
ar
X

iv
:1

20
4.

21
36

v2
 [

cs
.D

S]
 1

9
A

ug
 2

01
2

The Johnson-Lindenstrauss Transform Itself Preserves Differential

Privacy

Jeremiah Blocki∗ Avrim Blum† Anupam Datta‡ Or Sheffet§

Carnegie Mellon University

{jblocki@cs, avrim@cs, danupam@andrew, osheffet@cs}.cmu.edu

August 21, 2012

Abstract

This paper proves that an “old dog”, namely – the classical Johnson-Lindenstrauss transform,
“performs new tricks” – it gives a novel way of preserving differential privacy. We show that
if we take two databases, D and D′, such that (i) D′ −D is a rank-1 matrix of bounded norm
and (ii) all singular values of D and D′ are sufficiently large, then multiplying either D or D′

with a vector of iid normal Gaussians yields two statistically close distributions in the sense of
differential privacy. Furthermore, a small, deterministic and public alteration of the input is
enough to assert that all singular values of D are large.

We apply the Johnson-Lindenstrauss transform to the task of approximating cut-queries:
the number of edges crossing a (S, S̄)-cut in a graph. We show that the JL transform allows
us to publish a sanitized graph that preserves edge differential privacy (where two graphs are
neighbors if they differ on a single edge) while adding only O(|S|/ǫ) random noise to any
given query (w.h.p). Comparing the additive noise of our algorithm to existing algorithms for
answering cut-queries in a differentially private manner, we outperform all others on small cuts
(|S| = o(n)).

We also apply our technique to the task of estimating the variance of a given matrix in
any given direction. The JL transform allows us to publish a sanitized covariance matrix that
preserves differential privacy w.r.t bounded changes (each row in the matrix can change by at
most a norm-1 vector) while adding random noise of magnitude independent of the size of the
matrix (w.h.p). In contrast, existing algorithms introduce an error which depends on the matrix
dimensions.

∗Supported in part by the National Science Foundation Science and Technology Center TRUST as well as a NSF
Graduate fellowship.

†Supported in part by the National Science Foundation under grants CCF-1101215 and CCF-1116892.
‡Supported in part by the National Science Foundation Science and Technology Center TRUST.
§Supported in part by the National Science Foundation under grants CCF-1101215 and CCF-1116892 as well as

by the MSR-CMU Center for Computational Thinking.

http://arxiv.org/abs/1204.2136v2

1 Introduction

The celebrated Johnson Lindenstrauss transform [JL84] is widely used across many areas of Com-
puter Science. A very non-exhaustive list of related applications include metric and graph embed-
dings [Bou85, LLR94], computational speedups [Sar06, Vem05], machine learning [BBV06, Sch00],
information retrieval [PRT+98], nearest-neighbor search [Kle97, IM98, AC06], and compressed sens-
ing [BDDW08]. This paper unveils a new application of the Johnson Lindenstrauss transform – it
also preserves differential privacy.

Consider a scenario in which a trusted curator gathers personal information from n individuals,
and wishes to release statistics about these individuals to the public without compromising any
individual’s privacy. Differential privacy [DMNS06] provides a robust guarantee of privacy for such
data releases. It guarantees that for any two neighboring databases (databases that differ on the
details of any single individual), the curator’s distributions over potential outputs are statistically
close (see formal definition in Section 2). By itself, preserving differential privacy isn’t hard, since
the curator’s answers to users’ queries can be so noisy that they obliterate any useful data stored
in the database. Therefore, the key research question in this field is to provide tight utility and
privacy tradeoffs.

The most basic technique that preserves differential privacy and gives good utility guarantees is
to add relatively small Laplace or Gaussian noise to a query’s true answer. This simple technique
lies at the core of an overwhelming majority of algorithms that preserve differential privacy. In fact,
many differentially private algorithms follow a common outline. They take an existing algorithm
and revise it by adding such random noise each time the algorithm operates on the sensitive data.
Proving that the revised algorithm preserves differential privacy is almost immediate, because
differential privacy is composable. On the other hand, providing good bounds on the revised
algorithm’s utility follows from bounding the overall noise added to the algorithm, which is often
difficult. This work takes the complementary approach. We show that an existing algorithm
preserves differential privacy provided we slightly alter the input in a reversible way. Our analysis
of the algorithm’s utility is immediate, whereas privacy guarantees require a non-trivial proof.

We prove that by multiplying a given database with a vector of iid normal Gaussians, we can
output the result while preserving differential privacy (assuming the database has certain properties,
see “our technique”). This technique is no other than the Johnson-Lindenstrauss transform, and
it’s guaranteed to preserve w.h.p the L2 norm of the given database up to a small multiplicative
factor. Therefore, whenever answers to users’ queries can be formalized as the length of the product
between the given database and a query-vector, utility bounds are straight-forward.

For example, consider the case where our input is composed of n points in Rd given as a n× d
matrix. We define two matrices as neighbors if they differ on a single row and the norm of the
difference is at most 1.1 Under this notion of neighbors, a simple privacy preserving mechanism
allows us to output the mean of the rows in A, but what about the covariance matrix ATA? We
prove that the JL transform gives a (ǫ, δ)-differentially private algorithm that outputs a sanitized
covariance matrix. Furthermore, for directional variance queries, where users give a unit-length
vector x and wish to know the variance of A along x (see definition in Section 2), we give utility
bounds that are independent of d and n. In contrast, all other differentially private algorithms that
answer directional variance queries have utility guarantees that depend on d or n. Observe that

1This notion of neighboring inputs, also considered in [MM09, HR12], is somewhat different than the typical notion
of privacy, allowing any individual to change her attributes arbitrarily.

1

our utility guarantees are somewhat weaker than usual. Recall that the JL lemma guarantees that
w.h.p lengths are preserved up to a small multiplicative error, so for each query our algorithm’s
estimation has w.h.p small multiplicative error and additional additive error.

A special case of directional variance queries is cut-queries of a graph. Suppose our database is a
graph G and users wish to know how many edges cross a (S, S̄)-cut. Such a query can be formalized
by the length of the product EG1S , where EG is the edge-matrix of G and 1S is the indicator vector
of S (see Section 2). We prove that the JL transform allows us to publish a perturbed Laplacian
of G while preserving (ǫ, δ)-differential privacy, w.r.t two graphs being neighbors if they differ only
on a single edge. Comparing our algorithm to existing algorithms, we show that we add (w.h.p)
O(|S|) random noise to the true answer (alternatively: w.h.p we add only constant noise to the

query
1
T

SE
T

GEG1S

1
T

S1S
). In contrast, all other algorithms add noise proportional to the number of vertices

(or edges) in the graph.

Our technique. It is best to demonstrate our technique on a toy example. AssumeD is a database
represented as a {0, 1}n-vector, and suppose we sample a vector Y of n iid normal Gaussians and
publish X = Y TD. Our output is therefore distributed like a Gaussian random variable of 0 mean
and variance σ2 = ‖D‖2. Assume a single entry in D changes from 0 to 1 and denote the new
database as D′. ThenX ′ = Y TD′ is distributed like a Gaussian of 0-mean and variance λ2 = ‖D‖2+
1. Comparing PDFX(x) = (2πσ2)−1/2 exp(−x2/(2σ2)) to PDFX′(x) = (2πλ2)−1/2 exp(−x2/(2λ2))

we have that ∀x,
√

λ2/σ2PDFX′(x) ≥ PDFX(x) ≥ exp(− x2

2σ2 · 1
λ2)PDFX′(x). Using concentration

bounds on Gaussians we deduce that if λ2 > σ2 = Ω(log(1/δ)/ǫ), then w.p ≥ 1− δ both PDFs are
within multiplicative factor of e±ǫ. We now repeat this process r times (setting ǫ, δ accordingly)
s.t. the JL lemma assures that (after scaling) w.h.p we output a vector of norm (1 ± η)‖D‖2
for a given η. We get utility guarantees for publishing the number of ones in D while preserving
(ǫ, δ)-differential privacy.

Keeping with our toy example, one step remains – to convert the above analysis so that it will

hold for any database, and not only databases with w
def
= log(1/δ)/ǫ many ones. One way is to

append the data with w one entries, but observe: this ends up in outputting X + N where N is
random Gaussian noise! In other word, appending the data with ones makes the above technique
worse (noisier) than the classical technique of adding random Gaussian noise. Instead, what we do
is to “translate the database”. We apply a simple deterministic affine transformation s.t. D turns
into a {

√

w
n , 1}n-vector. Applying the JL algorithm to the translated database, we output a vector

whose norm squared is ≈ (1± η)(‖D‖2 +w). Clearly, users can subtract w from the result, and we
end up with ηw additive random noise (in addition to the multiplicative noise).2

It is tempting to think the above analysis suffices to show that privacy is also preserved in the
multidimensional case. After all, if we multiply the edge matrix of a graph G with a vector of iid
normal Gaussians, we get a vector with each entry distributed like a Gaussian; and if we replace G
with a neighboring G′, we affect only two entries in this vector. Presumably, applying the previous
analysis to both entries suffices to prove we preserve differential privacy. But this intuition is false.
Multiplying EG with a random vector does not result in n independent Gaussians, but rather in
one multivariate Gaussian. This is best illustrated with an example. Suppose G is a graph and S
is a subset of nodes s.t. no edge crosses the (S, S̄)-cut. Therefore EG1S is the zero-vector, and no

2Observe that in this toy example, our O(log(1/δ)/ǫ) noise bound is still worse than the noise bound of
O(

√

log(1/δ)/ǫ) one gets from adding Gaussian noise. However, in the applications detailed in Sections 3 and 4,
the idea of changing the input will be the key ingredient in getting noise bounds that are independent of n and d.

2

matter what random projection we pick, Y TEG1S = 0. In contrast, by adding a single edge that
crosses the (S, S̄)-cut, we get a graph G′ s.t. Pr[Y TEG′1S 6= 0] = 1.

Organization. Next we detail related work. Section 2 details important notations and important
preliminaries. In Sections 3 and 4 we convert the above univariate intuition to the multivariate
Gaussian case. Section 3 describes our results for graphs and cut-queries, and in Section 3.2 we
compare our method to other algorithms. Section 4 details the result for directional queries (the
general case), then a comparison with other algorithms. Even though there are clear similarities
between the analyses in Sections 3 and 4, we provide both because the graph case is simpler and
analogous to the univariate Gaussian case. Suppose G and G′ are two graphs without and with
a certain edge resp., then G induces the multivariate Gaussian with the “smaller” variance, and
G′ induces the multivariate Gaussian with the “larger” variance. In contrast, in the general case
there’s no notion of “smaller” and “larger” variances. Also, the noise bound in the general case is
larger than the one for the graph case, and the theorems our analysis relies on are more esoteric.
Section 5 concludes with a discussion and open problems.

