
ar
X

iv
:1

20
4.

45
26

v4
  [

cs
.D

S]
  1

9 
N

ov
 2

01
3

Monotone Submodular Maximization over a Matroid

via Non-Oblivious Local Search

Yuval Filmus∗and Justin Ward†

November 20, 2013

Abstract

We present an optimal, combinatorial 1−1/e approximation algorithm for monotone submodular op-
timization over a matroid constraint. Compared to the continuous greedy algorithm (Calinescu, Chekuri,
Pál and Vondrák, 2008), our algorithm is extremely simple and requires no rounding. It consists of the
greedy algorithm followed by local search. Both phases are run not on the actual objective function, but
on a related auxiliary potential function, which is also monotone submodular.

In our previous work on maximum coverage (Filmus and Ward, 2012), the potential function gives
more weight to elements covered multiple times. We generalize this approach from coverage functions
to arbitrary monotone submodular functions. When the objective function is a coverage function, both
definitions of the potential function coincide.

Our approach generalizes to the case where the monotone submodular function has restricted cur-
vature. For any curvature c, we adapt our algorithm to produce a (1 − e−c)/c approximation. This
matches results of Vondrák (2008), who has shown that the continuous greedy algorithm produces a
(1− e−c)/c approximation when the objective function has curvature c, and proved that achieving any
better approximation ratio is impossible in the value oracle model.

1 Introduction

In this paper, we consider the problem of maximizing a monotone submodular function f , subject to a single
matroid constraint. Formally, let U be a set of n elements and let f : 2U → R be a function assigning a value
to each subset of U . We say that f is submodular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

for all A,B ⊆ U . If additionally, f(A) ≤ f(B) whenever A ⊆ B, we say that f is monotone submodular.
Submodular functions exhibit (and are, in fact, alternately characterized by) the property of diminishing
returns—if f is submodular then f(A ∪ {x}) − f(A) ≤ f(B ∪ {x}) − f(B) for all B ⊆ A. Hence, they are
useful for modeling economic and game-theoretic scenarios, as well as various combinatorial problems. In a
general monotone submodular maximization problem, we are given a value oracle for f and a membership
oracle for some distinguished collection I ⊆ 2U of feasible sets, and our goal is to find a member of I that
maximizes the value of f . We assume further that f is normalized so that f(∅) = 0.

We consider the restricted setting in which the collection I forms a matroid. Matroids are intimately
connected to combinatorial optimization: the problem of optimizing a linear function over a hereditary
set system (a set system closed under taking subsets) is solved optimally for all possible functions by the
standard greedy algorithm if and only if the set system is a matroid [27, 8].
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In the case of a monotone submodular objective function, the standard greedy algorithm, which takes
at each step the element yielding the largest increase in f while maintaining independence, is (only) a 1/2-
approximation [17]. Recently, Calinescu et al. [5, 28, 6] have developed a (1 − 1/e)-approximation for this
problem via the continuous greedy algorithm, which is essentially a steepest ascent algorithm running in
continuous time (when implemented, a suitably discretized version is used), producing a fractional solution.
The fractional solution is rounded using pipage rounding [1] or swap rounding [7].

Feige [9] has shown that improving the bound (1 − 1/e) is NP-hard. Nemhauser and Wolsey [24] have
shown that any improvement over (1 − 1/e) requires an exponential number of queries in the value oracle
setting.

Following Vondrák [29], we also consider the case when f has restricted curvature. We say that f has
curvature c if for any two disjoint A,B ⊆ U ,

f(A ∪B) ≥ f(A) + (1 − c)f(B).

When c = 1, this is a restatement of monotonicity of f , and when c = 0, linearity of f . Vondrák [29] has
shown that the continuous greedy algorithm produces a (1− e−c)/c approximation when f has curvature c.
Furthermore, he has shown that any improvement over (1−e−c)/c requires an exponential number of queries
in the value oracle setting.

1.1 Our contribution

In this paper, we propose a conceptually simple randomized polynomial time local search algorithm for
the problem of monotone submodular matroid maximization. Like the continuous greedy algorithm, our
algorithm delivers the optimal (1 − 1/e)-approximation. However, unlike the continuous greedy algorithm,
our algorithm is entirely combinatorial, in the sense that it deals only with integral solutions to the problem
and hence involves no rounding procedure. As such, we believe that the algorithm may serve as a gateway
to further improved algorithms in contexts where pipage rounding and swap rounding break down, such as
submodular maximization subject to multiple matroid constraints.

Our main results are a combinatorial 1 − 1/e − ǫ approximation algorithm for monotone submodular
matroid maximization, running in randomized time Õ(ǫ−3r4n), and a combinatorial 1− 1/e approximation
algorithm running in randomized time Õ(r7n2), where r is the rank of the given matroid and n is the size of
its ground set. Our algorithm further generalizes to the case in which the submodular function has curvature
c1. In this case the approximation ratios obtained are (1 − e−c)/c − ǫ and (1 − e−c)/c, respectively, again
matching the performance of the continuous greedy algorithm [29]. Unlike the continuous greedy algorithm,
our algorithm requires knowledge of c. However, by enumerating over values of c we are able to obtain a
combinatorial (1− e−c)/c algorithm even in the case that f ’s curvature is unknown.2

Our algorithmic approach is based on local search. In classical local search, the algorithm starts at an
arbitrary solution, and proceeds by iteratively making small changes that improve the objective function,
until no such improvement can be made. A natural, worst-case guarantee on the approximation performance
of a local search algorithm is the locality ratio, given as min f(S)/f(O), where S is a locally optimal solution
(i.e. a solution which cannot be improved by the small changes considered by the algorithm), O is a global
optimum, and f is the objective function.

In many cases, classical local search may have a very poor locality ratio, implying that a locally-optimal
solution may be of significantly lower quality than the global optimum. For example, for monotone submod-
ular maximization over a matroid, the locality ratio for an algorithm changing a single element at each step
is 1/2 [17]. Non-oblivious local search, a technique first proposed by Alimonti [2] and by Khanna, Motwani,
Sudan and Vazirani [20], attempts to avoid this problem by making use of a secondary potential function to
guide the search. By carefully choosing this auxiliary function, we ensure that poor local optima with respect
to the original objective function are no longer local optima with respect to the new potential function. This
is the approach that we adopt in the design of our local search algorithm. Specifically, we consider a simple

1In fact, it is enough to assume that f(A ∪ B) ≥ f(A) + (1− c)f(B) for any two disjoint independent sets A,B.
2For technical reasons, we require that f has curvature bounded away from zero in this case.
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local search algorithm in which the value of a solution is measured with respect to a carefully designed
potential function g, rather than the submodular objective function f . We show that solutions which are
locally optimal with respect to g have significantly higher worst-case quality (as measured by the problem’s
original potential function f) than those which are locally optimal with respect to f .

In previous work [14], we designed an optimal non-oblivious local search algorithm for the restricted case
of maximum coverage subject to a matroid constraint. In this problem, we are given a weighted universe
of elements, a collection of sets, and a matroid defined on this collection. The goal is to find a collection of
sets that is independent in the matroid and covers elements of maximum total weight. The non-oblivious
potential function used in [14] gives extra weight to solutions that cover elements multiple times. That is, the
potential function depends critically on the coverage representation of the objective function. In the present
work, we extend this approach to general monotone submodular functions. This presents two challenges:
defining a non-oblivious potential function without reference to the coverage representation, and analyzing
the resulting algorithm.

