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Abstract

We give a novel algorithm for enumerating lattice points in any convex body, and give applications
to several classic lattice problems, including the Shortest and Closest Vector Problems (SVP and CVP,
respectively) and Integer Programming (IP). Our enumeration technique relies on a classical concept
from asymptotic convex geometry known as theM-ellipsoid, and uses as a crucial subroutine the recent
algorithm of Micciancio and Voulgaris (STOC 2010) for lattice problems in theℓ2 norm. As a main
technical contribution, which may be of independent interest, we build on the techniques of Klartag
(Geometric and Functional Analysis, 2006) to give an expected2O(n)-time algorithm for computing an
M-ellipsoid for anyn-dimensional convex body.

As applications, we give deterministic2O(n)-time and -space algorithms for solving exact SVP, and
exact CVP when the target point is sufficiently close to the lattice, onn-dimensional latticesin any
(semi-)normgiven an M-ellipsoid of the unit ball. In many norms of interest, including allℓp norms,
an M-ellipsoid is computable in deterministicpoly(n) time, in which case these algorithms are fully
deterministic. Here our approach may be seen as a derandomization of the “AKS sieve” for exact SVP
and CVP (Ajtai, Kumar, and Sivakumar; STOC 2001 and CCC 2002).

As a further application of our SVP algorithm, we derive an expectedO(f∗(n))n-time algorithm for
Integer Programming, wheref∗(n) denotes the optimal bound in the so-called “flatness theorem,” which
satisfiesf∗(n) = O(n4/3 polylog(n)) and is conjectured to bef∗(n) = Θ(n). Our runtime improves
upon the previous best ofO(n2)n by Hildebrand and Köppe (2010).
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1 Introduction

The Shortest and Closest Vector Problems (SVP and CVP, respectively) on lattices are central algorith-
mic problems in the geometry of numbers, with applications to Integer Programming [Len83], factoring
polynomials over the rationals [LLL82], cryptanalysis (e.g., [Odl90, JS98, NS01]), and much more. (An
n-dimensionallattice L is a discrete additive subgroup ofRn, and is generated as the set of integer linear
combinations of some basis vectorsb1, . . . , bk ∈ Rn, for somek ≤ n.) The SVP is simply: given a lattice
L represented by a basis, find a nonzerov ∈ L such that‖v‖ is minimized, where‖·‖ denotes a particular
norm onRn. The CVP is an inhomogeneous analogue of SVP: given a latticeL and a pointt ∈ Rn, find
somev ∈ L that minimizes‖v − t‖. In these problems, one often uses the Euclidean (ℓ2) norm, but many
applications require other norms likeℓp or, most generally, the semi-norm defined by a convex bodyK ∋ 0
as‖x‖K = inf{r ≥ 0 : x ∈ rK}. Indeed, general (semi-)norms arise quite often in the study of lattices;
for example, the “flatness theorem” in Integer Programming —which states that every lattice-free convex
body has lattice width bounded by a function of the dimensionalone — is a statement about SVP in general
norms.

Much is known about the computational complexity of SVP and CVP, in both their exact and approx-
imation versions. On the negative side, SVP is NP-hard (inℓ2, under randomized reductions) to solve
exactly, or even to approximate to within any constant factor [Ajt98, CN98, Mic98, Kho03]. Many more
hardness results are known for otherℓp norms and under stronger complexity assumptions than P6= NP
(see, e.g., [vEB81, Din00, RR06, HR07]). CVP is NP-hard to approximate to withinnc/ log logn factors for
some constantc > 0 [ABSS93, DKRS98, Din00], wheren is the dimension of the lattice. Therefore, we
do not expect to solve (or even closely approximate) these problems efficiently in high dimensions. Still,
algorithms providing weak approximations or having super-polynomial running times are the foundations
for the many applications mentioned above.

The celebrated LLL algorithm [LLL82] and variants [Sch87] give 2n/polylog(n) approximations to SVP
and CVP inℓ2, in poly(n) time. For exact SVP and CVP in theℓ2 norm, Kannan’s algorithm [Kan87] gives
a solution in deterministic2O(n logn) time andpoly(n) space. This performance remained essentially un-
challenged until the breakthrough randomized “sieve” algorithm of Ajtai, Kumar, and Sivakumar [AKS01],
which provides a2O(n)-time and -space solution for exact SVP; moreover, the algorithm generalizes straight-
forwardly toℓp and other norms [BN07, AJ08]. For CVP, in a sequence of works [AKS02, BN07, AJ08] it
was shown that a modified version of the AKS sieve can approximate CVP in anyℓp norm to within a(1+ ǫ)
factor in time and space(1/ǫ)O(n) for anyǫ > 0. Furthermore, these algorithms can solve CVP exactly in
2O(n) time as long as the target point is “very close” to the lattice. It is worth noting that the AKS sieve is a
Monte Carloalgorithm: while the output solution is correct with high probability, it is not guaranteed.

In a more recent breakthrough, Micciancio and Voulgaris [MV10] gave adeterministic2O(n)-time (and
space) algorithm for exact SVP and CVP in theℓ2 norm, among many other lattice problems in NP. Inter-
estingly, their algorithm works very differently from the AKS sieve, by computing an explicit description
of the Voronoi cell of the lattice. (The Voronoi cell is the set of all points inRn that are closer to the origin
than to any other lattice point.) In contrast to the AKS sieve, however, the algorithm of [MV10] appears to
be quite specialized toℓ2 (or any norm defined by an ellipsoid, simply by applying a linear transformation).
This is in part because inℓ2 the Voronoi cell is convex and has2O(n) facets, but in general norms this is not
the case. A main problem left open in [MV10] was to find deterministic 2O(n)-time algorithms for lattice
problems inℓp and other norms.
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1.1 Results and Techniques

Our main contribution is a novel algorithm for enumerating lattice points in any convex body. It uses as a
crucial subroutine the Micciancio-Voulgaris (MV) algorithm [MV10] for theℓ2 norm that enumerates lattice
points in an ellipsoid, and relies on a classical concept from asymptotic convex geometry known as the M-
ellipsoid. This connection between lattice algorithms andconvex geometry appears to be a fertile direction
for further research.

For a latticeL and convex bodyK in Rn, letG(K,L) be the largest number of lattice points contained
in any translate ofK, i.e.,

G(K,L) = max
x∈Rn
|(K + x) ∩ L|. (1.1)

Our starting point is the following guarantee on the enumeration of K ∩ L.1

Theorem 1.1(Enumeration in convex bodies, informal). Given any convex bodyK ⊆ Rn along with an
M-ellipsoidE ofK, and anyn-dimensional latticeL ⊆ Rn, the setK∩L can be computed in deterministic
timeG(K,L) · 2O(n).

As we describe later, an M-ellipsoidE of a convex bodyK ⊆ Rn is an ellipsoid with roughly the
same ‘size’ and ‘shape’ asK. We will show that it can generated in randomizedpoly(n) time with high
probability, and verified in deterministic2O(n) time, and hence can always be computed in expected2O(n)

time. Moreover, in many specific cases of interest, such as the unit ball of anyℓp norm, an M-ellipsoid is
deterministically computable inpoly(n) time.

Our enumeration algorithm is at the core of the following applications. We begin with the Shortest
Vector Problem inany“well-centered” semi-norm.2

Theorem 1.2(SVP in any (semi-)norm, informal). There is a deterministic2O(n)-time (and -space) algo-
rithm that, given any well-centeredn-dimensional convex bodyK and an M-ellipsoidE of K, solves SVP
exactly on anyn-dimensional latticeL in the semi-norm‖·‖K defined byK.

Besides being a novel algorithm, the improvement over previous approaches is in the generalization to
(semi-)norms defined by arbitrary convex bodies, the use of much less randomness (if any), and in having a
Las Vegas algorithm whose output is guaranteed to be correct.

We get a similar algorithm for the Closest Vector Problem, but its complexity grows with the distance
from the target point to the lattice.

Theorem 1.3 (CVP in any (semi-)norm, informal). There is a deterministic algorithm that, given any
well-centeredn-dimensional convex bodyK and an M-ellipsoidE of K, solves CVP exactly on anyn-
dimensional latticeL in the semi-norm‖·‖K defined byK, in (1 + 2α)n · 2O(n) time and space, provided
that the distance from the query pointx to L is at mostα times the length of the shortest nonzero vector of
L (under‖·‖K ).

A main motivation of our work is to develop more powerful tools for solving Integer Programming. We
note that solving IP reduces to solving CVP in any well-centered semi-norm: to decide ifK ∩ L 6= ∅, first
approximate the centroidb of K, then solve CVP with respect to the well-centered bodyK − b on latticeL

1For simplicity, throughout this introduction the claimed running times will omit polynomial factors in the lengths of the
algorithms’ inputs, which are represented in the usual way.

2“Well-centered” means thatvol(K ∩ −K) ≥ 4−n vol(K); this clearly holds for centrally symmetricK, which corresponds
to a standard norm. It also holds for any convex bodyK with centroid at or very near the origin.
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and target pointb. ThenK ∩ L 6= ∅ if and only if there existsy ∈ L such that‖y − b‖K−b ≤ 1. However,
unless we have a bound on the ratioα from the above theorem, we may not get a satisfactory guarantee on
the running time of our CVP algorithm in this setting.

For the general case, we can still get an unqualified improvement in the state of the art for IP using our
SVP algorithm for general norms.

Theorem 1.4(Integer Programming, informal). There exists a randomized algorithm that, given a convex
bodyK ⊆ Rn and ann-dimensional latticeL ⊂ Rn, either decides thatK ∩ L = ∅ or returns a point
y ∈ K ∩ L in expectedO(f∗(n))n time, wheref∗(n) is the optimal bound for the “flatness theorem.”

The flatness theorem, a fundamental result in the geometry ofnumbers, says that every lattice-free
convex body has lattice width bounded by a function of the dimension alone (see Equation (4.8) for a precise
statement). As first noticed by Lenstra [Len83], it suggestsa recursive algorithm for IP that uses a subroutine
for finding good flatness directions. Finding an optimal flatness direction directly reduces to solving an SVP
in a general norm, which was solved only approximately in previous refinements of Lenstra’s algorithm.
The above is therefore an essentially “optimal” Lenstra-type algorithm with respect to the classical analysis.

Using the current best known bounds onf∗(n) [BLPS99, Rud00], our IP algorithm has a main com-
plexity term of orderO(n4/3 logc n)n. This improves on the previous fastest algorithm of Hildebrand and
Köppe [HK10] which gives a leading complexity term ofO(n2)n; the previous best before that is due
to Kannan [Kan87] and achieves a leading complexity term ofO(n2.5)n. It is conjectured thatf∗(n) =
Θ(n) [BLPS99], and this would give a bound ofO(n)n for IP.

In the rest of this introduction we give an overview of our enumeration technique and its application to
SVP, CVP, and IP.

Enumeration via M-ellipsoid coverings. We now explain the main technique underlying Theorem 1.1
(enumeration of lattice points in a convex bodyK). The key concept we use is a classical notion from
asymptotic convex geometry, known as theM-ellipsoid. An M-ellipsoid E for a convex bodyK has the
property that2O(n) copies (translates) ofE can be used to coverK, and2O(n) copies ofK suffice to
coverE. The latter condition immediately implies that

G(E,L) ≤ 2O(n) ·G(K,L). (1.2)

Using the former condition, enumeratingK∩L therefore reduces to enumerating(E+t)∩L for at most2O(n)

values oft (and keeping only those lattice points inK), which can be done in deterministic2O(n) ·G(E,L)
time by (an extension of) the MV algorithm [MV10].

The existence of an M-ellipsoid for any convex bodyK was established by Milman [Mil86, MP00],
and there are now multiple proofs. Under the famousslicing conjecture[Bou86], an appropriate scaling of
K ’s inertial ellipsoid (defined by the covariance matrix of a uniform random point from K) is in fact an
M-ellipsoid. WhenK is anℓp ball, an M-ellipsoid is simply the scaledℓ2 ball n1/2−1/p · Bn

2 .
For general convex bodiesK, we give an algorithm for computing an M-ellipsoid ofK, along with

a covering by copies of the ellipsoid. Under the slicing conjecture, the former task is straightforward:
simply estimate the covariance matrix ofK using an algorithm for sampling uniformly from a convex
body (e.g., [DFK89]). To avoid assuming the slicing conjecture, we use an alternative proof of M-ellipsoid
existence due to Klartag [Kla06]. The resulting guaranteescan be stated as follows.
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Theorem 1.5(M-ellipsoid generator, informal). There is a polynomial-time randomized algorithm that with
high probability computes an M-ellipsoidE of a givenn-dimensional convex bodyK.3

Theorem 1.6(M-ellipsoid covering algorithm, informal). Given an ellipsoidE and convex bodyK, there
is a deterministic2O(n)-time algorithm which certifies thatE is an M-ellipsoid ofK, and if so returns a
covering ofK by2O(n) copies ofE.4

Combining these two theorems, we get an expected2O(n)-time algorithm that is guaranteed to output an
M-ellipsoid and its implied covering for any given convex body K. It is an interesting open problem to find
a deterministic2O(n)-time algorithm. We note that deterministic algorithms must have complexity2Ω(n),
since an M-ellipsoid gives a2O(n) approximation to the volume ofK, and such an approximation is known
to require2Ω(n) time whenK is specified by an oracle [FB86].

Shortest and Closest Vector Problems. Here we outline our deterministic2O(n)-time algorithm for SVP
in any norm defined by a symmetric convex bodyK, given an M-ellipsoid ofK. (Well-centered semi-norms
are dealt with similarly.) For instance, as noted above the scaledℓ2 ballEp = n1/2−1/p ·Bn

2 is an M-ellipsoid
for any ℓp ball K = Bn

p . Moreover, a good covering ofBn
p by Ep is straightforward to obtain: forp ≥ 2,

just one copy ofEp works (sinceBn
p ⊆ Ep), while for 1 ≤ p < 2, we can coverBn

p by a tiling of Ep’s
axis-aligned inscribed cuboid.

Let L be ann-dimensional lattice, and letλ1 = λ1(K,L) be the length of its shortest vector under
‖·‖K . We can assume by rescaling that1/2 < λ1 ≤ 1, soK contains an SVP solution. Our algorithm
simply enumerates all nonzero points inK∩L (using Theorem 1.1), and outputs one of the shortest. For the
running time, it suffices to show thatG(K,L) ≤ 2O(n), which follows by a simple packing argument: for
anyx ∈ Rn, copies of14K centered at each point in(K + x) ∩ L are pairwise disjoint (becauseλ1 > 1/2)
and contained in54K + x, so|(K + x) ∩ L| ≤ vol(54K)/ vol(14K) = 5n.

For CVP with target pointx, the strategy is exactly the same as above, but we use a scaling dK so that
(dK − x) ∩ L 6= ∅ and(d2K − x) ∩ L = ∅ (i.e.,d is a2-approximation of the distance fromx toL). In this
case, the packing argument gives a bound ofG(dK,L) ≤ (1 + 2d/λ1)

n.
In retrospect, the above algorithms can be seen as a derandomization (and generalization to semi-norms)

of the AKS sieve-based algorithms for exact SVP in general norms, and exact CVP inℓp norms [AKS01,
AKS02, BN07, AJ08], with matching running times (up to2O(n) factors). Specifically, our algorithms de-
terministically enumerate all lattice points in a convex region, rather than repeatedly sampling until all such
points are found with high probability. However, we do not know whether our techniques can derandomize
the(1 + ǫ)-approximate CVP algorithms of [AKS02, BN07] in asymptotically the same running time.