1.1 Related Work

Differential privacy was developed through a series of papers [DN03, DMNS06, CDM+05, BDMN05].
Dwork et al [DMNS06] gave the first formal definition and the description of the basic Laplace
mechanism. Its Gaussian equivalent was defined in [DKM+06]. Other mechanisms for preserving
differential privacy include the Exponential Mechanism of McSherry and Talwar [MT07, BLR08];
the recent Multiplicative Weights mechanism of Hardt and Rothblum [HR10] and its various ex-
tensions [HLM10, GHRU11, GRU12]; the Median Mechanism [RR10] and a boosting mechanism
of Dwork et al [DRV10]. In addition, the classical Randomized Response (see [War65]) preserves
differential privacy as discussed in recent surveys [DS10, Dwo11]. The task of preserving differential
privacy when the given database is a graph or a social network was studied by Hay et al [HLMJ09]
who presented a privacy preserving algorithm for publishing the degree distribution in a graph.
They also introduce multiple notions of neighboring graphs, one of which is for the change of a
single edge. Nissim et al [NRS07] (see full version) studied the case of estimating the number of
triangles in a graph, and Karwa et al [KRSY11] extended this result to other graph structures.
Gupta et al [GRU12] studied the case of answering (S, T)-cut queries, for two disjoint subsets of
nodes S and T . All latter works use the same notion of neighboring graphs as we do. In differential
privacy it is common to think of a database as a matrix, but seldom one gives utility guarantees
for queries regarding global properties of the input matrix. Blum et al [BDMN05] approximate
the input matrix with the PCA construction by adding O(d2) noise to the input. The work of
McSherry and Mironov [MM09] (inspired by the Netflix prize competition) defines neighboring
databases as a change in a single entry, and introduces O(k2) noise while outputting a rank-k ap-
proximation of the input. The work of Hardt and Roth [HR12] gives a low-rank approximation of
a given input matrix while adding min{

√
d,
√
n} noise by following the elegant framework of Halko

et al [HMT11]. According to [HR12], a recent and not-yet-published work of Kapralov, McSherry
and Talwar preserves rank-1 approximations of a given PSD matrix with error O(n).

The body of work on the JL transform is by now so extensive that only a book may survey
it properly [Vem05]. In the context of differential privacy, the JL lemma has been used to reduce
dimensionality of an input prior to adding noise or other forms of privacy preservation. Blum et
al [BLR08] gave an algorithm that outputs a sanitized dataset for learning large-margin classifiers

3

by appealing to JL related results of [BBV06]. Hardt and Roth [HR12] gave a privacy preserving
version of an algorithm of [HMT11] that uses randomize projections onto the image space of a given
matrix. Blum and Roth [?] used it to reduce the noise added to answering sparse queries. The way
the JL lemma was applied in these works is very different than the way we use it.

2 Basic Definitions, Preliminaries and Notations

Privacy and utility. In this work, we deal with two types of inputs: [0, 1]-weighted graphs over n
nodes and n×d real matrices. (We treat wa,b = 0 as no edge between a and b). Trivially extending
the definition in [NRS07, KRSY11], two weighted n-nodes graphs G and G′ are called neighbors
if they differ on the weight of a single edge (a, b). Like in [HR12], two n × d-matrices are called
neighbors if all the coordinates on which A and A′ differ lie on a single row i, s.t. ‖A(i)−A′

(i)‖2 ≤ 1,
where A(i) denotes the i-th row of A.

Definition 2.1. An algorithm ALG which maps inputs into some range R maintains (ǫ, δ)-differential
privacy if for all pairs of neighboring inputs I,I ′ and for all subsets S ⊂ R it holds that

Pr[ALG(I) ∈ S] ≤ eǫPr[ALG(I ′) ∈ S] + δ

For each type of input we are interested in answering a different type of query. For graphs, we are
interesting in cut-queries: given a nonempty subset S of the vertices of the graph, we wish to know
what is the total weight of edges crossing the (S, S̄)-cut. We denote this as ΦG(S) =

∑

u∈S,v/∈S wu,v.

Definition 2.2. We say an algorithm ALG gives a (η, τ, ν)-approximation for cut queries, if for
every nonempty S it holds that

Pr [(1− η)ΦG(S)− τ ≤ ALG(S) ≤ (1 + η)ΦG(S) + τ] ≥ 1− ν

For n×dmatrices, we are interested in directional variance queries: given a unit-length direction
x, we wish to know what’s the variance of A along the x direction: ΦA(x) = xTATAx. (Our
algorithm normalizes A s.t. the mean of its n rows is 0.)

Definition 2.3. We say an algorithm ALG gives a (η, τ, ν)-approximation for directional variance
queries, if for every unit-length vector x it holds that

Pr [(1− η)ΦA(x)− τ ≤ ALG(x) ≤ (1 + η)ΦA(x) + τ] ≥ 1− ν

Some Linear Algebra. Given a m × n matrix M its Singular Value Decomposition (SVD) is
M = UΣV T where U ∈ Rm×m and V ∈ Rn×n are unitary matrices, and Σ has non-zero values only
on its main diagonal. Furthermore, there are exactly rank(M) positive values on the main diagonal,
denoted σ1(M) ≥ . . . ≥ σrank(M)(M), called the singular values. This allows us to write M as the

sum of rank(M) rank-1 matrices: M =
∑rank(M)

i=1 σiuiv
T

i . Because Σ has non-zero values only on its
main diagonal, the notation Σi denotes a matrix whose non-zero values lie only on the main diagonal
and are σi

1(M), σi
2(M), . . . , σi

rank(M)(M). Using the SVD, it is clear that if M is of full-rank, then

M−1 = V Σ−1UT, and that if n = m = rank(M) then det(M) =
∏n

i=1 σi(M). Furthermore, even
when M is not full-rank, the SVD allows us to use similar notation to denote the generalizations
of the inverse and of the determinant: The Moore-Penrose inverse of M is M † = V Σ−1UT; and

4

the pseudo-determinant of M is d̃et(M) =
∏rank(M)

i=1 σi(M). A n × n symmetric matrix is called
positive semidefinite (PSD) if it holds that xTMx ≥ 0 for every x ∈ Rn. Given two PSDs M and
N we denote the fact that (N −M) is PSD by M � N . For further details, see [HJ90].

Gaussian distribution. Given a r.v. X, we denote by X ∼ N (µ, σ2) the fact that X has normal
distribution with mean µ and variance σ2. Recall that PDFX(x) = 1√

2πσ2
exp(−(x − µ)2/2σ2).

We repeatedly apply the linear combination rule: for any two i.i.d normal random variables s.t.
X ∼ N (µX , σ2

X) and Y ∼ N (µY , σ
2
Y), we have that their linear combination Z = aX + bY is

distributed according to Z ∼ N (aµX + bµY , a
2σ2

X + b2σ2
Y). This in turn allows us to identify

a random variable R ∼ N (0, σ2) with the random variable σR′, where R′ ∼ N (0, 1). Classic
concentration bounds on Gaussians give that Pr[|x− µ|2 > log(1/δ)σ2] ≤ 2δ.

The multivariate normal distribution is the multi-dimension extension of the univariate normal
distribution. X ∼ N (µ,Σ) denotes a m-dimensional multivariate r.v. whose mean is µ ∈ Rm, and
variance is the PSD matrix Σ = E [(X − µ)(X − µ)T]. If Σ has full rank (Σ is positive definite)
then PDFX(x) = 1√

(2π)m det(Σ)
exp(−1

2x
TΣ−1x), a well defined function. If Σ has non-trivial kernel

space then PDFX is technically undefined (since X is defined only on a subspace of volume 0, yet
∫

Rm PDFX(x)dx = 1). However, if we restrict ourselves only to the subspace V = (Ker(Σ))⊥, then
PDF

V
X is defined over V and PDF

V
X(x) = 1√

(2π)rank(Σ)d̃et(Σ)
exp(−1

2x
TΣ†x). From now on, we omit

the superscript from the PDF and refer to the above function as the PDF of X. Observe that using
the SVD, we can denote Σ = U diag(σ2

1 , σ
2
2 , . . . , σ

2
r , 0, . . . , 0) U

T, and so V is the subspace spanned
by the first r rows of U . The multivariate extension of the linear combination rule is as follows. If A
is a n×m matrix, then the multivariate r.v. Y = AX is distributed as though Y ∼ N (Aµ,AΣAT).
For further details regarding multivariate Gaussians see [Mil64].

Finally, we conclude these Gaussian preliminaries with the famous Johnson-Lindenstrauss Lemma,
our main tool in this paper.

Theorem 2.4 (The Johnson Lindenstrauss transform [JL84]). Fix any 0 < η < 1/2. Let M be a
r ×m matrix whose entries are iid samples from N (0, 1). Then ∀x ∈ Rm.

PrM

[

(1− η)‖x‖2 ≤ 1

r
‖Mx‖2 ≤ (1 + η)‖x‖2

]

≥ 1− 2 exp(−η2r/8)

Laplacians and edge-matrices. An undirected weighted graph G = (V (G), E(G)) can be rep-
resented in various ways. One representation is by the adjacency matrix A, where Au,v = wu,v.
Another way is by the

(n
2

)

×n edge matrix of the graph, EG. We assume that the vertices of G are
ordered arbitrarily, and for each pair of vertices {u, v} where u < v, there exists a row in EG. The
entries of EG are

(

EG

)

({u,v},x) =
{√

wu,v, if u ∼G v and x = u ; −√wu,v, if u ∼G v and x = v ; 0, o/w
}

where u ∼G v denotes that (u, v) is an edge in G. Alternatively, one can represent G using the
Laplacian of the graph LG = ET

GEG. Formally, the matrix LG is the matrix whose diagonal
entries are (LG)u,u =

∑

x∼Guwx,u and non diagonal entries are (LG)u,v = −wu,v. It is simple

to verify that for any x, the following equality holds: xTLGx =
∑

u∼Gv wu,v(xu − xv)
2. As a

corollary, if we take any nonempty S (V (G) and denote its {0, 1}n-indicator vector as 1S , then
1T

S LG 1S = ‖EG1S‖2 =
∑

u∈S,v/∈S wu,v = ΦG(S).

