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Abstract— We consider low-rank reconstruction of a matrix e« Spectral norm: What is the best reconstruction error
using a subset of its columns and we present asymptotically optimal  with » > k columns? We present polynomial-time
algorithms for both spectral norm and Frobenius norm reconstruc- (deterministic and randomized) algorithms with approx-

tion. The main tools we introduce to obtain our results are: (i) the imati toticall tchi | b d
use of fast approximate SVD-like decompositions for column-based Imation error asymptotically matching a lower boun

matrix reconstruction, and (ii) two deterministic algorithms for proven in this work. Prior work h?d focused on t_he
selecting rows from matrices with orthonormal columns, building r = k case and presented near-optimal polynomial-time
upon the sparse representation theorem for decompositions of the  algorithms [5], [16].

identity that appeared in [1]. « Frobenius norm: How many columns are needed

Keywords-low-rank matrix approximation; subset selection; for relative error approximation, i.e. a reconstruction
SVD; approximate SVD; spectral sparsification error of (1 + €)|[|A — Agl|, for ¢ > 0? We show
that O(k/¢) columns contain a rank-subspace which

1. INTRODUCTION reconstructs A to relative error, and we present the

first sub-SVD-time (randomized) algorithm to identify

The best rankk approximation to a matrix R .
bp re these columns. This matches thék/¢) lower bound

. k T
IS Ar = 3y oitivy, Whereoy > o3 > - > oy > 0 in [7] and improves the best known upper bound of
are the topk singular values of A, with associated left and Ok loa k + k 51 (7] (111 [22
right singular vectoray;, € R™ andv; € R" respectively. (Klogk + k/e) [8], [7], [11], [22].
(See Section 1.1 for notation.) The singular values and.l. Notation
singular vectors of A can be computed via the Singular A B,... are matricesa,b,... are column vectors.,lis
Value Decomposition (SVD) of A inO(mnmin{m,n})  thenxn identity matrix;0,,, is them xn matrix of zeros;
time. There is considerable interest (e.g. [3], [S], [7]],[8 1, isthenx1 vector of onesg; is the standard basis (whose
[10], [14], [18], [19], [20]) in determining a minimum set dimensionality will be clear from the context); rai) is
of r < n columns of A which is approximately as good the rank of A. The Frobenius and the spectral matrix-norms
as A, at reconstructing A. Such columns are importantare: ||A||2. = > Afj and [|All; = maxx|,=1 [|AX]2;
for interpretting data [20], building robust machine léagh  ||A||¢ is used if a result holds for both norngs= 2 and
algorithms [3], etc. ¢ = F. The Singular Value Decomposition (SVD) of A,

Let A c R™*™ and let Ce R™*" consist ofr columns  with rank(A) = p is T
of A for somek < r < n. We are interested in the A= (U, U, )( X 0 > ( Vi >,

| S ——

T
reconstruction errors (see Section 1.1 for notation) 0 i Vo
UpER™ X P
YaERPXP VI cRpxn
|A—-CC*Al,  and [|A —TIg . (A)l,, o ’ ’
’ 3 with singular valuesr; > ..o > oj41 > ... > 0, > 0.

for ¢ = 2, F (see Section 1.1 for notation). The former is We will use o; (A) to denote thei-th singular value of A
the reconstruction error for A using the columns in C; thewhen the matrix is not clear from the context. The matrices
latter is the error from the best rarkreconstruction of A Ui € R™** and U,_;, € R™*(»=%) contain the left singular
(under the appropriate norm) within the column space of Cvectors of A; and, similarly, the matrices,\e R"** and
For fixed A, k, andr, we would like these errors to be as V,—« € R"*(?=*) contain the right singular vectors of A.
close to It is well-known that A, = Uk.EkVE minimizes||A — X]||¢

1A = Aglle over all matrices Xe ]Rmf” of rank at mostk. We use

A,_i to denote the matrix A- A, = U,_;S,_ V] _,.

as possible. We present polynomial-time near-optimal conAlso, AT = VAE,}lUI\ denotes the Moore-Penrose pseudo-
structions for arbitraryr > k, settling important open inverse of A. For a symmetric positive definite matrix=A
questions regarding column-based matrix reconstruction. BBT, \; (A) = o? (B) denotes the-th eigenvalue of A.



Finally, given a matrix A€ R™*" and a matrix Ce Our bound implies a constant-factor approximation. Previo
R™>" with r > k, we formally define the matriK[gk(A) € work presents deterministic near-optimal algorithmsifer
R™*" as the best approximation to A within the column & [5]; we are unaware of any deterministic algorithms for
space of C that has rank at madist Hgk(A) minimizes > k.
the residual|A — A||€7 over all A in the column space of The next two theorems guarantee (up to small constant
C that have rank at most (one can writelTS, , (A) = CX factors) the same bounds as Theorems 1 and 2, but the
proposed algorithms are considerably more efficient. In
particular, there is no need to exactly compute the right
singular vectors of A, because approximations suffice.

where Xe R™*" has rank at most). In generélH%vk(A) #
Hgk(A); Section 4.2 discusses the computatior]ﬂéfk(A).