Integer Programming. Our algorithm for Integer Programming (finding a point inK ∩ L, if it exists)
follows the basic outline of all algorithms since that of Lenstra [Len83]. It begins with two pre-processing
steps: one to refine the basis of the lattice, and the other to find an ellipsoidal approximation ofK. If the
ellipsoid volume is sufficiently small compared to the lattice determinant, then we can directly reduce to a
lower-dimensional problem. The main step of the algorithm (and Lenstra’s key insight, refined dramatically
by Kannan [Kan87]) is to find a direction along which the lattice width ofK is small. Given such a direc-
tion, we recurse on the lattice hyperplanes orthogonal to this direction that intersectK, thus reducing the
dimension of the problem by one.

3We thank Bo’az Klartag for suggesting to us that the techniques in [Kla06] could be used to algorithmically construct an
M-ellipsoid.

4Gideon Schechtman suggested a construction of the coveringusing parallelepiped tilings.
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In previous work, a small lattice-width direction was foundby replacingK by an ellipsoidE contain-
ingK, then solving SVP in the norm defined by the dual ellipsoidE∗ on the dual latticeL∗. Here we instead
use our SVP algorithm for general norms, solving it directlyfor the norm induced by(K−K)∗ onL∗. This
refinement allows us to use the best-known bounds onf∗(n) (from the flatness theorem) for the number of
hyperplanes on which we have to recurse.

1.2 Organization

The remainder of the paper is organized as follows. In Section 2 we recall basic concepts from convex
geometry that are needed to understand our M-ellipsoid algorithms. In Section 3 we give the M-ellipsoid
construction (formalizing Theorems 1.5 and 1.6). In Section 4 we formalize our enumeration technique
(Theorem 1.1) and apply it to give algorithms for SVP, CVP andIP. Appendix A contains the proofs of
correctness for our M-ellipsoid construction, and Appendix B contains supporting technical material.

2 Convex Geometry Background

Convex bodies. K ⊆ Rn is a convex body ifK is convex, compact and full-dimensional. We say that a
body is centrally symmetric, or0-symmetric, ifK = −K.

For setsA,B ∈ Rn we define the Minkowski sum ofA andB as

A+B = {x+ y : x ∈ A, y ∈ B}. (2.1)

For a vectort ∈ Rn, we definet+A = {t}+A for notational convenience.
LetK ⊆ Rn be a convex body such that0 ∈ K. We define the gauge function, or Minkowski functional,

of K as
‖x‖K = inf{r ≥ 0 : x ∈ rK}, x ∈ Rn. (2.2)

From classical convex analysis, we have that the functional‖·‖K is a semi-norm, i.e., it satisfies the
triangle inequality and‖tx‖K = t‖x‖K for t ≥ 0, x ∈ Rn. If K is centrally symmetric, then‖.‖K is a
norm in the usual sense.

Thepolar (or dual) bodyK∗ is defined as

K∗ = {x ∈ Rn : ∀y ∈ K, 〈x, y〉 ≤ 1}. (2.3)

A basic result in convex geometry is thatK∗ is convex and that(K∗)∗ = K.
Define theℓp norm onRn as

‖x‖p =
(

n
∑

i=1

|xi|p
)

1
p

. (2.4)

For convenience we write‖x‖ for ‖x‖2. Let Bn
p = {x ∈ Rn : ‖x‖p ≤ 1} denote theℓp ball in Rn. Note

from our definitions that‖x‖Bn
p
= ‖x‖p for x ∈ Rn.

For a positive definite matrixA ∈ Rn×n, we define the inner product with respect toA as

〈x, y〉A = xtAy x, y ∈ Rn. (2.5)
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We define the norm generated byA as‖x‖A =
√

〈x, x〉A =
√
xtAx. For a vectora ∈ Rn, we define the

ellipsoidE(A, a) = {x ∈ Rn : ‖x− a‖A ≤ 1}. For convenience we shall letE(A) = E(A, 0). Note that
with our notation,‖x‖A = ‖x‖E(A). The volume of an ellipsoidE(A, a) is given by the formula

vol(E(A, a)) = vol(E(A)) = vol(Bn
2 ) ·

√

det(A−1). (2.6)

Lastly, an elementary computation gives the useful fact that E(A)∗ = E(A−1).
We define thecentroid(or barycenter) b(K) ∈ Rn andcovariancematrix cov(K) ∈ Rn×n as

b(K) =

∫

K

x dx

vol(K)
cov(K) =

∫

K
(x− b(K))(x− b(K))t

dx

vol(K)
.

We note thatcov(K) is always positive definite and symmetric. Theinertial ellipsoid of K is defined as
EK = E(cov(K)−1). Theisotropic constantof K is

LK = det(cov(K))
1
2n / vol(K)

1
n . (2.7)

A major open conjecture in convex geometry is the following:

Conjecture 2.1(Slicing Conjecture [Bou86]). There exists an absolute constantC > 0, such thatLK ≤ C
for all n ≥ 0 and any convex bodyK ⊆ Rn.

The original bound computed by Bourgain [Bou86] wasLK = O(n1/4 log n). This has since been
improved by Klartag [Kla06] toLk = O(n1/4). In addition, the conjecture has been verified for many
classes of bodies including theℓp norm balls.

The above concepts (centroid, covariance, isotropic constant, inertial ellipsoid) all generalize easily to
logconcave functions in lieu of convex bodies; see AppendixB for details.

Computational model. All our algorithms will work with convex bodies and norms presented by oracles
in the standard way. The complexity of our algorithms will bemeasured by the number of arithmetic
operations as well as the number of calls to the oracle. See Appendix B for a more detailed description of
the kinds of oracles we use.

3 Computing M-Ellipsoids and Coverings

An M-ellipsoid of a convex bodyK is an ellipsoidE with the property that at most2O(n) translated copies
of E are sufficient to cover all ofK, and at most2O(n) copies ofK are sufficient to coverE. More precisely,
for any two subsetsA,B ∈ Rn, define the covering number

N(A,B) = min{|Λ| : Λ ⊆ Rn, A ⊆ B +Λ}. (3.1)

HenceN(A,B) is the minimum number of translates ofB needed to coverA. The following theorem was
first proved for symmetric bodies by Milman [Mil86] and extended by Milman and Pajor [MP00] to the
general case.

Theorem 3.1([MP00]). There exists an absolute constantC > 0, such that for alln ≥ 1 and any convex
bodyK ⊆ Rn, there exists an ellipsoidE satisfying

N(K,E) ·N(E,K) ≤ Cn. (3.2)

6



Definition 3.2 (M-ellipsoid). Let K ⊆ Rn be a convex body. IfE is an ellipsoid satisfying Equation (3.2)
(for some particular fixedC) with respect toK, then we say thatE is an M-ellipsoid ofK.

There are many equivalent ways of understanding the M-ellipsoid; here we list a few (proofs of many of
these equivalences can be found in [MP00]).

Theorem 3.3. LetK ⊆ Rn be a convex body withb(K) = 0 (centroid at the origin), and letE ⊆ Rn be an
origin-centered ellipsoid. Then the following conditionsare equivalent, where the absolute constantC may
vary from line to line:

1. N(K,E) ·N(E,K) ≤ Cn.

2. vol(K + E) ≤ Cn ·min{vol(E), vol(K)}.
3. supt∈Rn vol(K ∩ (t+ E)) ≥ C−n ·max{vol(E), vol(K)}.
4. E∗ is an M-ellipsoid ofK∗.

From the above we see that the M-ellipsoid is very robust object, and in particular is stable under polarity
(assumingK is well-centered). We will use this fact (or a slight variantof it) in what follows, to help us
certify a candidate M-ellipsoid.

As mentioned in the introduction, an M-ellipsoid for anℓp ball is trivial to compute. Using condition 3
of Theorem 3.3 above and standard volume estimates forℓp balls, i.e., thatvol(Bn

p )
1/n = Θ(n−1/p), we

have the following:

Lemma 3.4. LetBn
p denote then-dimensionalℓp ball. Then

• For 1 ≤ p ≤ 2, n
1
2
− 1

p · Bn
2 ⊆ Bn

p (the largest inscribed ball inBn
p ) is an M-ellipsoid forBn

p .

• For p ≥ 2, n
1
2
− 1

p ·Bn
2 ⊇ Bn

p (the smallest containing ball ofBn
p ) is an M-ellipsoid forBn

p .

For general convex bodies, the proofs of existence of an M-ellipsoid in [Mil86] and [MP00] are non-
constructive. It is worth noting, however, that under theslicing conjecture(also known as thehyperplane
conjecture), a

√
n scaling ofK ’s inertial ellipsoid is an M-ellipsoid — indeed, this is an equivalent form

of the slicing conjecture. For many norms, includingℓp, absolutely symmetric norms (where the norm is
preserved under coordinate sign flips), and other classes, the slicing conjecture has been proved. Therefore,
for such norms, an M-ellipsoid computation is straightforward: using random walk techniques, estimate the
covariance matrixcov(K) of K, the unit ball of the norm, and return a

√
n scaling ofK ’s inertial ellipsoid.

In the rest of this section, we describe how to generate an M-ellipsoid in general, without directly relying
on the slicing conjecture, with good probability in probabilistic polynomial time. Moreover, we show how
to certify that an ellipsoid is an M-ellipsoid in deterministic 2O(n) time. A by-product of the certification is
a covering of the target body by at most2O(n) translates of the candidate M-ellipsoid. Such a covering will
be used by all the lattice algorithms in this paper.

Proofs for all the theorems in this section can be found in Appendix A.

3.1 The Main Algorithm

The main result of this section is Algorithm 1 (M-Ellipsoid), whose correctness is proved in Theorem 3.5.
The algorithm uses two main subroutines. The first, M-Gen, described in Section 3.2 below, produces a
candidate ellipsoid that is an M-ellipsoid with good probability. The second, Build-Cover, described in

7



Algorithm 1 M-Ellipsoid: Generate a guaranteed M-ellipsoid and its implied covering.
Input: A weak membership oracleOK for a (0, r, R)-centered convex bodyK.
Output: An M-ellipsoidE of K, and a covering ofK by 2O(n) copies ofE.

1: Approximate the centroid ofK using algorithm Estimate-Centroid (Lemma B.9). If Estimate-Centroid
fails, restart; otherwise, letb denote returned estimate forb(K).

2: Generate a candidate M-ellipsoidE of K using Algorithm 2 (M-Gen) onK − b.
3: Check ifN(K,E) > (13e)n using Algorithm 3 (Build-Cover). If yes, restart; otherwise, letT denote

the returned covering ofK by E.
4: Check ifN((K −K)∗, E∗) > (25e · 13)n using Algorithm 3 (Build-Cover). If yes, restart; otherwise,

return(E,T ).

Section 3.3, is used to check that bothN(K,E), N((K − K)∗, E∗) = 2O(n) by constructing explicit
coverings (if possible). BecauseN(E,K) ≈ N((K − K)∗, E∗) (up to 2Θ(n) factors) by the duality of
entropy (Theorem A.2), such coverings suffice to prove thatE is an M-ellipsoid forK.

Theorem 3.5 (Correctness of M-Ellipsoid). For large enoughn, Algorithm 1 (M-Ellipsoid) outputs an
ellipsoidE satisfying

N(K,E) ≤
(√

8πe · 13e
)n

and N(E,K) ≤
(√

8πe · 25e · 13 · 289
)n

(3.3)

along with a setT ⊆ Qn, |T | ≤
(√

8πe · 13e
)n

such thatK ⊆ T +E, in expected time
(√

8πe · 25e · 13
)n ·

poly(n, log(Rr )).

3.2 Generating a Candidate M-Ellipsoid

Our algorithm for generating a candidate M-ellipsoid is based on a constructive proof of Theorem 3.1 by
Klartag [Kla06], who suggested to us the idea of using these techniques to build an M-ellipsoid algorithmi-
cally. The main theorem of [Kla06], reproduced below, does not explicitly refer to M-ellipsoids; instead,
it shows that for every convex bodyK, there is another convex bodyK ′ that sandwichesK between two
small scalings and satisfies the slicing conjecture.

Theorem 3.6([Kla06]). LetK ⊆ Rn be a convex body. Then for every realǫ ∈ (0, 1), there exists a convex
bodyK ′ ⊆ Rn such that

d(K,K ′) = inf{ b
a
: ∃ t ∈ Rn s.t. aK ′ ⊆ K − t ⊆ bK ′} ≤ 1 + ǫ and LK ′ ≤ c√

ǫ
. (3.4)

wherec > 0 is an absolute constant andLK ′ is the isotropic constant ofK ′.

From the closeness ofK andK ′ it follows that an M-ellipsoid forK ′ is an M-ellipsoid forK, and from
the bound onLK ′ the inertial ellipsoid ofK ′ is an M-ellipsoid forK ′.

Here we will not need to constructK ′ itself, but only an ellipsoid very close to its inertial ellipsoid (which
as just mentioned is an M-ellipsoid forK). The bodyK ′ is derived from a certain family of reweighted
densities overK. These densities are given by exponential reweightings of the uniform density along some
vector s ∈ Rn, i.e., fs(x) = e〈s,x〉 for x ∈ K (and 0 otherwise). Fors chosen uniformly fromn ·
conv{K − b(K), b(K) −K}∗, the reweightingfs has two important properties: (i) it is not too highly
biased away from uniform overK, and (ii) it has bounded isotropic constant (independent ofn) with very
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high probability. LetE be the inertial ellipsoid offs (or any reasonably good approximation to it), which
can be found by sampling fromfs. The first property offs allows us to prove thatE can be covered by
2O(n) copies ofK, while the second property lets us coverK by 2O(n) copies ofE (see Lemma A.3).

To make everything work algorithmically, we need robust versions of Klartag’s main lemmas, since we
will only be able to compute an approximate centroid ofK, samples from a distribution close to uniform,
and estimate the covariance matrix offs.

Algorithm 2 makes the above description more formal. Note that given an oracle for a convex body,
an oracle for the polar body can be constructed in polynomialtime [GLS88]. Sampling, both from the
uniform and exponentially reweighted distributions, can be done in polynomial time using the random walk
algorithm of [LV06b, LV06a]. Theorem A.3 together with Lemma A.4 implies that the algorithm’s output
is indeed an M-ellipsoid with good probability.

Algorithm 2 M-Gen: Randomized generation of a candidate M-ellipsoid.

Input: A weak membership oracleOK for a (0, r, R)-centered convex bodyK with b(K) ∈ 1
n+1EK .

Output: With probability1− o(1), an M-ellipsoid ofK.
1: Estimate the centroidb = b(K) using uniform samples fromK.
2: Construct a membership oracle forn (conv{K − b, b−K})∗.
3: Sample a random vectors from n (conv{K − b, b−K})∗.
4: Estimate the covariance matrixA of the density proportional toe〈s,x〉, restricted toK.
5: Output the ellipsoidE(A−1) = {x : xtA−1x ≤ 1}.

Theorem 3.7(Correctness of M-Gen). For large enoughn, Algorithm 2 (M-Gen) outputs an ellipsoidE
satisfying

N(E,K) ≤ (25e)n and N(K,E) ≤ (13e)n (3.5)

with probability at least1− 3
n in timepoly(n, log(Rr )).

3.3 Building a Covering

The next theorem yields an algorithm to approximately decide (up to single exponential factors) whether a
given convex bodyK can be covered by a specified number of translates of an ellipsoid E. The algorithm is
constructive and proceeds by constructing a simple parallelepiped tiling ofK, where the parallelepiped in
question is a maximum volume inscribed parallelepiped ofE.

Algorithm 3 Build-Cover: Deterministic construction of an ellipsoid covering of a convex body.
Input: A weak membership oracleOK for an(0, r, R)-centered convex bodyK, an ellipsoidE = E(A),

and someH ≥ 1.
Output: Either a covering ofK by (

√
8πeH)n translates ofE, or a declaration thatK cannot be covered

byHn copies ofE.
1: Let CE be any maximum-volume inscribed parallelepiped ofE (e.g., a maximum-volume inscribed

cuboid with the same axes as the ellipsoid).
2: Attempt to coverK using translates ofCE with respect to the natural parallelepiped tiling, via a breadth-

first search over the tiling lattice, starting from the origin.
3: If the attempted covering grows larger than(

√
8πeH)n, abort. Otherwise, output the covering.

