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Abstract—For fixed compact connected Lie groups HC G, we in the irreducibleG-representatiori/; » when given as input
provide a polynomial time algorithm to compute the multiplicity  the highest weights and \ (specified as bitstrings containing

of a given irreducible representation of H in the restriction of  6ir coordinates with respect to fixed bases of fundamental
an irreducible representation of G. Our algorithm is based o a .
weights, seg §V).

finite difference formula which makes the multiplicities amenable

to Barvinok's algorithm for counting integral points in pol ytopes. o namaesubgroup restriction problentomes from the
The Kronecker coefficients of the symmetric group, which

can be seen to be a special case of such multiplicities, play a a'chetypical case where the mgpis induced by the inclu-
important role in the geometric complexity theory approachto Sion of a subgrougd C G. is also known as
the P vs. NP problem. Whereas their computation is known to be the branching problem The main result of this paper is a

#P-hard for Young diagrams with an arbitrary number of rows,  polynomial-time algorithm fof Problem 1.1:
our algorithm computes them in polynomial time if the number

of rows is bounded. We complement our work by showing that Theorem [.2. For any homomorphismf: H — G be-
information on the asymptotic growth rates of multiplicities in = yvaen compact connected Lie groufiand G, there is a

the coordinate rings of orbit closures does not directly led s . .
to new complexity-theoretic obstructions beyond what can & polynomial-time algorithm for the subgroup restrictionopr

obtained from the moment polytopes of the orbit closures. No-  l€m for f.

asymptotic information on the multiplicities, such as provded . . x
by our algorithm, may therefore be essential in order to find  Indeed, we describe a concrete algoritim (Algorithm V.1).
obstructions in geometric complexity theory. In particular, for any fixed\ and p the stretching function

k — my7 can be evaluated in polynomial time.

. INTRODUCTION Corollary 1.3. For any homomorphisnf: H — G between
The decomposition of Lie group representations into ieompact connected Lie groupd and G, positivity of the
reducible sub-representations is a fundamental problem asfefficientsn), can be decided in polynomial time.
mathematics with a variety of applications to the sciences.
In atomic and molecular physics (Clebsch—Gordan series),tla
well as in high-energy physics, this problem has been studi
extensively [1EB], perhaps most famously in Ne’eman ar
Gell-Mann’s eight-fold way of elementary particles [4-&).

Mulmuley conjectures that deciding positivity of the mul-
licities mf; is possible in polynomial time if the group
momorphismf is also part of the inpuf [16]. Corollary 1.3
n be regarded as supporting evidence that this conjecture

) . . . might in fact be true for generaf (note that for specific
pure mathematics, the combinatorial resolution of the jerob gn r 9 ¥ P .
families of homomorphisms, such as those corresponding

of decomposmg tensor products of irreducible represemtt to, the Littlewood—Richardson coefficients, positivity cha
of the unitary group by Knutson and Tao has been a recept

. ) : dEcided in polynomial time_[&8, 17]). However, any approach

R:ghtlf']gergr\ggho? lor;%th'i:ngrfn::fgir? [171,]8](-:0|\/|m0ret§%9dn; nto deciding positivity that proceeds by computing the actua

ries o quantum i lon 2=, putatl multiplicities is of course expected to fail, since the datt
complexity [12], as well as the geometric complexity theor

, %roblem is well-known to be#P-hard [18,19].
approach to théP vs. NP problem [13=15] have brought . — o
the representation theory of Lie groups to the attentiorhef t We establistLTheorem].2 by deriving a novel formula

computer science community. for the multlpI|C|t|§Sm# _ ), which is obta!ned

) . .. in three steps: First, we restrict from the grodp to its
In this paper, we study the problem of computing multiplic-_ . ) . . A
. . Lo maximal torusTg; the corresponding weight multiplicities
ities of Lie group representations: " . .

can be computed efficiently by using the classical Kostant

Problem 1.1 (Subgroup Restriction Problemlet f: H — G multiplicity formula [20,[21] or in fact by evaluating a siteg
be a homomorphism between compact connected Lie giupwector partition function[[22=24] (gll). Second, we restri
and G. Thesubgroup restriction problem fgtis to determine all weights to a maximal toru§y of H. Third, we recover

the muItipIicitymﬁ of the irreducibleH -representation;,,  the multiplicity of an irreduciblef-representation by using
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a finite-difference formula[ (Proposition 11].1). By cardifu of Kronecker coefficients for Young diagrams with two rows,

combining the first two stepE. Problem]l.1 can be reducedwe can easily go up t& = 10® boxes using commodity

counting integral points in certain rational convex popde hardware. In contrast, all other software packages knowimeto

of bounded dimension, which can be done efficiently by usirauthors cannot go beyond only a moderate number of boxes

Barvinok’s algorithm[[25=27] (see alsb [28-30]). (k = 10% on the same hardware as used above). Moreover,
The multiplicity formula itself has intrinsic interest bayd by distributing the computation of weight multiplicitiesm

its application to algorithmics. One insight that is immegdi several processors, we have been able to compute Kronecker

from our result is the piecewise quasi-polynomial nature abefficients for Young diagrams with three rows ane- 10°

the multiplicities;, (Corollary TV.3). boxes in a couple of minutdsWe hope that our algorithm will

) provide a useful tool in experimental mathematics, thécmbt
Let us now turn to the computation of théronecker ,nhysics, and geometric complexity theory.

coefficientsyy ..., Which arise in the decomposition of tensor

products of irreducible representations of the symmetatig oy final result concerns the asymptotics of multipliciiies

