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Abstract

We show that the widely used homotopy method for solving fixpoint problems, as well as the
Harsanyi-Selten equilibrium selection process for games, are PSPACE-complete to implement. Extend-
ing our result for the Harsanyi-Selten process, we show that several other homotopy-based algorithms
for finding equilibria of games are also PSPACE-complete to implement. A further application of our
techniques yields the result that it is PSPACE-complete to compute any of the equilibria that could be
found via the classical Lemke-Howson algorithm, a complexity-theoretic strengthening of the result
in [24]. These results show that our techniques can be widely applied and suggest that the PSPACE-
completeness of implementing homotopy methods is a general principle.
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1 Introduction

According to Roger Myerson [20], the 1950 publication of Nash’s paper on equilibria was a watershed event
not just for Game Theory, but for Economics in general. The new general equilibrium concept, and its estab-
lished universality, was an impetus for understanding rationality in much more general economic contexts,
and inspired the important price equilibrium results by Arrow and Debreu. Myerson argues convincingly in
[20] that the concept of Nash equilibrium lies at the foundations of modern economic thought.

Seen from an algorithmic perspective, however, the Nash equilibrium suffers from two important prob-
lems: First, it is not clear how to find it efficiently (the same is true for the Arrow-Debreu variety for markets
and prices). This shortcoming had already been identified by economists since the 1950s, and much effort
has been devoted to algorithms for finding Nash equilibria, see [25, 19, 14] for examples from a very ex-
tensive literature. None of these algorithms came with polynomial-time guarantees, however, and the recent
result [6, 4] establishing that the problem is PPAD-complete explains why. Of the many algorithmic ap-
proaches proposed by economists over the past 50 years for finding Nash equilibria, most have been shown
by now to require exponential time in the worst case [24, 16]. One exception is an important algorithmic
genre known as homotopy methods [7]; see [15] for a recent survey.

In topology, a homotopy is a continuous transformation from one function to another (as, for example,
between two paths joining two points on a map). The homotopy method starts with a fixpoint problem that
is easy to solve (say, a rotation of a disc around its center), and continuously transforms it into the problem
in hand, by “pivoting” to new fixpoints along the way. A theorem by Browder [2] establishes the validity of
this method in the limit, by showing the existence of a continuous path of fixpoints that joins two fixpoints
of the initial and the final problems.

The second algorithmic obstacle for the Nash equilibrium concept is multiplicity. Games have multiple
equilibria, and markets many price equilibria, and thus the corresponding equilibrium concepts are only
nondeterministic predictions (oxymoron intended). In price equilibria, this multiplicity has been blamed
for economic crises: The path guaranteed by Browder’s theorem is non-monotonic, going back and forth
in time. As a result, equilibria vanish at its folds, leaving the market in turmoil [1]. In games, a proposed
remedy for multiplicity is the so-called focal point theory see, e.g., [18] p. 414, postulating that players
implicitly coordinate their equilibrium choice by focusing on the most obvious, or mutually advantageous,
equilibrium; repeated play and learning (see, e.g., [9]) can also be considered a remedy for multiplicity. In
1975, Harsanyi proposed the tracing procedure [10] for battling equilibrium multiplicity, a theory further
explicated in his joint 1988 book “A General Theory of Equilibrium Selection in Games” with Selten [11]
(Harsanyi and Selten shared in 1994 the Nobel prize with Nash). The tracing procedure asserts that players
engaged in a game G play at first a simple game G0, in which their prior beliefs about the other players’
behavior result in a dominant strategy. As time t progresses, and their priors are falsified by life, they play
a more and more realistic game Gt = (1 − t)· G0 + t· G, until, at time t = 1, they end up playing the
intended game G. They show that, for almost all games, tracing the equilibrium path of this process results
in a unique equilibrium. Notice the parallel with the homotopy method; apparently the two were discovered
independently.

Our results. This paper is a complexity-theoretic critique of the tracing procedure and the homotopy
method: we show that finding the solutions they prescribe requires the power of PSPACE. In particular,
finding the Brouwer fixpoint that would have been discovered by the homotopy method, for a simple start-
ing function and an adversarial final one, is PSPACE-complete. The same is true, via standard reductions,
for price equilibria. We also construct examples where the homotopy method not only will undergo an ex-
ponential number of pivots (this was expected since [16]), but will suffer an exponential number of direction
reversals. As for the tracing procedure, we show that it is PSPACE-complete to find the Nash equilibrium
selected by it, even in two-player games, and even if the initial game has dominant strategies obtained from
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priors, exactly as prescribed by Harsanyi and Selten. We extend this result to homotopy-based algorithms
where the starting game depends on the final game and show that it is PSPACE-complete to implement
the Herings-van den Elzen, Herings-Peeters, and van den Elzen-Talman algorithms for finding equilibria in
games. Finally, it is particularly noteworthy that PSPACE-completeness prevails even for finding the solu-
tions that would be returned by the classical Lemke-Howson algorithm, a simplex-like method that had long
been considered an oasis of conceptual simplicity and (until [24]) of algorithmic hope in this field. This
reinforces the “exponentially long paths” result of [24] with a new result which says that, subject only to
the hardness of PSPACE, no short cuts to Lemke-Howson solutions are possible (for any of the different
initial choices of the algorithm). Since it is known that the Lemke-Howson algorithm can be expressed as a
homotopy [15], this result can also be seen as a powerful specialization of our first result.

The algorithms we consider solve problems in the complexity class PPAD, which is contained in TFNP,
the class of all total function problems in NP. Another prominent complexity class contained in TFNP
is PLS (for polynomial local search). Many common problems in PLS (e.g., local max cut and finding
pure equilibria of congestion games) are complete under a so-called tight PLS-reduction, implying that the
corresponding standard local search algorithm is exponential (for certain starting configurations and any
choices of the local search algorithm). Furthermore, one can conclude that the computational problem of
finding a local optimum reachable from a given starting configuration by local search is PSPACE-complete.

No such concept of tight reductions is known for PPAD, and our results can be seen as addressing this
deficiency. Specifically, we show the PSPACE-completeness (and exponential worst-case behaviour) of a
number of homotopy-based algorithms for finding equilibria. Our reductions start with the problem OTHER

END OF THIS LINE (OEOTL), which is related to the problem END OF THE LINE used in the definition is
PPAD, seeking not just any end of a path, but the other end of the particular path starting at the origin.
OEOTL was known to be PSPACE-complete since [23], but this fact has so far remained unexploited for
proving lower bounds for other problems.

Outline of the paper. In Section 2.1, we give an overview of the linear homotopy method as applied to
Brouwer functions and games. In Section 2.2, we recall the PSPACE-complete problem OEOTL (OTHER

END OF THIS LINE), which serves as the starting point for all our main reductions. In Section 3, we show
that the linear homotopy method to compute a Brouwer fixpoint is PSPACE-complete, which is proved in
Section 3.3. In Section 4, we establish the PSPACE-completeness of the linear tracing procedure for two-
player strategic form games for a special starting game that is independent of the final game. These results
are extended to starting games that depend on the final game in Section 5, where we show that it is PSPACE-
complete to implement the Herings-van den Elzen, Herings-Peeters, and van den Elzen-Talman algorithms
for computing equilibria of games. The techniques of [4, 6] are central to both Section 3 and Section 4 and
are recalled and extended along the way. Finally, in Section 6, we show that it is PSPACE-complete to find
any solution of a two-player game by the Lemke-Howson algorithm.

2 Preliminaries

2.1 Homotopies

A Brouwer functionF is a continuous function from a convex and compact domainD to itself; by Brouwer’s
fixpoint theorem there exists x ∈ D such thatF(x) = x. A homotopy between two functionsF0 : X −→ Y
and F1 : X −→ Y (where X and Y are topological spaces) is a continuous function H : [0, 1]×X −→ Y
such that for all x ∈ X , H(0, x) = F0(x) and H(1, x) = F1(x). In this paper, we are interested in the
special case where X = Y = D, for D a closed compact subset of Euclidean space, such as a cube. Thus,
F0 and F1 are Brouwer functions on D. Given two continuous functions F0,F1 : D −→ D, the linear
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homotopy is given by the expression H(t, x) = (1 − t)F0(x) + tF1(x), and (if D is convex) results in a
continuum of Brouwer functions Ft : D −→ D given by Ft = (1− t)· F0 + t· F1 for t ∈ [0, 1].

Browder’s fixpoint theorem [2] (not to be confused with Brouwer’s fixpoint theorem) asserts that given
a homotopy connecting F0 and F1, there is a path in [0, 1] ×D from some fixpoint of F0 to some fixpoint
of F1, such that for every point (t, x) on that path, x is a fixpoint of Ft. The homotopy method [7, 15] for
finding a fixpoint of F1 selects F0 to have a unique and easy to find fixpoint, and essentially follows such a
path. As noted in [15], we do not expect the path to be monotonic in t — indeed, we show in Section 8 that
an exponential number of direction reversals is possible.