9



Theorem 3.8. Algorithm 3 (Build-Cover) is correct, and runs in time
(√

8πeH
)n · poly(n, 〈A〉, log(Rr )).

4 Lattice Algorithms

In this section we prove our general enumeration theorem forconvex bodies (Theorem 1.1, formalized in
Theorem 4.2) and give its application to the Shortest and Closest Vector Problems, and Integer Programming.

4.1 Lattice Background

An n-dimensional latticeL ⊂ Rn is a discrete subgroup under addition. It can be written as

L =

{

k
∑

i=1

zibi : zi ∈ Z

}

(4.1)

for some (not necessarily unique)basisB = (b1, . . . , bk) of k ≤ n linearly independent vectors inRn. The
determinant ofL is defined as

det(L) =
√

det(BtB). (4.2)

Thedual latticeL∗ of L is defined as

L∗ = {y ∈ span(b1, . . . , bk) : ∀x ∈ L, 〈x, y〉 ∈ Z}. (4.3)

Theminimum distanceof L with respect toK is λ1(K,L) = miny∈L\{0}‖y‖K . Thecovering radius
of L with respect toK is µ(K,L) = inf{s ≥ 0 : L+ sK = Rn}. Note that from the definition, we see
that µ(K + t, L) = µ(K,L) for t ∈ Rn and thatµ(−K,L) = µ(K,L). We also definedK(L, x) =
infy∈L‖y − x‖K . We define theith minimumof L with respect to theℓ2 norm as

λi(L) = inf{r ≥ 0 : dim(span(rBn
2 ∩ L)) ≥ i}

wherespan denotes the linear span.
Theshortest vector problem(SVP) with respect toK is the following: given a basis of ann-dimensional

latticeL, compute an element of
SVP(K,L) = argmin

y∈L\{0}
‖y‖K . (4.4)

Theclosest vector problem(CVP) with respect toK is: given a basis of ann-dimensional latticeL and a
pointx ∈ Rn, compute an element of

CVP(K,L, x) = argmin
y∈L

‖y − x‖K . (4.5)

To denote the sets ofapproximateminimizers for SVP and CVP, we define for anyǫ > 0

SVPǫ(K,L) = {z ∈ L \ {0} : ‖z‖K ≤ (1 + ǫ) · min
y∈L\{0}

‖y‖K} (4.6)

CVPǫ(K,L, x) = {z ∈ L : ‖z − x‖K ≤ (1 + ǫ) ·min
y∈L
‖y − x‖K}. (4.7)
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Integer programming. A fundamental tool in integer programming is the so-called “flatness theorem,”
which says that for any convex bodyK ⊆ Rn andn-dimensional latticeL ⊆ Rn,

1 ≤ µ(K,L) · λ1((K −K)∗, L∗) ≤ f(n), (4.8)

whereµ(K,L) = inf{s ≥ 0 : L+ sK = Rn} is the covering radius ofL, and

λ1((K −K)∗, L∗) = inf
y∈L∗\{0}

(

sup
x∈K
〈x, y〉 − inf

x∈K
〈x, y〉

)

is the lattice width ofK. The flatness theorem is most easily interpreted as follows:eitherK certainly con-
tains a lattice point inL, or there exist at most⌊f(n)⌋+1 hyperplanes of the formHk = {x ∈ Rn : 〈y, x〉 = k},
y ∈ L∗ \ {0}, k ∈ Z andinfx∈K 〈y, x〉 ≤ k ≤ supx∈K 〈y, x〉, such that any lattice point inK must lie on
one of these hyperplanes. Crucially, we note that computingλ1((K −K)∗, L∗) for a general convex body
K is exactly a shortest non-zero vector computation with respect to a general norm.

The asymptotic growth (and even the finiteness) of the function f(n) in (4.8) has been the source of
intense study over the past century. Restricting to the important special case whereK = Bn

2 , the optimal
growth rate has been settled atf(n) = Θ(n) [Ban93]. WhenK is centrally symmetric, the best known
bound isf(n) = O(n log n) [Ban96]. For the general case, the current best bound isf(n) = O(n

4
3 logc n)

[BLPS99, Rud00] for some fixedc > 0. We letf∗(n) denote best possible upper bound for the general
flatness theorem.

4.2 Lattice Point Enumeration in Convex Bodies

We now use enumeration via the M-ellipsoid covering to solvethe Shortest and Closest Vector Problems.
To do this we will need the recent algorithm of Micciancio andVoulgaris [MV10] for the Closest Vector
Problem under theℓ2 norm (and hence any ellipsoidal norm), which we call the MV algorithm for short.
The following is an immediate extension of their graph-traversal approach [Vou].

Proposition 4.1 ([MV10], Algorithm Ellipsoid-Enum). There is an algorithm Ellipsoid-Enum that, given
any positive definiteA ∈ Qn×n, any basisB of ann-dimensional latticeL ⊆ Rn, and anyt ∈ Rn, computes
the setL ∩ (E(A) + t) in deterministic time

2O(n) · (|L ∩ (E(A) + t)|+ 1) · poly(〈A〉, 〈B〉, 〈t〉). (4.9)

Here the idea is that the points inside(E(A)+t)∩L form a connected subgraph, where we consider two
lattice points adjacent if they differ by a Voronoi-relevant vector ofL, where Voronoi relevance is defined
with respect to the inner product defined byA (see [MV10] for formal definitions). An initial point inside
(E(A) + t) ∩ L can be computed (if it exists) in a single call to the MV algorithm, and the rest can be
computed by a standard breadth-first search of the graph.

For a convex bodyK ⊆ Rn and a latticeL ⊆ Rn define

G(K,L) = max
x∈Rn

|(K + x) ∩ L|, (4.10)

the maximum number of lattice points inK under any translation.
We can now state our enumeration theorem, which formalizes Theorem 1.1 from the introduction.
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Algorithm 4 Algorithm Lattice-Enum(K,L, x, d, ǫ)

Input: An (0, r, R)-centered convex bodyK presented by a weak distance oracleDK for ‖·‖K , a basisB
for a latticeL, an input pointx, distanced ≥ 0, and0 < ǫ < 1.

Output: S ⊆ L satisfying(4.11).
1: Let (E,T )← M-Ellipsoid(K) ⊲ This covering need only be computed once for repeated calls.
2: LetS ← ∅
3: for all s ∈ T do
4: LetUs ← Ellipsoid-Enum(dE, L, x+ ds)
5: S ← S ∪ {y : y ∈ US ,DK(y − x, ǫ

2 ) ≤ d+ ǫ
2}

6: return S

Theorem 4.2(Enumeration in convex bodies). Algorithm 4 (Lattice-Enum) outputs a setS ⊆ L such that

{y ∈ L : ‖y − x‖K ≤ d} ⊆ S ⊆ {y ∈ L : ‖y − x‖K ≤ d+ ǫ} (4.11)

in expected timeG(dK,L) · 2O(n) · poly(log(Rr ), log(1ǫ ), 〈B〉, 〈x〉).
Proof.

Correctness: We first note thatK ⊆ ∪s∈T s + E thenx + dK ⊆ ∪s∈T x + d(s + E). Hence given a
covering forK, we have a covering ofdK+t. Now on input(dE, L, x+ds) the algorithm Ellipsoid-Enum
returns the set(x+ ds) + dE ∩ L = x+ d(s + E) ∩ L.

Now we first show that for ally ∈ x + dK ∩ L, y ∈ S. By the covering property, we know that
for somes ∈ T , y ∈ x + (s + E) ∩ L. Finally, by the properties of the weak-semi norm oracle since
y ∈ dK + x⇔ ‖y − t‖K ≤ d, we have that

DK(y − x,
ǫ

2
) ≤ ‖y − x‖K +

ǫ

2
≤ d+

ǫ

2
,

and hencey is correctly placed inS as needed. Lastly, we must show that ify /∈ (d+ ǫ)K+x⇔ ‖y − t‖ >
d+ ǫ, theny /∈ S. Again, from the properties of the weak distance oracle we see that

DK(y − x,
ǫ

2
) ≥ ‖y − x‖K −

ǫ

2
> d+ ǫ− ǫ

2
= d+

ǫ

2

as needed. Lastly, by construction, the setS only contains lattice points, and so by the above argumentsU
satisfies the required properties.

Runtime: By Theorem 3.5, M-Ellipsoid computes an M-ellipsoid in expected timepolylog(Rr )C
n
1 . LetE

denote an M-ellipsoid ofK and letT ⊆ Rn be as above. From Theorem 3.5, we know that|T | ≤ Cn
2 , hence

the algorithm makes at mostCn
2 calls to Ellipsoid-Enum. Now to bound the complexity of enumerating

x+ d(s +E) ∩ L for eachs ∈ T , we need to bound|x+ d(s+ E) ∩ L| ≤ G(dE,L). Now we note that

G(dE,L) ≤ N(dE, dK)G(dK,L) = N(E,K)G(dK,L) ≤ Cn
2G(dK,L)

by Theorem 3.5. Hence for anys ∈ T , Ellipsoid-Enum takes at mostCn
3 poly(〈B〉, 〈x〉) (Cn

2G(dK,L)) ≤
poly(〈B〉, 〈x〉) Cn

4 G(dK,L) time to computex+ d(s+ E) ∩ L. Hence the total running time is bounded
by

polylog(Rr ) C
n
1 + Cn

2 poly(〈B〉) Cn
4 G(dK,L) ≤ poly(log R

r , 〈B〉, 〈x〉) Cn
5 G(dK,L) (4.12)

whereC5 > 0 is an absolute constant.
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We remark that the only randomness in the algorithm is to build the M-ellipsoid; once this has been
achieved the rest of the algorithm is deterministic. Hence,in the cases where the M-ellipsoid is known
explicitly, as it is for theℓp balls (where an appropriately scaled Euclidean ball suffices), the algorithm can
be in fact made completely deterministic. The algorithms for the shortest vector and closest vector problem
described in the next sections will only depend on the Lattice-Enum algorithm, and hence they will be
deterministic as long as Lattice-Enum is deterministic.

4.3 Shortest Vector Problem

Our main goal will be to use the above enumeration algorithm to solve the Shortest Vector Problem. The
following gives a useful bound onG(K,L) for a general convex body.

Lemma 4.3. LetK ⊆ Rn be a convex body satisfyingvol(K ∩ −K) ≥ γ−n vol(K), γ ≥ 1, and letL be
ann-dimensional lattice. Then ford > 0 we have that

G(dK,L) ≤
(

γ

(

1 +
2d

λ1(K,L)

))n

. (4.13)

We noteγ above is easily bounded in many natural situations. WhenK is centrally symmetric we can
setγ = 1 sinceK ∩ −K = K, and ifK is a general convex body withb(K) = 0 settingγ = 2 is valid by
Theorem A.1. Hence the notion of “well-centered”, i.e.,γ ≤ 4, is quite robust.

Proof of Lemma 4.3.Let s = 1
2λ1(K,L). Forx ∈ L, we examine

x+ int(s(K ∩−K)) = {z ∈ Rn : ‖z − x‖K∩−K < s}.

Now for x, y ∈ L, x 6= y, we claim that

x+ int(s(K ∩ −K)) ∩ y + int(s(K ∩ −K)) = ∅ (4.14)

Assume not, then∃ z ∈ Rn such that‖z − x‖K∩−K , ‖z − y‖K∩−K < s. SinceK ∩ −K is symmetric, we
note that‖y − z‖K∩−K = ‖z − y‖K∩−K < s. But now, sinceK ∩ −K ⊆ K, we see that

‖y − x‖K = ‖y − z + z − x‖K ≤ ‖y − z‖K + ‖z − x‖K
≤ ‖y − z‖K∩−K + ‖z − x‖K∩−K < s+ s = 2s = λ1(K,L)

a clear contradiction sincey − x 6= 0.
Takec ∈ Rn. To boundG(dK,L) we must bound|(c + dK) ∩ L|. For x ∈ c + dK, we note that

x+ s(K ∩ −K) ⊆ c+ (d+ s)K. Therefore,

vol((d+s)K) = vol(c+(d+s)K) ≥ vol (((c+ dK) ∩ L) + s(K ∩ −K)) = |(c+dK)∩L| vol(s(K∩−K))
(4.15)

where the last equality follows from(4.14). Therefore, we have that

|(c+ dK) ∩ L| ≤ vol((d+ s)K)

vol(s(K ∩ −K))
=

(

d+ s

γ−1s

)n

=

(

γ

(

1 +
2d

λ1(K,L)

))n

(4.16)

as needed.
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Algorithm 5 Shortest-Vectors(K,L, ǫ)

Input: A (0, r, R)-centered convex bodyK presented by a weak distance oracleDK for ‖·‖K , a basisB
for a latticeL, and0 < ǫ < 1.

Output: S ⊆ L such thatSVP(K,L) ⊆ S ⊆ SVPǫ(K,L)

1: Computez ∈ SVP(Bn
2 , L) using the MV algorithm. Sett, d← ‖z‖

R .
2: repeat
3: U ← Lattice-Enum(K,L, 0, d, t) \ {0}
4: if U = ∅ then
5: d← 2d
6: until U 6= ∅
7: U ← Lattice-Enum(K,L, 0, d + t, t) \ {0}
8: m← min{DK(y, ǫ

4t) : y ∈ U}
9: S ← {y : DK(y, ǫ

4t) ≤ m+ ǫ
2 t, y ∈ U}

10: return S

We can now state the algorithm and main theorem of this section.

Theorem 4.4(Correctness of Shortest-Vectors). If K is well-centered, i.e.,vol(K ∩ −K) ≥ 4−n vol(K),
then Algorithm 5 (Shortest-Vectors) outputs a setS ⊆ L satisfying

SVP(K,L) ⊆ S ⊆ SVPǫ(K,L) (4.17)

in expected time
2O(n) · poly(log(Rr ), log(1ǫ ), 〈B〉). (4.18)

Proof.

Correctness: First note that sinceK is (0, r, R)-centered, we know that‖y‖R ≤ ‖y‖K ≤
‖y‖
r for all y ∈ Rn.

Now takez ∈ SVP(K,L) andz′ ∈ SVP(Bn
2 , L). Letω = ‖z‖K , and as in the algorithm lett = ‖z′‖

R . Now
we have that

t =
‖z′‖
R
≤ ‖z‖

R
≤ ‖z‖K ≤ ‖z′‖K ≤

‖z′‖
r

= t
R

r
(4.19)

Thereforet ≤ ω ≤ tRr .
Now for z ∈ SVP(K,L), we must show thatz ∈ S. Let df denote the final value ofd after the

while loop terminates. SinceU 6= ∅ and0 /∈ U after the while loop terminates, and since the enumeration
algorithm guarantees thatU ⊆ {y ∈ L : ‖y − x‖K ≤ df + t}, we have thatω ≤ df + t. Now letUf =
Lattice-Enum(K,L, 0, df + t, t) \ {0}, i.e. the final setting of the setU . By the properties of Lattice-Enum,
we know that{y ∈ L : ‖y − x‖K ≤ df + t} ⊆ Uf , and hence we have thatSVP(K,L) ⊆ Uf . From the
computation of the numberm, during the final stage of the algorithm, we now see thatω− ǫ

4 t ≤ m ≤ ω+ ǫ
4t.

Therefore forz ∈ SVP(K,L), we have that

DK(z,
ǫ

4
t) ≤ ω +

ǫ

4
t ≤ m+

ǫ

2
t (4.20)

and hencez will correctly be placed inS as needed.
Now assume thatz ∈ L\{0} andz /∈ SVP(K,L)ǫ. We must show thatz /∈ S. Sinceω ≥ t from above,

we have that‖z‖K > (1 + ǫ)ω ≥ ω + ǫt. Therefore, we see that

DK(z,
ǫ

4
t) ≥ ‖z‖K −

ǫ

4
t > ω +

3ǫ

4
t ≥ m+

ǫ

2
t (4.21)
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and hencez will never be added toS as needed.

