
5 .618.

Proof. As a warm-up we will prove that the price of anarchy is bounbg@, since the proof is easier and
captures the main ideas. We show this by inductiomoror 2 advertisers an@ slots we know that the

worst possible social welfare for a weakly feasible perromais at most al .25 times the optimum. So,

now we need to prove the inductive step. Consider parameterand a weakly feasible permutatian Let

i = 7~1(1) be the slot occupied by the advertiser of higher valuejaadr (1) be the advertiser occupying
the first slot. Ifi = 5 = 1 then we can apply the inductive hypothesis right away. If aquation 1 tells us



that: & > L or Z—; > 1 Suppose: > 1 and consider an input with slétand advertiset deleted. This
input hasn — 1 advertisers and — 1 slots and the permutatianrestricted to those is still weakly feasible,
so by the inductive hypothesis:

Z QkVr (k) =

ki

(Oél’Ug + ot Vi Oén’Un)

vV
N = N~

(v + ... + QU; + Qi 1Vi41 + ... + QUp)

therefore:

1 1
E QpUr (k) = GV + g QfUr (k) = 51 + 3 g QR Uk
k ki k>1

If z—i > % we just do the same but deleting sloand advertisel from the input. This finishes the bound of

The above analysis is not tight. For example, when the ratio; is equal to 1/2, our inequality states
that we also have; /v; > 1/2. We prove the stronger bound in Appendix C by a more carefailyais using
the full strength of the inequality. As before, we prove thaausion for all weakly feasible permutations.
We define a sequence of valugsso that fork slots social welfare is at least ap times the optimum. We
know thatr, = 1.25, and use a similar but more careful induction proof to set tgrarsion ofr;,, and then

show (in Appendix C) that, converges to the desired boundlétﬁ. |

4 Mixed Nash equilibrium

All our results so far dealt with Pure Nash equilibria of th&/5 Here we prove a bound on the Price
of Anarchy of4 for the mixed Nash equilibria. Consider the same settingyqus with valuationg; >

... > v, and slots with click-through-rates; > ... > «,,. Now, the strategy of playeris a probability
distribution on|0, v;] represented by a random variabje

Lemma 4.1 A randomized bid b; where P(b; > v;) > 0 isdominated by b, = min(v;, b;).

Now, the allocation, represented by the permutatias also a random variable. For notational conve-
nience, le = 7—!. Arandom vectob = (b1, ..., b,) is a mixed Nash equilibrium if for each deterministic
bid b.: Eu;(b;, b—;) > Eu,;(b;,b_;). We begin by proving a bound similar to Lemma 3.3 for mixed iNas
and then using that to prove a weaker bound. Note that theddsudifferent as it involves a biddérand its
locations in the optimal allocation, rather than two bidders that dliccated to “wrong relative positions”.

Lemma 4.2 If the random vector b isa mixed Nash equilibrium for GSP then for each player i:

EO[U(Z-) n va(i)

S 1
«; v 2
Proof. Bidder: by our notation has thé&h highest valuation, and hence would be in itfeslot in the
optimal assignment. We will consider whether playdsenefits by deviating to the deterministit =
min(v;, 2Eb,(;)), whereEb, ;) is the expected value of the bid that gets $lot

We claim that with probability at Iea%t, the bidder gets one of the slots ff, . .., i}. If b, = v; then
it for sure gets at least theth slot as our conservative assumption guarantees thatlalprevious — 1
players can bid more. i, = 2Eb. ;) by Markov's inequality: P(b;y > b;) < % = % Therefore we
have:



Eagvi > Eug(b) > Eu; (b, b_;) > % i(v; — b)) >
(

1
> 2OZZ( i — 2IEb ()) ;i (v; — 2Evﬂ(i))

l\DI)—t

Now it is just a matter of rearranging the expression. |

Theorem 4.3 The Price of Anarchy for the mixed Nash equilibria of GSP with conservative biddersis < 4.

