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Abstract

Influence systems form a large class of multiagent systems designed to model
how influence, broadly defined, spreads across a dynamic network. We build a
general analytical framework which we then use to prove that, while sometimes
chaotic, influence dynamics of the diffusive kind is almost always asymptotically
periodic. Besides resolving the dynamics of a popular family of multiagent systems,
the other contribution of this work is to introduce a new type of renormalization-
based bifurcation analysis for multiagent systems.

1 Introduction

The contribution of this paper is twofold: (i) to formulate an “algorithmic calculus”
for continuous, discrete-time multiagent systems; and (ii) to resolve the behavior of a
popular type of social dynamics that had long resisted analysis. In the process, we also
introduce a new approach to time-varying Markov chains. Diffusive influence systems
are piecewise-linear dynamical systems x 7→ P (x)x, which are specified by a piecewise-
constant function P mapping any x ∈ Rn to an n-by-n stochastic matrix P (x). We
prove that, while sometimes chaotic, such systems are almost surely attracted to a fixed
point or a limit cycle.

As in statistical mechanics, the difficulty of analyzing influence systems comes from
the tension between two opposing forces: one, caused by the map’s discontinuities, is
“entropic” and leads to chaos; the other one, related to the Lyapunov exponents, is “en-
ergetic” and pulls the system toward an attracting manifold within which the dynamics
is periodic. The challenge is to show that, outside a vanishingly small critical region in
parameter space, entropy always loses. Because the interaction topology changes all the
time (endogenously), the proof relies heavily on an algorithmic framework to monitor
the flow of information across the system. As a result, this work is, at its core, an algo-
rithmic study in dynamic networks. Influence systems include finite Markov chains as a
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special case but the differences are deep and far-reaching: whereas Markov chains have
predictable dynamics, influence systems can be chaotic even for small n; whereas the
convergence of a Markov chain can be checked in polynomial time, the convergence of
an influence system is undecidable. Our main result is that this bewildering complexity
is in fact confined to a vanishing region of parameter space. Typically, influence systems
are asymptotically periodic.

Influence and social dynamics. There is a context to this work and this is where
we begin. An overarching ambition of social dynamics is to understand and predict the
collective behavior of agents influencing one another across an endogenously changing
network [13]. HK systems have emerged in the last decade as a prototypical platform
for such investigations [5, 6, 26, 27, 31, 33, 34, 36, 37, 39]. To unify its varied strands (eg,
bounded-confidence, bounded-influence, truth-seeking, Friedkin-Johnsen type, deliber-
ative exchange) into a single framework and supply closed-loop analogs to standard
consensus models [4,35,40], we introduce influence systems. These are discrete-time dy-
namical systems x 7→ f(x) in (Rd)n: each “coordinate” xi of the state x = (x1, . . . , xn) is
a d-tuple encoding the location of agent i as a point in Rd; with any state x is associated
a directed graph G(x) with the n agents as nodes. Each coordinate function fi of the
map f = (f1, . . . , fn) takes as input the neighbors of agent i in G(x) and outputs the
new location fi(x) of agent i in d-space. One should think of agent i as a “computer”
and xi as its “memory.” All influence systems in this work will be assumed to be diffu-
sive, meaning that at each step an agent may move only within the convex hull of its
neighbors.1 Note that the system x 7→ P (x)x in the opening paragraph corresponds to
the one-dimensional case.

Influence systems arise in processes as diverse as chemotaxis, synchronization, opin-
ion dynamics, flocking, swarming, and rational social learning.2 Typically, a natural
algorithm directs n autonomous agents to obey two sets of rules: (i) one of them de-
termines, on the basis of the system’s current state x, which agent communicates with
which one; (ii) the other one specifies how an agent updates its state by processing
the information it receives from its neighbors. Diffusive influence systems are central
to social dynamics insofar as they extend the fundamental concept of diffusion to au-
tonomous agents operating within dynamic, heterogeneous environments.3 This stands
in sharp contrast with the classic brand of diffusion found in physics and chemistry,

1 This is a standard assumption meant to ensure that consensus is a fixed point.
2 The states of an influence system can be: opinions [6, 23, 26, 31, 33, 35, 36], Bayesian beliefs [1],

neuronal spiking sequences [15], animal herd locations [20], consensus values [12,40], swarming trajecto-
ries [25], cell populations [47], schooling fish velocities [43,45], sensor networks data [10], synchronization
phases [24,46,48], heart pacemaker cell signals [52,56], cricket chirpings [55], firefly flashings [38], yeast
cell suspensions [47], microwave oscillator frequencies [52], or flocking headings [3, 16,21,28,29,54].

3 For a fanciful but illustrative example, imagine n insects on the ground (d = 2), each one moving
toward the mass center of its neighbors. Each one gets to “choose” who is its neighbor: this cricket
picks the five ants closest to it within its cone of vision; that spider goes for the ladybugs within two
feet; these ants select the 10 furthest termites; etc. Once the insects have determined their neighbors,
they move to their mass center (or a weighted version of it). This is repeated forever.
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which assumes passive particles subject to identical laws. Naturally, influence systems
are “downward-compatible” and can model standard (discrete) diffusion as well. They
also allow exogeneities (eg, diffusion-reaction) via the addition of special-purpose agents.
Autonomy and heterogeneity are the defining features of influence systems: they grant
agents the freedom to have their own, distinct decision procedures to choose their neigh-
bors as they please and act on the information collected from them. This explains their
ubiquity among natural algorithms.

The model. In a diffusive influence system, f(x) = (P (x) ⊗ Id) x, where P (x) is
a stochastic matrix whose positive entries correspond to the edges of G(x) and are
rationals larger than some arbitrarily small ρ > 0. We form the Kronecker product with
the d-by-d identity matrix to perform the averaging along each coordinate axis. We
grant the agents a measure of self-confidence by adding a self-loop to each node of G(x).
Agent i computes the i-th row of P (x) by means of its own algebraic decision tree; that
is, on the basis of the signs of a finite number of dn-variate polynomials evaluated at
the coordinates of x. This high level of generality allows G(x) to be specified by any
first-order sentence over the reals:4 In a recent bird flocking model [3], for instance,
the communication graph joins every agent to its 7 nearest neighbors. We show below
how to reduce the dimension to d = 1 and linearize the system so that P (x) = Pc,
for any x ∈ c, where c is any atom (open n-cell) of an arrangement of hyperplanes
in Rn, called the switching partition (SP ). An influence system is called bidirectional
if Gij ≡ Gji (with G = (Gij)), which implies that G(x) is undirected. Such a system
is further called metrical if Gij is solely a function of |xi − xj |. Homogeneous HK
systems [26, 27, 31] constitute the canonical example of a metrical system. We assume
that all the relevant parameters (matrix entries, number and coefficients of hyperplanes,
ρ, etc) can be encoded as rationals over O(log n) bits: this assumption can be freely
relaxed—in fact, the bit lengths can be arbitrarily large as a function of n—and is only
made to simplify the notation.

Past work and present contribution. Beginning with their introduction by Son-
tag [51], piecewise-linear systems have become the subject of an abundant literature,
which we do not attempt to review here. Restricting ourselves to influence systems,
we note that the bidirectional kind are known to be attracted to a fixed point while
expending a total s-energy at most exponential in the number of agents and polyno-
mial in the reversible case [17, 23, 28, 35, 40]. Convergence times are known only in the
simplest cases [10,17,37]. In the nonbidirectional case, most convergence results are con-
ditional [12,14,15,29,39–41,44,53].5 The standard assumption is that some form of joint
connectivity property should hold in perpetuity. To check such a property is in general

4 This is the language of geometry and algebra with statements specified by any number of quantifiers
and polynomial (in)equalities. It was shown to be decidable by Tarski and amenable to quantifier
elimination and algebraic cell decomposition by Collins [18].

5 As they should be, since convergence is not assured. An exception is truth-seeking HK systems,
which have been shown to converge unconditionally [17].
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undecidable (see why below), so these convergence results are somewhat of a heuristic
nature. A significant recent advance was Bruin and Deane’s unconditional resolution of
planar piecewise contractions, which are special kinds of influence systems with a single
mobile agent [9]. Our main result can be interpreted as a grand generalization of theirs.

Theorem 1.1. Given any initial state, the orbit of an influence system is attracted
exponentially fast to a limit cycle almost surely under an arbitrarily small perturbation.
The period and preperiod are bounded by a polynomial in the reciprocal of the failure
probability. Without perturbation, the system can be Turing-complete. In the bidirec-
tional case, the system is attracted to a fixed point in time nO(n) log 1

ε almost surely,
where n is the number of agents and ε is the distance to the fixed point.

The theorem bounds the convergence time of bidirectional systems by a single expo-
nential and establishes the asymptotic periodicity of generic influence systems. These
results are essentially optimal. We also estimate the attraction rate of general systems
but the bounds we obtain are probably too conservative to be useful. Perturbing the
system means replacing each hyperplane aTx = a0 of the SP by aTx = a0 + δ, for
some arbitrarily small random δ. Note that neither the initial state nor the transition
matrices are perturbed.6 We enforce an agreement rule, which sets Gij to be constant
over the microscopic slab |xi − xj | ≤ ε0, for an arbitrarily small ε0 > 0.7 Intuitively,
the agreement rule stipulates that minute fluctuations of opinion between two agents
otherwise in full agreement should have no macroscopic effect on the system.8 We em-
phasize that both the perturbation and the agreement rule are necessary: without them,
the attraction claims of Theorem 1.1 are provably false.9 We show that finely tuned
influence systems are indeed Turing-complete.

Our work resolves the long-term behavior of a fundamental natural process which
includes the extended family of HK systems as a special case. The high generality of our
results precludes statements about particular restrictions which might be easier. A good
candidate for further investigation is the heterogeneous bounded-confidence model, where
each Gij is defined by a single interval, and which is conjectured to converge [39]. (We
show below that this is false if the averaging is not perfectly uniform.) Such systems were
not even known to be periodic, a feature that our result implies automatically. Generally,
our work exposes a surprising gap in the expressivity of directed and undirected dynamic
networks: while the latter always lead to stable agreement (of a consensual, polarized,
or fragmented nature), directed graphs offer a much richer complexity landscape.

The second contribution of this work is the introduction of a new brand of bifurcation
analysis based on algorithmic renormalization. In a nutshell, we use a graph algorithm

6 This is not a noise model [8]: the perturbation happens only once at the beginning.
7 Agent i is free to set the function Gij to either 0 or 1. For notational convenience, we set ε0 to be

n−O(1), but smaller values would work just the same.
8 Interestingly, this is precisely meant to prevent the “narcissism of small differences,” identified by

Freud and others as a common source of social conflicts.
9 In the nonbidirectional case, agents are made to enforce a timeout mechanism to prevent edges

from reappearing after an indefinite absence of unbounded length. While probably unnecessary, this
minor technical feature seems to simplify the proof.
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to decompose a dynamical system into a hierarchy of recursively defined subsystems.
We then develop a tensor calculus to “compile” the graph algorithm into a bifurcation
analysis. The tension between energy and entropy is then reduced to a question in
matrix rigidity.

In the context of social dynamics, Theorem 1.1 might be somewhat disconcerting.
Influence systems model how people change opinions over time as a result of human
interaction and knowledge acquisition. Our results show that, unless people keep varying
the modalities of their interactions, as mediated by trust levels, self-confidence, etc, they
will be caught forever recycling the same opinions in the same order. The saving grace
is that the period can be exponentially long, so the social agents might not even realize
they have become little more than a clock...