5

Additional notations. We denote by ea the indicator vector of a. We denote by ea,b = ea − eb.
It follows that the n × n matrix La,b = ea,be

T

a,b is the matrix whose projection over coordinates

a, b is

(

1 −1
−1 1

)

, while every other entry is 0. We also denote Ea,b as the
(n
2

)

× n matrix,

whose rows are all zeros except for the row indexed by the (a, b) pair, which is eTa,b. Observe:
La,b = ea,be

T

a,b = ET

a,bEa,b.

3 Publishing a Perturbed Laplacian

3.1 The Johnson-Lindenstrauss Algorithm

We now show that the Johnson Lindenstrauss transform preserves differential privacy. We first
detail our algorithm, then analyze it.

Algorithm 1: Outputting the Laplacian of a Graph while Preserving Differential Privacy

Input: A n-node graph G, parameters: ǫ, δ, η, ν > 0
Output: A Laplacian of a graph L̃

1 Set r = 8 ln(2/ν)
η2

, and w =

√
32r ln(2/δ)

ǫ ln(4r/δ)

2 For every u 6= v, set wu,v ← w
n +

(

1− w
n

)

wu,v.
3 Pick a matrix M of size r ×

(n
2

)

, whose entries are iid samples of N (0, 1).

4 return L̃ = 1
rE

T

GM
TMEG

Algorithm 2: Approximating ΦG(S)

Input: A non empty S (V (G), parameters n, w and Laplacian L̃ from Algorithm 1.

return R(S) = 1
1−w

n

(

1T

SL̃1S − w s(n−s)
n

)

Theorem 3.1. Algorithm 1 preserves (ǫ, δ)-differential privacy w.r.t to edge changes in G.

Theorem 3.2. For every η, ν > 0 and a nonempty S of size s, Algorithm 2 gives a (η, τ, ν)-

approximation for cut queries, for τ = O
(

s ·
√

ln(1/δ) ln(1/ν)

ǫ

(

ln(1/δ) + ln(ln(1/ν)/η2)
))

.

Clearly, once Algorithm 1 publishes L̃, any user interested in estimating ΦG(S) for some
nonempty S (V (G) can run Algorithm 2 on her own. Also, observe that w is independent of
n, which we think of as large number, so we assume thoughout the proofs of both theorems that
both w

n ,
1
w are < 1/2. Now, the proof of Theorem 3.2 is immediate from the JL Lemma.

Proof of Theorem 3.2. Let us denote G as the input graph for Algorithm 1, and H as the graph
resulting from the changes in edge-weights Algorithm 1 makes. Therefore,

LH = Lw
n
Kn

+ L(1−w
n
)G =

w

n
LKn +

(

1− w

n

)

LG

Fix S. The JL Lemma (Theorem 2.4) assures us that w.p. ≥ 1− ν we have

(1− η)1T

SLH1S ≤ 1T

SL̃1S ≤ (1 + η)1T

SLH1S

6

The proof now follows from basic arithmetic and the value of w.

R(S) ≤ 1

1− w
n

(

(1 + η)1T

SLH1S − w
s(n− s)

n

)

=
1

1− w
n

(

(1 + η)
w

n
s(n− s) + (1 + η)(1− w

n
)1T

SLG1S −w
s(n − s)

n

)

≤ (1 + η)ΦG(S) +
1

1− w
n

ηw · s = (1 + η)ΦG(S) + τ

where τ ≤ 2ηw · s. The lower bound is obtained exactly the same way.

Comment. The guarantee of Theorem 3.2 is not to be mistaken with a weaker guarantee of
providing a good approximation to most cut-queries. Theorem 3.2 guarantees that any set of k
predetermined cuts is well-approximated by Algorithm 2, assuming Algorithm 1 sets ν < 1/2k.
In contrast, giving a good approximation to most cuts can be done by a very simple (and privacy
preserving) algorithm: by outputting the number of edges in the graph (with small Laplacian noise).
Afterall, we expect a cut to have m

(n2)
s(n− s) edges crossing it.

We turn our attention to the proof of Theorem 3.1. We fix any two graphs G and G′, which
differ only on a single edge, (a, b). We think of (a, b) as an edge in G′ which isn’t present in G, and
in the proof of Theorem 3.1, we identify G with the manipulation Algorithm 1 performs over G,
and assume that the edge (a, b) is present in both graphs, only it has weight w

n in G, and weight 1
in G′. Clearly, this analysis carries on for a smaller change, when the edge (a, b) is present in both
graphs but with different weights. (Recall, we assume all edge weights are bounded by 1.)

Now, the proof follows from assuming that Algorithm 1 outputs the matrix O = MEG, instead
of L̃ = 1

rO
TO. (Clearly, outputting O allows one to reconstruct L̃.) Observe that O is composed of

r identically distributed rows: each row is created by sampling a
(n
2

)

-dimensional vector Y whose
entries ∼ N (0, 1), then outputting Y TEG. Therefore, we prove Theorem 3.1 by showing that each
row maintain (ǫ0, δ0)-differential privacy, for the right parameters ǫ0, δ0. To match standard notion,
we transpose row vectors to column vectors, and compare the distributions ET

GY and ET

G′Y .

Claim 3.3. Set ǫ0 =
ǫ√

4r ln(2/δ)
, δ0 = δ

2r . Then,

∀x, PDFET

GY (x) ≤ eǫ0PDFET

G′Y
(x) (1)

Denote S = {x : PDFET

GY (x) ≥ e−ǫ0PDFET

G′Y
(x)}. Then

Pr[S] ≥ 1− δ0 (2)

Proof of Theorem 3.1 based on Claim 3.3. Apply the composition theorem of [DRV10] for r iid
samples each preserving (ǫ0, δ0)-differential privacy.

To prove Claim 3.3, we denote X = ET

GY and X ′ = ET

G′Y . From the preliminaries it follows
that X is a multivariate Gaussian distributed according to N (0, ET

GI(n2)×(n2)
EG) = N (0, LG), and

similarly, X ′ ∼ N (0, LG′). In order to analyze the two distributions, N (0, LG) and N (0, LG′), we
now discuss several of the properties of LG and LG′ , then turn to the proof of Claim 3.3.

First, it is clear from definition that the all ones vector, 1, belongs to the kernel space of EG

and EG′ , and therefore to the kernel space of LG and LG′ . Next, we establish a simple fact.

7

Fact 3.4. If G is a graph s.t. for every u 6= v we have that wu,v > 0, then 1 is the only vector in
the kernel space of EG and LG.

Proof. Any non-zero x ⊥ 1 has at least one positive coordinate and one negative coordinate, thus
the non-negative sum ‖EGx‖2 = xTLGx =

∑

u 6=v wu,v(xu − xv)
2 is strictly positive.

Therefore, the kernel space of both LG and of LG′ is exactly the 1-dimensional span of the 1
vector (for every possible outcome y of Y we have that ET

Gy ·1 = ET

G′y ·1 = 0). Alternatively, both
X and X ′ have support which is exactly V = 1⊥. Hence, we only need to prove the inequalities of
Claim 3.3 for x ∈ V. Secondly, observe that LG′ = LG + (1 − w

n)La,b. Therefore, it holds that for
every x ∈ Rn we have xTLG′x = xTLGx+ (1 − w

n)(xa − xb)
2 ≥ xTLGx. In other words, LG � LG′ ,

a fact that yields several important corollaries.
We now introduce notation for the Singular Value Decomposition of both LG and LG′ . We

denote ET

G = UΣV T and EG′
T = U ′ΛV ′T, resulting in LG = UΣ2UT, LG′ = U ′Λ2U ′T, L†

G = UΣ−2UT

and L†
G′ = U ′Λ−2U ′T. We denote the singular values of LG as σ2

1 ≥ . . . ≥ σ2
n−1 > σ2

n = 0, and the
singular values of LG′ as λ2

1 ≥ . . . ≥ λ2
n−1 > λ2

n = 0. Weyl’s inequality allows us to deduce the
following fact. Its and other facts’ proofs are in Appendix A.

Fact 3.5. Since LG � LG′ then for every i we have that λ2
i ≥ σ2

i .

In addition, since Algorithm 1 alters the input graphs s.t. the complete graph w
nLKn is contained

in G, then it also holds that w
nLKn � LG, and so Fact 3.5 gives that for every 1 ≤ i ≤ n − 1 we

have that σ2
i ≥ w = w

n · n. (It is simple to see that the eigenvalues of Kn are {n, n, . . . , n, 0}.)
Furthermore, as LG′ = LG+(1− w

n)La,b and the singular values of La,b are {2, 0, 0, . . . , 0}, then we
have that

∑

i

λ2
i = tr(LG′) ≤ tr(LG) + tr

(

(1− w

n
)La,b

)

≤
∑

i

σ2
i + 2

Another fact we can deduce from LG � LG′ , is the following.

Fact 3.6. Since the kernels of LG and of LG′ are identical, then for every x it holds that xTL†
G′x ≤

xTL†
Gx. Symbolically, LG � LG′ ⇒ L†

G′ � L†
G.

Having established the above facts, we can turn to the proof of privacy.

Proof of Claim 3.3. We first prove the upper bound in (1). As mentioned, we focus only on x ∈
V = 1⊥, where

PDFET

GY (x) =
(

(2π)n−1d̃et(LG)
)−1/2

exp(−1

2
xTL†

Gx)

PDFET

G′Y
(x) =

(

(2π)n−1d̃et(LG′)
)−1/2

exp(−1

2
xTL†

G′x)

As noted above, we have that for every x it holds that xTL†
G′x ≤ xTL†

Gx, so exp(−1
2x

TL†
Gx) ≤

exp(−1
2x

TL†
G′x). It follows that for every x we have that

PDF
ET

G
Y
(x)

PDF
ET

G′Y
(x) ≤

(

d̃et(LG′)

d̃et(LG)

)1/2
=
(

∏n−1
i=1

λ2
i

σ2
i

)1/2
.

Denoting ∆i = λ2
i − σ2

i ≥ 0, and recalling that
∑

i∆i ≤ 2 and that ∀i, σ2
i ≥ w it holds that

PDFET

GY (x)

PDFET

G′Y
(x)
≤

√

√

√

√

n−1
∏

i=1

(

1 +
∆i

σ2
i

)

≤ exp

(

1

2w

∑

i

∆i

)

≤ e
1
w ≤ e

ǫ√
4r ln(2/δ) = eǫ0

8

We now turn to the lower bound of (2). We start with analyzing the term xTL†
Gx that appears

in PDFETY (x). Again, we emphasize that x ∈ V, justifying the very first equality below.

xTL†
Gx = xTL†

GLG′L†
G′x = xTL†

G

(

LG + (1− w

n
)Lab

)

L†
G′x

= xTL†
G′x + (1− w

n
)xTL†

GLa,bL
†
G′x

= xTL†
G′x + (1− w

n
)xTL†

Gea,b · eTa,bL
†
G′x

Therefore, if we show that

Prx∼ET

GY

[

xTL†
Gea,b · eTa,bL

†
G′x >

2

1− w
n

ǫ0

]

< δ0 (3)

then it holds that w.p. > 1− δ0 we have

PDFET

GY (x)

PDFET

G′Y
(x)
≥ 1 · exp

(

−1

2
xT(L†

G − L†
G′)x

)

≥ exp

(

−1− w
n

2
xTL†

Gea,b · eTa,bL
†
G′x

)

≥ e−ǫ0

which proves the lower bound of (2). We turn to proving (3).

