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Abstract—For fixed compact connected Lie groups H⊆ G, we
provide a polynomial time algorithm to compute the multiplicity
of a given irreducible representation of H in the restriction of
an irreducible representation of G. Our algorithm is based on a
finite difference formula which makes the multiplicities amenable
to Barvinok’s algorithm for counting integral points in pol ytopes.

The Kronecker coefficients of the symmetric group, which
can be seen to be a special case of such multiplicities, play an
important role in the geometric complexity theory approach to
the P vs. NP problem. Whereas their computation is known to be
#P-hard for Young diagrams with an arbitrary number of rows,
our algorithm computes them in polynomial time if the number
of rows is bounded. We complement our work by showing that
information on the asymptotic growth rates of multipliciti es in
the coordinate rings of orbit closures does not directly lead
to new complexity-theoretic obstructions beyond what can be
obtained from the moment polytopes of the orbit closures. Non-
asymptotic information on the multiplicities, such as provided
by our algorithm, may therefore be essential in order to find
obstructions in geometric complexity theory.

I. I NTRODUCTION

The decomposition of Lie group representations into ir-
reducible sub-representations is a fundamental problem of
mathematics with a variety of applications to the sciences.
In atomic and molecular physics (Clebsch–Gordan series), as
well as in high-energy physics, this problem has been studied
extensively [1–3], perhaps most famously in Ne’eman and
Gell-Mann’s eight-fold way of elementary particles [4–6].In
pure mathematics, the combinatorial resolution of the problem
of decomposing tensor products of irreducible representations
of the unitary group by Knutson and Tao has been a recent
highlight with a long history of research [7, 8]. More recently,
the theories of quantum information [9–11], computation and
complexity [12], as well as the geometric complexity theory
approach to theP vs. NP problem [13–15] have brought
the representation theory of Lie groups to the attention of the
computer science community.

In this paper, we study the problem of computing multiplic-
ities of Lie group representations:

Problem I.1 (Subgroup Restriction Problem). Let f : H → G
be a homomorphism between compact connected Lie groupsH
andG. Thesubgroup restriction problem forf is to determine
the multiplicitymλ

µ of the irreducibleH-representationVH,µ

in the irreducibleG-representationVG,λ when given as input
the highest weightsµ andλ (specified as bitstrings containing
their coordinates with respect to fixed bases of fundamental
weights, see §V).

The namesubgroup restriction problemcomes from the
archetypical case where the mapf is induced by the inclu-
sion of a subgroupH ⊆ G. Problem I.1 is also known as
the branching problem. The main result of this paper is a
polynomial-time algorithm for Problem I.1:

Theorem I.2. For any homomorphismf : H → G be-
tween compact connected Lie groupsH and G, there is a
polynomial-time algorithm for the subgroup restriction prob-
lem for f .

Indeed, we describe a concrete algorithm (Algorithm V.1).
In particular, for any fixedλ and µ the stretching function
k 7→ mkλ

kµ can be evaluated in polynomial time.

Corollary I.3. For any homomorphismf : H → G between
compact connected Lie groupsH and G, positivity of the
coefficientsmλ

µ can be decided in polynomial time.

Mulmuley conjectures that deciding positivity of the mul-
tiplicities mλ

µ is possible in polynomial time if the group
homomorphismf is also part of the input [16]. Corollary I.3
can be regarded as supporting evidence that this conjecture
might in fact be true for generalf (note that for specific
families of homomorphisms, such as those corresponding
to the Littlewood–Richardson coefficients, positivity canbe
decided in polynomial time [8, 17]). However, any approach
to deciding positivity that proceeds by computing the actual
multiplicities is of course expected to fail, since the latter
problem is well-known to be#P-hard [18, 19].

We establish Theorem I.2 by deriving a novel formula
for the multiplicitiesmλ

µ (Theorem IV.2), which is obtained
in three steps: First, we restrict from the groupG to its
maximal torusTG; the corresponding weight multiplicities
can be computed efficiently by using the classical Kostant
multiplicity formula [20, 21] or in fact by evaluating a single
vector partition function [22–24] (§II). Second, we restrict
all weights to a maximal torusTH of H . Third, we recover
the multiplicity of an irreducibleH-representation by using

http://arxiv.org/abs/1204.4379v2


a finite-difference formula (Proposition III.1). By carefully
combining the first two steps, Problem I.1 can be reduced to
counting integral points in certain rational convex polytopes
of bounded dimension, which can be done efficiently by using
Barvinok’s algorithm [25–27] (see also [28–30]).

The multiplicity formula itself has intrinsic interest beyond
its application to algorithmics. One insight that is immediate
from our result is the piecewise quasi-polynomial nature of
the multiplicitiesmλ

µ (Corollary IV.3).

Let us now turn to the computation of theKronecker
coefficientsgλ,µ,ν , which arise in the decomposition of tensor
products of irreducible representations of the symmetric group
Sk [31]:

[λ]⊗ [µ] =
⊕

ν

gλ,µ,ν [ν],

where we denote by[λ] the irreducible representation of
Sk labeled by the Young diagramλ with k boxes (§VI).
Kronecker coefficients are notoriously difficult to study, and
finding an appropriately strong combinatorial interpretation is
one of the outstanding problems of classical representation
theory. They appear naturally in geometric complexity theory,
where their efficient computation has been subject to various
conjectures [16], as well as in quantum information theory in
the context of the marginal problem and coding theory [10,
11, 32–35].

Using Schur–Weyl duality, the Kronecker coefficients for
Young diagrams with a bounded number of rows can be equiv-
alently characterized in terms of a single subgroup restriction
problem for compact connected Lie groups (§VI). Therefore,
by Theorem I.2 they can also be computed efficiently:

Corollary I.4. For any fixed d ∈ Z>0, there exists a
polynomial-time algorithm for computing the Kronecker coef-
ficient gλ,µ,ν given as input Young diagramsλ, µ and ν with
at mostd rows. That is, the algorithm runs inO(poly(log k))
wherek is the number of boxes of the Young diagrams.