In order to define the general potential function, we construct a generalized variant of the potential
function from [14] that does not require a coverage representation. Instead, the potential function aggregates
information obtained by applying the objective function to all subsets of the input, weighted according to
their size. Intuitively, the resulting potential function gives extra weight to solutions that contain a large
number of good sub-solutions, or equivalently, remain good solutions in expectation when elements are
removed by a random process. An appropriate setting of the weights defining our potential function yields
a function which coincides with the previous definition for coverage functions, but still makes sense for
arbitrary monotone submodular functions.

The analysis of the algorithm in [14] is relatively straightforward. For each type of element in the universe
of the coverage problem, we must prove a certain inequality among the coefficients defining the potential
function. In the general setting, however, we need to construct a proof using only the inequalities given by
monotonicity and submodularity. The resulting proof is non-obvious and delicate.

This paper extends and simplifies previous work by the same authors. The paper [15], appearing in
FOCS 2012, only discusses the case c = 1. The general case is discussed in [16], which appears in ArXiv.
The potential functions used to guide the non-oblivious local search in both the unrestricted curvature case
[15] and the maximum coverage case [14] are special cases of the function g we discuss in the present paper.3

An exposition of the ideas of both [14] and [16] can be found in the second author’s thesis [31]. In particular,
the thesis explains how the auxiliary objective function can be determined by solving a linear program, both
in the special case of maximum coverage and in the general case of monotone submodular functions with
restricted curvature.

1.2 Related work

Fisher, Nemhauser and Wolsey [25, 17] analyze greedy and local search algorithms for submodular maxi-
mization subject to various constraints, including single and multiple matroid constraints. They obtain some
of the earliest results in the area, including a 1/(k + 1)-approximation algorithm for monotone submodular
maximization subject to k matroid constraints. A recent survey by Goundan and Schulz [19] reviews many
results pertaining to the greedy algorithm for submodular maximization.

More recently, Lee, Sviridenko and Vondrák [23] consider the problem of both monotone and non-
monotone submodular maximization subject to multiple matroid constraints, attaining a 1/(k + ǫ)-approx-
imation for monotone submodular maximization subject to k ≥ 2 constraints using local search. Feldman
et al. [13] show that a local search algorithm attains the same bound for the related class of k-exchange
systems, which includes the intersection of k strongly base orderable matroids, as well as the independent
set problem in (k + 1)-claw free graphs. Further work by Ward [30] shows that a non-oblivious local search
routine attains an improved approximation ratio of 2/(k + 3)− ǫ for this class of problems.

3The functions from [15, 16] are defined in terms of certain coefficients γ, which depend on a parameter E. Our definition
corresponds to the choice E = ec. We examine the case of coverage functions in more detail in Section 7.3.
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In the case of unconstrained non-monotone maximization, Feige, Mirrokni and Vondrák [10] give a 2/5-
approximation algorithm via a randomized local search algorithm, and give an upper bound of 1/2 in the
value oracle model. Gharan and Vondrák [18] improved the algorithmic result to 0.41 by enhancing the
local search algorithm with ideas borrowed from simulated annealing. Feldman, Naor and Schwarz [12] later
improved this to 0.42 by using a variant of the continuous greedy algorithm. Buchbinder, Feldman, Naor
and Schwartz have recently obtained an optimal 1/2-approximation algorithm [4].

In the setting of constrained non-monotone submodular maximization, Lee et al. [22] give a 1/(k +
2 + 1

k + ǫ)-approximation algorithm for the case of k matroid constraints and a (1/5 − ǫ)-approximation
algorithm for k knapsack constraints. Further work by Lee, Sviridenko and Vondrák [23] improves the
approximation ratio in the case of k matroid constraints to 1/(k + 1 + 1

k−1 + ǫ). Feldman et al. [13] attain
this ratio for k-exchange systems. In the case of non-monotone submodular maximization subject to a single

matroid constraint, Feldman, Naor and Schwarz [11] show that a version of the continuous greedy algorithm
attains an approximation ratio of 1/e. They additionally unify various applications of the continuous greedy
algorithm and obtain improved approximations for non-monotone submodular maximization subject to a
matroid constraint or O(1) knapsack constraints.

1.3 Organization of the paper

We begin by giving some basic definitions in Section 2. In Section 3 we introduce our basic, non-oblivious
local search algorithm, which makes use of an auxiliary potential function g. In Section 4, we give the formal
definition of g, together with several of its properties. Unfortunately, exact computation of the function g
requires evaluating f on an exponential number of sets. In Section 5 we present a simplified analysis of
our algorithm, under the assumption that an oracle for computing the function g is given. In Section 6
we then show how to remove this assumption to obtain our main, randomized polynomial time algorithm.
The resulting algorithm uses a polynomial-time random sampling procedure to compute the function g
approximately. Finally, some simple extensions of our algorithm are described in Section 7.

2 Definitions

Notation If B is some Boolean condition, then

JBK =

{

1 if B is true,

0 if B is false.

For n a natural number, [n] = {1, . . . , n}. We use Hk to denote the kth Harmonic number,

Hk =

k
∑

t=1

1

t
.

It is well-known that Hk = Θ(ln k), where ln k is the natural logarithm.
For S a set and x an element, we use the shorthands S + x = S ∪ {x} and S − x = S \ {x}. We use the

notation S + x even when x ∈ S, in which case S + x = S, and the notation S − x even when x /∈ S, in
which case S − x = S.

Let U be a set. A set-function f on U is a function f : 2U → R whose arguments are subsets of U . For
x ∈ U , we use f(x) = f({x}). For A,B ⊆ U , the marginal of B with respect to A is

fA(B) = f(A ∪B)− f(A).

Properties of set-functions A set-function f is normalized if f(∅) = 0. It is monotone if whenever
A ⊆ B then f(A) ≤ f(B). It is submodular if whenever A ⊆ B and C is disjoint from B, fA(C) ≥ fB(C). If
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f is monotone, we need not assume that B and C are disjoint. Submodularity is equivalently characterized
by the inequality

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B),

for all A and B.
The set-function f has curvature c if for all A ⊆ U and x /∈ A, fA(x) ≥ (1 − c)f(x). Equivalently,

fA(B) ≥ (1 − c)f(B) for all disjoint A,B ⊆ U . Note that if f has curvature c and c′ ≥ c, then f also
has curvature c′. Every normalized monotone function thus has curvature 1. A normalized function with
curvature 0 is linear; that is, fA(x) = f(x).

Matroids A matroidM = (U , I) is composed of a ground set U and a non-empty collection I of subsets
of U satisfying the following two properties: (1) If A ∈ I and B ⊆ A then B ∈ I; (2) If A,B ∈ I and
|A| > |B| then B + x ∈ I for some x ∈ A \B.

The sets in I are called independent sets. Maximal independent sets are known as bases. Condition (2)
implies that all bases of the matroid have the same size. This common size is called the rank of the matroid.

One simple example is a partition matroid. The universe U is partitioned into r parts U1, . . . ,Ur, and a
set is independent if it contains at most one element from each part.

If A is an independent set, then the contracted matroid M/A = (U \A, I/A) is given by

I/A = {B ⊆ U \A : A ∪B ∈ M}.

Monotone submodular maximization An instance of monotone submodular maximization is given by
(M = (U , I), f), where M is a matroid and f is a set-function on U which is normalized, monotone and
submodular.