Sy [31]: the general algebro-geometric setup of the geometric aampl
Al @ [u] = @gm,u [v], ity theory approach to proving th¥ P # VNP conjecture,

v an algebraic version of thHé = NP conjecture. Recall that, in
where we denote byA] the irreducible representation ofa nutshell, this approach amounts to showing that for certai
Sk labeled by the Young diagram with & boxes [(8V]). pairs of projective subvarietie¥ andY one is not contained
Kronecker coefficients are notoriously difficult to studyda in the other; this would then imply complexity-theoretievier
finding an appropriately strong combinatorial interprietais hounds. Both the permanent vs. determinant problem, which
one of the outstanding problems of classical representatig equivalent to th& P vs. VNP problem [40], as well as the
theory. They appear naturally in geometric complexity tiyeo complexity of matrix multiplication[[41] can be formulatéul
where their efficient computation has been subject to variothis framework[[13=15, 42]. More concretely, let us denate b
conjectures[[16], as well as in quantum information theory imH,X_’k(#) the multiplicity of the dual of an irreducibléi-
the context of the marginal problem and coding theéry [1@epresentationy,, in the k-th graded part of the coordinate

11,[32+35]. ring of X, and similarly fory” (cf.[EVIfor precise definitions).
Using Schur-Weyl duality, the Kronecker coefficients fornen,
Young diagrams with a bounded number of rows can be equiv- XCY = muxi(p) <muyrp) (1.1)

alently characterized in terms of a single subgroup rdgiric _
problem for compact connected Lie groups (§VI). Thereforfor all 4 andk > 0. Therefore, the existence pfandk such

by [Theorem IR they can also be computed efficiently: ~ that mu,xx(n) > mmyk(p) proves thatX ¢ Y; such a
pair (u, k) is called anobstruction[14]. One can relax this

implication further and instead compare the support of the
multiplicity functions,

Corollary 1.4. For any fixedd € Z-q, there exists a
polynomial-time algorithm for computing the Kronecker feoe
ficientg, ., given as input Young diagrams 1 and v with

at mostd rows. That is, the algorithm runs i@ (poly (log k)) XCY = (maxilp) #0=muyr(n) #0).

wherefk is the number of boxes of the Young diagrams. . . T : .
Since computing multiplicities in general coordinate grig a

Corollary 1.5. Positivity of Kronecker coefficients for Youndlifficult problem, it is natural to instead study their asyotjc
diagrams with a bounded number of rows can be decided liehavior. Following an idea of Strassen [[43], it has been

polynomial time. proposed in([4R2] to consider thmoment polytope
By specializing our technique, we get a clean closed-form <

expression for the Kronecker coefficienffs (Propositiort)/|. Ax = {E tm Xk (R) # 0}7

which not only nicely illustrates its effectiveness, busal k=1

implies piecewise quasi-polynomiality for bounded height which is a compact convex polytope that represents the asymp
feature that has only been noticed in a special case [36htic support of the stretching function. Moment polytojies
Moreover, it is immediate from our formula that the problemhave a geometric interpretation, which should facilitateirt
of computing Kronecker coefficients with unbounded heigltomputation[[44]. Clearly,
is in GapP, as first proved in[[19].

Similar conclusions can be drawn for the plethysm coef- XCY = Ax CAy. (12)

ficients, which can also be formulated in terms of subgroyp,ever, preliminary results suggest that the right-hade s
restriction problems [37]. Like the Kronecker coefficigttey ,,oment polytopedy might be trivially large in the cases of

play a fundamental role in geometric complexity theory! [1§nterest [15[ 42,45, 46], and therefore insufficient for firg
38] and quantum information theory [11,/39]. complexity-theoretic obstructions.

In practice, our algorithms appear to be rather fast as IongA preliminary implementation of the algorithm is availahipon request
as the rank of the Lie groufr is not too large. In the casefrom the authors.



It has therefore recently been suggested to studpsiyenp- dominant weights\¢, | is by definition the intersection of the
totic growth of multiplicities (e.g., [47, §2.2]). The naturalweight lattice and the positive Weyl chamber.
object is theDuistermaat—Heckman measurehich is defined  The fundamental theorem of the representation theory of

as the weak limit compact connected Lie groups is the fact that the irredecibl
1 (complex) representations 6f can be labeled by thelrighest
DHx := lim == > maxr(w) e (3)  weight) e A%, [610; for every element € Ay, | there ex-
HEAY 4 ists a unique irreducible representatign , with this highest

weight. Given an arbitrary finite-dimensional (complex)

is a non-zero finite measure [48]. The Duistermaat—Heckm([:{erresem"mOmf'_We can always decompose it into ireducible
measure has a continuous density functjop with respect sub-represen.tatlon‘s’ = EB/\GA_Z;,+ va‘((/\) Ve .We shal!

to Lebesgue measure on the moment polytope; it is Slﬁ;}ll_the fung:nonmgy thus defined thdighest weight multi-
ported on the entire moment polytope (both statementsviolidlicity function _ _

from the main result of[J48]). For well-behaved varieties, !f We restrict the representation to the maximal torus, we ca
Duistermaat—Heckman measures have a geometric interprétgilarly decompose into irreducible representationsc&ic
tion [4955], which makes their computation potentiallyahu IS @ compact Abelian group, we can always jointly diagorealiz
more tractable[56=58] (this connection is however lesarcld!S action, and it follows that the irreducible represeites

in the singular cases relevant to geometric complexityryjeo &€ one-_d|men5|onal. The jomt_ eigenvalues can be en(_:oded
In this context, our main technical result is the followirsg¢ 25 @ Weights € Ag, and we will denote the corresponding

wheredx € Z>¢ is the appropriate exponent such tis x

BV for the proof): irreducible representation df; by _(Cg. The Qecomp()_si'Fion
_ V =2 @ sen- mre,v(B8) Cp then defines theveight multiplic-