2 The Complexity of Influence Systems

Piecewise-linear systems are known to be Turing-complete [2, 7, 30, 50]. A typical sim-
ulation relies on the existence of Lyapunov exponents of both signs, negative ones to
move the head in one direction and positive ones to move it the other way. Influence
systems have no positive exponents and yet are Turing-complete, as we show below. In
dynamics, chaos is typically associated with positive topological entropy, which entails
expansion, hence positive Lyapunov exponents. But piecewise linearity blurs this picture
and produces surprises. For example, isometries (with only null Lyapunov exponents)
are not chaotic [11] but, paradoxically, contractions (with only negative exponents) can
be [32]. Influence systems, which, with only null and negative Lyapunov exponents, sit
in the middle, can be chaotic. The spectral lens seems to break down completely in the
face of piecewise linearity!

Exponential periods. It is an easy exercise to use higher bit lengths to increase
the period of an oscillating influence system by any amount. More interesting is the
observation that the period can be raised to exponential with only logarithmic bit length.
We simulate a counter modulo 2 by building a system with n = 3: the first two agents
are fixed at 0 and 3 while the third oscillates between positions 1 and 2; this is trivially
achieved with a two-test linear decision tree. Add another mobile agent oscillating
between 1 and 2 like the previous one, but which moves only when the first oscillating
agent is at position 1. (Adding a single test makes this possible.) Iterating in this
fashion produces an n-agent influence system with O(n) tests whose period is exactly
2n−2.

For a system where action and control are more closely mixed, consider implementing
Z/2Z as a 3-agent influence system by fixing the first two agents at positions 0 and 3,
respectively, and then letting the third one oscillate between 1 and 2. By adding O(q)
discontinuities, we extend this scheme to keep an agent cycling through 1, . . . , q, and
then back to 1, thus implementing Z/qZ. Repeating this construction for the first k
primes p1 < · · · < pk allows us to implement the system based on the direct sum
Z/p1Z ⊕ · · · ⊕ Z/pkZ, which has period of

∏
j≤k pj for a total of N = O(p1 + · · · + pk)
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agents and discontinuities. By the prime number theorem [42], this gives us a period of
length 2Ω(

√
N logN ). While the period of the system as a whole is huge, each agent cycles

through a short periodic orbit: this is easily remedied by adding another agent attracted
to the mass center of the k cycling agents. By the Chinese Remainder Theorem, that
last agent has an exponential period and acts as a sluggish clock.

Chaos and perturbation. Perturbation is needed for several reasons, including uni-
form bounds on the time to stationarity. We focus here on the agreement rule and show
why it is necessary by designing a chaotic system that is resistant to perturbation. We
use a total of four agents. The first two agents stay on opposite sides of 0.5, with the
one further from 0.5 moving toward it:

(x1, x2) 7−→ 1
2

{
( 2x1, x1 + x2 ) if x1 + x2 ≥ 1

(x1 + x2, 2x2 ) else.

The two agents converge toward 0.5 but the order in which they proceed (ie, their
symbolic dynamics) is chaotic. To turn this into actual chaos, we introduce a third
agent, which oscillates between a fourth agent fixed at x4 = 0 and x1 (which is roughly
0.5), depending on the order in which the first two agents move: x3 7→ 1

3(x3 + 2x1)
if x1 + x2 ≥ 1 and x3 7→ 1

3(x3 + 2x4) else. Assume that x1(0) < 1
2 < x2(0) and

consider the trajectory of a line L: X2 − 1
2 = u(X1 − 1

2), for u < 0. If the point
(x1(t), x2(t)) is on the line, then x1(t) +x2(t) ≥ 1 implies that u ≤ −1 and L is mapped
to X2 − 1

2 = 1
2(u+ 1)(X1 − 1

2); if x1(t) + x2(t) < 1, then u > −1 and L becomes

X2 − 1
2 =

2u

u+ 1
(X1 − 1

2).

The parameter u obeys the dynamics: u 7→ 1
2(u + 1) if u ≤ −1 and u 7→ 2u/(u + 1) if

−1 < u ≤ 0. Writing u = (v + 1)/(v − 1) gives v 7→ 2v + 1 if v < 0 and v 7→ 2v − 1 else.
(Geometrically, v is the tangent of the angle between L and the line X + Y = 0.) The
system v escapes for |v(0)| > 1 and otherwise conjugates with the baker’s map [22] via
the variable change: v = 2w−1. Agent 3 is either at most 1/6 or at least 1/3 depending
on which of agent 1 or 2 moves. This implies that the system has positive topological
entropy: to know where agent 3 is at time t requires on the order of t bits of accuracy in
the initial state. The cause of chaos is the first two agents’ convergence toward the SP
discontinuity. It is immediate that no perturbation can prevent this, so the agreement
rule is indeed needed.

Turing completeness. Absent perturbation and the agreement rule, an influence
system can simulate a piecewise-linear system and hence a Turing machine. Here is
how. Given a nonzero n-by-n real-valued matrix A, let A+ (resp. A−) be the matrix
obtained by zeroing out the negative entries of A (resp. −A), so that A = A+ − A−.
Define the matrices

B = ρ

(
A+ A−

A− A+

)
and C =

B (Id−B)1 0
0 1 0
0 1− ρ ρ

 ,
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where ρ is the reciprocal of the maximum row-sum in the matrix derived from A by
taking absolute values. It is immediate that C is stochastic and conjugates with the
dynamics of A. Indeed, given x ∈ Rn, if x denotes the (2n + 2)-dimensional column
vector (x,−x, 0, 1), then C x = ρAx; hence the commutative diagram:

x −−−−→ Axy y
x −−−−→ ρ−1C x .

Imagine now a piecewise-linear system consisting of a number of matrices {A} and an
SP. We add n negated clones to the existing set of n agents, plus a stochasticity agent
permanently positioned at x−1 = 0 and a projectivity agent initially at x0. This allows us
to form the vector x = (x,−x, x−1, x0). The system scales down, so we must projectify
the SP by rewriting with homogeneous coordinates any aTx = a0 as aTx = a0x0. We can
use the same value of ρ throughout by picking the smallest one among all the matrices
A used in the piecewise-linear system.

Koiran et al [30] have shown how to simulate a Turing machine with a 3-agent
piecewise-linear system, so we set n = 3. We need an output agent to indicate whether
the system is in an accepting state: this is done by pointing to one of two fixed agents.
We can enlist one of the three original agents for that purpose, which brings the agent
count up to 2n + 3 = 9. Predicting basic state properties of an influence system is
therefore undecidable. With a few more agents, we can easily encode as an undecidable
question whether the communication graphs (or their union over bounded time windows)
satisfy certain connectivity property infinitely often.

Linearization. We show how to linearize an influence system by tensor powering (for
any d). Let d be the maximum total degree of the polynomial tests used in the algebraic
decision trees (recall that each agent comes equipped with its own). We can always
assume the existence of an agent confined to position 1 with no in/out-link: we use it to
homogeneize the test polynomials, so that every monomial has degree exactly d. Given
x = (x1, . . . , xn) ∈ Rn, we define the monomial yk1,...,kd =

∏d
i=1 xki (1 ≤ k1, . . . , kd ≤ n)

and, listing them in lexicographic order, form y = (yk1,...,kd) ∈ RN , where N = nd; note
that y lies on a (real) algebraic variety V smoothly parametrized injectively by x. The
map x 7→ f(x) induces the lifted map y 7→ g(y), where g(y) = P (x)⊗ d y and

P (x)⊗ d =

d︷ ︸︸ ︷
P (x)⊗ · · · ⊗ P (x) .

Being the Kronecker product of stochastic matrices, P (x)⊗ d is stochastic: its diagonal
is positive and its nonzero entries all exceed ρd. Its associated graph, whose edges map
out its nonzero entries, is the tensor graph product G(x)⊗ d. We use the term ground
agents to refer to the n agents positioned at x. Including all the test polynomials from
all the ground agents’ decision trees gives us as many hyperplanes in RN and the sign
conditions of a cell c specify a unique stochastic matrix Qc. This matrix is always a
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tensor power P⊗ d but it is guaranteed to be of the form P (x)⊗ d only if c contains a
point y of V parametrized by x.

Whereas a random shift produces affine forms a1y1 + · · ·+ aNyN + δ, the agreement
rule acts in a more subtle way. While the whole point of the lifting is to forget about the
variety V, the tensor structure of the matrices Qc brings benefits we can exploit. Given
K ⊆ {1, . . . , n}, the cluster CK refers to the subset of |K|d agents with labels in Kd. If
all the agents of a cluster fit within a tiny interval then so do their ground agents; to see
why, just expand (xi − xj)d. By the agreement rule, therefore, the induced subgraph of
the cluster cannot change until it is pulled apart by outside agents. Assume now that
d > 1. We write

x = (x1,1, . . . , x1,d, . . . , xn,1, . . . , xn,d),

with the homogeneizing agent 1 permanently positioned at (x1,1, . . . , x1,d) = 1d. Next,
we define y = (y1, . . . ,yN ), where N = (dn)d and yl =

∏d
i=1 xki,ji with l denoting the

lexicographic rank of the string (k1, j1, . . . , kd, jd) for ki ∈ {1, . . . , n} and ji ∈ {1, . . . , d}.
The matrix Qc associated with cell c is of the form (P ⊗ Id)

⊗ d; furthermore, P = P (x)
whenever y satisfies the N conditions yl =

∏d
i=1 xki,ji for some x ∈ Rdn. The cluster

CK consists now of (d|K|)d agents.

Nonconvergent HK systems. Heterogeneous HK systems [26,27] are influence sys-
tems where each agent i is associated with a confidence value ri and the communication
graph links i to any agent j such that |xi − xj | ≤ ri. We design a periodic 5-agent
system with period 2. We start with a 2-agent system with r1 = r2 = 2. Instead of
uniform averaging, we decrease the self-confidence weight so that, if the two agents are
linked, then x1 7→ 1

3(x1 + 2x2) and x2 7→ 1
3(2x1 + x2). Any self-confidence weight less

than 0.5 would work, too; of course, a weight of zero makes the problem trivial and
uninteresting. If the agents are initially positioned at −1 and 1, they oscillate around
0 with xi = (−1)i+t 3−t at time t. Now place a copy of this system with its center at
X = 2 and a mirror-image copy at X = −2; then place a fifth agent at 0 and link
it to any agent at distance at most 2. As indicated in Fig. 1, even though the agents
themselves converge, their communication graph does not.

Figure 1: The communication graph of the HK system alternates between these two configura-
tions.
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3 An Overview of the Proof

Given the challenge of presenting the multiple threads of the argument in digestible
form, we begin with a bird’s eye view of the proof. The standard way to establish the
convergence of an algorithm or a dynamical system is to focus on a single unknown input
and track the rate at which the system expends a certain resource on its way toward
equilibrium: a potential function in algorithms; a free energy in statistical physics; or
a Lyapunov function in dynamics. This approach cannot work here. Instead, we need
to study the system’s action on all inputs at once. This is probably the single most
important feature distinguishing natural algorithms from the classical kind: because
they run forever, qualitative statements about their behavior will sometimes require a
global view of the algorithm’s actions with respect to all of its inputs. For this, we need
a language that allows us to model the evolution of phase space as a single geometric
object. This is our next topic. As explained earlier, we may assume that d = 1.

The coding tree. This infinite rooted tree encodes into one geometric object the set
of all orbits and the full symbolic dynamics. It is the system’s “Rosetta stone,” from
which everything of interest can be read off. The coding tree T is embedded in Ωn×R,
where Ω = (0, 1) and the last dimension represents time.10 Each child v of the root is
associated with an atom Uv, while the root itself stands for the phase space Ωn. The
phase tube (Uv, Vv) of each child v is the “time cylinder” whose cross-sections at times 0
and 1 are Uv and Vv = f(Uv), respectively. In general, a phase tube is a discontinuity-
avoiding sequence of iterated images of a given cell in phase space. The tree is built
recursively by subdividing Vv into the cells c formed by its intersection with the atoms,
and attaching a new child w for each c: we set Vw = f(c) and Uw = Uv ∩ f−tv(c), where
tv is the depth of v (Fig. 2). The phase tube (Uv, Vv) consists of all the cylinders whose
cross-sections at t = 0, . . . , tv are, respectively, Uv, f(Uv), . . . , f

tv(Uv) = Vv. Intuitively,
T divides up the phase space into maximal regions over which the iterated map is linear.

