
Formulas Resilient to Short-Circuit Errors

Yael Tauman Kalai ∗ Allison Lewko† Anup Rao‡

Abstract

We show how to efficiently convert any boolean formula F into a boolean formula E that
is resilient to short-circuit errors (as introduced by Kleitman et al. [KLM94]). A gate has a
short-circuit error when the value it computes is replaced by the value of one of its inputs.

We guarantee that E computes the same function as F , as long as at most (1/10− ε) of the
gates on each path from the output to an input have been corrupted in E. The corruptions may
be chosen adversarially, and may depend on the formula E and even on the input. We obtain our
result by extending the Karchmer-Wigderson connection between formulas and communication
protocols to the setting of adversarial error. This enables us to obtain error-resilient formulas
from error-resilient communication protocols.

∗Microsoft Research, yael@microsoft.com.
†Microsoft Research, allew@microsoft.com.
‡University of Washington, anuprao@cs.washington.edu. Supported by the National Science Foundation under

agreement CCF-1016565.

0

1 Introduction

In this work, we consider the problem of constructing boolean circuits that are resilient to errors.
We seek to (efficiently) convert any circuit C into an error resilient version E that computes the
same function as C even if some of E’s gates have errors. This is a fundamental question that
has received much attention over the years, starting with the seminal work of Von Neumann in
1956 [vN56].

In this work, we consider short-circuit errors, which were first studied by Kleitman, Leighton,
and Ma [KLM94]. A gate g has a short-circuit error if the value it computes is replaced by the
value of some input to g. We consider the setting where these errors are adversarial and are even
allowed to depend on the input to the circuit. This is equivalent to an error model where each gate
can be replaced by an arbitrary function g, such that g(0, 0) = 0 and g(1, 1) = 1. For example,
in this error model one may switch any ∧ gate with an ∨ gate, and vice versa. Such errors can
always be simulated by replacing the output of the gate with the value of one of its inputs in an
adversarial way.

Kleitman et. al. show that for any error bound e, one can convert a circuit C of size |C| into
a circuit E of size |E| that is resilient to e short-circuit errors, such that |E| ≤ O(e · |C|+ elog2 3).
Their construction involves computing O(e) copies of C in parallel (so that most of these copies
must have 0 errors), and then taking a majority of the outputs in a clever way. Thus, they reduce
to the problem of computing the majority in a way that is robust to errors. Kleitman et. al. also
give a negative result, showing that to compute the ∧ function and withstand e short-circuits, one

needs a circuit of size at least Ω
(

e log e
log log e

)
. This suggests that one cannot tolerate a constant error

rate in this model.
Our main result is the following theorem:

Theorem 1. For every ε > 0, there is a polynomial time computable function that converts any
boolean formula F of size s into a boolean formula E of size poly(s), such that E computes the
same function as F as long as at most a

(
1
10 − ε

)
fraction of the gates on every input to output

path in E experience short-circuit errors.

We emphasize that Theorem 1 constructs formulas that can be resilient to errors almost every-
where, as long as there are less than 1/10 errors on each path from the root to a leaf. Moreover,
the location of these errors may depend on the inputs that are fed into the formula. In the case
of random (short-circuit) errors, Theorem 1 gives formulas that are resilient to a constant fraction
of random errors with probability of failure that is polynomially small in the size of the formula.
Indeed, our final error resilient formula will be of depth O(log s), and if the probability of any
gate failing is a small enough constant, the probability that any input-output path experiences too
many errors can be made to be polynomially small in s. In contrast, Kleitman et. al. [KLM94]
construct circuits that are resilient to random errors that occur with rate O(1/s). Note that in the
short-circuit error model, it is impossible to be resilient against the corruption of an entire path
from the root to a leaf, since otherwise the adversary can force the output to equal the value of the
corresponding leaf. In this sense, Theorem 1 is optimal, up to the constant 1/10.

The short-circuit error model is different from the standard von Neumann error model, which
assumes that the value of each wire in the circuit is flipped independently with some small proba-
bility p. These two error models are incomparable. The short-circuit model is weaker in the sense
that if all the wires to a gate have the same value, then the gate will produce the same value, even
if it is faulty. On the other hand, our model is stronger since it tolerates worst-case faults, whereas
the von Neumann model cannot tolerate even a single worst-case fault. This is because the output
wire could be faulty, which means that the circuit will be faulty.

1

Moreover, when the errors occur with probability p � 1/10, our work gives formulas that
fail with probability at most 1/sΩ(1), in contrast to results in von Neumann’s model, which give
formulas that fail with probability at least p. It is impossible to build fault-tolerant circuits with
many outputs in the von Neumann model (making it of dubious value in practice), since for circuits
which output m bits, the output of a faulty circuit is correct only with probability (1−p)m. On the
other hand, our work gives formulas that are correct with high probability even if there are many
outputs. In fact, to the best of our knowledge, none of the previous works could tolerate faults on
a set of gates that disconnects the output from the inputs, and our results give a way to tolerate
significantly more than this.

In summary, like the von Neumann model, the short-circuit model is restrictive. However, the
short-circuit model allows for adversarial faults, and is correct even if the output is large. We refer
the reader to [KLM94] for a more elaborate comparison between the two models.

As one might suspect, our error resilient formulas must somehow distribute the computation of
the original formula in a global way, rather than relying on local steps to recover from corruptions
(in contrast to prior work), and indeed, our techniques result in formulas that do exactly this.
As we elaborate below, the key conceptual idea is to reduce the problem of correcting errors
in computation to the (easier) problem of correcting errors in communication. We build on the
Karchmer-Wigderson [KW88] connection between formulas and communication protocols, and show
that this connection can be extended to the setting of adversarial error.

1.1 Our Results

Our main results are the following.

Theorem 2. There is a polynomial time computable function mapping any balanced formula F of
depth d, with gates of fan-in 2, into a formula E of depth 4d+ 10e with gates of fan-in 2, such that
E computes F (x) even if up to e of the ∧ gates and e of the ∨ gates on every path from input to
output in E experience short-circuit errors.

Note that by setting e = 4d
ε , the resulting error resilient formula E is of depth at most 4d(10

ε +1),
and corrupting up to

e

4d(10
ε + 1)

≥ 1

10 + ε
≥ 1

10
− ε

fraction of the gates on any input to output path does not affect the output. Since every formula
can be balanced (Lemma 4), one can balance an input formula and then apply Theorem 2 to obtain
Theorem 1.

The above constant 1/10, which bounds the fraction of errors on every path, can be improved
to 1/6 if we allow the error-resilient formula E to have gates with fan-in 3.