Proof. The proof is a simple application of Lemma 4.2 and some algelnanipulation:
Z ) Z Z _ =z Z o [(Qe@ U@ ) _
E[ : u;(b)] [E Qe@pyvi +E )Y v, = E am( o + v >—
Ea va(z) 1
E (07X} ( % > = g [e7X%3

5 Bayes-Nash equilibrium

Recall that in the Bayesian setting, the valugsre independent random variables and their distributions
are public knowledge. A strategy for a playkeis a bidding functionb;(v;) (or a probability distribution

of such functions) wherég;(v;) is the players bid when his value 4. For simplicity of presentation we
will consider only pure bidding functions, but our resulidend to randomized bids also. As before, we
will assume that the bid;(v;) is in the rangg0, v;]. Here we are assuming that players don’t overbid (as
overbidding is dominated strategy).

As before, we will user ande = 7! to denote the permutation representing the allocationyanwill
usev to denote the random permutation (definedvpypuch that playei occupies sloi/ () in the optimal
solution. The expected social welfareligy |, a;v.;)] = E[>_; a,(;)vi] and the social optimum is given by

E[}; aw(syvi]. The goal of this section is to bound the price of anarchyraltle of these two expectations.

5.1 Price of Anarchy bound

Theorem 5.1 Ifaset of bids by, . .., b, are a Bayes Nash equilibrium in conservative strategies then:

E[Z aivw(i)] > %E[Z azx(i)vi]

in other words, GSP has a Bayes-Nash Price of Anarchy in conservative strategies bounded by 8.

The proof of the theorem is based on a structural charaatenz analogous to the one used for Mixed
Nash equilibria, which is similar in form to the previous enbut much harder to prove. We can state the
inequality used to bound the price of anarchy for mixed NashBo, ;) + iEvy;) > %Uiai. To extend
this expression we need to take expectations over valigation

Playeri knows his own valuatiom;, so in considering alternate bids for the player, we needtsider
expectations conditioned on the valug To be able to deal with the conditioning of the playewn his
own valuationv; we make the terms on the expression independent T do this, letr(k) be the bidder
occupying slotk in the case didn't participate in the auction, i.er! (k) = n(k) if o(i) > o(k) (k) =

m(k+ 1) otherwise. Now we can state the claimed inequality. Notettirebound is stronger than suggested
by the case of mixed Nash, &5 ,;)) = br(u(i))-



Lemma 5.2 If {b;(-) }; isa Bayes-Nash equilibrium of the GSP then:
1
villag () o] + Eloy ) briwayvil 2 Joillaya vl

As before the price of anarchy bound follows easily from #marna.

Proof of Theorem 5.1 : The proof follows the lines of the proof of theorem 4.3:

SW——EZ OZZ (i) +acr(2)vl 2 EZ OZZ —1—04() )_
= ‘EZ )+ Ao(i)vi) = §Ez(au<i>bwi<u<z>) + (i) =

Z Uz'au(z')]

recalling thatr’ (k) is eitherr (k) or 7(k + 1) implying the inequality in the second line. ]

1
g ZE[au(i)bwi(u(i))|Ui] +WE[O‘0(Z’)|U2‘]] > 2E

The hard part of the proof is proving Lemma 5.2. The main difficin the Bayesian setting is that the
inequality is not established by a single deviating bid.he base of pure Nash we considered the bidder in
slot j biddingd’ = b,(;) for a pair of slotsi < j. In the case of mixed Nash, we considered biddgdding
V' = min(v;, 2Eby;y). In both cases the structural inequality followed by coesity a single deviation.
In contrast, we obtain our structural result by considermany different bids, and using a novel averaging
argument, and a structural property to show that the inégepskstablished by the different bids can be
combined to show a simple structure.