Runtime: First we run MV to compute an element ofSVP(Bn
2 , L) which takespoly(〈B〉, 〈x〉)2O(n) time.

Next sinceω ≥ t (ω, t as above), we have thatλ1(K,L) ≥ t. Now the enumeration algorithm is seeded with
d = t ≤ λ1(K,L). From here we see that the momentd is pushed aboveλ1(K,L), the setU returned by
Lattice-Enum will be non-empty. Hence during the executionof the while loop, the value ofd is never more
that2λ1(K,L). Furthermore, the last execution of the enumeration algorithm is run ond+ t ≤ 3λ1(K,L).
Hence every run of the enumeration algorithm happens for distances less than3λ1(K,L). Therefore by
Lemma 4.3 and Theorem 1.1, we have that each run of the enumeration algorithm takes at most

polylog(Rr ,
1
t ) poly(〈B〉) Cn G(3λ1(K,L)K,L) ≤ polylog(Rr ,

1
t ) poly(〈B〉) Cn (4 · 7)n (4.22)

Next, sincet ≤ ω ≤ tRr , we see that we will execute the enumeration algorithm at most log2
R
r + 1 times.

Remembering thatt = ‖z′‖
R , we have that all the lattice points ofL generated by the algorithm lie inside a

ball of radius at most3 R
r ‖z′‖ ≤ 3 R

r

√
n‖B‖ aroundx. Hence, these lattices points as well as the number

t can be represented using at mostpoly(〈B〉, 〈x〉, ln(Rr )) bits. Therefore, apart from in the enumeration
algorithm, we only evaluate the weak norm oracle on inputs ofsizepoly(〈B〉, ln(Rr ), 〈x〉, ln 1

ǫ ) which is
polynomial in the input. Finally, we filter the listUf into S, which requires exactly2|Uf | evaluations of the
norm-oracle, where the cardinality ofUf is bounded by (4.22). Combining all of the above bounds, yields
the desired result.

4.4 Closest Vector Problem

Before presenting our CVP algorithm, we again need a simple enumeration bound.

Lemma 4.5. Let K ⊆ Rn be a convex body, and letL ⊆ Rn denote ann-dimensional lattice. Then for
t > 0 we have

G(tK,L) ≤ (4t+ 2)n ·G(K,L) (4.23)

Proof. SinceG(tK,L) is invariant under shifts ofK, we may assume thatb(K) = 0. Sinceb(K) = 0,
from [MP00] we know thatvol(K) ≤ 2n vol(K ∩ −K) (Theorem (B.13)). We remember thatN(tK,K ∩
−K) denotes the minimum number of translates ofK ∩ −K needed to covertK. SinceK ∩ −K is
symmetric, by a standard packing argument we have that

N(tK,K ∩ −K) ≤ vol(tK + 1
2(K ∩ −K))

vol(12(K ∩−K))
≤ vol(tK + 1

2K)

vol(12(K ∩−K))

=

(

t+ 1
2

1
2

)n
vol(K)

vol(K ∩ −K)
≤ (2t+ 1)n2n = (4t+ 2)n.

(4.24)

Next sinceK ∩ −K ⊆ K, we have thatN(tK,K) ≤ N(tK,K ∩ −K). Now letΛ ⊆ Rn denote a set
satisfying|Λ| = N(tK,K) andtK ⊆ ⋃x∈Λ x+K. Then forc ∈ Rn we have that

|tK + c ∩ L| ≤ |(Λ + c+K) ∩ L| ≤
∑

x∈Λ
|(x+ c+K) ∩ L|

≤ |Λ| ·G(K,L) = N(tK,K) ·G(K,L) ≤ (4t+ 2)n ·G(K,L)

(4.25)

as needed.
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Algorithm 6 Closest-Vectors(K,L, x, ǫ)

Input: An (0, r, R)-centered convex bodyK with weak distance oracleDK for ‖·‖K , a basisB for a lattice
L, an input pointx, and0 < ǫ < 1.

Output: S ⊆ L, CVP(K,L, t) ⊆ S ⊆ CVPǫ(K,L, t)
1: if x ∈ L then
2: return {x}
3: Computez ∈ CVP(Bn

2 , L) using the MV algorithm. Sett, d← ‖z‖
R

4: repeat
5: U ← Lattice-Enum(K,L, x, d, t)
6: if U = ∅ then
7: d← 2d
8: until U 6= ∅
9: U ← Lattice-Enum(K,L, x, d + t, t)

10: m← min{DK(y − x, ǫ
4t) : y ∈ U}

11: S ← {y : DK(y − x, ǫ
4t) ≤ m+ ǫ

2 t, y ∈ U}
12: return S

We can now state the algorithm and main theorem of this section.

Theorem 4.6(Correctness of Closest-Vectors). If K is well-centered, i.e.,vol(K ∩ −K) ≥ 4−n vol(K),
then Algorithm 6 computes a setS ⊆ L such that

CVP(K,L, x) ⊆ S ⊆ CVPǫ(K,L, x) (4.26)

in expected time
2O(n) ·G(dK,L) · poly(log(1ǫ ), log(Rr ), 〈B〉, 〈x〉), (4.27)

whered = dK(L, x).

The proof is essentially identical to the one for SVP.

Proof.

Correctness: If x ∈ L, clearly there is nothing to do, so assumex /∈ L. First note that sinceK is
(0, r, R)-centered, we know that‖y‖R ≤ ‖y‖K ≤ ‖y‖

r for all y ∈ Rn. Now takez ∈ CVP(K,L, x) and

z′ ∈ CVP(Bn
2 , L, x). Letω = ‖z − x‖K , and as in the algorithm lett = ‖z′−x‖

R . Now we have that

t =
‖z′ − x‖

R
≤ ‖z − x‖

R
≤ ‖z − x‖K ≤ ‖z′ − x‖K ≤

‖z′ − x‖
r

= t
R

r
(4.28)

Thereforet ≤ ω ≤ tRr . Now for z ∈ CVP(K,L, x), we must show thatz ∈ S. Let df denote the final
value ofd after the while loop terminates. SinceU 6= ∅ after the while loop terminates, and since the
enumeration algorithm guarantees thatU ⊆ {y ∈ L : ‖y − x‖K ≤ df + t}, we have thatω ≤ df + t. Now
let Uf = Enumerate(K,L, x, df + t, t), i.e. the final setting of the setU . By the properties Lattice-Enum,
we know that{y ∈ L : ‖y − x‖K ≤ df + t} ⊆ Uf , and hence we have thatCVP(K,L, x) ⊆ Uf . From the
computation of the numberm, during the final stage of the algorithm, we now see thatω− ǫ

4 t ≤ m ≤ ω+ ǫ
4t.

Therefore forz ∈ CVP(K,L, x), we have that

DK(z − x,
ǫ

4
t) ≤ ω +

ǫ

4
t ≤ m+

ǫ

2
t (4.29)
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and hencez will correctly be placed inS as needed.
Now assume thatz ∈ L andz /∈ CVP(K,L, x)ǫ. We must show thatz /∈ S. Sinceω ≥ t from above,

we have that‖z − x‖K > (1 + ǫ)ω ≥ ω + ǫt. Therefore, we see that

DK(z − x,
ǫ

4
t) ≥ ‖z − x‖K −

ǫ

4
t > ω +

3ǫ

4
t ≥ m+

ǫ

2
t (4.30)

and hencez will never be added toS as needed.

Runtime: We first check ifx ∈ L, this takepoly(〈B〉, 〈x〉) time. Next, we run the MV algorithm to
compute an element ofCVP(Bn

2 , L, x) which takespoly(〈B〉, 〈x〉)2O(n) time. Next, note that sinceω ≥ t
(ω, t as above), we have thatdK(L, x) ≥ t. Now the enumeration algorithm is seeded withd = t ≤
dK(L, x). Now we note that the momentd is pushed abovedK(L, x), the setU returned by the enumeration
algorithm will be non-empty. Hence during the execution of the while loop, the value ofd is never more
that2dK(L, x). Furthermore, the last execution of the enumeration algorithm is run ond+ t ≤ 3dK(L, x).
Hence every run of the enumeration algorithm happens for distances less than3dK(L, x). Therefore by
Lemma 4.5 and Theorem 4.2, we have that each run of the enumeration algorithm takes at most

polylog(
R

r
,
1

t
) poly(〈B〉) Cn G(3dK(L, x)K,L)

≤ polylog(
R

r
,
1

t
) poly(〈B〉) Cn 14nG(dK(L, x)K,L) (4.31)

Next sincet ≤ ω ≤ tRr , we see that we will execute the enumeration algorithm at most ln2 R
r + 1 times.

Now remembering thatt = ‖z′−x‖
R , we see that all the lattice points ofL generated by the algorithm lie

inside a ball of radius at most3 R
r ‖z′ − x‖ ≤ 3 R

r

√
n‖B‖ aroundx. Hence, these lattices points as well

as the numbert can be represented using at mostpoly(〈B〉, 〈x〉, ln(Rr )) bits. Therefore, apart from in the
enumeration algorithm, we only evaluate the weak norm oracle on inputs of sizepoly(〈B〉, ln(Rr ), 〈x〉, ln 1

ǫ )
which is polynomial in the input. Finally, we filter the listUf into S, which requires exactly2|Uf | evalu-
ations of the norm-oracle, where the cardinality ofUf is bounded by (4.31). Combining all of the above
bounds, yields the desired result.

Though the runtime of the Closest-Vectors algorithm cannotbe bounded bounded in general due to the
G(dK,L) term, its running time can be controlled in interesting special cases. For example, ifK is well-
centered anddK(L, x) ≤ αλ1(K,L), i.e. the target point is relatively close to the lattice, then by Lemma 4.3
the main complexity term of the Closest-Vectors algorithm on K,L, x becomes

G(dK(L, x)K,L) ≤
(

4

(

1 +
2dK(L, x)

λ1(K,L)

))n

≤ (4 + 8α)n (4.32)

which is of order2O(n) whenα = O(1). With this bound, we recover (up to largeCn factors) the running
time of the AKS sieve for exact CVP when the target point is close.

4.5 Integer Programming

In this section, we present an algorithm for integer programming feasibility based on a general norm SVP
solver. Relying on the best known bounds for the flatness theorem (see Equation 4.8), we show that our
algorithm achieves a modest improvement in complexity of IP. For a brief history, the first fixed dimension
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polynomial time algorithm for integer linear programming is due to Lenstra in [Len83] which achieved an
essential complexity is2O(n3). This was dramatically improved by Kannan in [Kan87] reducing the com-
plexity toO(n2.5)n. The next improvement is due Köppe and Hildebrand [HK10] reducing the complexity
to O(n2)n while generalizing to feasible regions defined by quasi-convex polynomials. Here we present
an algorithm which runs inO(n

4
3 logO(1) n)n, for feasible regions equipped with a strong separation oracle

(see Definition B.2).
Let f∗(n) denote the optimal function for the flatness theorem. Our main result here is as follows:

Theorem 4.7(Integer Programming). LetK ⊆ RBn
2 be a convex body given by a strong separation oracle

SEPK . LetL ⊆ Rn be an-dimensional lattice given by a basisB ∈ Qn×n. Then there exists an algorithm
which either decides thatK ∩ L = ∅, or returns a pointx ∈ K ∩ L in expected time

O(f∗(n))n poly(〈R〉, 〈a0〉, 〈B〉)

Unfortunately, the algorithm described above is not agnostic to the value off∗, its exact value (or
any known upper bound) is needed in the code of to guarantee the algorithm’s correctness. Hence using
the best known bounds onf∗(n) (see [BLPS99, Rud00]), we get an algorithm of essential complexity
(c1n

4
3 logc2 n)n for absolute constantsc1, c2.

We give an outline of the algorithm. The algorithm works as almost all previous IP algorithms do, i.e. by
finding a “thinnest” width direction ofK with respect toL. More precisely, we adopt a recursive solution
strategy, where givenK andL as above, we seek to find a small collection of parallel hyperplanesHk,
k ∈ A, such that ifK ∩L 6= ∅ then for somek ∈ A we have thatK ∩L∩Hk 6= ∅. At this point, we simply
solve the integer program with respect toK∩Hk, L∩Hk recursively for eachk ∈ A, and decide thatK∩L
is empty if all the subproblems return empty and return any found lattice point otherwise. As we will explain
below, finding the above set of hyperplanes reduces to solving a shortest vector problem with respect to a
general norm, in particular the “width” norm ofK, i.e. ‖x‖(K−K)∗ = supy∈K 〈y, x〉 − infy∈K 〈y, x〉. In
previous IP algorithms, the alluded to SVP problem is solvedonly approximately via a reduction toℓ2 (i.e.
via an ellipsoidal approximation of the norm). The main source of improvement for our algorithm comes
from the fact the we solve the associated SVP exactly using a general norm SVP solver.

Proof of Theorem 4.7.

IP ALGORITHM:

Basis Refinement: As a first step, we will reduce to working with a lattice admitting a basis of length at
most2

√
nR. This will allow us to control the encoding length of the basis after each recursive invocation

of the IP algorithm. To begin, we use the MV algorithm for CVP to compute a closest vectorp ∈ L to
a0 in the ℓ2 norm. If ‖p − a0‖2 > R we declare thatK ∩ L = ∅ (sinceK ⊆ a0 + RBn

2 ). Otherwise,
we again use the MV algorithm to compute linearly independent lattice vectorsv1, . . . , vn achieving the
successive minima ofL, i.e. where‖vi‖2 = λi(L). Both invocations of the MV algorithm here take at most
2O(n) poly(〈B〉) time. Lettingv0 = 0, compute the largest indexk, 0 ≤ k ≤ n, such that‖vk‖ ≤ 2R. Now
let L′ = L ∩ span(v0, v1, . . . , vk).

Claim: L ∩ a0 +RBn
2 ⊆ p+ L′.
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Proof. Takey ∈ L ∩ a0 + RBn
2 . Sincep ∈ a0 + RBn

2 , we have that‖y − p‖2 ≤ 2R. Assume that
y− p /∈ span(v0, v1, . . . , vk). Sincey− p ∈ L andy− p is linearly independent fromv0, v1, . . . , vk, we get
thatλk+1(L) ≤ 2R. But by our choice ofk, we know thatλk+1(L) > 2R, a clear contradiction. Therefore
y − p ∈ L ∩ span(v0, v1, . . . , vk) ∩ L = L′, as needed.

SinceK ⊆ a0 +RBn
2 , from the above claim we get that it suffices to check whetherK − p ∩L′ = ∅ to

solve IP feasibility with respect toK andL. Now using standard techniques (Chris: reference needed),we
may compute a basisB′ for L′ usingv0, v1, . . . , vk sastifying‖B′‖2 ≤

√
k‖vk‖2 ≤ 2

√
kR in polynomial

time. LetW = span(L′) denote the linear span ofL′, a′0 denote the orthogonal projection ofa0 − p onto
W , and letR′ =

√

R2 − ‖a0 − a′0‖2. It is easy to check thatK − p ∩W is (a′0, R
′)-circumscribed inW .

Given that may restrict our attention to points inK − p ∩ L′, for the rest of the algorithm we replaceL by
L′, K byK − p∩W (for which a strong separation oracle is readily available via Lemma B.7), and(a0, R)
by (a′0, R

′).

Localizing K: For the next step, we compute a strong enough ellipsoidal approximation ofK to begin
inferring about howK interacts withL. To do this, we use algorithm GLS-Round (Theorem B.5), running
againstK with parameterǫ =

(

1
4n

)n
det(L) to deterministically compute an ellipsoidE + t such that

either (1)vol(E) ≤ ǫ (i.e. E is tiny compared to the ‘sparsity’ ofL), or (2) E sandwichesK well, i.e.
t+ 1√

n(n+1)
E ⊆ K ⊆ t+ E. This step can be done inpoly(n, log R

ǫ ) = poly(n, 〈R〉, 〈det(L)〉) time.