Theorem 3. There is a polynomial time computable function mapping any balanced formula F of
depth d, with gates of fan-in 2, into a formula E of depth 2d+ 6e with gates of fan-in 3, such that
E computes F (x) even if up to e of the ∧ gates and e of the ∨ gates on every path from input to
output in E experience short-circuit errors.

Similarly to the above, by setting e = 2d
ε , the resulting error resilient formula E is of depth at

most 2d(6
ε + 1), and corrupting up to

e

2d(6
ε + 1)

≥ 1

6 + ε
≥ 1

6
− ε

fraction of the gates on any input to output path does not affect the output.

2

1.2 Techniques

It is instructive to start with some toy cases. First observe that it is no loss of generality to
assume that F only has ∧ and ∨ gates, since by DeMorgan’s rule we can always assume that all
negations are at the variables, and then we may replace each input literal by a new variable. An
error resilient version of the resulting monotone formula easily gives an error resilient version of the
original formula by substituting the literals back in.

Suppose we wish to compute the formula x∧y, where x, y are bits. Let E be a balanced depth e
tree of ∧ gates, where we assign the input gates of E to x or y as follows. Each input gate of E
corresponds to an address string z ∈ {L,R}e, which defines the path from the output gate to the
input gate. If the majority of this string is L, set the corresponding input to x, else set it to y
(breaking ties arbitrarily). We claim that this circuit can tolerate up to e/2−1 corruptions on each
root to leaf path. We briefly sketch the argument. Let E′ be any circuit obtained from E by doing
≤ e/2 − 1 corruptions. The interesting case is when x = 0, y = 1. Consider the input to output
path that always picks the child corresponding to L in E′, unless the corresponding gate has a
short-circuit, in which case it follows the input corresponding to the error. Since this path has at
most e/2−1 corruptions, it must end at an input labeled x, and then one can argue inductively that
every gate on this path must evaluate to 0, which proves that the output gate must also evaluate
to 0.

This idea can be easily generalized to handle the ∧ of 2d variables, each identified by a unique
d-bit string. We use an error correcting code of a constant sized alphabet [k] that encodes d-bit
strings into n = O(d) length strings over [k] such that two valid encodings disagree in at least
(1− ε) fraction of the coordinates. We build a depth n tree of ∧ gates of fan-in k, and label every
input gate that corresponds to a string at distance at most (1/2− ε/2) from a codeword z by the
variable xz that corresponds to that codeword. All other input gates are labeled arbitrarily. As
above, we can argue that even if (1/2 − ε/2) fraction of all the gates on any root to leaf path are
short-circuited, the circuit will still compute the correct value.

If the formula contains both ∧ and ∨ gates, we need a more general approach. We appeal to
a connection, first observed by Karchmer and Wigderson [KW88], between formulas computing a
boolean function f and communication protocols that solve a game related to f . In the game, Alice
is given x ∈ f−1(0) and Omar is given y ∈ f−1(1). The two parties communicate using a protocol to
compute an index i such that xi 6= yi. It can be shown that the minimum communication required
in the game is exactly equal to the minimum depth of a formula computing f . In this work, we
generalize this connection to show that error resilient protocols that solve the game can be used to
obtain error resilient formulas that compute the function (see Section 4).

The problem of designing error resilient interactive communication protocols (as opposed to
messages) was first studied by Schulman [Sch93], with extensions by [BR11, Bra12, GMS11]. How-
ever, in the current paper, we do not require the more complicated ideas of these works, because
it turns out that we can obtain our results using simpler protocols that are enough for the error
model we consider. Tree code based constructions may be useful to improve the parameters of our
construction slightly (one might hope for an error tolerance of (1/8−ε) using the results of [BR11]),
but at the additional cost of making the construction more involved. In addition, it is not clear to
us that the resulting transformation on formulas will be computable in polynomial time.

The high level outline of our approach is the following. Given a formula F :

1. Apply the Karchmer-Wigderson transformation to F to get a communication protocol for the
game (see Section 2 for more details).

2. Convert the protocol into an error resilient version, by proving an error-resilient version of

3

the Karchmer-Wigderson transformation (see Sections 4 and 5).

3. Apply the error-resilient Karchmer-Wigderson transformation to the error-resilient protocol
to get an error-resilient formula (see Section 7).

The above approach shows that an error resilient formula E exists. However, it turns out that
showing that the above transformation can be done in polynomial time is more challenging, and
requires overcoming some technical hurdles. In Section 6 we show how to make our transformation
efficient.

1.3 Related work

We divide the discussion into two parts. First we shall discuss the more classical related work
on fault tolerant circuits, which require that the output is correct even in the presence of errors.
Second, we discuss the “cryptographic” line of work, which only requires secrecy (as opposed to
correctness); i.e., they require that an adversary that tampers with the circuit does not learn more
than he could have learned with only black-box access to the circuit.

Error Resilient Circuits that Preserve Correctness The problem of constructing error
resilient circuits dates back to the work of Von Neumann from 1956 [vN56]. Von Neumann
studied a model of random errors, where each gate (independently) has an (arbitrary) error with
small fixed probability. There have been numerous followup papers to this seminal work, including
[DO77, Pip85, Pip88, Fed89, ES99, HW91, GG94, ES], who considered the same noise model. For
example, these results have shown ([vN56, DO77, Pip85, GG94]) that any circuit of size s can be
encoded into a circuit of size O(s log s) that tolerates a fixed constant noise rate, and that any such
encoding must have size Ω(s log s).

For formulas, Evans and Schulman [ES] showed that formulas with gates of odd fan-in k,
have a tight threshold βk such that if the error probability of each gate is p < βk then one can
construct an error-resilient formula for any boolean function, and if p > βk then such a task is
impossible.1 For fan-in k = 2, Evans and Pippenger [EP98] and Unger [Ung08], gave a threshold
of β = 3 −

√
7/4 ≈ 8.856% for formulas. Such a threshold for fan-in 2 circuits (as opposed to

formulas), or for even fan-in greater than 2 remains open.
Since it is widely believed that a major obstacle to building a quantum computer is dealing with

the noise, the issue of building error-resilient quantum circuits has also received a lot of attention.
See [KRUdW10] and the references therein. Yet another rich line of work was initiated by Yao and
Yao [YY85] (additional works include [AU90, FPRU90, LMP97] and many others), studying how
sorting networks can be made resilient to random errors. All of the results mentioned above are
for models where the errors are distributed randomly.

Gál and Szegedy [GS95] consider an adversarial error model where the circuit is broken up into
layers according to the depth of the gates, and a small constant fraction of gates at each layer
may experience errors. They also relax the requirement of correctness to allow their circuit to be
incorrect on certain classes of inputs. They show that every symmetric function has a small circuit
that is resilient to this kind of error, and also show an interesting connection between their model
and probabilistically checkable proofs.