1.2. Our main results Theorem 3 (Fast spectral norm reconstructiorGivenA €
Since ||A — CC+A||§ < |A- Hf: L(A)]., we will state Rm>m of rank p, a target rank2 < k<p, and0 < e <1,
all our bounds in terms of the latter qfuantity. Note thatthere exists a randomized algorithm to select k columns

1 mxXr
we chose to state our Frobenius norm bounds in terms o‘?f A and form a matrixC € R such that

the square of the Frobenius norm; this choice facilitates )
comparisons with prior work and simplifies our proofs. E [HA - Hc,k(A)M

IA

(V2+¢) (1 + /) IA = Akll2

Theorem 1 (Deterministic spectral norm reconstruction) 0 (\/T/T) 1A = Akl
GivenA € R™*™ of rank p and a target rankk < p, there

exists a deterministic polynomial-time algorithm to selec e matrix  C can be computed in
r > k columns ofA and form a matrixC € R™*" such (mnke'log (k= min{m, n}) + nrk?) time.

that

Theorem 4 (Fast Frobenius norm reconstructior(piven

IA—TI% (A)]ls < <1+1+(P—’f)/"') 1A — Ayl A € R™*" of rank p, a target rank2 < k < p, and
1=yk/r 0 < e < 1, there exists a randomized algorithm to select
= 0 (,/p/r> A = Agllo. r > k columns ofA and form a matrixC € R™*" such
that

The matrix C can be computed ilsyp + O(rn(k? +
(p— k)?)) time, whereTsy p is the time needed to compute E [[|A — TIE . (A)[|%] < (1+€) (1 + (1\/1W> [A—AL|%.
all p right singular vectors ofA.

Our algorithm uses the matrices,\and V,_;, of the right ~ The matrixC can be computed i (mnke™" +nrk?) time.

singular vectors of A. These matrices can be computegh |ast, yet perhaps most interesting result, guarantees
in O(mnmin{m,n}) time via the SVD. The asymptotic rg|ative-error Frobenius norm approximation by combining

multiplicative error of the above theorem matches a Iowerthe algorithm of Theorem 4 with one round of adaptive sam-
bound that we prove in Section 5. This is the first SP€Cpling [7], [8]. This is the first relative-error approximeti

tral reconstruction algorithm with asymptotically optima o Frobenius norm reconstruction that uses a linear number
guarantees for arpltrary > k. Previous work presenFed of columns ink (the target rank). Previous work [11],
near-optimal algorithms for = &k [16]. We note that in [22], [7], [5] achieves relative error witd(klog k + k/e)

Section 3 we will present a result that achieves a slightly,gjumns. Our result asymptotically matches thgk/e)
worse error bound (essentially replacipgby n in the qver bound in [7].

accuracy guarantee), but only uses the topght singular
vectors of A (i.e., the matrix Y). Theorem 5 (Fast relative-error Frobenius norm reconstruc-

o ) ) tion). GivenA € R™*™ of rank p, a target rank2 < k < p,
Theorem 2 (Deterministic Frobenius norm reconstruction) anqgg < ¢ < 1, there exists a randomized algorithm to select
GivenA € R™*" of rank p and a target rankk < p, there ot st

exists a deterministic polynomial-time algorithm to selec 2%

r > k columns ofA and form a matrixC € R™*" such r= ?(1 +o(1))

that

columns ofA and form a matrixC € R™*" such that,

IA =~ EL (A < (14 s ) 1A = Al
’ (=vR/m)? E [||A —TIE 4 (A)[F] < (1 +olIA = Ag%

The matrixC can be computed iffy, + O (mn + nrk?)

time, whereTy, is the time needed to compute the top

right singular vectors ofA.

The matrixC can be computed i®((mnk + nk3)e=2/3)
time.



Running times: Our running times are in terms of right singular vectors of an approximation to, Aand can
the number of operations needed to compute the matribe computed iro(mn min{m,n}) time (sub-SVD). In [7],
C, and for simplicity we assume that A is dense; if A isthe authors leveraged volume sampling and presented an
sparse, additional savings might be possible. Our accuracgpproach that achieves a relative error approximationgusin
guarantees are in terms of the optimal matfbgk(A), O(k?log k + ke~1) columns inO(mnk?log k) time. Also,
which would require additional time to compute. For theit is possible to combine the fast volume sampling approach
Frobenius norm,computinﬂgk(A) is straightforward, and in [5] (setting, for example,e = 1/2) with O(logk)
only requires an addition& (mnr + (m + n) r?) time (see  rounds of adaptive sampling as described in [7] to achieve
the discussion in Section 4.2). For the spectral norm, we are relative error approximation using (klogk + ke ')
not aware of any algorithm to compul& , (A) exactly. In  columns. The running time of this combined algorithm is
Section 4.2 we present a simple approach that computed (mnk?logn + nk”log® nlog (klogn)). The techniques
I12 ,(A), a constant-factor approximation id% ,(A), in  in [11] do not apply to generat > k, since Q(klogk)
o) (mm«+ (m +n) 7«2) time. Our bounds in Theorems 1 columns must be sampled in order to preserve rank with
and 3 can be restated in terms of the effar— 112 , (A)|,; ~ fandom sampling.

the accuracy guarantees only weaken by small constant A related line of work (including [6], [12], [13], [23])
factors. has focused on the construction of coresets and sketches

for high dimensional subspace approximation with respect
1.3. Prior results on column-based matrix reconstructions to generawp norms. In our Settingp = 92 Corresponds
There is a long literature on algorithms for column-based0 Frobenius norm matrix reconstruction, and Theorem 1.3
matrix reconstruction using > k columns. The first result Of [23] presents an exponential #ye algorithm to select
goes back to [15], with the most recent one being, to the? (k?/elog (k/€)) columns that guarantee relative error
best of our knowledge, the work in [5]. Table | provides a approximation. It would be interesting to understand if the

summary on lower bounds for the ratio techniques of [6], [12], [13], [23] can be extended to match
¢ ) our results here in the special casepof 2.
A —TIg  (A)llg 1.3.2. The spectral norm casé&\Ve present known guar-
IIA — Ak||§ ’ antees for the approximation ratio
where C is a matrix consisting of columns of A, with |A —TIE  (A)]3
r > k. Our Theorem 17 in the Appendix contributes a new W