We are often interested in approximate fixpoints1. If F is a Brouwer function, an ε-approximate fixpoint
is a point x such that |F(x) − x| ≤ ε (we shall use the L∞ metric throughout). It follows from Browder’s
theorem that, for any F0,F1, there is a finite sequence x0, xt1 , . . . , xtk , x1 of ε-approximate fixpoints of
F0,Ft1 , . . . ,Ftk ,F1, for some k and t1, . . . , tk, such that any two consecutive fixpoints in the sequence are
at most ε apart.

We shall be interested in the following problem, which we call BROWDER FIXPOINT: Given two arith-
metic circuits computing two functions F0 and F1 from [0, 1]d to itself with Lipschitz constant `, an ε > 0,
where F0 has a unique fixpoint x0, find an ε-approximate fixpoint x1 of F1 that is connected via a sequence
of ε-approximate fixpoints to x0. (To make this definition precise, we of course have to identify classes of
functions from which F0 and F1 may be drawn.) Notice that the homotopy method for computing Brouwer
fixpoints provides a solution to this problem.

Homotopies can be defined very similarly also for games. Given two games G0,G1 of the same type
(number of players and strategies), we consider Gt = (1− t)· G0 + t· G1, where it is the players’ utilities that
are interpolated. It is routine to extend this definition to more general classes of games, such as graphical
games [17] (in which case, in addition to the players and strategies, the two graphs must be the same).
Browder’s theorem, via Nash’s reduction, establishes that there is a path of approximate Nash equilibria
here as well. The problem LINEAR TRACING is the following: Given two games G0 and G1, an ε > 0,
and a Nash equilibrium x0 of G0, find an ε-approximate Nash equilibrium x1 of G1 that is connected via a
sequence of ε-approximate Nash equilibria to x0.

It is easy to see that LINEAR TRACING is in PSPACE, and it can be checked that the algorithm of Herings
and van den Elzen [13] achieves this(see Section 4.2). BROWDER FIXPOINT is also in PSPACE.

2.2 OTHER END OF THIS LINE

We consider directed graphs on 2n vertices represented as n-bit vectors. The arcs are represented by two
polynomial-size circuits S and P , each having n inputs and outputs, as follows. There is an arc from vertex
v to w provided that S(v) = w and P (w) = v. Notice that all vertices of the graph have both indegree and
outdegree 0 or 1, that is, the graph consists of paths, cycles, and isolated vertices.

Definition 1 An (S, P )-graph with parameter n is a graph on {0, 1}n specified by circuits S and P , as
described above, subject to the constraint that vertex 0n has no incoming arc but does have an outgoing arc.

The problem END OF THE LINE is the problem of finding a vertex of a given (S, P )-graph other than
0n which has at most one incident arc. Note that this problem is in the class TFNP of total search problems
in NP: there exists a solution that could be obtained by following the directed path that starts at 0n, and
any given solution may be efficiently checked for correctness. The class PPAD [23] is defined as all search
problems polynomial-time reducible to END OF THE LINE. The problem OTHER END OF THIS LINE (which

1A very interesting alternative consideration [8] focuses on exact fixpoints, resulting in higher complexity of the search problem;
here we could also consider exact fixpoints and equilibria without much effect on our results, since we are dealing with PSPACE-
completeness. It is known from [8] that this harder problem belongs to PSPACE.
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we will subsequently abbreviate to OEOTL) is the problem of finding the end of the particular path that starts
at 0n. In contrast with END OF THE LINE, a given solution to an instance of OEOTL has no obvious concise
certificate that it is the correct endpoint, so while OEOTL is a total search problem, it is apparently not an
NP total search problem. In fact, we have the following (Theorem 2 of [23]), which is the starting-point of
our reductions.

Theorem 1 [23] OEOTL is PSPACE-complete.

2.3 Our Approach

In [6], each instance I of END OF THE LINE is reduced to a game GI in such a way that any Nash equilibrium
of GI efficiently encodes a solution to I . Here we reduce I to a homotopy problem defined by two games,
(G0,G′I), where G0 depends only on n, while G′I encodes the circuits in I , and is an extension of GI of [6]. We
establish that the associated linear homotopy corresponds to the naive “follow the line” approach to solving
OEOTL; technically, a suffix of the homotopy path corresponds to following the line, and the existence of the
relevant suffix is established in a non-constructive way, using the intermediate value theorem. In extending
the result to the Lemke-Howson algorithm, the main technical obstacle is the initial choice of which “label
to drop”, leading to multiple disjoint paths in the mixed-strategy profile space. We have to ensure that all
of the 2n solutions (one for each pure strategy) efficiently encode the solution to I , where I is treated as
an instance of OEOTL. This is done by embedding two copies of the game G′I inside a larger one in such a
way that at least one copy does not contain the initially-dropped label, and arguing that any Lemke-Howson
equilibrium restricted to this copy ends up encoding the unique solution to I .

3 The Homotopy Method for Brouwer Fixpoints

In this section we give detailed definitions of classes of fixpoint and approximate fixpoint computation prob-
lems. In Section 3.1, we review the definition of Brouwer-mapping functions —and related concepts— from
Chen et al. [4], here applied to a three dimensional domain. In Section 3.2, we review the techniques of [6, 4]
for implementing Brouwer-mapping functions as arithmetic circuits. In Section 3.3, we prove Theorem 3,
the main result of Section 3, in which we establish the PSPACE-completeness of a linear homotopy for
finding a fixpoint of a Brouwer function. n ∈ IN will denote a complexity parameter of problem instances.
We define a sequence F (n)

0 of “basic Brouwer functions” having unique known fixpoints. For each n we
define a class of Brouwer functions whose members encode (S, P )-graphs on {0, 1}n. The homotopy of
Equation (1) defines a class of functions Ft, t ∈ [0, 1], that interpolate between F0 and F1 and specifies
a particular fixpoint of F1. We will show that from that fixpoint, we can efficiently recover a solution to
OEOTL for the graph encoded by F1.

3.1 Definitions and notation

Notation 1 Let K be the unit 3-D cube [0, 1]3. For n ∈ IN let K(n) denote a partition of K into 23n

“cubelets”, K(n) = {Kijk : 0 ≤ i, j, k ≤ 2n − 1}; Kijk is an axis-aligned cube of length 2−n whose
vertex closest to the origin has coordinates 2−n(i, j, k).

We define a Brouwer-mapping circuit in a similar way to the definition in [4], here specialized to the
case of 3 dimensions. We also introduce some variations of the definition, as follows:

Definition 2 (Brouwer-mapping circuit/function; basic Brouwer-mapping function; DGP-style Brouwer-
mapping function; partial Brouwer-mapping function)
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A Brouwer-mapping circuit (bmc) is a directed boolean circuit with 3n input nodes and 2 output nodes.
Note that any bmc B has an associated Brouwer-mapping function (bmf) fB : K(n) −→ {0, 1, 2, 3} that
maps any cubelet Kijk to one of the four colors {0, 1, 2, 3}. We require the colors of all exterior cubelets
to be predetermined as follows. For i = 0, fB(Kijk) = 1. For j = 0, i > 0, fB(Kijk) = 2. For k = 0,
i, j > 0, fB(Kijk) = 3. All other exterior cubelets are mapped to 0.

The basic bmf f (n)0 : K(n) −→ {0, 1, 2, 3} has the additional property that all internal cubelets get
mapped to 0. Notice that f (n)0 is computable by a bmc of size polynomial in n.

A DGP-style bmf is one that is derived from an (S, P )-graph in the manner of [6], and so is computable
with a bmc of size polynomial in the size of circuits S and P . (Proposition 1 notes the relevant property of
DGP-style bmf’s.)

A partial bmf f is defined with respect to a set S ⊆ K(n); f assigns a color to elements of S but f may
be undefined on non-elements of S.

Proposition 1 The following problem is PSPACE-complete. Given a Brouwer-mapping circuit B, find a
point in K that is a vertex of 4 cubelets mapped to all 4 colors by the associated bmf fB , and which is
connected to the origin via cubelets having colors other than 0.

This is a total search problem: the topological intuition is that there is a line that is adjacent to the colors
{1, 2, 3} and has one end at 2−n(1, 1, 0). The other end must be inside K and adjacent to color 0, since
no other exterior point is adjacent to the colors {1, 2, 3}. We note in passing that if we did not make the
“connected to the origin” requirement, the problem would be PPAD-complete.

Proof. We reduce from OEOTL (Theorem 1): LetG be an (S, P )-graph. Let fB be a DGP-style bmf derived
from G, whose circuit B efficiently encodes G.

Given a bmf fB , define a {1, 2, 3}-chromatic vertex to be one that is shared by 3 cubelets with colors 1,
2 and 3. By construction, the only exterior {1, 2, 3}-chromatic vertex for any bmf is 2−n(1, 1, 0). Form a
digraph GB on {1, 2, 3}-chromatic vertices by adding an arc between any pair that share a cubelet, directed
such that if it pointing away from a viewer, its adjacent colors 1, 2, 3 will appear in clockwise order around
it. The reduction of [6] ensures GB has indegree/outdegree at most 1.