1The specific threshold is βk = 1
2
− 2k−2

k(k−1
k/2−1/2)

.

4

Error Resilient Circuits that Preserve Secrecy Recently, the issue of building circuits re-
silient to errors has resurfaced in the arena of cryptography [GLM+04, IPSW06, KKS11] . All these
results consider worst-case adversarial behavior, but do not guarantee correctness, and instead only
guarantee secrecy. All these results start with a circuit that has a secret key associated with it. The
security guarantee is that an adversary who tampers with the circuit does not gain any (useful)
information about the secret key, beyond what he can learn via black-box access to the circuit.

Gennaro et. al. [GLM+04] construct a general compiler that converts any algorithm into an
error-resilient one. Their error-resilient algorithm uses a small (public) trusted hardware. They
allow the adversary to tamper arbitrarily with the secret key, but do not allow the adversary to
tamper with the computation itself (or the hardware). Loosely speaking, the secure hardware
detects errors when they occur, and in such cases it erases the secret key.

The result of [KKS11] also consider tampering only with the secret key, and they construct
specific cryptographic schemes (such as encryption schemes and signature schemes) that remain
secure, even if the secret keys are tampered with arbitrarily. They do not rely on any secure
hardware. We note that both [GLM+04, KKS11] allow arbitrary tampering with the secret key;
i.e., the tampering function can be any poly-time computable function of the secret key.

Ishai et. al. [IPSW06] construct a general compiler that converts any circuit into a tamper
resilient one. They allow adversarial tampering with any of the wires during the computation.
They consider only specific tampering, including setting a wire to 0 or to 1 and flipping the value
of the wire. Similarly to [GLM+04, KKS11], they do not offer correctness, but rather only offer
security. In particular, they guarantee that whatever an attacker can learn via a tampering attack
can be learned via black-box oracle to the circuit.

We note that our error model is incomparable to the error model of [IPSW06], since different
types of errors are allowed and disallowed. Moreover, we allow the adversary to see the entire
circuit (including secrets that may be stored) before deciding which gates to corrupt, whereas in
the [IPSW06] error model the adversary is “blinded”, and needs to decide which wire to tamper
with, without knowing the secret keys associated with the circuit. Thus, we provide new results
even for the case where correctness is not required, but rather only security is required.

2 Preliminaries

Formulas Throughout this work, we focus on boolean formulas computing boolean functions. A
formula is a circuit with ∧,∨,¬ gates whose underlying graph structure is a tree. Without loss of
generality, one may assume that all negations are applied directly to the inputs. The depth of the
formula is the longest path in it, and the size is the number of wires. Unless otherwise specified,
we assume that all ∧,∨ gates have fan-in 2.

We have the following well known lemma:

Lemma 4. For every formula of size s, there is another formula computing the same function of
depth O(log s).

Communication Protocols A 2-party communication protocol P , between two parties Alice
and Omar, is defined as a directed acyclic graph (usually a tree). The vertices are partitioned into
sets PA where Alice speaks and PO where Omar speaks. Without loss of generality, we assume
that the out-degree of each vertex is either 0 or a constant k.2

2This corresponds to the alphabet being [k].

5

Each vertex p ∈ PA (resp. p ∈ PO) with out-degree greater than 0 is associated with a function
hp mapping the inputs of Alice (resp. Omar) to an out-edge. Every vertex of out-degree 0 is labeled
by an output value for the protocol. For a vertex p and number i, we write pi to denote the vertex
reached by following the i’th out-edge of p.

The protocol has a designated root denoted by proot. If Alice is given the input x and Omar is
given y, one can compute the value of each vertex p of the protocol, to obtain p(x, y) as follows. If
p has out-degree 0, the value is simply the label of p. Otherwise

p(x, y) =

{
php(x)(x, y) if p ∈ PA
php(y)(x, y) if p ∈ PO

The outcome of the protocol is proot(x, y).

Karchmer-Wigderson Games For any boolean function f : {0, 1}n → {0, 1}, the Karchmer-
Wigderson game for f is a communication game where Alice gets x ∈ f−1(0), Omar gets y ∈ f−1(1),
and the goal is for them to use a communication protocol to compute an index i ∈ [n] such that
xi 6= yi.

Let us restrict our attention to formulas and protocols with fan-in 2. Then Karchmer and
Wigderson proved the following theorem.

Theorem 5. The minimum depth of a formula computing f is equal to the minimum communica-
tion of protocols that solve the Karchmer-Wigderson game for f .

Their proof provides a transformation from a formula to a communication protocol for the
Karchmer-Wigderson game, and vice versa. Below we describe how a protocol is obtained from a
formula.

We recall that for any boolean function f : {0, 1}n → {0, 1}, the Karchmer-Wigderson game for
f is a communication game where Alice gets x ∈ f−1(0), Omar gets y ∈ f−1(1), and the goal is for
them to use a communication protocol to compute an index i ∈ [n] such that xi 6= yi.

Given a formula F (fan-in 2) computing f , one defines the protocol as follows. Alice and Omar
start at the top of the formula. At a ∧ gate, Alice will transmit a 1 or 2 to indicate one of the
children of the current gate that evaluates to 0 on her input. If she transmits 1, they move to the
left child, and if she transmits 2, they move to the right child. At an ∨ gate, Omar transmits 1 or
2 to indicate one of the children that evaluates to 1 on his input. Once Alice and Omar reach a
leaf, they have identified a variable that is 0 in Alice’s input and 1 in Omar’s input, as required.
Observe that when this protocol is expressed as a tree, the vertices correspond to the gates and
leaves of F .

This simple protocol proves:

Lemma 6. For every formula of depth d computing a boolean function f , there is a binary protocol
P solving the Karchmer-Wigderson game for f with communication d.

For the proof of correctness for this protocol, and the reverse transformation from protocols to
formulas, see [KW88].

3 Short-Circuit Errors

Fix a formula F taking n bits as input. Our goal is to find a formula that computes F even in the
presence of errors. Without loss of generality, we assume that every ∧ and ∨ gate in the formula

6

has the same constant fan-in k (if not, one can add dummy inputs to the gate to make this so). For
the sake of concreteness, throughout this work, one can think of k = 2 or k = 3. We consider errors
that replace any ∧ or ∨ gate with an arbitrary function g : {0, 1}k → {0, 1}, as long as g(0k) = 0
and g(1k) = 1. In particular, for every x = (x1, . . . , xk) there exists i ∈ [k] such that g(x) = xi. In
other words, we consider errors that replace a gate with some dictatorship.

We denote the root gate of the formula by groot. For any non-input gate g and i ∈ [k], we denote
by gi the gate that provides the i’th input to g. Let GA (resp. GO) denote the set of ∧ (resp. ∨)
gates in F .