Denote term1 = eTa,bL
†
Gx and term2 = eTa,bL

†
G′x. Since x = ET

Gy where y ∼ Y then termi is

distributed like vecTi Y where vec1 = EGL
†
Gea,b and vec2 = EGL

†
G′ea,b. The näıve bound, ‖vec1‖ ≤

‖EG‖ ‖L†
G‖‖ea,b‖ gives a bound on the size of vec1 which is dependent on the ratio σ1

σ2
n−1

. We can

improve the bound, on both ‖vec1‖ and ‖vec2‖, using the SVD of EG and EG′ .

‖vec1‖ = ‖EGL
†
Gea,b‖ = ‖V ΣUTUΣ−2UTea,b‖ = ‖V Σ−1UTea,b‖

≤ ‖V ‖ ‖Σ−1‖ ‖U‖ ‖ea,b‖ = 1 · σ−1
n−1 · 1 ·

√
2 =

√
2√
w

‖vec2‖ = ‖EGL
†
G′ea,b‖ = ‖(EG′ − (1− w

n
)Ea,b)L

†
G′ea,b‖ < ‖EG′L†

G′ea,b‖+ ‖Ea,bL
†
G′ea,b‖

(∗)
≤ λ−1

n−1 ·
√
2 + ‖Ea,bL

†
G′ea,b‖

(∗∗)
=

√
2√
w

+ eTa,bL
†
G′ea,b

≤
√
2√
w

+
2

w
=

√
2√
w

(

1 +

√
2√
w

)

where the bound in (∗) is derived just like in vec1 (using EG′L†
G′ea,b = V ′ΛU ′TU ′Λ−2U ′Tea,b) , and

the equality in (∗∗) follows from the fact that all coordinates in the vector Ea,bL
†
G′ea,b are zero,

except for the coordinate indexed by the (a, b) pair.
We now use the fact that term1 and term2 are both linear combinations of i.i.d N (0, 1)

random variables. Therefore for i = 1, 2 we have that termi ∼ N (0, ‖veci‖2) so Pr[|termi| >
√

log(2/δ0)‖veci‖] ≤ e
− ‖veci‖

2 log(2/δ0)

‖veci‖
2 < δ0

2 . It follows that w.p> 1−δ0 both |term1| <
√

log(2/δ0)
√

2
w

and |term2| ≤
√

log(2/δ0)
√

4
w , so term1 · term2 ≤

√
8 log(2/δ0)/w. Plugging in the value of w, we

have that Pr[term1 · term2 ≤ 2ǫ0] ≥ 1− δ0 which concludes the proof of (3) and of Claim 3.3.

9

3.2 Discussion and Comparison with Other Algorithms

Recently, Gupta et al [GRU12] have also considered the problem of answering cut-queries while pre-
serving differential privacy, examining both an iterative database construction approach (e.g., based
on the multiplicative-weights method) and a randomized-response approach. Here, we compare this
and other methods to our algorithm. We compare them along several axes: the dependence on n
and s (number of vertices in G and in S resp.), the dependence on ǫ, and the dependence on k – the
number of queries answered by the mechanism. Other parameters are omitted. The bottom line
is that for a long non-adaptive query sequence, our approach dominates in the case that s = o(n).
The results are summarized in Table 1.

Note, comparing the dependence on k for interactive and non-interactive mechanisms is not
straight-forward. In general, non-interactive mechanisms are more desirable than interactive mech-
anisms, because interactive mechanisms require a central authority that serves as the only way
users can interact with the database. However, interactive mechanisms can answer k adaptively
chosen queries. In order for non-interactive mechanisms to do so, they have to answer correctly
on min{exp(O(k)), 2n} queries. This is why outputting a sanitized database is often considered a
harder task than interactively answering user queries. We therefore compare answering k adap-
tively chosen queries for interactive mechanisms, and k predetermined queries for non-interactive
mechanism.

3.2.1 Our Algorithm

Clearly, our algorithm is non-interactive. As such, if we wish to answer correctly w.h.p. a set of k
predetermined queries, we set ν ′ = ν/k, and deduce that the amount of noise added to each query is
O(s

√

log(k)/ǫ). So, if we wish to answer all 2n cut queries correctly, our noise is set to Õ(s
√
n/ǫ).

An interesting observation is that in such a case we aim to answer all 2n queries, we generate a iid
normal matrix of size r × n where r > n. Therefore, we now apply the JL transform to increase
the dimensionality of the problem rather than decreasing it. This clearly sets privacy preserving
apart from all other applications of the JL transform.

In addition, we comment that our algorithm can be implemented in a distributed fashion, where
node i repeats the following procedure r times (where r is the number of rows in the matrix picked
by Algorithm 1): First, i picks n− i− 1 iid samples from N (0, 1) and sends the j-th sample, xj, to
node i+ j. Once node i receives i− 1 values from nodes 1, 2, . . . , i− 1, it outputs the weighted sum
∑

j 6=i(−1){j<i}xj
(√

w
n + wi,j(1−

√

w
n)
)

(where (−1){j<i} denotes −1 if j < i, or 1 otherwise).

3.2.2 Näıvely Adding Laplace Noise

The most basic of all differentially private mechanisms is the classical Laplace mechanism which is
interactive. A user poses a cut-query S and the mechanism replies with ΦG(S)+Lap(0, ǫ−1) (since
the global sensitivity of cut-queries is 1). The composition theorem of [DRV10] assures us that for
k queries we preserve (O(

√
kǫ), δ)-privacy. As a result, the mechanism completely obfuscates the

true answer if k ≥ n4 and even for k = n2 has noise proportional to n/ǫ.

3.2.3 The Randomized Response Mechanism

The “Randomized Response” algorithm perturbs the edges of a graph in a way that allows us
to publish the result and still preserve privacy. Given G, the Randomized Response algorithm

10

constructs a weighted graph H where for every u, v ∈ V (G), the weight of the edge (u, v) in H,
denoted w′

u,v, is chosen independently to be either 1 or−1. Each edge picks its weight independently,

s.t. Pr[w′
u,v = 1] =

1+ǫwu,v

2 and Pr[w′
u,v = −1] = 1−ǫwu,v

2 . Clearly, this algorithm maintains ǫ-
differential edge privacy: two neighboring graphs differ on a single edge, (a, b), and obviously

Pr[w′
a,b = 1 | wa,b = 1] ≤ (1 + ǫ)Pr[w′

a,b = 1 | wa,b = 0]

In addition, it is also evident that for every nonempty S (V (G), we have that E[
∑

u∈S,v∈S̄ w′
u,v] =

ǫ
∑

u∈S,v/∈S wu,v = ǫΦG(S), yet the variance of this r.v. is Ω(s(n − s)). Therefore, a classical
Hoeffding-type bound gives that for any nonempty S (V (G) we have that for every 0 < ν < 1/2,

Pr





∣

∣

∣

∣

∣

∣

1

ǫ

∑

u∈S,v∈S̄
w′
u,v − ΦG(S)

∣

∣

∣

∣

∣

∣

>

√

2 log(1/ν)s(n − s)

ǫ



 ≤ 2ν

Observe that while
√

s(n− s) is a comparable with s when s = Ω(n), there are cuts (namely,

cuts with s = O(1)) where
√

n−s
s = Ω(

√
n). More generally, the additive noise of Randomized

Response is a factor
√

n/s worse than our algorithm. We comment that the Randomized Response
algorithm can also be performed in a distributed fashion, and in contrast to our algorithm, it
has no multiplicative error. In addition, the above analysis holds for any linear combination of
edge, not just the s(n − s) potential edges that cross the (S, S̄) cut. So given E′ ⊂ E(G) it is

possible to approximate
∑

e∈E′ we up to ±
√

|E′| log(1/ν)
ǫ w.p. ≥ 1 − 2ν. In particular, for queries

regarding an (S, T)-cut (where S, T are two disjoint subsets of vertices) we can estimate the error

up to ±
√

|S||T | log(1/ν)
ǫ . We also comment that the version of Randomized Response presented here

differs slightly from the version of [GRU12]. In particular, it is possible to address their concern
regarding outputting a sanitized graph with non-negative weights by an affine transformation taking
{−1, 1} → {0, 1}.

3.2.4 Exponential Mechanism / BLR

The exponential mechanism [MT07, BLR08] is a non-interactive privacy preserving mechanism,
which is typically intractable. To implement it for cut-queries one needs to (a) specify a range of
potential outputs and (b) give a scoring function over potential outputs s.t. a good output’s score
is much higher than all bad outputs’ scores.

One such set of potential outputs is derived from edge-sparsifiers. Given a graph G we say that
H is an edge-sparsifier for G if for any nonempty S (V (G) it holds that ΦH(S) ∈ (1 ± η)ΦG(S).
There’s a rich literature on sparsifiers (see [BK96, ST04, SS08]), and the current best known
construction [BSS09] gives a (weighted) sparsifier with O(n/η2) edges with all edge-weights ≤
poly(n). By describing every edge’s two endpoints and weight, we have that such edge-sprasifiers
can be described using O(n log(n)) bits (omitting dependence on η). Thus, the set of all sparsifiers
is bounded above by exp(O(n log(n))). Given an input graph G and a weighted graph H, we can
score H using q(G,H) = maxS

{

minα: |α−1|≤η |ΦH(S)/α − ΦG(S)|
}

. Observe that if we change G
to a neighboring graph G′, then the score changes by at most 1.

Putting it all together, we have that given input G the exponential mechanism gives a score of
e−ǫq(G,H)/2 to each possible output. The edge-sparsifier of G gets score of 1, whereas every graph

11

with q(G,H) > τ gets a score of e−ǫτ/2. So if we wish to claim we output a graph whose error is
> τ w.p. at most ν, then we need to set exp(n log(n)− ǫτ/2) ≤ ν. It follows that τ is proportional
to n log(n)/ǫ. Note however that the additive error of this mechanism is independent of the number
of queries it answers correctly.