Define a panchromatic vertex to be one that belongs to 4 cubelets of all 4 different colors. By con-
struction, for all bmf’s there is a path of {1, 2, 3}-chromatic vertices starting at 2−n(1, 1, 0) and ending at a
unique panchromatic vertex vend. vend is a solution; it can be found in polynomial space by following this
path.

Let GB be the graph on fB’s {1, 2, 3}-chromatic vertices as described above. The reduction of [6] has
the following properties, from which the result follows.

1. Each vertex v of G has an associated {1, 2, 3}-chromatic vertex b(v) of GB; v and b(v) may be
computed in polynomial time from each other. For v = 0n, b(v) = 2−n(1, 1, 0).

2. v is a solution to END OF THE LINE if and only if b(v) is panchromatic.

3. Each arc (v, w) of G corresponds to a sequence of edges of GB that connect b(v) to b(w).

4. Each connected component of cubelets colored with {1, 2, 3}, corresponds to a connected component
of G.
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3.2 Implementing Brouwer-mapping functions as arithmetic circuits

We review a class of functions used to establish PPAD-completeness of graphical and strategic-form games.
Recall that K denotes the 3-dimensional unit cube; we consider continuous functions F : K −→ K having
the following structure. Each function is an arithmetic circuit composed of nodes, with each node taking
inputs from up to 2 other nodes, and producing an output, for example, the sum of its inputs. All values are
constrained to [0, 1], so a node that adds its inputs would output 1 if their sum is greater than 1. Identify 3
nodes as “input nodes” and another 3 as “output nodes”, so if F is a continuous function from K to K, it
has a Brouwer fixpoint.

Definition 3 A linear arithmetic circuit is an arithmetic circuit that computes a function from K to K,
represented by a directed graph whose nodes are “gates” that perform certain basic arithmetic operations
on their inputs as follows. Each gate takes as input 0, 1 or 2 real values in [0, 1] and outputs a single real
value in [0, 1], where the output of a gate may be the sum/difference/max/min of two inputs, or a constant
multiple of a single input, or no input and constant output. (An output value is set to 1 if for example two
inputs that sum to more than 1 are input to a “sum” gate.) We also allow “comparator gates” in which the
output of such a gate evaluates to 1 (respectively, 0) if its first input is greater (respectively, less) than the
second input, and may take any value if they are equal.

Notation 2 Let α = 2−2n. Let δ1 = (α, 0, 0), δ2 = (0, α, 0), δ3 = (0, 0, α), δ0 = (−α,−α,−α).

Definition 4 We shall say that a Brouwer-mapping function f is implemented by an arithmetic circuit C if
whenever f(Kijk) = c, then C(x)−x = δc when x is at the center of Kijk. For x not at a center, C(x)−x
should be a convex combination of values of C(z) − z for cubelet centers z within L∞ distance 2−n of x.
Given F : K −→ K computed by such a C, we shall similarly say that F implements f .

Observation 1 If F implements f , then any fixpoints of F must lie within distance 2−n of panchromatic
vertices of f , and vice versa.

Theorem 2 A Brouwer-mapping function having complexity parameter n can be implemented using a linear
arithmetic circuit having poly(n) gates, that computes a continuous function.

The proof gives a new technique to implement any Brouwer-mapping function f as a continuous function
F that uses a linear arithmetic circuit. This is in contrast with the corresponding techniques of [4, 6] that used
a sampling-based approach in order to smooth the transition between distinct cubelets. The sampling-based
approach results in discontinuous functions, where Browder’s theorem would not be applicable (although
it could still be applied to a continuous approximation). The technique only works in constant dimension;
if can be extended to higher dimension using the “snake-embeddings” of [4]. (See Section 9.) The general
idea of the technique is to take a simplicial decomposition of the domain K, give rules for obtaining the
values of F at the vertices of the decomposition, and linearly interpolate within each simplex.

Proof. Let f : K(n) −→ {0, 1, 2, 3} be a Brouwer-mapping function. We construct a continuous Brouwer
function F : K −→ K computed by a linear arithmetic circuit C as follows.

For x at the center of cubelet Kijk, set F(x) − x = δc where c = f(Kijk). For x a vertex of cubelets
Kx ⊂ K(n), set F(x) − x to be the average of F(z) − z for all points z at the centers of members of Kx.
The relevant points z can be obtained using a polynomial-sized piece of circuitry.

Let S be a simplicial decomposition of the unit cube consisting of 12 simplices that share a vertex at the
center of the cube, and all other vertices are vertices of the cube. Let Sijk be the simplicial decomposition
of cubelet Kijk obtained by scaling S down to Kijk. Applied to all cubelets in K(n) this results in a highly
regular decomposition S(n) of K into 12.23n simplices.
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For any x ∈ K, F (x) is obtained by linearly interpolating between the vertices of the simplex in S(n)
that contains x. Clearly F is continuous.

The result follows from the following claim:

Proposition 2 F as defined above, may be computed by a linear arithmetic circuit of size polynomial in n.

Proof. If x is not a vertex of S(n), the circuit can determine the vertices of a simplex Sx ∈ S(n) that contains
x. There may be more than one such simplex, in which case it does not matter which is chosen.

The circuit has 12 cases to consider, depending on the orientation of Sx. Each case can be handled in
the same general manner, by subtracting some vertex v of Sx from x, and multiplying (x − v) by some
constants (the coefficients of the linear function that interpolated between the vertices of Sx). Note that we
never need to multiply two computed quantities together, multiplication only ever takes place between a
computed quantity and a constant, as required for a linear arithmetic circuit.

3.3 The PSPACE reduction to linear arithmetic circuits

In this subsection, we establish the PSPACE-completeness of the problem BROWDER FIXPOINT, mentioned
in the Introduction, which can now be made precise as follows. We use two bmfs f0 and f1, where f0 is
the basic bmf of Definition 2, and f1 shall be a DGP-style bmf that encodes an instance of END OF THE

LINE as constructed in [6]. Let F0 and F1 be implementations of f0 and f1 using linear arithmetic circuits
as described in the proof of Theorem 2. For F : K −→ K let F (i) denote the i-th component of F . For
i = 1, 2, 3 let

F̄ (i)
t = (F (i)

0 − t) + (F (i)
1 − (1− t))

F (i)
t = max(min(F (i)

0 ,F (i)
1 ), F̄ (i)

t )
(1)

where in (1), the outputs of operators + and− are restricted to lie in [0, 1] (so, rounding to 0 or 1 if needed).
Ft interpolates continuously between F0 and F1 and is constructed from them using elements of the linear
arithmetic circuits of Definition 3 (which is useful later; the natural alternative Ft = tF0 + (1− t)F1 does
not have this property.)

Observation 2 For all t ∈ [0, 1], F (i)
t is Lipschitz continuous, with Lipschitz value < 2.2−n.

F0 has a unique fixpoint close to 2−n(1, 1, 1). F0 is a “basic Brouwer function” which forms the
starting-point of homotopies we consider. Hence Observation 2 and Browder’s fixpoint theorem implicitly
define a corresponding fixpoint of F1.

Define an approximate fixpoint of F : K −→ K to be a point x ∈ K with |F(x) − x| ≤ α/5 (recall
α = 2−2n).

Theorem 3 It is PSPACE-complete to find, within accuracy 2−n, the coordinates of the fixpoint of F1 that
corresponds to the homotopy of (1). It is also PSPACE-complete to find the coordinates of an approximate
fixpoint of F1 that would be obtained by following a sequence of approximate fixpoints of Ft in which
consecutive points are within distance α of each other.

Proof. We reduce from the problem defined in Proposition 1 as follows. Let B be a Brouwer-mapping
circuit derived from OEOTL-instance (S, P ) using Proposition 1 and let fB : K(n) −→ {0, 1, 2, 3} be the
function computed by B. Let F1 : K −→ K be the function computed by a linear arithmetic circuit that
implements fB , and F0 be computed by a circuit that implements the basic bmf f0 (where both implemen-
tations apply Theorem 2). Ft is given by (1).
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Let P be a connected subset of K × [0, 1] such that for any (x, t) ∈ P , x is a fixpoint of Ft, and P
contains x0 ∈ (K, 0) and x1 ∈ (K, 1). Browder’s fixpoint theorem (with Observation 2) assures us that
such a P exists. We claim that x1 is within distance 2−n of the unique solution toB of the problem specified
in Proposition 1 (and hence, given x1 we can easily construct this solution).

Suppose otherwise. For x1 to be a fixpoint (even an approximate one) of F1, by Observation 1 it must be
within distance 2−n of a panchromatic vertex v of fB . But now, v is not connected to the origin via non-zero
cubelets of fB . By connectivity of P , there must exist (x, t) ∈ P such that x lies within a cubelet Kx where
fB(Kx) = 0.

We may assume further that x is at least 2−n distant from any non-zero cubelet of fB . This follows
provided we assume that connected components of non-zero cubelets of fB are separated from each other
by a layer of 0-colored cubelets of thickness at least 3. This may be safely assumed by increasing n by a
factor of 3 and subdividing the cubelets. We note that

1. each entry of vector F0(x)− x is < −α/5, and

2. each entry of F1(x)− x is < −α/5.

