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Abstract

For Bayesian combinatorial auctions, we present a general framework for approximately
reducing the mechanism design problem for multiple buyers to single buyer sub-problems. Our
framework can be applied to any setting which roughly satisfies the following assumptions:
(i) buyers’ types must be distributed independently (not necessarily identically), (ii) objective
function must be linearly separable over the buyers, and (iii) except for the supply constraints,
there should be no other inter-buyer constraints. Our framework is general in the sense that
it makes no explicit assumption about buyers’ valuations, type distributions, and single buyer
constraints (e.g., budget, incentive compatibility, etc).

We present two generic multi buyer mechanisms which use single buyer mechanisms as black
boxes; if an α-approximate single buyer mechanism can be constructed for each buyer, and if no
buyer requires more than 1

k
of all units of each item, then our generic multi buyer mechanisms

are γkα-approximation of the optimal multi buyer mechanism, where γk is a constant which
is at least 1 − 1

√

k+3
. Observe that γk is at least 1

2
(for k = 1) and approaches 1 as k → ∞.

As a byproduct of our construction, we present a generalization of prophet inequalities. Fur-
thermore, as applications of our framework, we present multi buyer mechanisms with improved
approximation factor for several settings from the literature.

1 Introduction

The main challenge of stochastic optimization arises from the fact that all instances in the support
of the distribution are relevant for the objective and this support is exponentially big in the size
of problem. This paper aims to address this challenge by providing a general decomposition tech-
nique for assignment problems on independently distributed inputs where the objective is linearly
separable over the inputs. The main challenge faced by such a decomposition approach is that the
feasibility constraint of an assignment problem introduces correlation in the outcome of the opti-
mal solution. In mechanism design problems, such constraints are typically the supply constraints.
For example, when buyers are independent, a revenue maximizing seller with unlimited supply
can decompose the problem over the buyers and optimize for each buyer independently. However,
in the presence of supply constraints, a direct decomposition is not possible. Our decomposition
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technique can be roughly described as the following: (i) Construct a mechanism that satisfies the
supply constraints only in expectation (ex-ante); the optimization problem for constructing such a
mechanism can be fully decomposed over the set of buyers. (ii) Convert the mechanism from the
previous step to another mechanism that satisfies the supply constraint at every instance.

We restrict our discussion to Bayesian combinatorial auctions. We are interested in mechanisms
that allocate a set of heterogenous items with limited supply to a set of buyers in order to maximize
the expected value of a certain objective function which is linearly separable over the buyers (e.g.,
welfare, revenue, etc). The buyers’ types are assumed to be distributed independently according
to publicly known priors. We defer the formal statement of our assumptions to §2.

The following are the main challenges in designing mechanisms for multiple buyers.

(I) The decisions made by the mechanism for different buyers should be coordinated because of
supply constraints.

(II) The decisions made by the mechanism for each buyer should be optimal (or approximately
optimal).

Making coordinated optimal decisions for multiple buyers is challenging as it requires optimizing
over the joint type space of all buyers, the size of which grows exponentially in the number of
buyers. The second challenge is usually due to incentive compatibility (IC) constraints, specially
in multi-dimensional settings where these constraints cannot be encoded compactly. In this paper,
we mostly address the first challenge by providing a framework for approximately decomposing the
mechanism design problem for multiple buyers to sub-problems dealing with each buyer individually.

Our framework can be summarized as follows. We start by relaxing the supply constraints, i.e.,
we consider the mechanisms for which only the ex-ante expected number of allocated units of each
item is no more than the supply of that item. Note that “ex-ante” means that the expectation
taken over all possible inputs (i.e., all possible types of the buyers). We show that the optimal
mechanism for the relaxed problem can be constructed by independently running n single buyer
mechanisms, where each single buyer mechanism is subject to an ex-ante probabilistic supply
constraint. In particular, we show that if one can construct an α-approximate mechanism for each
single buyer problem, then running these mechanisms simultaneously and independently yields an
α-approximate mechanism for the relaxed multiple buyer problem. We then present two methods
for converting the mechanism for the relaxed problem to a mechanism for the original problem
while losing a small constant factor in the approximation. We present two generic multi buyer
mechanisms that use the single buyer mechanisms from the previous step as blackboxes 1. In the
first mechanism, we serve buyers sequentially by running, for each buyer, the corresponding single
buyer mechanism from the previous step. However, we sometimes randomly preclude some of the
items from the early buyers in order to ensure that late buyers get the same chance of being offered
with those items; we ensure that the ex-ante expected probability of preclusion is equalized over
all buyers, regardless of the order in which they are served (i.e., we simultaneously minimize the
preclusion probability for all buyers). In the second mechanism, we run all of the single buyer
mechanisms simultaneously and then modify the outcomes by deallocating some units of the over-
allocated items at random while adjusting the payments respectively; we ensure that the ex-ante
probability of deallocation is equalized among all units of each item and therefore simultaneously
minimized for all buyers.

We also introduce a toy problem, the magician’s problem, in §4, along with a near optimal
solution for it, which is used as the main ingredient of our multi buyer mechanisms. As a byproduct,

1Note that the single buyer mechanisms can be different for different buyers, e.g., to accommodate different classes
of buyers.
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we present improved generalized prophet inequalities for maximizing the sum of multiple choices.
As applications of our framework, in §6, we present mechanisms with improved approximation

factor for several settings from the literature. For each setting we present a single buyer mechanism
that satisfies the requirements of our framework, and can be plugged in one of our generic multi
buyer mechanisms.

1.1 Related Work

In single dimensional settings, the related works form the CS literature are mostly focused on ap-
proximating the VCG mechanism for welfare maximization and/or approximating the Myerson’s
mechanism Myerson (1981) for revenue maximization (e.g., Bulow and Roberts (1989); Babaioff et al.
(2006); Blumrosen and Holenstein (2008); Hartline and Roughgarden (2009); Dhangwatnotai et al.
(2010); Chakraborty et al. (2010); Yan (2011)). Most of them consider mechanisms that have sim-
ple implementation and are computationally efficient. For welfare maximization in single dimen-
sional settings, Hartline and Lucier (2010) gives a blackbox reduction from mechanism design to
algorithmic design.

In multidimensional setting, for welfare maximization, Hartline et al. (2011) presents a black-
box reduction from mechanism design to algorithm design which subsumes the earlier work of
Hartline and Lucier (2010). For revenue maximization, Chawla et al. (2010) presents several se-
quential posted pricing mechanisms for various settings with different types of matroid feasibility
constraints. These mechanisms have simple implementation and approximate the revenue of the
optimal mechanism. For unit-demand buyers whose valuations’ for the items are distributed accord-
ing to product distributions, Chawla et al. (2010) present a sequential posted pricing mechanism
that obtains in expectation at least 1

6.75 -fraction of the revenue of the optimal posted pricing mech-
anism. In §6.2, we present an improved sequential posted pricing mechanism for this setting with
an approximation factor of 1

2γk in which k is the number of units available of each item, and γk is a
constant which is at least 1− 1√

k+3
. For combinatorial auctions with additive/correlated valuations

with budget and demand constraints, Bhattacharya et al. (2010) presents all-pay 1
4 -approximate

BIC mechanisms for revenue maximization and a similar mechanism for welfare maximization. In
subsection 6.4, we present an improved mechanism for this setting with an approximation factor
of γk. Note that γkk is at least 1

2 and approaches 1 as k → ∞. Bhattacharya et al. (2010) also
presents sequential posted pricing mechanisms for the same setting, obtaining O(1) approximation
factors. For a similar setting, in §6.3, we present an improved sequential posted pricing mechanism
with an approximation factor of (1 − 1

e )γk. Finally, Chawla et al. (2011) also considers various
settings with hard budget constraints.

Prophet inequalities have been extensively studied in the past (e.g. Hill and Kertz (1992)).

Prior to this work, the best known bound for the generalization to sum of k choices was 1−O(
√
lnk√
k
)

by Hajiaghayi et al. (2007). We improve this to 1− 1√
k+3

. Note that the current bound is tight for

k = 1, and is useful even for small values of k.

2 Preliminaries

The framework of this paper is presented for combinatorial auctions, but it can be readily applied to
Bayesian mechanism design in other contexts. We begin by defining the model and some notation.

Model. We consider the problem of selling m indivisible heterogenous items to n buyers where
there are kj units of each item j ∈ [m]. All the relevant private information of each buyer i ∈ [n]
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is represented by her type ti ∈ Ti where Ti is the type space of buyer i. Let T = T1 × · · · × Tn be
the space of all type profiles. The buyers’ type profile t ∈ T is distributed according to a publicly
known prior D. We use Xij(t) and Pi(t) to denote the random variables2 respectively for the
allocation of item j to buyer i and the payment of buyer i, for type profile t. For a mechanism M ,
the random variables for allocations and payments are denoted respectively by XM

ij (t) and PM
i (t).

We are interested in computing a mechanism that (approximately) maximizes3 the expected value
of a given objective function Obj(t,X ,P) where t, X , and P respectively represent the types, the
allocations, and the payments of all buyers. We are only interested in mechanisms which are within
a given space M of feasible mechanisms. Formally, we aim to compute a mechanism M ∈ M that
(approximately) maximizes Et∼D[Obj(t,XM (t),PM (t))].

Assumptions. We make the following assumptions.

(A1) Independence. The buyers’ types must be distributed independently, i.e., D = D1 × · · · ×
Dn where Di is the distribution of types for buyer i. Note that for a buyer i who has
multidimensional types, Di itself does not need to be a product distribution.

(A2) Linear Separability of Objective. The objective function must be linearly separable over
the buyers, i.e., Obj(t,X ,P) =

∑
iObji(ti,Xi,Pi) where ti, Xi, and Pi respectively represent

the type, the allocations, and the payment of buyer i.

(A3) Single–Unit Demands. No buyer should ever need more than one unit of each item, i.e.,
Xij(t) ∈ {0, 1} for all t ∈ T. This assumption is not necessary and is only to simplify the
exposition; it can be removed as explained in §8.

(A4) Incentive Compatibility. M must be restricted to (Bayesian) incentive compatible mech-
anisms. By direct revelation principle this assumption is without loss of generality4,

(A5) Convexity. M must be a convex space. In other words, every convex combination of every
two mechanisms from M must itself be a mechanism in M. A convex combination of two
mechanisms M,M ′ ∈ M is another mechanism M ′′ which simply runs M with probability
β and runs M ′ with probability 1 − β, for some β ∈ [0, 1]. In particular, if M is restricted
to deterministic mechanisms, it is not convex; however if M also includes mechanisms that
randomize over deterministic mechanisms, then it is convex 5.

(A6) Decomposability. The set of constraints specifying M must be decomposable to supply
constraints (i.e.,

∑
iXij ≤ kj , for each item j) and single buyer constraints(e.g., incentive

compatibility, budget, etc). We define this assumption formally as follows. For any mechanism
M , let [[M ]]i be the single buyer mechanism perceived by buyer i, by simulating6 the other
buyers according to their respective distributions D−i. Define Mi = {[[M ]]i|M ∈ M} to be
the space of all feasible single buyer mechanisms for buyer i. The decomposability assumption

2Note that these random variables are often correlated. Furthermore, for a deterministic mechanism, these vari-
ables take deterministic values as a function of t.

3All of the results of this paper can be applied to minimization problems by simply maximizing the negation of
the objective function.

4It is WLOG, given that we are only interested in mechanisms that have Bayes-Nash equilibria.
5For an example of a randomized non-convex space of mechanisms, consider the space of mechanisms where the

expected payment of every type must be either less than $2 or more than $4.
6The single buyer mechanism induced on buyer i can be obtained by simulating all buyers other than i by drawing

a random t−i from D−i and running M on buyer i and the n− 1 simulated buyers with types t−i; note that this is
a single-buyer mechanism because the simulated buyers are just part of the mechanism.
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requires that for any arbitrary mechanism M the following holds: if M satisfies the supply
constraints and also [[M ]]i ∈Mi (for all buyers i), then it must be that M ∈M.