Theorem 1.6. The exponentiy is equal todim X — Rx, ity functionnr, . We also sefk] = {1,...,k}, and write

where R is the number of positive roots df that are not ¢ .. ; for the asymptotic equivalendin;_,. f(k)/g(k) = 1.

orthogonal to all points of the moment polytope . An equivalent way of encoding weight multiplicities is in

The significance of Theorem].6 is that the order d€rms of the (formalpharacter
growth of the “smoothed” multiplicities, as captured by the chV = ZmTG,V(ﬂ) e’
Duistermaat—Heckman measures, does only depend on the 3

dimension of the orbit closures and on their moment poMOp%vhich can be understood as the
Now suppose that we are in the situation tbatand Y Formally
cannot be separated by using moment polytopes,Ag.,C '

generating functiongf 1 .
ch V' is an element of the group ring[Af;], which
. ) consists of (finite) linear combinations of basis elemerits
Ay . For the orbit closureX andY that one tries to Separatesubject to the relation?e® — 55 The character of an

in geometric complexity theory, one can show thah X' < ey cible representatiofi. , is given by theWeyl character
dim Y [15, [42]. Then, X C Y would imply thatdx < dy  formula 61, p. 319] 7
(Corollary VIT.4). But this means that weannotdeduce from T '

(D) and [I.3) a criterion of the form > wew, det(w) e +0)

hVe = . 1.1
C G, eP HQGRG . (1 _ 670‘) ( )
XCY = fx(u) < fr(p) (V) '
Observe that we have

since in order to take the weak limit we need to divide 1 o o
by different powers ofk. Therefore, Duistermaat—-Heckman Mocr. . (1—e) - H (Ite+e™+..)
measures do not directly give rise to new obstructions,-indi aefe aclc .+ (11.2)
cating that a more refined understanding of the behavior of = Z¢RG,+(5)e_ﬂ7
multiplicities in coordinate rings might be required. BEAL,

where ¢, , is the Kostant partition functiongiven by the

) ) ) ) formula
In this paper we will use basic notions of the theory of

compact Lie groups [37. 59=61]. Let be a compact con-  PRa.+ (B) = #{(z;) € Z‘gRoG’H Y wjey =By (113)
nected Lie group with Lie algebrga We fix a maximal torus J

Te C G and denote by its Lie algebra, the correspondingThat is, ¢r. , counts the number of ways that a weight can
Cartan subalgebra. We write; = ker exp ]tG for the integral be written as a sum of positive roots (this number is always
lattice andA, for the weight lattice, which we can consider a$inite since the positive roots span a proper cone). It fadlow

a subset ot’,. The Weyl groupiV¢; acts ont, by reflections directly from [IL.I) and [(IL.2) and that

through the hyperplanes orthogonal to the roots. Let uss#oo o w(Ap)—p—B

a set of positive rootf¢ | C AZ,. This determines a positive ch Ve = Z det(w) Z ORa.+ (B)e

Weyl chambett, ., as well as a basis of fundamental weights
{wf,...,.wS }, whererg = dim T is the rank of the Lie =Y D det(w)brg, (wA+p) —p—B)e’.
group, and the Weyl vectop = %ZQGRG# a. The set of BeAG weEWs

Il. PRELIMINARIES

weWeg BEAY,



In other words, the multiplicity of a weight in an irreducible I1l. THE FINITE DIFFERENCEFORMULA

representatiorv » is given by the well-knowrKostant mul- | et v/ pe an arbitrary finite-dimensional representation

tiplicity formula [20], of the compact, connected Lie grouf. Clearly, we can
_ det o) —p—B). (114 cpmpute the We|ght _rr?ult|pI|C|t_y fUﬂCtIOﬂanV from the

M6, Vox () w;{/ et(w) Sre . (WA+p)=p=F). (11:4) highest weight multiplicity functiomn¢ v by using any of the

_ ¢ N . classical formulad (IT11) and(T1.4), or by evaluating thector

For any fixed group’, the Kostant partition function can partition function [IL5) described if §ll. By “invertingthe

be evaluated efficiently by using Barvinok's algorithm [[25)wey| character formula, the converse can also be achieved:
since it amounts to counting points in a convex polytope

in an ambient space of fixed dimension. Therefore, weighfoPosition lll.1. The highest weight and weight multiplicity
multiplicities for fixed groupss can be computed efficiently, function of a finite-dimensional-representatiorV” are related
This idea has been implemented by Cochel [21] to commeé

weight multiplicities for the classical Lie algebras (ugithe

method presented i [30] instead of Barvinok’s algorithviie. ma,v = H —Da | m1g,v ’

remark that the problem of computing weight multiplicities a€Ra.+
is of course the special case[of Probleni I.1 whares the
maximal torusTg C G.