It follows that for t ∈ [0, 1], each entry of ft(x)−x is less than −α/5, since coordinatewise, f0 ≤ ft ≤ fB .
That means that x cannot be an approximate fixpoint of any ft, contradicting the assumption as required.

Since x is at least 2−n distant from any non-zero cubelet of fB , it is also at least 2−n distant from any
non-zero cubelet of f0, since for any cubelet Kijk, fB(Kijk) = 0 =⇒ f0(Kijk) = 0. The implementation
of any bmf f as a function F computed by a linear arithmetic circuit, as referred to in Theorem 2, ensures
that F(x) − x is a convex combination of vectors F(z) − z for cubelet centers z in the vicinity of x, and
since all those cubelet centers are colored 0, we have that the entries of F(x) are all less than −α/5, as
required.

4 The Linear Tracing Procedure

We now turn to games and Nash equilibrium. Let G denote an n × n game that we wish to solve, assumed
to be chosen by an adversary. G0 is a game with a unique “obvious” solution. In G0 each player receives
payoff 1 for his first action, and payoff 0 for all others, regardless of what the other player does.

G0 =

sc0 sc1 . . . scn−1
sr0 (1, 1) (1, 0) . . . (1, 0)
sr1 (0, 1) (0, 0) . . . (0, 0)
...

...
...

...
srn−1 (0, 1) (0, 0) . . . (0, 0)

(2)

In the problem LINEAR TRACING the solution consists of the Nash equilibrium of G that is connected
to the unique equilibrium (sr0, s

c
0) of G0 via equilibria of convex combinations (1− t)G0 + tG. We can also

define an approximate version of this problem, where instances include an additional parameter ε, and we
seek an ε-Nash equilibrium that is connected to the solution of G0 via a sequence of ε-approximate solutions
of Gt. For the two-player case we assume ε = 0. For more than 2 players, we need a positive ε to ensure
that solutions can be written down as rational numbers.

Theorem 4 LINEAR TRACING is PSPACE-complete for 2-person games.

The same result then holds for strategic-form games with more than 2 players. It holds for a value of
ε that is exponentially small; we could again use the ideas of [4] to obtain a version where ε is inverse
polynomial.
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Our reduction uses the result of the previous section, along with earlier reductions between strategic-
form games and graphical games. G0 has a similar role to the basic Brouwer function F0, but the correspon-
dence is indirect; generally F0 is associated with one of the “intermediate games” Gt for t > 0.

4.1 Brief overview of the proof ideas

The following is a brief overview of the rest of this Section 4. Membership of PSPACE can be deduced
from [13]. The reduction from the PSPACE-complete discrete Brouwer fixpoint problem of the previous
section, applies the idea from [6] of going via graphical games to normal-form games. We derive a type
of graphical game in which a specific player (denoted vswitch ) acts as a switch, allowing the remaining
players to simulate either the basic Brouwer-mapping function, or one associated with an instance of the
search for a discrete Brouwer fixpoint. vswitch governs this behavior via his choice of either one of two
alternative strategies, and we show that a continuous path of equilibria from one choice to the other, results
in an equilibrium that ultimately represents a solution to OEOTL. The graphical game is then encoded as a
2-player game such that the linear-tracing procedure corresponds to this continuous path of equilibria in the
graphical game.

4.2 Membership of PSPACE

Herings and van den Elzen [13] show how to find approximate equilibria on multi-player games, implicitly
constructing a degree-2 graph that has a vertex corresponding to N0, the Nash equilibrium of G0. Given a
simplicial decomposition of D× [0, 1] (where D is the space of mixed strategies of G) vertices of the graph
correspond to simplices and subsimplices, and edges are implicitly defined by a lexicographical pivoting
rule that governs a choice of movement from simplex to adjacent simplex, at each step of the algorithm. It
can be checked that this algorithm establishes membership of PSPACE for multiplayer LINEAR TRACING.

4.3 Graphical Games

In a graphical game [17], each player is a vertex of a graph, and his payoffs depend on his own and his
neighbors’ actions. For a low-degree graph, this is one way that games having many players may be repre-
sented concisely. A homotopy between two graphical games GG0 and GG1 would require that these games
have the same underlying graph, so that they differ only in their numerical payoffs. In the graphical games
considered here, each player has just 2 actions and 3 neighbors. The main result of this section is

Proposition 3 Consider graphical games that contain a special player vswitch whose payoffs are constant
(unaffected by his own actions or the other players’). The following problem is PSPACE-complete: find a
Nash equilibrium of the game where vswitch plays 1, that is topologically connected to a Nash equilibrium
in which vswitch plays 0, via a path of Nash equilibria in which vswitch plays mixed strategies.

Let F0 and F1 be functions computed by linear arithmetic circuits that implement Brouwer-mapping
functions f0 and f1, where f0 is the “basic bmf” of Definition 2, and f1 is a DGP-style bmf that encodes
some instance of END OF THE LINE.

Notation 3 In a graphical game in which all players have 2 pure strategies denoted 0 and 1, given a mixed-
strategy profile for the players we let p[v] denote the probability that player v plays 1.

Definition 5 (Linear graphical game; simulation of bmf’s and partial bmf’s)
Given a bmf f , we construct an associated graphical game GGf as follows. GGf has 3 special players

(vx, vy, vz) whose strategies (p[vx],p[vy],p[vz]) represent a point in K. If f is implemented by F : K −→
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K we use gadgets of [6] to simulate the nodes in the arithmetic circuit that computes F (each node of the
circuit has an additional associated player in GGf ). The game can pay them to adjust (p[vx],p[vy],p[vz])
in the direction F(p[vx],p[vy],p[vz]) −(p[vx],p[vy],p[vz]). Then the players (vx, vy, vz) are incentivized
to play F(p[vx],p[vy],p[vz]). Consequently a Nash equilibrium of GGf corresponds to a fixpoint of F .
Moreover, an ε-Nash equilibrium corresponds to a poly(ε)-approximate fixpoint of F . We call GGf a
linear graphical game since we only allow players whose payoffs cause them to simulate the gates of linear
arithmetic circuits.

A game of the above kind is said to simulate f . We say further that a game GG simulates a partial bmf
on a subset S of cubelets, if for any K ∈ S, when (p[vx],p[vy],p[vz]) lie at the center of K the players
(vx, vy, vz) are incentivized to play (p[vx],p[vy],p[vz]) + δc, where c = f(K).

Lemma 1 Given any linear graphical game GG1 that simulates a Brouwer-mapping function f1, we can
efficiently construct a new game GG+ having a player vswitch whose behavior can either cause GG to
simulate f1 (if vswitch plays 1) or cause GG to simulate f0 if instead vswitch plays 0.

vswitch shall serve as a “switch”, in allowing the game to switch between simulating f0 and f1 (using
an additional 3 players (v+x , v

+
y , v

+
z ) whose strategies represent a point in K) according to whether vswitch

plays 0 or 1. Of course, vswitch has a key role in the associated two-player game.

Proof. For i ∈ {0, 1}, let GGi be a graphical game constructed from fi according to Definitions 2, 4, 5. GGi
has 3 players/vertices whose mixed strategies, as represented by the probabilities that they play 1, represent
a point in K. Denote these players (vix, v

i
y, v

i
z).

Construct a “combined” game GG+ as follows. GG+ contains all the players in GG0 and GG1 together
with a new player vswitch , where vswitch has the same fixed payoff for playing either 0 or 1. We add 3 players
(v+x , v

+
y , v

+
z ) whose mixed strategies represent a point in K, and players (v̄+x , v̄

+
y , v̄

+
z ), whose behavior is

governed by
p[v̄+x ]=(p[v0x]− p[vswitch ]) + (p[v1x]− (1− p[vswitch ]))
p[v+x ]=max(p[v̄+x ],min(p[v0x],p[v1x]))

(3)

(and similar expressions for v+y and v+z ) where the parentheses in the above expression are important since
the outputs of the operators + and − are truncated to lie in [0, 1].

Players from GG0 and GG1 that take input from nodes v0i or v1i respectively, are then modified to take
that input from v+i instead. This completes the construction.

Proof. of Proposition 3: We reduce from the circuit homotopy of Theorem 3. Let {Ft : t ∈ [0, 1]} be an
instance of this circuit homotopy. Construct G1 from F1 as per Definition 5. Construct GG+ as in Lemma 1,
and we make the following observation.

Observation 3 Suppose that in GG+ we have p[vswitch ] = t ∈ (0, 1). The resulting game GG+t simulates a
partial Brouwer-mapping function ft which is implemented by a Brouwer function Ft that is (pointwise) a
convex combination of F0 and F1 and is defined on the subset of cubelets where f0 = f1. Given a homotopy
path of Nash equilibria of GG+ that start at the unique equilibrium of GG+ that satisfies p[vswitch ] = 0 and
ends at an equilibrium of GG+ in which p[vswitch ] = 1, there is a corresponding homotopy path from the
fixpoint of F0 and a fixpoint of F1 (noting that (3) is essentially the same as (1)).