It would be natural to consider a set of b&I8[b,. ) |vi; v(i) = k] twice the expected value of the bid in
slot &k where the expectation is conditioned on the valpef playeri, and the fact that its optimal position
is k. The bids as defined depend on playéoth through the conditioning and though the position bidde
gets in the permutatio) which makes it hard to prove any properties of them. For @tl@nthese bids may
not be monotone functions &f To get around this problem, we will use instead the slighthaller bids

Bk = QE[bwi(k)”Ui; I/(Z) = k]

which gets rid of this second dependence. Notice ats defined as a conditional expectation, so it is a
function ofv;. Notice therefore that it is a bidding function and not a ¢ansfunction.

The proof of Lemma 5.2, depends on two combinatorial resdlte first, is a structural property: we
claim that the bid$3,, as now defined are monotoneknThis will allows us to argue that bi@;, has a good
chance of taking a slét’ > k whenv (i) = k', asBy > By.

Lemma 5.3 Given bidding functions b;, E[by:,;)|vi, v(i) = k] innon-increasing in &

We will prove the lemma above using a combinatorial arguraedtmax-flow min-cut theorem.

To be able to combine the inequalities we get by a considehiaeglifferent bidsB;, we use a novel way
to combine inequalities via a 'dual averaging argument’.e Tombination will simultaneously guarantee
that one average is not too low, and a different average isrfoght. We expect that this Lemma 5.4, which
prove using linear programming duality can have other appbns.

Lemma 5.4 Given any positive values v, and By, Therearexz;, > 0, >, =3, = 1 such that:

n 1 n
Zﬁck Z’Yj Z 5 Z’Yg‘
k j=k j=1



n n
Z xy By, Z v < Z 75 B
% =k =1

before we prove these key lemmas, we show how to use themdeingrthe main Lemma 5.2:

Proof of Lemma 5.2 : As outlined above we will consider deviation for playeri at bids B;. for all
possible slots. Since it is a Nash equilibrium playercan’t benefit from changing his strategy each will
give us an inequality on the utility. We the will use Lemma t4wverage them to get the claimed inequality.
Consider biddei deviates taBy = max{v;, 2E[bi()|vi; v(i) = k]}. Notice that by Lemma 5.3 we have
thatB; > By > ... > B,. Letpy = P(v(i) = k:|vz) and leto’ be the random variable that means the
click—through—rate of the slot he occupies by biddig, then:

UiE[aa(i)‘vi] > E[a/( Bk ’Uz Zp] Bk)’”u Z pjaj )
]>l€

where the last inequality will follow by estimating the pedility that by biddingB,, the player gets the slot
j or better whenv/(i) = j for somej > k. In the caseBy, = v; itis trivial. If By = 2E[bi|vi; v(i) = k],
then we use thaB; > B;, by Lemma 5.3, and we get:

—_

P(a’ > ajlvi,v(i) = j) = P(By > byig|vi, v(i) = ) > P(Bj > bgigjlvi,v(i) = §) > 5

\)

by Markov's Inequality. Now, we use the Lemma 5.4 appliechwy, and~, = prag. Using thez;, from
the Lemma, we get:

viE[a, \vz _Zxkz —pjoj(v; — Bg) > Uzza]pj ijaijZ
k j>k J

Vi[5 [vi] — Elow ) bri gy i

5.2 Proving that bids B, are non-increasing ink

We will prove Lemma 5.3 in several steps. First we prove bsuessuming all but a single player has a
deterministic value, and take expectations to get a camditiversion. Then we use a max-flow min-cut
argument to average these bounds get the claimed overaitibou

Proof of Lemma 5.3 : We want to prove thatl[b..: ) |vi, v(i) = k] > E[byi(pq1)|vi, (i) = k + 1]. The
valuew; is in positionk in the optimum if exactly: — k values are below;. Consider such a sétof agents,
i ¢ S, and the corresponding event:

Ag ={v; <wv;Vj e S,v; >v;Vj ¢ S}
The event (i) = k can now be stated asg—,_,As, and so what we are trying to prove is:
E[byi () [vis Ujsj=n—kAs] = Elbri (1) Vi, Upsrj=p—k—1457]
Take asets’ C S,i.e.,S = S"U{t} for some agent  i. The first claim is that:
Claim5.5 Foraset S’,and S = S’ U {t} for ¢t £ i

E[bri () [vis As] > Elbri(py1)lvis As]

10



To see this notice that:

Elbri(iy|vis As, {vj }izitl 2 Elbgi gy |vis Asry {vj }zid]

The conditioning on the two sides differs only by the valudigider¢. In identical conditioning the bid of
positionk is clearly higher than the bid of positidgn+ 1, and by letting one bidder change, we can't violate
the above inequality. Taking the expectation ofref};.; , we get the inequality in of Claim 5.5.

To finish the proof of Lemma 5.3, we would like to add the indijies for different set pairgsS, S’).
The next combinatorial lemma states that there are valygs > 0 for S’ C S such that:

Zx\s s = P(Ag|vi, Ujg—n_-1As) and > Agg = P(Asg|vi, Ujgip_jpAs)
S/
Taking the a linear combination of the inequalities (5.5)det pair(S, S") with coefficients\g s lets the
claimed bound. [
Lemma 5.6 Thereexists values Ag s» > 0 for set pairs S’ C S with |S’| =n —k —1and |S| = n — k such
that the equations above hold.

Proof. We will use network flows to prove that thes - values exist. Before we do that, consider the
following characterization oP(As|v;, Ujg|—,—xAs): letp; = P(v; > v;), then we can write:

Hjespj ngés—‘,-i(]‘ _p])
Zm — Hj$T+i(1 — D))

(S) = [1,eg ¢, then we can rewrite:

P(Aslvi,Ujsj=n-rAs) =

If we defineg; =

¢(5)
> )=k ?(T)
The existence of thag ¢ is equivalent to the existence of a max-flow in the followiregwork: consider a
bipartite graph with left nodes corresponding to s¢tef |S'| = n—k—1 and inflow% and the right

P(As|vi,Ujg|=n—rAs) =

nodes corresponding to sefof |S| = n — k and outflowz‘z’(j() 5y We add an edggs’, S) if S C S with
capacityoo. We need to prove that there max-flow in thls graph has si@nd then the flow values define
Asr,s). We use the min-cut/max-flow theorem (in this case, thisuse@hted version of Hall's Theorem):
there is a max-flow of sizé if and only if for each collection of setd’, ... ,A{D of sizen — k — 1, itis
the case that he total flow that needs to enter the set is atdsdmsg as the outflow that is available at the
neighbors of the set:

p
oA _ o(4)
2T 6 < A;g%m_k 55 0(5)
which can be rewritten as:

Sos)-Yen< S ea) e
s i o

AICA|Al=n—k

Notice that both sides have sums of product2(f — k) — 1 terms of typeg;. If we can prove that all
terms in the LHS appear in the RHS with the at least same ricitjpwe are done. We prove it based on a
combinatorial construction.

11



The products on the two sides consist productg whlues for pairs of setsS, 4;) and(S — j, A; + j)
respectively. We want to map each péff, 4;) to (S — j, A; + j) without collisions. If we can do this,
it proves the claim. We say the paifS!, 4;) and (52, 4;) are equivalent ifS' U 4; and.S? U A; are the
same (including multiplicities of the elements). Now, jased to map each equivalence class of elements in
a collision-free manner. The Lemma 5.7 below shows thatdhewing construction satisfies the property:
taket = (]SUA;|—|SNA;|—1), identify (SUA;)\ (SNA;) with [2¢+1] and choose takg= f;(A4;\5)\ A;.
|