We comment that even though we managed to find a range of size 2O(n log(n)), it is possible
to show that the range of the mechanism has to be 2Ω(n). (Fix α < 1/2 and think of a set of
inputs G where each G ∈ G has n/2 vertices with degree nα and n/2 vertices with degree n2α.
Preserving all cuts of size 1 up to (1±η) requires our output to have vertices of degree > (1−η)n2α

and vertices of degree < (1 + η)nα. Therefore, by representing vertices of high- and low-degree
using a binary vector, there exists an injective mapping of balanced {0, 1}n-vectors onto the set
of potential outputs.) Thus, unless one can devise a scoring function of lower sensitivity, the
exponential mechanism is bounded to have additive error proportional to n/ǫ.

3.2.5 The Multiplicative Weights Mechanism

The very elegant Multiplicative Weights mechanism of Hardt and Rothblum [HR10] can be adapted
as well for answering cut queries. In the Multiplicative Weights mechanism, a database is repre-
sented by a histogram over all N “types” of individuals that exist in a certain universe. In our
case, each pair of vertices is a type, and each entry in the database is an edge detailing its weight.
Thus, N =

(n
2

)

and the database length = |E|,3 and each query S corresponds to taking a dot-
product between this histogram the

(n
2

)

-length binary vector indicating the edges that cross the
cut. Plugging these parameters into the main theorem of [HR10], we get an adaptive mechanism
that answers k queries with additive noise of Õ(

√

|E| log(k)/ǫ).
We should mention that the Multiplicative Weights mechanism, in contrast to ours, always

answers correctly with no multiplicative error and can deal with k adaptively chosen queries. Fur-
thermore, it allows one to answer any linear query on the edges, not just cut-queries and in particular
answer (S, T)-cut queries. However, its additive error is bigger than ours, and should we choose
to set k = 2n (meaning, answering all cut-queries) then its additive error becomes Õ(n

√

|E|/ǫ) (in
contrast to our O(s

√
n/ǫ)).

Gupta et al [GRU12] have improved on the bounds on the Multiplicative Weights mechanism by
generalizing it as a “Iterative Database Construction” mechanism, and providing a tighter analysis
of it. In particular, they have reduced the dependency on ǫ to 1/

√
ǫ. Overall, their additive error

is Õ(
√

|E| log(k)/√ǫ), which for the case of all cut-queries is Õ(
√

n|E|/ǫ).

4 Publishing a Covariance Matrix

4.1 The Algorithm

In this section, we are concerned with the question of allowing users to estimate the covariance of a
given sample data along an arbitrary direction x. We think of our input as a n×d matrix A, and we
maintain privacy w.r.t to changing the coordinates of a single row s.t. a vector v of size 1 is added
to A(i). We now detail our algorithm for publishing the covariance matrix of A. Observe that in

addition to the variance, we can output µ = 1
nA

T1, the mean of all samples in A, in a differentially

3Observe that it is not possible to assume |E| = O(n) using sparsifiers, because sparsifiers output a weighted graph
with edge-weights O(n). Since the Multiplicative Weights mechanism views the database as a histogram the overall
resolution of the problem remains roughly n2 in the worst case.

12

Method
Additive Error

for any k
Additive Error
for all Cuts

Multi-
plicative
Error?

Inter-
active?

Tract-
able?

Comments

Laplace Noise
[DMNS06]

O(
√
k/ǫ) O(2n/2ǫ) # ! !

Randomized Re-
sponse

O(
√

sn log(k)/ǫ) O(n
√
s/ǫ) # # ! Can be dis-

tributed; answers
(S, T)-cut queries

Exponential
Mechanism
[MT07, BLR08]

O(n log(n)/ǫ) O(n log(n)/ǫ) ! # # Error ind. of k

MW [HR10]
IDC [GRU12]

Õ(
√

|E| log(k)/ǫ)
Õ(

√

|E| log(k)/ǫ)
Õ(n

√

|E|/ǫ)
Õ(

√

n|E|/ǫ) # ! ! Answers (S, T)-
cut queries

JL O(s
√

log(k)/ǫ) Õ(s
√
n)/ǫ) ! # ! Can be dis-

tributed

Table 1: Comparison between mechanisms for answering cut-queries. ǫ – privacy parameter; n and
|E| – number of vertices and edges resp.; s – number of vertices in a query; k – number of queries.

private manner by adding random Gaussian noise. (We merely output µ̃ = µ+N (0, 4 log(1/δ)
n2ǫ2

Id×d).)
We denote by In×d the n × d matrix whose main diagonal has 1 in each coordinate and all other
coordinates are 0.

Algorithm 3: Outputting a Covariance Matrix while Preserving Differential Privacy

Input: A n× d matrix A. Parameters ǫ, δ, η, ν > 0.

1 Set r = 8 ln(2/ν)
η2 and w =

16
√

r ln(2/δ)

ǫ ln(16r/δ).

2 Subtract the mean from A by computing A← A− 1
n11

TA.
3 Compute the SVD of A = UΣV T.

4 Set A← U(
√

Σ2 + w2In×d)V
T.

5 Pick a matrix M of size r × n whose entries are iid samples of N (0, 1).

6 return C̃ = 1
rA

TMTMA.

Algorithm 4: Approximating ΦA(x)

Input: A unit-length vector x, parameter w and a Covariance matrix C̃ from Algorithm 3.

return R(x) = xTC̃x− w2.

Theorem 4.1. Algorithm 3 preserves (ǫ, δ)-differential privacy.

Theorem 4.2. Algorithm 4 is a (η, τ, ν)-approximation for directional variance queries, where

τ = O
(

ln(1/δ) ln(1/ν)
ǫ2η

ln2
(

ln(1/ν)
δη2

))

.

Proof of Theorem 4.2. Again, the proof is immediate from the JL Lemma, and straight-forward
arithmetics give that for every x w.p. ≥ 1− ν we have that

(1− η)ΦA(x)− ηw2 ≤ R(x) ≤ (1 + η)ΦA(x) + ηw2

so τ = ηw2.

13

Comment. We wish to clarify that Theorem 4.2 does not mean that we publish a matrix C̃
which is a low-rank approximation to ATA. It is also not a matrix on which one can compute an
approximated PCA of A, even if we set ν = 1/poly(d). The matrix C̃ should be thought of as a
“test-matrix” – if you believe A has high directional variance along some direction x then you can
test your hypothesis on C̃ and (w.h.p) get the good approximated answer. However, we do not
guarantee that the singular values of ATA and of C̃ are close or that the eigenvectors of ATA and
C̃ are comparable. (See discussion in Section 5.)

Proof of Theorem 4.1. Fix two neighboring A and A′. We often refer to the gap matrix A′ − A
as E. Observe, E is a rank-1 matrix, which we denote as the outer-product E = eiv

T (ei is the
indicator vector of row i and v is a vector of norm 1). As such, the singular values of E are exactly
{1, 0, . . . , 0}.4

The proof of the theorem is composed of two stages. The first stage is the simpler one. We
ignore step 4 of Algorithm 3 (shifting the singular values), and work under the premise that both
A and A′ have singular values no less than w. In the second stage we denote B and B′ as the
results of applying step 4 to A and A′ resp., and show what adaptations are needed to make the
proof follow through.

Stage 1.
We assume step 4 was not applied, and all singular values of A and A′ are at least w.

As in the proof of Theorem 3.1, the proof follows from the assumption that Algorithm 3 outputs
OT = ATM (which clearly allows us to reconstruct C̃ = 1

rO
TO). Again OT is composed of r columns

each is an iid sample from ATY where Y ∼ N (0, In×n). We now give the analogous claim to
Claim 3.3.

Claim 4.3. Fix ǫ0 = ǫ√
4r ln(2/δ)

and δ0 = δ
2r . Denote S = {x : e−ǫ0PDFA′TY (x) ≤ PDFATY (x) ≤

eǫ0PDFA′TY (x)}. Then Pr[S] ≥ 1− δ0.

Again, the composition theorem of [DRV10] along with the choice of r gives that overall we
preserve (ǫ, δ)-differential privacy.

Proof of Claim 4.3. The proof mimics the proof of Claim 3.3, but there are two subtle differences.
First, the problem is simpler notation-wise, because A and A′ both have full rank due to Al-
gorithm 3. Secondly, the problem becomes more complicated and requires we use some heavier
machinery, because the singular values of A′ aren’t necessarily bigger than the singular values of
A. Details follow.

First, let us formally define the PDF of the two distributions. Again, we apply the fact that
ATY and A′TY are linear transformations of N (0, In×n).

PDFATY (x) =
1

√

(2π)d det(ATA)
exp(−1

2
xT(ATA)−1x)

PDFA′TY (x) =
1

√

(2π)d det(A′TA′)
exp(−1

2
xT(A′TA′)−1x)

4For convenience, we ignore the part of the algorithm that subtracts the mean of the rows of A. Observe that if
E = A−A′ then after subtracting the mean from each row, the difference between the two matrices is ẽi

Tv where ẽi
is simply subtracting 1/n from each coordinate of ei. Since ‖ẽi‖ < ‖ei‖, this has no effect on the analysis.

14

Our proof proceeds as follows. First, we show

e−ǫ0/2 ≤
√

det(A′TA′)
det(ATA)

≤ eǫ0/2 (4)

Then we show that no matter whether we sample x from ATY or from A′TY , we have that

Prx

[

1

2

∣

∣xT
(

(ATA)−1 − (A′TA′)−1
)

x
∣

∣ ≥ ǫ0/2

]

≤ δ0 (5)

Clearly, combining both (4) and (5) proves the claim.
Let us prove (4). Denote the SVD of A = UΣV T and A′ = U ′ΛV ′T, where the singular values of

A are σ1 ≥ σ2 ≥ . . . ≥ σd > 0 and the singular values of A′ are λ1 ≥ λ2 ≥ . . . ≥ λd > 0. Therefore
we have ATA = V Σ2V T, A′TA′ = V ′Λ2V ′T and also (ATA)−1 = V Σ−2V T, (A′TA′)−1 = V ′Λ−2V ′T.
Thus det(ATA) =

∏d
i=1 σ

2
i and det(A′TA′) =

∏d
i=1 λ

2
i .

This time, in order to bound the gap
∑

i(λ
2
i − σ2

i)/σ
2
i it isn’t sufficient to use the trace of the

matrices. Instead, we invoke an application of Lindskii’s theorem (Theorem 9.4 in [Bha07]).

Fact 4.4 (Linskii). For every k and every 1 ≤ i1 < i2 < . . . < ik ≤ n we have that

k
∑

j=1

λij ≤
k
∑

j=1

σij +
k
∑

i=1

svi(E)

where {svi(E)}ni=1 are the singular values of E sorted in a descending order.