Branching on a “thinnest” width direction ofK: Here we wish to find a dual vectory ∈ L∗, such that
there exists a small number of hyperplanes of the formHk = {x : 〈x, y〉 = k}, k ∈ A ⊆ Z, with the
property that ifK contains a point ofL then there exists a lattice point inHk ∩K ∩L 6= ∅ for somek ∈ A.
At this point, as explained previously, we recurse onK ∩Hk, L ∩Hk, for all k ∈ A. To implement such
a recursive call for a specificHk, k ∈ A, we compute a basis forL ∩ H0 and a pointp ∈ Hk ∩ L, and
call the IP procedure onK − p ∩ H0 andL ∩ H0. All the preprocessing here can be done in polynomial
time via standard methods, where as above we note that a strong separation oracle forK − p∩H0 is readily
computable via Lemma B.7.

Now to find such ay and setA, we proceed as follows. If we are in case (1) above, we use the MV
algorithm to compute a vectory ∈ SVP(E∗, L∗), which can be done in2O(n) poly(〈B〉) time. Noting that
(E − E)∗ = 1

2E
∗, we see that

vol((E − E)∗) =

(

1

2

)n

vol(E∗) =

(

1

2

)n

vol(Bn
2 )

2 1

vol(E)
>

(

1

2n

)n 1

vol(E)

Given thatvol(E)
1
n ≤ ǫ = 1

4n det(L)
1
n , from the above we see that

vol((E − E)∗)
1
n >

1

2n

1

vol(E)
1
n

≥ 2
1

det(L)
1
n

= 2det(L∗)
1
n

Since(E − E)∗ = 1
2E

∗ is centrally symmetric, by Minkowski’s first theorem (Theorem B.10) we have
that2‖y‖E∗ = ‖y‖(E−E)∗ = λ1((E − E)∗, L∗) < 1. We remember that‖y‖(E−E)∗ = supx∈E 〈y, x〉 −
infx∈E 〈y, x〉 is the width ofE with respect toy. Sincey ∈ L∗ we note that for anyx ∈ E+ t∩L, we must
have that〈x, y〉 ∈ (〈y, t〉+ [infx∈E 〈y, x〉 , supx∈E 〈y, x〉])∩ Z. SinceE has width< 1 with respect toy, it
is easy to see that ifE+ t∩L is non-empty then all the lattice points inE+ t∩L must lie on the hyperplane
H = {x ∈ Rn : 〈x, y〉 = ⌊t⌉}. SinceK ⊆ E + t, it is also clearly the case thatK ∩ L ⊆ H ∩ L. To finish
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with this case, we now recursively solve the Integer Programwith respectK ∩ H andL ∩ H, returning
empty iffK ∩ L ∩H = ∅.

If we are in case(2), we knowK is well-sandwiched byE, i.e. t+ 1√
n(n+1)

E ⊆ K ⊆ t+ E. To find

a thin direction forK, we shall computey ∈ SVP((K − K)∗, L∗, 1). To do this, we must build a weak
distance oracle for(K −K)∗. Given thatK is well sandwiched byE, using the Ellipsoid Method (theorem
B.4), for anyy ∈ Qn andǫ > 0, we may computel, u ∈ Q satisfying

l − ǫ

2
≤ inf

x∈K
〈y, x〉 ≤ l u ≤ sup

x∈K
〈y, x〉 ≤ u+

ǫ

2

in polynomial time. We note now that

|‖y‖(K−K)∗ − (u− l)| = | sup
x∈K
〈y, x〉 − inf

x∈K
〈y, x〉 − (u− l)| ≤ ǫ

as needed. Next, the SVP algorithm needs sandwiching guarantees on(K −K)∗. Given our guarantees on
K, we see that12E

∗ = (E−E)∗ ⊆ K −K ⊆ 1
2(n+1)

√
nE∗. Technically, the algorithm Shortest-Vectors

requires the sandwiching ratio with respect to euclidean balls, but this type of sandwiching is equivalent to
ellipsoidal sandwiching after linear transformation. Having constructed a weak distance oracle for(K−K)∗

and computed the sandwiching guarantees, we may now call Shortest-Vectors((K −K)∗, L∗, 1) (Theorem
4.4) and retrievey ∈ L∗ from the output. Since the sandwiching guarantees are polynomial in n and the
required accuracy isO(1), this call be executed in expected time2O(n) poly(〈B〉, 〈E〉) time. Using the
Ellipsoid Method (theorem B.4) as above, we compute boundsu, l ∈ Q satisfyingu ≤ supx∈K 〈y, x〉 ≤ u+
1 andl−1 ≤ infx∈K 〈y, x〉 ≤ l in polynomial time. Now computeA = [l−1,min{u+ 1, l + f∗(n) + 1}]∩
Z. We now show that it suffices to restrict our attention to the hyperplanesHk = {x ∈ Rn : 〈x, y〉 = k} for
k ∈ A.

Claim: If K ∩ L 6= ∅, then there existsx ∈ K ∩ L such that〈y, x〉 ∈ A.

Proof. First, if l + f∗(n) + 1 ≥ supx∈K 〈y, x〉, then by our guarantees onu and l we have thatA ⊇
[infx∈K 〈y, x〉 , supx∈K 〈y, x〉] ∩ Z. Since〈y, x〉 ∈ Z for anyx ∈ L, we clearly have thatx ∈ K ∩ L ⇒
〈x, y〉 ∈ A. Next, if l + f∗(n) + 1 ≤ supx∈K 〈y, x〉, then we have that

f∗(n) ≤ sup
x∈
〈y, x〉 − l − 1 ≤ ‖y‖(K−K)∗ − 1 ≤ λ1((K −K)∗, L∗)

by our assumption thaty ∈ SVP((K −K)∗, L∗, 1). Takex0 ∈ argminx∈K 〈y, x〉 and examine the convex
body

K̃ =

(

1− f∗(n) + 1

‖y‖(K−K)∗

)

x0 +

(

f∗(n) + 1

‖y‖(K−K)∗

)

K.

Sincex0 ∈ K andf∗(n)+ 1 ≤ ‖y‖(K−K)∗ we get by convexity that̃K ⊆ K. Furthermore, we can see that

K̃ ⊆ {z ∈ Rn : inf
x∈K
〈y, x〉 ≤ 〈z, y〉 ≤ inf

x∈K
〈y, x〉+ f∗(n) + 1}.

Therefore anyx ∈ K̃∩L must satisfy〈x, y〉 ∈ A. Hence ifK̃∩L 6= ∅, sinceK̃ ⊆ K there existsx ∈ K∩L
such that〈y, x〉 ∈ A. We now show that̃K ∩ L 6= ∅ to complete the claim.
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By homogeneity, we see that

λ1((K̃ − K̃)∗, L∗) = λ1

((

f∗(n) + 1

‖y‖(K−K)∗
(K −K)

)∗
, L∗
)

= (f∗(n) + 1)
λ1((K −K)∗, L∗)
‖y‖(K−K)∗

≥ (f∗(n) + 1)
‖y‖(K−K)∗ − 1

‖y‖(K−K)∗
≥ (f∗(n) + 1)

f∗(n)
f∗(n) + 1

= f∗(n)

Applying the flatness theorem tõK, we now get thatµ(K̃, L) ≤ 1 and hence that̃K∩L 6= ∅ as needed.

Given the claim, we may complete the algorithm by recursively solving the integer programs with respect
to K ∩Hk andL ∩Hk, for all k ∈ A. We return EMPTY if all calls return EMPTY, and return any found
lattice point otherwise.

RUNTIME: The correctness of the algorithm has already been discussedabove, so it only remains to
check that the runtime of the algorithm is bounded byO(f∗(n))n poly(〈a0〉, 〈R〉, 〈B〉) on expectation (we
note that the only source of randomness in the algorithm comes from the calls to the Shortest-Vectors al-
gorithm). The algorithm above is recursive, where at each node of the recursion we perform the3 named
procedures above and then break the problem into at most⌈f∗(n)⌉+ 2 subproblems which we solve recur-
sively (the calls to IP onK∩Hk, L∩Hk as above). Now if we can show that the processing at each recursive
node takes at most expected2O(n) poly(〈a0〉, 〈R〉, 〈B〉) time - wherea0, R,B are theoriginal parameters
provided to the top level call of the IP algorithm - then by solving a standard recurrence relation we get that
the whole running time is indeedO(f∗(n))n poly(〈a0〉, 〈R〉, 〈B〉) on expectation as needed.

Let us examine a specific recursion node with associated convex bodyK̄, (ā0, R̄)-circumscribed in
Rn̄, andn̄-dimensional latticēL with basisB̄. Now it is straightforward to see that at this recursion node,
the amount of computation is certainly bounded by2O(n̄) poly(〈ā0〉, 〈R̄〉, 〈B̄〉) on expectation, since the
above procedures only make calls to subroutines with eitherpolynomial runtimes (such as the GLS-Round
algorithm, the Ellipsoid Method, and standard linear algebraic procedures) or single exponential runtimes
(such as the MV algorithm and the Shortest-Vectors algorithm). The main issue is therefore whether the
lattice basis and affine subspace passed to the next level recursion nodes have bit size bounded by a fixed
polynomial (i.e. whose degree does not depend onn) in the size of the original parameters. For clarity,
we only sketch the argument here. The main reason this is trueis because of the Basis Refine step. Most
crucially, after the refine step, we end up with a lattice basis whose length is bounded by2

√
n̄R̄ ≤ 2

√
nR.

SinceL̄ is a sub-lattice of our original latticeL, it is not hard to verify that any vector of̄L (and in fact ofL)
of length less than2

√
nR has bit size bounded bypoly(〈R〉, 〈B〉) (for a fixed polynomial). Hence the Basis

Refine step “smooths” any incoming basis and subspace to oneswhose bit description is well bounded by the
original parameters. Since the bit description of the lattice basis and subspace passed to the next child node
is only a fixed polynomial larger than that of the “smoothed” basis after our refine step, the claim follows.
The runtime is therefore bounded byO(f∗(n))n poly(〈a0〉, 〈R〉, 〈B〉) on expectation as desired.
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A M-Ellipsoid Proofs

Here we prove correctness of the all the main M-ellipsoid algorithms from Section 3. We rely heavily on
several geometric estimates, which are listed and proved inSection A.1 below, and on standard algorithms
from convex optimization and convex geometry, which are described in Section B.3.

Proof of Theorem 3.5 (Correctness of M-Ellipsoid).Here we give more detail as to the implementation of
each of the steps of Algorithm 1:

• Step1: Make a direct call to algorithm Estimate-Centroid (Lemma B.9) onK.

• Step2: If Estimate-Centroid returns an estimateb of b(K), we have the guarantee that

b+
r

2(n + 1)
√
n
Bn

2 ⊆ K ⊆ b+ 2R (A.1)

Since the guarantees aboutb in K are polynomial in the input, we can build a weak membership oracle
OK−b for K − b, whereK − b is (0, r

2(n+1)
√
n
, 2R)-centered, in polynomial time fromOK . Now we

run the algorithm of Theorem 3.7 on the oracleOK−b and retrieve the tentativeM -ellipsoidE(A) of
K.

• Step3: Here we make a direct call to the algorithm Build-Cover on (K, E(A)) where we ask whether
N(K,E(A)) > (13e)n.

• Step4: First, we implement a weak membership oracleO(K−K)∗ for (K −K)∗ from OK using the
ellipsoid algorithm, where we can guarantee that(K −K)∗ is (0, r 1

2R ,
1
2r )-centered. To do this, we

note that
x ∈ (K −K)∗ ⇔ sup

y∈K
〈y, x〉 − inf

y∈K
〈y, x〉 ≤ 1
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Hence we can build a weak membership oracle for(K − K)∗ by approximately maximizing and
minimizing with respect tox over K. This can readily be done via the ellipsoid algorithm (see
Theorem B.4). The guarantees we get on(K −K)∗ are seen as follows:

a0 + rBn
2 ⊆ K ⊆ RBn

2 ⇒ 2rBn
2 ⊆ K −K ⊆ 2RBn

2 ⇒
1

2R
Bn

2 ⊆ (K −K)∗ ⊆ 1

2r
Bn

2

Next, we note thatE(A)∗ = E(A−1), and hence can be computed in polynomial time. Next, we call
the algorithm Build-Cover on ((K − K)∗,E(A)∗) where we ask whetherN((K − K)∗, E(A)∗) >
(25e · 13)n.

Correctness: We must show that if the algorithm succeeds, returning the ellipsoidE(A), thatE(A) indeed
satisfies

N(K,E) ≤
(√

8πe · 13e
)n

N(E,K) ≤
(√

8πe · 25e · 13 · 289
)n

(A.2)

These guarantees depend only on the correctness of the algorithm Build-Cover. In, step3, if the test passes,
we are guaranteed to get a coveringT of K by E where|T | ≤

(√
8πe · 13e

)n
. Hence the first requirement

is met. In step4, if the test passes, we are guaranteed thatN((K −K)∗, E∗) ≤
(

4
√

πe
2 · 25e · 13

)n
. Now

by Theorem A.2, sinceE∗ is centrally symmetric, forn large enough, we have that

N(E,K) ≤ 289nN((K −K)∗, E∗) ≤
(√

8πe · 25e · 13 · 289
)n

(A.3)

as needed.

Runtime: We note that of each the steps1−4 already have a running time bounded by the desired runtime.
Hence, it suffices to show that the main loop is executed on expectation onlyO(1) times. To do this, we first
condition on the event that in step1, the returned estimateb satisfies thatb− b(K) ∈ 1

n+1EK . This occurs
with probability at least1 − 1

n . Next, in step2, given thatK − b satisfies the conditions of Theorem 3.7,
i.e. thatb(K − b) = b(K) − b ∈ 1

n+1EK , we may condition on the event that the returned ellipsoidE(A)
satisfies

N(K,E(A)) ≤ (13e)n N(E(A),K) ≤ (25e)n. (A.4)

Since this event occurs with probability1− 3
n , our total success probability is1 − 4

n . Now in step3, given
thatN(K,E(A)) ≤ (13e)n, the test is guaranteed to pass. SinceE is centrally symmetric, forn large
enough, we have that

N((K −K)∗, E∗) ≤ (12(1 + o(1)))nN(E,K) ≤ (25e · 13)n. (A.5)

Therefore, the test in step4 is also guaranteed to succeed. Finally, we see that the probability that each
execution of the loop terminates successfully is at least1− 4

n , therefore the expected number of runs of the
loop isO(1) as needed.

Proof of Theorem 3.7 (Correctness of M-Gen).The proof has two parts, first building the right oracle, then
using it to sample and estimate the inertial ellipsoid.
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Building a membership oracle for the polar: We first show that a polynomial time weak membership
oracle forS = n (conv{K,−K})∗ can be built fromOK . We note that

v ∈ n (conv{K,−K})∗ ⇔ max {sup
x∈K
〈v, x〉 , sup

x∈K
〈−v, x〉} ≤ n (A.6)

Given the guarantees onOK , we have that

n

R
Bn

2 ⊆ n (conv{K,−K})∗ ⊆ n

r
Bn

2 (A.7)

Constructing a weak membership oracle forS therefore requires only the ability to perform2 different
approximate optimizations overK. This can achieved using the standard optimization techniques described
in Theorem B.4. Hence, a polynomial time weak membership oracle forS can be built as claimed.

Building the M-ellipsoid: LeπS denote the uniform distribution onS. Equipped with a weak membership
oracle forS, we may use the sampling algorithm of Theorem B.6, to sample apointY ∈ S with distribution
σ satisfyingdTV(σ, πS) ≤ 1

n in timepoly(n) polylog(Rr , n). Sets = Y , whereY is the computed sample.
We shall uses to specify a reweighting of the uniform distribution onK. Letfs(x) = e〈s,x〉 for x ∈ K and0
otherwise. Using the algorithm described by Corollary B.8,we may compute a matrixA ∈ Rn×n satisfying

e−
1
nEfs ⊆ E(A) ⊆ e

1
nEfs (A.8)

with probability 1 − 1
n in time poly(n) polylog(Rr ). We return the ellipsoid

√
nE(A) as our candidate

M -ellipsoid forK.