We shall clarify the last assumption by giving an example. Suppose M is the space of all buyer
specific item pricing mechanisms, then M satisfies the last assumption. On the other hand, if M
is the space of mechanisms that offer the same set of prices to every buyer, it does not satisfy
the decomposability assumption, because there is an implicit inter-buyer constraint that the same
prices should be offered to different buyers.

Throughout the rest of this paper, we often omit the range of the sums whenever the range is
clear from the context (e.g.,

∑
i means

∑
i∈[n], and

∑
j means

∑
j∈[m]).

Multi buyer problem. Formally, the multi buyer problem is to find a mechanism M which is a
solution to the following program.

maximize
∑

i

Et∼D

[
Obji(ti,X

M
i (t),PM

i (t))
]

(OPT )

subject to
∑

i

XM
ij (t) ≤ kj , ∀t ∈ T,∀j ∈ [m]

[[M ]]i ∈Mi, ∀i ∈ [n]

Observe that, in the absence of the first set of constraints, we could optimize the mechanism for each
buyer independently. This observation is the key to our multi to single buyer decomposition, which
allows us to approximately decompose/reduce the multi buyer problem to single buyer problems.
A mechanism M is an α-approximation of the optimal mechanism if it is a feasible mechanism for
the above program and obtains at least α-fraction of the optimal objective value of the program.

Ex ante allocation rule. For a multi-dimensional mechanism M , the ex ante allocation rule is
a vector x ∈ [0, 1]n×m in which xij = Et∼D[XM

ij ] is the expected probability of allocating a unit of
item j to buyer i, where the expectation is taken over all possible type profiles. Note that for any
feasible mechanism M , by linearity of expectation, the ex ante allocation rule satisfies

∑
i xij ≤ kj ,

for every item j.

Single buyer problem. The single buyer problem, for buyer i, is to compute an optimal single
buyer mechanism and its expected objective value, subject to a given upper bound xi ∈ [0, 1]m on
the ex ante allocation rule; in other words, the single buyer mechanism may not allocate a unit
of item j to buyer i with an expected probability of more than xi, where the expectation is taken
over ti ∼ Di. Formally, the single buyer problem is to compute the optimal value of the following
program along with a corresponding solution (i.e., the optimal Mi), for a given xi.

maximize Eti∼Di

[
Obji(ti,X

Mi
i (ti),P

Mi
i (ti))

]
(OPTi)

subject to Eti∼Di

[
XMi

ij (ti)
]
≤ xij, ∀j ∈ [m]

Mi ∈Mi,

We typically denote an optimal single buyer mechanism for buyer i, subject to a given xi, by Mi〈xi〉,
and denote its expected objective value (i.e., the optimal value of the above program as a function
of xi) by Ri(xi). Later, we prove that Ri(xi), which we refer to as the optimal benchmark for buyer
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i, is a concave function of xi. In the case of approximation, we say that a single buyer mechanism
Mi together with a concave benchmark Ri provide an α-approximation of the optimal single buyer
mechanism/optimal benchmark, if the expected objective value of Mi〈xi〉 is at least αRi(xi) and if
Ri(xi) is an upper bound on the optimal benchmark, for every xi.

To make the exposition more concrete, consider the following single buyer problem as an ex-
ample. Suppose there is only one type of item (i.e., m = 1) and the objective is to maximize the
expected revenue7. Suppose buyer i’s valuation is drawn from a regular distribution with CDF, Fi.
The optimal single buyer mechanism for i, subject to xi ∈ [0, 1], is a deterministic mechanism which
offers the item at some fixed price, while ensuring that the probability of sale (i.e., the probability
of buyer i’s valuation being above the offered price) is no more than xi. In particular, the optimal
benchmark Ri(xi) is the optimal value of the following convex program as a function of xi.

maximize xiF
−1
i (1− xi)

subject to xi ≤ xi

xi ∈ [0, 1]

Furthermore, the optimal single buyer mechanism offers the item at the price F−1
i (1 − xi) where

xi is the optimal assignment for the above convex program. Note that, for a regular distribution,
xiF

−1
i (1− xi) is concave in xi, so the above program is a convex program.

3 Decomposition via Ex ante Allocation Rule

In this section we present general methods for approximately decomposing/reducing the multi
buyer problem to single buyer problems. Recall that a single buyer problem is to compute the
optimal single buyer mechanism Mi〈xi〉 and its expected objective value Ri(xi) (i.e., the optimal
benchmark), subject to an upper bound xi on the ex ante allocation rule. We present two methods
for constructing an approximately optimal multi buyer mechanism, using Mi and Ri as black box.
Furthermore, we show that if we can only compute an α-approximation of the optimal single
buyer mechanism/optimal benchmark for each buyer i, then the factor α simply carries over to the
approximation factor of the final multi buyer mechanism.

Multi buyer benchmark. We start by showing that the optimal value of the following con-
vex program gives an upper bound on the expected objective value of the optimal multi buyer
mechanism.

maximize
∑

i

Ri(xi) (OPT )

subject to
∑

i

xij ≤ kj , ∀j ∈ [m]

xij ∈ [0, 1] ,

We first show that the above program is indeed a convex program.

Theorem 1. The optimal benchmarks Ri are always concave.

7The optimal multi buyer mechanism for this setting is given by Myerson (1981); yet we consider this setting to
keep the example simple and intuitive.
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Proof. We prove this for an arbitrary buyer i. Let Mi and Ri denote the optimal single buyer
mechanism and the optimal benchmark for buyer i. To show that Ri is concave, it is enough to
show that for any xi, x

′
i ∈ [0, 1]m and any β ∈ [0, 1], the following inequality holds.

Ri(βxi + (1− β)x′
i) ≥ βRi(xi) + (1− β)Ri(x

′
i)

Consider the single buyer mechanism M ′′ that works as follows: M ′′ runs Mi(xi) with probability
β and runs Mi(x

′
i) with probability 1−β. Note that Mi is a convex space (this follows from A5 and

A6), thereforeM ′′ ∈Mi. Observe that by linearly of expectation, the ex ante allocation rule ofM ′′ is
no more than βxi+(1−β)x′

i and the expected objective value ofM ′′ is exactly βRi(xi)+(1−β)Ri(x
′
i).

So the expected objective value of the optimal single buyer mechanism, subject to βxi + (1− β)x′
i,

may only be higher. That implies Ri(βxi + (1− β)x′i) ≥ βRi(xi) + (1− β)Ri(x
′
i) which proves the

claim.

Theorem 2. The optimal value of the convex program (OPT ) is an upper bound on the expected
objective value of the optimal multi buyer mechanism.

Proof. Let M∗ be an optimal multi buyer mechanism. Let x∗ denote the ex ante allocation rule
corresponding to M∗, i.e., x∗ij = Et∼D[XM∗

ij ]. Observe that x∗ is a feasible assignment for the
convex program and yields an objective value of

∑
i Ri(x

∗
i ) which is upper bounded by the optimal

value of the convex program. So to prove the theorem it is enough to show that the contribution
of each buyer i to the expected objective value of M∗ is upper bounded by Ri(x

∗
i ). Consider

M∗
i = [[M∗]]i, i.e, the single buyer mechanism induced by M∗ on buyer i. M∗

i can be obtained by
simply runningM∗ on buyer i and simulating the other n−1 buyers with random types t−i ∼ D−i;
Observe that M∗

i is a feasible single buyer mechanism subject to x∗i and obtains the same expected
objective value as M∗ from buyer i, so the expected objective value of the optimal single buyer
mechanism subject to x∗i could only be higher.

Constructing multi buyer mechanisms. Theorem 2 suggests that by computing an optimal
assignment of x for the convex program (OPT ) and running the single buyer mechanism Mi〈xi〉 for
each buyer i, one might obtain a reasonable multi buyer mechanism; however such a multi buyer
mechanism would only satisfy the supply constraints in expectation; in other words, there is a good
chance that some items are over allocated with a non-zero probability. We present two generic
multi buyer mechanisms for combining the single buyer mechanisms and resolving the conflicts in
the allocations in such a way that would ensure the supply constraints are met at every instance and
not just in expectation. In both approaches we first solve the convex program (OPT ) to compute
the optimal x. The high level idea of each mechanism is explained below.

1. Pre-Rounding. This mechanism serves the buyers sequentially (arbitrary order); for each
buyer i, it selects a subset Si of available items and runs the single buyer mechanism
Mi〈xi[Si]〉, where xi[Si] denotes the vector resulting from xi by zeroing the entries corre-
sponding to items not in Si. In particular, this mechanism sometimes precludes some of the
available items from early buyers to make them available to late buyers. We show that if there
are at least k units of each item, then Si includes item j with probability at least 1− 1√

k+3
,

for each buyer i and each item j.

2. Post-Rounding. This mechanism runs Mi〈xi〉 for all buyers i simultaneously and indepen-
dently. It then modifies the outcomes by deallocating the over allocated items at random in
such a way that the probability of deallocation observed by all buyers are equal, and therefore
minimized over all buyers. The payments are adjusted respectively. We show that if there
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are at least k units of each item, every allocation is preserved with probability 1− 1√
k+3

from

the perspective of the corresponding buyer.

We will explain the above mechanisms in more detail in §5 and present some technical as-
sumptions that are sufficient to ensure that they retain at least 1− 1√

k+3
fraction of the expected

objective value of each Mi〈xi〉.

Approximately optimal single buyer mechanisms. Throughout the above discussion, we
assumed that we can compute the optimal single buyer mechanisms and the corresponding optimal
benchmarks. However, it is likely that we can only compute an approximation of them. Suppose
for each buyer i, Mi and Ri, instead of being optimal, only provide an α-approximation of the
optimal single buyer mechanism/optimal benchmark, and suppose Ri is concave; then we can still
use Mi and Ri in the above construction, but the final approximation factor will be multiplied by
α.

Main result. The following informal theorem summarizes the main result of this paper. The
formal statement of this result can be found in Theorem 7 and Theorem 8.

Theorem 3 (Market Expansion). If for each buyer i ∈ [n], an α-approximate single buyer mecha-
nism Mi and a corresponding concave benchmark Ri can be constructed in polynomial time, then,
with some further assumptions (explained later), a multi buyer mechanism M ∈ M can be con-
structed in polynomial time by using Mi as building blocks, such that M is γkα-approximation of
the the optimal multi buyer mechanism in M, where k = minj kj and γk is a constant which is at
least 1− 1√

k+3
.

In order to explain the construction of the multi buyer mechanism, we shall first describe the
magician’s problem and its solution, which is used in both pre-rounding and post-rounding for
equalizing the expected probabilities of preclusion/deallocation over all buyers.

4 The Magician’s Problem

In this section, we present an abstract online stochastic toy problem and a near-optimal solution
for it which provides the main ingredient for combining single buyer mechanisms to form multi
buyer mechanisms; it is also used to prove a generalized prophet inequality.

Definition 1 (The Magician’s Problem). A magician is presented with a series of boxes one by
one, in an online fashion. There is a prize hidden in one of the boxes. The magician has k
magic wands that can be used to open the boxes. If a wand is used on box i, it opens, but with
a probability of at most xi, which written on the box, the wand breaks. The magician wishes to
maximize the probability of obtaining the prize, but unfortunately the sequence of boxes, the written
probabilities, and the box in which the prize is hidden are arranged by a villain, and the magician
has no prior information about them (not even the number of the boxes). However, it is guaranteed
that

∑
i xi ≤ k, and that the villain has to prepare the sequence of boxes in advance (i.e., cannot

make any changes once the process has started).

The magician could fail to open a box either because (a) he might choose to skip the box, or
(b) he might run out of wands before getting to the box. Note that once the magician fixes his
strategy, the best strategy for the villain is to put the prize in the box that has the lowest ex ante
probability of being opened, based on the magician’s strategy. Therefore, in order for the magician
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to obtain the prize with a probability of at least γ, he has to devise a strategy that guarantees an
ex ante probability of at least γ for opening each box. Notice that allowing the prize to be split
among multiple boxes does not affect the problem. It is easy to show the following strategy ensures
an ex ante probability of at least 1

4 for opening each box: for each box randomize and use a wand
with probability 1

2 . But can we do better? We present an algorithm parameterized by a probability
γ ∈ [0, 1] which guarantees a minimum ex-ante probability of γ for opening each box while trying
to minimize the number of wands broken. In Theorem 4, we show that for γ ≤ 1 − 1√

k+3
this

algorithm never requires more than k wands.