As a corollary, because E has only 1 non-zero singular value, we denote Big = {i : λi > σi}
and deduce that

∑

i∈Big λi − σi ≤ 1. Similarly, since the singular values of E and of (−E) are the
same, we have that

∑

i/∈Big σi − λi ≤ 1. Using this, proving (4) is straight-forward:

√

∏

i
λ2
i

σ2
i
≤
∏

i∈Big

(

1 +
λi − σi

σi

)

≤ exp





1

w

∑

i∈Big

λi − σi



 ≤ ew
−1 ≤ eǫ0/2

and similarly,

√

∏

i
σ2
i

λ2
i
≤ eǫ0/2.

We turn to proving (5). We start with the following derivation.

xT(ATA)−1x− xT(A′TA′)−1x = xT(ATA)−1(A′TA′)(A′TA′)−1x− xT(A′TA′)−1x =
= xT(ATA)−1((A+ E)T(A+ E))(A′TA′)−1x− xT(A′TA′)−1x
= xT(ATA)−1(ATE + ETA′)(A′TA′)−1x

and using the SVD and denoting E = eiv
T, we get

xT(ATA)−1x− xT(A′TA′)−1x = xT
(

V Σ−1UT
)

ei · vT
(

V ′Λ−2V ′T)x
+xT

(

V Σ−2V T
)

v · eTi
(

U ′Λ−1V ′T)x

So now, assume x is sampled from ATY . (The case of A′TY is symmetric. In fact, the names A
and A′ are interchangeable.) That is, assume we’ve sampled y from Y ∼ N (0, In×n) and we have

15

x = ATy = V ΣUTy and equivalently x = (A′T − ET)y = V ′ΛU ′Ty − veTi y. The above calculation
shows that

∣

∣xT(ATA)−1x− xT(A′TA′)−1x
∣

∣ ≤ term1 · term2 + term3 · term4

where for i = 1, 2, 3, 4 we have termi = |veci · y| and

vec1 = UΣV TV Σ−1Uei = ei, so ‖vec1‖ = 1

vec2 = U ′Λ−1V ′Tv − eiv
TV ′Λ−2V ′Tv, so ‖vec2‖ ≤

1

λd
+

1

λ2
d

vec3 = UΣ−1V Tv, so ‖vec3‖ ≤
1

σd

vec4 = ei − eiv
TV ′Λ−1U ′Tei, so ‖vec4‖ ≤ 1 +

1

λd

Recall that all singular values, both of A and A′, are greater than w and that veci ·y ∼ N (0, ‖veci‖2),
so w.p. ≥ 1− δ0 we have that for every i it holds that termi ≤

√

ln(4/δ0)‖veci‖ so

∣

∣xT(ATA)−1x− xT(A′TA′)−1x
∣

∣ ≤ 2(
1

w
+

1

w2
) ln(4/δ0) ≤

4 ln(4/δ0)

w
≤ ǫ0

this concludes the proof in our first stage.

Stage 2.
We assume step 4 was applied, and denote B = U(

√
Σ2 + w2I)V T and B′ = U ′(

√
Λ2 + w2I)V ′T.

We denote the singular values of B and B′ as σB
1 ≥ σB

2 ≥ . . . ≥ σB
d and λB

1 ≥ λB
2 ≥ . . . ≥ λB

d resp.
Observe that by definition, for every i we have (σB

i)
2 = σ2

i + w2 and (λB
i)

2 = λ2
i + w2.

Again, we assume we output OT = BTY , and compare X = BTY to X ′ = B′TY . The theorem
merely requires Claim 4.3 to hold, and they, in turn, depend on the following two conditions.

e−ǫ0/2 ≤
√

det(B′TB′)
det(BTB)

≤ eǫ0/2 (6)

Prx

[

1

2

∣

∣xT
(

(BTB)−1 − (B′TB′)−1
)

x
∣

∣ ≥ ǫ0/2

]

≤ δ0 (7)

The second stage deals with the problem that now, the gap ∆ = B′−B is not necessarily a rank-1
matrix. However, what we show is that all stages in the proof of Claim 4.3 either rely on the
singular values or can be written as the sum of a few rank-1 matrix multiplications.

The easier part is to claim that Eq. (6) holds. The analysis is a simple variation on the proof of
Eq. (4). Fact 4.4 still holds for the singular values of A and A′. Observe that λB

i > σB
i iff λi > σi.

And so we have
√

√

√

√

∏

i

(λB
i)

2

(σB
i)

2
≤
√

√

√

√

∏

i∈Big

λ2
i + w2

σ2
i + w2

≤
√

√

√

√

∏

i∈Big

λ2
i

σ2
i

and the remainder of the proof follows.

16

We now turn to proving Eq. (7). We start with an observation regarding A′TA and B′TB′.

A′TA′ = (A+ E)T(A+ E) = ATA+A′TE + ETA

BTB = V (Σ2 + w2I)V T = V Σ2V T +w2I = ATA+w2I

B′TB′ = V ′(Λ2 + w2I)V ′T = A′TA′ + w2I

⇒ B′TB′ −BTB = A′TE + ETA

Now we can follow the same outline as in the proof of (5). Fix x, then:

xT(BTB)−1x− xT(B′TB′)−1x = xT(BTB)−1(B′TB′)(B′TB′)−1x− xT(B′TB′)−1x =
= xT(BTB)−1

[

BTB +A′TE + ETA
]

(B′TB′)−1x− xT(B′TB′)−1x

= xT(BTB)−1
[

A′TE + ETA
]

(B′TB′)−1x

= xT(BTB)−1(AT + ET)ei · vT(B′TB′)−1x
+xT(BTB)−1v · eTi

(

A′ − E
)

(B′TB′)−1x

It is straight-forward to see that the i-th spectral values of (BTB)−1A is σi

σ2
i +w2 ≤ 1√

σ2
i +w2

≤ 1/w,

and similarly for the spectral values of (B′TB′)−1A′. We now proceed as before and partition the
above sum into multiplications of pairs of terms where termi ≤ |veci · y|, and y is sampled from
N (0, In×n) and x = BTy:

xT(BTB)−1x− xT(B′TB′)−1x = yT
[

B(BTB)−1(AT + ET)ei
]

·
[

vT(B′TB′)−1BT
]

y

+yT
[

B(BTB)−1v
]

·
[

eTi
(

A′ − E
)

(B′TB′)−1BT
]

y

Lastly, we need to bound all terms that contain the multiplication (B′TB′)−1BTy in comparison
to (B′TB′)−1B′Ty = B′†y. For instance, take the term = |vecTy| for vecT = eTi (A

′ − E) (B′TB′)−1BT,
and define it as vecT = zTBT. We can only bound ‖Bz‖ using σB

1 /(λ
B
d)

2, whereas we can bound
‖B′z‖ with 1/λB

d < 1/w. In contrast to before, we do not use the fact that BTy = (B′ − ∆)Ty.
Instead, we make the following derivations.

First, we observe that for every vector z we have that ‖B′z‖ ≥ ‖A′z‖ and ‖B′z‖ ≥ w‖z‖.
Using the fact that BTB − B′TB′ = −A′TE − ETA, a simple derivation gives that ‖Bz‖2 ≤
(‖B′z‖+ ‖z‖)2 ≤

(

1 + 1
w

)2 ‖B′z‖2, and vice-versa. So if y is s.t. |zTBTy|
(1+ 1

w)‖B′z‖ > Threshold then

|zTBTy|
‖Bz‖ > Threshold. Observe that zTBTy is distributed like N (0, ‖Bz‖2) = ‖Bz‖N (0, 1), and so

we have that for every δ′ > 0

Pr

[

|zTBTy| ≥
√

log(1/δ′)

(

1 +
1

w

)

‖B′z‖
]

= Pr

[

((

1 +
1

w

)

‖B′z‖
)−1

|zTBTy| ≥
√

log(1/δ′)

]

≤ Pr
[

(‖Bz‖)−1 |zTBTy| ≥
√

log(1/δ′)
]

≤ δ′

Corollary. Using the definitions of r and w as in Algorithm 3 – the proof of Theorem 4.1 actually
shows that in the case that A is a matrix with all singular values ≥ w, then the following simple
algorithm preserves (ǫ, δ)-differential privacy: pick a random r× n matrix M whose entries are iid
normal Gaussians, and output O = MA. Furthermore, observe that if σd, the least singular value

17

of A, is bigger than, say, 10w, then one can release σd +Lap(1/ǫ) then release O = MA. In such a
case, users know that for any unit vector x w.p. ≥ 1− ν it holds that 1

r‖Ox‖2 ≤ (1± η)‖Ax‖2.
Comment. Comparing Algorithms 1 and 3, we have that in LG = ET

GEG we “translate” the
spectral values by w, and in ATA we “translated” the spectral values by w2. This is an artifact of
the ability to directly compare the spectal values of LG and LG′ in the first analysis, whereas in
the second analysis we compare the spectral values of A and A′ (vs. ATA and A′TA′). This is why
the noise bounds in the general case are Õ(1/ǫη) times worse than for graphs.

4.2 Comparison with Other Algorithms

To the best of our knowledge, no previous work has studied the problem of preserving the variance
of A in the same formulation as us. We deal with a scenario where users pose the directions on
which they wish to find the variance of A. Other algorithms, that publish the PCA or a low-rank
approximation of A without compromising privacy (see Section 1.1), provide users with specific
directions and variances. These works are not comparable with our algorithm, as they give a
different utility guarantee. For example, low-rank approximations aim at nullifying the projection
of A in certain directions.

Here, we compare our method to the Laplace mechanism, the Multiplicative Weights mechanism
and Randomized Response. The bottom line is clear: our method allows one to answer directional
variance queries with additive noise which is independent of the given input. Other methods require
we add random noise that depends on the size of the matrix, assuming we answer polynomially
many queries.

Our notation is as follows. n denotes the number of rows in the matrix (number of individuals
in the data), d denotes the number of columns in the matrix, and we assume each entry is at most 1.
As before, ǫ denotes the privacy parameter and k denotes the number of queries. Observe that we
(again) compare k predetermined queries for non-interactive mechanisms with k adaptively chosen
queries for interactive ones. The remaining parameters are omitted from this comparison. Results
are summarized in Table 2.

4.2.1 Our Algorithm

Our algorithm’s utility is computed simply by plugging in ν = O(1/k) to Theorem 4.2, which gives
a utility bound of O(log(k)/ǫ2).