The optimum of the instance is
f∗ = max

O∈I
f(O).

Because f is monotone, the maximum is always attained at some basis.
We say that a set S ∈ I is an α-approximate solution if f(S) ≥ αf(O). Thus 0 ≤ α ≤ 1. We say that an

algorithm has an approximation ratio of α (or, simply that an algorithm provides an α-approximation) if it
produces an α-approximate solution on every instance.

3 The algorithm

Our non-oblivious local search algorithm is shown in Algorithm 1. The algorithm takes the following input
parameters:

• A matroidM = (U , I), given as a ground set U and a membership oracle for some collection I ⊆ 2U

of independent sets, which returns whether or not X ∈ I for any X ⊆ U .

• A monotone submodular function f : 2U → R≥0, given as a value oracle that returns f(X) for any
X ⊆ U .

• An upper bound c ∈ (0, 1] on the curvature of f . The case in which the curvature of f is unrestricted
corresponds to c = 1.

• A convergence parameter ǫ.

Throughout the paper, we let r denote the rank ofM and n = |U|.
The algorithm starts from an initial greedy solution Sinit, and proceeds by repeatedly exchanging one

element e in the current solution S for one element x not in S, with the aim of obtaining an improved
independent set S′ ∈ I. In both the initial greedy phase and the following local search phase, the quality of
the solution is measured not with respect to f , but rather with respect to an auxiliary potential function g

5



Input: M = (U , I), f, c, ǫ
Set ǫ1 = ǫ

rHr
;

Let Sinit be the result of running the standard greedy algorithm on (M, g);
S ← Sinit;
repeat

foreach element e ∈ S and x ∈ U \ S do

S′ ← S − e+ x;
if S′ ∈ I and g(S′) > (1 + ǫ1)g(S) then

S ← S′;
break;

until No exchange is made;
return S;

Algorithm 1: The non-oblivious local search algorithm

(as we discuss shortly, we in fact must use an estimate g̃ for g), which is determined by the rank ofM and
the value of the curvature bound c.

We give a full definition of g in Section 4. The function is determined by a sequence of coefficients
depending on the upper bound c on the curvature of f . Evaluating the function g exactly will require an
exponential number of value queries to f . Nonetheless, in Section 6 we show how to modify Algorithm 1 by
using a random sampling procedure to approximate g. The resulting algorithm has the desired approximation
guarantee with high probability and runs in polynomial time.

At each step we require that an improvement increase g by a factor of at least 1+ ǫ1. This, together with
the initial greedy choice of Sinit, ensures that Algorithm 1 converges in time polynomial in r and n, at the cost
of a slight loss in its locality gap. In Section 7 we describe how the small resulting loss in the approximation
ratio can be recovered, both in the case of Algorithm 1, and in the randomized, polynomial-time variant we
consider in Section 6.

4 The auxiliary objective function g

We turn to the remaining task needed for completing the definition of Algorithm 1: giving a definition of
the potential function g. The construction we use for g will necessarily depend on c, but because we have
fixed an instance, we shall omit this dependence from our notation, in order to avoid clutter.

4.1 Definition of g

We now present a definition of our auxiliary potential function g. Our goal is to give extra value to solutions
S that are robust with respect to small changes. That is, we would like our potential function to assign
higher value to solutions that retain their quality even when some of their elements are removed by future
iterations of the local search algorithm. We model this general notion of robustness by considering a random
process that obtains a new solution T from the current solution S by independently discarding each element
of S with some probability. Then we use the expected value of f(T ) to define our potential function g

It will be somewhat more intuitive to begin by relating the marginals gA of g to the marginals fA of f ,
rather than directly defining the values of g and f . We begin by considering some simple properties that we
would like to hold for the marginals, and eventually give a concrete definition of g, showing that it has these
properties.

Let A be some subset of U and consider an element x 6∈ A. We want to define the marginal value gA(x).
We consider a two-step random process that first selects a probability p from an appropriate continuous
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distribution, then a set B ⊆ A by choosing each element of A independently with some probability p. We
then define g so that gA(x) is the expected value of fB(x) over the random choice of B.

Formally, let P be a continuous distribution supported on [0, 1] with density given by cecx/(ec−1). Then,
for each A ⊆ U , we consider the probability distribution µA on 2A given by

µA(B) = E
p∼P

p|B|(1− p)|A|−|B|.

Note that this is simply the expectation over our initial choice of p of the probability that the set B is
obtained from A by randomly selecting each element of A independently with probability p. Furthermore,
for any A and any A′ ⊆ A, if B ∼ µA then B ∩ A′ ∼ µA′ .

Given the distributions µA, we shall construct a function g so that

gA(x) = E
B∼µA

[fB(x)]. (1)

That is, the marginal value gA(x) is the expected marginal gain in f obtained when x is added to a random
subset of A, obtained by the two-step experiment we have just described.

We can obtain some further intuition by considering how the distribution P affects the values defined in
(1). In the extreme example in which p = 1 with probability 1, we have gA(x) = fA(x) and so g behaves
exactly like the original submodular function. Similarly, if p = 0 with probability 1, then gA(x) = f∅(x) =
f({x}) for all A, and so g is in fact a linear function. Thus, we can intuitively think of the distribution P
as blending together the original function f with some other “more linear” approximations of f , which have
systematically reduced curvature. We shall see that our choice of distribution results in a function g that
gives the desired locality gap.

It remains to show that it is possible to construct a function g whose marginals satisfy (1). In order to
do this, we first note that the probability µA(B) depends only on |A| and |B|. Thus, if we define the values

ma,b = E
p∼P

pb(1− p)a−b =

∫ 1

0

cecp

ec − 1
· pb(1− p)a−b dp

for all a, b ≥ 0, then we have µA(B) = m|A|,|B|. We adopt the convention that ma,b = 0 if either a or b is
negative. Then, we consider the function g given by:

g(A) =
∑

B⊆A

m|A|−1,|B|−1f(B). (2)

The marginals of this function are given by

gA(x) = g(A+ x) − g(A)

=
∑

B⊆A+x

m|A|,|B|−1f(B)−
∑

B⊆A

m|A|−1,|B|−1f(B)

=
∑

B⊆A

(

m|A|,|B|−1 −m|A|−1,|B|−1

)

f(B) +m|A|,|B|f(B + x).

The term ma,b−1 −ma−1,b−1 evaluates to

ma,b−1 −ma−1,b−1 = E
p∼P

[pb−1(1− p)a−b+1 − pb−1(1− p)a−b]

= E
p∼P

[−pb(1 − p)a−b]

= −ma,b.
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We conclude that

gA(x) =
∑

B⊆A

−m|A|,|B|f(B) +m|A|,|B|f(B + x)

=
∑

B⊆A

m|A|,|B|fB(x)

= E
B∼µA

[fB(x)].

The values ma,b used to define g in (2) can be computed from the following recurrence, which will also
play a role in our analysis of the locality gap of Algorithm 1.

Lemma 1. m0,0 = 1, and for a > 0 and 0 ≤ b ≤ a,

cma,b = (a− b)ma−1,b − bma−1,b−1 +











−c/(ec − 1) if a = 0,

0 if 0 < a < b,

cec/(ec − 1) if a = b.

Proof. For the base case, we have

m0,0 =

∫ 1

0

cecp

ec − 1
dp = 1.