Corollary I.5. Positivity of Kronecker coefficients for Young
diagrams with a bounded number of rows can be decided in
polynomial time.

By specializing our technique, we get a clean closed-form
expression for the Kronecker coefficients (Proposition VI.1),
which not only nicely illustrates its effectiveness, but also
implies piecewise quasi-polynomiality for bounded height(a
feature that has only been noticed in a special case [36]).
Moreover, it is immediate from our formula that the problem
of computing Kronecker coefficients with unbounded height
is in GapP, as first proved in [19].

Similar conclusions can be drawn for the plethysm coef-
ficients, which can also be formulated in terms of subgroup
restriction problems [37]. Like the Kronecker coefficients, they
play a fundamental role in geometric complexity theory [15,
38] and quantum information theory [11, 39].

In practice, our algorithms appear to be rather fast as long
as the rank of the Lie groupG is not too large. In the case

of Kronecker coefficients for Young diagrams with two rows,
we can easily go up tok = 108 boxes using commodity
hardware. In contrast, all other software packages known tothe
authors cannot go beyond only a moderate number of boxes
(k = 102 on the same hardware as used above). Moreover,
by distributing the computation of weight multiplicities onto
several processors, we have been able to compute Kronecker
coefficients for Young diagrams with three rows andk = 105

boxes in a couple of minutes.1 We hope that our algorithm will
provide a useful tool in experimental mathematics, theoretical
physics, and geometric complexity theory.

Our final result concerns the asymptotics of multiplicitiesin
the general algebro-geometric setup of the geometric complex-
ity theory approach to proving theVP 6= VNP conjecture,
an algebraic version of theP 6= NP conjecture. Recall that, in
a nutshell, this approach amounts to showing that for certain
pairs of projective subvarietiesX andY one is not contained
in the other; this would then imply complexity-theoretic lower
bounds. Both the permanent vs. determinant problem, which
is equivalent to theVP vs.VNP problem [40], as well as the
complexity of matrix multiplication [41] can be formulatedin
this framework [13–15, 42]. More concretely, let us denote by
mH,X,k(µ) the multiplicity of the dual of an irreducibleH-
representationVH,µ in the k-th graded part of the coordinate
ring ofX , and similarly forY (cf. §VII for precise definitions).
Then,

X ⊆ Y ⇒ mH,X,k(µ) ≤ mH,Y,k(µ) (I.1)

for all µ andk ≥ 0. Therefore, the existence ofµ andk such
that mH,X,k(µ) > mH,Y,k(µ) proves thatX 6⊆ Y ; such a
pair (µ, k) is called anobstruction[14]. One can relax this
implication further and instead compare the support of the
multiplicity functions,

X ⊆ Y ⇒ (mH,X,k(µ) 6= 0⇒ mH,Y,k(µ) 6= 0) .

Since computing multiplicities in general coordinate rings is a
difficult problem, it is natural to instead study their asymptotic
behavior. Following an idea of Strassen [43], it has been
proposed in [42] to consider themoment polytope,

∆X :=

∞⋃

k=1

{µ

k
: mH,X,k(µ) 6= 0

}

,

which is a compact convex polytope that represents the asymp-
totic support of the stretching function. Moment polytopesdo
have a geometric interpretation, which should facilitate their
computation [44]. Clearly,

X ⊆ Y ⇒ ∆X ⊆ ∆Y . (I.2)

However, preliminary results suggest that the right-hand side
moment polytope∆Y might be trivially large in the cases of
interest [15, 42, 45, 46], and therefore insufficient for finding
complexity-theoretic obstructions.

1A preliminary implementation of the algorithm is availableupon request
from the authors.



It has therefore recently been suggested to study theasymp-
totic growth of multiplicities (e.g., [47, §2.2]). The natural
object is theDuistermaat–Heckman measure, which is defined
as the weak limit

DHX := lim
k→∞

1

kdX

∑

µ∈Λ∗

H,+

mH,X,k(µ) δµ/k, (I.3)

wheredX ∈ Z≥0 is the appropriate exponent such thatDHX

is a non-zero finite measure [48]. The Duistermaat–Heckman
measure has a continuous density functionfX with respect
to Lebesgue measure on the moment polytope; it is sup-
ported on the entire moment polytope (both statements follow
from the main result of [48]). For well-behaved varieties,
Duistermaat–Heckman measures have a geometric interpreta-
tion [49–55], which makes their computation potentially much
more tractable [56–58] (this connection is however less clear
in the singular cases relevant to geometric complexity theory).
In this context, our main technical result is the following (see
§VII for the proof):

Theorem I.6. The exponentdX is equal todimX − RX ,
whereRX is the number of positive roots ofH that are not
orthogonal to all points of the moment polytope∆X .

The significance of Theorem I.6 is that the order of
growth of the “smoothed” multiplicities, as captured by the
Duistermaat–Heckman measures, does only depend on the
dimension of the orbit closures and on their moment polytopes.

Now suppose that we are in the situation thatX and Y
cannot be separated by using moment polytopes, i.e.,∆X ⊆
∆Y . For the orbit closuresX andY that one tries to separate
in geometric complexity theory, one can show thatdimX <
dimY [15, 42]. Then,X ⊆ Y would imply thatdX < dY
(Corollary VII.4). But this means that wecannotdeduce from
(I.1) and (I.3) a criterion of the form

X ⊆ Y ⇒ fX(µ) ≤ fY (µ) (∀µ),

since in order to take the weak limit we need to divide
by different powers ofk. Therefore, Duistermaat–Heckman
measures do not directly give rise to new obstructions, indi-
cating that a more refined understanding of the behavior of
multiplicities in coordinate rings might be required.