lower bound for the spectral norm case wher k. (Note

that any lower bound for the ratltA—CC*AH?/HA—Ang In general, results for spectral norm have been sparse. When

implies a lower bound foffA — IS, (A)|2/|/A — A||%; the 7 = k. the strongest bound emerges from Strong Rank

converse, however, is not true.)7 Revealmg QR (RRQR) [16] .(specmcally AIgoUthm 4 in
1.3.1. The Frobenius norm case present known guar- [16]), which, for f > 1, runs inO(mnklog n) time and

antees for the approximation ratio guarantees ari’k(n — k) + 1 approximation. For > k, to
the best of our knowledge, there is no easy way to extend

|A —TIE . (A) || % the RRQR guarantees. In fact, we are not aware of any

A —Agl2 bound applicable to this domain other than those obtained by
trivially extending the Frobenius norm bounds, because any
a-approximation in the Frobenius norm gives @fp — k)-
approximation in the spectral norm:

Whenr = k, [5] gives a(k + 1) approximation running
in O(knm3logm) time; this approximation ratio matches
a lower bound in [8]. [5] also presented a faster ran-
domizgd aI_gorithm gchigving an expezctngr €)(k ;r 1) A — Hé,k(A)H% < |A-= Hg,k(A)”% <|A- Hg,k(A)H%
e or e o)) e, B mlog e < allA— Al < alo— A - Al
Whenr = Q(klogk), relative-error approximations are 2 MAIN TOOLS

known. [11] presented the first result that achieved such ) ) o
a bound, using random sampling of the columns of A Our two main tools are the use of matrix factorizations

according to the Euclidean norms of the rows of.V for column-based low-rank matrix reconstruction, and two
More specifically, a(1 + €)-approximation was proven us- deterministic sparsification lemmas which extend the work
ing r = Q (ke 2log (ke~')) columns inTy, + O(kn + of [1].

rlogr) time. [22] argued that the same technique gives . L
a (1 + e)-approximation usingr = Q(klogk + ke ') 2.1. Matrix factorizations

columns and showed how to improve the running time to Our first tool suggests how to use matrix factorizations to
1y, + O(kn + rlogr), where V) € R™*F contains the reconstruct a matrix from a subset of its columns: Lemmas



r Spectral norm{ = 2) | Frobenius norm{ = F)

r==k | n/k[5] k+1[8]

r >k | n/r (Section 5) 1+ k/r [7] (also see Section 5)
Table |

2 2
LOWER BOUNDS FOR THE APPROXIMATION RATIQ|A — H(é_‘,,k(A)Hs/”A —Agllg-

6, 8, and 9. Lemmas 8 and 9 present factorizations of theompute any factorization of the form A= BZ' + E

matrix A € R™*™ of the form satisfying the assumptions of the lemma; then, compute a
A—BZT+E sampling matrix S which satisfies the rank assumption and

: controls the errof|ES(ZTS) .

where Be R™*k, 7 ¢ R*** E € R™*", and Z consists An immediate corollary of Lemma 6 emerges by consider-

of orthonormal columns. Lemma 6 shows how to applying the SVD of A. More specifically, consider the following

these factorizations by drawing a connection between matrifactorization of A: A= AV, V] + (A — A}), where V, is

factorizations and column selection. Lemma 6 is the s@rtin the matrix of the topk right singular vectors of A. In the

point of all our column reconstruction results. parlance of Lemma 6, Z Vi, B = AV, E= A — Ay,
Lemma6. LetA — BZT+E, WithEZ — 0,,,., andzTz —  and clearly EZ= 0.

l. Let S € R™*" be any matrix such thatank(Z'S) = Lemma 7. Let S € R"*" be a matrix such that
rank(Z) = k. Let C=AS € R™*", Then, rank(V]S) = k. Let C = AS; then,

2 2
IA = TIg L (A)ll; < IEJIE + [ESZTS)* |- 2 2
oFTe ¢ ¢ 1A = TI¢ (Al < 1A = AxlIZ + (A = AR)S(VIS)™.
Proof: The optimality ofHék(A) implies that||A — _ o
Hé,k(A)”f < ||A — X||? over all matrices Xe R™>" of The above lemma will be useful for designing the de-

rank at mosk in the column space of C. Consider the matrix terministic (spectral norm and Frobenius norm) column-
X = C (ZTS)+ ZT (clearly X is in the column space of C reconstruction algorithms of Theorems 1 and 2. However,

and rankX) < k because Z R"*k): computing the SVD is costly and thus we would like to
- design a factorization of the form A BZ" + E that is as
IA-C(ZT9)"Z"|7 = good as the SVD, but can be computedrmnk) time.

The next two lemmas achieve this goal by extending the
= ||IBZT+(A-BZ")—(BZT+E)S(Z'S)"Z"|? algorithms in [18], [21] (see [2] for their proofs). We will
use these factorizations to design fast column recongruct
algorithms in Theorems 3, 4, and 5.

A C=AS
= |BZ'—BZ'S(Z"S)"Z" + E+ ES(Z'S)"ZT}

(a)

Lemma 8 (Randomized fast spectral norm S\V.Dgiven

A € R™*™ of rank p, a target rank2 < k < p, and0 < e <

®) 9 Tevh>T12 1, there exists an algorithm that computes a factorization
< Bl + [ESZ7S)"Z le- A=BZ"+E withB=AZ,Z2'Z=1,, andEZ = 0,, s

(a) follows because, by assumption, r4AkS) = %,  such that

and thus (Z7S)(Z"S)* = I which implies BZ —

B(Z'S)(Z"S)*Z" = O0,xn. (b) follows by matrix- E[||E|2] < (x/§+e) A — Agll2.