An error pattern is defined to be a pair of strings q = (a, b), where a is the string that encodes
the errors of the ∧ gates, and b is the string that encodes the errors of the ∨ gates. More specifically,
a ∈ ([k] ∪ {∗})|GA| is indexed by the gates of GA, and b ∈ ([k] ∪ {∗})|GO| is indexed by the gates of
GO. Intuitively, if qg = i (which means that either g ∈ GA and ag = i, or g ∈ GO and bg = i), then
the gate g has been short-circuited, and the output of the gate is set to be its i’th input.

Given an input z ∈ {0, 1}n, an error pattern q = (a, b), and a gate g ∈ G, we write g(z, a, b)
to denote the value computed at g using z as the input and (a, b) as the error pattern. g(z, a, b)
is computed as follows. If g is a leaf, then g(z, a, b) is the value of the literal of g on z. If g is an
internal gate, then define

g(z, a, b) =


gi(z, a, b) if qg = i ∈ [k],

g1(z, a, b) ∧ g2(z, a, b) ∧ . . . ∧ gk(z, a, b) if qg = ∗ and g is an ∧ gate

g1(z, a, b) ∨ g2(z, a, b) ∨ . . . ∨ gk(z, a, b) if qg = ∗ and g is an ∨ gate

If qg is not ∗, we say that the gate has been short-circuited. We shall reserve a∗, b∗ to denote strings
that encode no errors.

The following observation is useful:

Claim 7. Let g be a gate, z be an input, and (a, b) be any error pattern. Then g(z, a, b∗) = 0 ⇒
g(z, a, b) = 0, and g(z, a∗, b) = 1⇒ g(z, a, b) = 1.

Proof. Short-circuiting an ∨ gate can only change its output value from 1 to 0, which can only
change the outcome of the entire formula from 1 to 0. The case of ∧ gates is symmetric.

3.1 Communication Protocols with Errors

One can define a communication protocol with short-circuit errors similarly to the way we defined
a formula with short-circuit errors. More specifically, recall that a protocol P between two parties,
Alice and Omar, is defined to be a directed acyclic graph, where the vertices in the graph are
partitioned into two sets PA and PO, depending on whether it is Alice’s turn to speak or Omar’s
turn to speak.

Given an input x to Alice, an input y to Omar, and an error pattern q = (a, b), where a ∈
([k] ∪ {∗})|PA| is indexed by the vertices of PA, and b ∈ ([k] ∪ {∗})|PO| is indexed by the vertices
of PO, the outcome of the protocol (with errors), denoted by proot(x, a, y, b), is computed as follows.
For any vertex p in the graph, if p is a leaf then the outcome is the label of p. Otherwise,

p(x, a, y, b) =


pi(x, a, y, b) if qg = i ∈ [k]

php(x)(x, a, y, b) if qg = ∗ and g ∈ PA
php(y)(x, a, y, b) if qg = ∗ and g ∈ PO

7

The main difference between our error model, and the standard error model in communication,
is that here a party knows if a message it sent was “tampered with” by the adversary. We emphasize,
however, that like the standard error model, the adversary can replace any message sent by Alice
or Omar with an arbitrary symbol in the alphabet, which in our case is [k]. The difference between
the models allows us, in Section 4, to construct relatively simple communication protocols that are
resilient to error, and to avoid the use of complicated objects such as tree codes.

4 Karchmer Wigderson games with Errors

In this section we prove an error-resilient version of the Karchmer-Wigderson result. Namely, we
prove that if the KW protocol is resilient to errors (as defined in Section 3.1), then when applying
the Karchmer-Wigderson transformation to the protocol, we obtain a formula that is resilient to
short-circuit errors.

Lemma 8. Let f be a boolean function, and let P be a protocol with root proot. Let T ⊂ f−1(0)×
([k] ∪ {∗})PA and U ⊂ f−1(1) × ([k] ∪ {∗})PO be two nonempty sets such that the protocol rooted
at proot solves the game on every pair of inputs in T × U , and every vertex that is a descendent of
proot can be reached using the inputs T × U . Then there is a formula with root g that is obtained
by replacing every vertex where Alice speaks with a ∧ gate, every vertex where Omar speaks with
an ∨ gate and every leaf with a literal, such that for every (x, a) ∈ T, (y, b) ∈ U , g(x, a, b∗) = 0 and
g(y, a∗, b) = 1.

Remark 9. We note that Lemma 8, together with Claim 7, implies that the formula g obtained by
Lemma 8 satisfies that for every (x, a) ∈ T, (y, b) ∈ U , and for any error strings a′, b′ it holds that
g(x, a, b′) = 0 and g(y, a′, b) = 1.

Proof. We prove the lemma by induction on the depth of the communication protocol. If the depth
is 0, then there must exist an index i such that for every (x, a, y, b) ∈ T × U , xi 6= yi. Since T × U
is a rectangle, this must mean that either xi = 0, yi = 1 for all such x, y or xi = 1, yi = 0 for all
such x, y. Thus, either the literal zi or zi satisfies the hypothesis in this case. (The error patterns
are irrelevant in this case.)

For the general case, assume without loss of generality that the root of the protocol p is in
PA. Let T1, . . . , Tk be the partition of the set T according to the message that Alice sends. Since
every vertex is reachable, all of these sets are non-empty. By induction, the corresponding formulas
g1, . . . , gk satisfy the hypothesis for the sets T1 × U, . . . , Tk × U respectively.

Let (x, a), (y, b) be any elements of T × U . Assume without loss of generality that (x, a) ∈ T1.
Then by induction g1(x, a, b∗) = 0. Now ag must be in {1, ∗} (since (x, a) ∈ T1). If ag = 1, then
g(x, a, b∗) = g1(x, a, b∗). If ag = ∗, then g(x, a, b∗) = g1(x, a, b∗) ∧ . . . ∧ gk(x, a, b∗). In either case,
g(x, a, b∗) = 0. By induction, g1(y, a∗, b) = · · · = gk(y, a

∗, b) = 1. Thus g(y, a∗, b) = 1.

5 Protocols Resilient to Short-Circuits

In this section, we show how to transform any communication protocol into a protocol that is
resilient to short-circuit errors. Let P ′ be a protocol with root proot and depth 2d using the
alphabet [2]. We assume without loss of generality that Alice and Omar alternate transmissions
in P ′. This is without loss of generality, since any protocol can be modified so that it alternates
transmissions, by increasing the communication complexity by at most a factor of two. We rely on
this property of alternating transmissions for the success of the resulting error-resilient protocol.

8

We define a new protocol S that yields the same result as P ′ even in the presence of errors.3 We
focus on the case where the alphabet of S is [3]. We will later discuss the case where the alphabet
is [2].