Analysis: We now show that forn large enough, the ellipsoid returned by this algorithm satisfies with
high probability the covering conditions

N(K,
√
nE(A)) ≤ (13e)n N(

√
nE(A),K)) ≤ (25e)n (A.9)

First, we condition on the event (A.8), i.e. that we get a goodestimate ofEfs . Hence at this point, our
success probability is at least1− 1

n .
Let η > 0 be a constant to be decided later. LetX be uniformly distributed onS, and letY denote the ap-

proximately uniform sample the above algorithm computes onS, remembering thatS = n (conv{K,−K})∗.
Given the guarantee thatb(K) ∈ 1

n+1EK , from Lemma A.4 settingǫ = 1, for n large enough we have that

E[L2n
fX

] ≤
(

(1 + o(1))

√

2

πe

eǫ√
ǫ

)2n

≤
(

(1 + η)

√

2e

π

)2n

(A.10)

Using Markov’s inequality, we see that

Pr

[

LfX > (1 + η)2
√

2e

π

]

≤
E[L2n

fX
]

(

(1 + η)2
√

2e
π

)2n ≤
1

(1 + η)2n
. (A.11)

Now sincedTV(X,Y ) ≤ 1
n , we see that

Pr

[

LfY > (1 + η)2
√

2e

π

]

≤ 1

(1 + η)2n
+

1

n
≤ 2

n
(A.12)
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for n large enough (η will be chosen to be constant). Hence after additionally conditioning on the comple-
ment of event A.12, our success probabiblity is at least1 − 3

n . At this point, lettings = Y , we see thats
specifies a densityfs onK satisfying

Lfs ≤ (1 + η)2
√

2e

π
. (A.13)

Furthermore sinces ∈ n (conv{K,−K})∗, b(K) ∈ 1
n+1EK andEK ⊆ K, we have that

supx∈K fs(x)

fs(b(K))
= sup

x∈K
e〈s,x−b(K)〉 = sup

x∈K
e〈s,x〉+〈−s,b(K)〉 ≤ en+1. (A.14)

Hence by Lemma A.3, letting
√
nE(A) = T , andδ = e

1
n , we get that

N(K,
√
nE(A)) ≤ (12δ)n

4

3

supx∈K fs(x)

fs(b(K))
≤ 12ne

4

3
en+1 ≤ (12e(1 + η))n (A.15)

and

N(
√
nE(A),K) ≤ (12δ2)n vol(

√
nBn

2 )
4

3
Ln
fs

≤ 12ne2 (
√
2πe(1 + o(1)))n

4

3

(

(1 + η)3
√
2
)n
≤ (24e(1 + η)3)n

(A.16)

for n large enough. Choosingη > 0 such that(1 + η)3 = 25
24 yields the result.

Proof of Theorem 3.8 (Correctness of Build-Cover).The goal here is to either compute a covering ofK by
E, or conclude thatN(K,E) is large. To make this task easier, we will replaceE by a parallelepipedP
inscribed inE, and use a tiling procedure (sinceP can be used to tile space) to coverK. We will show any
cover produced in this way is not much larger thanN(K,E), and hence will help provide a lower bound on
N(K,E). Furthermore sinceP ⊆ E, any cover ofK by P immediately translates into a cover ofK by E.

Building P : To computeP we will need to perform some standard matrix algebra. First we compute the
Cholesky Factorization ofA, i.e. we computeV ∈ Rn×n such thatA = V tV . Next we computeB = V −1,
the inverse ofV , and label the columns ofB asB = (b1, . . . , bn). Both of the computations here can be
done in timepoly(〈A〉) via standard methods. Now we note that

〈bi, bj〉A = btiAbj = (BtAB)ij = (V −tV tV V −1)ij = (Idn)ij . (A.17)

Hence the vectors(b1, . . . , bn) form an orthonormal basis of with respect to the dot product〈·, ·〉A. Therefore
the ellipsoidE(A) may be expressed as

E(A) = {x ∈ Rn : xtAx ≤ 1} = {x ∈ Rn :
n
∑

i=1

〈bi, x〉2A ≤ 1}. (A.18)

Now defineP as

P =

{

x ∈ Rn : | 〈bi, x〉A | ≤
1√
n

}

=

{

n
∑

i=1

aibi : |ai| ≤
1√
n
, 1 ≤ i ≤ m

}

(A.19)
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where the second equality follows since thebis are orthonormal under〈·, ·〉A. Now for x ∈ Rn, we see that

max
1≤i≤n

| 〈bi, x〉A | ≤
(

n
∑

i=1

〈bi, x〉2A

)1/2

≤ √n max
i≤i≤n

| 〈bi, x〉A | ⇒ P ⊆ E(A) ⊆ √nP. (A.20)

Now a standard computation yields that

vol(P ) =

(

2√
n

)n

det(A)−1/2 vol(E(A)) =

(√
2πe(1 + o(1))√

n

)n

det(A)−1/2 (A.21)

where we remember here thatdet(B) = det(V −1) = det(V )−1 = det(A)−1/2. Therefore we have that
vol(E(A)) ≤

(√

πe
2 (1 + o(1))

)n
vol(P ).

Tiling K with P : Define the lattice

L =

{

n
∑

i=1

2√
n
zibi : zi ∈ Z, 1 ≤ i ≤ m

}

, (A.22)

soL is the lattice spanned by the vectors2√
n
(b1, . . . , bn). From here it is straightforward to verify thatP

tiles space with respect toL, soL + P = Rn and forx, y ∈ L, x 6= y, x + int(P ) ∩ y + int(P ) = ∅, i.e.
the interiors are disjoint. In fact, one can see thatP is simply a shift of the fundamental parallelepiped ofL
with respect to the basis2√

n
(b1, . . . , bn).

We now wish to tileK with copies ofP . To do this we examine the setH = {x ∈ L : x+ P ∩K 6= ∅}.
SinceP + L = Rn, it is easy to see that

K ⊆ H + P. (A.23)

Hence, we shall want to decide forx ∈ L, whetherx+P ∩K 6= ∅. Since we only have a weak membership
oracle forK, we will only be able to decide whetherx + P approximately intersectsK. To formalize this,
we build an weak intersection oracleINT which queried onx ∈ Rn, ǫ > 0 satisfies

INT(x, ǫ) =

{

0 : x+ P ∩K = ∅
1 : x+ (1 + ǫ)P ∩K 6= ∅

. (A.24)

Using this oracle we will be able to overestimateT , and compute a setS ⊆ L such that

H ⊆ S ⊆ {x : x+ (1 + ǫ)P ∩K 6= ∅} (A.25)

which will suffice for our purposes. Now to buildINT, we first remark that forx ∈ Rn, t ≥ 0

x+ tP ∩K 6= ∅ ⇔ inf
y∈K
‖y − x‖P ≤ t⇔ inf

y∈K

√
n max

1≤i≤n
| 〈bi, y − x〉A | ≤ t. (A.26)

Hence deciding the minimum scalingt of P for which x + tP ∩ K 6= ∅ is equivalent to solving a simple
convex program. The above convex program is exactly in the form described in Theorem B.4, hence for
ǫ > 0, andx ∈ Qn, we may compute a numberω ≥ 0 such that

|ω − inf
y∈K
‖y − x‖K | ≤ ǫ (A.27)

in timepoly(n, 〈x〉, 〈A〉) polylog(Rr , 1ǫ ). We now buildINT. On queryx ∈ Qn, ǫ > 0, we do the following:
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1. Computeω ≥ 0 satisfying|ω − infy∈K ‖y − x‖K | ≤ ǫ
2 .

2. If ω ≤ 1 + ǫ
2 return1, otherwise return0.

From (A.27) the above procedure clearly runs in polytime. To prove correctness, we must show that
INT(x, ǫ) = 1 if x + P ∩ K 6= ∅ and INT(x, ǫ) = 0 if x + (1 + ǫ)P ∩ K = ∅. If x + P ∩ K 6= ∅,
we note thatinfy∈K ‖y − x‖K ≤ 1, hence by the guarantee onω we have that

ω ≤ inf
y∈K
‖y − x‖K +

ǫ

2
≤ 1 +

ǫ

2
, (A.28)

and so we correctly classifyx. If x+ (1 + ǫ)P ∩K = ∅, theninfy∈K ‖y − x‖K > 1 + ǫ and so

ω ≥ inf
y∈K
‖y − x‖K −

ǫ

2
> 1 +

ǫ

2
(A.29)

as needed.
We now compute a tiling ofK. The idea here is simple. We define a graphG on the latticeL, where

for x, y ∈ L, x ∼ y iff x − y ∈ 2√
n
{±b1, . . . ,±bn}. We identify each lattice pointx ∈ L with the tile

x+ P . Starting from the tile centered at0, we begin a breadth first search onG of the tiles intersectingK.
In this way, we will compute the connected component containing 0 in G of tiles intersectingK. Lastly,
if the number of intersectingK tiles exceeds

(

4
√

πe
2 H

)n
, we abort and return thatN(K,E) ≥ Hn. The

algorithm is given in Algorithm 7.

Algorithm 7 Computing a tiling.
1: M ← {0}, N ← {0}, T ← ∅.
2: while N 6= ∅ do
3: choosex ∈ N
4: N ← N \ {c}
5: if INT(x, 1

n) = 1 then
6: T ← T ∪ {x}
7: if |T | >

(

4
√

πe
2 H

)n
then

8: return FAIL
9: for all δ ∈ 2√

n
{±b1, . . . ,±bn} do

10: if x+ δ /∈M then
11: N ← N ∪ {x}, M ←M ∪ {x}
12: return T

Correctness: To argue correctness of the above algorithm, we must guarantee that the algorithm either
computes a valid covering ofK or that it proves thatN(K,E) > Hn. Forǫ ≥ 0, let

Hǫ = {x ∈ L : x+ (1 + ǫ)P ∩K 6= ∅} and H ′
ǫ = {x ∈ L : INT(x, ǫ) = 1} (A.30)

From the description above, we see that the algorithm performs a breath first search onG starting from0 of
the tiles inH ′

1
n

. From the properties of the weak intersection oracleINT, we know thatH0 ⊆ H ′
1
n

⊆ H 1
n

.

The goal of the algorithm is to discover a super-set ofH0. SinceH0 ⊆ H ′
1
n

, the algorithm will correctly

add elements ofH0 to the coverT if it finds them. Since we perform a breadth first search from0, to
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guarantee we find all ofH0 we need only ensure thatH0 forms a connected subgraph ofG. As noted before,
the set of tiles indexed byH0 are just lattice shifts of the fundamental parallelepiped of L with respect to the
basis 2√

n
(b1, . . . , bn). In this setting, the connectivity ofH0 with respect the edges defined by the basis (i.e.

the set of tiles touching any convex set), is a classical fact. Therefore, the algorithm will indeed discover all
of H0, provided that the partial coverT remains no larger than

(

4
√

πe
2 H

)n
.

Now we must justify that if the algorithm aborts, i.e. if|T | >
(

4
√

πe
2 H

)n
, that indeedN(K,E) > Hn.

Now at every timestep we have thatT ⊆ H ′
1
n

⊆ H 1
n

. Therefore, to show correctness, it suffices to show that

|H 1
n
| ≤

(

4
√

πe
2

)n
N(K,E). Now for x ∈ H 1

n
, we have that

x+ (1 +
1

n
)P ∩K 6= ∅ ⇒ x ∈ K + (1 +

1

n
)P ⇒ x+ P ∈ K + (2 +

1

n
)P (A.31)

Furthermore, since forx, y ∈ H 1
n

, x 6= y, x+ int(P ) ∩ y + int(P ) = ∅, we have that

vol(K + (2 +
1

n
)P ) ≥ vol(∪x∈H 1

n

x+ P ) = |H 1
n
| vol(P ) (A.32)

Using thatP ⊆ E, andvol(E) ≤
(√

πe
2 (1 + o(1))

)n
vol(P ) we get

|H 1
n
| ≤ vol(K + (2 + 1

n)P )

vol(P )
≤
(
√

πe

2
(1 + o(1))

)n
vol(K + (2 + 1

n)E)

vol(E)

≤
(
√

πe

2
(1 + o(1))(3 +

1

n
)

)n

N(K,E) ≤
(

4

√

πe

2

)n

N(K,E)

(A.33)

for n large enough. Hence the algorithm correctly decides whether N(K,E) > Hn.

Runtime: The running time of the algorithm is proportional to the number of tiles visited and the number
of edges crossed during the search phase. Since all the tilesvisited in the algorithm are adjacent to the tiles in
the setT , and the number of edges is2n, the total number of tiles visited is at most2n|T | ≤ 2n

(

4
√

πe
2 H

)n
.

Furthermore, the edges traversed correspond to all the outgoing edges fromT , and hence is bounded by
the same number. Now at every visited tile, we make a call toINT(x, 1

n) for somex ∈ L, which takes
poly(n, 〈A〉) polylog(Rr ) time. Hence the total running time is

poly(n, 〈A〉) polylog(R
r
)

(

4

√

πe

2
H

)n

(A.34)

as needed.

A.1 Geometric Estimates

Here we list and prove the necessary geometric inequalitiesthat we used in the proofs above. We begin with
a slight extension of Theorem B.13.

Theorem A.1. LetK be a convex body such thatb(K) ∈ tEK , for somet ∈ [0, 1). Then

vol(K ∩ −K) ≥
(

1− t

2

)n

vol(K) (A.35)
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Proof. From Theorem B.13 we have that

1

2n
vol(K) ≤ vol(K − b(K) ∩ −K + b(K)) = vol(K ∩ −K + 2b(K)) (A.36)

Next, we note that forx ∈ Rn

K ∩ −K + 2x 6= ∅ ⇔ 2x ∈ K +K ⇔ x ∈ K (A.37)

Sinceb(K) ∈ tEK andb(K) + EK ⊆ K, we see that(1− t)EK ⊆ K. Hence we can write

0 = t(−2nb(K)) + (1− t)2b(K), (A.38)

where−nb(K) ∈ −(1− t)EK = (1− t)EK ⊆ K. Now we see that

t (K ∩ (−K +−2nb(K))) + (1− t) (K ∩ (−K + 2b(K))) ⊆ K ∩ −K (A.39)

where both sets on the left hand side are non-empty by (A.37).Therefore by the Brunn-Minkowski inequal-
ity, we have that

vol(K ∩−K)
1
n ≥ t vol (K ∩ (−K +−n2b(K)))

1
n + (1− t) vol (K ∩ (−K + 2b(K)))

1
n

≥ (1− t) vol (K ∩ (−K + 2b(K)))
1
n ≥ 1− t

2
vol(K)

1
n

(A.40)

Therefore we get that

vol(K ∩ −K) ≥
(

1− t

2

)n

vol(K)

as needed.

The next lemma is a slight specialization of [MP00, Theorem 5]. We require this inequality for the
M-ellipsoid certification procedure.

Theorem A.2(Duality of Entropy). LetK,T ⊆ Rn be convex bodies whereT is centrally symmetric. Then

N(T,K) ≤ ((1 + o(1))288)n ·N((K −K)∗, T ∗) (A.41)

and
N((K −K)∗, T ∗) ≤ (12(1 + o(1)))n ·N(T,K). (A.42)

Proof. Since the above quantities are invariant under shifts ofK, we may shiftK so thatb(K) = 0. Apply-
ing Theorem B.13, we see that thatvol(K−K) ≤ 4n vol(K) ≤ 8n vol(K ∩−K), where we note that since
0 ∈ K we have thatK ∩−K ⊆ K ⊆ K −K. Next applying the covering estimates from Lemma B.14, we
get that

N(K −K,K) ≤ N(K −K,K ∩ −K) ≤ 3n
vol(K −K)

vol(K ∩−K)
≤ 24n.