Definition 2 (γ-Conservative Magician). The magician adaptively computes a sequence of thresh-
olds θ1, θ2, . . . ∈ N0 and makes a decision about each box as follows: let Wi denote the number
of wands broken prior to seeing the ith box; the magician makes a decision about box i by com-
paring Wi against θi; if Wi < θi, it opens the box; if Wi > θi, it does not open the box; and if
Wi = θi, it randomizes and opens the box with some probability (to be defined). The magician
chooses the smallest threshold θi for which Pr[Wi ≤ θi] ≥ γ where the probability is computed ex
ante (i.e., not conditioned on past broken wands). Note that γ is a parameter that is given. Let
FWi

(ℓ) = Pr[Wi ≤ ℓ] denote the ex ante CDF of random variable Wi, and let Si be the indicator
random variable which is 1 iff the magician opens the box i. Formally, the probability with which
the magician should open box i condition on Wi is computed as follows.

Pr [Si = 1|Wi] =





1 Wi < θi

(γ − FWi
(θi − 1))/(FWi

(θi)− FWi
(θi − 1)) Wi = θi

0 Wi > θi

(s)

θi = min{ℓ|FWi
(ℓ) ≥ γ} (θ)

Observe that θi is in fact computed before seeing box i itself.
Define sℓi = Pr[Si = 1|Wi = ℓ]; the CDF of Wi+1 can be computed from the CDF of Wi and xi

as follows (assume xi is the exact probability of breaking a wand for box i).

FWi+1
(ℓ) =





sℓixiFWi
(ℓ− 1) + (1− sℓixi)FWi

(ℓ) i ≥ 1, ℓ ≥ 0

1 i = 0, ℓ ≥ 0

0 otherwise.

(FW )

Furthermore, if each xi is just an upper bound on the probability of breaking a wand on box i, then
the above definition of FWi

(·) stochastically dominates the actual CDF of Wi, and the magician
opens each box with a probability of at least γ.

In order to prove that a γ-conservative magician does not fail for a given choice of γ, we must
show that the thresholds θi are no more than k − 1. The following theorem states a condition on
γ that is sufficient to guarantee that θi ≤ k − 1 for all i.

Theorem 4 (γ-Conservative Magician). For any γ ≤ 1 − 1√
k+3

, a γ-conservative magician with

k wands opens each box with an ex ante probability of at least γ. Furthermore, if xi is the exact
probability (not just an upper bound) of breaking a wand on box i for each i, then each box is opened
with an ex ante probability exactly γ8

Proof. See §7.
8In particular the fact that the probability of the event of breaking a wand for the ith box is exactly xi, conditioned

on any sequence of prior events, implies that these events are independent for different boxes.
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Definition 3 (γk). We define γk to be the largest probability such that for any k′ ≥ k and any
instance of the magician’s problem with k′ wands, the thresholds computed by a γk-conservative
magician are less than k′. In other words, γk is the optimal choice of γ which works for all
instances with k′ ≥ k wands. By Theorem 4, we know that γk must be9 at least 1− 1√

k+3
.

Observe that γk is a non-decreasing function in k which is at least 1
2 (when k = 1) and approaches

1 as k →∞. The next theorem shows that the lower bound of 1− 1√
k+3

on γk cannot be far from

the optimal.

Theorem 5 (Hardness of Magician’s Problem). For any ǫ > 0, it is not possible to guarantee an

ex ante probability of 1 − kk

ekk!
+ ǫ for opening each box (i.e., no magician can guarantee it). Note

that 1− kk

ekk!
≈ 1− 1√

2πk
by Stirling’s approximation.

Proof. See §A.

Prophet Inequalities. We prove a generalization of prophet inequalities by a direct reduction
to the magician’s problem.

Definition 4 (k-Choice Sum). A sequence of n non-negative random numbers V1, . . . ,Vn are drawn
from arbitrary distributions F1, . . . , Fn one by one in an arbitrary order. A gambler observes the
process and may select k of the random numbers, with the goal of maximizing the sum of the selected
ones; a random number may only be selected at the time it is drawn, and it cannot be unselected
later. The gambler knows all the distributions in advance, and observes from which distribution
the current number is drawn, but not the order in which the future numbers are drawn. On the
other hand, a prophet knows all the actual draws in advance, so he chooses the k highest draws.
We assume that the order in which the random numbers are drawn is fixed in advance (i.e., may
not change based on the decisions of the gambler).

Hajiaghayi et al. (2007) proved that there is a strategy for the gambler that guarantees in ex-

pectation at least 1−O(
√
lnk√
k
) fraction of the payoff of the prophet, using a non-decreasing sequence

of k stopping rules (thresholds) 10. Next, we construct a gambler that obtains in expectation at
least γk fraction of the prophet’s payoff, using a γk-conservative magician as a black box. Note
that γk ≥ 1− 1√

k+3
. This gambler uses only a single threshold. However, he may skip some of the

random variables at random.

Theorem 6 (Prophet Inequalities – k-Choice Sum). The following strategy ensures that the gambler
obtains at least γk fraction of payoff of the prophet in expectation. 11

• Find a threshold τ such that
∑

i Pr[Vi > τ ] = k (e.g., by doing a binary search on τ).

• Use a γk-conservative magician with k wands. Upon seeing each Vi, create a box and write
xi = Pr[Vi > τ ] on it and present it to the magician. If the magician chooses to open the
box and also Vi > τ , then select Vi and break the magician’s wand, otherwise skip Vi.

9Because for any k′ ≥ k obviously 1− 1√
k+3

≤ 1− 1√
k′+3

.
10A gambler with stopping rules τ1, . . . , τk works as follows. Upon seeing Vi, he selects it iff Vi ≥ τj+1 where j is

the number of random draws selected so far.
11To simplify the exposition we assume that the distributions do not have point masses. The result holds with

slight modifications if we allow point masses.
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Proof. First, we compute an upper bound on the expected payoff of the prophet. Let xi be the
ex ante probability (i.e., before any random number is drawn) that the prophet chooses Vi (i.e.
the probability that Vi is among the k highest draws). Let ui(xi) denote the maximum possible
contribution of the random variable Vi to the expected payoff of the prophet if Vi is selected with
an ex ante probability xi. Note that ui(xi) is equal to the expected value of Vi conditioned on being
above the 1− xi quantile, multiplied by the probability of Vi being above that quantile. Assuming
Fi(·) and fi(·) denote the CDF and PDF of Vi, we can write ui(xi) =

∫∞
F−1
i (1−xi)

vfi(v)dv. By

changing the integration variable and applying the chain rule we get ui(xi) =
∫ xi

0 F−1
i (1 − x)dx.

Observe that d
dxi

ui(xi) = F−1
i (1− xi) is a non-increasing function, so ui(xi) is a concave function.

Furthermore,
∑

i xi ≤ k because the prophet cannot choose more than k random draws. So the
optimal value of the following convex program is an upper bound on the payoff of the prophet.

maximize
∑

i

ui(xi)

subject to
∑

i

xi ≤ k (τ)

xi ≥ 0, ∀i ∈ [n] (µi)

Define the Lagrangian for the above convex program as

L(x, τ, µ) = −
∑

i

ui(xi) + τ

(
∑

i

xi − k

)
−
∑

i

µixi.

By KKT stationarity condition, at the optimal assignment, it must be ∂
∂xi

L(q, τ, µ) = 0. On the

other hand, ∂
∂xi

L(q, τ, µ) = −F−1
i (1 − xi) + τ − µi. Assuming that xi > 0, by complementary

slackness µi = 0, which then implies that xi = 1 − Fi(τ), so xi = Pr[Vi > τ ]. Furthermore, it
is easy to show that the first constraint must be tight, which implies that

∑
iPr[Vi > τ ] = k.

Observe that the contribution of each Vi to the objective value of the convex program is exactly
E[Vi|Vi > τ ]Pr[Vi > τ ]. By using a γk-conservative magician we can ensure that each box is
opened with probability at least γk which implies the contribution of each Vi to the expected
payoff of the gambler is E[Vi|Vi > τ ]Pr[Vi > τ ]γk which proves that the expected payoff of the
gambler is at least γk fraction of optimal objective value of the convex program, which was itself
and upper bound on the expected payoff of the prophet.

5 Generic Multi Buyer Mechanisms

In this section, we present a formal description of the two generic multi buyer mechanisms outlined
toward the end of §3. Throughout the rest of this section we assume that for each buyer i ∈ [n]
we can compute a single buyer mechanism Mi and a corresponding concave benchmark Ri, which
together provide α-approximation of the optimal single buyer mechanism/optimal benchmark for
buyer i. We show that the resulting multi buyer mechanism will be γkα-approximation of the the
optimal multi buyer mechanism in M, where k = minj kj and γk is the optimal magician parameter
which is at least 1− 1√

k+3
(Definition 3) .

5.1 Pre-Rounding

This mechanism serves the buyers sequentially (arbitrary order); for each buyer i, it selects a
subset Si of available items and runs the single buyer mechanism Mi〈xi[Si]〉, where xi is an optimal
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assignment for the benchmark convex program (OPT ), and xi[Si] denotes the vector resulting from
xi by zeroing the entries corresponding to items not in Si. In particular, this mechanism sometimes
precludes some items from early buyers to make them available to late buyers. For each item, the
mechanism tries to minimize the probability of preclusion for each buyer by equalizing it for all
buyers. Note that, for any given pair of buyer and item, we only care about the probability of
preclusion in expectation, where the expectation is taken over the types of other buyers and the
random choices of the mechanism. The mechanism is explained in detail in Definition 5.

Definition 5 (γ-Pre-Rounding).

(I) Solve the convex program (OPT ) and let x be an optimal assignment.

(II) For each item j ∈ [m], create an instance of γ-conservative magician (Definition 2) with kj
wands (this will be referred to as the jth magician). We will use these magicians through the
rest of the mechanism. Note that γ is a parameter that is given.

(III) For each buyer i ∈ [n]:

(a) For each item j ∈ [m], write xij on a box and present it to the jth magician. Let Si be
the set of items where the corresponding magicians opened the box.

(b) Run Mi〈xi[Si]〉 on buyer i and use its outcome as the final outcome for buyer i.

(c) For each item j ∈ [m], if a unit of item j was allocated to buyer i in the previous step,
break the wand of the jth magician.

Note that since x is a feasible assignment for convex program (OPT ), it must satisfy
∑

i xij ≤ kj ,
so by setting γ ← γk and by Theorem 4 and Definition 3 we can argue that each Si includes each
item j with probability at least γk where γk is at least 1− 1√

k+3
.

In order for the above mechanism to retain at least a γ-fraction of the the expected objective
value of each Mi〈xi〉, further technical assumptions are needed in addition to γ ≤ γk. We show that
it is enough to assume each Ri has a budget-balanced and cross monotonic cost sharing scheme.

Definition 6 (Budget Balanced Cross Monotonic Cost Sharing Scheme). A function R : [0, 1]m →
R+ has a budget balanced cross monotonic cost sharing scheme iff there exists a cost share function
ξ : [m]× [0, 1]m → R+ with the following two properties:

(i) ξ must be budget balanced which means for all x ∈ [0, 1]m and S ⊆ [m],
∑

j∈S ξ(j, x[S]) =
R(x[S]).

(ii) ξ must be cross monotonic which means for all x ∈ [0, 1]m, j ∈ [m] and S, S′ ⊆ [m],
ξ(j, x[S]) ≥ ξ(j, x[S ∪ S′]).

Intuitively, a cost share function associates a fraction of the expected objective value returned
by the benchmark function R to each item; and ensures that the fraction associated with each
item does not decrease when other items are excluded. In particular, the above assumption holds
if R(x[S]) is a submodular function of S (e.g., for welfare maximization, assuming that buyers’
valuations are submodular12). Note that it is enough to show that such a cost sharing function
exists; however it is never used in the mechanism and its computation is not required.