Intuition. The error resilient protocol S will try to run P ′, but allows the parties to backtrack
when an error is detected. More precisely, the parties will traverse vertices of P ′, trying to go
along the path they would follow in the error-free case. This is reminiscent of the techniques of
Schulman [Sch93], though things are much simpler for us because the parties always agree on the
current location of the simulation in P ′. When a party detects that an error has occurred, he or she
will attempt to return to a previous vertex in P ′. It is convenient to use the three symbol alphabet
{1, 2, R}. A transmission of 1 causes the simulation to move to the left child of the current vertex
in P ′, while a transmission of 2 moves to the right child. A transmission of R moves back from the
current node to its grandparent. By only allowing small movements at a time, we bound the effect
of an error on the progress of the simulation.

By limiting the total number of errors, we can ensure that after a certain number of steps, the
parties have made quantifiable progress towards the goal of simulating P ′. To make sure that even
the final steps of the simulated path in P ′ are correct, we artificially extend paths in P ′ to have
extra “padding” vertices at the end. After a sufficient number of steps, we can guarantee that the
simulated path matches the true path in P ′ for the meaningful steps, and only differs beyond in this
padding region where the exact path taken is unimportant. We define the action of the protocol on
the padding vertices similarly to that on the vertices of P ′: if a party detects an error in the current
simulated path, he or she will transmit R to move back. Otherwise, a party always transmits 1 at a
padding vertex. This simply sets the convention that the “error-free” way to traverse the padding
vertices is to always go forward to the left child.

5.1 The protocol

We start by defining a protocol P simulating P ′, that has 6e padding steps at the end, and that
preserves the alternating transmissions property of P ′.

Obtaining Protocol P from Protocol P ′

1. Replace every leaf v of P ′ with a path of vertices v1, . . . , v6e. All edges from vi point to
vi+1, and v6e is a leaf labeled by the same value as v was labeled with, in such a way that
these vertices continue to alternate transmissions. For each 1 ≤ i < 6e and for every possible
input (x, y) set hvi(x) = 1 if Alice owns vi, and set hvi(y) = 1 if Omar owns it. The protocol
now has depth D = 2d+ 6e.

2. Ensure that the graph of the protocol is a tree possibly by duplicating vertices.

Observe that P simulates P ′. Let proot be the root of P.
We obtain our final protocol by simulating P and adding in the ability to backtrack. Intuitively,

in S, the parties simulate the transmissions of P, unless their input is inconsistent with the vertex
in P. We say that an input x (resp. y) is consistent with a vertex w in the protocol tree if x (resp.
y) is consistent with each step that leads to w from the root.

3We mention that the resulting error-resilient protocol S does not have the alternating transmissions property.

9

Protocol S

Vertices. For every t ∈ {0, 1, . . . , D} and every vertex w ∈ P at distance at most t from proot,
define the vertex sw,t of S. The root of the new protocol is sproot,0.

Edges. The leaves of the protocol are all vertices sw,t with t = D. Every other vertex sw,t has 3
out-edges, corresponding to the symbols {1, 2, R}, called sw,t1 , sw,t2 , sw,tR . If w has out-edges to

w1, w2, the first two children are sw,t1 = sw1,t+1 and sw,t2 = sw2,t+1. The vertex sw,tR is the one
that corresponds to backtracking in the original protocol. Let v be the grandparent of w, or
v = w if w has no grandparent. Then set sw,tR = sv,t+1.

Transmission Functions. Next we define the functions associated with each vertex. If w is owned
by Alice on input x, the transmission function hsw,t is defined as follows

hsw,t(x) =

{
hw(x) if x is consistent with w,

R else.

We define the functions for vertices owned by Omar in the same way.

Output Values. Given a leaf sw,D, if w is a descendent of a leaf in P ′, we label sw,D with the
same label as w. Otherwise, we label sw,D by an arbitrary value.

5.2 Analysis

We now prove the following theorem:

Theorem 10. Let proot, sroot denote the roots of the protocols P,S as defined above. Then for every
input (x, y) and every error string (a, b) containing at most 2e errors per path, sroot(x, a, y, b) =
proot(x, y).

Proof. We claim that S simulates P ′ even if there are up to 2e total short-circuit errors per path
in S. Fix any input (x, y) to the protocol. Then (x, y) determines a path from the root of P to
a leaf, that we call the correct path. Recall that the graph of P is a tree. For every vertex w in
P, the path from proot to w must follow the correct path until some vertex z, and then (possibly)
deviate from it. Let Cw be the depth of z, and Ew be the number of error free transmission steps
it will take for the protocol to return to z. We shall consider how the function Cw −Ew evolves as
the protocol runs through a path of S. We have the following claims.

Claim 11. Any short-circuit error can decrease the value of Cw − Ew by at most 2.

Observe that if v is a grandparent of w, then Cv ≥ Cw − 2 and Ev ≤ Ew. On the other hand,
if v is a child of w, Cv ≥ Cw, and Ev ≤ Ew + 2.

Claim 12. Any error free step must increase the value of Cw − Ew by at least 1.

If z = w, an error free transmission will increase Cw by 1 and keep Ew = 0. If not, then an
error free step will decrease Ew by 1 and leave Cw unchanged.

Now suppose the number of errors is at most 2e. Then, after D = r + 6e steps, we must have
that the protocol ends at a vertex sw,D such that Cw − Ew ≥ (r + 4e) − 2(2e) = r ⇒ Cw ≥ r.
Indeed, this implies that the vertex z that corresponds to w on the correct path is at depth at least
r. Thus, the protocol must output the same value as the original protocol.

10

6 Producing the Error Resilient Formula Efficiently

Recall that our transformation starts by balancing the input formula, then then converting it into
a communication protocol, making the protocol error resilient and finally converting the protocol
back into a formula. Each of the steps before the final step is easily seen to be polynomial time
computable. The functions labeling the nodes of the initial communication protocol are computable
by polynomial sized circuits that can be computed from the input formula in polynomial time. Next,
the protocol is converted into an error resilient version, and this transformation is also easily seen
to be polynomial time computable. The only step that is hard to make efficiently computable is
the final one, when the error resilient protocol is converted into a formula.

The reason the last step is not trivially in polynomial time is that the Karchmer-Wigderson
transformation (Lemma 8) only works when every node of the protocol tree is reachable. Thus,
we need to show how to remove the unreachable nodes from the protocol tree in polynomial time.
This is the problem that we focus our attention on in this section.

For convenience, we do this for our non-binary protocol with fan-in 3, though the same argument
works for our binary protocol as well. We assume for the sake of simplicity that we start with a
formula F of depth d represented as a full binary tree with alternating levels of ∨ nodes and ∧
nodes. We also assume that all leaves of F are labeled with independent variables.