From here, we see that

N(T,K) ≤ N(T,K −K)N(K −K,K) ≤ 24nN(T,K −K). (A.43)
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Next since bothT andK −K are centrally symmetric, we apply Lemma B.14 to get that

N(T, (K −K)) ≤ 3n
vol(T )

vol((K −K) ∩ T )
.

Now we note that((K−K)∩T )∗ = conv{(K −K)∗, T ∗}. Hence applying the Blashke-Santaló inequality
to vol(T ) and the Bourgain-Milman inequality tovol((K −K) ∩ T ) we get that

3n
vol(T )

vol((K −K) ∩ T )
≤ (6(1 + o(1)))n

vol(conv{(K −K)∗, T ∗})
vol(T ∗)

Since0 is both in(K −K)∗ andT ∗, we see thatconv{(K −K)∗, T ∗)} ⊆ (K −K)∗ + T ∗ and hence

(6(1 + o(1)))n
vol(conv{(K −K)∗, T ∗})

vol(T ∗)
≤ (6(1 + o(1)))n

vol((K −K)∗ + T ∗)
vol(T ∗)

.

Lastly, applying Lemma B.14 to the last estimate, we get that

(6(1 + o(1)))n
vol((K −K)∗ + T ∗)

vol(T ∗)
≤ (12(1 + o(1)))nN((K −K)∗, T ∗).

Combining the above estimates yields the first desired inequality.
Now switching the roles(K −K) andT with (K −K)∗ andT ∗, we have that

N((K −K)∗, T ∗) ≤ (12(1 + o(1))nN(T,K −K) ≤ (12(1 + o(1))nN(T,K),

yielding the second inequality.

We now make precise the relationship between the isotropic constant of the exponential reweightings
defined by Klartag [Kla06] and the M-ellipsoid.

Lemma A.3. LetK ⊆ Rn be a convex body. Takes ∈ Rn and letfs(x) = e〈s,x〉 for x ∈ K and0 otherwise.
LetT ⊆ Rn be a convex body such that for someδ ≥ 1 we have that

√
n

δ
Efs ⊆ T ⊆ δ

√
nEfs (A.44)

whereEfs is the inertial ellipsoid offs. Then we have that

N(K,T ) ≤ (12δ)n
4

3

supx∈K fs(x)

fs(b(K))
and N(T,K) ≤ (12δ2)n vol(

√
nBn

2 )
4

3
Ln
fs (A.45)

whereb(K) is the centroid ofK, andLfs is the isotropic constant offs.

Proof. Since the above estimates are all invariant under shifts ofK, we may assume thatb(fs) = 0 (centroid
of fs). We note thatb(fs) ∈ K always and hence0 ∈ K. Let X be distributed asπfs , whereπfs is the
probability measure induced byfs. So we have thatE[X] = b(fs) = 0 andE[XXt] = cov(fs).
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Remember thatEfs = {x : xt cov(fs)
−1x ≤ 1}, therefore‖x‖Efs

=
√

xt cov(fs)−1x. Now note that

E[‖X‖2Efs
] = E[Xt cov(fs)

−1X] = E[trace[cov(fs)
−1XXt]] = trace[cov(fs)

−1 E[XXt]] (A.46)

= trace[cov(fs)
−1 cov(fs)] = trace[Idn] = n. (A.47)

Now by Markov’s inequality, we have that

πfs(2
√
nEfs) = 1− Pr[‖X‖Efs

> 2
√
n] ≥ 1−

E[‖X‖2Efs
]

4n
= 1− n

4n
=

3

4
. (A.48)

By Jensen’s inequality, we see that
∫

K
fs(x)dx =

∫

K
e〈s,x〉dx = vol(K)

∫

K
e〈s,x〉

dx

vol(K)
≥ vol(K)e〈s,b(K)〉 = vol(K)fs(b(K)), (A.49)

whereb(K) is the centroid ofK.
Using (A.49) and (A.48) we see that

vol(2
√
nEfs ∩K) ≥

∫

2
√
nEfs

fs(x)dx

supx∈K fs(x)
≥ 3

4

∫

K fs(x)dx

supx∈K fs(x)
≥ 3

4

fs(b(K))

supx∈K f(x)
vol(K). (A.50)

Using that
√
n
δ Efs ⊆ T , 0 ∈ K, δ ≥ 1, and by (A.50) we get that

vol(T ∩K) ≥ vol

(√
n

δ
Efs ∩K

)

=

(

1

δ

)n

vol(
√
nEfs ∩ δK) ≥

(

1

δ

)n

vol

(√
nEfs ∩

1

2
K

)

=

(

1

2δ

)n

vol(2
√
nEfs ∩K) ≥

(

1

2δ

)n 3

4

fs(b(K))

supx∈K f(x)
vol(K).

(A.51)

Using the definition ofLfs , (A.48),
√
nEfs ⊆ δT and that0 ∈ K, we get that

det(cov(fs))
1
2 = Ln

K

∫

K fs(x)dx

supx∈K fs(x)
≤ Ln

K

4

3

∫

2
√
nEfs

fs(x)dx

supx∈K fs(x)
≤ Ln

K

4

3
vol(2

√
nEfs ∩K)

≤ Ln
K

4

3
vol(2δT ∩K) ≤ (2δLK)n

4

3
vol(T ∩K).

(A.52)

Using thatT ⊆ δ
√
nEfs and the ellipsoid volume formula (2.6), we have that

vol(T ) ≤ vol(δ
√
nEfs) = δn vol(

√
nBn

2 ) det(cov(fs))
1
2 . (A.53)

Combining equations (A.52),(A.53) we get that

vol(T ) ≤ (2δ2LK)n vol(
√
nBn

2 )
4

3
vol(T ∩K). (A.54)

Now applying Lemma B.14 to the inequalities (A.51),(A.54) the theorem follows.

From Lemma A.3, we see that if the slicing conjecture is true,then for any convex body, its inertial
ellipsoid appropriately scaled is anM -ellipsoid. To bypass this, Klartag shows that for any convex body
K, there exists a “mild” exponential reweightingfs of the uniform density onK with bounded isotropic
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constant. As one can see from Lemma A.3, the severity of the reweighting controlsN(K,
√
nEfs) whereas

the isotropic constant offs controlsN(
√
nEfs ,K).

The main tool to establish the existence of “good” exponential reweightings forK is the following
lemma, which one can extract from the proof of Theorem 3.6 in [Kla06]. We will use it here forǫ = 1, in
which case the expectation below is of order2O(n). The argument is essentially identical to that of [Kla06];
we include it for completeness.

Lemma A.4 ([Kla06]). Let K ⊆ Rn be a convex body such thatb(K) ∈ 1
n+1EK . For s ∈ Rn, let

fs : K → R+ denote the functionfs(x) = e〈s,x〉, x ∈ K. LetX be distributed asǫn (conv{K,−K})∗) for
some realǫ > 0. Then we have

E[L2n
fX

] ≤
(

(1 + o(1))

√

2

πe

eǫ√
ǫ

)2n

(A.55)

Proof. Fors ∈ Rn definefs : K → R+ by fs(x) = e〈s,x〉 for x ∈ K. In Lemma 3.2 of [Kla06] is it shown
that

∫

Rn

det(cov(fs))ds = vol(K) (A.56)

By Theorem B.11, we have thatEK + b(K) ⊆ K. Sinceb(K) ∈ 1
n+1EK by assumption, we see that

n
n+1EK ⊆ EK + b(K) ⊆ K. Hence0 ∈ K. From [RS58], we know that for any convex bodyK such that
0 ∈ K, we have thatvol(conv{K,−K}) ≤ 2n vol(K).

LetL = conv{K,−K}. Note that

L∗ = (conv{K,−K})∗ = {y : | 〈x, y〉 | ≤ 1, ∀x ∈ K} (A.57)

SinceL is centrally symmetric by the Bourgain-Milman inequality (Theorem B.12), we have that

vol(L∗) vol(L) ≥
(

(1 + o(1))
πe

n

)n
(A.58)

Hence we get that

vol(L∗) ≥
(

(1 + o(1))πe

n vol(L)
1
n

)n

≥
(

(1 + o(1))πe

2n vol(K)
1
n

)n

(A.59)

Takes ∈ ǫnL∗. We examine the properties offs : K → R+. Sinces ∈ ǫnL∗, we see that

sup
x∈K

fs(x) = esupx∈K〈s,x〉 ≤ eǫn (A.60)

Sinceb(K) ⊆ 1
n+1EK ⊆ 1

nK ands ∈ ǫn (conv{K,−K})∗, we see that| 〈s, b(K)〉 | ≤ ǫ. Now by Jensen’s
inequality, we have that

∫

K
e〈s,x〉dx = vol(K)

(
∫

K
e〈s,x〉

dx

vol(K)

)

≥ vol(K)e
∫
K
〈s,x〉 dx

vol(K)

= vol(K)e〈s,b(K)〉 ≥ vol(K)e−ǫ

(A.61)

Now we see that

L2n
fs =

(

sup
x∈K

fs(x)
∫

K fs(x)dx

)2

det(cov(fs)) ≤
(

eǫn

vol(K)e−ǫ

)2

det(cov(fs)) =
e2(n+1)ǫ

vol(K)2
det(cov(fs))

(A.62)
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Applying inequality (A.62), Lemma 3.2 of [Kla06], and equation (A.59), we get that

1

vol(ǫnL∗)

∫

ǫnL∗
L2n
fs ds ≤

e2(n+1)ǫ

vol(ǫnL∗) vol(K)2

∫

ǫnL∗
vol(K)2 det(cov(fs))ds

≤ e2(n+1)ǫ

vol(ǫnL∗) vol(K)2
vol(K) ≤

(

(1 + o(1))e2ǫ

ǫn vol(L∗)
1
n vol(K)

1
n

)n

≤
(

(1 + o(1))2e2ǫ

πeǫ

)n

=

(

(1 + o(1))

√

2

πe

eǫ√
ǫ

)2n

(A.63)

The above quantity is exactlyE[LfX ] sinceX is uniform overǫnL∗. The statement thus follows.

B Additional Background

For two probability distributionsσ1, σ2 over a domainX , their total variation (or statistical) distanceis

dTV(σ1, σ2) = sup
A⊆X

|σ1(A)− σ2(A)|. (B.1)

B.1 Logconcave functions

We will need to work with the generalization of convex bodiesto logconcave functions. A functionf :
Rn → R+ is logconcave if for allx, y ∈ Rn, and0 ≤ α ≤ 1, we have that

f(αx+ (1− α)y) ≥ f(x)αf(y)1−α (B.2)

The canonical examples of logconcave functions are the indicator functions of convex bodies as well as the
Gaussian distributions. We will now generalize the concepts defined before for convex bodies to logconcave
functions.

For a logconcave functionf onRn such that0 <
∫

Rn f(x) dx <∞, we define the associated probability
measure (distribution)πf , where for measurableA ⊆ Rn, we have

πf (A) =

∫

A f(x) dx
∫

Rn f(x) dx
. (B.3)

We define thecentroid(or barycenter) andcovariancematrix of f as

b(f) =

∫

Rn xf(x)dx
∫

Rn f(x) dx
cov(f)ij =

∫

Rn(xi − b(f)i)(xj − b(f)j)f(x) dx
∫

Rn f(x) dx
1 ≤ i, j ≤ n

The matrixcov(f) is positive semi-definite and symmetric. We say thatf is isotropic, or in isotropic
position, ifb(f) = 0 andcov(f) is the identity matrix. Define theinertial ellipsoidof f as

Ef = E(cov(f)−1) = {x : xt cov(f)−1x ≤ 1}

The isotropic constantof f is defined as

Lf =

(

sup
x∈Rn

f(x)
∫

Rn f(x)dx

)
1
n

· det(cov(f)) 1
2n .
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A natural extension of the slicing conjecture (Conjecture 2.1) is thatLf is bounded by a universal constant.
This generalized slicing conjecture was shown by Ball [Bal88] to be equivalent to the slicing conjecture for
convex bodies, up to a constant factor in the precise bound.

For a convex bodyK, let πK denote the uniform measure (distribution) overK. Let fK denote the
associated density, i.e.,

fK(x) =
1

vol(K)
I[x ∈ K],

We note that the definitions coincide exactly if we replaceK byfK , i.e.,cov(K) = cov(fK), b(K) = b(fK),
LK = LfK , etc. We extend all the notions defined above for log-concavefunctions to convex bodies in the
same way, e.g. we letEK = EfK . We say thatK is in isotropic position ifb(K) = 0 andcov(K) is the
identity (a different normalization is sometimes used in asymptotic convex geometry, namely,b(K) = 0,
vol(K) = 1, andcov(K) is constant diagonal).

B.2 Computational model

For a rational matrixA, we define〈A〉 as the length of the binary encoding ofA. The lattice algorithms pre-
sented will have complexity depending on the dimensionn of the lattice and the bit length of the description
of the input basis.

Since we work with general (semi-)norms, we shall need an appropriate way to represent them. We now
define the three different types of oracles that we will need.For convenience, our semi-norms will always be
indexed by a convex bodyK. With some slight modifications, we will adopt the terminology from [GLS88].

LetK ⊆ Rn be a convex body. Forǫ ≥ 0, we define

Kǫ = K + ǫBn
2 and K−ǫ = {x ∈ K : x+ ǫBn

2 ⊆ K} (B.4)

We say thatK is (a0, R)-circumscribedif K ⊆ a0 + RBn
2 for somea0 ∈ Qn andR ∈ Q. We say that

K is (a0, r, R)-centeredif a0 + rBn
2 ⊆ K ⊆ a0 + RBn

2 for a0 ∈ Qn, r,R ∈ Q. We will always assume
that the above parameters are given explicitly as part of theinput to our problems, and hence our algorithms
will be allowed to depend polynomially in〈a0〉, 〈r〉, 〈R〉.
Definition B.1. A weak membership oracleOK for K is function which takes as input a pointx ∈ Qn and
realǫ > 0, and returns

OK(x, ǫ) =

{

1 : x ∈ Kǫ

0 : x /∈ K−ǫ
(B.5)

where any answer is acceptable ifx ∈ Kǫ \K−ǫ.

Definition B.2. A strong separation oracleSEPK for K on inputy ∈ Qn either returns YES ify ∈ K, or
somec ∈ Qn such that〈c, x〉 < 〈c, y〉, ∀x ∈ K.

When working with the above oracle, we assume that there is a polynomial φ, such that on inputy
as above, the output ofSEPK has size bounded byφ(〈y〉). The runtimes of algorithms usingSEPK will
therefore depend onφ.

LetK be a convex body containing the origin.

Definition B.3. A weak distance oracleDK for K is a function that takes as input a pointx ∈ Qn and
ǫ > 0, and returns a rational number satisfying

|DK(x, ǫ)− ‖x‖K | ≤ ǫ. (B.6)
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As above, we assume the existence of a polynomialφ, such that the size of the output ofDK on (x, ǫ)
is bounded byφ(〈x〉, 〈ǫ〉). For a(0, r, R)-centered bodyK, ∀x ∈ Rn, we crucially have that

1

R
‖x‖ ≤ ‖x‖K ≤

1

r
‖x‖.

B.3 Standard Algorithms

Here we list some of the algorithmic tools we will require.
The following theorem is essentially the classical equivalence between weak membership and weak

optimization [YN76, GLS88].