The coding tree has three structural parameters that require investigation. One
of them is combinatorial. Label each node w of the tree by the unique atom that
contains the cell c defined above. This allows us to interpret any path as a word of
atom labels and define the language L(T ) of all such words: the word-length growth of
L(T ) plays a central role, which we capture with the word-entropy (formal definitions
below). The two other parameters are geometric: the thinning rate tells us how fast the
tree’s branches thin out; the attraction rate tells us how close to “periodic” the branches
become. Whereas the latter concerns the behavior of single orbits, the thinning rate
indicates how quickly a ball in the space of orbits contracts with time, or equivalently
how quickly the distribution of agent positions loses entropy.

How do we read periodicity off from the coding tree? Intuitively, one would expect
that, at some time ν called the nesting time, for every v of depth tv = ν, there exists
w at the same depth with Vv ⊆ Uw. In other words the bottom sections of the phase

10 By convexity, we can restrict the phase space to Ωn.
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Figure 2: Node w at depth tw = 2 in the coding tree, with its phase tube (Uw, Vw) (curved for
aesthetic reasons). The cell Uw lies within a single atom whereas Vw splits over two of them.
Time points downwards. We have represented only two of the possibly many children of the
root.

tubes will, suitably permuted, fit snugly within the top sections. This is not always
true, however, and to find necessary conditions for it necessitates a delicate bifurcation
analysis. Fig. 3 suggests a visual rule-of-thumb to guide our intuition in distinguishing
between chaos and periodicity: the set R consists of the points in phase space where
the map f is not continuous.

Figure 3: Two scenarios for the iterated preimages of the SP discontinuities R: the set R∪ f−1(R)∪
· · · ∪ f−t(R) depicted on the left seems to spread everywhere in phase space so as to cover all of it
eventually, a symptom of chaos; the set on the right tends to fall into clusters or escape outside of Ωn,
a sign of periodicity.

The algorithmic pipeline. We assemble the coding tree by glueing together smaller
coding trees defined recursively. We entrust this task to the arborator, an algorithm
expressed in a language for “lego-like” assembly. The arborator needs two (infinite)
sets of parameters to do its job, the coupling times and the renormalization scales. To
produce these numbers, we use the flow tracker, an algorithm that, in the bidirectional

10



case, works roughly like this: (i) declare agent 1 wet; (ii) any dry agent becomes wet as
soon as it links to a wet one; (iii) if all agents ever become wet, dry them all and go
back to (i). The instants tk at which wetness propagates constitute the coupling times;
the renormalization scales are given by the number wk of wet agents at time tk. The
key idea is that, between two coupling times tk and tk+1, the system breaks up into
two subsystems with interaction between them going only in one direction: from wet to
dry.11 We denote by A(p→ q) an influence system that consists of two groups of size p
and q, with none of the q agents ever linking up to any of the p agents. This allows us
a recursive decomposition of the overall system:

A(n→ 0)

For k = 1, 2, . . .

Run A(wk → n − wk) and A(n − wk → 0) concur-
rently between times tk and tk+1.

This formulation is of interest only if we can bound tk+1− tk. This is done implicitly by
recursively monitoring the long-term behavior of the two subsystems and inferring from
it the possibility of further wetness propagation. The flow tracker is a syntactical device
because it merely monitors the exchange of information among agents with no regard
for what is done with it. By contrast, the arborator models the agents’ interpretation
of that information into a course of action. The arborator is assembled as a recursive
arithmetic expression over four operations: ⊕, ⊗, absorb, and renorm (Fig. 4). It comes
with a dictionary that spells out the effect of each term on the coding tree’s structural
parameters. Here is a quick overview:

• The direct sum ⊕ models the parallel execution of two independent subsystems.
Think of two agents, Bob and Alice, interacting with each other in one corner of
the room while Carol and David are chatting on the other side. The coding tree
of the whole is the (pathwise) Cartesian product of both two-agent coding trees.

• The direct product ⊗ performs tree surgery. It calls upon another primitive,
absorb, to prune the trees and prepare their phase tubes for “glueing.” Imagine
Alice suddenly turning to Carol and addressing her. The flow tracker records that
the two groups, Bob-Alice and Carol-David, are no longer isolated. Since this

11 This does not mean that the dynamics within the dry agents is not influenced by the wet ones:
only that dry agents do not include wet ones in the averaging. The standout exception is the case of a
metrical system, where the dry agents act entirely independently of the wet ones between tk and tk+1.
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Figure 4: The two tensor products.

might not have happened had Alice been at a slightly different location, the phase
tube leading to this event may well split into two parts: one bearing witness to the
new interaction; and the other extending the direct sum unchanged. By analogy
with the addition of an absorbing state to a Markov chain, the first operation is
called absorb.12

• The primitive renorm, so named for its kinship with the renormalization group of
statistical physics, uses the renormalization scales to compress subtrees into single
nodes so as to produce (nonuniform) time rescaling.

Attraction and chaos. The occurrence of chaos is mediated by the tension between
two forces: dissipation causes the phase tubes to become thinner, which favors peri-
odicity; phase tube splitting produces a form of expansion conducive to chaos. Two
arbitrarily close orbits can indeed diverge wildly once they fall on both sides of a dis-
continuity. The phase tubes snake around phase space while getting thinner at an
exponential rate, so hitting SP discontinuities should become increasinly rare over time.
The problem is that branching multiplies the chances of hitting discontinuities. For dis-
sipation to overcome branching, the average node degree should be small. To show this
is indeed the case requires a fairly technical rank argument about the linear constraints
implied by the splitting of a phase tube.

The thinning rate is about contraction, not attraction. To see why, consider a triv-
ial system with only self-loops: it is stuck at a fixed point, yet the agents’ marginal
distributions suffer no loss of entropy.13 The information-theoretic interpretation of
thinning is illuminating. As agents are attracted to a limit cycle, they lose memory of

12 The dynamics multiplies transition matrices to the left. Looking at it dually, the rightward products
model a random walk over a time-varying graph. The operation absorb involves adding a new leaf,
which is similar to adding an absorbing state; the direct product glues the root of another coding tree
at that leaf.

13 This is not to be confused with the word-entropy or the topological entropy.
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Figure 5: Given the specification of the natural algorithm, the flow tracker computes the
coupling times and the renormalization scales, which are needed by the arborator to assemble
the coding tree. A dictionary allows us to bound the coding tree’s structural parameters by
examining the arborator one component at a time. Renormalization makes this a recursive
process, hence the loop between the arborator and the parameters box.

where they came from, something that would not happen in a chaotic system. Paradox-
ically, interaction can then act as a memory recovery device and thus delay the onset of
periodicity.

Say the group Alice-Bob-Carol is isolated from David, until the latter decides to
interact with Alice, thus taking in a fixed fraction of her entropy. Fast-forward. Alice
is now caught in a limit cycle with Bob and Carol, while David has yet to interact with
anyone since his earlier contact with Alice. His isolation means that he has had no
chance to shed any of Alice’s entropy. Although later caught in a periodic orbit, Alice
might still be subject to tiny fluctuations, leading to a sudden interaction with David.
When this happens, she will recapture part of the entropy she had lost: she will recover
her memory! Happy as the news might be to her, this only delays the inevitable, which
is being caught yet again in a limit cycle. Memory recovery cannot recur forever because
David loses some of his own memory every time. In the end, because of dissipation, all
the agents’ memory will be lost.

4 Algorithmic Dynamics

We flesh out the ideas above, beginning with a simple local characterization of periodic-
ity. We then proceed to define the coding tree (§4.2), the arborator (§4.3), and the flow
tracker (§4.4).
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4.1 Conditions for asymptotic periodicity

It is convenient to thicken the discontinuities. This does not change the dynamics of the
system and is used only as an analytical device. Fix a small parameter ε > 0 once and
for all, and, for any t ≥ 0, define the margin Rε, where

Rε =
⋃
SP

{
x = (x1, . . . , xn) ∈ Rn : | a0 + a1x1 + · · ·+ anxn + δ| ≤ ε

}
, (1)

where the union extends over all the SP discontinuities. The margin is made of nO(1)

closed slabs of width at least εn−O(1). It is useful to classify the initial states by how
long it takes their orbits to hit Rε, if ever. With f0 = Id and min ∅ =∞, we define the
label of x ∈ Ωn as

`(x) = min
{
t ≥ 0 | f t(x) ∈ Rε

}
.

The point x is said to vanish at time `(x) if its label is finite. As we shall see, the analysis
needs to focus only on the nonvanishing points. Write St = {x ∈ Ωn = (0, 1)n | `(x) ≥ t }
for the set of points that do not vanish before time t: S0 is Ωn; and, for t > 0,

St = Ωn \
t−1⋃
k=0

f−k(Rε) .

Each of its connected components is specified by a set of strict linear inequalities in Rn,
so St is a union of disjoint open n-cells, whose number we denote by #St. We redefine
an atom to be a cell of S1 and restrict the domain of f to these new atoms. Each cell of
St+1 lies within a cell of St. The limit set S∞ =

⋂
t≥0 St collects the points that never

vanish. Unlike those of St, its cells may not be open or full-dimensional.

Periodic sofic shifts. Any cell c of S∞ ⊆ S1 lies within a single atom, so we can
define f|c as the linear map corresponding to the transition matrix Pc. Since S∞ is
an invariant set, the image f(c) must, by continuity, lie entirely within a cell of S∞.
Suppose that #S∞ < ∞, a fact we will prove shortly. We define a directed graph F ,
with each node labeled by a cell c of S∞ and with an edge (c, c′), labeled by f|c, joining
c to the unique cell c′ of S∞ that contains f(c). The system forms a sofic shift (ie, a
regular language over the edge labels). Furthermore, F is functional, meaning that each
node has exactly one outgoing edge (possibly a self-loop), so any infinite path ends up
in a cycle. The trajectory of a point x is the string s(x) = c0c1 · · · of atoms that it
visits: f t(x) ∈ ct for all 0 ≤ t < `(x). It is infinite if and only if x does not vanish,
so all infinite trajectories are eventually periodic. The weakness of this result is that
it might be a statement about the empty set. To strengthen it, we declare the system
to be nesting at t if no cell c of St contains more than one cell of St+1. (This does not
mean that f(c) lies inside an atom.) The minimum value of t is called the nesting time
ν of the system. Observe that #Sν ≥ #St, for any t ≥ ν. We bound the nesting time
and then proceed with an alternative characterization of nesting.
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Lemma 4.1. Both the nesting time ν and the number of cells in St are bounded by
(n/ε)O(n), for t = 0, 1, . . . ,∞.

Proof. We begin with the second claim. If, in (1), we replace x by Px, for a stochastic
matrix P , the coefficients of the affine form remain polynomially bounded, so the cells
of St are separated from one another by slabs of thickness at least εn−O(1). A simple
volume argument implies an upper bound of (n/ε)O(n) on the number of such cells. To
bound the nesting time, consider this procedure: suppose that we have placed a special
point (called a witness) in each cell c of St. If c contains only one cell of St+1, we move its
witness to that unique cell; if it contains more than one cell, then we move the witness to
one of them and create new witnesses to supply the others; if c contains no cell of St+1,
we leave its witness in place. We carry out this process for t = 0, 1, . . ., beginning with
a single witness in S0. Witnesses may move around but never disappear; furthermore,
by the previous argument, any two of them are separated by at least εn−O(1), so their
number is bounded by (n/ε)O(n). Any time t at which the system fails to be nesting
sees the creation of at least one new witness, and the first claim follows. 2

Lemma 4.2. Given any cell c of St and k ≤ t, the function fk|c is linear. Given any cell

b ⊆ Ωn and any linear function g, if g(b) \ Rε is connected then so is b \ g−1(Rε).