We define the protocols P, P ′ and S as in Section 5.1. We let V (S) denote the set of vertices
of S.

We let e denote the maximal number of errors per path that will be tolerated for each of Alice
and Omar. We let EA denote the subset of strings in ([k] ∪ {∗})PA with at most e non-∗ symbols
per path, and EO denote the analogous strings in ([k] ∪ {∗})PO .

Let Recognize : V (S) → {0, 1} be the function that takes as input a vertex γ and outputs 1
if and only if there exist inputs in F−1(0) × EA and F−1(1) × EO which cause Alice and Omar to
reach the vertex γ in S.

Lemma 13. The function Recognize is computable in time poly(2d).

Before we prove Lemma 13, we fix some notation. For every pair of inputs (x, y) ∈ F−1(0) ×
F−1(1), we let Hx,y : V (S) → V (S) denote the function that takes each vertex to the next (in
an “error-free” manner) assuming the inputs are x and y. In other words, for each v ∈ V (S), the
vertex Hx,y(v) is the child of v corresponding to hv(x) if v is owned by Alice and to hv(y) is v is
owned by Omar.

Intuition of the proof. Fix any vertex γ ∈ V (S). The straightforward way of checking whether
Recognize(γ) = 1 is to iterate over all possible inputs (x, y) ∈ F−1(0) × F−1(1), and check how
many errors are required to reach the vertex γ with inputs x and y. Unfortunately this takes time
poly(2n), and thus is far from being efficient.

The main observation in the proof is that we do not need to iterate over all possible inputs.
Instead, for each γ, we consider the sequence of ≤ D + 1 vertices (γ0, γ1, . . . , γJ = γ) on the path
from the root γ0 of S to γ. As before, the straightforward way of testing whether Recognize(γ) = 1
is to iterate over all functions Hx,y, and compute the number of i’s for which γi 6= Hx,y(γi−1). Each
such inequality corresponds to an error in the communication protocol.

However, the key observation is that we do not actually have to iterate over all functions Hx,y,
but rather it suffices to consider only the functions Hx,y restricted to (γ0, γ1, . . . , γJ−1).

Proof. Fix any γ ∈ V (S). Compute Recognize(γ) as follows.

11

1. Obtain the sequence of ≤ D + 1 vertices (γ0, γ1, . . . , γJ = γ), as above.

2. Consider the set of all functions H : {γ0, γ1, . . . , γJ−1} → V (S),4 such that for every i ∈
{0, . . . , J − 1}, the vertex H(γi) is a child of γi. (Note that the number of such functions is
at most kD = poly(2d).)

Before we proceed, let us add a definition: For any pair of inputs (x, y) ∈ F−1(0)× F−1(1),
we say that H and Hx,y are consistent on {γ0, γ1, . . . , γJ−1} if H(γi) = Hx,y(γi) for every
i ∈ {0, 1, . . . , J − 1}.
For each such function H, do the following.

(a) Check if there exists a pair of inputs (x, y) ∈ F−1(0) × F−1(1) such that H and Hx,y

are consistent on {γ0, γ1, . . . , γJ−1}. The fact that this can be done in polynomial time
follows from the following claim.

Claim 14. For every function H : {γ0, γ1, . . . , γJ−1} → V (S) there is a polynomial time
algorithm that tests whether there exists an input pair (x, y) ∈ F−1(0) × F−1(1) such
that H is consistent with Hx,y on {γ0, γ1, . . . , γJ−1}.

(b) If H is consistent with some Hx,y on {γ0, γ1, . . . , γJ−1}, then compute the number of
errors in γ with respect to H. Namely, compute the set

E = {i ∈ [J] : H(γi−1) 6= γi}.

Let EA = {i ∈ E : Alice owns γi−1} and let EO = {i ∈ E : Omar owns γi−1}. If both
|EA| ≤ e and |EO| ≤ e, then output Recognize(γ) = 1.

3. Otherwise, output Recognize(γ) = 0.

It is rather straightforward to see that Recognize(γ) = 1 if and only if γ is reachable.
Thus it remains to prove Claim 14.
We recall that each vertex γ ∈ V (S) has an associated vertex ∈ P, which we will denote by wγ .

Proof of Claim 14. Fix any function H : {γ0, γ1, . . . , γJ−1} → V (S) that maps each γi to
one of its children. In what follows we present a polynomial time algorithm for deciding whether
there exists an input pair (x, y) ∈ F−1(0)× F−1(1) such that H is consistent with Hx,y on the set
{γ0, γ1, . . . , γJ−1}.

1. Let H ′ : {γ0, . . . , γJ−1} → [3] be the function such that H ′(γi) = b where H(γi) is the child
of γi indicated by b. We identify 3 with R.

2. If there exists γi for which the associated vertex wγi ∈ P is of depth ≥ d (i.e. at or below the
location of the original leaves of P ′) and H ′(γi) = 2, then output 0 (meaning that H is not
consistent with any pair of inputs (x, y)).

The reason such H cannot be consistent with any Hx,y is that according to the protocol, when
the protocol reaches vertices in P below the original leaves of P ′, then the parties either try
to transmit 1 (if the current location is consistent with their input), or try to go back (i.e.
transmit R).

3. Check that H ′(γi) only depends on wγi : i.e. if some wγi = wγj and H ′(γi) 6= H ′(γj), then
output 0.

4Recall that γ0 always denotes the root.

12

4. Output 1 if the following condition holds for every i ∈ {0, 1, . . . , J − 1}: H ′(γi) = R iff
∃γj ∈ {γ1, . . . , γJ} s.t. wγj is an ancestor of wγi with the same owner but H(γj) does not
correspond to an ancestor of wγi .

We refer to this condition as the consistency condition.

5. Otherwise output 0.

It remains to prove that this algorithm is correct. It is easy to see that if the above algorithm
outputs 0 then it must be the case that H is not consistent with any Hx,y on the set {γ0, . . . , γJ−1}.
We thus focus on the case that the algorithm outputs 1, and we prove that in this case there exists
(x, y) ∈ F−1(0)× F−1(1) such that H is consistent with Hx,y on the set {γ0, . . . , γJ−1}.

We prove this by induction on the depth d of the formula F . Note that the consistency condition
above can be thought of as two separate conditions: one for vertices owned by Alice and one for
vertices owned by Omar. We will refer to these separated conditions as “Alice consistency” and
“Omar consistency.” We note that Hx,y only depends on x for vertices owned by Alice and only
depends on y for vertices owned by Omar. We formulate our inductive hypothesis as:

Inductive hypothesis for depth d−1. For H satisfying conditions 2 and 3 above, and satisfying
Alice consistency, there exists an input x such that for every y, Hx,y is consistent with H on the
vertices in the {γ0, . . . , γJ−1} owned by Alice. Similarly, for H satisfying conditions 2 and 3 and
Omar consistency, there exist an input y such that for every x, Hx,y is consistent with H on the
vertices in {γ0, . . . , γJ−1} owned by Omar.