II. PRELIMINARIES

In this paper we will use basic notions of the theory of
compact Lie groups [37, 59–61]. LetG be a compact con-
nected Lie group with Lie algebrag. We fix a maximal torus
TG ⊆ G and denote bytG its Lie algebra, the corresponding
Cartan subalgebra. We writeΛG = ker exp

∣
∣
tG

for the integral
lattice andΛ∗

G for the weight lattice, which we can consider as
a subset oft∗G. The Weyl groupWG acts ont∗G by reflections
through the hyperplanes orthogonal to the roots. Let us choose
a set of positive rootsRG,+ ⊆ Λ∗

G. This determines a positive
Weyl chambert∗G,+, as well as a basis of fundamental weights
{ωG

1 , . . . , ω
G
rG}, whererG = dimTG is the rank of the Lie

group, and the Weyl vectorρ = 1
2

∑

α∈RG,+
α. The set of

dominant weightsΛ∗
G,+ is by definition the intersection of the

weight lattice and the positive Weyl chamber.
The fundamental theorem of the representation theory of

compact connected Lie groups is the fact that the irreducible
(complex) representations ofG can be labeled by theirhighest
weightλ ∈ Λ∗

G,+ [61]; for every elementλ ∈ Λ∗
G,+ there ex-

ists a unique irreducible representationVG,λ with this highest
weight. Given an arbitrary finite-dimensional (complex)G-
representationV , we can always decompose it into irreducible
sub-representationsV ∼=

⊕

λ∈Λ∗

G,+
mG,V (λ)VG,λ. We shall

call the functionmG,V thus defined thehighest weight multi-
plicity function.

If we restrict the representation to the maximal torus, we can
similarly decompose into irreducible representations. SinceTG

is a compact Abelian group, we can always jointly diagonalize
its action, and it follows that the irreducible representations
are one-dimensional. The joint eigenvalues can be encoded
as a weightβ ∈ Λ∗

G, and we will denote the corresponding
irreducible representation ofTG by Cβ. The decomposition
V ∼=

⊕

β∈Λ∗

G
mTG,V (β)Cβ then defines theweight multiplic-

ity functionmTG,V . We also set[k] = {1, . . . , k}, and write
f ∼ g for the asymptotic equivalencelimk→∞ f(k)/g(k) = 1.

An equivalent way of encoding weight multiplicities is in
terms of the (formal)character,

chV =
∑

β

mTG,V (β) e
β ,

which can be understood as the generating function ofmTG,V .
Formally,chV is an element of the group ringZ[Λ∗

G], which
consists of (finite) linear combinations of basis elementseβ

subject to the relationeβeβ
′

= eβ+β′

. The character of an
irreducible representationVG,λ is given by theWeyl character
formula [61, p. 319],

chVG,λ =

∑

w∈WG
det(w) ew(λ+ρ)

eρ
∏

α∈RG,+
(1− e−α)

. (II.1)

Observe that we have
1

∏

α∈RG,+
(1− e−α)

=
∏

α∈RG,+

(
1 + e−α + e−2α + . . .

)

=
∑

β∈Λ∗

G

φRG,+
(β)e−β ,

(II.2)

whereφRG,+
is the Kostant partition functiongiven by the

formula

φRG,+
(β) = #{(xj) ∈ Z

|RG,+|
≥0 :

∑

j

xjαj = β}. (II.3)

That is,φRG,+
counts the number of ways that a weight can

be written as a sum of positive roots (this number is always
finite since the positive roots span a proper cone). It follows
directly from (II.1) and (II.2) and that

chVG,λ =
∑

w∈WG

det(w)
∑

β∈Λ∗

G

φRG,+
(β)ew(λ+ρ)−ρ−β

=
∑

β∈Λ∗

G

∑

w∈WG

det(w)φRG,+
(w(λ + ρ)− ρ− β)eβ .



In other words, the multiplicity of a weightβ in an irreducible
representationVG,λ is given by the well-knownKostant mul-
tiplicity formula [20],

mTG,VG,λ
(β) =

∑

w∈WG

det(w)φRG,+
(w(λ+ρ)−ρ−β). (II.4)

For any fixed groupG, the Kostant partition function can
be evaluated efficiently by using Barvinok’s algorithm [25],
since it amounts to counting points in a convex polytope
in an ambient space of fixed dimension. Therefore, weight
multiplicities for fixed groupsG can be computed efficiently.
This idea has been implemented by Cochet [21] to compute
weight multiplicities for the classical Lie algebras (using the
method presented in [30] instead of Barvinok’s algorithm).We
remark that the problem of computing weight multiplicities
is of course the special case of Problem I.1 whereH is the
maximal torusTG ⊆ G.

Weight Multiplicities as a Single Partition Function

If G is semisimple, we can finds, t ∈ Z≥0 and group
homomorphismsA : Zs → Zt andB : Λ∗

G ⊕ Λ∗
G → Zt such

that

mTG,VG,λ
(β) = φA

(
B
(
λ
β

))
(∀λ ∈ Λ∗

G,+, β ∈ Λ∗
G), (II.5)

whereφA is thevector partition functiondefined by

φA(y) = #{x ∈ Zs
≥0 : Ax = y}. (II.6)

Note that this improves over the Kostant multiplicity formula
(II.4), where weight multiplicities are expressed as an alternat-
ing sum over vector partition functions. In particular, (II.5) is
an evidently positive formula. It has been established by Billey,
Guillemin, and Rassart for the Lie algebrasu(d) [22], and was
later extended to the general case by Bliem [23] by considering
Littelmann patterns [62] instead of Gelfand–Tsetlin patterns
[63].