AG oy
where(D,m)(A) = m(A + «) — m(A) is the finite-difference
operator in directionn. Note that any two of the operatof3,

Weight Multiplicities as a Single Partition Function commute, so that their product is independent of the order of

: - , multiplication.
If G is semisimple, we can find,¢ € Z>o and group
homomorphismsA: Z¢ — Z' and B: A}, & Af, — Z' such Proof: By linearity, it suffices to establish the lemma for
that a single irreducible representatidh= V , of highest weight

\ . . A. The Weyl character formulé@_(Il.1) can be rewritten in the
mT&VG,A(ﬂ) = ¢4 (B (ﬁ)) (V/\ € AG.,Jrv pe AG)v (”-5) form

where¢ 4 is thevector partition functiordefined by H (1—e ) chVga = Z det(w) e*P=P (111.1)

Paly) = #{x € L3 : Az = y}. me)  7° weWe
If we identify elements irZ[A%] with functions on the weight

Note that this improves over the Kostant multiplicity forlau |attice, applying finite-difference operatof, corresponds to
(IL4), where weight multiplicities are expressed as aeratit- - mytiplication by (e~ — 1). Therefore, the left-hand side of

ing sum over vector partition functions. In particular,. Bl is ) is identified with _D
an evidently positive formula. It has been established tieBi V\II clonsio:elr thglrigggﬁgr?dcgde &Tﬁgr:ﬁel—p is a

Guillemin, and Rassart for the Lie algela&d) [22], and was . i . .
later extended to the general case by Blien [23] by consigeriifr;ztlly t(cj)otwtlenierl]rt](ta:ivcil%?t;\:':cl)?hzern\;vglacnhya\é]\/f))élrg'rr%ﬁ iesletnr::re
Littelmann patterns[[62] instead of Gelfand—Tsetlin paise exists a positive roat € R+ such thatla, w() + p)) < 0.

63). . . \ =
The assumption of semisimplicity fdr (11.5) is not a res{ricIn particular,w(A + p) — p is never dominant unless = 1.

tion. Indeed, ifG' is a general compact connected Lie grouf follows that the restriction of [[,cr,, ., _Da) MTg,Va,

then its Lie algebra can always decomposed as to A . is equal to the indicator function dfA}, i.e., equal
to the highest weight multiplicity function of¢ . ]
0=1[0,0]D3 (I.7) " The idea of using[{I[]1) for determining multiplicities of

where the commutatdiy, g] is the Lie algebra of a Comloactirreducible representations goes back at least to Stajnber

connected semisimple Lie groufs, and where; the Lie _[64]' W_ho proved a fo_rmula for the multiplicity} , of an
algebra of the centeZ(G) of G [61, Corollary 4.25]. Let irreducible representatiol,, in the tensor products ) ®

us choose a maximal toru&;_ of G, that is contained in VG,;ﬁ- ghese m‘;fl_t'Pl'C'g)eSCK, are bcallt::'dftheLnltleyvoold—
T¢. Consider now an irreduciblé-representatiorV » with Richardson coefficienttor G. Steinberg's formula involves

highest weight\. By Schur's lemma, each element f{(G) 2" alternating sum over the Kostant partition functiondjl.
acts by a scalar. Therefore, all weighttsthat appear in the it can be evaluated efficiently as described by Cochel [21].

weight-space decomposition have the same restrictign tio D€ Loera and McAllister give another method for computing
follows that Littlewood—Richardson coefficients [65], which appliesr@a

nok’s algorithm to results by Berenstein and Zelevinsky][66
e ve () = {mTGSS,VGSS,ASS (Bss) 1A = Bz, (11.8) Since the tensor products of ireduciltlerepresentations are
@re 0 otherwise just the irreducible representations 6f x G, the problem
) o ) of computing Littlewood—Richardson coefficients is again a
where we writeuss and i, for the restriction of a weight special case ¢FProblem).1. The following consequenceef th

to the Cartan subalgebra @f, g] and to, respectively. These proof of[Proposition TITL will be convenient in the sequel:
multiplicities can therefore be evaluated by usihgll.5).



Corollary 1.2 Write [[,c .. N (I—e*) =3 cr,cye " Finally, we reconstruct the multiplicity of an irreducible

with T C A, finite and allc, # 0. Then, representationt , by using the finite-difference formula
(Proposition TIT.A/Corollary TIT.2). If this procedure warans-
ma,y(A) = Z Cy v (A +7). lated directly into an algorithm, the runtime would be poly-
v€la nomial in the coefficients ofA (with respect to the basis

In particular, it is evident frorp Corollary TIT|2 that, fomg  of fundamental weights), i.e., exponential in their bitjém
fixed groupG, the multiplicity of an irreducible representatiorsince the number of weights is of the order of the dimen-
in some representatioll can be computed efficiently fromsion of the irreducible representatidf; », which according
the weight multiplicities ofV by computing a finite linear to the Weyl dimension formuldas given by the polynomial
combination. HQERG,+ {a, A\ + p)/{a, p) (cf. the formula by Straumann

[67]). We will now show that it is possible to combine the

IV. MULTIPLICITIES FOR THE SUBGROUPRESTRICTION weight multiplicity formula [IL3) with the restriction npaF™

PROBLEM in a way that will later give rise to an algorithm that runs in
Every G-representatior’/ can be considered as (“restrictgpolynomial time in the bitlength of the input:

to”) a representation off by settin
) P y g Theorem IV.2. Let f: H — G be a homomorphism of com-

h-v:=f(h)-v (Vh € H), (IV.1) pact connected Lie groups. Then we can find',u € Z>g
and group homomorphismd: Zs+s' — Z* and B: AL @
A} — Z* with the following property: For every irreducible
representatior¥ » of G and Vg, of H, the muItipIicitymﬁ
of the latter in the former is given by

and the subgroup restriction problem fgr as defined in
[Problem 1.1, amounts to determining the muItipIic'myﬁ of
a given irreducible representation &f in the restriction of
a given irreducible representation 6f. In this section we
will derive a formula for these multiplicitie$ (Theorem B,
which will be the main ingredient of the algorithm presented s s _ A

in [EV] below. It will also follow from this formula that thex, M = Z oz €22 OL" 1 A =B (u + 'y) b

are given by a piecewise quasi-polynomial fundfiom A and Vel

y (Corollary V.3).