12We conjecture that it holds in general for revenue maximization, when buyers’ valuations are submodular and M

is restricted to mechanisms which use buyer specific item pricing.
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Theorem 7 (γ-Pre-Rounding). Suppose for each buyer i, Mi is an α-approximate incentive com-
patible single buyer mechanism, and Ri is the corresponding concave benchmark. Also suppose Ri

has a budget balanced cross monotonic cost sharing scheme. Then, for any γ ∈ [0, γk], the γ-pre-
rounding mechanism (Definition 5) is dominant strategy incentive compatible (DSIC) mechanism
which is in M and is a γα-approximation of the optimal mechanism in M.

Proof. See §A.

Remark 1. The γ-pre-rounding mechanism assumes no control and no prior information about
the order in which buyers are visited. The order specified in the mechanism is arbitrary and could
be replaced by any other ordering which may be unknown in advance. In particular, this mechanism
can be adopted to online settings in which buyers are served in an unknown order.

Corollary 1. In any setting where Theorem 7 is applicable and when M includes all feasible BIC
mechanisms, the gap between the optimal DSIC mechanism and the optimal BIC mechanism is at
most 1/γk. This gap is at most 2 (for k = 1) and vanishes as k →∞. That is because Definition 5
is always DSIC, yet it approximates the optimal mechanism in M.

5.2 Post-Rounding

This mechanism runs Mi〈xi〉 simultaneously and independently for all buyers i to compute a tenta-
tive allocation/payment for each buyer; it then deallocates some of the items at random to ensure
that the supply constraints are met at every instance; it ensures that the probability of deallocation
perceived by each buyer (i.e., in expectation over the types of other buyers and random choices of
the mechanism) is equalized and therefore simultaneously minimized for all buyers. The payments
are also adjusted respectively. The mechanism is explained in detail in Definition 7.

Definition 7 (γ-Post-Rounding).

(I) Solve the convex program (OPT ) and let x denote an optimal assignment.

(II) Run Mi〈xi〉 simultaneously and independently for all buyers i ∈ [n], and let X ′
i ⊆ [m] and

P ′
i ∈ R+ denote respectively the allocation (subset of items) and payment computed by Mi〈xi〉

for buyer i.

(III) For each item j ∈ [m], create an instance of γ-conservative magician (Definition 2) with kj
wands (this will be referred to as the jth magician). We will use these magicians through the
rest of the mechanism. Note that γ is a parameter that is given.

(IV) For each buyer i ∈ [n]:

(a) For each item j ∈ [m], write x̂ij on a box and present it to the jth magician, where x̂ij
is the exact probability13 of Mi〈xi〉 allocating a unit of item j to buyer i; let Si be the
set of items where the corresponding magicians opened the box.

(b) Let Xi ← Si ∩ X ′
i and Pi ← γP ′

i . The final allocation and payment of buyer i is given
by Xi and Pi respectively.

(c) For each item j ∈ Xi, break the wand of the jth magician.

Note that
∑

i x̂ij ≤
∑

i xij ≤ kj ; so by setting γ ← γk and by Theorem 4 and Definition 3
we can argue that each Si includes each item j with probability at least γk where γk is at least
1− 1√

k+3
. Consequently, any item that is in X ′

i will also be in Xi with probability exactly γ.

13Note that xij is only an upper bound on the probability of allocation, so x̂ij ≤ xij
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In order for γ-post-rounding to retain at least a γ-fraction of the the expected objective value
of each Mi〈xi〉 and preserve incentive compatibility, further technical assumptions are needed in
addition to γ ≤ γk; next, we present a set of assumptions which is sufficient for this purpose14.

(A′1) The exact ex ante allocation rule for each Mi〈xi〉 (i.e., x̂) must be available (i.e., efficiently
computable). Note that x is only an upper bound on the ex ante allocation rule.

(A′2) The objective functions must be of the form Obji(ti,Xi,Pi) = Obji(ti,Xi, 0)+ ciPi in which
ci ∈ R+ is an arbitrary fixed constant. Also, each Obji(ti,Xi, 0) must have cost sharing
scheme in Xi which is cross monotonic and budget balanced.

(A′3) The resulting mechanism must be in M. In particular, that implies M may not be restricted
to any from of incentive compatibility stronger than Bayesian incentive compatibility (BIC),
because the γ-post-rounding is only BIC.

(A′4) The valuations of each buyer must be in the form of a weighted rank function of some
matroid.

Observe that A′2 obviously holds for revenue maximization (because Obji(ti,Xi,Pi) = Pi),
and also for welfare maximization with quasilinear utilities and submodular valuations (because
Obji(ti,Xi,Pi) = vi(ti,Xi) where vi(ti,Xi) is the valuation of buyer i for allocation Xi

15). Next,
we formally define A′4.

Definition 8 (Matroid Weighted Rank Valuation). A valuation function v : 2m → R+ is a matroid
weighted rank valuation iff there exists a matroidM = ([m],I), and a weight function w : [m]→ R+

such that v(S) is equal to the weight of a maximum weight independent subset of S, i.e,

v(S) = max
I∈I∩2S

∑

j∈I
w(j), ∀S ⊆ [m]

Matroid weighted rank valuations include additive valuations with demand constraints, unit
demand valuations, etc.

Theorem 8 (γ-Post-Rounding). Suppose for each buyer i, Mi is an α-approximate incentive com-
patible single buyer mechanism, and Ri is a corresponding concave benchmark. Also suppose the
assumptions A′1 through A′4 hold. Then, for any γ ∈ [0, γk], the γ-post-rounding mechanism
(Definition 7) is a Bayesian incentive compatible (BIC) mechanism which is in M and is a γα-
approximation of the optimal mechanism in M.

Proof. See §A.

6 Single Buyer Mechanisms

In this section, we present approximately optimal single buyer mechanisms for several common
settings. Each one of the single buyer mechanisms presented in this section satisfies the requirements
of one of the generic multi buyer mechanisms of §5, so they can be readily converted to a multi
buyer mechanisms. Except for §6.4, we restrict the space of mechanisms to item pricing mechanisms
with budget randomization as defined next.

14I.e., one might come up with other sets of assumptions that are also sufficient.
15Note that the payment terms cancel out because the utility of the seller is counted toward the social welfare of

the mechanism
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Definition 9 (Item Pricing with Budget Randomization (IPBR)). An item pricing mechanism is
a possibly randomized mechanism that offers a menu of prices to each buyer and allows each buyer
to choose their favorite bundle. The payment of a buyer is equal to the total price of the items in
her purchased bundle. Note that the prices offered to different buyers do not need to be identical and
buyers can be served sequentially. In the presence of budget constraints, a buyer is allowed to pay a
fraction of the price of an item and receive the item with a probability equal to the paid fraction16.
A mechanism is considered an item pricing mechanism if its outcome can be interpreted as such17.

Item pricing mechanisms are simple and practical as opposed to optimal BIC mechanisms
which often involve lotteries. Also budget randomization allows us to get around the hardness of
the knapsack problem faced by the budgeted buyers; in particular, assuming that budgets are large
compared to prices, budget randomization can be safely ignored since the optimal integral solution
of the knapsack problem approaches its optimal fractional solution.

Table 1 lists several settings for which we obtain a multi buyer mechanism with an improved
approximation factor compared to previous best known approximations. For each setting, we
present a single buyer mechanism that satisfies the requirements of one of the generic multi buyer
mechanisms of §5. The corresponding single buyer mechanisms are presented in detail throughout
the rest of this section. Note that the final approximation factor for each multi buyer mechanism
is equal to the approximation factor of the corresponding single buyer mechanism multiplied by γk;
recall that γk ≥ 1− 1√

k+3
which approaches 1 as k →∞.

Setting Approx Space of Mechanisms Ref

single item(multi unit), unit demand, budget
constraint, revenue maximization

γk item pricing with budget randomization §6.1

multi item(heterogenous), unit demand, prod-
uct distribution, revenue maximization

1
2
γk deterministic §6.2

multi item(heterogenous), additive valuations,
product distribution, budget constraint, rev-
enue maximization

(1− 1
e
)γk item pricing with budget randomization §6.3

multi item(heterogenous), additive valuations,
correlated distribution with polynomial num-
ber of types, budget constraint, matroid con-
strains, revenue or welfare maximization

γk randomized (BIC) §6.4

Table 1: Summary of mechanisms obtained using the framework of this paper.

For each single buyer mechanism presented in this paper, the single buyer benchmark function
R(x) is defined as the optimal value of some convex program of the following general form, in which
u is some concave function, gj(·) are some convex functions, and Y is some convex polytope (in the
rest of this section we only consider a single buyer, so we will omit the subscript i).

maximize u(y) (OPT 1)

subject to gj(y) ≤ xj , ∀j ∈ [m]

y ∈ Y

16A utility maximizing buyer, with submodular valuations and budget constraint, always pays the full price for
any item she purchases, except potentially for the last item purchased, for which she must have run out of budget.

17I.e., an item pricing mechanism may collect all the reports and compute the final outcome along with buyer
specific prices, such that the outcome of each buyer would be the same as if each buyer purchased their favorite
bundle according to her observed prices, and the prices observed by each buyer should be independent of her report.
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Lemma 1. R(x) is concave, i.e., the optimal value of a convex program of the form (OPT 1) is
always concave in x.

Proof. See section A.

Note that we can substitute each Ri(·) in the multi buyer benchmark convex program (OPT )
with the corresponding single buyer benchmark convex program to obtain a combined convex
program which can be solved efficiently. If each Ri is captured by a linear program, the combined
multi buyer program will also be a linear program.

6.1 Single Item, Unit Demand, Budget Constraint

In this section, we consider a unit-demand buyer with a publicly known budget B and one type of
item (i.e., m = 1). The only private information of the buyer is her valuation for the item, which
is drawn from a publicly known distribution with CDF F (·). To avoid complicating the proofs, we
assume that F (·) is continuous and strictly increasing in its domain18. We present a single buyer
mechanism which is optimal among item pricing mechanisms with budget randomization (IPBR).
We start by defining the modified CDF function FB(·) as follows.

FB(v) =

{
F (v) v ≤ B

1− (1− F (v))Bv v ≥ B
(FB)

Intuitively, 1 − FB(p) is the probability of allocating the item to the buyer if we offer the
item at price p. Note that the buyer only buys if her valuation is more than p which happens with
probability 1−F (p) ; if p > B, she will pay her whole budget and only get the item with probability
B
p , otherwise she pays the full price and receives the item with probability 1. Observe that if we

want to allocate the item with probability x we can offer a price of FB(−1)
(1 − x) which yields a

revenue of xFB(−1)
(1 − x) in expectation. Define R(x) = xFB(−1)

(1 − x) and let R̂(x) denote its
concave closure (i.e., the smallest concave function that is an upper bound on R(x) for every x).
We will address the problem of efficiently computing R̂(x) later in Lemma 2. Next, we show that
the optimal value of the following convex program is equal to the expected revenue of the optimal
single buyer IPBR mechanism subject to x; therefore we will define the single buyer benchmark
function R(x) to be equal to the optimal value of this program as a function of x.

maximize R̂(x) (Revsingle)

subject to x ≤ x

x ≥ 0

Theorem 9. The revenue of the optimal single buyer IPBR mechanism, subject to an upper bound
of x on the ex ante allocation rule, is equal to the optimal value of the convex program (Revsingle).

Furthermore, assuming that x∗ is the optimal assignment for the convex program, if R̂(x∗) = R(x∗),

then the optimal mechanism uses a single price p = FB(−1)
(1−x∗) otherwise, it randomized between

two prices p−, p+ with probabilities θ and 1− θ for some θ ∈ [0, 1] and p−, p+.