Pythagoras because ES S)*Z'ET = 0,4, (recall that

E = A-BZ" and EZ = 0, by assumption). The The proposed algorithm runs in

lemma follows by strong submultiplicativity because Z hasO (mnke!log (k~! min{m,n})) time.

orthonormal columns, hendg ||, = 1. . . )

In this work, we view C as a dimensionally-reduced or-€mma 9 (Randomized fast Frobenius norm SVOjiven
sampled sketch of A; S is the dimension-reduction or® € R™*" of rankp, atargetrank2 < k < p, and0 <e <
sampling matrix. In words, Lemma 6 argues that if the ls thereTeX|sts an algorithm tr;at computes a factorization
matrix S preserves the rank of an approximate factorizatiof® = BZ' +E, with B = AZ, Z'Z = 1), andEZ = O, x4
of the original matrix A, then the reconstruction of A from Such that

C = AS has an error that is essentially proportional to ) )

the error of the approximate factorization. The importance E[|[E[[F] <@ +e)IA - Akl

of this lemma is that it indicates an algorithm for matrix . . .
reconstruction using a subset of the columns of A: first,The Proposed algorithm runs i@ (mnke~!) time.



2.2. Sparse approximate decompositions of the identity

Lemmas 6, 8 and 9 argue that, in order to achieve almogt

optimal column-based matrix reconstruction, we need

sampling matrix S that preserves the rank of Z and controlé4

the error\|ES(ZTS)+||§. We present algorithms to compute

such a matrix S in Lemmas 10 and 11. These lemma
were motivated by an important linear-algebraic result for

a decomposition of the identity presented by Batsdn
al. [1]. It is worth emphasizing that the result of [1] can not

be directly applied to the column reconstruction problem.

Indeed, in our setting, it is necessary to control propsrtie
related tobothmatrices Z and E= A—BZ' simultaneously

In the spectral-norm reconstruction case, we need to dontro

Lemma 11 (Dual Set Spectral-Frobenius Sparsification.)
etV = {vy,...,v,} be a decomposition of the identity,
herev, € R¥ (k < n) and Y7, v;v] = Iy let
= {ai,...,a,} be an arbitrary set of vectors, where
a; € R’ Then, given an integer such thatk < r < n,
ghere exists a set of weights > 0 (: = 1...n), at mostr
of which are non-zero, such that
2
) and

Ak <zn: SiV,'V;»r> (1 —
i=1

n n n
Tr (Z Siaia;'r> Tr (Z aia;‘r> = laill3.
i=1 =1 1=1

k

r

Y

<

the singular values of the two matrices; in the FrobeniusThe weightss; can be computed deterministically in
norm reconstruction case, we need to control singular galueO (Tnk:2 + né) time.

and Frobenius norms of two matrices.

Lemma 10 (Dual Set Spectral Sparsification.let V =
{vi,...,vp} andd = {uy,...,u,} be two equal cardinal-
ity decompositions of the identity, wheve € R* (k < n),
w, €RE (0 <), Y0 viv] =1, and Y1 wu! = 1.
Given an integer- with k£ < r < n, there exists a set of
weightss, > 0 (i = 1,...,n) at mostr of which are non-

zero, such that
2
(1 - ) and

oy

A1 (i siuiu2->
i=1

The weightss; can be computed deterministically in
0] (rn (k2 + 52)) time.

Proof Sketch. The main insight is to decouple the analysis
of the lower bound on\; and the upper bound ok, in [1].
Once this is done, one can accomodate tifferentsets of

k

r

Y

IN

Proof Sketch. After decoupling the analysis as in
Lemma 10, the main insight is to introduce a new potential
function which controls the Frobenius norm of the sparsified
second set of vectors. This new potential function turns
out to be the trace. The two set analysis for tdifferent
potential functions then follows a similar line as Lemma 10.
Again, the details are in [2]. [

In matrix notation (here A denotes the matrix whose
rows are the vectors;), the above lemma guarantees that
ok (VTS) >1—/k/r and||ATS|Z < ||A||%.

3. PROOFS OF OURMAIN RESULTS

In this section, we leverage the main tools described
in Section 2 in order to prove the results of Section 1.2
(Theorems 1 through 5). We start with a proof of Theorem 1,
using Lemmas 7 and 10.

Proof of Theorem 1. Apply the algorithm of Lemma 10 on
the following two sets of vectors: the rows of the matrix
V. and then rows of the matrix \,_,. The output of the
algorithm is a sampling and rescaling matrbeR"*" (see

vectors, and the rest of the analysis follows a similar linediscussion after Lemma 10 in Section 2.2). LetQAS and
of reasoning as the original single set analysis of [1]. Thenote that C consists of a subset ofrescaledcolumns of

details are in [2]. [ |

In matrix notation, let U and V be the matrices whose
rows are the vectorar; and v; respectively. We can now
construct the sampling matrix & R"*" as follows: for
i =1,...,n, if s; is non-zero then includg/s;e; as a
column of S; heree; is the i-th standard basis vectdr

Using this matrix notation, the above lemma guarantees that

or (VTS) > 1—+/k/r ando; (UTS) < 1+/¢/r. Clearly,

S may be viewed as a matrix that samples and reseales
rowsof U and V (columns of U and V'), namely the rows
that correspond to non-zero weighis

INote that we slightly abused notation: indeed, the numberohfrans
of S is less than or equal te, since at most: of the weights are non-zero.
Here, we use to also denote the actual number of non-zero weights, whic
is equal to the number of columns of the matfix

A. Lemma 10 guarantees tha},(VLS) > 1 — /k/r >
0 (assumingr > k), and so ranRV/|S) k. Also,

o1(V;_xS) = Vi8I, < 1+ /(p—Fk)/r. Applying

Lemma 7, we gef/A — I , (A)|)3 <

< A = ARlE+II(A = ADS(VES)FII3

< A = ARlZ+IIA = AR SIBIIVES) T3

= A=Akl + UprZo-iV 1 SIBI (VI S) T3
<A = AE 12k IV -k SII(VES) T2

1+ — k)/r)?)
FENOGEA

where the last inequality follows becaug, ;|| = ||A —

1A — Akll3 (1 +

hAkll2 and [[(VES) Tl = 1/0%(V(S) < 1/(1 — /k/7).