Lemma 5.7 For all ¢, then there is a bijective function f; : (1) — ([Qtﬁjl”) suchthat S C £,(S), where
(n]={1,...,n}and (V) = {T C S;|T| = t}.
Proof. Consider a bipartite graph where the left nodes(&é ') and the right nodes are”’/"|'1) and there

is an(A, B) edge ifA C B. Notice this is a regulak + 1-graph. Since all regular bipartite graphs have
perfect matchings, which prove the claim. |

5.3 Proving the dual averaging Lemma

Proof of Lemma 5.4 : We want to prove that the following linear programming peshlis feasible:

max 0 S.1.

n 1 n

—ZwkZ’Yj < —52%'
k j=k j=1

n n
ZkakZ’Yj < Z’YJ'BJ'
k j=k j=1
Zwk =1
k

xk20

Verifying that this program is feasible is the same as varifithat the dual is feasible and bounded. The
dual is:

) 1 n n
min —(;55 Z v+ Z’ijj + st

=) j=1

—¢ (Z’Yj) + By, (Z%‘) +£>0, VEk
j=k J=k

o, >0

This linear problem has a solution for anyy) > 0 by settingé sufficiently low. So the linear program
is the same as the following optimization problem:

) 1 n n n
¢I,I1lp1§0 —(;55 ;’yj + 1) Z’Yij + HlliiX |:<Jzk ’Yj) (¢ —¢By)

j=1

Our goal is to prove that for any fixeg., B, > 0, for any values ofp, ) > 0 this is a non-negative
expression, and establishing that its bounded. We claitnotie of the following must be non-negative for

12



sum value of:

ﬂl% Do+ B+ | Y v | (0 —¢By)
j=1 j=1 j=k

We will show this by summing the above expressions weightedh and showing that the result is non-
negative. Therefore, at least one of the summands must beegative. The sum is

S |5t e S uB+ [ X | (0 - B
k j=1 j=1 =k

And this expression is nonnegative,¢ais multiplied by, >~ 77 — 5 >, X2 ; 757 Which is> 0 and
¢ is multiplied by~ >~ 7 Bj — Y_4 2 51 Vi 7k Bk, Which is also> 0.

References

[1]

2]

[3]
[4]

[5]

[6]

[7]

[8]

G. Aggarwal, A. Goel, and R. Motwani. Truthful auctionsr foricing search keywords. IBC '06:
Proceedings of the 7th ACM conference on Electronic commerce, pages 1-7, New York, NY, USA,
2006. ACM.

G. Christodoulou, A. Kovacs, and M. Schapira. Bayestambinatorial auctions. IhCALP '08:
Proceedings of the 35th international colloquium on Automata, Languages and Programming, Part I,
pages 820-832, Berlin, Heidelberg, 2008. Springer-Verlag

E. H. Clarke. Multipart pricing of public good$2ublic Choice, 11(1), September 1971.

Edelman, Benjamin, Ostrovsky, Michael, Schwarz, anadtil. Internet advertising and the gener-
alized second-price auction: Selling billions of dollareritn of keywords. The American Economic
Review, 97(1):242-259, March 2007.

T. Groves. Incentives in team&conometrica, 41(4):617-631, 1973.

S. Lahaie. An analysis of alternative slot auction desifpr sponsored search. BC ' 06: Proceedings
of the 7th ACM conference on Electronic commerce, pages 218-227, New York, NY, USA, 2006. ACM.

S. Lahaie, D. Pennock, A. Saberi, and R. Voh#égorithmic Game Theory, chapter Sponsored search
auctions, pages 699-716. Cambridge University Press, 2007

B. Lucier and A. Borodin. Price of anarchy for greedy aoies. InSODA’10. ACM, 2010.

[9] A. Mehta, A. Saberi, U. V. Vazirani, and V. V. Vazirani. Aerds and generalized on-line matching.

[10]

[11]

In FOCS pages 264-273, 2005.