That concludes the proof of Proposition 3.

The following version of Lemma 1 is useful in the construction for Lemke-Howson solutions, later on.
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Corollary 1 Given any linear graphical game GG1 that simulates a Brouwer-mapping function f1, we can
efficiently construct a new game GG+ having 2 players vswitch and v′switch whose behavior can either cause
GG+ to simulate f1 (if both vswitch , v′switch play 1) or cause GG+ to simulate f0 if instead either or both
play 0.

Proof. The proof of the previous Lemma is modified as follows. We re-use Equation (3) for players
(v+x , v

+
y , v

+
z ). The 3 players (v++

x , v++
y , v++

z ) whose mixed strategies represent a point in K have behavior
governed by

p[v̄++
x ] = (p[v0x]− p[v′switch ]) + (p[v+x ]− (1− p[v′switch ]))

p[v++
x ] = max(p[v̄++

x ],min(p[v0x],p[v+x ]))
(4)

again with similar expressions for v++
y and v++

z .

4.4 From graphical to two-player strategic-form games

In this subsection we prove the following theorem, from which Theorem 4 follows since we have previously
noted membership of PSPACE.

Theorem 5 It is PSPACE-hard to compute the Nash equilibrium of a given 2-player normal-form game G1,
that is obtained via the linear homotopy that starts from G0, a version of G1 where the payoffs have been
changed to give each player payoff 1 for his first strategy and 0 for the others.

We reduce from the graphical game problem of Proposition 3. Let GG+ be a linear graphical game that
includes a player vswitch as per Proposition 3. First, modify GG+ to give vswitch a small payment (say, 0.01)
to play 1, and zero to play 0.

We define a homotopy between two-player strategic-form games G0 and G1 such that equilibria of G1
efficiently encode equilibria of GG+, and equilibria of Gt encode equilibria of versions of GG+ where vswitch
has a bias towards playing 0. We use the reduction of [6] (Section 6.1) from graphical games to 2-player
games (a similar reduction is used in [4] (Section 7) to express generalized circuits (similar to our linear
arithmetic circuits) as 2-player games).

In the context of a mixed-strategy profile, let Pr[s] denote the probability allocated to pure strategy s by
its player.

Definition 6 A circuit-encoding 2-player game G has a corresponding graphical game GG where the graph
of GG is bipartite; denote it G = (V1 ∪ V2, E); each player (vertex) in GG has 2 actions (denote them 0
and 1) and payoffs that depend on the behavior of 2 other players in the opposite side of G’s bipartition.
Each vertex/action pair (v, a) of GG has a corresponding strategy in G; for v ∈ V1, (v, a) belongs to the
row player and for v ∈ V2, (v, a) belongs to the column player. The payoffs in G are designed to ensure that
in a Nash equilibrium of G

• Pr[(v, 0)] + Pr[(v, 1)] ≥ 1/2n where n is the number of players in GG

• if in GG, v plays 1 with probability Pr[(v, 1)]/(Pr[(v, 0)] + Pr[(v, 1)]) then we have a Nash equilib-
rium of GG.

Let G be a circuit-encoding game derived from GG+ according to Definition 6. Associate vswitch with 2
strategies of of the column player of G, and let sck and sck+1 be these strategies. Hence a Nash equilibrium of
G corresponds to one of GG+ where the value p[vswitch ] is given by the value Pr[sck+1]/(Pr[sck]+Pr[sck+1]).

Observation 4 If we take a circuit-encoding 2-player game, and award one of the players a small bonus to
play (v, a), then this corresponds to incentivizing the player v in GG to select strategy a. The corresponding
incentive for v will be larger, but only polynomially larger.
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Let G0 be a (n+ 1)× (n+ 1) game with strategies {sr0, . . . srn} for the row player, and {sc0, . . . scn} for
the column player. Payoffs are as follows: each player receives 1 for playing sr0 or sc0, and 0 for srj or scj for
j > 0. (Thus G0 is a (n+ 1)× (n+ 1) version of Equation (2).)

Rescale the payoffs of G to all lie in the range [0· 9, 1· 1]. Let G1 be a (n + 1) × (n + 1) game with
strategies {sr0, . . . , srn} for the row player, and {sc0, . . . , scn} for the column player. Payoffs are as follows:

• (sr0, s
c
0) results in payoffs (0,−1) for the players.2

• (sr0, s
c
j) for j > 0 results in payoffs (0, 34).

• (srj , s
c
0) for j > 0 results in payoffs (−1, 34) for j 6= k, and (−1, 34 + δ) (for δ inverse polynomial in

n) for j = k

• The rest of G1 is a copy of G above.

G1 =

sc0 sc1 · · · sck−1 sck sck+1 · · · scn
sr0 (0,−1) (0, 34) · · · (0, 34) (0, 34 + δ) (0, 34) · · · (0, 34)
sr1 (−1, 34)
...

... G
srn (−1, 34)

Let Gt = (1 − t)G0 + tG1. The above payoffs have been chosen so that Nash equilibria satisfy: in
G1, players do not use sr0 or sc0; in G0·6, players both have a proper mixture of sr0 and sc0 with their other
strategies. Since G’s payoffs were rescaled to lie in [0· 9, 1· 1], Pr[sr0] and Pr[sc0] can be shown to lie in
[0· 1, 0· 9], which can be checked from the following payoff ranges for G0·6:

sc0 sc1 . . . s
c
n

sr0 (0· 4,−0· 2) (0· 4, 0· 45 + δ)
sr1 . . . s

r
n (−0· 6, 0· 85) ([0· 54, 0· 66], [0· 54, 0· 66])

Thus a continuous path of equilibria should at some stage allocate gradually less and less probability to sr0
and sc0 as t increases.

Observation 5 In any Nash equilibrium N of G1, the players assign probability 0 to sr0 and sc0, and conse-
quently N consists of a Nash equilibrium of G, restricting to strategies srj , s

c
j′ for j, j′ > 0.

Since Gt = (1− t)G0 + tG1, we can write Gt as

sc0 sc1 · · · sck−1 sck sck+1 · · · scn
sr0 (1− t, 1− 2t) (1− t, 34 t) · · · (1− t,

3
4 t) (1− t, (34 + δ)t) (1− t, 34 t) · · · (1− t,

3
4 t)

sr1 (−t, 1− 1
4 t)

...
... tG

srn (−t, 1− 1
4 t)

The general idea is as follows. Consider the Browder path of equilibria that begins from the unique
equilibrium of G0 (where initially both players play sr0, sc0). As t increases, the players will start to use the
other strategies. At that stage, consider the distribution of their mixed strategies restricted to sr1, . . . , s

r
n and

2The two-component payoff vectors assign the first component to the row player and the second component to the column
player.
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sc1, . . . , s
c
n. These distributions will constitute a Nash equilibrium of a version of G in which the column

player receives a small bonus for playing sck. As t increases to 1, the bonus decreases continuously to 0,
and we recover Observation 5. Now, recall from Definition 6 that the way [6, 4] reduce graphical games
to two-player games, is to associate each player v in the graphical game with two strategies in the two-
player game, both belonging to the same player. The division of probability between those two strategies
represents the probability that v plays 1. Consider vswitch now, corresponding to sck and sck+1. vswitch is, in
the graphical game, mildly incentivized to play 1, but for t < 1 the δ in the two-player game Gt pushes it
the other way, towards 0. As a result, a Nash equilibrium of Gt may simulate a Nash equilibrium of GG+t
where p[vswitch] ∈ (0, 1). As t increases and the contribution from δ decreases, this process corresponds to
raising p[vswitch ] continuously (but not monotonically) from 0 to 1.

Lemma 2 LetN be a Nash equilibrium of Gt in which Pr[sr0] < 1 and Pr[sc0] < 1. Let P be the probability
distributions over {sr1, . . . , srn} and {sc1, . . . , scn} obtained by taking each value Pr[sij ] (for i ∈ {r, c},
1 ≤ j ≤ n) and dividing it by 1− Pr[si0].

ThenP is a Nash equilibrium of a version of G where the column player receives a bonus of δ Pr[sr0]/(1−
Pr[sr0]) for sck.

Proof. In Nash equilibrium N , c’s strategy sc0 contributes the same quantity to each one of r’s strategies
sr1, . . . , s

r
n. So the values Pr[sr1], . . . ,Pr[srn] must form a best response to c’s mixed strategy from P .

The column player receives a bonus δtPr[sr0] specific to sck, arising from the possibility that row player
plays 0. He also receives an additional 3

4 t for all strategies scj for j > 0, but that uniform bonus has no
further effect on his preference amongst sc1, . . . , s

c
n.

So in N , Pr[sc1], . . . ,Pr[scn] is a best response to a mixture of G weighted by 1− Pr[sr0] and the proba-
bility Pr[sr0] of a bonus δ Pr[sr0] for playing sck. This is equivalent to a best response to a version of G with
a bonus of δ Pr[sr0]/(1− Pr[sr0]) for playing sck.