The assumption of semisimplicity for (II.5) is not a restric-
tion. Indeed, ifG is a general compact connected Lie group
then its Lie algebra can always decomposed as

g = [g, g]⊕ z, (II.7)

where the commutator[g, g] is the Lie algebra of a compact
connected semisimple Lie groupGss, and wherez the Lie
algebra of the centerZ(G) of G [61, Corollary 4.25]. Let
us choose a maximal torusTGss

of Gss that is contained in
TG. Consider now an irreducibleG-representationVG,λ with
highest weightλ. By Schur’s lemma, each element inZ(G)
acts by a scalar. Therefore, all weightsβ that appear in the
weight-space decomposition have the same restriction toz. It
follows that

mTG,VG,λ
(β) =

{

mTGss ,VGss,λss
(βss) if λz = βz,

0 otherwise,
(II.8)

where we writeµss andµz for the restriction of a weightµ
to the Cartan subalgebra of[g, g] and toz, respectively. These
multiplicities can therefore be evaluated by using (II.5).

III. T HE FINITE DIFFERENCEFORMULA

Let V be an arbitrary finite-dimensional representation
of the compact, connected Lie groupG. Clearly, we can
compute the weight multiplicity functionmTG,V from the
highest weight multiplicity functionmG,V by using any of the
classical formulas (II.1) and (II.4), or by evaluating the vector
partition function (II.5) described in §II. By “inverting”the
Weyl character formula, the converse can also be achieved:

Proposition III.1. The highest weight and weight multiplicity
function of a finite-dimensionalG-representationV are related
by

mG,V =




∏

α∈RG,+

−Dα



mTG,V

∣
∣
∣
∣
∣
∣
Λ∗

G,+

,

where(Dαm)(λ) = m(λ+ α)−m(λ) is the finite-difference
operator in directionα. Note that any two of the operatorsDα

commute, so that their product is independent of the order of
multiplication.

Proof: By linearity, it suffices to establish the lemma for
a single irreducible representationV = VG,λ of highest weight
λ. The Weyl character formula (II.1) can be rewritten in the
form

∏

α>0

(
1− e−α

)
chVG,λ =

∑

w∈WG

det(w) ew(λ+ρ)−ρ. (III.1)

If we identify elements inZ[Λ∗
G] with functions on the weight

lattice, applying finite-difference operatorsDα corresponds to
multiplication by (e−α − 1). Therefore, the left-hand side of

(III.1) is identified with
(
∏

α∈RG,+
−Dα

)

mTG,VG,λ
.

Now consider the right-hand side of (III.1). Sinceλ+ρ is a
strictly dominant weight, it is sent by any Weyl group element
w 6= 1 to the interior of another Weyl chamber. That is, there
exists a positive rootα ∈ RG,+ such that〈α,w(λ + ρ)〉 < 0.
In particular,w(λ + ρ) − ρ is never dominant unlessw = 1.

It follows that the restriction of
(
∏

α∈RG,+
−Dα

)

mTG,VG,λ

to Λ∗
G,+ is equal to the indicator function of{λ}, i.e., equal

to the highest weight multiplicity function ofVG,λ.
The idea of using (II.1) for determining multiplicities of

irreducible representations goes back at least to Steinberg
[64], who proved a formula for the multiplicitycνλ,µ of an
irreducible representationVG,ν in the tensor productVG,λ ⊗
VG,µ. These multiplicitiescνλ,µ are called theLittlewood–
Richardson coefficientsfor G. Steinberg’s formula involves
an alternating sum over the Kostant partition function (II.4);
it can be evaluated efficiently as described by Cochet [21].
De Loera and McAllister give another method for computing
Littlewood–Richardson coefficients [65], which applies Barvi-
nok’s algorithm to results by Berenstein and Zelevinsky [66].
Since the tensor products of irreducibleG-representations are
just the irreducible representations ofG × G, the problem
of computing Littlewood–Richardson coefficients is again a
special case of Problem I.1. The following consequence of the
proof of Proposition III.1 will be convenient in the sequel:



Corollary III.2. Write
∏

α∈RG,+
(1− e−α) =

∑

γ∈ΓG
cγe

−γ

with ΓG ⊆ Λ∗
G finite and allcγ 6= 0. Then,

mG,V (λ) =
∑

γ∈ΓG

cγ mTG,V (λ+ γ).

In particular, it is evident from Corollary III.2 that, for any
fixed groupG, the multiplicity of an irreducible representation
in some representationV can be computed efficiently from
the weight multiplicities ofV by computing a finite linear
combination.

IV. M ULTIPLICITIES FOR THE SUBGROUPRESTRICTION

PROBLEM

Every G-representationV can be considered as (“restricts
to”) a representation ofH by setting

h · v := f(h) · v (∀h ∈ H), (IV.1)

and the subgroup restriction problem forf , as defined in
Problem I.1, amounts to determining the multiplicitymλ

µ of
a given irreducible representation ofH in the restriction of
a given irreducible representation ofG. In this section we
will derive a formula for these multiplicities (Theorem IV.2),
which will be the main ingredient of the algorithm presented
in §V below. It will also follow from this formula that themλ

µ

are given by a piecewise quasi-polynomial function2 in λ and
µ (Corollary IV.3).

Let us choose the maximal torusTH ⊆ H in such a way that
f(TH) ⊆ TG, and denote the corresponding Cartan subalgebra
by tH . Of course, this implies that the induced Lie algebra
homomorphismLie(f) sends the Cartan subalgebra ofH in
the one ofG. Since f is a group homomorphism,Lie(f)
restricts to a homomorphism between the integral lattices,
F : ΛH → ΛG, X 7→ Lie(f)X . The dual map between the
weight lattices is given by

F ∗ : Λ∗
G → Λ∗

H , β 7→ β ◦ F = β ◦ Lie(f)
∣
∣
ΛH

. (IV.2)

The following is well-known and easily follows from the
definitions:

Lemma IV.1. Let V be a representation ofG and v ∈ V a
weight vector of weightβ ∈ Λ∗

G. If we restrict the action toH
via (IV.1) thenv is a weight vector of weightF ∗(β) ∈ Λ∗

H .