The proof of the general case follows from a simple integration by parts:

cma,b = c

∫ 1

0

cecp

ec − 1
· pb(1− p)a−b dp

= c ·
ecp

ec − 1
· pb(1− p)a−b

∣

∣

∣

∣

p=1

p=0

− c

∫ 1

0

[

bpb−1(1− p)a−b − (a− b)pb(1− p)a−b−1
] ecp

ec − 1
dp

=
Ja = bKcec − Jb = 0Kc

ec − 1
+ (a− b)ma−1,b − bma−1,b−1.

In future proofs, we shall also need the following upper bound on the sum of the coefficients appearing
in (2). Define

τ(A) =
∑

B⊆A

m|A|−1,|B|−1.

Lemma 2. For all A ⊆ U ,

τ(A) ≤
cec

ec − 1
H|A|

Proof. Expanding the definition of m|A|−1,|B|−1 we obtain

∑

B⊆A

m|A|−1,|B|−1 =

|A|
∑

k=1

(

|A|

k

)

m|A|−1,k−1

=

|A|
∑

k=1

(

|A|

k

)
∫ 1

0

cecp

ec − 1
· pk−1(1− p)|A|−k dp

≤
cec

ec − 1

|A|
∑

k=1

(

|A|

k

)
∫ 1

0

pk−1(1− p)|A|−k dp

=
cec

ec − 1

|A|
∑

k=1

(

|A|

k

)

(k − 1)!(|A| − k)!

(|A|)!

=
cec

ec − 1

|A|
∑

k=1

1

k
,
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where in the penultimate line, we have used Euler’s Beta integral:

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt =
(x− 1)!(y − 1)!

(x + y − 1)!
,

whenever x, y are positive integers.

4.2 Properties of g

We now show that our potential function g shares many basic properties with f .

Lemma 3. The function g is normalized, monotone, submodular and has curvature at most c.

Proof. From (2) we have g(∅) = m−1,−1f(∅) = 0. Thus, g is normalized. Additionally, (1) immediately
implies that g is monotone, since the monotonicity of f implies that each term fB(x) is non-negative. Next,
suppose that A1 ⊆ A2 and x /∈ A2. Then from (1), we have

gA2
(x) = E

B∼µA2

fB(x) ≤ E
B∼µA2

fB∩A1
(x) = E

B∼µA1

fB(x) = gA1
(x),

where the inequality follows from submodularity of f . Thus, g is submodular. Finally, for any set A ⊆ U
and any element x /∈ A, we have

gA(x) = E
B∼µA

fB(x) ≥ (1− c)f(x) = (1− c)g(x),

where the inequality follows from the bound on the curvature of f , and the second equation from setting
A = ∅ in (1). Thus, g has curvature at most c. In fact, it is possible to show that for any given |A|, g has
slightly lower curvature than f , corresponding to our intuition that the distribution P blends together f and
various functions of reduced curvature. For our purposes, however, an upper bound of c is sufficient.

Finally, we note that for any S ⊆ U , it is possible to bound the value g(S) relative to f(S).

Lemma 4. For any A ⊆ U ,

f(A) ≤ g(A) ≤
cec

ec − 1
H|A|f(A).

Proof. Let A = {a1, . . . , a|A|} and define Ai = {a1, . . . , ai} for 0 ≤ i ≤ |A|. The formula (1) implies that

gAi
(ai+1) = E

B∼µAi

fB(ai+1) ≥ fAi
(ai+1).

Summing the resulting inequalities for i = 0 to |A| − 1, we get

g(A)− g(∅) ≥ f(A)− f(∅).

The lower bound then follows from the fact that both g and f are normalized, so g(∅) = f(∅) = 0.
For the upper bound, (2) and monotonicity of f imply that

g(A) =
∑

B⊆A

m|A|−1,|B|−1f(B) ≤ f(A)
∑

B⊆A

m|A|−1,|B|−1.

The upper bound then follows directly from applying the bound of Lemma 2 to the final sum.
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4.3 Approximating g via Sampling

Evaluating g(A) exactly requires evaluating f on all subsets B ⊆ A, and so we cannot compute g directly
without using an exponential number of calls to the value oracle f . We now show that we can efficiently
estimate g(A) by using a sampling procedure that requires evaluating f on only a polynomial number of
sets B ⊆ A. In Section 6, we show how to use this sampling procedure to obtain a randomized variant of
Algorithm 1 that runs in polynomial time.

We have already shown how to construct the function g, and how to interpret the marginals of g as the
expected value of a certain random experiment. Now we show that the direct definition of g(A) in (2) can
also be viewed a the result of a random experiment.

For a set A, consider the distribution νA on 2A given by

νA(B) =
m|A|−1,|B|−1

τ(A)
.

Then, recalling the direct definition of g, we have:

g(A) =
∑

B⊆A

m|A|−1,|B|−1f(B) = τ(A) E
B∼νA

[f(B)]

We can estimate g(A) to any desired accuracy by sampling from the distribution νA. Let B1, . . . , BN be
N independent random samples from νA. Then, we define:

g̃(A) = τ(A)
1

N

N
∑

i=1

f(Bi) (3)

Lemma 5. Choose M, ǫ > 0, and set

N =
1

2

(

cec

ec − 1
·
Hn

ǫ

)2

lnM.

Then,

Pr[|g̃(A)− g(S)| ≥ ǫg(S)] = O
(

M−1
)

.

Proof. We use the following version of Hoeffding’s bound.

Fact (Hoeffding’s bound). Let X1, . . . , XN be i.i.d. non-negative random variables bounded by B, and let X
be their average. Suppose that EX ≥ ρB. Then, for any ǫ > 0,

Pr[|X − EX| ≥ ǫEX] ≤ 2 exp
(

−2ǫ2ρ2N
)

.

Consider the random variables Xi = τ(A)f(Bi). Because f is monotone and each Bi is a subset of A,
each Xi is bounded by τ(A)f(A). The average X of the values Xi satisfies

EX = g(A) ≥ f(A),

where the inequality follows from Lemma 4. Thus, Hoeffding’s bound implies that

Pr[|X − EX | ≥ ǫEX] ≤ 2 exp

(

−
2ǫ2N

τ(A)2

)

.

By Lemma 2 we have τ(A) ≤ cec

ec−1H|A| ≤
cec

ec−1Hn and so

2 exp

(

−
2ǫ2N

τ(A)2

)

≤ 2 exp (− lnM) = O
(

M−1
)

.
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5 Analysis of Algorithm 1

We now give a complete analysis of the runtime and approximation performance of Algorithm 1. The
algorithm has two phases: a greedy phase and a local search phase. Both phases are guided by the auxiliary
potential function g defined in Section 4. As noted in Section 4.3, we cannot, in general, evaluate g in
polynomial time. We postpone concerns dealing with approximating g by sampling until the next section,
and in this section suppose that we are given a value oracle returning g(A) for any set A ⊆ U . We then
show that Algorithm 1 requires only a polynomial number of calls to the oracle for g. In this way, we can
present the main ideas of the proofs without a discussion of the additional parameters and proofs necessary
for approximating g by sampling. In the next section we use the results of Lemma 5 to implement an
approximate oracle for g in polynomial time, and adapt the proofs given here to obtain a randomized,
polynomial time algorithm.

Consider an arbitrary input to the algorithm. Let S = {s1, . . . , sr} be the solution returned by Algorithm
1 on this instance and O be an optimal solution to this instance. It follows directly from the definition of the
standard greedy algorithm and the type of exchanges considered by Algorithm 1 that S is a base. Moreover,
because f is montone, we may assume without loss of generality that O is a base, as well. We index the
elements oi of O by using the following lemma of Brualdi [3].