Proof. To call fk|c linear is to say that fk is described by a single stochastic matrix over all

of c. We may assume that t > 0. Given a cell c ⊆ St, none of the cells c, f(c), . . . , f t−1(c)
intersect Rε, hence each one falls squarely within a single atom and fk|c is linear for any
k ≤ t. For the second claim, note that, if the cell b intersects more than one connected
component of Ωn \ g−1(Rε), then it contains a segment pq and a point r ∈ pq such that
g maps p and q outside of Rε and r inside of it. By linearity, g(r) lies on the segment
g(p)g(q); therefore g(b) \ Rε is nonconvex hence disconnected. 2

Lemma 4.3. The nesting time ν is the minimum t such that f t(c) \Rε is connected for
each cell c of St; as a corollary, if c is a cell of Sν , then f(c) intersects at most one cell
of Sν .

Proof. The claims are trivial if ν = 0, so assume that ν > 0. For the first claim, it
suffices to show that the system is nesting at time t > 0 if and only if f t(c) \ Rε is
connected for each cell c of St. For the “only” part, we show why f t(c) \ Rε must be
connected. By Lemma 4.2, f t|c is linear; therefore, since c′ = c \ f−t(Rε) is connected so

is f t(c′) = f t(c) \ Rε. Conversely, assuming that each set f t(c) \ Rε is connected, then
we identify the function g in Lemma 4.2 with f t|c (in its linear extension) and conclude

that c \ g−1(Rε) = c′ is connected, hence constitutes the sole cell of St+1 lying within c.
To prove the corollary, again we turn to Lemma 4.2 to observe that f|c, . . . , f

ν
|c are all

linear, hence so is g = fν−1
|b , for b = f(c). Our new characterization of nesting implies

that fν(c) \ Rε = g(b) \ Rε is connected, hence so is b \ g−1(Rε) = f(c) \ f1−ν(Rε).
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Since f(c) lies entirely within a cell of Sν−1, the labels of its points are all at least ν−1.
Removing from f(c) the points of label ν − 1 leaves the connected set f(c) \ f1−ν(Rε);
therefore, f(c) can intersect at most one cell of Sν . 2

We define the directed graph F with one node per cell c of Sν and an edge from c
to c′, where c′ is the unique cell of Sν , if it exists, that intersects f(c). Every trajectory
corresponds to a directed path in F . The main difference with the previous graph is
that the converse is not true. Not only a node may lack an outgoing edge but, worse,
nothing in this framework keeps an orbit from going around a cycle for a while only
to vanish later. The previous lemma’s failure to ensure that f(c) lies strictly within
another cell of Sν puts periodicity in jeopardy. Perturbation is meant to get around
that difficulty. Periods and preperiods are defined with respect to the paths of F , not
trajectories: since the correspondence from paths to trajectories is not injective, the
latter may have shorter periods.

Lemma 4.4. The system is nesting at ν and any time thereafter. Any nonvanishing
orbit is eventually periodic and the sum of its period and preperiod is bounded by #Sν .

The attraction rate. Assume that ν > 0 and let c be a cell of Sν . Identifying the
nodes of F with their cells in Sν , we denote by σ0, σ1, . . . the path from c = σ0. Let
j be the smallest index such that σi = σj for some i < j. This defines the period
p = p(c) = j − i and the preperiod q = q(c) = i, with p + q ≤ #Sν . Given any x ∈ c,
its trajectory s(x) = c0c1 · · · c`(x)−1 is such that ck is the atom containing the cell σk.
Furthermore, for any q ≤ t ≤ `(x),

f t(x) = Mt−q (mod p)Q
b(t−q)/pcf q(x), (2)

where Mk = Pcq+k−1
· · ·Pcq , for k = 0, . . . , p − 1, and Q = Mp, with M0 the identity

matrix.14 Because of the self-loops in the communication graphs, the powers of Q are
known to converge to a matrix Q̃ [49]. Given c and t ≥ 0, we define

Π t = Mt−q (mod p) Q̃ Pcq−1 · · ·Pc0 .

The approximation Πt is one of p matrices obtained by substituting Q̃ for as many
“chunks” Q = Mp we can extract from the matrix product Pct−1 · · ·Pc0 that defines f|c.
Note that this includes the case t < p + q, where no such chunk is to be found. Given
any real α > 0, we define the attraction rate θα as the maximum value of θα(c), over all
cells c of Sν , where

θα(c) = min
{
θ ≥ 0 : ‖f t(x)−Π t(mod p) x‖∞ ≤ α ,

for all x ∈ c and θ ≤ t ≤ `(x)
}
.

(3)

14 Note that fq(x) = Pcq−1 · · ·Pc0x, with the matrix denoting the identity if q = 0.
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Suppose that Q can be written as

Q =

(
A C
∅ B

)
(4)

and assume the existence of a limit matrix B̃ such that ‖Bt − B̃‖max ≤ e−γt, for some
γ > 0. We tie the attraction rate to the maximum row-sum in A, which is itself related
to the thinning rate (whose formal definition we postpone).

Lemma 4.5. Given Q as in (4) and an upper bound µ on ‖A1‖∞ such that e−γ ≤ µ < 1,
for any 0 < α < 1− µ,

θα = O
( #Sν

1− µ

)
log n

α .

Proof. For any t > 0,

Qt =

(
At Ct
0 Bt

)
.

The matrix A is strictly substochastic (µ < 1), so, by standard properties of a Markov
chain’s fundamental matrix,

∑
k≥0A

k = (I −A)−1; therefore, for t > 0,

Ct − (I −At)(I −A)−1CB̃ =
t−1∑
k=0

At−k−1CBk −
t−1∑
k=0

AkCB̃ =
t−1∑
k=0

At−k−1CDk,

where Dk = Bk− B̃. Since C is substochastic, ‖CDk‖max ≤ e−γk. From ‖Ak 1‖∞ ≤ µk,
we derive

‖At−k−1CDk‖max ≤ µt−k−1e−γk.

Since µ ≥ e−γ , it follows that ‖Ct − (I −At)(I −A)−1CB̃‖max ≤ tµt−1; hence,

Q̃ =

(
0 (I −A)−1CB̃

0 B̃

)
,

where, by ‖At‖max ≤ µt and ‖(I−A)−1‖max ≤ 1/(1−µ), ‖Qt− Q̃‖max = O(tnµt−1/(1−
µ)). As a result, by Lemma 4.4, θα ≤ q+pt ≤ (#Sν)t, if t satisfies tµt−1 < α(1−µ)n−b,
for a large enough constant b > 0. 2

This next result argues that, although a vanishing point may take arbitrarily long to
do so, it comes close to vanishing fairly early. This gives us a useful analytical device
to avoid summing complicated series when estimating the probability that a point will
eventually vanish under random margin perturbation.

Lemma 4.6. Given any finitely-labeled point x in a cell c of Sν , there exists t < θα +
p(c) + q(c) such that f t(x) ∈ R2ε, for some α ≥ εn−O(1).
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Proof. We can obviously assume that `(x) ≥ θα + p(c) + q(c). For any t such that
θα ≤ t ≤ `(x), f t(x) lies in an `∞ ball of radius α centered at Π tmod p(c) x. This means
that, between times θα + q(c) and `(x), the orbit of x lies entirely in the union of p(c)
balls of radius α and, by periodicity, each ball is visited before time θα + p(c) + q(c).
Since x vanishes at time `(x), one of these p(c) balls must intersect Rε. Thickening all
the margin slabs by a width of 4α

√
n is enough to cover that ball entirely. If α = εn−b

for a large enough constant b, replacing ε by 2ε achieves the required thickening. 2

Although nesting occurs within finite time, the strict inclusion Sk+1 ⊂ Sk may occur
infinitely often. We show why:

Example 4.1: Vanishing can take arbitrarily long. Consider the two-agent influence
system (

x1
x2

)
f7−→ 1

3

(
2 1
1 2

)(
x1
x2

)
,

with the SP discontinuities formed by the single slab

Rε = {x ∈ R3 : |x1 − 1 + δ| ≤ ε }.

For simplicity, assume the same linear map f in the two atoms. It follows that(
x1
x2

)
ft

7−→ 1
2

(
1 + 3−t 1− 3−t

1− 3−t 1 + 3−t

)(
x1
x2

)
.

The set S∞ is the complement within Ω2 (the effective phase space) of

∞⋃
t=0

{
| (1 + 3−t)X1 + (1− 3−t)X2 − 2 + 2δ | ≤ 2ε

}
.

Note that if ε = 0, the number of cells in S∞ is infinite: they are defined by
an infinite number of lines passing through (1 − δ, 1 − δ), with increasing slopes
tending to −1. As soon as we allow thickness ε > 0, however, the margin creates
only O(|log ε|) cells. Not all of them are open. To see this, consider the point
2(1 − δ + ε, 0). It never vanishes yet any neighborhood contains points that do.
Some points take arbitrarily long to vanish. Thickening the SP discontinuities into
slabs is a “finitizing” device meant to keep the number of ∞-labeled cells bounded.

4.2 The coding tree

The richly decorated tree T encodes the branching structure of the sets Sk as a geometric
object in “phase space × time” = Ωn × [0,∞). Recall that each atom c comes with its
own transition matrix Pc. Unless specified otherwise, a fixed perturbation value of δ
is assumed once and for all. Think of Uv and Vv as the end-sections at times 0 and
tv of a phase tube containing all the orbits originating from Uv. At time tv, the SP
discontinuities might split the tube. This happens only if Vv intersects the margin,
which is the “branching condition” in the boxed algorithm. That intersection indicates
the vanishing time of some points in Uv, so we place a leaf as an indicator, and call it a
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vanishing node. Whereas Uv is an open n-cell, Vv can be a cell of any dimension; hence
so can be the connected components of Vv \ Rε. For each one, c, we attach a new child
w to v and denote by Pw the matrix of the map’s restriction to c. The image of c at
time tv, ie, Pw c, forms the end-section Vw of a new phase tube from the root, whose
starting section Uw is the portion of Uv mapping to c at time tv (Fig. 2).15

Building T

[1] The root v has depth tv = 0; set Uv ← Vv ← Ωn.

[2] Repeat forever:

[2.1] For each newly created node v:

• If Vv ∩Rε 6= ∅ [ branching condition ]
then create a leaf and make it a child of v.

• For each cell c of Vv \ Rε, create a child w of v and
set Pw ← Pc ; Vw ← Pw c ; Uw ← Uv ∩ f−tv (c).

Let ww′w′′ · · · denote the upward, tw-node path from w to the root (but excluding the
root). Using the notation P≤w = PwPw′Pw′′ · · · , we have the identity Vw = P≤w Uw. No
point in Uw vanishes before time tw, and, in fact, Sk =

⋃
w{Uw | tw = k }. The points of

S∞ are precisely those whose orbits follow an infinite path v∞ = v0, v1, v2, . . . down the
coding tree. Each such path has its own limit cell Uv∞ =

⋂
t≥0 Uvt : collectively, these

form the cells of S∞. Example 4.1 features two infinite paths each of whose nodes has
two children, one vanishing and one not.

• The nesting time ν = ν(T ) is the minimum depth at which any node has at most
one nonvanishing child (Lemma 4.3); visually, below depth ν, the tree consists of
single paths, some finite, others infinite, with vanishing leaves hanging off some of
them. A node v is deep if tv > ν and shallow otherwise.

• The word-entropy h(T ) is the logarithm of the number of shallow nodes.16 As we
observed, Sν =

⋃
v{Uv | tv = ν }; therefore #Sν ≤ 2h(T ).

• The period p(T ) is the maximum value of p(c) for all cells c = Uv, with tv = ν.
The attraction rate θα(T ) is the maximum value of the attraction rate for any
such c.