Let us also fix systems of positive rootsRH,+ for H . This
in turn determines the set of dominant weightsΛ∗

H,+ as well
as a basis of fundamental weights(ωH

j ) as described in §II.
Let us also setrH = dimTH .

Our strategy for solving the subgroup restriction problem
for f then is the following: Given an irreducible represen-
tation VG,λ of G, we can determine its weight multiplic-
ities with respect to the maximal torusTG by using any
of the formulas presented in §II. We then obtain weight
multiplicities for TH by restricting according to Lemma IV.1.

2In the context of this paper, a quasi-polynomial function isa polynomial
function with periodic coefficients; see p. 6 for the precisedefinition. It should
not to be confused with the notion of quasi-polynomial time complexity.

Finally, we reconstruct the multiplicity of an irreducible
representationVH,µ by using the finite-difference formula
(Proposition III.1/Corollary III.2). If this procedure was trans-
lated directly into an algorithm, the runtime would be poly-
nomial in the coefficients ofλ (with respect to the basis
of fundamental weights), i.e., exponential in their bitlength,
since the number of weights is of the order of the dimen-
sion of the irreducible representationVG,λ, which according
to the Weyl dimension formulais given by the polynomial
∏

α∈RG,+
〈α, λ + ρ〉/〈α, ρ〉 (cf. the formula by Straumann

[67]). We will now show that it is possible to combine the
weight multiplicity formula (II.5) with the restriction map F ∗

in a way that will later give rise to an algorithm that runs in
polynomial time in the bitlength of the input:

Theorem IV.2. Let f : H → G be a homomorphism of com-
pact connected Lie groups. Then we can finds, s′, u ∈ Z≥0

and group homomorphismsA : Zs+s′ → Zu and B : Λ∗
G ⊕

Λ∗
H → Zu with the following property: For every irreducible

representationVG,λ of G andVH,µ of H , the multiplicitymλ
µ

of the latter in the former is given by

mλ
µ =

∑

γ∈ΓH

cγ #{x ∈ Zs
≥0 ⊕ Zs′ : Ax = B

(
λ

µ+ γ

)

},

where the (finite) setΓH and the coefficients(cγ) are defined
by

∏

α∈RH,+
(1− e−α) =

∑

γ∈ΓH
cγe

−γ andcγ 6= 0. In fact,
we can chooses = O(r2G), s

′ ≤ rG andu = O(r2G) + rH .

Proof: By definition and Corollary III.2, we havemλ
µ =

mH,VG,λ
(µ) =

∑

γ∈ΓH
cγ mTH ,VG,λ

(µ + γ). In view of
Lemma IV.1, the multiplicity of aTH-weight δ ∈ Λ∗

H in the
irreducibleG-representationVG,λ is given by

mTH ,VG,λ
(δ) =

∑

β∈Λ∗

G

F∗(β)=δ

mTG,VG,λ
(β).

As in (II.7), let us now decompose the Lie-algebrag = [g, g]⊕
z. Denote the Lie group corresponding to[g, g] by Gss and
choose a maximal torusTGss

which is contained inT . Using
(II.8),

∑

β∈Λ∗

G

F∗(β)=δ

mTG,VG,λ
(β) =

∑

βss∈Λ∗

Gss

Cssβss+Czλz=δ

mTGss ,VGss,λss
(βss),

where we have decomposedF ∗ as a sum of two homomor-
phismsCss : Λ

∗
Gss
→ Λ∗

H andCz : Λ
∗
Z(G) → Λ∗

H .

Let us now choose group homomorphismsA : Zs → Zt and
B = B1 ⊕ B2 : Λ

∗
Gss
⊕ Λ∗

Gss
→ Zt such that (II.5) holds for

the weight multiplicities forGss. For this,s andt can be taken



of orderO(r2G) [23, Proposition 19]. Then,
∑

βss∈Λ∗

Gss

Cssβss+Czλz=δ

mTGss ,VGss,λss
(βss)

=
∑

βss∈Λ∗

Gss

Cssβss+Czλz=δ

#{x ∈ Zs
≥0 : Ax = B

(
λss

βss

)

}

= #{(x, βss) :
(
A −B2

0 Css

)
( x
βss

) =
(

B1λss

−Czλz+δ

)
}

= #{(x, βss) :
(
A −B2

0 Css

)

︸ ︷︷ ︸

=:A

( x
βss

) =
(
B1 0 0
0 −Cz 1

)

︸ ︷︷ ︸

=:B

(
λss

λz

δ

)

}.

(IV.3)
After choosing a basis of the latticeΛ∗

Gss
we arrive at the

asserted formula (withs′ = dimTGss
andu = t+ rH ).

We stress that the proof of Theorem IV.2 is constructive:
The mapsA and B, whose existence is asserted by the
theorem, are defined in (IV.3) in terms ofA andB, whose
construction is described explicitly in [22, Proof of Theorem
2.1] (for the case ofg = su(d)) and in [23, §4] (for the
general case). See §VI for an illustration in the context of the
Kronecker coefficients.

If one uses the Kostant multiplicity formula (II.4) insteadof
(II.5) in the proof of Theorem IV.2 then one arrives at a similar
formula for the multiplicitiesmλ

µ involving an additional
alternating sum over the Weyl group ofG. After completion
of this work, we have learned of [49, Lemma 3.1] which is
derived in this spirit.