Let us choose the maximal toriiy; C H in such a way that where the (finite) sef ;; and the coefficientéc,) are defined
f(Tu) € T, and denote the corresponding Cartan subalgets, ., . (1 —e ) =3 p, ¢,e”7 ande, # 0. In fact,
by tg. Of course, this implies that the induced Lie algebr@ge can choose = O(r%), s <rg andu = O(r2) + rp.
homomorphisniie(f) sends the Cartan subalgebrafin

the one of G. Since f is a group homomorphisniie(f) Proof: By definition and Corollary TT.R, we have:), =
restricts to a homomorphism between the integral lattices,u v, , (1) = ZV@H Cy MTy Ve (1 + 7). In vigw of
F: Ay — Ag, X — Lie(f)X. The dual map between theLemma V.1, the multiplicity of al';-weightd € Aj; in the
weight lattices is given by irreducibleG-representatiofV » is given by

F*: Ay, — Ay, BrpBoF = BoLie(f)|AH. (IV.2)

The following is well-known and easily follows from the M1 Ve (0) = ZmTG-rVGA(ﬁ)'
definitions: Féfé‘)ié

Lemma IV.1. Let V be a representation off andv € V' a
weight vector of weight € Af. If we restrict the action tdd

As in (IT.7), let us now decompose the Lie-algelra g,
via (V) thenv is a weight vector of weight™(5) € Aj;. P gebra [g, 0]

3. Denote the Lie group corresponding fig g] by G and
Let us also fix systems of positive roaky; . for H. This choose a maximal toruc., which is contained irff". Using

in turn determines the set of dominant weights , as well (L8),

as a basis of fundamental weigr(tsf’) as described ip_gll.

Let us also sety = dim Ty.

Our strategy for solving the subgroup restriction problem ZmTG"VG,A(ﬁ) = ZmTGSS,VGSS,ASS (Bss )
. . . . . . _ BEAY Bss €A ss
for f then is the following: Given an irreducible represen Fr(p)%s CSSBMCC:M:&

tation Vi, of G, we can determine its weight multiplic-

ities with respect to the maximal torus; by using any

of the formulas presented ih_Bll. We then obtain weigiwhere we have decomposéd as a sum of two homomor-
multiplicities for T4 by restricting according tb LTemma IV.1. phismsCys: Ag;  — Ay andC.: A ) — A

) _ _ _ o _ Let us now choose group homomorphismsZ® — Z! and
In the context of this paper, a quasi-polynomial functioraipolynomial

_ . t
function with periodic coefficients; see[d. 6 for the preaséinition. It should B = B_l © Ba: Aab EB AESS — Z Su?h that[(ILb) holds for
not to be confused with the notion of quasi-polynomial tincenplexity. the weight multiplicities foiG ;. For this,s andt can be taken



of orderO(r%) [23, Proposition 19]. Then, In particular, this implies that thstretching functiork —
mF is a quasi-polynomial function for large This is in fact
ku
ZmTGss-,Vcss,xss (Bss) true for all k, as has been observed n [16] (¢f.[[53] for more
. ﬁsseAcéis s general quasi-polynomiality results on convex cones, dsal a
sl tC222= [7Q] for further discussion).

= Y #wezsAr=B(3 )

V. POLYNOMIAL -TIME ALGORITHM FOR THE SUBGROUP

Bss€EAG,
CisBass+C2 =6 RESTRICTION PROBLEM
= z,0ss): (o ¢ Bes ) = | _ains n this section we will formulate our algorithm for the
#{(@,Bss) (5 ) () = (L85} In th t Il formulat Igorithm for th
= () - (A By (fy= (B 00 (AA)} subgroup restriction probleni,_Problem]|l.1. Recall that, by
N ToPss) Lo G J\Ps) = L0 —c. 1) g )T (IV5), the computation of the multiplicitiesn, effectively
=:A =B (V.3) reduces to counting the number of integral points in certain

. . - . rational convex polytopes of the forfn(IV.4). We shall suppo
After choosing a basis of the lattick;, we arrive at the .\ highest weights and 1., which are thenput to our

H ! __ : —
as\s/,\tlerte? forthrJ]Iat (tvf\]ntb — (?m Tg,, andu = ;+ rH)- ructi algorithm, are given in terms of their coordinates with extp
€ stress that e proot orem IS CONSUUCIV, “the fundamental weight bases fixed[in_BIV. Clearly, for

The maps.A anq B, yvhose eglstence is asserted by thSach of the finitely manyy € I'y, the description of the
theorem,_are_ deﬁned_ nﬂE’.S)_ n te_rms of and B, whose polytopeA 4 (A, u+ ) (say, in terms of linear inequalities)
construction is described explicitly in [.‘22’ I?roof of Theor is of polynohial size in the bitlength of the input. It follew
2.1] (for the case fg » su(d.)) and_ln {2";’ §4] (for the that Barvinok’s algorithmcan be used to compute the number
general case). S.VI for an illustration in the contextmftof integral points in each of these polytopes in polynomial
Kronecker coefficients. time [25] (see alsd [26, 27]). This gives rise to the follogin