Consider the path of equilibria connecting equilibrium N0 of G0 to equilibrium N1 of G1. By Lemma 2
we can choose δ such that in any equilibrium of G0.5 we have Pr[sck+1] = 0. We also have that in any
equilibrium of G1, Pr[sck] = 0. Consider the longest suffix of the path for which t ≥ 0.5 for all games
Gt that appear in that suffix. The corresponding equilibria assign weight strictly less than 1 to sr0 and sc0,
so Lemma 2 may be used to recover corresponding equilibria of versions of G which in turn correspond to
versions of GG+ in which initially, vswitch is incentivized to play 0, and finally, vswitch is incentivized to
play 1.

5 From Linear Tracing to the homotopies of van den Elzen-Talman, Herings-
van den Elzen, and Herings-Peeters

In the previous section, we showed the PSPACE-completeness of finding the Nash equilibrium of a two-
player game that is associated with a homotopy that uses a specific simple starting-game that is not derived
from the game of interest. In the literature on homotopy methods, starting with Harsanyi [10], the starting-
game is usually derived from the game of interest by positing a prior distribution over the players’ pure
strategies, and using a starting-game whose payoffs are the result of playing against this prior distribution.
In this section, we extend the result of Section 4 to handle these starting-games and thus obtain results for
the Herings-van den Elzen [13] and Herings-Peeters [14] algorithms, which use the same underlying homo-
topy, and the van den Elzen-Talman [15] algorithm, which uses a different homotopy. All three algorithms
have been shown under certain conditions to mimic the Harsayni-Selten linear tracing procedure. For each
algorithm, we use the uniform distribution as the prior distribution, which is a natural choice.
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The van den Elzen-Talman algorithm uses a homotopy based on a starting mixed-strategy profile v.
Letting Σ be the set of mixed-strategy profiles, let Σ(t) be the set of convex combinations (1− t){v}+ tΣ.
In the notation of [15], the van den Elzen-Talman algorithm —restricted to the two-player case— uses the
homotopy

H(t, σ) = β1σ1(t)(σ)× β2σ2(t)(σ)

where for i = 1, 2, βi
σi(t)

(σ) denotes the best responses of player i to mixed strategy σ, restricted to Σ(t).

Theorem 6 It is PSPACE-complete to compute equilibria that result from the above van den Elzen-Talman
homotopy.

Proof. (sketch) It can be checked that the algorithm uses polynomial space. For the hardness, we reduce
from LINEAR TRACING; consider a game G for which we seek an equilibrium that results from starting with
G0 of the form of (2). Suppose we take a game G from Section 4 and give each player an additional strategy
as follows. Let srn and scn be the new strategies, for the row and column player respectively. srn has a payoff
of −10 for the row player, regardless of how the column player plays (thus, srn is dominated by all the other
strategies). The payoffs to the column player are chosen in such a way that, if in fact the row player uses
the uniform distribution over sr0, . . . , s

r
n, then the column player’s payoffs will be 1 for sc0 and 0 for scj , for

j > 0. The new strategy scn has a similar definition. Note that the new payoffs are at most n in absolute
value. These new strategies ensure that we have the desired G0 of Section 4, when we restrict each player to
his first n strategies. Strategies srn and scn are not used in any Nash equilibrium of Gt, since they are strictly
dominated for all t.

We let v be the uniform distribution. In Gt, the row plays a mixture (1 − t)v + tσrt while the column
player plays (1− t)v + tσct , where σrt and σct are mixed strategies whose support do not include srn and scn,
so they constitute a Nash equilibrium of a version of G in which there is a bonus to play sr0 and sc0. This
bonus drops continuously to zero, so it is equivalent to the linear-tracing homotopy.

The algorithms of Herings-van den Elzen [13] and Herings-Peeters [14] are based on an identical ho-
motopy and differ only in the numerical technique used to follow the homotopy path. We can show using
essentially the same construction as above that is is PSPACE-hard to compute the equilibria found by these
homotopies. To do so we can again construct a starting game by giving the row/column players new strate-
gies srn and scn chosen to have low payoffs to the row (respectively, column) players, but whose payoffs
to the opponent are chosen such that if either player played the uniform distribution, the opponent would
receive a higher payoff for his first strategy (either sr0 or sc0) than the others, which would all receive the
same (lower) payoffs.

6 From Linear Tracing to Lemke-Howson

The Lemke-Howson (L-H) algorithm is an important and rich research subject in and by itself within Game
Theory; for the purposes of this reduction, it is helpful to take a point of view that considers the L-H
algorithm as a homotopy [15], where an arbitrary strategy (the one whose label is dropped initially) is given
a large “bonus” to be played, so that the unique equilibrium consists of that strategy together with its best
response from the other player; the homotopy arises from reducing that bonus continuously to zero.

Theorem 7 It is PSPACE-complete to find any of the solutions of a 2-player game that are constructed by
the Lemke-Howson algorithm.

The remainder of this section proves Theorem 7, the hardness being established by a reduction from
the graphical game problem of Proposition 3, extending the ideas of the reduction for LINEAR TRACING
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(Theorems 4, 5). A new technical challenge here is that the choice of initially dropped label results in 2n
alternative homotopy paths, and we must ensure that any of the (up to) 2n solution can encode the single
solution to some instance of LINEAR TRACING.

Suppose that some strategy has been given this “L-H bonus”, and a Browder path of Nash equilibria is
obtained from reducing that bonus to zero. As before let t ∈ [0, 1] be a parameter that denotes the distance
from the starting game of the homotopy to the game of interest, so that 1 − t is a multiplicative weight for
the bonus in intermediate games. Consider the Browder path. It is piecewise linear, a topologically well-
behaved line. Let T ∈ [0, 1] parameterize points along the Browder path — an equilibrium NT is the one
that is a fraction T of the distance along the path (starting at the version of the game with the L-H bonus).
So, multiple values of T can correspond to the same value of t. Here we mostly focus on T rather than t.

The following construction addresses the issue that an arbitrary strategy may receive the L-H bonus. We
embed two copies of a circuit-encoding game G (Definition 6) into a game instance for the Lemke-Howson
algorithm. At least one of those copies of G will not contain the strategy that receives the L-H bonus. The
L-H homotopy, restricted to that copy of G, will simulate the homotopy of Section 4.

In Figure 1, G denotes a circuit-encoding n × n game (note the two copies) whose payoffs have been
rescaled to lie in the interval [0· 4, 0· 6]. G is assumed to have an associated graphical game with two “switch”
players vrswitch , vcswitch that affect the equilibria of G according to Corollary 1. They will correspond to the
first pair of each of G’s players’ strategies (sr0, s

r
1) and (sc0, s

c
1) such that,

• if both p[vrswitch ] = 1 and p[vcswitch ] = 1, G’s equilibrium encodes a solution to an END OF THE LINE

instance that is efficiently encoded by G;

• if either p[vrswitch ] = 0 or p[vcswitch ] = 0, G encodes the “basic” Brouwer-mapping function;

• if we add a bonus to the row player for his first strategy sr0 that is less than some threshold τ , it will
result in Pr[sr0] = 0 and hence p[vrswitch ] = 1, and similarly for the column player with respect to sc0
and vcswitch . (We will see that such bonuses occur, and they decrease at T −→ 1.)

Notation. A,B,C,D and A′, B′, C ′, D′ denote sets of the players’ strategies as shown in Figure 1. In the
context of a mixed-strategy profile, Pr[C] denotes the probability that the column player uses C; Pr[A] that
he chooses an element of A, and so on. Let X(T ) = Pr[C] + Pr[D] + Pr[C ′] + Pr[D′], a function of
distance along the Browder path. We note the following facts

• X(0) ≥ 1 (if, say, a column player strategy receives the L-H bonus, then the row player will play
some pure best response, either C ′ or D′; so Pr[C ′] = 1 or Pr[D′] = 1.)

• X(1) ≤ 1
25 (shown in Lemma 4)

together with the key observation that X(T ) is a continuous function of T , implying:

Observation 6 For some T ′ ∈ [0, 1], X(T ′) = 1
4 , and for T > T ′, X(T ) < 1

4 .

Let Ḡ be the copy of G that does not contain the strategy that receives the L-H bonus. (If one of C, D,
C ′ or D′ receive the L-H bonus, then Ḡ may be either copy of G.)

For any X , at least one player p has an additional bonus at least X/4 to play sp0 in Ḡ (suppose for
example Pr[C] + Pr[D] ≥ X/2 and p is the row player; Figure 1 awards additional e = 1 to p when C or
D is played). But neither player’s bonus exceeds X/2. As T increases from T ′ to 1, X(T ) goes down from
1
4 to at most 4

M . We will establish that when X(T ) = 1
4 , NT contains a solution to a “biased” version of Ḡ

where one of the players’ first strategies (i.e. sr0 or sc0) has an additional bonus (enough to ensure Pr[sr1] = 0
and p[vrswitch ] = 0, in the case of the row player). Furthermore, when T = 1, we have that NT contains a
solution to Ḡ, only with smaller biases. These biases are associated with “switch” strategies in the graphical
game associated with G.
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Let T ′ be the largest value of T where X(T ) is large enough that one of the bonuses sets Pr[sp0] = 1 in
Ḡ (for p ∈ {r, c}). Between T ′ and T = 1 we pass through a continuum of equilibria where Pr[sp0] changes
from 1 to 0; equivalently p[vpswitch ] changes from 0 to 1, and the resulting equilibrium at T = 1 corresponds
to a solution to OEOTL.