Fact (Brualdi’s lemma). Suppose A,B are two bases in a matroid. There is a bijection π : A→ B such that

for all a ∈ A, A− a+ π(a) is a base. Furthermore, π is the identity on A ∩B.

The main difficulty in bounding the locality ratio of Algorithm 1 is that we must bound the ratio
f(S)/f(O) stated in terms of f , by using only the fact that S is locally optimal with respect to g. Thus,
we must somehow relate the values of f(S) and g(S). In the following theorem relates the values of f and g
on arbitrary bases of a matroid. Later, we shall apply this theorem to S and O to obtain an approximation
guarantee both for Algorithm 1 and for the randomized variant presented in the next section.

Theorem 1. Let A = {a1, . . . , ar} and B = {b1, . . . , br} be any two bases of M, and suppose that we index

the elements of B so that bi = π(ai), where π : A→ B is the bijection guaranteed by Brualdi’s lemma. Then,

cec

ec − 1
f(A) ≥ f(B) +

r
∑

i=1

[g(A)− g(A− ai + bi)].

Proof. The proof of Theorem 1 involves a chain of two inequalities and one equation, each of which we shall
prove as a separate lemma. We consider the quantity:

r
∑

i=1

gA−ai
(ai).

First, we shall show in Lemma 6 that

r
∑

i=1

gA−ai
(ai) ≥

r
∑

i=1

[g(A)− g(A− ai + bi)] + E
T∼µA

r
∑

i=1

fT−bi(bi),

and then in Lemma 7 that
r
∑

i=1

fT−bi(bi) ≥ f(B)− cf(T ),

for any T ⊆ A. Combining these inequalities, we obtain

r
∑

i=1

gA−ai
(ai) ≥

r
∑

i=1

[g(A)− g(A− ai + bi)] + f(B)− c E
T∼µA

f(T ). (4)

11



Next, we show in Lemma 8 that

r
∑

i=1

gA−ai
(ai) + c E

T∼µA

f(T ) =
cec

ec − 1
f(A). (5)

Combining (4) and (5) completes the proof.

We now prove each of the necessary claims.

Lemma 6. For all i ∈ [r],

gA−ai
(ai) ≥ g(A)− g(A− ai + bi) + E

T∼µA

fT−bi(bi).

Proof. The proof relies on the characterization of the marginals of g given in (1). We consider two cases:
bi /∈ A and bi ∈ A. If bi /∈ A then the submodularity of g implies

gA−ai
(ai) ≥ gA−ai+bi(ai)

= g(A+ bi)− g(A− ai + bi)

= gA(bi) + g(A)− g(A− ai + bi)

= g(A)− g(A− ai + bi) + E
T∼µA

fT (bi).

On the other hand, when bi ∈ A, we must have bi = π(ai) = ai by the definition of π. Then,

gA−ai
(ai) = E

T∼µA−ai

fT (ai)

= E
T∼µA

fT−ai
(ai)

= E
T∼µA

fT−bi(bi)

= g(A)− g(A) + E
T∼µA

fT−bi(bi)

= g(A)− g(A− ai + bi) + E
T∼µA

fT−bi(bi),

where the second equality follows from the fact that if T ∼ µA then T ∩ (A \ ai) ∼ µA−ai
.

Lemma 7. For any T ⊆ A,
r
∑

i=1

fT−bi(bi) ≥ f(B)− cf(T ).

Proof. Our proof relies only on the submodularity and curvature of f . Let X = T ∩ B, T ′ = T \ X and
B′ = B \X . Furthermore, let I(X) ⊆ [r] be the set of indices i such that bi ∈ X . We separate the sum on
the left-hand side into two parts, based on whether or not i ∈ I(x).

The first part of the sum is

∑

i/∈I(X)

fT−bi(bi) =
∑

i/∈I(X)

fT (bi) ≥ fT (B
′),

where the final inequality follows from submodularity of f . Next, using T ∪B′ = B ∪ T = B ∪ T ′, we get

fT (B
′) = f(T ∪B′)− f(T )

= f(B ∪ T ′)− f(T )

≥ f(B) + (1− c)f(T ′)− f(T ),
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where the final line follows from the fact that f has curvature at most c and B ∩ T ′ = ∅.
The second part of the sum is

∑

i∈I(X)

fT−bi(bi) ≥
∑

i∈I(X)

(1− c)f(bi) ≥ (1− c)f(X),

where the first inequality follows from the fact that f has curvature at most c and the second inequality
from submodularity of f .

Putting both parts together, we deduce

r
∑

i=1

fT−bi(bi) ≥ f(B) + (1− c)f(T ′)− f(T ) + (1 − c)f(X)

≥ f(B) + (1− c)f(T )− f(T )

= f(B)− cf(T ),

where in the second inequality we have used f(T ′ ∪ X) = f(T ) and f(T ′ ∩ X) = f(∅) = 0 together with
submodularity of f .

Lemma 8.
r
∑

i=1

gA−ai
(ai) + c E

T∼µA

f(T ) =
cec

ec − 1
f(A). (6)

Proof. The proof relies primarily on the recurrence given in Lemma 1 for the values ma,b used to define g.
From the characterization of the marginals of g given in (1) we have

gA−ai
(ai) = E

T∼µA−ai

[fT (ai)] = E
T∼µA−ai

[f(T + ai)− f(T )].

Each subset D ⊆ A appears in the expectation. Specifically, if ai ∈ D then we have the term µA−ai
(D −

ai)f(D), and if ai ∈ A \D then we have the term −µA−ai
(D)f(D). Therefore the coefficient of f(D) in the

left-hand side of (6) is thus given by

(

∑

ai∈D

µA−ai
(D − ai)

)

−

(

∑

ai /∈D

µA−ai
(D)

)

+ cµA(D) = |D|mr−1,|D|−1 − (r − |D|)mr−1,|D| + cmr,|D|.

According to the recurrence for m, given in Lemma 1, the right-hand side vanishes unless D = ∅, in which
case it is −c

ec−1f(∅) = 0, or D = A, in which case it is cec

ec−1f(A).

We are now ready to prove this section’s main claim, which gives bounds on both the approximation
ratio and complexity of Algorithm 1.

Theorem 2. Algorithm 1 is a
(

1−e−c

c − ǫ
)

-approximation algorithm, requiring at most O(r2nǫ−1 logn)

evaluations of g.

Proof. We first consider the number of evaluations of g required by Algorithm 1. The initial greedy phase
requires O(rn) evaluations of g, as does each iteration of the local search phase. Thus, the total number of
evaluations of g required by Algorithm 1 is O(rnI), where I is the number of improvements applied in the
local search phase. We now derive an upper bound on I.

Let g∗ = maxA∈I g(A) be the maximum value attained by g on any independent set inM. Algorithm 1
begins by setting S to a greedy solution Sinit, and each time it selects an improved solution S′ to replace S
by, we must have

g(S′) > (1 + ǫ1)g(S)
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Thus, the number of improvements that Algorithm 1 can apply is at most

log1+ǫ1

g∗

g(Sinit)
.

Fisher, Nemhauser, and Wolsey [17] show that the greedy algorithm is a 1/2-approximation algorithm
for maximizing any monotone submodular function subject to a matroid constraint. In particular, because
g is monotone submodular, as shown in Lemma 3, we must have

I ≤ log1+ǫ1

g∗

g(Sinit)
≤ log1+ǫ1 2 = O(ǫ−1

1 ) = O(rHrǫ
−1) = O(rǫ−1 logn).