If one uses the Kostant multiplicity formula (1.4) insteafi |\ 001 v e Sigorithm fof ProBlem 1.1, thereby estsib!
(IL5) in the proof of Theorem 1VI2 then one arrives at a samil E\ . ¢ - - y
e T \ = g 0 ;
formula for the multiplicitiesmy; involving an additional
alternating sum over the Weyl group 6f. After completion Algorithm V.1. Let f: H — G be a homomorphism of com-

of this work, we have learned of [49, Lemma 3.1] which ipact connected Lie groups. Given as input two highest weight

derived in this spirit. Ae AL =7"¢ and p € Ay = 7', encoded as bitstrings
. ] ) o containing their coordinates with respect to the fundaraknt
Piecewise Quasi-Polynomiality weight bases fixed above, the following algorithm computes

Let us use the fundamental weight bases fixed above tte muItipIicitymﬁ in polynomial time in the bitlength of the
identify Ay, = Z"¢ and A}, = Z"#. The group homomor- input:
phisms.A and B correspond to matrices with integer entries, m, « 0
which we shall denote by the same symbols. Observe that théor all v € I'; do
formula in[Theorem IV in essence amounts to counting the ;4 (A, 5(\, 4+ ) N Zs+s') as computed by

numbern(y) := # (AA,B(y) N ZS“}) of integral points in  Barvinok’s algorithm (see discussion above)

certain rational convex polytopes of the form m 4= m + cyn
Aaply) = {xERS“/ DXy, 25 > 0, Ax = By}, end for
(IV.4) return m

Here, A 4 5(y) denotes the rational convex polytope defined
in (IV4), and the finite index sefy; C Aj; as well as the
mﬁ = Z eyn(A, g+ 7). (IV.5) coefficientqc,) are defined in the statement[of Theorem]IV.2.

YElH

parametrized by € Z"¢T"H, Explicitly,

There are at least two software packages which have
It is well-known thatn(y) is a piecewise quasi-polynomialimplemented Barvinok’s algorithm, namelyatTE [71] and
function in y [68]. That is, there exists a decomposition ogaRvINOK [69, [72]. In[8] we have reported on the perfor-
Z'<*"H into polyhedral chambers such that on each chamh@ance of our implementation pf Algorithm V.1 for computing
C the functionn(y) is given by a single quasi-polynomial,Kronecker coefficients using the latter package.

i.e., there exists a sublattice C Z"¢" of finite index pomarv2. The existence of a polynomial-time algorithm
and polynomialgp. ) with rational coefficients, labeled by thee in fact already follows abstractly from
finitely many pointsz € Z'<* /L, such that(y) = pi,)(y) [Corollary V3, since in order to compute’) we merely have

for all Y € zror (cf. [69, §2.2]). We record the following to evaluate dixed piecewise quasi-polyn(gmial function. This
immediate consequence: piecewise quasi-polynomial can be computed algorithriical
Corollary IV.3. For any fixed group homomorphisfn H — by using a variant of Barvinok’s algorithm which is also
G, the multiplicites m? are given by a piecewise quasi-implemented in the8ARVINOK package; see [69, Proposition

o
polynomial function in\ and . 2] and alsol[277, (5.3.1)].



V1. KRONECKERCOEFFICIENTS coefficients is known to b&tP-hard in general [19]; hence

As explained in the introduction, the Kronecker coefficientVe do not expect that there exists a polynomial-time alporit

play an important role in geometric complexity theory ang/_nhout any assumption on the number of rows of the Young
guantum information theory. In this section, we will deberi lagrams. . . .
precisely how they can be computed using our methods. When computing Kronecker coefficients using the above

Let us recall the language of Young diagrams which fnethod, we are only interested in the representation

k abe . . . .
commonly used in this context [31]. Xoung diagramwith VU(abCM’?) = Sym”(C*), not n _a_rb|trary |rredUC|bI_e rep-
r rows andk boxes is given by an ordered list of imegergesentatlons olU(abc). By specializing the construction de-
A > ... > A > 0with 3, A = k. It can be visualized as SCribed in[Theorem V2 to this one-parameter family of

an arrangement of boxes inr rows with \; boxes in the representations, we obtain the following result:

j-th row. We set\; = 0 for all j > r. We will now consider proposition VI.1. The multiplicity of a weighté =
the unitary groupU(d), which consists of the unitary x d- (64,6,6€) € 2° @ 2" @ Z° = A% (we use the identifi-
matrices. Let us fix a system of positive roots and dencggtions fixed at the beginning pF 8VI) in the irreducitgie

the corresponding basis of fundamental weights(dy). To  representatiorSym” (C*) is equal to the number of integral
each Young diagram\ with at mostd rows we associate points in the rational convex polytope

the irreducible representation df(d) with highest weight

equal tto:1 (Aj = Aj41)wj. Every polynomial irreducible  A(k,§) = {(wz,m,n) € RY¢ - Z Tmon = K,
representation ob/(d) arises in this way. By a slight abuse of B Lm,n

notation, we identify Young diagrams with the correspondin A B _C

highest weights. More generally, we can associate to every le’m’" =i ’le’m’" = O le’m’” =% }
integer vectop € Z¢ the weighty7_, (8; — B;41) w;, where o b b

we setfs41 = 0. This defines a bijection betweeff and It follows that the Kronecker coefficient for Young diagrams
the weight latticeAy; ;) of U(d). In particular, the positive A, u, v with k& boxes and at most, b and ¢ rows, respectively,
roots fixed above correspond to the integer vectors of tha fois given by the formula