Lemma 3 Let NT be a solution of GT . If Ḡ is the bottom right-hand copy of G in Figure 1, then if the
distributions over B and B′ are normalised to 1, we have a Nash equilibrium of a game Ĝ where the row
player has an additional bonus of e(Pr[C] + Pr[D])/Pr[B′] to play his first strategy sr0, and the column
player has an additional bonus of e(Pr[C ′] + Pr[D′])/Pr[B] to play his first strategy sc0.

By symmetry, a similar result also holds in the case that Ḡ is the top right-hand copy of the G.

Proof. Payoffs to the row player are unaffected by the column player’s distribution over A. Meanwhile, C
and D lead to an additional bonus of e (weighted by the probability that C and D are used by the column
player) for the row player to use the top row of B′.

Lemma 4 At t = 1 (equivalently, T = 1) we have in any Nash equilibrium, that Pr[C] ≤ 1
M , Pr[D] ≤ 1

M ,
Pr[C ′] ≤ 1

M and Pr[D′] ≤ 1
M . Since M ≥ 100 we have X(1) ≤ 1

25 .

Proof. of Lemma 4. We give the proof that Pr[C] ≤ 1
M ; by symmetry the other claims are similar.

Assume for contradiction that Pr[C] > 1
M . We know that at least one strategy fromA∪B gives positive

payoff, since the places where they can obtain a negative payoff are “equal and opposite”. Indeed, it can be
checked that the payoff to at least one member of A and B is at least 1

2 min{0· 4, e}. The (column player’s)
payoffs from C and D must sum to zero, so if Pr[C] > 0 then Pr[D] = 0 (D gets negative payoff and is
a strictly worse response A or B.) A similar argument for the row player’s payoffs establishes that one or
both of C ′ and D′ gets zero probability.

Given that Pr[C] > 1
M we can deduce that Pr[A′] = 0 due to being a worse response than B′: C

contributes at least 2M
M = 2 to payoff(B′) − payoff(A′); A contributes a positive amount; D has zero

probability so contributes nothing; B contributes ≥ −0· 6. We noted above that Pr[C ′] = 0 or Pr[D′] = 0
(or both). Consider two cases:

Case 1: Pr[D′] = 0. Deleting strategies with probability zero, we are left with the following structure:

A C B
B′ (1, 0) ([M,M + e],−M) ([0· 4, 0· 6], [0· 4, 0· 6])
C ′ (−M, [M,M + e]) (−M,M) (M, [−M,−M + e])

Comparing C withA, we need Pr[C ′] = 1 to avoidA being a better response than C (which is supposed
to have positive probability > 1

M ). If Pr[C ′] = 1, B is a worse response than the others, but when the
column player uses only A and C, C ′ has much lower payoff than B′, contradicting assumption that Pr[C ′]
is positive. This leaves us with Case 2:

Case 2: Pr[C ′] = 0. We get, after deleting zero-probability strategies,

A C B
B′ (1, 0) ([M,M + e],−M) ([0· 4, 0· 6], [0· 4, 0· 6])
D′ (M, [−M,−M + e]) (M,−M) (−M, [M,M + e])

Here the contradiction is immediate since B is a strictly better response than C, preventing Pr[C] >
0.
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Figure 1: The game has 2 copies of n× n game G embedded in the top-left and bottom-right regions, with
payoff rescaled to [0· 4, 0· 6]. In the top-right and bottom-left regions are copies of a n × n game that give
the column player a payoff of 0 and the row player a payoff of 1.
Each of A, B, A′, B′ denotes a set of n strategies. C, D, C ′ and D′ are individual strategies.
In the proofs we put M = 1000, e = 1.
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Lemma 5 Assume that e ≤ 1 in Figure 1 and that M ≥ 100. Suppose that X(T ) ≤ 1
4 . Then Pr[A] ≥ 1

10 ,
Pr[B] ≥ 1

10 , Pr[A′] ≥ 1
10 , Pr[B′] ≥ 1

10 .

Proof. We need to consider two cases in detail: case 1 assumes that an element of A′ received the L-H
bonus and case 2 assumes that C received the bonus. All other possibilities are essentially the same as these,
by symmetry.

Case 1. Suppose first that a strategy from A′ has been given the L-H bonus, and we are at a Nash
equilibrium where X = 1

4 .
First we prove that the row player strategies satisfy Pr[A′] ≥ 1

10 , Pr[B′] ≥ 1
10 . Since X ≤ 1

4 , we have
Pr[A′] + Pr[B′] ≥ 3

4 . Suppose for a contradiction that Pr[B′] < 1
10 , so that Pr[A′] ≥ 0· 65. Then (for

e ≤ 1), C is the unique best response for the column player and hence Pr[C] = 1. This implies X ≥ 1,
contradicting the assumption that X ≤ 1

4 . Similarly, if Pr[A′] < 1
10 then Pr[B′] ≥ 0· 65, then D is the

column player’s unique best response, hence Pr[D] = 1, again contradicting X ≤ 1
4 .

Next we prove that the column player strategies satisfy Pr[A] ≥ 1
10 , Pr[B] ≥ 1

10 . Suppose for a
contradiction that Pr[B] < 1

10 , so that Pr[A] ≥ 0· 65. Then for the row player, D′ is a better response
than B′ and C ′ (and regarding A′, some strategy from A′ received the L-H bonus, so we do not claim A′

is suboptimal). If B′ is not a best response, so Pr[B′] = 0, since X ≤ 1
4 we have Pr[A′] ≥ 3

4 . Then
C is strictly better than A, contradicting Pr[A] ≥ 0· 65. Alternatively suppose that Pr[A] < 1

10 , so that
Pr[B] ≥ 0· 65. Then C ′ is a better response thanB′ andD′, since payoff(C ′) ≥ (0· 65−0· 35)M = 0· 3M ;
payoff(B′) ≤ 1

4M since Pr[C] ≤ 1
4 by assumption that X ≤ 1

4 ; payoff(D′) is negative. With D′ and B′

eliminated, C is a strictly better response than B, contradicting Pr[B] > 0.

Case 2. Suppose alternatively that it was strategy C ′ that received the L-H bonus.
We show first that the row player’s strategies satisfy Pr[A′] ≥ 1

10 , Pr[B′] ≥ 1
10 . Suppose Pr[A′] < 1

10 ,
so that Pr[B′] ≥ 0· 65. D is a better response thanA andB. But from that it follows that Pr[D]+Pr[C] = 1,
contradicting X = 1

4 . Suppose Pr[B′] < 1
10 , so that Pr[A′] ≥ 0· 65. C is a better response than A and B,

so Pr[C] + Pr[D] = 1 contradicting X = 1
4 .

Next we show that the column player’s strategies satisfy Pr[A] ≥ 1
10 , Pr[B] ≥ 1

10 . Suppose Pr[B] < 1
10 ,

so Pr[A] > 0· 65. D′’s payoff is greater than 0· 3M while A′ and B′ have payoff at most 1
4M + 1 so D′

is a better response than A′ and B′, contradicting X ≤ 1
4 . Suppose Pr[A] < 1

10 , so Pr[B] > 0· 65. C ′ is a
better response than A′ and B′ even ignoring the L-H bonus.

AtX(T ) = 1
4 we have that at least one of Pr[C], Pr[D], Pr[C ′], Pr[D′] is at least 1

16 , while at the end of
the Browder path, we know that all these quantities are at most 1

100 . We set the switch threshold probability
to be somewhere between these, but we have to use lower bounds on Pr[A], Pr[B], Pr[A′], Pr[B′] at t = 1
and upper bounds on these at X = 1

4 (as well as lower bounds on these at X = 1
4 to ensure that a Nash

equilibrium of the “biased game” is being encoded).

Finally, we need to show that there exists τ such that the bonus from at least one switch strategy in Ḡ
changes continuously above τ to below it, while the bonus for the other switch strategy ends up below τ ,
thus initially, at least one value of p[vrswitch ] and p[vcswitch ] is zero, but at the end both evaluate to 1. This
needs to take into account the variable amount of probability allocated to the strategies in Ḡ, since that
affects the impact of the bonuses on sp0.