Piecewise Quasi-Polynomiality

Let us use the fundamental weight bases fixed above to
identify Λ∗

G
∼= ZrG and Λ∗

H
∼= ZrH . The group homomor-

phismsA andB correspond to matrices with integer entries,
which we shall denote by the same symbols. Observe that the
formula in Theorem IV.2 in essence amounts to counting the
numbern(y) := #

(

∆A,B(y) ∩ Zs+s′
)

of integral points in
certain rational convex polytopes of the form

∆A,B(y) := {x ∈ Rs+s′ : x1, . . . , xs ≥ 0,Ax = By},
(IV.4)

parametrized byy ∈ ZrG+rH . Explicitly,

mλ
µ =

∑

γ∈ΓH

cγn(λ, µ+ γ). (IV.5)

It is well-known thatn(y) is a piecewise quasi-polynomial
function in y [68]. That is, there exists a decomposition of
ZrG+rH into polyhedral chambers such that on each chamber
C the functionn(y) is given by a single quasi-polynomial,
i.e., there exists a sublatticeL ⊆ ZrG+rH of finite index
and polynomials(pz) with rational coefficients, labeled by the
finitely many pointsz ∈ ZrG+rH/L, such thatn(y) = p[y](y)
for all y ∈ ZrG+rH (cf. [69, §2.2]). We record the following
immediate consequence:

Corollary IV.3. For any fixed group homomorphismf : H →
G, the multiplicitiesmλ

µ are given by a piecewise quasi-
polynomial function inλ andµ.

In particular, this implies that thestretching functionk 7→
mkλ

kµ is a quasi-polynomial function for largek. This is in fact
true for all k, as has been observed in [16] (cf. [53] for more
general quasi-polynomiality results on convex cones, and also
[70] for further discussion).

V. POLYNOMIAL -TIME ALGORITHM FOR THESUBGROUP

RESTRICTION PROBLEM

In this section we will formulate our algorithm for the
subgroup restriction problem, Problem I.1. Recall that, by
(IV.5), the computation of the multiplicitiesmλ

µ effectively
reduces to counting the number of integral points in certain
rational convex polytopes of the form (IV.4). We shall suppose
that the highest weightsλ andµ, which are theinput to our
algorithm, are given in terms of their coordinates with respect
to the fundamental weight bases fixed in §IV. Clearly, for
each of the finitely manyγ ∈ ΓH , the description of the
polytope∆A,B(λ, µ+ γ) (say, in terms of linear inequalities)
is of polynomial size in the bitlength of the input. It follows
thatBarvinok’s algorithmcan be used to compute the number
of integral points in each of these polytopes in polynomial
time [25] (see also [26, 27]). This gives rise to the following
polynomial-time algorithm for Problem I.1, thereby establish-
ing Theorem I.2:

Algorithm V.1. Let f : H → G be a homomorphism of com-
pact connected Lie groups. Given as input two highest weights
λ ∈ Λ∗

G
∼= ZrG and µ ∈ Λ∗

H
∼= ZrH , encoded as bitstrings

containing their coordinates with respect to the fundamental
weight bases fixed above, the following algorithm computes
the multiplicitymλ

µ in polynomial time in the bitlength of the
input:

m← 0
for all γ ∈ ΓH do

n ← #
(

∆A,B(λ, µ+ γ) ∩ Zs+s′
)

as computed by
Barvinok’s algorithm (see discussion above)

m← m+ cγn
end for
return m

Here, ∆A,B(y) denotes the rational convex polytope defined
in (IV.4), and the finite index setΓH ⊆ Λ∗

H as well as the
coefficients(cγ) are defined in the statement of Theorem IV.2.

There are at least two software packages which have
implemented Barvinok’s algorithm, namely LATTE [71] and
BARVINOK [69, 72]. In §I we have reported on the perfor-
mance of our implementation of Algorithm V.1 for computing
Kronecker coefficients using the latter package.

RemarkV.2. The existence of a polynomial-time algorithm
for Problem I.1 in fact already follows abstractly from
Corollary IV.3, since in order to computemλ

µ we merely have
to evaluate afixed piecewise quasi-polynomial function. This
piecewise quasi-polynomial can be computed algorithmically
by using a variant of Barvinok’s algorithm which is also
implemented in theBARVINOK package; see [69, Proposition
2] and also [27, (5.3.1)].



VI. K RONECKERCOEFFICIENTS

As explained in the introduction, the Kronecker coefficients
play an important role in geometric complexity theory and
quantum information theory. In this section, we will describe
precisely how they can be computed using our methods.

Let us recall the language of Young diagrams which is
commonly used in this context [31]. AYoung diagramwith
r rows andk boxes is given by an ordered list of integers
λ1 ≥ . . . ≥ λr > 0 with

∑

i λi = k. It can be visualized as
an arrangement ofk boxes inr rows with λj boxes in the
j-th row. We setλj = 0 for all j > r. We will now consider
the unitary groupU(d), which consists of the unitaryd × d-
matrices. Let us fix a system of positive roots and denote
the corresponding basis of fundamental weights by(ωj). To
each Young diagramλ with at most d rows we associate
the irreducible representation ofU(d) with highest weight
equal to

∑d
j=1 (λj − λj+1)ωj . Every polynomial irreducible

representation ofU(d) arises in this way. By a slight abuse of
notation, we identify Young diagrams with the corresponding
highest weights. More generally, we can associate to every
integer vectorβ ∈ Zd the weight

∑d
j=1 (βj − βj+1)ωj , where

we setβd+1 = 0. This defines a bijection betweenZd and
the weight latticeΛ∗

U(d) of U(d). In particular, the positive
roots fixed above correspond to the integer vectors of the form
(. . . , 0, 1, 0, . . . , 0,−1, 0, . . .).