(...,0,1,0,...,0,—1,0,...).
I = Y oy # (A, (A p,v) +9) N2

The Kronecker coefficieny ., associated with triples of Vel
Young diagrams\, ; andv with k boxes each and at most where T'; and (c,) are defined as in the statement of
b andc rows, respectively, can then be defined in terms of t
following subgroup restriction problem of compact, corteec ) )
Lie groups: LetH = U(a) x U(b) x U(c) andG = U(abc) Proof: It is well-known that the weight spaces for the
a triple of unitaries(U, V, W) to their tensor product/ ® the set of weights corresponds to the integer vectors in the
V @ W. The Kronecker coefficient, ., is then given by the Standard simplex rescaled y[31]. In our cased = abc, S0
multiplicity of the irreducible H-representationVy (x ..y = that the weights are just the integral points of the polytope
Vi) @ Vuw),u @ Ve, in the restriction of the symmetric { —( ) c Rabe . Z - k}
powerSym” (C?¢), which is the irreduciblé-representation % ~ Flmn)icla]meb]nele]  B>0 Tlmn =Ry
labeled by the Young diagraiik) consisting of a single row Lm,n
with k& boxes. That is, Moreover, the dual mag™: A

defined in is given b
oag =1 (F) (VL.1) (I.2) is given by

This definition in fact does not depend on the concrete value z2be — LS L &L

chosen fom, b andc, as can be seen by rephrasing it in terms| (z;m.n) — (Zm,n Ty 2opm Tl 2ol a:l_,myn).

of the representation theory of the symmetric graip[15,

§8] (but of course:, b andc have to be chosen at least as largé/e conclude that the multiplicity of a weight= (54, 65, 6)

as the number of rows of the Young diagrams). Moreover,fiir U(a) x U(b) x U(c) is given by the number of integral

is evident that the Kronecker coefficients are symmetricién t points in the polytope\(k, §) described above. [ ]

variables), y, andv. Just as for our main algorithnj, Proposition YI.1 gives
It follows that, for any fixed choice ofa, b and ¢, rise to a polynomial-time algorithm for computing Kronecke

can be used to compute the Kronecker coetoefficients with a bounded number of rows. This second

ficient given Young diagrams with at most b and algorithm runs faster than the generic one presented garlie

c rows, respectively, in polynomial time in the input size, osince the ambient spadg®*¢ has a smaller dimension than

equivalently in timeO(poly(log k)), wherek is the number of what we would get from the construction described in the

boxes of the Young diagrams. This establishes Corollaty | @roof of[Theorem TV.2. We remark that the time complexity

Let us again stress that the problem of computing Kroneckier unbounded:, b andc can be deduced from [27].

Uabey = Miyxuyxu(e) @S



VIl. ASYMPTOTICS for the representations that occur @ X]. The coefficient

In this section we will prove our result on the generic ordel?(“). N HaE.RH,+=alA.>< (@, )/ p) s a polynomial fqnc-
of growth of multiplicities in the coordinate ring of a prejéve tion in u. Since Ay Is compact, we can therefore find a
variety [Theorem 16). constantC' > 0 such that

We will work in the following general setup: Lét’ be a dim Vj,, < O ELBx (Vk, € Ax N lA;I-Q—)'
finite-dimensional rational representation Bf, and suppose koo
that X is an H-stable closed subvariety of the associatel§ follows that
projective spacelP(V). The homogeneous coordinate ring ZmH.Xk(k,U) dim Vi,

C[X] is graded, and we can decompose each part into its HEANALAL o
irreducible components, R

o o < CR™Y mpg xo(kp) ~ C kX rax /dDHX,
ClX] = PCXls = PP muxi(m) Vi, (V1) HEAXNEAY |

k=0 k=0 n so thatdim X < Rx + dx.
where, following the usual conventions, we have decomposedon the other hand, sindeH x is Lebesgue-absolutely con-
with respect to the dual representatiori ,. The stretching tinuous, the boundary of the moment polytope does not carry
functionis then by definitiornk — m g x x(ku). We stress that any measure. We can therefore find a compacksebntained
in contrast to[[16], where it was assumed tHathas at most in the (relative) interior of the moment polytope which has
rational singularities, we do not even require tiais a normal positive measure with respect ©0Hx. Note that P(u) is
variety [73]. This is highly relevant for geometric compigx positive for all 4 contained in the interior of the moment
theory, since it was recently shown in [74] and][42] that theolytope (indeed, for all positive roots with @ / Ax there
studied varieties (the orbit closures of the determinamt ag@xistsv € Ax such thafa,v) > 0; since we can always write
permanent on the one hand, and of the matrix multiplicatignas a proper convex combination efand some other point

tensor and the unit tensor on the other hand) are in fact nevéerc Ax, it follows that{a, 1) > 0). This implies that on the
normal except in trivial situations. compact set we can boundP(u) from below by a positive

RemarkVIl.1. The subgroup restriction problem for a rationafonstant. Thus there exists a constant- 0 (depending on
group homomorphisnfi: H — G can be realized in the aboveK) such that
setup: Indeed, for any highest weight € Af , consider dim Vi, > D kFx (Vue KN lA* )
X = Og,x, the coadjoint orbit through, with the induced r= EoHT
action of H. This variety can be canonically embedded int€onsequently,
projective space as the orbit of the highest weight vector in . .
P(Ve.), and it is a consequence of the Borel-Weil theorem ZTZLH’X"’“(/{“) dim Vi = Z}T’H"X’k(k“) i Vi,
that C[Oc,\] = @ry Ve sa- By comparing with [VIL1) it #€4x Mt HERNE AL+
follows thatmp o, , k(1) = mf*. In particular, the above ~ pjRx > s (kp) ~ Dka+dX/ dDHy .
definition of the stretching functios — mpy o, k(kp), o K
coincides with our previous usage;— mj,.
Proof off Theorem 1]6:By the Hilbert—Serre theorem, the
function k — dim C[X] is a polynomial of degreéim X
for largek [73, Theorem 1.7.5]. Hence there exists a constant | ot s now elaborate on the argument presented at the end of
A >0 such that the introduction, where we showed that Duistermaat-Heckma
AKX L qim CX], measures do not dirgctly give ri;e to new .complex_ity-tlhtizore
obstructions. For this, we consider a pair of projective-sub