A. Mehta, A. Saberi, U. V. Vazirani, and V. V. Vazirani.dvords and generalized online matchirdg.
ACM, 54(5), 2007.

T. Roughgarden. Intrinsic robustness of the price @frahny. InSTOC '09: Proceedings of the 41st
annual ACM symposium on Theory of computing, pages 513-522, New York, NY, USA, 2009. ACM.

13



[12] D. R. M. Thompson and K. Leyton-Brown. Computationahbysis of perfect-information position
auctions. INEC'09: Proceedings of the tenth ACM conference on Electronic commerce, pages 51-60,
New York, NY, USA, 2009. ACM.

[13] H. R. Varian. Position auctiongnternational Journal of Industrial Organization, 2006.

[14] W. Vickrey. Counterspeculation, auctions, and coritipetsealed tendersThe Journal of Finance,
16(1):8-37, 1961.

Appendix A: Extension to separable click-through-rates

So far, we have considered that the click-through-ratesie¢riser: placed on slotj depends only on the
slot in which he is placed. A more general model caegarable click-through-ratesassumes it depends
on a product of two factors: one depending on the bidder amer atepending on the slot. Let’s say that if
advertiser is placed on slof, it will get click-through-ratey;«; where; is some "quality factor” attributed
to each advertiser. The generalization of Second Priceidwr this setting ranks the advertisers in order
of v;b; and charges an advertiser the minimum value it needed tmlmdriserve his position. For example,
if 7 is the permutation defined by sortingb; (i.e, 7(k) is the advertiser with thé" highest value ofy;b;)
then we charge advertise(;j) the amount ofb.. ;. 1yYr(j+1)/V=()-

In this setting the utility of bidde assigned to slof is u; = v (Ui - W) and the social
welfare is given by) -, arVr(i)vx(r).- Consider thaty; > ... > «, and thatyv; > ... > y,v,. The
definition of Nash equilibrium is analogous. Notice we cataoba result very similar with Lemma 3.3 just

by repeating the same calculations for this model:

Lemma 5.8 Given v, «, v and a feasible permutation = (a permutation from a Nash equilibrium) in the
separable click-through-rate mode!, if i < j and 7(i) > =(j) then:
j 7w (3) Ur (3
& i V(i) Un (i)

>1 (2)
@i Vr(5)Vn(5)

Proof. Since advertiserr(j) can’t increase his utility by taking slet we have that:

br(j+1) V(i +1) br(i) T ()
V(i)Y (vw(j) B #) = el (v”(j) - T(a))

using that, ;1) > 0 andby(;) < vr(;) we get the desired result. |
Similarly, the structure characterization for Mixed andyBs:Nash equilibria can be rephrased in the

context of separable click-through-rates, effectivelylaeing the values; for bider: with the producty;~;

in all expressions.

Appendix B: GSP is not a smooth game

This paper gave the firg?(1) bound for the Price of Anarchy of the GSP. As Roughgardentpant in
[11], games studied so far (as congestion games, facildgtion, valid utility games, ...) have their Price
of Anarchy proof based on a smoothness argument. In thisoeewie note that this proof is essentially
different from all previous Price of Anarchy analysis as @®P game is not smooth.

A game is said to bé\, ;)-smooth if the following property holds:

Z wi(st, s_i) = ASW(s*) — uSW (s)
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for all possible strategies, s*, wherew,; are utilities of each player anslii’ is the social welfare function
which is given bySTW = " u,;. To model GSP as one of this games, we consider a game-df players -
then advertisers and the search engine. Each advertiser hasilbeayand its strategies are bids|in v;],

still supposing them conservative. The search engine higsome strategy, which is "run GSP”, and its
utility are the payments it receives. The search enginesarlgl not really playing the game, it is just there
to make the social welfare the sum of the utilities. The folttg theorem shows that GSP is not a smooth
game:

Theorem 5.9 Conservative GSP is not (A, u)-smooth for any parameters A, .