Theorem 1 now follows by taking square roots of both sides



and usingy'1 + x2 < 1+ z. The running time is equal to
the time needed to compute;\and V,_;, plus the running
time of the algorithm in Lemma 10. Finally, we note that

and then rows of the matrix J,. The output of the algorithm
is a sampling and rescaling matrixcSR™*" (see discussion
after Lemma 10 in ection 2.2). Let € AS and note that C

the rescaling of the columns of C does not change the spatonsists of a subset of rescaledcolumns of A. The proof
of its columns and thus is irrelevant in the construction ofof Theorem 3 is now identical to the proof of Theorem 12,

H%ﬁk(A). n

except for using Lemma 6 instead of Lemma 7 in the first

Our next theorem describes a deterministic algorithm foSt€P Of the proof:

spectral norm reconstruction that only needs to compuyte V

and will serve as a prequel to the proof of Theorem 3. The

accuracy guarantee of this theorem is essentially iddrntica
the one in Theorem 1, with — k& being replaced by..

Theorem 12. Given A € R™*™ of rank p and a target
rank k£ < p, there exists a deterministic polynomial-time
algorithm to select- > k columns ofA and form a matrix
C € R™*" such that

) A=A l2.

The matrixC can be computed iy, + O(nrk?) time,
where Ty, is the time needed to compute the topight
singular vectors ofA.

1+ +/n/r

A—TI2 (Al < |A=ALlls+
I ck(A)2 <] kll2 (1_ L

Proof: The proof is very similar to the proof of The-
orem 1, so we only highlight the differences. First, apply
the algorithm of Lemma 10 on the following two sets of
vectors: then rows of the matrix \, and then rows of the
matrix l,,. The output of the algorithm is a sampling and
rescaling matrix S R"*" (see discussion after Lemma 10
in Section 2.2). Let C= AS and note that C consists of a
subset ofr rescaledcolumns of A. Lemma 10 guarantees
that [|I,,S|, < 1+ y/n/r. We now replicate the proof of
Theorem 1 up to the point whetgA — A,QS(VZS)*HE is
bounded. We continue as follows:

2

I(A = AR S(VES)
2
< A =ADIBILSIZIVES) -

(A = AL)S(VES)T

IA—TIZ (A3 < [EI3+ES(ZTS)H|3
= |E|3+|El,S(Z"S)"|3
< EIZ L+ 1LSIBIZTS)T3) .

where E is the residual error from the matrix factorization
of Lemma 8. Taking square roots (usiRgl + 22 < 1+ x)

and using the bounds guaranteed by Lemma 10|fp6]|,

and [(Z"S)*|,, we obtain a bound in terms ofE|,.
Finally, since E is a random variable, taking expectations
and applying the bound of Lemma 8 concludes the proof
of the theorem. Again, the rescaling of the columns of C is
irrelevant to the construction a1 , (A). The running time

is the time needed to compute the matrix Z from Lemma 8
plus an additionaD(nrk?) time as in Theorem 12. =

Proof of Theorem 2. First, apply the algorithm of
Lemma 11 on the following two sets of vectors: the&ows

of the matrix V, and then rows of the matrix(A — Ak)T.

The output of the algorithm is a sampling and rescaling
matrix S € R"™*" (see discussion after Lemma 10 in
Section 2.2). Let C= AS and note that C consists of a
subset ofr rescaledcolumns of A. We follow the proof of
Theorem 1 in the previous section up to the point where we
need to bound the termi(A — Ak)S(VZS)JFH; By strong
submultiplicativity,

I(A = AR)S(VES) T IE < II(A = AR)SIEII(VES) 5.

To conclude, we apply Lemma 11 to bound the two terms
in the right-hand side of the above inequality. Again, the
rescaling of the columns of C is irrelevant to the constnrcti

The remainder of the proof now follows the same line asof Hg’k(A). The running time of the proposed algorithm is

in Theorem 1. Again, the rescaling of the columns of C
is irrelevant to the construction dfig ,(A). To analyze

equal to the time needed to computg pus the time needed
to compute A— A, (which is equal taO(mnk) given V;)

the running time of the proposed algorithm, we need toplus the time needed to run the algorithm of Lemma 11,

look more closely at Lemma 10 and the related algorithm

which is equal toO (nrk? +nm). |

The details are in [2], where we argue that the algorithmp oof of Theorem 4. We will follow the proof of Theorem 2,

of Lemma 10 can be implemented ®(nrk?) time. The
total running time is the time needed to computg Mus
O(nrk?). [ |
Proof of Theorem 3. In order to prove Theorem 3 we will
follow the proof of Theorem 1 using Lemma 8 (a fast matrix
factorization) instead of Lemma 7 (the exact SVD of A).
More specifically, instead of using the tdpright singular
vectors of A (the matrix Y), we use the matrix Z R"*¥

of Lemma 8. We now apply the algorithm of Lemma 10 on
the following two sets of vectors: therows of the matrix Z

but, as with the proof of Theorem 3, instead of using the
top £ left singular vectors of A (the matrix ), we will
use the matrix Z of Lemma 9 that is computed via a fast,
approximate matrix factorization. More specifically, lebg
the matrix of Lemma 9 and run the algorithm of Lemma 11
on the following two sets of vectors: the rows of the
matrix Z and then rows of the matrix E. The output of the
algorithm is a sampling and rescaling matrixeR™*" (see
discussion after Lemma 10 in Section 2.2). LetCGAS and
note that C consists of a subset sofrescaledcolumns of