Proof. First, we prove that the expected revenue of the optimal single buyer IPBR mechanism,
subject to x, is upper bounded by R̂(x∗). We then construct a price distribution that obtains

18The proofs can be modified to work without this assumption.
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this revenue. Note that any single buyer IPBR mechanism can be specified as a distribution over
prices. Let P be the optimal price distribution. So the optimal revenue is Ep∼P [p(1 − FB(p))].
Note that every price p corresponds to an allocation probability x = 1−FB(p). So any probability
distribution over p can be specified as a probability distribution over x. LetQ denote the probability
distribution over x that corresponds to price distribution P, so we can write

optimal revenue = Ex∼Q
[
xFB(−1)

(1− x)
]
= Ex∼Q [R(x)]

≤ Ex∼Q
[
R̂(x)

]
≤ R̂(Ex∼Q [x]) By Jensen’s inequality

which means the optimal revenue is upper bounded by the value of the convex program for x =
Ex∼Q[x]

19; so the optimal revenue is upper bounded by the optimal value of the convex program.
That completes the first part of the proof.

Next, we construct an optimal price distribution. If R̂(x∗) = R(x∗), the optimal price dis-

tribution is just a single price p = FB(−1)
(1 − x∗); otherwise, by definition of concave clo-

sure, there are two points x− and x+ and θ ∈ [0, 1] such that x∗ = θx− + (1 − θ)x+ and
R̂(x∗) = θR(x−) + (1 − θ)R(x+). In the latter case, the optimal price distribution offers price

p− = FB(−1)
(1 − x−) with probability θ and offers price p+ = FB(−1)

(1 − x+) with probability
1− θ.

Formally, an optimal single buyer IPBR mechanism can be constructed as follows.

Definition 10 (Mechanism).

• Define the single buyer benchmark R(x) to be the optimal value of the convex program (Revsingle)
as a function of x.

• Given x, solve (Revsingle) and let x be an optimal assignment.

• If R̂(x) = R(x), offer the single price p = FB(−1)
(1 − x), otherwise randomize between two

prices p− and p+ as explained in the proof of Theorem 9.

Theorem 10. The mechanism of Definition 10 is the optimal revenue maximizing single buyer
IPBR mechanism. Furthermore, this mechanism satisfies the requirements of γ-pre-rounding.

Proof. The proof of the optimality follows from Theorem 9. Furthermore, the benchmark function,
R(x), is concave (this follows from Lemma 1) and it has a trivial budget balanced cost sharing
scheme (because there is only one item), therefore it meets the requirements of γ-pre-rounding.

Next, we address the problem of efficiently computing R̂(·).

Lemma 2. A (1+ ǫ)-approximation of R̂(·), which we denote by R̂1+ǫ(·), can be constructed using
a piece-wise linear function with ℓ = logL

log(1+ǫ) pieces and in time O(ℓ log ℓ) in which L is the ratio of
the maximum valuation to minimum non-zero valuation. Note that we need at least log2 L bits just
to represent such valuations so this construction is polynomial in the input size for any constant ǫ.

Proof. WLOG, assume that all possible non-zero valuations of the buyer are in the range of [1, L].
Let ℓ = ⌊ logL

log(1+ǫ)⌋. For r = 0 · · · ℓ, consider the prices pr = (1+ǫ)ℓ−r and compute the corresponding

xr = 1− FB(pr). Construct R̂1+ǫ(·) by constructing the convex hall of the points:

19Note that Ex∼Q[x] is exactly the probability of allocating the item by the price distribution P , so it must be no
more than x
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(0, 0), (x1, p1x1), (x2, p2x2), . . . , (xℓ, pℓxℓ), (1, 0). This can be done in time O(ℓ log ℓ). Note that

FB(−1)
(1 − x) is a decreasing function of x so at every x ∈ [xr, xr+1], the corresponding price is

FB(−1)
(x) ∈ [pr+1, pr] but pr = (1 + ǫ)pr+1 therefore at every x, R1+ǫ(x) ≤ R̂(x) ≤ (1 + ǫ)R1+ǫ(x)

which completes the proof.

Remark 2. In order to use R1+ǫ(·) in the single buyer mechanism of Definition 10, we need to
substitute (1+ ǫ)R̂1+ǫ(·) in the objective function of the convex program (Revsingle) instead of R̂(·)
for computing the benchmark. Furthermore, the mechanism will be a (1 − ǫ)-approximation of the
optimal single buyer IPBR mechanism. Also notice that finding p− and p+ from R1+ǫ(·) is trivial.

6.2 Multi Item (Independent), Unit Demand

In this section, we consider a unit demand buyer with private independent valuations for m items.
We assume that for each item j, the buyer’s valuation is distributed independently according to a
publicly known distribution with CDF Fj(·). We present a single buyer mechanism which is a 1

2 -
approximation of the optimal deterministic revenue maximizing mechanism. To avoid complicating
the proofs, we assume that each Fj(·) is continuous and strictly increasing in its domain. Further-
more, we require the distributions to be regular. This mechanism can be used with γ-pre-rounding
(Definition 5) to yield a 1

2γk-approximate sequential posted pricing multi buyer mechanism. The
previous best approximation mechanism for this setting was a 1

6.75 -approximate sequential posted
pricing mechanism by Chawla et al. (2010)20.

We start by defining Rj(x) = xF−1
j (1 − x) for each item j. Because Fj(·) is corresponds to a

regular distribution, Rj(·) is concave as shown in the following lemma.

Lemma 3. If F (·) is the CDF of a regular distribution, the function R(x) = xF−1(1 − x) is
concave.

Proof. It is enough to show that ∂
∂xR(x) is non-increasing in x. Observe that ∂

∂xR(x) = F−1(1 −
x)− x

f(F−1(1−x)) in which f(·) is the derivative of F (·). By substituting x = 1− F (p), it is enough

to show that the resulting function is non-decreasing in p because x is itself non-increasing in p.
However, by this substitution we get ∂

∂xR(x) = p− 1−F (p)
f(p) which is non-decreasing in p by definition

of regularity.

Note that any deterministic mechanism for a unit demand buyer can be interpreted as item
pricing. Consequently, Rj(xj) is the maximum revenue that such a mechanism can obtain if item j
is allocated with probability xj . Next, we show that the following convex program gives an upper
bound the on the expected optimal revenue.

maximize
∑

j

Rj(xj) (Revunit)

subject to xj ≤ xj, ∀j ∈ [m] (λj)∑

j

xj ≤ 1 (τ)

xj ≥ 0, ∀j ∈ [m] (µj)

20Note that the mechanism of Chawla et al. (2010) does not work for non-regular distributions despite the authors’
claim.
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Theorem 11. The revenue of the optimal deterministic single buyer mechanism, subject to an
upper bound of x on the ex ante allocation rule, is no more than the optimal value of the convex
program (Revunit).

Proof. Let x∗ be the ex ante allocation rule of the optimal single buyer deterministic mechanism.
So the expected revenue obtained from each item j is upper bounded by Rj(x

∗
j) (proof of this claim

is essentially the same as the proof of Theorem 9). Consequently, the expected optimal revenue
cannot be more that

∑
j Rj(x

∗
j ). Furthermore, the optimal mechanism never allocates more than

one item, so
∑

j x
∗
j ≤ 1, and also x∗j ≤ xj; therefore x

∗ is a feasible solution for the convex program;
so the expected optimal revenue is upper bounded by the optimal value of the convex program.

Next, we present the single buyer mechanism.

Definition 11 (Mechanism).

• Define the benchmark R(x) to be the optimal value of (Revunit) as a function of x.

• Given x, solve (Revunit) and let x denote an optimal assignment.

• For each item j, assign the price pj = F−1
j (1 − xj). WLOG, assume that items are indexed

in non-decreasing order of prices, i.e., p1 ≤ . . . ≤ pm.

• For each item j, define rj = max(xjpj + (1 − xj)rj+1, rj+1) and let rm+1 = 0. Let S∗ be the
subset of items defined as S∗ = {j|pj ≥ rj+1}.

• Only offer the items in S∗ at prices computed in the previous step (i.e., set the price of other
items to infinity).

Theorem 12. The mechanism of Definition 11 obtains at least 1
2 of the revenue of the optimal

deterministic single buyer mechanism in expectation. Furthermore, it satisfies the requirements of
γ-pre-rounding.

Proof. First, we show that this mechanism obtains in expectation at least 1
2 of its benchmark R(x),

which by Theorem 11 is an upper bound on the optimal revenue. Observe that R(x) =
∑

j xjpj
where xj is exactly the probability that the valuation of the buyer for item j is at least pj . Now
consider an “adversary replica” who has the exact same valuations as the original buyer, but always
buys the item that has the lowest price among all the items priced below her valuation. For any
assignment of prices, the revenue obtained from the adversary replica is a lower bound on the
revenue obtained from the original buyer. So it is enough to show that the mechanism obtains a
revenue of at least 1

2

∑
j xjpj from the adversary replica. Observe that rj is exactly the expected

revenue obtained from the adversary replica when offered the items in S∗∩{j, . . . ,m}. In particular,
item j is included in S∗ if pj ≥ Rj+1, which implies that the revenue obtained from the purchase of
item j, conditioned on purchase, is more than the lower bound on the expected revenue obtained
from items {j, . . . ,m}. Finally, observe that the expected revenue obtained from the adversary
replica is exactly r1. By Lemma 4 we can conclude that r1 ≥ 1

2

∑
j xjpj which completes the proof

of the first claim.
Next, we show that this mechanism satisfies the requirements of γ-pre-rounding. Observe that

by Lemma 1, the optimal value of (Revunit) is a concave function of x; so R(x) is concave. It only
remains to show that R(·) has a budget balanced cross monotonic cost sharing scheme. Let xj(x)
denote the optimal assignment of variable xj, in the convex program (Revunit), as a function of x.
Define the cost share function

ξ(j, x) = Rj(xj(x)).
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We shall show that ξ is budget balanced and cross monotonic (see Definition 6).

• Budget balance. We shall show that for any x ∈ [0, 1]m and any S ⊆ [m], R(x[S]) =∑
j∈S ξ(j, x[S]). Note that R(x[S]) =

∑
j Rj(xj(x[S])) =

∑
j∈S ξ(j, xj(x[S])) which proved

that ξ is budget balanced. Note that Rj(xj(x[S])) = 0, for any j 6∈ S, because xj(x[S]) is
forced to be 0.

• Cross monotonicity. We shall show that ξ(j, x[S]) ≥ ξ(j, x[S ∪ S′]), for any x ∈ [0, 1]m and
any S, S′ ⊆ [m]. Let the Lagrangian of (Revunit) be defined as follows.

L(x, λ, τ, µ) = −
∑

j

Rj(xj) +
∑

j

λj (xj − xj) + τ (
∑

j

xj − 1)−
∑

j

µjxj

The high level idea of the proof is as follows. We show that there is more pressure on the
constraint associated with τ when the set of available items is S ∪ S′ instead of S (i.e., τ is
larger for S ∪S′); we then show that the optimal xj can be determined from τ ; in particular,
we show that, as the optimal τ increases, the optimal xj decreases, and consequently ξ(j, x)
(which is equal to Rj(xj)) decreases as well, which proves ξ is cross monotonic. Next we
present the proof in detail.

By KKT stationarity conditions, at the optimal assignment the following holds.

∂

∂xj
L(x, λ, τ, µ) = − ∂

∂xj
Rj(xj) + λj + τ − µj = 0

First we show that the optimal xj, and consequently ξ(j, x), can be determined from the
optimal τ ; and they are both non-increasing in τ . Observe that (a) all dual variables must
be non-negative, (b) by complementary slackness λj may be non-zero only if xj = xj , and
(c) complementary slackness implies that µj may be non-zero only if xj = 0; therefore, if
the optimal τ is given, the optimal assignment for xj is uniquely21 determined by the above
equation and the aforementioned complementarity slackness conditions. Let xj(τ) denote the
optimal assignment of xj as a function of τ . Due to the concavity of Rj(·), and the above
KKT condition, we can argue that xj(τ) is non-increasing in τ , which also implies that ξ(j, x)
is non-increasing in τ .

Next, we prove by contradiction that ξ is cross monotonic. Let τ(x) denote the optimal
assignment of τ as a function of x. By contradiction, suppose ξ is not cross monotonic, i.e.
ξ(j∗, x[S ∪ S′]) > ξ(j∗, x[S]) for some item j∗; therefore τ(x[S]) > τ(x[S ∪ S′]) ≥ 0. Since
τ(x[S]) > 0, the inequality associated with τ must be tight (by complementary slackness),
so
∑

j xj(τ(x[S])) = 1. On the other hand, for all j, xj(τ(x[S ∪ S′])) ≥ xj(τ(x[S])), with
the inequality being strict for j = j∗, which means

∑
j xj(τ(x[S ∪ S′])) > 1, which is a

contradiction.