The Kronecker coefficientgλ,µ,ν associated with triples of
Young diagramsλ, µ andν with k boxes each and at mosta,
b andc rows, respectively, can then be defined in terms of the
following subgroup restriction problem of compact, connected
Lie groups: LetH = U(a) × U(b) × U(c) andG = U(abc)
and consider the homomorphismf : H → G given by sending
a triple of unitaries(U, V,W ) to their tensor productU ⊗
V ⊗W . The Kronecker coefficientgλ,µ,ν is then given by the
multiplicity of the irreducibleH-representationVH,(λ,µ,ν) =
VU(a),λ⊗VU(b),µ⊗VU(c),ν in the restriction of the symmetric
powerSymk(Cabc), which is the irreducibleG-representation
labeled by the Young diagram(k) consisting of a single row
with k boxes. That is,

gλ,µ,ν = m
(k)
λ,µ,ν(f) (VI.1)

This definition in fact does not depend on the concrete values
chosen fora, b andc, as can be seen by rephrasing it in terms
of the representation theory of the symmetric groupSk [15,
§8] (but of coursea, b andc have to be chosen at least as large
as the number of rows of the Young diagrams). Moreover, it
is evident that the Kronecker coefficients are symmetric in the
variablesλ, µ, andν.

It follows that, for any fixed choice ofa, b and c,
Algorithm V.1 can be used to compute the Kronecker coef-
ficient (VI.1) given Young diagrams with at mosta, b and
c rows, respectively, in polynomial time in the input size, or
equivalently in timeO(poly(log k)), wherek is the number of
boxes of the Young diagrams. This establishes Corollary I.4.
Let us again stress that the problem of computing Kronecker

coefficients is known to be#P-hard in general [19]; hence
we do not expect that there exists a polynomial-time algorithm
without any assumption on the number of rows of the Young
diagrams.

When computing Kronecker coefficients using the above
method, we are only interested in the representation
VU(abc),(k) = Symk(Cabc), not in arbitrary irreducible rep-
resentations ofU(abc). By specializing the construction de-
scribed in Theorem IV.2 to this one-parameter family of
representations, we obtain the following result:

Proposition VI.1. The multiplicity of a weight δ =
(δA, δB, δC) ∈ Za ⊕ Zb ⊕ Zc ∼= Λ∗

H (we use the identifi-
cations fixed at the beginning of §VI) in the irreducibleG-
representationSymk(Cabc) is equal to the number of integral
points in the rational convex polytope

∆(k, δ) =
{

(xl,m,n) ∈ Rabc
≥0 :

∑

l,m,n

xl,m,n = k,

∑

m,n

xl,m,n = δAl ,
∑

l,n

xl,m,n = δBm,
∑

l,m

xl,m,n = δCn

}

.

It follows that the Kronecker coefficient for Young diagrams
λ, µ, ν with k boxes and at mosta, b andc rows, respectively,
is given by the formula

gλ,µ,ν =
∑

γ∈ΓH

cγ #
(
∆(k, (λ, µ, ν) + γ) ∩ Zabc

)
,

where ΓH and (cγ) are defined as in the statement of
Corollary III.2.

Proof: It is well-known that the weight spaces for the
action ofU(d) on Symk(Cd) are all one-dimensional and that
the set of weights corresponds to the integer vectors in the
standard simplex rescaled byk [31]. In our case,d = abc, so
that the weights are just the integral points of the polytope
{

x = (xl,m,n)l∈[a],m∈[b],n∈[c] ∈ Rabc
≥0 :

∑

l,m,n

xl,m,n = k
}

.

Moreover, the dual mapF ∗ : Λ∗
U(abc) → Λ∗

U(a)×U(b)×U(c) as
defined in (IV.2) is given by
{

Zabc → Za ⊕ Zb ⊕ Zc

(xl,m,n) 7→
(
∑

m,n xl,m,n,
∑

l,n xl,m,n,
∑

l,m xl,m,n

)

.

We conclude that the multiplicity of a weightδ = (δA, δB, δC)
for U(a) × U(b) × U(c) is given by the number of integral
points in the polytope∆(k, δ) described above.

Just as for our main algorithm, Proposition VI.1 gives
rise to a polynomial-time algorithm for computing Kronecker
coefficients with a bounded number of rows. This second
algorithm runs faster than the generic one presented earlier,
since the ambient spaceRabc has a smaller dimension than
what we would get from the construction described in the
proof of Theorem IV.2. We remark that the time complexity
for unboundeda, b andc can be deduced from [27].



VII. A SYMPTOTICS

In this section we will prove our result on the generic order
of growth of multiplicities in the coordinate ring of a projective
variety (Theorem I.6).

We will work in the following general setup: LetV be a
finite-dimensional rational representation ofH , and suppose
that X is an H-stable closed subvariety of the associated
projective spaceP(V ). The homogeneous coordinate ring
C[X ] is graded, and we can decompose each part into its
irreducible components,

C[X ] =

∞⊕

k=0

C[X ]k =

∞⊕

k=0

⊕

µ

mH,X,k(µ)V
∗
H,µ, (VII.1)

where, following the usual conventions, we have decomposed
with respect to the dual representationsV ∗

H,µ. The stretching
functionis then by definitionk 7→ mH,X,k(kµ). We stress that
in contrast to [16], where it was assumed thatX has at most
rational singularities, we do not even require thatX is a normal
variety [73]. This is highly relevant for geometric complexity
theory, since it was recently shown in [74] and [42] that the
studied varieties (the orbit closures of the determinant and
permanent on the one hand, and of the matrix multiplication
tensor and the unit tensor on the other hand) are in fact never
normal except in trivial situations.