A. The proof of Theorem 4 is now identical to the proof of and definecy = (1+¢) (1 + 1/(1 —+/k/7)?), where
Theorem 2, except for using Lemma 6 instead of Lemma 7# = [dk]. (We will choosed and ¢, later.) Now run the
Ultimately, we obtain algorithm of Theorem 4 to samplé = [dk] columns
of A and form the matrix €. Then, run the adaptive

F 2 2 Ta\+]2
1A =Tk (Mlr < [IElF + IESZ7S)7 )2 sampling algorithm of Lemma 14 with B- A — C;C/ A
< |EI%+ |ES|ZI(ZTS) T3 and sample a furthes = [ cok/e] columns of A to form
-2 the matrix G. Let C = [C; Cy] € R™*("+%) contain
/ 2
= (1 + (1 B k/r) ) IEIl7- all the sampled columns. We will analyze the expectation

2 .
The last inequality follows from the bounds of Lemma 11. [”A - Hgk(A)”F]' Using the bound of Lemma 14, we
The theorem now follows by taking the expectation of bothfirst compute the expectation with respect tp @nditioned
sides and using Lemma 9 to boui{||E||%]. Again, the ©N Ci:
rescaling of the columns of C is irrelevant to the constnrcti » 9 , k )
of IIZ , (A). The overall running time is derived by replacing  Ec. {HA - Hc,k(A)”F’ Cl} < A = Axllp + < lIBlI-
the time needed to compute,Vin Theorem 2 with the ) .
time needed to compute the fast approximate factorizatiof/e Now compute the expectation with respect to (Gnly
of Lemma 9. m B dependson §:

Proof of Theorem 5. Finally, we will prove Theorem 5 by Ec, [Ec2 [||A _ ch’k(A)H%‘ Cl“ <
combining the results of Theorem 4 (a constant factor ap- ’
proximation algorithm) with one round of adaptive sampling
We first recall the following lemma, which has appeared in
prior work [9], [14].

k
|A = Al +ZEc, [IA-CiCtAIR]. @

By the law of iterated expectation, the left hand side is
Lemma 13. leenamatrle € Rm_x", atargetrankk,and  exactly equal toE |||A —TE,(A)|%|. We now use the
an integerr, there exists an algorithm to selectcolumns ’

> accuracy guarantee of Theorem 4 and our definitiorqof
from A to form the matrixC € R™*" such that

to bound

E[IA - IE,(A)2] < A - AdE + SIAlE. Ec, [|A — C,C{A|2] < Eq, [|IA — 15, (A)|2]

: = r o) 161 AllF] = B, Chk F

The matrixC' can be computed i®(mn + rlogr) time. < col|A — Ag2
= - F-
Algorithms for the above lemma choosecolumns of A ) ] )
in 7 independent identically distributed (i.i.d.) trials, wae Using the bound in (1), we obtain
in each trial a column of A is sampled with probability r 9 9
proportional to its norm-squared (importance samplingd. W E[IA —Tcx(A)lIF] < 1A = Axlli (1 + cok/s).
now state Theorem 2.1 of [8], which builds upon Lemma 13Finally, recall that for our choice of, s > cok/e, and so

to provide an adaptive sampling procedure that improves thg,e optain the relative error bound. The number of columns

accuracy guarantees of Lemma 13. needed isr = 7 + s = dk + cok/e. Setd = (1 + a)?,
Lemma 14. Given a matrixA € R™*x", let C, € R™x" wherea = /(1 + ¢p)/e. After some algebra, this yields
consist ofr columns ofA, and define the residuaB = 7 = k(a® + (1 + @)®) = 2(1 + O(eo + €'/%)) sampled
A—C CfAcR™™ Fori=1,...,n, let columns. The time needed to compute the matrix C is the
sum of three terms: the running time of Theorem 4 (which
pi = |Ibill3/I1BI%, is O(mnkeg! + nik?)), plus the time needed to compute

" e . :
whereb, is thei-th column of the matriB. Sample a further ** ~ C1CT A (which is O(mni)), plus the time needed to

s columns fromA in s i.i.d. trials, where in each trial the un the algorithm of Lemma 14 (which 8(mn +slog s)).
i-th column is chosen with probability;. Let Cy € R™*# Assumer < n (other\leg the problem is trivial), se_@ -
contain thes sampled columns and & — [C; C,] € €%/3 and used = O(¢~2/3) to get the final asymptotic run

R™*(r+5) contain the columns of bote, and Cs, all of  UMe: _ "
which are columns oA. Then, for any integet > 0, Comments. The number of columns required for relative

L error approximation is approximatel%é, a 2-factor from

2 . . k y B

E {HA _ H@k(A)IIF] <A = AgllZ + B2 optimal, since? are needed ([7] and Section 5)1. We get a
S much better running time @ (mnk+nk3+nloge~!) using

Note that Lemma 14 is an extension of Lemma 13; one cajust a constant factor more columns by settihgnd ¢ in

obtain Lemma 13 by setting;Go be empty in Lemma 14. the proof to constants (for example settidig= 100; ¢; =

We are now ready to prove Theorem 5. First, fix> 1 22 ~ 1 results in%(l + o(1)) columns).



4, MATRIX PYTHAGORAS AND THE COMPUTATION OF
T 4 (A)

4.1. Matrix norm properties

Recall notation from Section 1.1; for any matrix A of
rank at most, it is well-known that||A||%. = Y>7_, 02(A)
and ||All2 o1(A). Also, the best rankk approxima-
tion to A satisfies||A — A2 or+1(A) and ||A —
ArllE = >0 11 07(A). For any two matrices A and B
of appropriate dimensiong|Allz < [|Allr < /pllAll2,
IAB» < |Al#||Bll2, and [AB[r < [Al2]|B||r. The

1: Orthonormalize the columns of C i@ (mr?) time to
construct the matrix @& R™*",

2: Compute(Q'A), € R™" via SVD in O(mnr + nr?)
— the best rank: approximation of QA.