Lemma 4. Let p1, . . . , pm and x1, . . . , xm be two sequences of non-negative real numbers and sup-
pose

∑
j xj ≤ 1. For each j ∈ [m], define rj = max(xjpj + (1 − xj)rj+1, rj+1) and let rm+1 = 0.

Then r1 ≥ 1
2

∑
j xjpj.

Proof. See section A.

21To avoid complicating the proof, we assume that the functions Rj(·) are strictly concave, however this assumption
is not necessary.
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6.3 Multi Item (Independent), Additive, Budget Constraint

In this section, we consider a buyer with publicly known budget B who has private independent
and additive valuations for m items (i.e., her valuation for a bundle of items is the sum of her
valuations for individual items in the bundle). We assume the buyer’s valuation for each item j
is distributed independently according to a publicly known distribution with CDF Fj(·). To avoid
complicating the proofs, we assume that each Fj(·) is continuous and strictly increasing in its
domain22. We present a single buyer mechanism which is a (1 − 1

e )-approximation of the optimal
revenue maximizing item pricing mechanism with budget randomization (IPBR). This mechanism
can be used with γ-pre-rounding (Definition 5) to yield a (1− 1

e )γk-approximate sequential posted
pricing multi buyer mechanism. The previous best approximation mechanism for this setting was
an O(1)-approximate23 sequential posted pricing mechanism by Bhattacharya et al. (2010). We
should note that the mechanism in Bhattacharya et al. (2010) is more general as it allows the
buyers to have demand constraints as well, and it does not allow for budget randomization.

As in §6.1, we start by defining the modified CDF function FB
j (·) for each item j as follows.

FB
j (v) =

{
Fj(v) v ≤ B

1− (1− Fj(v))
B
v v ≥ B

(FB
j )

Furthermore, for each item j, let Rj(x) = xFB
j

−1
(1 − x) and let R̂j(·) be its concave closure

as define in §6.1. Also, for each j, define Rj(xj) to be the optimal value of the following convex
program as a function of xj .

maximize Rj(xj) (Revadd)

subject to xj ≤ xj

xj ≥ 0

The next theorem provides an upper bound on the revenue of the optimal single buyer IPBR
mechanism.

Theorem 13. The revenue of the optimal single buyer item pricing mechanism with budget ran-
domization (IPBR), subject to an upper bound of x on the ex ante allocation rule, is no more than
min(

∑
j Rj(xj), B), .

Proof. For any j, if we were only to sell the item j, by Theorem 9, the maximum revenue we could
obtain using an IPBR mechanism would be no more than Rj(xj). Observe that if we compute
the optimal price distribution for each item separately, we might only get less revenue because the
budget is shared among all items and the buyer might not be able to buy some of the items that she
would otherwise buy if there were no other items. That means the actually probability of allocating
each item j could be less than the optimal assignment of xj for the convex program (Revadd); so the
optimal joint price distribution might sell at lower prices; but the extra revenue may only come from
lower types which were originally excluded by the optimal single item mechanism. Consequently,
the overall revenue from each item j cannot be more than Rj(xj). Finally, observe that the expected
revenue of the mechanism cannot be more that B, so it can be no more than min(

∑
j Rj(xj), B).

22The proofs can be modified to work without this assumption.
23 1

96
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Next, we present (1− 1
e )-approximate revenue maximizing single buyer IPBR mechanism.

Definition 12 (Mechanism).

• Define the benchmark R(x) = min(
∑

j Rj(xj), B).

• Given x, solve the convex program of (Revadd) for each item j, and let xj denote an optimal
assignment.

• For each item j, if R̂j(xj) = Rj(xj), offer the single price pj = FB
j

(−1)
(1 − xj), otherwise

randomize between two prices p−j and p+j with probabilities θj and 1 − θj , as explained in
Theorem 9. Note that the randomization must be done for each item independently.

Theorem 14. The mechanism of Definition 12 obtains at least 1− 1
e of the revenue of the optimal

single buyer IPBR mechanism. Furthermore, this mechanism satisfies the requirements of γ-pre-
rounding.

Proof. First, we show that the mechanism obtains at least 1− 1
e of its benchmark R(x), which by

Theorem 13 is an upper bound on the optimal revenue. Consider an imaginary replica of the buyer
who has exactly the same valuations as the original buyer, but has a separate budget B for each
item. We call this imaginary buyer the “super replica”. Furthermore, suppose that any payment
received from the super replica beyond B is lost (i.e., if the super replica pays Z , the mechanism
receives only min(Z , B)). Observe that for any assignment of prices, the payment received from
the original buyer and the payment received from the super replica are exactly the same because
if the original buyer has’t hit his budget limit then both the original buyer and the super replica
will buy the same items and pay the exact same amount. Otherwise, if the original buyer hits his
budget limit, the mechanism receives exactly B from both the original buyer and the super replica;
therefore we only need to show that the revenue obtained by the mechanism from the super replica
is at least (1− 1

e )R(x). Observe that from the view point of the super replica there is no connection
between different items, so he makes a decision for each item independently. Let Zj be the random
variable corresponding to the amount paid by the super replica for item j. By Theorem 9, we know
that E[Zj ] = Rj(xj) and the total revenue received by the mechanism is Z = min(

∑
j Zj , B). Notice

that Z1, . . . ,Zm are independent random variables in the range of [0, B]. By applying Lemma 5,
we can argue that E[min(

∑
j Zj, B)] ≥ (1 − 1

e )min(
∑

j E[Zj], B) = (1 − 1
e )R(x) which proves our

claim.
Next, we show that the mechanism satisfies the requirements of γ-pre-rounding. Observe that

all Rj(·) are concave, and so is R(x). Furthermore, R(x[S]) = min(
∑

j∈S Rj(xj), B) is submodular
in S for any S ⊆ [m], and therefore it has a cross monotonic budget balanced cost share scheme
(see Definition 6), which completes the proof.

Lemma 5. Let B be an arbitrary positive number and let Z1, . . . ,Zm be independent random vari-
ables such that Zj ∈ [0, B], for all j. Then the following inequality holds.

E


min(

∑

j

Zj, B)


 ≥ (1− 1

e(
∑

j E[Zj ])/B
)B ≥ (1− 1

e
)min(

∑

j

E [Zj ] , B)

Proof. See section A.
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6.4 Multi Item (Correlated), Additive, Budget and Matroid Constraints

In this section, we consider a buyer with publicly known budget B who has private correlated
additive valuations for m items; furthermore, a bundle of items can be allocated to the buyer only
if it is an independent set of a matroid M = ([m],I), where M is publicly known; equivalently,
instead of treatingM as a constraint on the allocation, we may assume that the buyer has matroid
valuations, as defined in Definition 8. We assume that the buyer has a discrete type space T . Let
vt ∈ Rm

+ denote the buyer’s valuation vector corresponding to type t ∈ T , and let f(t) denote its
probability. We assume that f(·) is represented explicitly as a part of the input, i.e., by enumerating
all types along with their respective probabilities. The only private information of the buyer is
her type. We present an optimal single buyer randomized mechanism. This mechanism can be
used with γ-post-rounding (Definition 7) to yield a γk-approximate multi buyer BIC mechanism.
Recall that γk is at least 1

2 , and approaches 1 as k → ∞, which means the resulting multi buyer
mechanism approaches the optimal multi buyer mechanism as k → ∞. Prior to the preliminary
version of this paper, the best approximation for this setting was a 1

4 -approximate BIC mechanism
by Bhattacharya et al. (2010)24. At the time of writing the current version, Henzinger and Vidali
(2011) has also presented a 1

2 -approximate BIC mechanism for the same setting. Note that all
of the aforementioned mechanisms (including the current paper) have running times polynomial
only in |T |, which means their running time may not be polynomial in the input size if |T | is of
exponential size and f(·) has a compact representation.

Consider the following linear program in which xt ∈ [0, 1]m represents the marginal allocation
probabilities for type t ∈ T , and pt represents the corresponding payment. Also let rM : 2m →
{0, . . . ,m} denote the rank function of M. The optimal value of this LP is obviously an upper
bound on the optimal revenue.

maximize
∑

t∈T
f(t)pt (Revcorr)

subject to
∑

t∈T
f(t)xtj ≤ xj, ∀j ∈ [m]

∑

j∈S
xtj ≤ rM(S), ∀t ∈ T,∀S ⊆ [m]

vt · xt − pt ≥ vt · xt′ − pt′ , ∀t, t′ ∈ T

xt ∈ [0, 1]m, ∀t ∈ T

pt ∈ [0, B] , ∀t ∈ T

Even though the above LP has exponentially many constraints, it can be solved in polynomial
time using the ellipsoid method25. Next, we present a mechanism whose expected revenue is equal

24The mechanism in Bhattacharya et al. (2010) considers demand constraint, which is a special case of matroid
constraints.

25See Schrijver (2003) for optimization over matroid polytope.
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to the optimal value of the above LP, which also implies that it is optimal.

Definition 13 (Mechanism).

• Define the optimal benchmark R(x) to be the optimal value of (Revcorr) as a function of x.

• Given x, solve the LP of (Revcorr) and let x an p be an optimal assignment.

• Let t be the buyer’s reported type. Allocate a random subset X ⊆ [m] of items such that X is
an independent set of M and each item j ∈ [m] is included in X with a marginal probability
of exactly xtj . This can be archived by rounding xt to a vertex of the matroid polytope using
dependent randomized rounding (see Chekuri et al. (2010) and the references therein). Also
charge a payment of pt.

Theorem 15. The mechanism of Definition 13 is an optimal truthful in expectation revenue max-
imizing single buyer mechanism, subject to an upper bound of x on the ex ante allocation rule.
Furthermore, it satisfies all the requirements of the γ-post-rounding.

Proof. The proof of truthfulness and optimality trivially follows from the linear program of (Revcorr).
So, we only focus on proving that this mechanism satisfies the requirements of Theorem 8. First,
observe that the benchmark function, R(x), is concave (this follows from Lemma 1). Second, ob-
serve that the matroid constrains can be interpreted as matroid valuations for the buyer. Third,
notice that the exact ex ante allocation rule can be readily computed from the LP solution, i.e.,
x̂j =

∑
t f(t)xtj is the exact probability of allocating item j. Therefore, the mechanism satisfies

the requirements of γ-post-rounding.

Remark 3. Observe that by replacing the objective function of (Revcorr) with
∑

t∈T f(t)vt ·xt, we
get a truthful in expectation welfare maximizing single buyer mechanism, which can also be used with
γ-post-rounding to obtain a γk-approximate welfare maximizing BIC multiple buyer mechanism.

7 Analysis of γ-Conservative Magician

In this section, we present the proof of Theorem 4. We prove the theorem in two parts. In the first
part, we show that the thresholds computed by the γ-conservative magician indeed guarantee that
each box is opened with an ex-ante probability at least γ, assuming that there is enough wand. In
the second part, we show that, for any γ ≤ 1 − 1√

k+3
, the thresholds θi are no more than k − 1

for all i, which implies that the magician never requires more than k wands. It can be shown

that a non-adaptive strategy cannot guarantee a probability of more than 1−O(
√
lnk√
k
) for opening

each box. Furthermore, in Theorem 5, we show that no algorithm can guarantee a probability of
1− 1√

2πk
+ ǫ or better for opening each box, for any ǫ ≥ 0, which implies that 1− 1√

k+3
is not far

from optimal. Below, we repeat the dynamic program for computing sℓi , θi and FWi
(·).

sℓi = Pr [Si = 1|Wi = ℓ] =





1 ℓ < θi

(γ − FWi
(θi − 1))/(FWi

(θi)− FWi
(θi − 1)) ℓ = θi

0 ℓ > θi

(s)

θi = min{ℓ|FWi
(ℓ) ≥ γ} (θ)

FWi+1
(ℓ) =





sℓixiFWi
(ℓ− 1) + (1− sℓixi)FWi

(ℓ) i ≥ 1, ℓ ≥ 0

1 i = 0, ℓ ≥ 0

0 otherwise.