RemarkVII.1 . The subgroup restriction problem for a rational
group homomorphismf : H → G can be realized in the above
setup: Indeed, for any highest weightλ ∈ Λ∗

G,+ consider
X = OG,λ, the coadjoint orbit throughλ, with the induced
action ofH . This variety can be canonically embedded into
projective space as the orbit of the highest weight vector in
P(VG,λ), and it is a consequence of the Borel–Weil theorem
that C[OG,λ] =

⊕∞
k=0 V

∗
G,kλ. By comparing with (VII.1) it

follows that mH,OG,λ,k(µ) = mkλ
µ . In particular, the above

definition of the stretching function,k 7→ mH,OG,λ,k(kµ),
coincides with our previous usage,k 7→ mkλ

kµ.

Proof of Theorem I.6:By the Hilbert–Serre theorem, the
function k 7→ dimC[X ]k is a polynomial of degreedimX
for largek [73, Theorem I.7.5]. Hence there exists a constant
A > 0 such that

AkdimX ∼ dimC[X ]k

=
∑

µ∈Λ∗

H,+

mH,X,k(µ) dimVµ =
∑

µ∈∆X∩ 1
k
Λ∗

H,+

mH,X,k(kµ) dimVkµ,

where for the last equality we have used the definition of the
moment polytope∆X . By the Weyl dimension formula, we
have

dimVkµ =
∏

α∈RH,+

〈α, kµ+ ρ〉

〈α, ρ〉

=







∏

α∈RH,+

α6⊥∆X

〈α, µ〉

〈α, ρ〉







kRX +O(kRX−1)

for the representations that occur inC[X ]. The coefficient
P (µ) =

∏

α∈RH,+,α6⊥∆X
〈α, µ〉/〈α, ρ〉 is a polynomial func-

tion in µ. Since ∆X is compact, we can therefore find a
constantC > 0 such that

dimVkµ ≤ C kRX (∀k, µ ∈ ∆X ∩
1

k
Λ∗
H,+).

It follows that
∑

µ∈∆X∩ 1
k
Λ∗

H,+

mH,X,k(kµ) dimVkµ

≤ C kRX

∑

µ∈∆X∩ 1
k
Λ∗

H,+

mH,X,k(kµ) ∼ C kRX+dX

∫

dDHX ,

so thatdimX ≤ RX + dX .
On the other hand, sinceDHX is Lebesgue-absolutely con-

tinuous, the boundary of the moment polytope does not carry
any measure. We can therefore find a compact setK contained
in the (relative) interior of the moment polytope which has
positive measure with respect toDHX . Note thatP (µ) is
positive for all µ contained in the interior of the moment
polytope (indeed, for all positive rootsα with α 6⊥ ∆X there
existsν ∈ ∆X such that〈α, ν〉 > 0; since we can always write
µ as a proper convex combination ofν and some other point
ν′ ∈ ∆X , it follows that 〈α, µ〉 > 0). This implies that on the
compact setK we can boundP (µ) from below by a positive
constant. Thus there exists a constantD > 0 (depending on
K) such that

dimVkµ ≥ DkRX (∀µ ∈ K ∩
1

k
Λ∗
H,+).

Consequently,
∑

µ∈∆X∩ 1
k
Λ∗

H,+

mH,X,k(kµ) dimVkµ ≥
∑

µ∈K∩ 1
k
Λ∗

H,+

mH,X,k(kµ) dimVkµ

≥ DkRX

∑

µ∈K∩ 1
k
Λ∗

H,+

mH,X,k(kµ) ∼ DkRX+dX

∫

K

dDHX .

We conclude that alsodimX ≥ RX + dX , hence we have
equality.

Let us now elaborate on the argument presented at the end of
the introduction, where we showed that Duistermaat–Heckman
measures do not directly give rise to new complexity-theoretic
obstructions. For this, we consider a pair of projective sub-
varietiesX and Y with dimX < dimY , as is the case
for the orbit closures of relevance to GCT. Let us assume
that ∆X ⊆ ∆Y , so that the moment polytopes alone do not
already give rise to an obstruction. Clearly, this implies that
RX ≤ RY .

Lemma VII.2. Let ∆X ⊆ ∆Y and RX < RY . Then,
dim∆X < dim∆Y .

Proof: Note that we have

dim∆X = dimaff ∆X ≤ dim aff ∆Y = dim∆Y ,

with equality if and only if the two affine hullsaff ∆X ⊆
aff ∆Y are equal.



Now by assumption there exists a positive rootα ∈ RH,+

that is orthogonal to all points in∆X (i.e., for all p ∈ ∆X ,
α ⊥ p), but not to all points in∆Y . It follows that α is
also orthogonal to all points in the affine hull of∆X , but
not to all points in the affine hull of∆Y . Therefore, we have
aff ∆X ( aff ∆Y .

Lemma VII.3. Letdim∆X < dim∆Y . Then,X ⊆ Y implies
dX < dY .

Proof: If X ⊆ Y then it is immediate from (I.1) and
(I.3) thatdX ≤ dY . Let us suppose for a moment that in fact
dX = dY . Then it follows from (I.1) that

∫

∆X

dDHX(µ) g(µ) ≤

∫

∆Y

dDHY (µ
′) g(µ′)

for any test functiong. In particular, this inequality would
hold for g the indicator function of∆X . But this is clearly
impossible, sinceDHY is absolutely continuous with respect
to Lebesgue measure on∆Y , for which∆X is a set of measure
zero.

Corollary VII.4. Let dimX < dimY . Then,X ⊆ Y implies
dX < dY .

Proof: Clearly, X ⊆ Y implies that∆X ⊆ ∆Y and
RX ≤ RY . If RX = RY then the assertion follows directly
from Theorem I.6, since

dX = dimX −RX < dimY −RY = dY .

Otherwise, if RX < RY , it follows from combining
Lemma VII.2 and Lemma VII.3.

As described in the introduction, the upshot of the above is
that we cannot directly deduce from (I.1) a new criterion for
obstructions based on the Duistermaat–Heckman measure that
goes beyond what is provided by the moment polytope.
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