Base case. When d = 0, the formula is simply a leaf, labeled by some variable. In this case, we
choose arbitrary x and y such that F (x) = 0 and F (y) = 1, and prove that H is consistent with
Hx,y. Note that P ′ is a single vertex, and P is a tree of depth 6e, with all leaves labeled by the
same value. We consider the behavior of the protocol S with inputs x, y: for each non-leaf vertex v
in S corresponding to a vertex w ∈ P owned by Alice, Hx,y(v) will be the first child of v if and only
if the path from the root to w in P includes only the first children of all vertices owned by Alice.
Otherwise, Hx,y(v) will be the third child of v.

We observe that this agrees with any H satisfying Alice consistency on the vertices among
γ0, . . . , γJ−1 owned by Alice. This follows from the consistency condition on these vertices and the
additional check that H can never specify the second child for the nodes in P replacing the leafs of
P ′. We rely here on the fact that if H is defined on a vertex γi, then it is also defined on all of its
ancestors. This follows from the fact that γ0, . . . , γJ−1 corresponds to a path in S, and thus cannot
visit a vertex of P without traversing a path in P from the root to this vertex. An analogous
argument applies to H satisfying Omar consistency. Thus our base case holds.

Induction step. Now, suppose d ≥ 1 and the top gate of F is ∧ (the case of ∨ is analogous).
The first and second children of this ∧ gate correspond to formulas F1 and F2 respectively of
depth d − 1, with disjoint variables at their leaves. We will think of an input x for Alice as being
composed of an input x1 for F1 and an input x2 for F2 (note that these are independent). We
similarly consider an input y for Omar as y1, y2. For an H satisfying Alice consistency, we seek to
define x1, x2 appropriately. We consider H ′(γ0) (recall γ0 is the root), which must be either 1 or
2. Without loss of generality, we suppose that H ′(γ0) = 1, and we set the input variables x2 for
Alice all to be 1. This ensures that F2(x2) = 1, so in the error-free Karchmer-Wigderson protocol,
Alice will go from the root of F to F1. We set the input variables x1 for Alice using our inductive
hypothesis as follows (we will ensure that F1(x1) = 0).

13

We let P1,S1 and P2,S2 denote the communication protocol trees associated with F1 and F2

respectively. We note that the vertices of P1,P2 can also be viewed as vertices in P. (Recall that
vertices in the error-free Karchmer-Wigderson protocol correspond to gates and leaves in F , so the
vertices of P1 correspond to F1 plus padding vertices.) The path γ0, . . . , γJ−1 in S corresponds to
a bi-directional walk in the tree P, sometimes traversing vertices in P1 and sometimes traversing
in P2. The time spent traversing in P1 corresponds to a path in S1. We restrict H to this path
and let H1 denote the resulting function (recall here that H ′(γi) only depends on wγi , so there is
no ambiguity introduced). It is easy to see that H1 satisfies the necessary conditions to apply our
inductive hypothesis (in particular, Alice consistency is maintained). This gives us an input x1 for
Alice on F1, such that if we take x = (x1, x2) we get that Hx,y agrees with H1 on its domain for
vertices owned by Alice, for any setting of y. This concludes our setting of inputs x for Alice, and
we note that F (x) = 0 is ensured.

We observe that (for any y) Hx,y(γi) = H(γi) = R for any γi owned by Alice whose associated
wγi is in P2. This holds by the Alice consistency condition for H since H ′(γ0) = 1 and by the fact
that F2 evaluates to 1 for Alice’s input. Finally, Hx,y(γ0) = H(γ0) = 1 (for all y), so H and Hx,y

agree on the vertices owned by Alice in the domain γ0, . . . , γJ−1.
For an H satisfying Omar consistency, we consider H1 and H2, the restrictions of H to S1

and S2 as above. These restrictions inherit all of the required features to apply our inductive
hypothesis, including Omar consistency. Therefore, there exist y1 and y2 such that for all x1 and
all x2, Hx1,y1 = H on all vertices γi owned by Omar in S1, and Hx2,y2 = H on all vertices γi owned
by Omar in S2. We note that F1(y1) = F2(y2) = 1. Combining these, we obtain y = (y1, y2) such
that F (y) = 1 and for all x, Hx,y = H for all vertices owned by Omar in γ0, . . . , γJ−1.

7 Proofs of Theorems 2 and 3

We now combine the results of the previous sections to prove our main theorems from Section 1.1.

Proof of Theorem 3 We start with a balanced formula F of depth d (fan-in 2). We let F ′

denote a formula of depth ≤ 2d which is also balanced and alternates ∧ and ∨ gates (this can be
obtained easily from F by inserting extra gates as necessary). We relabel the leaves of F ′ with
independent variables, recording the mapping between these new variables and the original ones.
We then let P ′ denote the corresponding communication protocol for the (error-free) Karchmer-
Wigderson game for the boolean function computed by F ′, promised by Lemma 6. We note that
this protocol alternates between vertices owned by Alice and Omar.

Applying Theorem 10, we can efficiently obtain the error-resilient protocol S of depth ≤ 2d+6e
using alphabet [3] that simulates P ′ correctly when there are at most 2e total errors on each path.
In particular, S is correct whenever each path contains at most e errors for Alice and at most e
errors for Omar. Using Lemma 13, we can efficiently compute which vertices of S are reachable
from a pair of inputs (x, a) and (y, b), such that F ′(x) = 0, F ′(y) = 1, and a and b are error strings
containing at most e short-circuit errors per path each. We remove the unreachable vertices from
S and call the resulting protocol S ′. Applying Lemma 8, we obtain an error-resilient formula E′

of depth ≤ 2d + 6e and fan-in 3. Here, we have set T = (F ′)−1(0) × EA and U = (F ′)−1(1) × E0

(recall EA denotes the set of error strings a encoding at most e errors per path and EO is defined
analogously).

We note that the variables labeling the leaves of E′ can be computed efficiently. To see this,
recall that the vertices of our S ′ correspond to vertices in P, and the leaves of S ′ will correspond

14

to vertices in P that have replaced leaves in P ′. The leaves of the error-free Karchmer-Wigderson
protocol P ′ correspond to the leaves of the formula F ′, and hence we can use the labels of the leaves
in F ′ to efficiently label the leaves of E′. Finally, we replace the variables labeling the leaves of E′

with the corresponding original variables for F . This gives us our final error-resilient formula E.

Proof of Theorem 2 This is exactly like the proof of Theorem 3, replacing the alphabet [3]
protocol S with the binary protocol S[2] defined below (making the appropriate minor adjustments
to the proof of Lemma 13).