For any T ∈ [T ′, 1] the weight assigned by each player to Ḡ’s strategies is at least 1
10 by Lemma 5, so

that the bonus for player p to play sp0, falls by a larger factor than the probability that Ḡ is played. That
means that τ can indeed be chosen as required.
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7 Discussion and Open Problems

Should a more general result be obtainable? For example, perhaps it should be possible to identify general
classes of “path-following algorithms” that include the ones we analyzed here, for which it is PSPACE-
complete to compute their output. A potential obstacle is that such a general result may subsume the question
of whether the 2-dimensional analogue of OEOTL is PSPACE-complete (i.e. consider the PPAD-complete
problem 2D-SPERNER [3]; suppose we ask for the trichromatic triangle identified in the proof of Sperner’s
Lemma.) In 2 dimensions, the gadget that is used to allow “edges” to cross each other, rearranges the
structure of those edges, such that the corresponding solutions to END OF THE LINE are the same, but not
the unique solution to OEOTL. Generally, there are many ways to modify the edges of a given (S, P )-graph
so that the degree-1 vertices are unchanged, but the structure of the graph is in other respects completely
different.

Von Stengel et al [26] use a tracing procedure to solve extensive two-person games, and they obtain a
normal form perfect equilibrium by starting from a completely mixed starting vector. What is the complexity
of computing a normal form perfect solution using this (or other) methods? (They note ([26], p. 707) that
on strategic-form games this procedure mimics the linear tracing procedure of [11].)
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8 Appendix: exponentially many changes of direction

We give an outline of how to modify our first construction, so as to show that in following a sequence
of approximate fixpoints of Brouwer functions, or equilibria of games, t may have to change direction
exponentially many times, and furthermore, oscillate between values whose difference is bounded away
from zero.
F0 shall be the same as in Theorem 3. We construct a modified form of F1, which we will call Fm1 , as

follows. We identify two subsets of the cubelets Kijk, R1 and R2, defined as R1 = {Kijk : 10 ≤ k ≤ 12},
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and R2 = {Kijk : 20 ≤ k ≤ 22}. These subsets are “thin layers” of cubelets that are perpendicular to the
z-axis. Now we define how Fm1 behaves on points at the centers of cubelets. For x at the center of Kijk,

if Kijk ∈ R1, Fm1 (x)− x = 10(F1(x)− x),
if Kijk ∈ R2, Fm1 (x)− x = 1

10(F1(x)− x),
otherwise, Fm1 (x) = F1(x).

For points not at the centers of cubelets, Fm1 shall interpolate between the values at the nearest cubelet
centers, using the same general approach as F1. Let Fmt = (1− t)F0 + tFm1 .

Let D be the set of cubelets Kijk for which f0(Kijk) 6= f1(Kijk), so D is the region where fixpoints of
Fmt may exist. Let D− be the connected component of D which contains the cubelet K1,1,1, so D− is the
region within which fixpoints of Fmt will occur on the homotopy path.

By construction, D− has the property that D− \ R1 (and similarly D− \ R2) has exponentially many
connected components. This follows from the construction of [6] from which D is derived; D simulates
a (S, P )-graph by, for each edge of the (S, P )-graph, including a long sequence of cubelets that passes
through both R1 and R2.

Now consider points in D− ∩ R1. The claim is that fixpoints x of Fmt for which x ∈ D− ∩ R1, satisfy
t ≤ 1

4 , and that for fixpoints x of Fmt with x ∈ D− ∩R2 we have t ≥ 3
4 . The general idea (in the first case;

the second case is similar) is thatFm will map points z inR1 to points z′ for which at least one component of
z′−z is greater than 10α. Hence for t ≥ 1

4 , Fmt raises the value of this component (the positive contribution
from Fm1 exceeds the negative contribution from F0) and prevents it from being a fixpoint.

The homotopy path must pass through this long sequence of regions that require t > 3
4 or else t < 3

4 .
Moreover, the two types of regions alternate, so we establish the following result:

Theorem 8 For continuous functions defined using arithmetic circuits, the sequence of fixpoints along the
path given by the linear homotopy (1− t)F0 + tF1 has exponentially many alternations of the value of t.

We obtain the following corollary:

Corollary 2 For graphical or two-player games, suppose G0 is a game that assigns each player a dominat-
ing strategy, and G is an arbitrary game. The linear tracing procedure for the homotopy (1− t)G0 + tG will,
in the worst case, have exponentially many reversals of t.

The corollary follows since, the way we represent Brouwer functions parameterized by t in terms of
games parameterized by t, does not change the value of t. Since we did not change F0, the associated game
G0 is the same “dominating strategy” game of Section 4.

9 Appendix: polynomially small error

We can use the machinery of Chen et al. [4] so that when we talk about the hardness of finding an ε-fixpoint,
ε is allowed to be inverse polynomial rather than inverse exponential. This is achieved by using the snake
embeddings of [4].

Snake-embeddings A snake embedding reduces a low-dimensional Brouwer-mapping function having 2n

of cubelets in each dimension, to a Θ(n) dimensional bmf having O(1) cubelets in each dimension, in such
a way that panchromatic vertices of the high-dimensional bmf efficiently encode panchromatic vertices of
the low-dimensional bmf. The reduction can be decomposed into a sequence of Θ(n) iterations, in which
at each iteration, the number of cubelets along some axis is reduced by a constant factor, and we acquire
an additional axis having O(1) cubelets (in [4] it is in fact 8 cubelets). (Intuitively, the space is folded a
constant number of times and gains thickness along the new dimension.)
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A specific snake-embedding, and some notation We consider a snake-embedding of a 3-dimensional
bmf fB of the type of Proposition 1. Initially the colors are {0, 1, 2, 3}; let ci denote the new color at the
i-th iteration and let s be the number of iterations required to reduce to 8 the number of cubelets along each
axis.

Let n = 4 + cs be the dimension of the new snake-embedding.

Definition 7 LetKn be the unit n-dimensional cube. PartitionKn into cubeletsKn
v where v ∈ {0, 1, ..., 7}n

represents a cubelet of edge length 1/8. A Brouwer-mapping circuit maps each such cubelet to one of the
colors {0, 1, 2..., n}. Again, a bmf should be polynomial-time computable, and map exterior cubelets to
color i for cubelets whose i-th coordinate contains the first 0 (when v contains a 0), otherwise color 0.
Other types of bmf that correspond to Definition 2 are defined analogously.

The high-dimensional bmf can be computed by a Brouwer-mapping circuit B′ that is polynomial in the
size of B. Let fB′ be the function computed. The challenge is to implement fB′ using an arithmetic circuit
that is polynomial in the size of the circuit that computes the bmf, and computes a Lipschitz continuous
function. The simplicial-decomposition technique of Theorem 2 no longer works when we move to non-
constant dimension, since the number of simplices per cubelet is exponential in the dimension.

Observation 7 After iteration i, we have a (i + 3)-dimensional bmf in which ci becomes the “background
color” corresponding to color 0 in the original 3-dimensional instance.

The cubelets having colors {0, 1, 2, 3, c1, . . . , ci−1} are mapped to cubelets in the (i + 3)-dimensional
instance in such a way as to have the same neighborhood structure, but with some duplication at the folds
of the embedding.

The continuous implementation Define FB′ : Kn −→ Kn as follows. If x lies at the center of a cubelet
(of length 1/8), letting j = fB′(x), FB′(x) = x+ δj , where δj = (−α,−α, . . . ,−α) if j is the background
color cs, otherwise δj = (0, 0, . . . , 0, α, 0, 0, . . . , 0) where the position of the non-zero entry depends on the
color j, and is chosen to satisfy the boundary conditions of a bmf.

If x does not lie at the center of a cubelet, we claim that for each color j, we can efficiently compute the
L∞ distance from x to the closest center of a cubelet having color j, using a linear arithmetic circuit. Let
dj(x) ∈ [0, 1] be this distance. Let λj(x) = max(0, ( 1

10−dj(x))). Then define FB′(x) = x+
∑

j δj .λj(x).
In that expression for FB′(x), δj is a constant vector, so we are not multiplying two computed quantities
together (which is disallowed in a linear arithmetic circuit).

Why it works If we are not within distance 1
10 of a panchromatic vertex, then λj = 0 where j is one of

the missing colors. However, there is some j′ for which λj′ > 1
16 . The choice of the vectors δj ensure that

|FB′(x)− x| ≥ 1
16 .

Consequently any approximate fixpoint of FB′ is close to a panchromatic vertex of fB′ . To show that
it is close enough to permit that panchromatic vertex to be efficiently reconstructed from the coordinates of
the fixpoint, it is easiest to assume that there are 24 rather than 8 cubelets along each axis, with the original
cubelets having been divided into 27 smaller ones all having the same color. Then an approximate fixpoint
can be assumed to lie within 1

30 of a panchromatic vertex.
We also need to point out that the high-dimensional bmf fB′ has a path of {0, 1, 2, 3, c1, . . . , cs−1}-

chromatic cubelets which simulates the path of {1, 2, 3}-chromatic cubelets in the bmf fB . Thus, the one
obtained by following the path in fB′ , encodes the one obtained by following the corresponding path in fB .

By way of a final remark, it is necessary for us to make a snake embedding of our 3D graph into higher
dimension, rather than (as in [4]) reduce from the 2D version of the problem [3]. This is because the PPAD-
completeness of 2D SPERNER [3] is a reduction that alters the structure of the END OF THE LINE graph
being encoded, and so would not (in an obvious way) apply in a reduction from OEOTL.
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