= > muxp(p) dimV, = > mux(kp) dim Vi, varieties X and Y with dim X < dimY, as is the case
HEAT 4 REAXNENY for the orbit closures of relevance to GCT. Let us assume
where for the last equality we have used the definition of trtlhat Ax C Ay, so that the moment polytopes alone do not

moment polytopeA x. By the Weyl dimension formula, we a(?ready give rise to an obstruction. Clearly, this implibatt

pEKNTAY |

We conclude that alsdim X > Rx + dx, hence we have
equality. [ ]

have Rx < Ry.
(o, kgt + p) Lemma VIL.2. Let Ax € Ay and Rx < Ry. Then,
dim Vi, = HW dim Ax < dim Ay-.
acfin Proof: Note that we have
« dimAyxy =dimaff Ax < dimaff Ay = dim Ay,

kX 4 O(Kfx =) . o _ _
QGRH’Pvm with equality if and only if the two affine hullaff Ay C
alAx aff Ay are equal.




Now by assumption there exists a positive root Ry .  [6] —, “Symmetries of baryons and meson®hys. Rev.vol. 125, pp.

that is orthogonal to all points idAy (i.e., for allp € Ay, 1067-1084, 1962. o .

. . . [7] W. Fulton, “Eigenvalues, invariant factors, highestigi#s, and Schubert
a L p), but not to all points inAy. It follows that o is calculus,”Bull. Amer. Math. Soc.vol. 37, pp. 209-249, 2000.
also orthogonal to all points in the affine hull dfx, but [8] A. Knutson and T. Tao, “The honeycomb model GfL,,(C) tensor
not to all points in the affine hull of\y. Therefore, we have products |: Proof of the saturation conjecturd,” Amer. Math. Sog.

vol. 12, pp. 1055-1090, 1999.
[9] M. Keyl and R. F. Werner, “Estimating the spectrum of a sign
. . . . operator,”Phys. Rev. Avol. 64, p. 052311, 2001.
Lemma VII.3. LetdimAx < dimAy. Then,X C Y implies [10] M. Christandl and G. Mitchison, “The Spectra of Quant@tates and
dx < dy. the Kronecker Coefficients of the Symmetric Grougdmmun. Math.
Phys, vol. 261, pp. 789-797, 2006.
Proof: If X C Y then it is immediate from[{I]1) and [11] A. Klyachko, “Quantum marginal problem ant-representability,"J.

(C3) thatdx < dy. Let us suppose for a moment that in fact _ Phys.: Conf. Servol. 36, pp. 72-86, 2006.
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aff Ay gaﬂAy. | |

dx = dy. Then it follows from [L.1) that Transform: I. Efficient Qudit Circuits,” irProc. 18th SODA2007, pp.
1235-1244.
dDHx < / dDHy (i ! [13] K. D. Mulmuley and M. Sohoni, “Geometric complexity th 1: An
/Ax (N) g(u) “Jay (N )g(u) approach to the P vs. NP and related problen®AM J. Compuf.
_ ] o ) vol. 31, pp. 496-526, 2001.
for any test functiong. In particular, this inequality would [14] —, “Geometric complexity theory II: Towards expliciibstructions

hold for ¢ the indicator function ofAx. But this is clearly for embeddings among class varietie§JAM J. Comput.vol. 38, pp.

) ; . . . : 1175-1206, 2008.
impossible, sincdHy is absolutely continuous with reSPeCtis) b Birgisser, J. M. Landsberg, L. Manivel, and J. Weyméhn

to Lebesgue measure dxny, for which A x is a set of measure Overview of Mathematical Issues arising in the Geometrien@iexity
Zero. H Theory approach td/P # VNP, SIAM J. Comput.vol. 40, pp.
1179-1209, 2011.
Corollary VII.4. Letdim X < dimY. Then,X C Y implies [16] K.D. Mulmuley, “Geometric complexity theory VI: the flivia saturated
dv < d - and positive integer programming in representation them algebraic
X Y- geometry,” Computer Science Department, The UniversitLloicago,
Technical Report, 2007.

Proof: Clearly, X C Y implies thatAx C Ay and [17] K. D. Mulmuley and M. Sohoni, “Geometric complexity ty

Rx < Ry. If Rx = Ry then the assertion follows directly ll: On deciding positivity of Littlewood—Richardson cdigfents,”
from ’ since arXiv:cs/0501076, 2005.
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dx =dimX — Rx <dimY — Ry =dy. 354, 2006,

. . . - [19] P. Birgisser and C. Ikenmeyer, “The complexity of cotmpyKronecker
Otherwise, if Rx < Ry, it follows from combining coefficients,” inProc. 20th FPSAC DMTCS, 2008, pp. 357-368.

Lemma VII.2 and Lemma VIII3. B [20] B.Kostant, “A formula for the multiplicity of a weigHt Transact. Amer.
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