15 Note that Uw cannot be defined as the portion of Uv mapping to Vw at time tw: the orbits must
pass through c.

16 The trajectories form a language L(T ) over the alphabet of atom labels. Its growth rate plays a
key role in the analysis and is bounded via the word-entropy.
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The global coding tree. Let I denote the interval [−1, 1]. Since not all perturba-
tions δ are equally good, we must understand how the coding tree T varies as a function
of δ. To do that, a global approach is necessary: given ∆ ⊆ I, we encode the coding
trees for all δ ∈ ∆ into a single one, T ∆, which can be viewed as the standard coding
tree for the augmented (n + 1)-dimensional system (x, δ) 7→ (f(x), δ), with the phase
space Ωn ×∆. The sets Uv and Vv are now cells in Rn+1. In the branching condition,
one should replace the margin Rε, as defined in (1), by the global margin:⋃

SP

{
(x, δ) ∈ Rn+1 : |a0 + a1x1 + · · ·+ anxn + δ| ≤ ε

}
. (5)

The degree of any node is bounded by nO(n), which is the maximum number of cells in
an arrangement of nO(1) hyperplanes in Rn+1. The definition of nesting can be extended,
unchanged, to this lifted system. Since a standard coding tree is just a “cross-section”
of the global one, nesting in T even for all δ does not imply nesting in T ∆.17 The global
word-entropy h(T ∆) is defined in the obvious way.

4.3 The arborator

This algorithm assembles the coding tree by glueing smaller pieces together. It relies
on a few primitives that we now describe. The direct sum and direct product are
tensor-like operations used to attach coding trees together. The primitives absorb

and renorm respectively prune and compress trees. We present these operations and
assemble the dictionary that allows us to bound the coding tree’s parameters as we
parse the arborator.

Direct sum. The coding tree T = T1 ⊕ T2 models two independent systems of size
n1 and n2. Independence means that the systems are decoupled (no edge joins agents
from distinct groups) and oblivious (no SP discontinuity has nonzero coefficients from
both groups): this implies that the two systems can be analyzed separately; decoupling
alone is not sufficient. The phase space of the direct sum is of dimension n = n1 + n2.
A path w0, w1, . . . of T is a pairing of paths in the constituent trees: the node wt is of
the form (ut, vt), where ut (resp. vt) is a node of T1 (resp. T2) at depth t; it is a leaf
if and only if ut or vt is one—the vanishing of one group implies the vanishing of the
whole. If w = (u, v) is not a leaf, then Uw = Uu×Uv, and Vw = Vu×Vv. The direct sum
is commutative and associative. The name comes from the fact that Pw is the direct
matrix sum of Pu and Pv:

Pw = Pu ⊕ Pv =

(
Pu 0
0 Pv

)
.

17 Just as a region in the (X,Y )-plane need not be connected simply because all of its horizontal
cross-sections are.
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• Nesting time, period, and attraction rate.

ν(T ) ≤ max
i=1,2

ν(Ti) and p(T ) ≤
∏
i=1,2

p(Ti) and θα(T ) ≤ max
i=1,2

θα(Ti). (6)

The first two inequalities are obvious, so we focus on the last one. Consider a cell
c = c1 × c2 of Sν and follow the path of F emanating from it: this navigation
corresponds to the parallel traversal of a path in Fi from ci—we use the subscript
i = 1, 2 to refer to either one of the subsystems. Assume without loss of generality
that q1 ≥ q2. By definition, to revisit an earlier node means doing likewise in each
traversal; hence q ≥ q1. At time q1, however, both parallel traversals are already
engaged in their own respective cycles, so the node pair at time q1 will be revisited
lcm (p1, p2) steps later, the time span that constitutes the period p of the direct
sum; it also follows that q = q1. If q1 > q2, the traversals do not enter their cycles
at the same time, so in general, referring to (2), the matrix Q is not the direct

sum of Q
p/p1

1 and Q
p/p2

2 but, rather, of a shifted version Q = Q
p/p1

1 ⊕ (BA)p/p2 ,
where Q2 = AB. We easily verify that

Q̃ = lim
k→∞

Qk = Q̃1 ⊕ (BQ̃2A),

where, as before, Q̃i = limk→∞Q
k
i . The use of the `∞ norm allows us to verify

the bound on the attraction rate of the direct sum by checking the accuracy of the
approximation for each subsystem separately. It suffices to focus on the case of
T2, which presents the added difficulty that the approximation scheme delays the
cycle entrance until q1. The other difference with the approximation scheme in the
original system T2 is that, since the period can be much longer, so can the sequence
(M2)k. In all cases, however, the approximation scheme in T as it applies to T2

differs from the scheme in T2 in only one substantive way. Consider the language
consisting of the words (AB)∗, (AB)∗A, (BA)∗, and (BA)∗B. One approximation
scheme involves replacing any number of “AB”s by Q̃2, while the other scheme
replaces any number of “BA”s by BQ̃2A. Because ABQ̃2 = Q̃2AB = Q̃2, any
application of one scheme or the other produces the same matrix.

• Word-entropy. We prove (quasi) subadditivity. Assume without loss of generality
that ν(T1) ≥ ν(T2). The word-entropy counts the number of shallow nodes w =
(u, v). This implies that tu ≤ ν(T1), which limits the number of such nodes u to
2h(T1). If all the nodes v were shallow in T2, the subadditivity of word-entropy
would be immediate; but it need not be the case. If v is deep, let s(v) be its
deepest shallow ancestor. The function s may not be injective but it is at most
two-to-one. Thus,

h(T ) ≤ h(T1) + h(T2) + 1. (7)

All of the relations in (6, 7) still hold when the superscript ∆ is added to the coding trees.
We discuss (7) to illustrate the underlying principle. First, we provide an independent
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perturbation variable δi ∈ ∆ to Ti (i = 1, 2) and add it as an extra coordinate to the
state vector, thus lifting system i to dimension ni + 1. By (7), the word-entropy of the
joint system T ∗ in dimension n+2 is at most h(T ∆

1 )+h(T ∆
2 )+1. Second, we restrict the

system T ∗ to the invariant hyperplane δ1 = δ2, which cannot increase the word-entropy,
hence h(T ∆) ≤ h(T ∗), as claimed.

Absorption. The direct product, which we define below, requires an intermediate
construction. The goal is to allow the selection of nodes for removal, with an eye toward
replacing the subtrees they root by coding trees with different characteristics. The
selection is carried out by an operation called absorb(T ), which replaces any deleted
node by a leaf. For reasons that the flow tracker will soon clarify, such leaves are
designated wet. An orbit that lands into one of these wet leaves is suddenly governed
by a different dynamics, modeled by a different coding tree, so from the perspective of
T alone, wet leaves are where orbits come to a halt. While vanishing leaves signal the
termination of an orbit (at least from the perspective of the analysis), the wet variety
merely indicates a change of dynamics. Here is a simple illustration:

Example 4.3: The system consists of two independent subsystems. Suppose we
add a union of slabs, denoted by R′ε, to the original margin Ro

ε, thus breaking the
direct-sum nature of the coding tree. In Fig. 6, R′ε would consist of the two infinite
strips bordering b. We keep the transition matrices unchanged everywhere except
in cell b, which we call wet: all transition matrices are still direct (matrix) sums,
with the possible exception of Pb. Suppose we had available the coding tree prior
to the margin’s augmentation. Let Vv denote the pentagon in the figure and w be
the node associated with the trapezoid c that holds a, b, d. We need to replace w by
three nodes: two of them for a, d and one, a wet leaf, for b. The transition matrices
for a, d are both equal to the direct sum Pc, while Pb can be arbitrary. The idea is
that b can then be made the region Uroot of a new coding tree.

Minor technicality: usually, Uroot = Ωn, so the coding tree must be cropped by
substituting b for Ωn; note that b need not be an invariant set. Cropping might
involve pruning the tree but it cannot increase any of the key parameters, such as
the nesting time, the attraction rate, and the period. Absorption appeals to the fact
that we can ignore b and its wet leaf until we have fully analyzed the direct sum.
This separation is very useful, especially since absorption does not require a direct
sum—we never used the fact that the old slabs were horizontal or vertical—and is
therefore extremely general.

A crucial observation is that the nodes z created for the subcells c′ of a given c (subcells
a and d in Fig. 6) have the same matrix Pc. As a result of all the absorptions, the tube
(Uv, Vv) is split up by up to tv linearly transformed copies of the nO(1) margin slabs,
hence into at most tnvn

O(n) subcells. This compares favorably with the naive upper
bound of nO(ntv) based on the sole fact that absorption at each ancestor of v produces
nO(n) children.
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Figure 6: The original cell c of Vv (bottom-center trapezoid) splits up into the wet cell b and
the dry cells a and d, both of which inherit the matrix Pc.

Absorption surgery

[1] If v has no leaf, create a vanishing leaf and make it a child of v.

[2] For each cell c of Vv \ Ro
ε, let w be the child of v for c (ie, such that

f(c) = Vw) and let T be the tree rooted at w. If c ∩ R′ε, then remove T
and, for each cell c′ of c \ R′ε, create a node z and make it a child of v.

• If c′ is wet, make z a wet leaf.

• If c′ is dry, reattach to z a suitably cropped copy of T .
Set Pz ← Pc, Vz ← Pz c, and Uz ← Uv ∩ f−tv (c′).

Direct product. The tree T = T1⊗T2 models the concatenation of two systems. The
direct product is associative but not commutative. It is always preceded by a round of
absorptions at one or several nodes of T1. We begin with a few words of intuition.
Consider two systems S1 and S2, governed by different dynamics yet evolving in the
same phase space Ωn. Given an arbitrary region Λ ⊂ Ωn, we define the hybrid system S
with the dynamics of S2 over Λ and S1 elsewhere. Suppose we had complete knowledge
of the coding tree Ti for each Si (i = 1, 2). Could we then combine them in some ways
to assemble the coding tree T of S? To answer this question, we follow a three-step
approach:

• (i) we absorb the tree T1 by creating wet leaves w for all the nodes v with Vv∩Λ 6= ∅;

• (ii) we attach the roots of cropped copies of T2 at the wet leaves; and

• (iii) we iterate and glue T1 and T2 in alternation, as orbits move back and forth in
and out of Λ.

Absorption, direct products, and the arborator address (i, ii, iii) in that order. The
root of T2 is attached to w, but not until that tree itself has been properly cropped so
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that Uroot = Vroot(T2) = Vw(T1) = Pw c, with Pw given by T2 and not T1. To be fully
rigorous, we should write a direct product as T1 ⊗ {T2} since the trees T2 we attach to
the wet nodes might not all be the same: the cropping might vary, as might the wet
regions.

• Nesting time and attraction rate. Bounding the nesting time of a direct product is
not merely a combinatorial matter, as was the case for direct sums: the geometry of
attraction plays a role. Even the case of absorb(T1) demands some attention and
this is where we begin. AddingR′ε to the margin cannot create arbitrarily deep wet
nodes: specifically, no v ∈ absorb(T1) of depth at least max{ ν(T1), θαa(T1) + p }
can have a wet child, where p = p(Uv) and αa = εn−a for a large enough constant
a. Indeed, suppose there is such a node v. Pick x ∈ Uv such that f tv(x) lies in a
wet cell c within Vv and observe that

‖f tv(x)−f tv−p(x)‖∞ ≤ ‖f tv(x)−Π tv(mod p) x‖∞+‖f tv−p(x)−Π tv(mod p) x‖∞ ≤ 2αa.