3: Return Q(Q'A), € R™*™ in O(mnk) time.

Clearly, Q(QTA),C is a rankk matrix that lies in the column
span of C. Note that thougﬂék(A) can depend og, our
algorithm computes the same matrix, independert. dthe
next lemma, which is essentially Lemma 4.3 in [4] together
with a slight improvment of Theorem 9.3 in [18], proves

latter two properties are stronger versions of the standarghat this algorithm computeBZ, (A) and a constant factor

submultiplicativity property.
We refer to the next lemma as matrix-Pythogoras:

Lemmals. If X,Y € R™*™ andXY " = 0, Or XY =
0,,xn, then

IX + Y% = X[ + Y%
max{[[X[[3, [ Y3} < X+ Y5 < [IX]3 +[[Y]3.

Proof: Since XY' = 0,5, (X + Y)(X +Y)T =
XXT4+YYT. Foré = F,

[X4Y 15 =Tr (X +Y)(X+Y)T) =Tr(XXT+YYT) =
= [IXIfE + Y13
Let z be any vector ilR™. For¢ = 2,

[X+Y[2= max 2" (X +Y)(X+Y)Tz=

llzfl2=1

= ||HﬁaX1 (zTXXTz + zTYYTz) .
z||2=

We have thatnax,|,—; (z'XX 'z +z'YY "z) is at most

max ZT

llzll2=1

and that

XX Tz + lnﬁax z2'YY Tz = ||X|2+ Y3
1

l|z[|2=

max (z' XXz +2'YY z) > max z'XX Tz =|X|3,
llzll2=1 lIzll2=1
sincez’YY Tz is non-negative for any vectar. We get the
same lower bound with{Y||3 instead, which means we can
lower bound withmax{||X||3,]/Y||3}. The case with XY =
0, xn, Can be proven similarly. [ |

4.2. Computing the best rarikapproximationﬂék(A)

Let A € R™*" let k < n be an integer, and let @
R™*" with r > k. Recall thatllg , (A) € R™*" is the best
rank k approximation to A in the column space of C: We
can writeIlg , (A) = CX¢, where

X¢ = argmin |A —C¥|Z.
TeR™*:rankv) <k
In order to compute (or approximatEl)ék(A) given A, C,

and &, we will use the following algorithm:

approximation tallZ , (A).

Lemma 16. GivenA ¢ R™*", C € R™*" and an integer
k, the matrixQ (QTA)k € R™*" described above (where
Q is an orthonormal basis for the columns @) can be
computed inO (mnr + (m + n)r?) time and satisfies:

IA - Q(Q"A), I% 1A =TI L (A)[|%,
IA—Q(QTA), IIl. < 2(A—IZ (A

Proof: Our proof for the Frobenius norm case is a mild
modification of the proof of Lemma 4.3 [4]. First, note that
I, (A) = T1§ . (A), because ¢ R™*" is an orthonormal
basis for the column space of C. Thus,

1A = TIE , (A) |7 = A = TIg 4 (A)[[7 =
IA — Q%

min
v.rankw)<k

Now, using matrix-Pythagoras and the orthonormality of Q,
IA—QU[% = [[A—QQ'A + Q(QTA — W)||5 =
IA — QQTA|[% + |QTA — w|f3.

Setting ¥ = (QTA), minimizes the above quantity over
all rank% matricesW. Thus, combining the above results,
A —TE (A3 = |A - Q(QTA), II3

We now proceed to the spectral-norm part of the proof,
which combines ideas from Theorem 9.3 [18] and matrix-
Pythagoras. We first manipulafieh — Q (Q'A), |3 =

IA—QQ'A+Q(Q"A—(QTA)) I3

< |A-QQ'A|3 + [QQ'A — (QQTA)3

(a)

< A TR (A) 3 + A — Akl

< 20A TR (A5
The first inequality follows from the simple fact that
(QQ'A), = Q(Q'A), and matrix-Pythagoras; the first

term in (a) follows because Q@ is the (unconstrained,
not necessarily of rank at mos) best approximation to A
in the column space of Q; the second term in (a) follows
because Q®is a projector matrix and thus

IQQTA—(QQTA)|13 = 07,1 (QQTA) < 07 1 (A) = |A—AL3.



The last inequality follows because

1A = Akl < [IA = TI3 . (A5

5. LOWER BOUNDS
Theorem 17. For anya > 0, any k > 1, and anyr > 1,
there exists a matrid € R™*" for which
|IA —CCYA|3
IA = Akll3
Here C is any matrix that consists of columns ofA. As

a — 0, the lower bound is:/r for the approximation ratio
of spectral norm column-based matrix reconstruction.

n+a2
T r4a?’

Proof: We extend the lower bound in [5] to arbitrary
r > k. Consider the matrix

A= [el + aeq,e; +aes,...,e; + aen—i—l] c R(nﬂLl)X"’

wheree; € R**! are the standard basis vectors. Then,

ATA=1,1T +a%1,, o}(A)=n+a?  and

o?(A) =a? for i> 1.

7

Thus, for allk > 1, |A —Ag||3 = 2. Intuitively, asa — 0,
A is a rank-one matrix. Consider anycolumns of A and
note that, up to row permutations, all sets jofcolumns

This immediately implies that

~ AT A~
A —CC*A|3 1AL = A All2 = |1Z])3
_ (n —7r)a? 2:n+a2a2
7+ a2 r+ a2
This concludes our proof, because
o = [[A— All3.