4.2.2 Näıvely Adding Laplace Noise

Again, the simplest alternative is to answer each directional-variance query with Φx(A)+Lap(0, ǫ−1).
The composition theorem of [DRV10] assures us that for k queries we preserve (O(

√
kǫ), δ)-differential

privacy.

4.2.3 Randomized Response

We now consider a Randomized Response mechanism, similar to the Randomized Response mech-
anism of [GRU12]. We wish to output a noisy version of ATA, by adding some iid random noise to
each entry of ATA. Since we call two matrices neighbors if they differ only on a single row, denote
v as the difference vector on that row. It is simple to see that by adding v to some row in A, each
entry in ATA can change by at most ‖v‖1. Recall that we require ‖v‖2 = 1 and so ‖v‖1 ≤

√
d.

18

Method Additive Error Multi-
plicative
Error?

Inter-
active?

Tract-
able?

Laplace Noise
[DMNS06]

O(
√
k/ǫ) # ! !

Randomized Re-
sponse

Õ(
√

d log(k)/ǫ) # # !

MW [HR10]
IDC [GRU12]

Õ(d
√
n log(k)/ǫ)

Õ(d
√

n log(k)/ǫ)
! !

JL O(log(k)/ǫ2) ! # !

Table 2: Comparison between mechanisms for answering directional variance queries.

Therefore, we have that in order to preserve (ǫ, δ)-differential privacy, it is enough to add a random

Gaussian noise of N (0, d log(d)
ǫ2

) to each of the d2 entries of ATA.
Next we give the utility guarantee of the Randomized Response scheme. Fix any unit length

vector x. We think of the matrix we output as ATA+N , where N is a matrix of iid samples from
N (0, d log(d)

ǫ2
). Therefore, in direction x, we add to the true answer a random noise distributed like

xTNx ∼ N (0,
(

∑

i,j x
2
ix

2
j

)

d log(d)
ǫ2

) = N (0, d log(d)
ǫ2

). So w.h.p the noise we add is within factor of

Õ(
√
d/ǫ) for each query, and for k queries it is within factor of Õ(

√

d log(k)/ǫ).

4.2.4 The Multiplicative Weights Mechanism

It is not straight-forward to adapt the Multiplicative Weights mechanism to answer directional
variance queries. We represent ATA as a histogram over its d2 entries (so the size of the “universe”
is N = d2), but it is not simple to estimate what is the equivalent of number of individuals in this
representation. We chose to take the pessimistic bound of nd2, since this is the L1 bound on the
sum of entries in ATA, but we comment this is a highly pessimistic bound. It is fairly likely that
the number of individuals in this representation can be set to only O(d2).

Plugging these parameters into the utility bounds of the Multiplicative Weights mechanism,
we get a utility bound of Õ(d

√
n log(k)/ǫ). Plugging them into the improved bounds of the IDC

mechanism, we get Õ(d
√

n log(k)/ǫ). Observe that even if replace the pessimistic bound of nd2

with just d2, these bounds depend on d.

5 Discussion and Open Problems

The fact that the JL transform preserves differential privacy is likely to have more theoretical and
practical applications than the ones detailed in this paper. Below we detail a few of the open
questions we find most compelling.

Error depedency on r. Our algorithm projects the edge-matrix of a given graph on r random
directions, then publishes these projections. The value of r determines the probability we give a
good approximation to a given cut-query, and provided that we wish to give a good approximation
to all cut-queries, our analysis requires us to set r = Ω(n). But is it just an artifact of the analysis?
Could it be that a better analysis gives a better bound on r? It turns out that the answer is “no”.
In fact, the direction on which we project the data now have high correlation with the published
Laplacian. We demonstrate this with an example.

19

Assume our graph is composed of a single perfect matching between 2n nodes, where node i is
matched with node n + i. Focus on a single random projection – it is chosen by picking

(2n
2

)

iid
random values xi,j ∼ N (0, 1), and for the ease of exposition imagine that the values of the edges
in the matching are picked first, then the values of all other pairs of vertices. Now, if we pick
the value xi,n+i for the 〈i, n + i〉 edge, then node i is assigned xi,n+i while node n + i is assigned
−xi,n+i. So regardless of the sign of xi,n+i, exactly one of the two nodes {i, n + i} is assigned the
positive value |xi,n+i| and exactly one is assigned the negative value −|xi,n+i|. Define S as the set
of n nodes that are assigned the positive values and S̄ as the set of n nodes that are assigned the
negative values. The sum of weight crossing the (S, S̄)-cut is distributed like (X + w

nY)2 where
X =

∑

i |xi,n+i| and Y =
∑

i

∑

j 6=n+i xi,j. Indeed, Y is the sum of n(n − 1) random normal iid
Gaussians, but X is the sum of n absolute values of Gaussians. So w.h.p. both X and Y are
proportional to n. Therefore, in the direction of this particular random projection we estimate the
(S, S̄)-cut as Ω((n ± w)2) = Ω(n2) rather than O(n). (If X was distributed like the sum of n iid
normal Gaussians, then the estimation would be proportional to (

√
n)2 = n.)

Assuming that the remaining r−1 projections estimate the cut as O(n), then by averaging over
all r random projections our estimation of the (S, S̄)-cut is ω(n), as long as r = o(n).

Error amplification or error detection. Having established that we do err on some cuts, we
pose the question of error amplification. Can we introduce some error-correction scheme to the
problem without increasing r significantly? Error amplification without increasing r will allow us
to keep the additive error fairly small. One can view L̃ as a coding of answers to all 2n cut-queries
which is guaranteed to have at least 1 − ν fraction of the code correct, in the sense that we get
a (η, τ)-approximation to the true cut-query answer. As such, it is tempting to try some self-
correcting scheme – like adding a random vector x to the vector 1S , then finding the estimation to
xTLGx and (1s + x)TLGx and inferring 1T

SLG1S . We were unable to prove such scheme works due
to the dot-product problem (see next paragraph) and to query dependencies.

A related question is of error detection: can we tell whether L̃ gives a good estimation to a cut
query or not? One potential avenue is to utilize the trivial guess for ΦG(S) – the expected value
m

(n2)
s(n− s) (we can release m via the Laplace mechanism). We believe this question is related to

the problem of estimating the variance of {ΦG(S) : |S| = s}.
Edges between S and T . Our work assures utility only for cut-queries. It gives no utility
guarantees for queries regarding E(S, T), the set of edges connecting two disjoint vertex-subsets
S and T . The reason is that it is possible to devise a graph where both E(S, S̄) and E(T, T̄) are
large whereas E(S, T) is fairly small. When E(S, S̄) and E(T, T̄) are big, the multiplicative error
η given to both quantities might add too much noise to an estimation of E(S, T).

The problem relates to the dot-product estimation of the JL transform. It is a classical result
that if M is a distance-preserving matrix and u and v are two vectors s.t. ‖M(u+ v)‖2 ≈ ‖u+ v‖2
and ‖M(u − v)‖2 ≈ ‖u − v‖2 then it is possible to bound the difference |Mu ·Mv − u · v|. But
this bound is a function of ‖u‖ and ‖v‖, which in our case translates to a bound that depends on
‖EG1S‖ and ‖EG1T ‖, both vectors of potentially large norms.

Other Versions of JL. The analysis in this works deals with the most basic JL transform, using
normal Gaussians. We believe that qualitatively the same results should apply for other versions
of the JL transform (e.g., with entries taken in U[−1,1]). However, we are not certain whether the
same results hold for sparse transforms (see [DKS10]).

Low rank approximation of a given matrix. The work of [HR12] gives a differentially private

20

algorithm that outputs a low-rank approximation of a given matrix A, while adding additive error
> min{

√
d,
√
n}. Our work, which introduces much smaller noise (independent of n and d), does

not have such guarantees. Our algorithm could potentially be integrated into theirs. In particular,
their algorithm is composed of two stages, and our technique greatly improves the first of the two.
The crux of the second stage lies in devising a way to preserve differential privacy when multiplying
a given (non-private) X with a private database A without introducing too large of an additive
noise. Matrix multiplication via random projections might be such a way.

Integration with the Multiplicative Weights mechanism. When the interactive Multiplica-
tive Weights mechanism is given a user’s query, it considers two possible alternatives: answering
according to a synthetic database, or answering according to the Laplace mechanism. It chooses the
latter alternative only when the two answers are far apart. Its utility guarantees rely on applying
the Laplace mechanism only a bounded number of times. An interesting approach might be to
add a third alternative, of answering according to the perturbed Laplacian we output. Hopefully,
if most updates can be “charged” to answers provided by the perturbed Laplacian, it will allow us
to improve privacy parameters (noise dependency on n).

References

[AC06] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson-
lindenstrauss transform. In Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, STOC ’06, pages 557–563, New York, NY, USA, 2006. ACM.

[BBV06] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Kernels as features: On
kernels, margins, and low-dimensional mappings. Machine Learning, 65(1):79–94, 2006.

[BDDW08] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A simple
proof of the restricted isometry property for random matrices. Constructive Approxi-
mation, 28(3):253–263, 2008.

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy:
the sulq framework. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, PODS ’05, pages 128–138,
New York, NY, USA, 2005. ACM.

[Bha07] R. Bhatia. Perturbation Bounds for Matrix Eigenvalues (Classics in Applied Math-
ematics). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2007.

[BK96] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in õ(n2)
time. In Proceedings of the twenty-eighth annual ACM symposium on Theory of com-
puting, STOC ’96, pages 47–55, New York, NY, USA, 1996. ACM.

[BLR08] A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive
database privacy. In Proceedings of the 40th annual ACM symposium on Theory of
computing, pages 609–618. ACM, 2008.

[Bou85] J Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel
Journal of Mathematics, 52(1-2):46–52, 1985.

21

[BSS09] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan spar-
sifiers. In STOC, pages 255–262, 2009.

[CDM+05] Shuchi Chawla, Cynthia Dwork, Frank Mcsherry, Adam Smith, and Larry Joseph
Stockmeyer. Toward privacy in public databases. In In TCC, pages 363–385, 2005.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In EUROCRYPT,
pages 486–503, 2006.

[DKS10] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlos. A sparse johnson: Lindenstrauss
transform. In Proceedings of the 42nd ACM symposium on Theory of computing, STOC
’10, pages 341–350, New York, NY, USA, 2010. ACM.

[DMNS06] Cynthia Dwork, Frank Mcsherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In In Proceedings of the 3rd Theory of Cryptography
Conference, pages 265–284. Springer, 2006.

[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In PODS,
pages 202–210, 2003.

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential
privacy. In FOCS, pages 51–60, 2010.