(FW )
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Part 1. We show that, assuming there is enough number of wands, the thresholds computed by
the dynamic program guarantee that each box is opened with an ex ante probability of at least γ.

(a) First we prove that Pr[Wi ≤ ℓ] ≥ FWi
(ℓ) by induction on i. The base case is trivial. Suppose

the inequality holds for i ≥ 1, we prove it for i+ 1 as follows.

Pr [Wi+1 ≤ ℓ] ≥ Pr [Wi ≤ ℓ− 1] +Pr [Wi = ℓ] (1− sℓixi)

= Pr [Wi ≤ ℓ− 1] sℓixi +Pr [Wi ≤ ℓ] (1− sℓixi)

≥ FWi
(ℓ− 1)sℓixi + FWi

(ℓ)(1 − sℓixi) by induction hypothesis

= FWi+1
(ℓ) by (FW )

(1.a)

Observe that all of the above inequalities are met with equality if every xi is the exact proba-
bility of breaking wand for the corresponding box instead of just an upper bound.

(b) Next, we show that each box is opened with probability at least γ. We shall show that Pr[Si =
1] ≥ γ.

Pr [Si = 1] =
∑

ℓ

Pr [Si = 1|Wi = ℓ]Pr [Wi = ℓ]

=

θi∑

ℓ=0

sℓi Pr [Wi = ℓ]

= Pr [Wi < θi] + sθii Pr [Wi = θi] because sℓi = 1 for ℓ < θi

= (1− sθii )Pr [Wi < θi] + sθii Pr [Wi ≤ θi]

≥ (1− sθii )FWi
(θi − 1) + sθii FWi

(θi) by (1.a)

= FWi
(θi − 1) + sθii (FWi

(θi)− FWi
(θi − 1))

= γ by substituting sθii from (s)

Observe that all of the above inequalities are met with equality if each xi is the exact probability
of breaking a wand for the corresponding box instead of being just an upper bound.

Part 2. We show that when γ ≤ 1− 1√
k+3

, the γ-conservative magician never requires more than

k wands, i.e., we show that θi ≤ k−1, for all i. First, we present an interpretation of the magician’s
dynamic program as a stochastic process on an infinite tape with one unit of infinitely divisible
sand.

Definition 14 (Sand Displacement Process). Consider one unit of infinitely divisible sand which
is initially at position 0 on an infinite tape; positions on the tape are labeled from left to right. The
sand is gradually moved to the right and distributed over the tape in n rounds. Let FWi

(ℓ) denote
the total amount of sand in positions {0, . . . , ℓ} at the beginning of round i ∈ [n]. At each round i
the following happens.

(I) The leftmost γ-fraction of the sand is selected by identifying the smallest threshold θi such
that FWi

(θi) ≥ γ and then selecting all the sand in positions {0, . . . , θi − 1} and selecting a
fraction of the sand at position θi itself such that the total amount of selected is equal to γ.
Formally, if Gi(ℓ) denotes the total amount of sand selected from {0, . . . , ℓ}, the selection of
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sand is such that Gi(ℓ) = min(FWi
(ℓ), γ), for every ℓ. In particular, this implies that only a

fraction of the sand at position θi itself might be selected, however all the sand to the left of
position θi is selected.

(II) The selected sand is moved one position to the right as follows. Simultaneously, for all
ℓ ∈ {0, . . . , θi}, an xi fraction of the sand selected from position ℓ is moved to position ℓ+1.
For every ℓ, the total amount of sand in positions {0, . . . , ℓ} at the end of round i is given
by the following equation.

FWi+1
(ℓ) = FWi

(ℓ)− xiGi(ℓ) + xiGi(ℓ− 1) (Feq)

It is easy to see that θi and FWi
(ℓ) resulting from the above process are exactly the same as

those computed by the γ-conservative magician.
Consider a conceptual barrier which is at position θi+1 at the beginning of round i and is moved

to position θi+1 + 1 for the next round, for each i ∈ [n]. It is easy to verify (i.e., by induction)
that the sand never crosses to the right side of the barrier (i.e., FWi+1

(θi + 1) = 1). The following
theorem implies that the sand remains concentrated near the barrier throughout the process.

Theorem 16 (Sand). Throughout the sand displacement process (Definition 14), at the beginning
of each round i ∈ [n], the following inequality holds.

FWi
(ℓ) < γFWi

(ℓ+ 1) ∀i ∈ [n] ,∀ℓ ∈ [θi] (Fineq)

Furthermore, the average distance of the sand from the barrier, denoted by di, is upper bounded by
the following inequalities.

di ≤
1− γθi+1

1− γ
<

1

1− γ
∀i ∈ [n] (d)

The first inequality is strict except for i = 1.

Proof. We start by proving inequality (Fineq), by induction on i. The base case of i = 1 is trivial
because all the sand is at position 0 and θ1 = 0. Suppose the inequality holds at the beginning
of round i and for all ℓ ∈ [θi], we show that it holds at the beginning of round i + 1 and for all
ℓ ∈ [θi+1]. Consider any ℓ ∈ [θi+1]. Note that θi ≤ θi+1 ≤ θi + 1, so there are two possible cases:

• Case 1. If ℓ ∈ [θi], then

FWi+1
(ℓ− 1) = FWi

(ℓ− 1)− xiGi(ℓ− 1) + xiGi(ℓ− 2) by (Feq).

= (1− xi)FWi
(ℓ− 1) + xiFWi

(ℓ− 2) by Gi(ℓ
′) = FWi

(ℓ′), for ℓ′<θi.

< (1− xi)γFWi
(ℓ) + xiγFWi

(ℓ− 1) by induction hypothesis.

= γ
(
FWi

(ℓ)− xiFWi
(ℓ) + xiGi(ℓ− 1)

)
by Gi(ℓ

′) = FWi
(ℓ′), for ℓ′<θi.

≤ γ
(
FWi

(ℓ)− xiGi(ℓ) + xiGi(ℓ− 1)
)

by Gi(ℓ
′) ≤ FWi

(ℓ′), for all ℓ′.

= γFWi+1
(ℓ) by (Feq).

• Case 2. If ℓ = θi+1 = θi + 1, then by definition of θi+1, it must be FWi+1
(θi+1 − 1) < γ.

Furthermore, at the end of round i, all the sand must be in the range {0, . . . , θi + 1}, so
FWi+1

(θi+1) = FWi+1
(θi + 1) = 1. Consequently, we can conclude that FWi+1

(θi+1 − 1) ≤
γFWi+1

(θi+1) which proves the claim.

26



Next, we prove that the average distance of the sand from the barrier, di, is no more than
1−γθi+1

1−γ at the beginning of round i.

di =

θi∑

ℓ=0

FWi
(ℓ) sand at position ℓ is counted exactly θi − ℓ+ 1 times

≤
θi∑

ℓ=0

γθi−ℓFWi
(θi) by (Feq)

≤
θi∑

ℓ=0

γθi−ℓ because FWi
(θi) ≤ 1

=
1− γθi+1

1− γ

Note that the second inequality is strict unless θi = 0; furthermore conditioned on θi = 0, the third
inequality is strict except for round i = 1; therefore, the upper-bound is strict except for the first
round.

Theorem 17 (Barrier). Consider the process of Definition 14. If γ ≤ 1 − 1√
k+3

and
∑n

i=1 xi ≤ k

for some k ∈ N0, then the barrier never gets past position k, i.e., θi ≤ k − 1 for all i ∈ [n].

Proof. We shall show that the barrier never gets past position k throughout the process, which
proves the theorem (recall that the barrier is defined to be at position θi + 1). Let d′i denote
the average distance of the sand from the origin, and let di denote the average distance of the
sand from the barrier, at the beginning of round i. Observe that d′i + di = θi + 1; furthermore,
d′i = d′i−1 + γxi−1 = γ

∑i−1
r=1 xr, i.e., the average distance of the sand from the origin is increased

exactly by γxi−1 during round i − 1 (because the amount of selected sand is exactly γ and xi−1

fraction of the selected sand is moved one position to the right). By applying Theorem 16, we get
the following inequality.

θi + 1 = d′i + di < γ

i−1∑

r=1

xr +
1− γθi+1

1− γ
≤ γk +

1− γθi+1

1− γ

In order to show that the barrier never gets past position k, it is enough to show that the above
inequality cannot hold for θi ≥ k; in fact it is just enough to show that it cannot hold for θi = k 26;
alternatively, it is enough to show that the complement of the above inequality holds for θi = k.

k + 1 ≥ γk +
1− γk+1

1− γ
(Γ)

Consider the the stronger inequality k + 1 ≥ γk + 1
1−γ which is quadratic in γ and yields a

bound of γ ≤ 1− 1

1/2+
√

k+1/4
; this bound is in fact imposes a looser constraint than γ ≤ 1− 1√

k+3

when k ≥ 7. Furthermore it can be verified (by direct calculation) that inequality (Γ) holds, for
k < 7 and γ ≤ 1− 1√

k+3
. That completes the proof.

Theorem 17 implies that a γ-conservative magician requires no more than k wands, assuming
that γ ≤ 1− 1√

k+3
. That completes the proof of Theorem 4.

26Because in order for the barrier to get past position k, it must first fall on position k + 1.
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8 Multi Unit Demands

In this section, we show that the more general model, in which each buyer may need more than one
unit but no more than 1

k of all units of each item, can be reduced to the simpler model in which
there are at least k units of every item and no buyer demands more than 1 unit of each item.

Definition 15 (Multi Unit Demand Market Transformation). Let kj denote the number of units

of item j. Define cj = ⌊kjk ⌋ and divide the units of item j almost equally into cj bins (i.e., each
bin will contain either cj or cj +1 units). Create a new item type for each bin (i.e., units from the
same bin has the same type, but units from different bins are treated as different types of item).

Theorem 18. Let M be the space of feasible mechanisms, in the original (multi unit demand)
market, which do not allocate more than 1

k of all units of each item to any single buyer. Similarly,

let M(1) be the space of feasible mechanisms, in the transformed market, which do not allocate more
than one unit of each item to any single buyer. Any mechanism in M can be interpreted as a
mechanism in M

(1) and vice-versa with the same allocations/payments. Therefore, in order to find
the optimal mechanism in the original market, it is enough to find the optimal mechanism in the
transformed market.

Proof. First, we show that any mechanism in M ∈ M
(1) can be interpreted as a mechanism in M.

That is trivially true because M allocates to each buyer at most one unit from each bin, which is
at most cj units of each item j of the original market, which is no more than 1

k of all units of item
j.

Next, we show that any mechanism M ∈ M can be interpreted as a mechanism in M
(1). For

every j, we create a list Lj of all the bins of item j. Lj is initially sorted in decreasing order of the
size of the bins. Let XM

ij be the number of units of item j allocated to buyer i by M . We specify

the allocations in the transformed market as follows. For each buyer i we repeat the following, XM
ij

times: Allocate one unit from the bin that is first in the list Lj and then move the bin back to
the end of the list. It is easy to see that no two units from the same bin are allocated to the same
buyer, which completes the proof.

Note that by Theorem 18, any mechanism in the original market is equivalent to a mechanism in
the transformed market with the exact same allocations/payments from the perspective of buyers.
Therefore, WLOG, we can work with the transformed market and only consider mechanisms in
this market. However, to use our generic multi buyer mechanisms in the transformed market, the
underlying single buyer mechanisms should be capable of handling correlated valuations, because
units of the same item, even when labeled with different types, are perfect substitutes from the view
point of a buyer. Among the single buyer mechanisms presented in this paper, only the mechanism
explained in §6.4 can handle correlated valuations.

9 Conclusion

In this paper, for Bayesian combinatorial auctions, we presented an approximate reduction from
multi buyer problem to single buyer problems, which leads to the following conclusions.

• Market size. As the ratio of the maximum demand to supply (i.e., 1
k ) decreases, less

coordination is required on decisions made for different buyers; i.e., as 1
k → 0, the optimal

mechanism treats each buyer almost independently of other buyers. Observe that all of the
approximation factors in this paper only depend on k (i.e., γk) and not on n. It suggests that,
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for characterizing asymptotic properties of such markets, the right parameter to consider is
perhaps the ratio of the maximum demand to supply; in particular, notice that the number
of buyers is irrelevant.