Next, we consider the approximation ratio of Algorithm 1. Recall that O is an optimal solution of the
arbitrary instance (M = (U , I), f) on which Algorithm 1 returns the solution S. We apply Theorem 1 to
the bases S and O, indexing S and O as in the theorem so that S − si + oi ∈ I for all i ∈ [r], to obtain:

cec

ec − 1
f(S) ≥ f(O) +

r
∑

i=1

[g(S)− g(S − si + oi).] (7)

Then, we note that we must have
g(S − si + oi) ≤ (1 + ǫ1)g(S)

for each value i ∈ [r]—otherwise, Algorithm 1 would have exchanged si for oi rather than returning S.
Summing the resulting r inequalities gives

r
∑

i=1

[g(S)− g(S − si + oi)] ≥ −rǫ1g(S).

Applying this and upper bound on g(S) from Lemma 4 to (7) we then obtain

cec

ec − 1
f(S) ≥ f(O) − rǫ1g(S) ≥ f(O)−

cec

ec − 1
rǫ1Hrf(S) ≥ f(O)−

cec

ec − 1
rǫ1Hrf(O).

Rewriting this inequality using the definition ǫ1 = ǫ
rHr

then gives

f(S) ≥

(

1− e−c

c
− ǫ

)

f(O),

and so Algorithm 1 is a
(

1−e−c

c − ǫ
)

-approximation algorithm.

6 A randomized, polynomial-time algorithm

Our analysis of Algorithm 1 supposed that we were given an oracle for computing the value of the potential
function g. We now use the results of Lemma 5, which shows that the value g(A) can be approximated for any
A by using a polynomial number of samples, to implement a randomized, polynomial-time approximation
algorithm that does not require an oracle for g. The resulting algorithm attains the same approximation
ratio as Algorithm 1 with high probability.

The modified algorithm is shown in Algorithm 2. Algorithm 2 uses an approximation g̃ of g that is
obtained by taking N independent random samples of f each time g̃ is calculated. The number of samples
N depends on the parameters ǫ and α, in addition to the rank r of M the size n of U . As in Algorithm
1, ǫ governs how much an exchange must improve the current solution before it is applied, and so affects
both the approximation performance and runtime of the algorithm. The additional parameter α controls

the probability that Algorithm 2 fails to produce a
(

1−e−c

c − ǫ
)

-approximate solution. Specifically, we show

that Algorithm 2 fails with probability at most O(n−α).
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Input: M = (U , I), f, c, ǫ, α
Set ǫ2 = ǫ

4rHr
;

Set I =
((

1+ǫ2
1−ǫ2

)

(2 + 3rǫ2)− 1
)

ǫ−1
2 ;

Set N = 1
2

(

cec

ec−1 ·
Hn

ǫ2

)2

ln
(

(I + 1)rn1+α
)

;

Let g̃ be an approximation to g computed by taking N random samples;
Let Sinit be the result of running the standard greedy algorithm on (M, g̃);
S ← Sinit;
v ← g̃(Sinit);
for i← 1 to I do

done← true;
foreach element e ∈ S and x ∈ U \ S do

S′ ← S − e+ x;
if S′ ∈ I then

v′ ← g̃(S′);
if v′ > (1 + ǫ2)v then

v ← v′ and S ← S′;
done← false;
break;

if done then return S
return Error;

Algorithm 2: The non-oblivious local search algorithm

For the analysis, we assume that ǫ ≤ 1 and r ≥ 2, which imply that ǫ2 ≤ 1/12.
The local search routine in Algorithm 2 runs some number I of iterations, signaling an error if it fails

to converge to a local optimum after this many improvements. In each iteration, the algorithm searches
through all possible solutions S′ = S − e + x, sampling the value g̃(S′) if S′ ∈ I. If the sampled value of
g̃(S′) exceeds the sampled value for g̃(S) by a factor of at least (1+ ǫ2), the algorithm updates S and moves
to the next iteration. Otherwise, it returns the current solution. Note that we store the last sampled value
g̃(S) of the current solution in v, rather than resampling g̃(S) each time we check an improvement S′.

The analysis of Algorithm 2 follows the same general pattern as that presented in the previous section.
Here however, we must address the fact that g̃ does not always agree with g. First, we estimate the probability
that all of the computations of g̃ made by Algorithm 2 are reasonably close to the value of g.

Lemma 9. With probability 1−O(n−α), we have |g̃(A)− g(A)| ≤ ǫ2g(A) for all sets A for which Algorithm

2 computes g̃(A).

Proof. We first bound the total number of sets A for which Algorithm 2 computes g̃(A). The initial greedy
phase requires fewer than rn evaluations, as does each of the I iterations of the local phase. The total
number of evaluations is therefore less than (I + 1)rn.

Algorithm 2 uses

N =
1

2

(

cec

ec − 1
·
Hn

ǫ2

)2

ln
(

(I + 1)rn1+α
)

samples for every computation of g̃(A). By Lemma 5, the probability that we have |g(A)− g̃(A)| ≥ ǫ2g(A)

for any given set A is then O
(

1
(I+1)rn1+α

)

. From the union bound, then, the probability that at least one

of the (I + 1)rn sets A for which Algorithm 2 computes g̃(A) does not satisfy the desired error bound is at

most O
(

(I+1)rn
(I+1)rn1+α

)

= O(n−α).

15



We call the condition that |g(A)− g̃(A)| ≤ ǫ2g(A) for all sets A considered by Algorithm 2 the sampling

assumption. Lemma 9 shows that the sampling assumption holds with high probability.
Now, we must adapt the analysis of Section 5, which holds when g is computed exactly, to the setting in

which g is computed approximately. In Theorem 2, we showed that g(Sinit) is within a constant factor of
the largest possible value that g could take on any set A ⊆ U . Then, because the algorithm always improved
g by a factor of at least (1 + ǫ1), we could bound the number of local search iterations that it performed.
Finally, we applied Theorem 1 to translate the local optimality of S with respect to g into a lower bound on
f(S).

Here we follow the same general approach. First, we derive the following result, which shows that the
initial value g̃(Sinit) is within a constant factor of the maximum value g̃∗ of g̃(A) on any set A considered
by Algorithm 2.4

Lemma 10. Suppose that the sampling assumption is true, and let g̃∗ be the maximum value of g̃(A) over

all sets A considered by Algorithm 2. Then,

(2 + 3rǫ2)

(

1 + ǫ2
1− ǫ2

)

g̃(Sinit) ≥ g̃∗.

Proof. The standard greedy algorithm successively chooses a sequence of sets ∅ = S0, S1, . . . , Sr = Sinit,
where each Si for i > 0 satisfies Si = Si−1 + si for some element si ∈ U \ Si−1. The element si is chosen at
each phase according to the formula

si = argmax
x∈U\Si−1

s.t.Si−1+x∈I

g̃(Si−1 + x).

Let O be any base ofM on which g attains its maximum value. According to Brualdi’s lemma, we can
index O = {o1, . . . , or} so that oi = π(si) for all i ∈ [r]. Then, the set Si−1 + oi is independent for all i ∈ [r].
Thus, we must have

g̃(Si−1 + si) ≥ g̃(Si−1 + oi)

for all i ∈ [r]. In order to use monotonicity and submodularity, we translate this into an inequality for g.
From the sampling assumption, we have

(1 + ǫ2)g(Si−1 + si) ≥ g̃(Si−1 + si) ≥ g̃(Si−1 + oi) ≥ (1− ǫ2)g(Si−1 + oi).