The idea is to replace each vertex s with children s1, s2, s3 in S by a binary tree in S[2] consisting
of a root with two children and two grandchildren descending from the right child. We will call
these vertices w,w1, v = w2, v1, v2 (w denotes the root, with children w1 and w2 = v, and v1, v2

denote the children of v). The root vertex w corresponds to s, and the vertex w1 corresponds to
sR. The vertices v1, v2 correspond to the children s1, s2. If s is owned by Alice, then both w, v are
owned by Alice (and vice versa). The idea is that the transmission of R is encoded by the string
1, and the transmission of 1, 2 are encoded by 21, 22. We truncate the resulting protocol at depth
2r + 10e.

Theorem 15. Let sroot, proot denote the roots of the protocols P,S[2] defined above. Then for
every input (x, y), and every error pattern (a, b) with at most 2e errors per path, sroot(x, a, y, b) =
proot(x, y).

Proof. For the analysis, note that every vertex q in the binary protocol corresponds to the tree of
some sw,t in the non-binary protocol. As before, we let z denote vertex on the correct path that
is closest to w. If w = z and q is an internal vertex, i.e. q is neither the root or a leaf of the tree
corresponding to sw,t, we set Cq to be 2Cw + 1 (i.e. twice the depth of z plus one). Otherwise, we
set Cq = 2Cw. As before, we set Eq to be the number of error-free steps required to get the vertex
back to a point where w = z. Now we consider the quantity Cq − Eq along a path in S[2].

Claim 16. A short-circuit step can decrease Cq − Eq by at most 4.

If the short circuit is to take a backtracking step, then Eq can only decrease, and Cq can decrease
by at most 4. If the short-circuit is to take a non-backtracking step, then the worst case is when q
is the root of the tree corresponding to sw,t, in which case Ew can increase by at most 4, and Cw
cannot decrease. It is easy to check the following claim:

Claim 17. An error free step must increase Cq − Eq by at least 1.

If Eq = 0, Cq must increase by 1 and Eq will remain 0. Otherwise, Cq will remain at least as
large, and Eq will decrease by 1.

Thus, if the number of errors is 2e, we have that after 2r + 10e steps, the protocol reaches a
vertex q for which Cq − Eq ≥ 2r + 8e− 8e = 2r. This implies that Cw ≥ r, and the protocol must
be correct.

8 Open Problems

The fraction of errors tolerated per path by our construction is a constant, bounded by 1
10 for fan-in

2, and by 1
6 for fan-in 3. We leave it as an open problem to determine the optimal constant fraction

of errors that can be tolerated per path. Extending our result to circuits is a very interesting open
problem.

15

References

[AU90] Shay Assaf and Eli Upfal. Fault tolerant sorting network. In FOCS, pages 275–284,
1990.

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive
communication. In STOC, pages 159–166, 2011.

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In ITCS, pages
161–167, 2012.

[DO77] R. L. Dobrushin and S. I. Ortyukov. Upper bound for the redundancy of self- cor-
recting arrangements of unreliable functional elements. 13:203–218, 1977.

[EP98] William S. Evans and Nicholas Pippenger. On the maximum tolerable noise for reliable
computation by formulas. IEEE Transactions on Information Theory, 44(3):1299–
1305, 1998.

[ES] W. Evans and L. Schulman. On the maximum tolerable noise of k-input gates for
reliable computation by formulas.

[ES99] W. Evans and L. Schulman. Signal propagation and noisy circuits. In IEEE Trans.
Inform. Theory, 45(7), page 23672373, 1999.

[Fed89] T. Feder. Reliable computation by networks in the presence of noise. In IEEE Trans.
Inform. Theory, 35(3), page 569571, 1989.

[FPRU90] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Computing with un-
reliable information (preliminary version). In STOC, pages 128–137, 1990.

[GG94] Péter Gács and Anna Gál. Lower bounds for the complexity of reliable boolean circuits
with noisy gates. IEEE Transactions on Information Theory, 40(2):579–583, 1994.

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Al-
gorithmic tamper-proof (atp) security: Theoretical foundations for security against
hardware tampering. In TCC, pages 258–277, 2004.

[GMS11] R. Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for interactive
communication. In FOCS, pages 159–166, 2011.

[GS95] A. Gal and M. Szegedy. Fault tolerant circuits and probabilistically checkable proofs.
In Proc. of 10th IEEE Structure in Complexity Theory Conference, pages 65–73, 1995.

[HW91] Bruce E. Hajek and Timothy Weller. On the maximum tolerable noise for reliable
computation by formulas. IEEE Transactions on Information Theory, 37(2):388–391,
1991.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits ii:
Keeping secrets in tamperable circuits. In EUROCRYPT, pages 308–327, 2006.

[KKS11] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with tam-
perable and leaky memory. In CRYPTO, pages 373–390, 2011.

16

[KLM94] Daniel J. Kleitman, Frank Thomson Leighton, and Yuan Ma. On the design of reliable
boolean circuits that contain partially unreliable gates. In FOCS, pages 332–346, 1994.

[KRUdW10] Julia Kempe, Oded Regev, Falk Unger, and Ronald de Wolf. Upper bounds on
the noise threshold for fault-tolerant quantum computing. Quantum Information &
Computation, 10(5&6):361–376, 2010.

[KW88] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. In STOC, pages 539–550, 1988.

[LMP97] Frank Thomson Leighton, Yuan Ma, and C. Greg Plaxton. Breaking the theta (n log2

n) barrier for sorting with faults. J. Comput. Syst. Sci., 54(2):265–304, 1997.

[Pip85] Nicholas Pippenger. On networks of noisy gates. In FOCS, pages 30–38. IEEE, 1985.

[Pip88] N. Pippenger. Reliable computation by formulas in the presence of noise. In IEEE
Trans. Inform. Theory, 34(2), page 194197, 1988.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In STOC,
pages 747–756, 1993.

[Ung08] Falk Unger. Noise threshold for universality of two-input gates. IEEE Transactions
on Information Theory, 54(8):3693–3698, 2008.

[vN56] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from
unreliable components, volume 3, pages 43–99. Princeton University Press, 1956.

[YY85] Andrew Chi-Chih Yao and F. Frances Yao. On fault-tolerant networks for sorting.
SIAM J. Comput., 14(1):120–128, 1985.

17

	Introduction
	Our Results
	Techniques
	Related work

	Preliminaries
	Short-Circuit Errors
	Communication Protocols with Errors

	Karchmer Wigderson games with Errors
	Protocols Resilient to Short-Circuits
	The protocol
	Analysis

	Producing the Error Resilient Formula Efficiently
	Proofs of Theorems 2 and 3
	Open Problems