[DS10] Cynthia Dwork and Adam Smith. Differential privacy for statistics: What we know
and what we want to learn. Journal of Privacy and Confidentiality, 1(2):2, 2010.

[Dwo11] Cynthia Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86–
95, 2011.

[GHRU11] Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan Ullman. Privately releasing
conjunctions and the statistical query barrier. In STOC, pages 803–812, 2011.

[GRU12] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private
data release. In TCC, pages 339–356, 2012.

[HJ90] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press,
1990.

[HLM10] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm
for differentially private data release. CoRR, abs/1012.4763, 2010.

[HLMJ09] Michael Hay, Chao Li, Gerome Miklau, and David Jensen. Accurate estimation of the
degree distribution of private networks. In ICDM, pages 169–178, 2009.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decomposi-
tions. SIAM Review, 53(2):217–288, 2011.

[HR10] M. Hardt and G.N. Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, pages 61–70. IEEE, 2010.

22

[HR12] Moritz Hardt and Aaron Roth. Beating randomized response on incoherent matrices.
In STOC, 2012.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. pages 604–613, 1998.

[JL84] W. Johnson and J. Lindenstauss. Extensions of Lipschitz maps into a Hilbert space.
Contemporary Mathematics, 1984.

[Kle97] Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions.
pages 599–608, 1997.

[KRSY11] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev. Private
analysis of graph structure. PVLDB, 4(11):1146–1157, 2011.

[LLR94] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. In Proceedings of the 35th Annual Symposium on Foundations
of Computer Science, SFCS ’94, pages 577–591, Washington, DC, USA, 1994. IEEE
Computer Society.

[Mil64] K.S. Miller. Multidimensional Gaussian distributions. SIAM series in applied mathe-
matics. Wiley, 1964.

[MM09] Frank McSherry and Ilya Mironov. Differentially private recommender systems: Build-
ing privacy into the netflix prize contenders. In KDD, pages 627–636, 2009.

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In
FOCS, pages 94–103, 2007.

[NRS07] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling
in private data analysis. In Proceedings of the thirty-ninth annual ACM Sym-
posium on Theory of Computing, pages 75–84. ACM, 2007. Full version in:
http://www.cse.psu.edu/~asmith/pubs/NRS07.

[PRT+98] Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, S. Vempala, and San-
tosh Vempala. Latent semantic indexing: A probabilistic analysis. pages 159–168.
ACM press, 1998.

[RR10] A. Roth and T. Roughgarden. Interactive privacy via the median mechanism. In
Proceedings of the 42nd ACM symposium on Theory of computing, pages 765–774.
ACM, 2010.

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via random pro-
jections. In FOCS, pages 143–152, 2006.

[Sch00] Leonard J. Schulman. Clustering for edge-cost minimization (extended abstract). In
Proceedings of the thirty-second annual ACM symposium on Theory of computing,
STOC ’00, pages 547–555, New York, NY, USA, 2000. ACM.

[SS08] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
In STOC, pages 563–568, 2008.

23

http://www.cse.psu.edu/~asmith/pubs/NRS07

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In STOC, pages 81–90,
2004.

[Vem05] S.S. Vempala. The Random Projection Method. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science. American Mathematical Society, 2005.

[War65] Stanley L. Warner. Randomized Response: A Survey Technique for Eliminating Evasive
Answer Bias. Journal of the American Statistical Association, 60(309):63+, March
1965.

A Facts from Linear Algebra

Below we prove the various facts from linear algebra that were mentioned in the body of the paper.
We add the proofs, yet we comment that they are not new. In fact, existing literature [HJ90, Bha07]
have documented proofs of the general theorems from which our facts are derived. Throughout
this section, we denote the i-th eigenvalue (resp. the i-th singular value) of a given matrix M in a
descending order, assuming all eigenvalues are real, as evi(M) (resp. as svi(M)).

Proving Fact 3.5. The fact uses the max-min characterization of the singular values of a matrix.

Theorem A.1 (Courant-Fischer Min-Max Principle). For every matrix A and every 1 ≤ i ≤ n,
the i-th singular value of A satisfies:

svi(A) = max
S:dim(S)=i

min
x∈S: ‖x‖=1

〈Ax, x〉

Claim A.2 (Weyl Inequality). Let A and B be positive semidefinite matrices s.t. the matrix
E = B −A satisfies xTEx ≥ 0 for every x. Then for every 1 ≤ i ≤ n it holds that

svi(A) ≤ svi(B)

Proof. Let SA be the i-dimensional subspace s.t. svi(A) = minx∈SA: ‖x‖=1〈Ax, x〉. For every x ∈ SA

we have that
〈Ax, x〉 = 〈Ax, x〉+ 0 ≤ 〈Ax, x〉+ 〈Ex, x〉 = 〈Bx, x〉

so svi(A) ≤ minx∈SA: ‖x‖=1〈Bx, x〉. Thus svi(B) = maxS minx∈S: ‖x‖=1〈Bx, x〉 ≥ svi(A).

Fact 3.5 is a direct application of Claim A.2 to LG and LG′ .

Proving Fact 3.6. The proof builds on the following two claims.

Claim A.3. Let A be a positive-semidefinite matrix. If xTAx ≥ xTx for every x ∈ (Ker(A))⊥ then
it also holds that xTA†x ≤ xTx for every x ∈ (Ker(A))⊥.

Proof. Denote the SVD of A = V Σ2V T =
∑r

i=1 σ
2
i viv

T

i , where vi is the i-th column of V . Fix
x ∈ (Ker(A))⊥ and observe that x is span by the same r vectors {v1, v2, . . . , vr}, so we can write
x =

∑r
i=1 αivi. Denote y = V Σ−1V Tx =

∑r
i=1 σ

−1
i viv

T

i x. We have that y =
∑r

i=1 αiσ
−1
i vi so

y ∈ (Ker(A))⊥. Therefore yTAy ≥ yTy, but yTy = xTA†x and yTAy = xTx.

24

Claim A.4. Let A and B be two positive-semidefinite matrices s.t. Ker(A) = Ker(B). Then if
for every x we have that xTAx ≤ xTBx then xTA†x ≥ xTB†x.

Proof. We denote the SVD A = V Σ2V T and B = WΠ2W T. Because we can split any vector x
into the direct sum x = x0 + x⊥ where x0 ∈ Ker(A) = Ker(B) and x⊥ ∈ (Ker(A))⊥, and since
we have that the required inequality holds trivially for x0, then we need to show it holds for x⊥.
Given any z ∈ (Ker(A))⊥, set y = V Σ−1V Tz. We know that yTAy ≤ yTBy, and therefore

zTz = yTAy ≤ yTBy = zT
(

V Σ−1V TWΠ2W TV Σ−1V T
)

z
def
= zTCz

The above proves that C is a positive semidefinite matrix whose kernel is exactlyKer(A) = Ker(B),
and so it follows from Claim A.3 that zTz ≥ zTC†z. Let I|Ker(C)⊥ be the matrix which nullifies

every element in Ker(C), yet operates like the identity on (Ker(C))⊥. One can easily check that
C† = V ΣV TWΠ−2W TV ΣV T by verifying that indeed C†C = CC† = I|Ker(C)⊥. So now, given x

we denote z = V Σ−1V Tx and apply the above to deduce xTB†x = zTC†z ≤ zTz = xTA†x.

Fact 3.6 is a direct application of Claim A.4 to LG and LG′ .

Proving Fact 4.4. Much like Claim A.2 follows from the Courant-Fischer Min-Max principle,
Lindskii’s theorem follows from a generalization of this principle.

Theorem A.5 (Wielandt’s Min-Max Principle.). Let A be a n × n symmetric matrix. Then for
every k and every k indices 1 ≤ i1 < i2 < . . . < ik ≤ n we have that

k
∑

j=1

evij (A) = max
S1⊂S2⊂...⊂Sk
dim(Sj)=ij

min
xj∈Sj :

xj orthonormal

k
∑

j=1

〈Axj , xj〉

Claim A.6 (Linskii’s theorem.). Let A and B be a n× n symmetric matrix. Denote E = B −A.
Then for every k and every k indices 1 ≤ i1 < i2 < . . . < ik ≤ n we have that

k
∑

j=1

evij (B) ≤
k
∑

j=1

evij (A) +

k
∑

i=1

evi(E)

Proof. Fix i1 < i2 < . . . < ik and let T1, T2, . . . , Tk the subspaces for which

k
∑

j=1

evij (B) = min
xj∈Tj :

xj orthonormal

k
∑

j=1

〈Bxj, xj〉

For every v1, v2, . . . , vk orthonormal we have that
∑k

j=1〈Bvj, vj〉 =
∑k

j=1〈Avj , vj〉+
∑k

j=1〈Evj , vj〉 ≤
∑k

j=1〈Avj , vj〉+
∑k

i=1 evi(E), so

k
∑

j=1

evij (B) ≤ min
xj∈Tj :

xj orthonormal

k
∑

j=1

〈Axj , xj〉+
k
∑

i=1

evi(E)

25

and clearly

k
∑

j=1

evij (A) = max
S1⊂S2⊂...⊂Sk
dim(Sj)=ij

min
xj∈Sj :

xj orthonormal

k
∑

j=1

〈Axj , xj〉 ≥ min
xj∈Tj :

xj orthonormal

k
∑

j=1

〈Axj , xj〉

Now, Fact 4.4 follows from Claim A.6, and from the following observation of Weilandt.5 Given

a m × n matrix M , the matrix N =

(

0 M
MT 0

)

is symmetric and has eigenvalues which are (in

descending order)
{

sv1(A), sv2(A), . . . , svm(A), 0, 0, . . . , 0,−svm(A),−svm−1(A), . . . ,−sv1(A)
}

.

5We thank Moritz Hardt for bringing this observation to our attention.

26

	1 Introduction
	1.1 Related Work

	2 Basic Definitions, Preliminaries and Notations
	3 Publishing a Perturbed Laplacian
	3.1 The Johnson-Lindenstrauss Algorithm
	3.2 Discussion and Comparison with Other Algorithms
	3.2.1 Our Algorithm
	3.2.2 Naïvely Adding Laplace Noise
	3.2.3 The Randomized Response Mechanism
	3.2.4 Exponential Mechanism / BLR
	3.2.5 The Multiplicative Weights Mechanism

	4 Publishing a Covariance Matrix
	4.1 The Algorithm
	
	4.2.1 Our Algorithm
	4.2.2 Naïvely Adding Laplace Noise
	4.2.3 Randomized Response
	4.2.4 The Multiplicative Weights Mechanism

	5 Discussion and Open Problems
	A Facts from Linear Algebra