Then, since (1 + ǫ2)/(1 − ǫ2) ≤ 1 + 3ǫ2 for all ǫ2 ≤ 1/3,

(1 + 3ǫ2)g(Si−1 + si) ≥
(1 + ǫ2)

(1− ǫ2)
g(Si−1 + si) ≥ g(Si−1 + oi).

Subtracting g(Si−1) from each side above, we obtain

3ǫ2g(Si) + gSi−1
(si) ≥ gSi−1

(oi)

for each i ∈ [r]. Summing the resulting r inequalities, we obtain a telescoping summation, which gives

3ǫ2

r
∑

i=1

g(Si) + g(Sinit) ≥
r
∑

i=1

gSi−1
(oi) ≥

r
∑

i=1

gSinit
(oi) ≥ gSinit

(O) = g(O ∪ Sinit)− g(Sinit),

where we have used submodularity of g for the second and third inequalities. Then, using monotonicity of
g, we have 3ǫ2

∑r
i=1 g(Sinit) ≥ 3ǫ2

∑r
i=1 g(Si) on the left, and g(O ∪ Sinit) ≥ g(Sinit) on the right, and so

3rǫ2g(Sinit) + 2g(Sinit) ≥ g(O). (8)

4A similar result for the greedy algorithm applied to an approximately calculated submodular function is given by Calinescu
et al. [6]. However, in their model, the marginals of a submodular function are approximately calculated, while in ours, the
value of the submodular function is approximately calculated. For the sake of completeness, we provide a complete proof for
our setting.
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Finally, by the sampling assumption we must have g̃(Sinit) ≥ (1 − ǫ2)g(Sinit) and also (1 + ǫ2)g(O) ≥
(1 + ǫ2)g(A) ≥ g̃(A) for any set A considered by the algorithm. Thus, (8) implies

(2 + 3rǫ2)

(

1 + ǫ2
1− ǫ2

)

g̃(Sinit) ≥ g̃∗.

The next difficulty we must overcome is that the final set S produced by Algorithm 2 is (approximately)
locally optimal only with respect to the sampled function g̃(S). In order to use Theorem 1 to obtain a
lower bound on f(S), we must show that S is approximately locally optimal with respect to g as well. We
accomplish this in our next lemma, by showing that any significant improvement in g̃ must correspond to a
(somewhat less) significant improvement in g.

Lemma 11. Suppose that the sampling assumption holds and that g̃(A) ≤ (1+ ǫ2)g̃(B) for some pair of sets

A,B considered by Algorithm 2. Then

g(A) ≤ (1 + 4ǫ2)g(B)

Proof. From the sampling assumption, we have

(1− ǫ2)g(A) ≤ g̃(A) ≤ (1 + ǫ2)g̃(B) ≤ (1 + ǫ2)(1 + ǫ2)g(B).

Thus

g(A) ≤
(1 + ǫ2)

2

1− ǫ2
g(B) ≤ (1 + 4ǫ2)g(B),

where the second inequality holds since ǫ2 ≤ 1/5.

We now prove our main result.

Theorem 3. Algorithm 2 runs in time Õ(r4nǫ−3α) and returns a
(

1−e−c

c − ǫ
)

-approximation with proba-

bility 1−O(n−α).

Proof. As in the proof of Theorem 2, we consider some arbitrary instance (M = (U , I), f) of monotone
submodular matroid maximization with upper bound c on the curvature of f , and let O be an optimal
solution of this instance. We shall show that if the sampling assumption holds, Algorithm 2 returns a

solution S satisfying f(S) ≥
(

1−e−c

c − ǫ
)

f(O). Then, Lemma 9 shows that this happens with probability

1−O(n−α).
As in Algorithm 2, set

I =

((

1 + ǫ2
1− ǫ2

)

(2 + 3rǫ2)− 1

)

ǫ−1
2 .

Suppose that the sampling assumption holds, and let g∗ be the maximum value taken by g̃(A) for any set
A considered by Algorithm 2. At each iteration of Algorithm 2, either a set S is returned, or the value v is
increased by a factor of at least (1+ ǫ2). Suppose that the local search phase of Algorithm 2 fails to converge
to a local optimum after I steps, and so does not return a solution S. Then we must have

v ≥ (1 + ǫ2)
I g̃(Sinit) > (1 + Iǫ2)g̃(Sinit) =

(

1 + ǫ2
1− ǫ2

)

(2 + 3rǫ2)g̃(Sinit) ≥ g∗,

where the last inequality follows from Lemma 10. But, then we must have g̃(A) > g∗ for some set A
considered by the algorithm. Thus Algorithm 2 must produce a solution S.

As in Theorem 2, we apply Theorem 1 to the bases S and O, indexing S and O as in the theorem so that
S − si + oi ∈ I for all i ∈ [r], to obtain:

cec

ec − 1
f(S) ≥ f(O) +

r
∑

i=1

[g(S)− g(S − si + oi).] (9)
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Then, since Algorithm 2 returned S, we must then have:

g̃(S − si + oi) ≤ (1 + ǫ2)g̃(S)

for all i ∈ [r]. From Lemma 11 we then have

g(S − si + oi) ≤ (1 + 4ǫ2)g(S)

for all i ∈ [r]. Summing the resulting r inequalities gives

r
∑

i=1

[g(S)− g(S − si + oi)] ≥ −4rǫ2g(S).

Applying Theorem 2 and the upper bound on g(S) from Lemma 4 in (9), we then have

cec

ec − 1
f(S) ≥ f(O)− 4rǫ2g(S) ≥ f(O)−

cec

ec − 1
4rǫ2Hrf(S) ≥ f(O) −

cec

ec − 1
4rǫ2Hrf(O).

Rewriting this inequality using the definition ǫ2 = ǫ
4rHr

then gives

f(S) ≥

(

1− e−c

c
− ǫ

)

f(O).

The running time of Algorithm 2 is dominated by the number of calls it makes to the value oracle for f .
We note, as in the proof of Lemma 9, that the algorithm evaluates g̃(A) on O(rnI) sets A. Each evaluation
requires N samples of f , and so the resulting algorithm requires

O(rnIN) = Õ(rnǫ−3
2 α) = Õ(r4nǫ−3α)

calls to the value oracle for f .

7 Extensions

The algorithm presented in Section 3 produces a (1− e−c)/c− ǫ approximation for any ǫ > 0, and it requires
knowledge of c. In this section we show how to produce a clean (1 − e−c)/c approximation, and how to
dispense with the knowledge of c. Unfortunately, we are unable to combine both improvements for technical
reasons.

It will be useful to define the function

ρ(c) =
1− e−c

c
,

which gives the optimal approximation ratio.

7.1 Clean approximation

In this section, we assume c is known, and our goal is to obtain a ρ(c) approximation algorithm. We
accomplish this by combining the algorithm from Section 6 with partial enumeration.

For x ∈ U we consider the contracted matroid M/x on U − x whose independent sets are given by
Ix = {A ⊆ U − x : A+ x ∈ I}, and the contracted submodular function (f/x) which is given by (f/x)(A) =
f(A + x). It is easy to show that this function is a monotone submodular function whenever f is, and has
curvature at most that of f . Then, for each x ∈ U , we apply Algorithm 2 to the instance (M/x, f/x) to
obtain a solution Sx. We then return argmaxx∈U f(Sx).