5.1. Frobenius norm approximation
Note that a lower bound for the ratio

IA = TIE L (A) /1A = Ak,
does not imply a lower bound for the ratio
IA — CCTAJZ/IA — Allz.
because
IA—CCFA[Z/||A=AklIZ < [[A—=TIE . (A)[IZ/|A = AkllZ.

Also, notice that Proposition 4 in [7] shows a lower bound
1+ k/2r for the ratio |A — TIE . (A)[|%/IIA — Ax||%. For
completeness, we extend the bound of [7] for the rfo-
CCTA||Z/||A — Ax||%; in fact, we obtain a lower bound
which is asymptoticallyl + & /7.

The matrix Z constructed in the previous proof is all we

of A are equivalent. So, without loss of generality, let C need. The trace of Z is the Frobenius norm of the residual

consist of the first- columns of A. We now compute the
optimal reconstruction of A from C as follows: la} be the
j-th column of A. In order to reconstruet;, we minimize
la; — Cx||3 over all vectorsx € R". Note that ifj < r then
the reconstruction error is zero. Fpt> r, a; = e; +aejy1,

r T
Cx=e; E T; + o E Ti€it1-
i=1 i=1

Then,

laj — Cx|3

s s
llel (Z T — 1) +a) ziei —ejpll3
=1 i=1
, 2 -
(Zmi—1> —&—QQfo—i—l.
=1 i=1

The above quadratic form i& is minimized whenz; =
(7~+a2)_1 foralli=1,...,r. Let A=A — CCTA and
let the j-th column of A be &;. Then, forj < r, a; is an
all-zeros vector; foj > r, &; = aej 11 — ;74 > €1

Thus,
AT A 0 0 _
A A= rXTr rx(n 7‘):|’
|:0(nr)><'r YA
where
a’ T 2
Z= 1,1, . +al,_,.

error matrix in approximating A using anycolumns. This
gives the following lemma.

Lemma 18. For anya > 0 andr > 1, there exists a matrix

A € R™*™ for which
1
1+ —.
( +7‘+a2>

|[A—-CCA|Z _n—r
Proof: In the proof of Theorem 17,

1A =A%

n—1

1
r 4+ a2

IA — CCHA[3 = Tr(Z) = a*(n— r)(1 + ),

and||A — A% = (n —1)a?. [ ]
Now, construct a matrix withk copies of A along the

diagonal. The size of each blockjs We sample- columns

in total, with r; from each block. Lemma 18 holds in each

block, with n andr replaced byz andr;.

Theorem 19. For any o > 0, any £ > 1, and anyr > 1,
there exists a matridA € R™*" for which

|A — CCTA|2% sn=r(y k
A—-ALl2 “n—k r+a2)’
l 7

Here C is any matrix that consists of columns ofA. As

a — 0 andn — oo the lower bound isl + k/r for the
approximation ratio of Frobenius norm column-based matrix
reconstruction.




Proof: Let B be the block diagonal matrix with copies

of A along the diagonal (A is the matrix defined in the proof
of Theorem 17). Let; be the number of columns selected in
each block,zfz1 r; = r. We can treat the Frobenius error

in each block independently. Let; be the error matrix in

each block, as in the proof of Theorem 17. Then, using 7]

Lemma 18, the approximation error is

k
IA-CCrAllz = ) Tr(Z))
i=1

k
- OZQ;(ZH) <1+ri—ia2>'

Minimizing this expression subject to the constraint that

Zle r; = r givesr; = r/k. The result follows after a
little algebra using|A — A% = (n — k)a2. [ |

6. OPEN PROBLEMS

Several interesting questions remain unanswered; we
highlight two. First, is it possible to improve the running
time of the deterministic algorithms of Lemmas 10 and 11
Recently, Zouzias [24] made progress in improving the

[5] A. Deshpande and L. Rademacher. Efficient volume sampling

for row/column subset selection. Proc 42th STOCpages
329-338, 2010.

6] A. Deshpande and K. R. Varadarajan. Sampling-based di-

mension reduction for subspace approximationPtac. 39th
STOG pages 641-650, 2007.

A. Deshpande and S. Vempala. Adaptive sampling and fast

low-rank matrix approximation. IlRANDOM - APPROX
2006.

[8] Amit Deshpande, Luis Rademacher, Santosh Vempala, and

Grant Wang. Matrix approximation and projective clustering
via volume sampling.Theory of Computing2(12):225-247,
2006.

P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay.
Clustering in large graphs and matrices.Piroc. 10th SODA
pages 291-299, 1999.

P. Drineas, |. Kerenidis, and P. Raghavan. Competitive
recommendation systems. Rroc 34th STOCpages 82-90,
2002.

P. Drineas, M.W. Mahoney, and S. Muthukrishnan. Poly-
nomial time algorithm for column-row based relative-error
low-rank matrix approximation. Technical Report 2006-04,
DIMACS, March 2006.

D. Feldman and M. Langberg. A unified framework for
approximating and clustering data.Pnoc. 43rd STOC2011.

running time of the spectral sparsification result of [1]; [13] D. Feldman, M. Monemizadeh, C. Sohler, and D. Woodruf.

can we get a similar improvement for the 2-set algorithms
presented here? Second, in the parlance of Theorem 5, is

there adeterministicalgorithm that select®(k/e) columns

from A and guarantees relative-error accuracy for the error
|A — Hgk(A)HQF? In a very recent development, [17]
partially answers this question by extending the volume-sam

pling approach of [5] to deterministically sele@:(l +0(1))

columns and obtain a relative error bound for the term

|A —CC"A|%. Notice that it is not obvious if [17] implies
a similar deterministic bound for the errppA —H{;k(A)H%.
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