• Computational hardness. For mechanism design problems in a variety of settings, the
difficulty of making coordinated optimal decisions for multiple buyers can be avoided by losing
a small constant factor in the objective (i.e., losing only a 1√

k+3
fraction of the objective),

therefore the main difficulty of constructing constant factor approximation mechanisms in
multi dimensional settings stems from the difficulty of designing single buyer mechanisms,
which ultimately stems from the IC constraints in the single buyer problem.
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A Missing Proofs

Proof of Theorem 5. Suppose we create n boxes and in each box, independently, we put $1 with
probability k

n . If the magician opens a box containing a $1, then he gets the $1 but we break his

wand (i.e., xi =
k
n). Observe that the expected total prize is k dollars, but because we put a dollar

in each box independently, there are some instances in which there are more than k non-empty
boxes but the magician cannot win more than k dollars at any instance. Let Xi be the indicator
random variable which is 1 iff there is a dollar in box i. The expected total prize is E[

∑
iXi] = k,

but the expected prize that the magician can win is at most E[min(
∑

iXi, k)]. It can be verified

that E[min(
∑

iXi, k)] ≈ (1− kk

ekk!
)k asymptotically as n→∞. In fact, for any positive ǫ, there is a

large enough n such that E[min(
∑

i Xi, k)] < (1− kk

ekk!
+ ǫ)k. On the other hand, if a magician can

guarantee that every box is opened with probability at least γ = 1− kk

ekk!
+ ǫ, then he will be able

to obtain a prize of at least
∑

i γE[Xi] = (1 − kk

ekk!
+ ǫ)k in expectation which is a contradiction;

therefore it is not possible to make such a guarantee.

Proof of Theorem 7. First, we show that each Si includes each item j with probability at least
γ. Observe that for each item j, a sequence of n boxes are presented to the jth magician with
probabilities x1j, . . . , xnj written on them. Since

∑
i xij ≤ kj and γ ∈ [0, γk], we can argue that

each box is opened with probability at least γ (see Theorem 4 and Definition 3); therefore Si

includes each item j with probability at least γ.
Next, we show that the expected objective value of γ-pre-rounding is at least γα-fraction of the

expected objective value of the optimal mechanism in M. Note that by Theorem 2, the expected
objective value of the optimal mechanism in M is upper bounded by the optimal value of (OPT )
which is

∑
iRi(xi); therefore, it is enough to show that ESi [Ri(xi[Si])] ≥ γαRi(xi), i.e., the expected

objective value thatMi〈xi[Si]〉 obtains from buyer i is at least γαRi(xi). Let ξi be a budget balanced
cross monotonic cost share function for Ri(·); then
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ESi [Ri(xi[Si])] = ESi


∑

j∈Si

ξi(j, xi[Si])


 because ξi is budget balanced

≥ ESi



∑

j∈Si

ξi(j, xi[{1, . . . ,m}])


 because ξi is cross monotonic

=
∑

j∈[m]

Pr [j ∈ Si] ξi(j, xi)

≥
∑

j∈[m]

γξi(j, xi)

= γRi(xi) because ξi is budget balanced

Next, we show that the multi buyer mechanism based on γ-pre-rounding is in M and it is
dominant strategy incentive compatible (DSIC). The fact that this mechanism is in M follows from
assumption A6 and the fact that for each item j, the corresponding magician breaks no more than
kj wands, which means no more than kj units are allocated at any instance. To show that it is
DSIC, observe that the only way the reports of other buyers could affect the outcome of buyer i
is by affecting Si, yet Mi〈xi[Si]〉 is a mechanism in Mi, so it is incentive compatible mechanism
for any choice of Si; therefore the resulting mechanism is DSIC. Observe that this mechanism also
preserves all of the ex post properties of each Mi (e.g., individual rationality).

Proof of Theorem 8. First, we show that each Si includes each item j with probability exactly
γ. Observe that for each item j, a sequence of n boxes are presented to the jth magician with
probabilities x̂1j, . . . , x̂nj written on them. Since γ ∈ [0, γk] and

∑
i x̂ij ≤ kj and because each

Mi〈xi〉 allocates each item j with probability exactly x̂ij, we can argue that each box is opened
with probability exactly γ (see Theorem 4 and Definition 3); therefore Si includes each item j with
probability exactly γ.

Next, we show that γ-post-rounding obtains in expectation at least γα-fraction of the expected
objective value of the optimal mechanism in M. Note that by Theorem 2 the expected objective
value of the optimal mechanism in M is upper bounded by the optimal value of (OPT ) which
is
∑

iRi(xi); therefore, it is enough to show that Eti,Xi,Pi [Obji(ti,Xi,Pi)] ≥ γαRi(xi), i.e., the
expected objective value that γ-post-rounding obtains from buyer i is at least γαRi(xi). Let ξi be
a budget balanced cross monotonic cost share function for Obji as required by A′2; then
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Eti,Xi,Pi [Obji(ti,Xi,Pi)] = Eti,Xi,Pi [Obji(ti,Xi, 0) + ciPi] By A′2

= Eti,Xi,Pi


∑

j∈Xi

ξi(j, ti,Xi) + ciPi


 because ξi is budget balanced

≥ Eti,Xi,Pi


∑

j∈Xi

ξi(j, ti,X
′
i ) + ciPi


 because ξi is cross monotonic

= Eti,X ′
i ,P

′
i ,Si


∑

j∈X ′
i

Pr [j ∈ Si] ξi(j, ti,X
′
i ) + ciγP

′
i




= Eti,X ′
i ,P

′
i


∑

j∈X ′
i

γξi(j, ti,X
′
i ) + ciγP

′
i




= γEti,X ′
i ,P

′
i

[
Obji(ti,X

′
i ,P

′
i)
]

≥ γαRi(xi)

Note that the last step follows because Eti,X ′
i ,P

′
i
[Obji(ti,X

′
i ,P

′
i)] is exactly the expected objective

value of Mi〈xi〉 which is at least αRi(xi).
Next, we show that γ-post-rounding is Bayesian incentive compatible (BIC) and does not over

allocate any item. Consider any arbitrary buyer i. Observe that each item j ∈ X ′
i is included in Xi

with a probability of exactly γ; furthermore, by A′4, valuations of buyer i can be interpreted as a
weighted rank function of some matroid; WLOG, we may assume that X ′

i is always an independent
set of this matroid27; therefore, the valuation of the buyer for the items in X ′

i is additive; conse-
quently, her expected valuation for Xi is exactly γ times her valuation for X ′

i . Observe that both
the expected valuation and the expected payment of buyer i are scaled by γ for any outcome of
Mi〈xi〉 and Mi〈xi〉 itself was incentive compatible; therefore, the resulting mechanism is incentive
also incentive compatible. However, the final mechanism is only Bayesian incentive compatible
because Si depends on the typers/reports of buyers other that i 28. Also note that the mechanism
does not over allocate any item, because for each unit of item j being allocated one of the kj wands
of the jth magician breaks.

Proof of Lemma 1. The proof is very similar to the proof of Theorem 1. To show that R(x) is
concave, it is enough to show that for any x and x′ and any β ∈ [0, 1], R(βx + (1 − β)x′) ≥
βR(x) + (1− β)R(x′). Let y and y′ be the optimal assignments for the convex program subject to
x and x′ respectively; then y′′ = βy+(1−β)y′ is also a feasible assignment for the convex program
subject to βx+ (1 − β)x′; therefore, R(βx+ (1− β)x′) must be at least u(βy + (1− β)y′); on the
other hand u(·) is concave, so u(βy + (1 − β)y′) ≥ βu(y) + (1 − β)u(y′) = βR(x) + (1 − β)R(x′).
That proves the claim.

Proof of Lemma 5. Let µ =
∑

j E[Zj]. Define the random variables Yj = max(Yj−1 − Zj, 0) and

Y0 = B. Observe that for each j, Yj = max(B −∑j
r=1 Zr, 0), so min(

∑j
r=1 Zr, B) + Yj = B.

27Otherwise, we could replace X
′
i by a maximum weight independent subset of X ′

i .
28I.e., Pr[j ∈ Si] is equal to γ only in expectation over other buyers’ reports
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Therefore E[min(
∑j

r=1 Zr, B)] + E[Yj] = B and to prove the theorem it is enough to show that
E[Ym] ≤ 1

eµ/B
B. We first show that

Yj ≤ (1− E[Zj ]

B
)Yj−1. (Yj)

Consequently

Ym ≤ B
m∏

j=1

(1− E[Zj ]

B
) (1)

≤ B
1

eµ/B
(2)

The last inequality follows because
∏m

j=1(1 −
E[Zj ]
B ) takes its maximum when

E[Zj ]
B = µ

mB (for all
j) and m→∞.

To prove the second inequality in the statement of the lemma we can use the fact that (1−xa) ≥
(1 − x)a for any a ≤ 1, and conclude that (1 − 1

eµ/B
)B ≥ (1 − 1

emin(µ,B)/B )B ≥ (1 − 1
e )

min(µ,B)
B B =

(1− 1
e )min(µ,B).

To complete the proof, we prove inequality (Yj) as follows.

E [Yj] = E [max(Yj−1 − Zj , 0)]

≤ E

[
max(Yj−1 − Zj

Yj−1

B
, 0)

]
because

Yj−1

B
≤ 1

= E

[
Yj−1 − Zj

Yj−1

B

]
because

Zj

B
≤ 1

= E [Yj−1]−
1

B
E [ZjYj−1]

≤ E [Yj−1]−
1

B
E [Zj]E [Yj−1] because Zj and Yj−1 are independent.

= (1− E[Zj]

B
)E [Yj−1]

Proof of Lemma 4. To prove the claim, it is enough to show that r1∑
j xjpj

≥ 1
2 . WLOG, we may

assume that
∑

j pjxj = 1 since we can scale p1, . . . , pm by a constant c = 1∑
j xjpj

and this will also

scale r1, . . . , rm by the same constant c, so their ratio is not be affected. Consider the following
LP and observe that xj , pj, and rj , as defined in the statement of the lemma, form a feasible
assignment for this LP. If we show that the optimal objective value of the LP is bounded below by
1
2 , any feasible assignment yields an objective value of at least 1

2 , and therefore r1∑
j xjpj

≥ 1
2 which

proves the lemma. In the following LP, pj and rj are variables and everything else is constant.
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minimize r1

subject to rj ≥ xjpj + (1− xj)rj+1, ∀j ∈ [m] (αj)

rj ≥ rj+1, ∀j ∈ [m] (βj)
m∑

j=1

xjpj ≥ 1 (γ)

pj ≥ 0, ∀j ∈ [m]

rj ≥ 0, ∀j ∈ [m+ 1]

To prove that the optimal value of the above LP is bounded below by 1
2 , we construct a feasible

assignment for its dual LP, obtaining a value of 1
2 . The dual LP is as follows.

maximize γ

subject to γ ≤ αj , ∀j ∈ [m] (pj)

α1 + β1 ≤ 1 (r1)

αj + βj ≤ (1− xj−1)αj−1 + βj−1, ∀j ∈ {2, . . . ,m} (rj)

0 ≤ (1− xm)αm + βm (rm+1)

αj ≥ 0, βj ≥ 0, γ ≥ 0, ∀j ∈ [m]

We construct an assignment for the dual LP as follows. Set αj = γ and set βj = βj−1−xj−1γ for

all j, except that for j = 1 we set β1 = 1− γ. From this assignment we get βj = 1− γ− γ
∑j−1

ℓ=1 xℓ.
Observe that we get a feasible assignment as long as all βj resulting from this assignment are non-
negative. Furthermore, it is easy to see that βj ≥ 1− γ − γ

∑m
ℓ=1 xℓ ≥ 1 − 2γ because

∑
j xj ≤ 1.

Therefore, by setting γ = 1
2 , all βj are non-negative and we always get a feasible assignment for

the dual LP with an objective value of 1
2 , which completes the proof.
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