Theorem B.4 (Convex Optimization via Ellipsoid Method). Let K ⊆ Rn an (a0, r, R)-centered convex
body given by a weak membership oracleOK . LetA ∈ Qm×n, c ∈ Qm. Definef : Rn → R as

f(x) = max
1≤i≤m

〈Ai, x〉+ ci (B.7)

whereAi is theith row ofA. Then forǫ > 0, a numberω ∈ Q satisfying

|ω − inf
x∈K

f(x)| ≤ ǫ (B.8)

can be computed usingOK in time

poly(n, 〈A〉, 〈a0〉, 〈c〉) polylog(
R

r
,
1

ǫ
) (B.9)

We will also need an algorithm from [GLS88], which allows oneto deterministically compute an ellip-
soid with relatively good “sandwiching” guarantees for a convex bodyK. We present a small modification
of the result in GLS:

Theorem B.5(Algorithm GLS-Round). LetK ⊆ Rn be an(a0, R)-circumscribed convex body given by a
strong-separation oracleSEPK . Then for anyǫ > 0, in poly(log R

ǫ , 〈a0〉n) time one can computeA ≻ 0,
A ∈ Qn×n and t ∈ Rn, such that the ellipsoidE = E(A) satisfiesK ⊆ E + t, and one of the following:
(a) vol(E) ≤ ǫ, or (b) 1

(n+1)n
1
2
E + t ⊆ K.

The next theorem comes from the literature on random walks onconvex bodies [LV06b, LV06a, LV06c].

Theorem B.6 (Algorithm Logconcave-Sampler, [LV06a]). Let K ⊆ Rn be a (a0, r, R)-centered convex
body given by a weak membership oracleOK . Let f : K → R+ be a polynomial time computable log-
concave function satisfying

sup
x∈K

f(x) ≤ βnf(0) (B.10)

for someβ > 1. Letǫ, τ > 0. Then the following can be computed:

1. A random pointX ∈ K with distributionσ satisfyingdTV(σ, πfs) ≤ τ in time

poly(n, 〈a0〉) polylog(n,
R

r
, β,

1

τ
) (B.11)
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2. A pointb ∈ K and a matrixA ∈ Qn×n such that∀ x ∈ Rn

| 〈x, b− b(fs)〉 | ≤ ǫ xt cov(fs)x and |xt(A− cov(fs))x| ≤ ǫ xt cov(fs)x, (B.12)

with probability1− δ in time

poly(n, 〈a0〉,
1

ǫ
) polylog(n,

R

r
, β,

1

δ
). (B.13)

The following simple lemma allows us to construct a strong separation oracle for any hyperplane section
of a convex body already equipped with a strong separation oracle.

Lemma B.7. Let K ⊆ Rn be a convex body presented by a strong separation oracleSEPK . Let H =
{x ∈ Rn : Ax = b} denote an affine subspace, whereA ∈ Qm×n, b ∈ Qm. Then one can construct a
separation oracle forK ∩ H, such that on inputy ∈ H, the oracle executes in timepoly(〈y〉, 〈A〉, 〈b〉)
using a single call toSEPK .

Proof. We wish to construct a strong separation oracle forK ∩ H, whereH = {x ∈ Rn : Ax = b} is an
affine subspace, given a strong separation oracle forK. To do this giveny ∈ H, we do the following. First,
we callSEPK ony. If SEPK returns thaty ∈ K, we return YES. IfSEPK returns a separatorc ∈ Rn such
that supx∈K 〈c, x〉 < 〈c, y〉, we computēc the orthogonal projection ofc ontoW = {x ∈ Rn : Ax = 0}
(the lineality space ofH). If c̄ = 0, we note that〈c̄, ·〉 is constant overH. Therefore ifK ∩H 6= ∅, there
existsx ∈ K ∩H ⊆ K such that〈c, x〉 = 〈c, y〉, a contradiction. Hence if̄c = 0, we return thatK ∩H is
EMPTY. Otherwise, we simply return̄c. Since the derived oracle simply callsSEPK once and projects any
found separator onto the lineality space ofH, the runtime is clearlypoly(〈A〉, 〈b〉, 〈y〉) as needed.

We now derive some straightforward applications of the above fundamental tools.

Corollary B.8 (Algorithm Estimate-Covariance). LetK ⊆ Rn be an(a0, r, R)-centered convex body given
by a weak membership oracleOK . Letf : K → R+ be a polynomial time computable log-concave function
satisfying

sup
x∈K

f(x) ≤ e2nf(0). (B.14)

Then an ellipsoidE(A), A ∈ Qn×n, can be computed satisfying

e−
1
nEfs ⊆ E(A) ⊆ e

1
nEfs (B.15)

with probability1− δ in timepoly(n, 〈a0〉, log(Rr ), log(1δ )).

Proof. Using Theorem B.6, we can compute a matrixB ⊆ Qn×n satisfying

|xt(B − cov(fs))x| ≤
1

n
xt cov(fs)x ∀ x ∈ Rn, (B.16)

with probabiliy1− δ in timepoly(n) polylog(n, Rr ,
1
δ ). We now condition on the event (B.16). Remember-

ing thatxtBx = ‖x‖2B andxt cov(fs)x = ‖x‖2cov(fs), we may rewrite (B.16) as

√

n− 1

n
‖x‖cov(fs) ≤ ‖x‖B ≤

√

n+ 1

n
‖x‖cov(fs) (B.17)
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From the above, we see that the ellipsoidE(cov(fs)) = {x : ‖x‖cov(fs) ≤ 1} andE(B) = {x : ‖x‖B ≤ 1}
satisfy

√

n

n+ 1
E(cov(fs)) ⊆ E(B) ⊆

√

n

n− 1
E(cov(fs)) (B.18)

Remembering that the polar ellipsoids satisfy

E(B)∗ = E(B−1) and E(cov(fs))
−1 = E(cov(fs)

−1) = Efs . (B.19)

where the last equality follows by the definition ofEfs . Taking the polars of the above ellipsoids, the
containment relationships in (B.18) flip, and we get

√

n− 1

n
Efs ⊆ E(B−1) ⊆

√

n+ 1

n
Efs (B.20)

Now using the inequalities1− 1
n ≥ e−

2
n for n ≥ 3 and1 + 1

n ≤ e
2
n , we see that (B.20) implies

e−
1
nEfs ⊆ E(B−1) ⊆ e

1
nEfs (B.21)

as needed. LettingA = B−1, the ellipsoidE(A) satisfies the desired requirements.

Corollary B.9 (Algorithm Estimate-Centroid). There is a probabilistic algorithm Estimate-Centroid that,
given a(0, r, R)-centered convex bodyK presented by a weak membership oracleOK and someδ > 0, in
timepoly(n) polylog(n, Rr ,

1
δ ) either outputs FAIL (with probability at mostδ) or someb ∈ K such that:

b+
r

2(n + 1)
√
n
Bn

2 ⊆ K ⊆ b+ 2RBn
2 (B.22)

and with probability at least1− δ,

b− b(K) ∈ 1

n+ 1
EK . (B.23)

Proof. Using Theorem B.6, we compute a centerb ∈ K satisfying

| 〈x, b− b(K)〉 | ≤ 1

(n+ 1)2
xt cov(K)x ∀ x ∈ Rn, (B.24)

with probability1− δ in timepoly(n) polylog(n, Rr ,
1
δ ).

First, check whether

OK

(

b± 3r

4(n + 1)
ei,

r

4(n + 1)
√
n

)

= 1 for 1 ≤ i ≤ n (B.25)

If any of the above tests fail, abort and return FAIL.
Let δ = r

n+1 . If these tests pass, by the properties ofOK we know that

b+
3δ

4
conv{±e1, . . . ,±en} ⊆ K

δ
4
√

n ⇒ b+
3δ

4
√
n
Bn

2 ⊆ K
δ

4
√

n ⇒ b+
δ

2
√
n
Bn

2 ⊆ K (B.26)

Sinceb ∈ K ⊆ RBn
2 , we clearly also have thatK ⊆ b + 2RBn

2 . Hence conditioned up outputtingb, we
have that

b+
r

2(n + 1)
√
n
Bn

2 ⊆ K ⊆ b+ 2RBn
2 (B.27)
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as needed.
We now show that if the event (B.24) holds, then the above testwill pass and condition(b) will also be

satisfied. Since this event holds with probability1− δ, this will suffice to prove the statement.
For the centerb, we note that for allx ∈ (n + 1)E(cov(fs)), by equation (B.24) we have that

| 〈b− b(K), x〉 | ≤ 1

(n+ 1)2
xt cov(K)x ≤ 1

(n+ 1)2
(n+ 1)2 = 1 (B.28)

Therefore, we have thatb− b(K) ∈ ((n+ 1)E(cov(K)))∗ = 1
n+1EK as needed.

We now show that the tests must all pass. From Theorem B.11, weknow that

b(K) +

√

n+ 2

n
EK ⊆ K ⊆ b(K) +

√

n(n+ 2)EK (B.29)

By the guarantee onOK , we know thatrBn
2 ⊆ b(K) +

√

n(n+ 2)EK . But we have that

rBn
2 − b(K) ⊆

√

n(n+ 2)EK ⇒ rBn
2 + b(K) ⊆

√

n(n+ 2)EK

⇒ 1

2
(rBn

2 − b(K)) +
1

2
(rBn

2 + b(K)) ⊆
√

n(n+ 2)EK

⇒ rBn
2 ⊆

√

n(n+ 2)EK

(B.30)

since bothEK andBn
2 are symmetric. From the inequalityn+ 1 ≥

√

n(n+ 2), we have that

r

n+ 1
Bn

2 ⊆
√

n(n+ 2)

n+ 1
EK ⊆ EK (B.31)

Sinceb− b(K) ∈ 1
n+1EK by assumption, and

√

n+2
n EK + b(K) ⊆ K, we get that

b ∈ b(K) +
1

n+ 1
EK ⇒ b+ EK ⊆ b(K) +

n+ 2

n+ 1
EK ⇒ b+ EK ⊆ b(K) +

√

n+ 2

n
EK ⊆ K (B.32)

Therefore by B.31) we have thatb+ r
n+1B

n
2 ⊆ K. Lettingδ = r

n+1 , from the previous sentence we see that

b± 3

4
δei ∈ K− δ

4 ⊆ K
− δ

4
√

n (B.33)

Therefore by the properties ofOK , the tests in B.25 must all pass. The claim thus holds.

B.4 Geometric Inequalities

Perhaps the most fundamental inequality in the geometry of numbers is Minkowski’s first theorem, which is
stated as follows:

Theorem B.10. Let L ⊆ Rn be ann dimensional lattice and letK ⊆ Rn denote a centrally symmetric
convex body. Then

λ1(K,L) ≤ 2

(

det(L)

vol(K)

)
1
n
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The following gives bounds on how well the inertial ellipsoid approximates a convex body. The esti-
mates below are from [KLS95]:

Theorem B.11. For a convex bodyK ⊆ Rn, the inertial ellipsoidEK satisfies
√

n+ 2

n
· EK ⊆ K − b(K) ⊆

√

n(n+ 2) · EK (B.34)

where equality holds for any simplex.

The above containment relationship was shown in [MP89] for centrally symmetric bodies (with better
bounds), and by [Son90] for general bodies with suboptimal constants.

The next theorem gives estimates on the volume product, a fundamental quantity in Asymptotic Con-
vex Geometry. The upper bound for centrally symmetric bodies follows from the work of Blashke [Bla18],
and for general bodies by Santaló [San49]. The lower bound was first established by Bourgain and Mil-
man [BM87], and was recently refined by Kuperberg [Kup08], aswell as by Nazarov [Naz09], where Ku-
perberg achieves the best constants. Finding the exact minimizer of the volume product is a major open
problem in Asymptotic Convex Geometry.

Theorem B.12. LetK be a convex body inRn. Then we have

vol(Bn
2 )

2 ≥ inf
x∈K

vol(K − x) vol((K − x)∗) ≥
(

πe(1 + o(1))

2n

)n

. (B.35)

If K is centrally symmetric, then

vol(Bn
2 )

2 ≥ vol(K) vol(K∗) ≥
(

πe(1 + o(1))

n

)n

. (B.36)

In both cases, the upper bounds are equalities if and only ifK is an ellipsoid.

We remark that the upper and lower bounds match within a4n factor (2n for symmetric bodies) since

vol(Bn
2 )

2 =
(

2πe(1+o(1))
n

)n
. Using the M-ellipsoid, one can directly derive weak bounds(i.e., with sub-

optimal constants) on the volume product. Furthermore, as we shall see in Section A , the techniques devel-
oped by Klartag [Kla06] can be used to derive the existence ofthe M-ellipsoid as an essential consequence
of the volume product bounds.

The next theorem gives useful volume estimates for some basic operations on a convex body. The first
estimate is due to Rogers and Shepard [RS57], and the second is due Milman and Pajor [MP00]:

Theorem B.13. LetK ⊆ Rn be a convex body. Then

vol(K −K) ≤
(

2n

n

)

vol(K) ≤ 4n vol(K).

If b(K) = 0, i.e., the centroid ofK is at the origin, then

vol(K) ≤ 2n vol(K ∩ −K).

Lastly, we relate some well-known covering estimates. HereN(K,T ) = min{|Λ| : Λ ⊆ Rn,K ⊆ Λ+ T},
whereK,T are convex bodies inRn.
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Lemma B.14. LetK,T ⊆ Rn be convex bodies. Then

N(K,T ) ≤ 6n inf
c∈Rn

vol(K)

vol(K ∩ (T + c))
and

vol(K + T )

vol(T )
≤ 2nN(K,T ). (B.37)

If T is centrally symmetric, then

N(K,T ) ≤ vol(K + T/2)

vol(T/2)
. (B.38)

If bothK andT are centrally symmetric, then

N(K,T ) ≤ 3n
vol(K)

vol(K ∩ T )
. (B.39)

Proof. Let us first examine the case whereT is centrally symmetric, where we wish to show that

N(K,T ) ≤ vol(K + T/2)

vol(T/2)
(B.40)

LetΛ ⊆ K be a maximal subset ofK such that forx1, x2 ∈ Λ, x1 6= x2, x1 + T/2 ∩ x2 + T/2 = ∅.

Claim 1: K ⊆ ∪x∈Λ x+ T .
Takey ∈ K. By maximality ofΛ, there existsx ∈ Λ such that

y + T/2 ∩ x+ T/2 6= ∅ ⇒ y ∈ x+ T/2− T/2 ⇒ y ∈ x+ T

where the last equality follows sinceT is centrally symmetric. The claim thus follows.

Claim 2: |Λ| ≤ vol(K + T/2)

vol(T/2)
.

Forx ∈ Λ, note that sincex ∈ K, we have thatx+ T/2 ⊆ K + T/2. ThereforeΛ + T/2 ⊆ K. Since
the setsx+ T/2, x ∈ Λ, are disjoint, we have that

vol(K + T/2) ≥ vol(Λ + T/2) = |Λ| vol(T/2) (B.41)

as needed.
Now let us assume thatK is also symmetric. Since bothK andT are symmetric, we have thatK ∩ T

is also symmetric. Therefore by the estimate in (B.40) we getthat

N(K,T ) ≤ N(K,T ∩K) ≤ vol(K + 1
2 (T ∩K))

vol(12(T ∩K))
≤ vol(32K)

vol(12 (T ∩K))
= 3n

vol(K)

vol(T ∩K)
(B.42)

as needed.
Now we examine the case where neitherK norT is necessarily symmetric. Since the covering estimate

is shift invariant, we may assume thatK andT have been shifted such thatvol(K ∩ T ) is maximized,
and that the centroid ofK ∩ T is at0. Let S = (K ∩ T ) ∩ −(K ∩ T ). By Theorem B.13 we have that
vol(S) ≥ 2−n vol(K ∩ T ). Note thatS is a centrally symmetric convex body. Hence by identical reasoning
as in (B.42) we get that

N(K,T ) ≤ 3n
vol(K)

vol(S)
≤ 6n

vol(K)

vol(K ∩ T )
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as needed.
Lastly, pick anyΛ ⊆ Rn such thatK ⊆ Λ+ T and|Λ| = N(K,T ). Now we see that

vol(K + T ) ≤ vol((Λ + T ) + T ) = vol(Λ + 2T ) ≤ |Λ| vol(2T ) = 2n vol(T )N(K,T )

as needed.
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