Proof. Consider the game with slots with click-through-rate$ and« and two advertisers with valuds
andv. Lets = (b1, b2) ands™ = (b3, by) Wherel > v > by > b3 > by > by. For this case, the expression
Yo ui(sh,s—i) > ASW(s*) — uSW(s) becomes:

by +a(l—0)+1(v—>0) > A1+ av) — pu(v+ )

Simplifying we get:
(14 p)(a+v) > A1+ av)

Sincea andv are parameters, for any, i, we can make them arbitrarily small violating the inequyafar
any\ > 0, |

Appendix C: 1.618 bound for the Pure Price of Anarchy

Theorem 5.10 For conservative bidders, the price of anarchy for pure Nash equilibria is bounded by
L5~ 1.618.

Proof. As before, we prove the conclusion for all weakly feasiblenpgations. We define a sequence of
valuesr; so that we can prove that f@rslots social welfare is at least ap fraction of the optimum, and
prove thatr;, converges to the desired bound. ket= 1.25 and suppose we have, rs, ..., r,_1 and that
this property holds for them. Let’s calculate some "smadifue ofr,, so that the property still holds.

Again, consider parameter,v, a weakly feasible permutation and let's assumeé = 7—!(1) and
j=m=().1fi =4 =1, thisis an easy case and it is straightforward to see thdtisncase the price of
anarchy can be bounded by_;. If not, assume without loss of generality that j (since equation 1 is
symmetric inae andv we can just interchange the roles of them in the proaf i j). Letg = % and

v = 2. We know tha% + % > 1. Following the lines of the proof of the last theorem we have:
J

Z Qg Ur (k) = 04U1 + Z QU Ure( (Z ap_1v, + Z akvk> >
k

ki k=i+1
1 1 [
- Balvl + . Z(ak_l — ag)vk + Zakvk >
[ k>1
1
> 5 (o1 — aj)v; + . QU
n—1 n=130

Now, we can usé < j to say:v; > v; = %vl > (1 — l) V1.

1 1 1)? 1
Zakvﬂ(k) > B + . <1 - B) a1v1 + . Zakvk
& n—1 n—1 ko1
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So, we would like to find some, such that we can say that, QU (k) = % > axvy forall g > 1, sowe

2
would like to have:% < min{ - ,ﬁ + (1 — %) } for any 5 > 1. But notice some other bound

T7L 1

we can get is:

Zakv > oqm +

= o

,
n—l k>1

1
Zakvk > (1 — B) avy +

,
k>1 n—l

by following the lines of the proof of last theorem, but rermgyslot1 and advertisey in the inductive step.
So another alternative is to ge%— < mln{ for everys > 1. So if we can get /r,, bounded
by the maximum of those two quantities, we are done Sumingrthat, we need:

rn 2> Max  'np_1, |Max l—ll—k ! <1—l>2 _
- ’ BB Ta-a B

2
Now we need to evaluate for which valuejpfe (0, 1] we have the minimum famax ¢ 1 — 4, § + - (1 - %)

forall g > 1.

The minimum can be in two points: the minimum of the quadratitction or the intersection between those
two functions. They intersect %t = —r + 1+ vr?2 — r (wherer stands for,,_;) and the quadratic min-
imum is atl — —r So, forr > 2, the minimum occurs in the intersection and fox. 2 3 it occurs in the
quadratic minimum. So:

Tn—1 -1
(1_ I ) Tl <

-1
2
<rn—1 - Thno1— 7”n—1> y 'n—1 >

since we want the smallest possible ratio. This allows tondefj, recursively fromr, = 1.25 and it is
easy to see that the sequence monotonically converges figedgooint of that function which is the golden
rationp = 1+T‘/5 ~ 1.618. This happens because the function that mgps to r, is non-decreasing and
has a fixed point ip, so ifr,,_1 < ¢ thenr,, < .

Ty =

Wl k= Wl
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