By our choice of αa, this implies that f tv(x) and f tv−p(x) are at a distance
apart less than the width of the margin’s slabs; therefore, f tv−p(x) lies in a wet
cell or in a slab. It follows that the orbit of x either vanishes or comes to a (wet)
halt at a time earlier than tv, so x 6∈ Uv and we have a contradiction. It follows
that all deep nodes of T1 deeper than θαa(T1) + p(T1) are also deep in absorb(T1).
With T = T1 ⊗ T2, therefore,

ν(absorb(T1)) ≤ max{ ν(T1), θαa(T1) + p(T1) } , for some αa ≥ εn−O(1)

ν(T ) ≤ ν(absorb(T1)) + ν(T2)

θα(T ) ≤ max{ θα(T1), ν(absorb(T1)) + θα(T2) }
(8)

• Word-entropy. Absorption can occur only at nodes v of depth tv ≤ ν(absorb(T1)).
This means that the number of nodes where wet cells can emerge is at most
2h(T1)(θαa(T1)+p(T1)). As we argued earlier, each such node v can give birth to at
most tnvn

O(n) new nodes, so the number of shallow nodes in T is (conservatively)
at most

#v with wet child︷ ︸︸ ︷
2h(T1)(θαa(T1) + p(T1)) ×

#splits/v︷ ︸︸ ︷
(ν(T1) + θαa(T1) + p(T1))nnO(n) ×

#T2 nodes︷ ︸︸ ︷
2h(T2) .

We use the fact that cropping cannot increase the word-entropy. Taking loga-
rithms, we find that

h(T ) ≤ h(T1) + h(T2) + (n+ 1) log( ν(T1) + θαa(T1) + p(T1) ) +O(n log n). (9)

Since both ν(T1) and p(T1) are no greater than 2h(T1), we can simplify the bound:

h(T ) ≤ (n+ 2)h(T1) + h(T2) + (n+ 1) log θαa(T1) +O(n log n). (10)

We repeat our earlier observation that, by viewing the perturbation variable δ as an
extra coordinate of the state vector, the relations above still hold for global coding trees
with n incremented by one.
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Renormalization. This operation is both the simplest and the most powerful in the
arborator’s toolkit: the simplest because all it does is compress time by folding together
consecutive levels of T ; the most powerful because it reaches beyond lego-like assembly to
bring in the full power of algorithmic recursion into the analysis. The primitive renorm

takes disjoint subtrees of T and regards them as nodes of the renormalized tree. This is
done in the obvious way: if u is any node in T with two children v1, v2, each one with
two children, v11, v12 and v21, v22, then compressing the subtree u, v1, v2 means replacing
it by a node z with the same parent as u’s (if any) and the four children vij . We discuss
this process in more detail below. Although inspired by the renormalization group of
statistical physics, our approach is more general. For one thing, the compressed subtrees
may differ in size, resulting in nonuniform rescaling across T . This lack of uniformity
rules out closed-form composition formulae for the nesting time, attraction rate, and
word-entropy of renormalized coding trees, which must then be resolved algorithmically.

4.4 The flow tracker

We approach periodicity through the study of an important family, the block-directional
influence systems, whose agents can be ordered so that

G =

(
GA GC
0 GB

)
, (11)

where 0 denotes the (n−m)-by-m matrix whose entries are the constant function x 7→ 0;
in other words, in a block-directional system, no B-agent ever links to an A-agent.
Suppose that m < n. Wet the B-agents with water while keeping all the A-agents
dry. Whenever an edge of the communication graph links a dry agent to a wet one, the
former gets wet. Note how water flows in the reverse direction of the edges. As soon
as all agents become wet (if ever), dry them but leave the B-agents wet, and repeat
forever. The case m = n is similar, with one agent designated wet once and for all. The
sequence of times at which water spreads or drying occurs plays a key role in building
the arborator.

Coupling times and renormalization scales. Let Tm→n−m denote the coding tree
of a block-directional system consisting of m (resp. n−m) A-agents (resp. B-agents).
The arrow indicates that no B-agent can ever link to an A-agent: Gij is identically zero
for any B-agent i and A-agent j. We use the notation Tm ‖n−m for the decoupled case:
no edge ever joins the two groups in either direction, but the discontinuities may still
mix variables from both groups. Note that the metrical case implies full independence
(§1), so that

Tm ‖n−m = Tm ⊕ Tn−m.

Assume that n > 1 and 0 < m ≤ n. We write Tm→ 0 as Tm. Likewise, we can always
express Tm→n−m as Tm, but doing so is less informative. When the initial state x is
undersood, we use the shorthand Gt = G(f t(x)) to designate the communication graph
at time t and we denote by Wt the set of wet agents at that time. The flow tracker is not
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concerned with information exchanges among the B-agents: these are permanently wet
and, should they not exist (m = m), agent 1 is kept wet at all times [2.1]. Thus the set
Wt of wet agents is never empty. The assignments of t0 in step [2.3] divide the timeline
into epochs, time intervals during which either all agents become wet or, failing that, the
flow tracker comes to a halt (breaking out of the repeat loop at “stop”). Each epoch is
itself divided into subintervals by the coupling times t1 < · · · < t`, with Wtk ⊂ Wtk+1.
The last coupling time t` marks either the end of the flow tracking (if not all A-agents
become get) or one less than the next value of t0 in the loop.

The notion of coupling is purely syntactical, being only a matter of information
transfer. Our interest in it is semantic, however: as befits a dissipative system, a certain
quantity, to which we shall soon return, can be bounded by a decreasing function of
time. To get a handle on that quantity is the main purpose of the flow tracker.

Flow tracking in action. Suppose that, for a long period of time, the wet agents fail
to interact with any dry one. The two groups can then be handled recursively. While
this alone will not tell us whether dry-wet interaction is to occur ever again, it will
reveal enough fine-grained information about the groups’ behavior to help us resolve
that very question. Suppose that such interaction takes place, to be followed by another
long period of interaction. Renormalization squeezes these “non-interactive” periods
into single time units, thus providing virtual time scales over which information flows
at a steady rate across the system. Thus, besides analyzing subsystems recursively,
renormalization brings uniformity to the information transfer rate.

Flow tracker

[1] t0 ← 0.

[2] Repeat forever:

[2.1] If m < n then Wt0 ← {m+ 1, . . . , n} else Wt0 ← {1}.
[2.2] For t = t0, t0 + 1, . . . ,∞

Wt+1 ←Wt ∪ { i | ∃ (i, j) ∈ Gt & j ∈Wt }.
[2.3] If |W∞| = n then t0 ← min{ t > t0 : |Wt| = n } else stop.

Example 4.4: The third column below lists a graph sequence G0, . . . , G11 in chrono-
logical order, with the superscript w indicating the edges through which water prop-
agates to dry nodes. The system is block-directional with three A-agents labeled
a, b, c and one B-agent labeled d. For clarity, we spell out the agents by writing the
corresponding coding tree T3→ 1 as Tabc→ d, instead, thus indicating that no edge
may link d to any of a, b, c.
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Flow tracking

renorm
W0 = {d } d a→ b→ c
W1 = {d } d a← b→ c Td ‖ abc
W2 = {d } d a→ b← c

t1 = 3 W3 = {d } d
w← a← b← c Tabcd

renorm
W4 = {a, d } d← a→ b→ c Ta→ bcd

W5 = {a, d } d a→ b→ c

t2 = 6 W6 = {a, d } d← a
w← b← c Tabcd

renorm
W7 = {a, b, d } d← a→ b→ c
W8 = {a, b, d } d← a← b c Tab→ cd

W9 = {a, b, d } d← a→ b→ c

t3 = 10 W10 = {a, b, d } d← a→ b
w← c Tabcd

W11 = {a, b, c, d } d a← b c Td ‖ abc

In the first renormalized 3-step phase, the system “waits” for an edge from {a, b, c}
to d, and so can be modeled as Td ‖ abc. In the metrical case, this is further reducible
to Td ⊕ Tabc. The times t1, t2, t3 coincide with the growth of the wet set: these are
one-step event, which are treated trivially as height-one absorbed trees. They entail
no recursion, so inductive soundness is irrelevant and writing the uninformative
Tabcd is harmless. The other renormalized phases are counterintuitive and should
be discussed. Take the last one: it might be tempting to renormalize it as Tabd→ c

to indicate that the phase awaits the wetting of c (with a, b, d already wet). This
strategy is inductively unsound, however, as it attempts to resolve a system Tabc→ d

by means of another one, Tabd→ c, of the same combinatorial type. Instead, we use
the fact that not only no edge can link c to {a, b} (by definition of the current phase)
but no edge can link d to {a, b} either (by block-directionality). This allows us to
use Tab→ cd, instead, which is inductively sound.

Renormalization, which is denotated by underlining, compresses into single time
units all the time intervals during which wetness does not spread to dry agents.
With the subscripts (resp. superscript) indicating the time compression rates (resp.
tree height), the 11-node path of Tabc→ d matching the graph sequence above can
be expressed as

Td ‖ abc |3 ⊗ T
|1
abcd ⊗ Ta→ bcd |2 ⊗ T

|1
abcd ⊗ Tab→ cd |3 ⊗ T

|1
abcd .

As the example above illustrates, the coupling time tk is immediately followed by a
renormalization phase of the form Twk→n−wk , where wk = |Wtk+1| − n + m is the
renormalization scale (k = 1, . . . , ` − 1). Thus, any path of the coding tree can be
renormalized as

Tm→n−m =⇒ Tm ‖n−m | t1
⊗ T |1n ⊗

{ `−1⊗
k=1

(
Twk→n−wk | tk+1−tk−1

⊗ T |1n
)}
⊗Tm→n−m .

(12)
The recursion comes in two forms: as calls to inductively smaller subsystems Twk→n−wk ;
and as a rewriting rule, Tm→n−m ⇒ · · · { } ⊗ Tm→n−m. It is the latter that makes the
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arborator, if expanded in full, an infinitely long expression. We note that all these
derivations easily extend to the global coding trees.

5 Bidirectional Systems

We begin our proof of the bidirectional case of Theorem 1.1 by establishing a weaker
result for metrical systems: recall that these make the presence of an edge between
two agents a sole function of their distance. The proof is almost automatic and a good
illustration of the algorithmic machinery we have put in place. By appealing to known
results on the total s-energy, we are able to improve the bounds and extend them to the
nonmetrical case.

5.1 The metrical case

It is worth noting that, even for this special case, perturbations are required for any
uniform convergence rate to hold.

Example 5.1: Consider the 3-agent system:(
x1
x2

)
7−→ 1

3

(
2 1
1 2

)(
x1
x2

)
,

with x3 7→ 1
2 (x2 + x3) if x3 − x2 ≥ 1 and x3 7→ x3 else. Initialize the system with

x2 = −x1 = 1 and x3 slightly bigger than x2. The edge joining agents 2 and 3 will
then appear only after on the order of |log(x3 − x2)| steps, which implies that the
convergence time cannot be bounded uniformly without perturbation.

Fix δ in ∆ = (n−b I) \ (n−2b I), where I = [−1, 1] and b is a suitably large constant.18

The margin slabs of a metrical system are of the form |a0 +xi−xj+δ| ≤ ε. Because a0 is
an O(log n)-bit rational, as long as ε < n−3b, x cannot lie in that slab if |xi−xj | ≤ n−3b.
Let diam (s) be the diameter of the system after the s-th epoch. From (14) in [17], we
conclude that water propagation to all the agents entails the shrinking of the system’s
diameter by at least a factor of 1− n−O(n). Since an epoch witnesses the wetting of all
the agents, repeated applications of this principle yields

diam (s) ≤ e−sn−O(n)
. (13)

After ncn epochs have elapsed (if ever), for a large enough constant c, the diameter of
the system falls beneath n−3b and, by convexity, never rises again. By our previous
observation, the orbit can never hit a margin subsequently. The maximum time it takes
for ncn epochs to elapse, over all x ∈ Ωn and δ ∈ ∆, is an upper bound on the nesting
time of the global coding tree. Furthermore, past that time, the communication graph
is frozen, meaning that it can never change again.