Fisher, Nemhauser, and Wolsey [25] analyze this technique in the case of submodular maximization over a
uniform matroid, and Khuller, Moss, and Naor [21] make use of the same technique in the restricted setting
of budgeted maximum coverage. Calinescu et al. [5] use a similar technique to eliminate the error term
from the approximation ratio of the continuous greedy algorithm for general monotone submodular matroid
maximization. Our proof relies on the following general claim.
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Lemma 12. Suppose A ⊆ O and B ⊆ U \ A satisfy f(A) ≥ (1 − θ)f(O) and fA(B) ≥ (1 − θB)fA(O \ A).
Then

f(A ∪B) ≥ (1 − θAθB)f(O).

Proof. We have

f(A ∪B) = fA(B) + f(A)

≥ (1− θB)fA(O \A) + f(A)

= (1− θB)f(O) + θBf(A)

≥ (1− θB)f(O) + θB(1− θA)f(O)

= (1− θAθB)f(O).

Using Lemma 12 we show that the partial enumeration procedure gives a clean ρ(c)-approximation
algorithm.

Theorem 4. The partial enumeration algorithm runs in time Õ(r7n2α), and with probability 1 − O(n−α),
the algorithm has an approximation ratio of ρ(c).

Proof. Let O = {o1, . . . , or} be an optimal solution to some instance (M, f). Since submodularity of f
implies

r
∑

i=1

f(oi) ≥ f(O),

there is some x ∈ O such that f(x) ≥ f(O)/r. Take A = {x} and B = Sx in Lemma 12. Then, from
Theorem 3 we have f(Sx) ≥ (ρ(c)− ǫ)f(O) with probability 1−O(n−α) for any ǫ. We set ǫ = (1− ρ(c))/r.
Then, substituting θA = 1−1/r and θB = 1−ρ(c)+(1−ρ(c))/r, we deduce that the resulting approximation
ratio in this case is

1−

(

1−
1

r

)(

1− ρ(c) +
1− ρ(c)

r

)

= 1−

(

1−
1

r

)(

1 +
1

r

)

(1− ρ(c))

≥ 1− (1− ρ(c)) = ρ(c).

The partial enumeration algorithm simply runs Algorithm 2 n times, using ǫ = O(r−1) and so its running
time is Õ(r7n2α).

7.2 Unknown curvature

In this section, we remove the assumption that c is known, but retain the error parameter ǫ. The key
observation is that if a function has curvature c then it also has curvature c′ for any c′ ≥ c. This, combined
with the continuity of ρ, allows us to “guess” an approximate value of c.

Given ǫ, consider the following algorithm. Define the set C of curvature approximations by

C = {kǫ : 1 ≤ k ≤ ⌊ǫ−1⌋} ∪ {1}.

For each guess c′ ∈ C, we run the main algorithm with that setting of c′ and error parameter ǫ/2 to obtain
a solution Sc′ . Finally, we output the set Sc′ maximizing f(Sc′).

Theorem 5. Suppose f has curvature c. The unknown curvature algorithm runs in time Õ(r4nǫ−4α), and
with probability 1−O(n−α), the algorithm has an approximation ratio of ρ(c)− ǫ.

Proof. From the definition of C it is clear that there is some c′ ∈ C satisfying c ≤ c′ ≤ c + ǫ. Since f has
curvature c, the set Sc′ is a ρ(c′)− ǫ/2 approximation. Elementary calculus shows that on (0, 1], ρ′ ≥ −1/2,
and so we have

ρ(c′)− ǫ/2 ≥ ρ(c+ ǫ)− ǫ/2 ≥ ρ(c) + ǫ/2− ǫ/2 = ρ(c)− ǫ.
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7.3 Maximum Coverage

In the special case that f is given explicitly as a coverage function function, we can evaluate the potential
function g exactly in polynomial time. A (weighted) coverage function is a particular kind of monotone
submodular function that may be given in the following way. There is a universe V with non-negative weight
function w : V → R≥0. The weight function is extended to subsets of V linearly, by letting w(S) =

∑

s∈S w(s)
for all S ⊆ V . Additionally, we are given a family {Va}a∈U of subsets of V , indexed by a set U . The function
f is then defined over the index set U , and f(A) is simply the total weight of all elements of V that are
covered by those sets whose indices appear in A. That is, f(A) = w

(
⋃

a∈A Va

)

.
We now show how to compute the potential function g exactly in this case. For a set A ⊆ U and an

element x ∈ V , we denote by A[x] the collection {a ∈ A : x ∈ Va} of indices a such that x is in the set Va.
Then, recalling the definition of g(A) given in (2), we have

g(A) =
∑

B⊆A

m|A|−1,|B|−1f(B)

=
∑

B⊆A

m|A|−1,|B|−1

∑

x∈
⋃

b∈B
Vb

w(x)

=
∑

x∈V

w(x)
∑

B⊆A s.t.
A[x]∩B 6=∅

m|A|−1,|B|−1.

Consider the coefficient of w(x) in the above expression for g(A). We have

∑

B⊆A s.t.
A[x]∩B 6=∅

m|A|−1,|B|−1 =
∑

B⊆A

m|A|−1,|B|−1 −
∑

B⊆A\A[x]

m|A|−1,|B|−1

=

|A|
∑

i=0

(

|A|

i

)

m|A|−1,i−1 −

|A\A[x]|
∑

i=0

(

|A \A[x]|

i

)

m|A|−1,i−1

=

|A|
∑

i=0

(

|A|

i

)

E
p∼P

[pi−1(1− p)|A|−i] −

|A\A[x]|
∑

i=0

(

|A \A[x]|

i

)

E
p∼P

[pi−1(1− p)|A|−i]

= E
p∼P





1

p

|A|
∑

i=0

(

|A|

i

)

pi(1− p)|A|−i −
(1− p)|A[x]|

p

|A\A[x]|
∑

i=1

(

|A \A[x]|

i

)

pi(1− p)|A\A[x]|−i





= E
p∼P

[

1− (1 − p)|A[x]|

p

]

.

Thus, if we define

ℓk = E
p∼P

[

1− (1− p)k

p

]

we have
g(A) =

∑

x∈V

ℓ|A[x]|w(x),

and so to compute g, it is sufficient to maintain for each element x ∈ V a count of the number of sets A[x]
with indices in A that contain x. Using this approach, each change in g(S) resulting from adding an element
x to S and removing an element e from S during one step of the local search phase of Algorithm 1 can be
computed in time O(|V|).

We further note that the coefficients ℓk are easily calculated using the following recurrence. For k = 0,

ℓ0 = E
p∼P

[

1− (1 − p)0

p

]

= 0,
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while for k > 0,

ℓk+1 = E
p∼P

[

1− (1− p)k+1

p

]

= E
p∼P

[

1− (1− p)k + p(1− p)k

p

]

= ℓk + E
p∼P

(1− p)k = ℓk +mk,0.

The coefficients ℓk obtained in this fashion in fact correspond (up to a constant scaling factor) to those used
to define the non-oblivious coverage potential in [14], showing that our algorithm for monotone submodular
matroid maximization is indeed a generalization of the algorithm already obtained in the coverage case.
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[28] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model.
In STOC, pages 67–74, 2008.
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