18 Recall that ideally ∆ should be {0} so the more confined around 0 we can make it the better; thus
a higher value of b is an asset, not a drawback.
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Lemma 5.1. If P is the transition matrix associated with the undirected communication
graph G, there is a matrix Π such that ‖P k −Π‖max = e−kn

−O(n)
, for any k ≥ 0.

Proof. By repeating the following argument for each connected component if needed, we
can assume that G is connected. The positive diagonal ensures that P is primitive (being
the stochastic matrix of an irreducible, aperiodic Markov chain), hence Pn, which we
denote by M , is positive. Since each nonzero entry of P is at least n−O(1), the coefficient
of ergodicity of M , defined as

β = 1
2 max

i,j

∑
l

|Mil −Mjl| = 1−min
i,j

∑
l

min{Mil,Mjl}

satisfies β ≤ 1−n−O(n). Two classic results from the theory of nonnegative matrices [49]
hold that β is an upper bound on the second largest eigenvalue of M (in absolute value)
and that β is submultiplicative.19 Given any probability distribution x, if y = M lx,
then

max
i,j
|yi − yj | ≤ βl max

i,j
|xi − xj | ≤ e−ln

−O(n)
. (14)

By Perron-Frobenius and the ergodicity of P , its powers tend to the rank-one matrix
1vT , where v is the dominant left-eigenvector of P with unit `1-norm; furthermore,

‖P k − v1T ‖max = e−kn
−O(n)

.

Indeed, setting x to the j-th basis vector (0, . . . , 1, . . . , 0)T in (14) shows that the j-th
column of M l = P ln, for l = bk/nc, consists of identical entries plus or minus a term

in e−ln
−O(n)

. By convexity, these near-identical entries cannot themselves oscillate as l
grows. Indeed, besides (14), it is also true that [min yi,max yj ] ⊆ [minxi,maxxj ]. 2

The next step in deriving the coding tree’s parameters is to specialize the arborator’s
expression (12) to the metrical case. The outer product enumerates the first nO(n) epochs
leading to the combinatorial (but not physical) “freezing” of the system. The coupling
times and renormalization scales might vary from one epoch to the next; to satisfy the
rewriting rule below, we set w0 = 1 and t0 = −1. The cropped coding tree T ∗n models
the post-freezing phase.

Tn =⇒
{ nO(n)⊗

s=1

`s⊗
k=0

(
Twk ⊕ Tn−wk | tk+1−tk−1

⊗ T |1n
)}
⊗ T ∗n . (15)

The following derivations entail little more than looking up the dictionary compiled
in §4.3.

19 The stochastic matrix P may not correspond to a reversible Markov chain and might not be
diagonalizable. It is primitive, however; therefore, by Perron-Frobenius, it has unique left and right unit
eigenvectors associated with the dominant eigenvalue 1.
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• Nesting time and attraction rate. It is convenient to define

µα(T ) = max{ ν(T ), θα(T ) }.

If the coding trees T1, . . . , Tk have period one then, by (8),

µα

( k⊗
i=1

Ti

)
≤ k +

∑
i

µαa(Ti) + max
i
µα(Ti). (16)

The coding tree T ∗n involves a single matrix whose powers converge to a fixed
matrix Π and, by Lemma 5.1, µα(T ∗n ) ≤ nO(n) log 1

α . The following bounds derive
from monotonicity and successive applications of (6, 8). For some suitable αa =
εn−O(1) and any α ≤ αa,

µα(Tn) ≤ µαa(T ∗n ) + nO(n)
n−1∑
k=1

max
{
µαa(Tk), µαa(Tn−k)

}
+ max

k
{µα(Tk), µα(T ∗n ) }

≤ nO(n) µαa(Tn−1) + µα(Tn−1) + nO(n) log 1
α

≤ nO(n2) log 1
ε + nO(n) log 1

α .

(17)

In view of this last upper bound, the condition α ≤ αa can be relaxed to α < 1.
Thus,

ν(Tn) ≤ nO(n2) log 1
ε and θα(Tn) ≤ nO(n2) log 1

ε + nO(n) log 1
α . (18)

• Word-entropy. By (9) and the attraction rate bound above, for 0 < ε < 1/2,

h(T1 ⊗ T2) ≤ h(T1) + h(T2) + (n+ 1) log(2µαa(T1) + 1) +O(n log n)

≤ h(T1) + h(T2) + (n+ 1) log log 1
ε +O(n3 log n).

(19)

By (7) and h(T ∗n ) = 0, it follows that

h(Tn) ≤
nO(n)∑
s=1

n−1∑
k=1

{
h( (Tk ⊕ Tn−k)⊗ T |1n )

}
+ h(T ∗n )

+ (n+ 1) log(2µαa(T ∗n ) + 1) + nO(n) log log 1
ε

≤ nO(n)h(Tn−1) + nO(n) log log 1
ε ≤ n

O(n2) log log 1
ε .

Our earlier observation that such derivations apply to the global coding trees tells
us that

h(T ∆
n ) ≤ nO(n2) log log 1

ε . (20)

Note the crucial fact that, from the vantage point of (18, 20), the global word-entropy
is lower than the nesting time, which shows that the coding tree’s average node is less
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than 2. By Lemmas 4.4 and 4.6, any vanishing point x hits an enlarged margin fairly
early: f ta(x) ∈ R2ε for ta ≤ θαo + #Sν and some αo ≥ εn−O(1); therefore,

ta ≤ θαo + 2h(T ∆
n ) ≤ |log ε|nO(n2)

. (21)

For random δ ∈ ∆, a fixed point lies in a given slab of R2ε with probability at most
4ε/(2n−b − 2n−2b); by a union bound over the margin slabs, the probability of being in
R2ε does not exceed εnO(1). Therefore, the probability that a fixed x ever vanishes is
at most εnO(1) times the number of paths of depth at most ta in the global coding tree
T ∆
n , which, by (21), is

|log ε|nO(n2)
2h(T ∆

n ).

By (20), this puts the vanishing probability at

ε(log 1
ε )n

O(n2)
<
√
ε,

for ε small enough, which means that it can be set arbitrarily low. Removing a small
interval in the middle of n−b I to form ∆ was only useful for the analysis: in practice,
we might as well pick the random perturbation uniformly in n−b I since it would add
only 2n−b to the error probability. The merit of the proof is that it is a straightforward,
automatic application of the arborator’s dictionary. It illustrates the power of renor-
malization, which can be seen in the fact that no explicit bound on tk+1 − tk is ever
needed. By appealing to known results about the total s-energy [17] we can both extend
and improve the bound on the convergence rate.

5.2 The bidirectional case

To give up the metrical assumption means that the presence of an edge in the commu-
nication graph no longer depends on its two agents alone but possibly on all of them. In
such a system, for example, two agents might be joined by an edge if and only if fewer
than ten percent of them lie in between. We revisit the previous argument and show how
to extend it to general bidirectional systems. We retain the ability of the communication
graph to freeze when the agents’ diameter becomes negligible by enforcing the agreement
rule: Gij is constant over the slab |xi − xj | ≤ n−bn, for some suitably large constant b.
The difficulty with nonmetrical dynamics is that, though decoupled, subsystems are no
longer independent, so in (15) the direct sum Twk ⊕ Tn−wk is no longer operative.

We set ∆ = n−b I and fix x ∈ Ωn for the time being. This induces a length on each
edge of any communication graph G(f t(x)), so we can call a node v of T ∆

n heavy if its
communication graph contains one or more edges of length at least n−2bn. The number
of times the communication graph has at least one edge of length λ or more is called
the communication count Cλ: it has been shown, using the total s-energy [17], that
Cλ ≤ λ−1ρ−O(n), where ρ is the smallest nonzero entry in the stochastic matrices; here
ρ ≥ n−O(1). It follows that, along any path of Tn, the number of heavy nodes is nO(n).
Let us follow one such path and let Gk denote the communication graph common to the
subpath between the k-th and (k+ 1)-st heavy nodes. To see why that graph is unique,
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suppose two consecutive light-node graphs are different. Then some (i, j) is an edge of
one but not the other. But, since the first graph only has edges of length less than n−2bn,
the locations of both i and j cannot vary by more than n−2bn between the two graphs.
It means that in both graphs their distance cannot exceed 3n−2bn < n−bn; therefore,
by the agreement rule, (i, j) is an edge in both graphs, which is a contradiction. We
rewrite (12), for fixed x, as

T ∆
n =⇒

{ nO(n)⊗
k=1

( T ∆
|Gk ⊗ T

∆|1
n )

}
⊗ T ∆
|G∞ ,

where G∞ is the final graph, which forms an infinite suffix of the graph sequence
G(f t(x))t≥0. We reduce unnecessary branching as follows: whenever Vv (which, with
x fixed, is an interval along the δ-axis) is split into two or more cells by the switching
partition, we give it two or more children (besides vanishing leaves) only if at least one
of these cells corresponds to a heavy node. The reasoning is that, in the absence of
heavy nodes, splitting Uv into subcells is pointless since the communication graphs of
all the children are the same; so we might as well give v a single child and, if need
be, a vanishing leaf. This ensures that the nesting time of T ∆

|Gk is 0. By Lemma 5.1,

θα(T ∆
|Gk) ≤ nO(n) log 1

α , and, by (16),

µα(T ∆
n ) ≤ nO(n)+µαa(T ∆

|G∞)+
nO(n)∑
k=1

µαa(T ∆
|Gk)+max

k
{µα(T ∆

|Gk), µα(T ∆
|G∞) } ≤ nO(n) log 1

εα .

Since θα(T ∆
n ) ≤ nO(n) log 1

εα and h(T ∆
|Gk) = 0, by (9), inequality (19) becomes

h(T1 ⊗ T2) ≤ h(T1) + h(T2) + (n+ 1) log log 1
ε +O(n2 log n);

therefore, h(T ∆
n ) ≤ nO(n) log log 1

ε . Repeating the argument we used for the metrical
case implies that the vanishing probability of x is at most

ε(log 1
ε )n

O(n)
<
√
ε,

for ε < 2−n
c

and constant c large enough. The attraction rate is at most nO(n) log 1
α ,

for any α < ε, and the proof of the bidirectional case of Theorem 1.1 is complete. 2

6 General Influence Systems

We prove Theorem 1.1. The centerpiece of our proof is the bifurcation analysis of a
certain non-Markovian extension of an influence system. We focus on that extension first
and then show how it relates to the original system. We impose a timeout mechanism to
prevent any edge from reappearing after an absence of to consecutive steps, for arbitrarily
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large to. Fix a directed graph H with n nodes labeled 1 through n. Given any x ∈ Ωn, as
soon as either the communication graph G(f t(x)) contains an edge not in H or some edge
of H fails to appear in at least one of G(f t−to+1(x)), . . . ,G(f t(x)) for some t ≥ to, set
all future communication graphs to be the trivial graph consisting of n self-loops. This
creates a new coding tree, still denoted Tn for convenience, which has special switching
leaves associated with the trivial communication graph. We show that, almost surely,
the orbit of any point is attracted to a limit cycle or its path in the coding tree reaches
a switching leaf.20 As in the bidirectional case, we assume the agreement rule, which
sets Gij to a constant function over the thin slab |xi − xj | ≤ n−bn.

What is H? Any infinite graph sequence such as G(x),G(f(x)),G(f2(x)), etc, defines
a unique persistent graph, which consists of all the edges that appear infinitely often.
The timeout mechanism allows an equivalent characterization, which includes the edges
appearing at least once every to steps. The persistent graph depends on the initial state
and is unknown ahead of time, so our analysis must handle all possible such graphs.
While it plays a key role in the analysis, it would be wrong to think of the persistent
graph as determining the dynamics: influence systems can be chaotic and nontrivially
periodic, two behaviors that can never be found in systems based on a single graph.

Consider the directed graph derived from H by identifying each strongly connected
component with a single node. Let B1, . . . , Br be the components whose corresponding
nodes are sinks and let ni denote the number of agents in the group Bi; write n =
m+ n1 + · · ·+ nr. (In Markov chain terminology, Bi is a closed communicating class.)
The linear subspace spanned by the agents of each Bi is forward-invariant and, as we
shall see, the phase space evolves toward a subspace of rank r. We reserve the indices
1, . . . ,m to denote the agents outside of the Bi’s. Unless they hit a vanishing or switching
node, the agents indexed m+ 1, . . . , n are expected to settle eventually, while the other
agents orbit around them, being attracted to a limit cycle. We shall see that nontrivial
periodicity is possible only if r > 1. We are left with a block-directional system with
m (resp. n − m) A-agents (resp. B-agents), and the former exercising no influence
on the latter (§4.4). It follows from (11) that, for each node v of the global coding
tree Tm→n−m,

P≤v =

(
A≤v Cv

0 B≤v

)
. (22)

To resolve the system requires a fairly subtle bifurcation analysis which, for convenience,
we break down into four stages: in §6.1 we bound the thinning rate; in §6.2 we argue
that, deep enough in the coding tree, perturbations keep the coding tree’s expected
(mean) degree below 1; in §6.3, we show how perturbed phase tubes avoid being split
by SP discontinuities at large depths; finally, in §6.4, we show to remove the switching
leaves and do away with the persistent graph assumption. We also explain why it is
legitimate to ignore the non-Markovian aspect of the system in most of the discussion.

20 Vanishing leaves and switching leaves are distinct: the former “cover” the chaotic regions of the
system and are the places perturbations help us avoid; the switching leaves, on the other hand, represent
a change in dynamics type and plug into the roots of other coding trees.
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6.1 The thinning rate

We prove that, as the depth of a node v of the global coding tree grows, A≤v and B≤v
tend to matrices of rank 0 and rank r, respectively, with the thinning rates γ and γ′

telling us how quickly.

Lemma 6.1. Given a node v of Tm→n−m, there exist vectors zi ∈ Rni (i = 1, . . . , r),
such that, for any tv ≥ tc = ncnto and a large enough constant c,

(i) ‖A≤v1m‖∞ ≤ e−γtv and (ii)
∥∥∥B≤v − diag (1n1z

T
1 , . . . ,1nrz

T
r )
∥∥∥

max
≤ e−γ′tv ,

where γ = 1/tc and γ′ = n−cn.

Proof. We begin with (i). Consider the initial state x = (1m,0n−m), with all the A-
agents at 1 and the B-agents at 0, and let y = P≤vx; obviously, ‖A≤v1m‖∞ = ‖y‖∞.
To bound the `∞-norm of y, we apply to x the sequence of maps specified along the
path of Tm→n−m from the root to v.21 Referring to the arborator (12), let’s analyze the
factor

Twk→n−wk | tk+1−tk−1
⊗ T |1n .

The wait period tk+1 − tk before wetness propagates again at time tk+1 is at most to:
indeed, by definition, any A-agent can reach some B-agent in H via a directed path, so
all of them will eventually get wet. It follows that the set Wk cannot fail to grow in t0
steps unless it already contains all n nodes or the trajectory reaches a switching leaf.
Assume that the agents of Wtk+1, the wet agents at time tk + 1 lie in (0, 1−σ]. Because
their distance to 1 can decrease by at most a polynomial factor at each step, they all lie
in (0, 1− σn−O(to)] between times tk and tk+1. The agents newly wet at time tk+1 + 1,
ie, those in Wtk+1+1 \Wtk+1

, move to a weighted average of up to n numbers in (0, 1),

at least one of which is in (0, 1− σn−O(to)]. This implies that the agents of Wtk+1+1 lie

in (0, 1− σn−O(to)]. Since σ ≤ 1, when all the A-agents are wet, which happens within
nto steps, their positions are confined within (0, 1− n−O(nto)]. It follows that

‖y‖∞ ≤ e−btv/(nto)cn
−O(nto)

,

which proves (i). We establish (ii) along similar lines. Although Bi and Bj (i 6= j) are
decoupled, they are not independent; so their joint coding tree cannot be expressed as a
direct sum. The subgraph H|Bi of H induced by the agents of any given Bi is strongly
connected, so viewed as a separate subsystem, the B-agents are newly wetted at least
once every nto steps. By repeating the following argument for each Bi, we can assume,
for the purposes of this proof, that B = B1, n1 = n−m and r = 1.

Initially, place B-agent j at 1 and all the others at 0; then apply to it the sequence
of maps leading to B≤v (this may not be the actual trajectory of that initial state). The
previous argument shows that the entries of the j-th column of B≤v, which denote the

21 The path need not track the orbit of x.
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locations of the agents at time tv, are confined to an interval of length e−btv/(nto)cn
−O(nto)

.
By the agreement rule, this implies that the communication subgraph among the B-
agents must freeze at some time tc = ncnto for a constant c large enough, hence become
H|B.22 Let {ui} be the nO(ntc) nodes of the coding tree at depth tc. Any deeper node v
is such that B≤v = Qtv−tuiB≤ui for some i, where Q is the stochastic matrix associated
with H|B. Since that graph is strongly connected, the previous argument shows that the

entries in column j of Qk lies in an interval of length e−kn
−O(n)

. Since Qk+1 is derived
from Qk by taking convex combinations of the rows of Qk, as k grows, these intervals
are nested downwards and hence converge to a number zj . It follows that Qk tends to

1n1z
T , with ‖Qk − 1n1z

T ‖max ≤ e−kn
−O(n)

. Doubling the value of tc yields part (ii) of
the lemma. 2

The proof suggests that, for any node v deep enough in the coding tree, the matrix A≤v
becomes an error term while B≤v tends to a matrix that depends only on the ancestor
of v of depth tc. The bifurcation analysis requires a deeper understanding of the error
term and calls for more sophisticated arguments. We state the thinning bound in terms
of the global coding tree for the perturbation interval I = [−1, 1].

Lemma 6.2. Any node v of T I
m→n−m of depth tv ≥ tc has an ancestor u of depth tc

such that ∥∥∥P≤v − (0 Cv
0 Du

)∥∥∥
max
≤ e−γtv ,

where Du is a stochastic matrix of the form Du = diag ( 1n1z1(u)T , . . . ,1nrzr(u)T ).

6.2 Sparse branching

If we look deep enough in the coding tree for the thinning rate to “kick in,” we observe
that, under random margin perturbation, the average branching factor is less than two.
Bruin and Deane observed a similar phenomenon in single-agent contractive systems [9].
Their elegant dimensionality argument does not seem applicable in our case, so we follow
a different approach, based on geometric considerations. We begin with some terminol-
ogy: Lin [x1, . . . , xn] refers to a real linear form over x1, . . . , xn, with Aff [x1, . . . , xn]
designating the affine version; in neither case may the coefficients depend on δ or on the
agent positions.23 With y1, . . . , yr understood, a gap of type ω denotes an interval of
the form a+ ω I, where a = Aff [y1, . . . , yr]. We define the set

C[y1, . . . , yr] =
{

( ξ ,

n1︷ ︸︸ ︷
y1, . . . , y1 , . . . ,

nr︷ ︸︸ ︷
yr, . . . , yr ) | ξ ∈ Ωm

}
.

22 We emphasize that we are making no heuristic assumption about the repeated occurrence of the
edges of H: switching leaves are there precisely to allow violations of the rule.

23 For example, we can express y = δ + x1 − 2x2 as y = δ + Lin [x1, x2] and y = δ + x1 − 2x2 + 5 as
y = δ + Aff [x1, x2].
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The variables y1, . . . , yr denote the limit positions of the B-agents: they are linear
combinations of their initial positions xm+1, . . . , xn (but functions of the full initial
state x). Let v be a node of the global coding tree T I

m→n−m. The matrix P≤v is a
product of the form Ptv · · ·P0, with P0 = Id and P0, . . . , Ptv forming what we call a
valid matrix sequence. Fix a parameter ρ > 0 and a point x in Rn. The phase tube
formed by the cube B = x + ρ In and the matrix sequence P0, . . . , Ptv consists of the
cells P0 B, . . . , (Ptv · · ·P0)B. It might not track any orbit from B and hence have little
relation with a phase tube of the actual system. The phase tube splits at node v if the
global margin Rε defined in (5) makes (Pk · · ·P0 B) \ Rε disconnected. The following
result is the key to sparse branching:

Lemma 6.3. Fix ε, ρ > 0, D0 ≥ 2(1/γ)n+1
, and (y1, . . . , yr) ∈ Rr, where γ = n−cnto.

There exists a union W of nO(nD0) gaps of type (ε + ρ)nO(n5D0) such that, for any
interval ∆ ⊆ I \W of length ρ and any x ∈ C[y1, . . . , yr], the phase tube formed by the
box x + ρ In along any path of T ∆

m→n−m of length at most D0 cannot split at more than

D1−γn+1

0 nodes.24

Proof. We begin with a technical lemma which we prove later. For k = 0, . . . , D, let
ak be a row vector in Rm with O(log n)-bit rational coordinates and Ak be an m-by-
m nonnegative matrix whose entries are rationals over O(logN) bits, for N > n.25

Write vk = akAk · · ·A0, with A0 = Id, and assume that the maximum row-sum α =
max k>0 ‖Ak1‖∞ satisfies 0 < α < 1. Given I ⊆ {0, . . . , D}, denote by V|I the matrix
whose rows are, from top to bottom, the row vectors vk with the indices k ∈ I sorted in
increasing order. The following result is an elimination device meant to factor out the
role of the A-agents. It is a type of matrix rigidity statement.

Lemma 6.4. Given any integer D ≥ 2(1/β)m+1
and I ⊆ {0, . . . , D} of size |I| ≥

D1−βm+1
, where β = |logα|/(cm3 logN) for a constant c large enough, there exists

a unit vector u such that

uTV|I = 0 and uT1 ≥ N−cm3D.

Although c is unrelated to its namesake in Lemma 6.1, we use the same constant by
picking the larger of the two; in general, such constants are implied by the bit complexity
of the transition matrices and the SP discontinuities. Note also that α ≥ N−O(1), so
β can be assumed to be much less than 1. To prove Lemma 6.3, we first consider the
case where the splitting nodes are well separated, which allows for Lemma 6.1 to be
used; then we extend this result to all cases. Given a valid matrix sequence P0, . . . , PD0 ,
choose D ≥ 2(1/β)m+1

and pick a sequence of D + 1 integers 0 = s0 < · · · < sD ≤ D0

such that
D ≥ 2(1/β)m+1

and 1/γ ≤ sk − sk−1 ≤ 3/γ, (23)

24 The crux of the lemma is the uniformity over x: only (y1, . . . , yr) needs to be fixed.
25 The coefficients ak express the discontinuities. Being extracted from the product of several transi-

tion matrices, Ak requires more bits.
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for k = 1, . . . , D: we identify the matrix Ak of Lemma 6.4 with the m-by-m upper left
principal submatrix of PskPsk−1 · · ·Psk−1+1; using the notation of (22), Ak = A≤w, for
some node w (not necessarily an ancestor of v) of depth tw = sk − sk−1 ≥ 1/γ. Thus,
by Lemma 6.1, for k > 0, the maximum row-sum of any Ak satisfies α ≤ 1/e: each
Ak is a submatrix of a product of at most 3/γ transition matrices, so each entry is an
O(logN)-bit rational, with N = nn

2/γ . What is the row vector ak? For k = 0, . . . , D,
pick any one of the nO(1) margin slabs and denote by ak the m-dimensional vector of
O(log n)-bit rational coefficients indexed by the A-agents.26 Fix δ ∈ I and pick I in
Lemma 6.4 to be of size dD1−βm+1e. Assume that, given x ∈ C[y1, . . . , yr], the phase
tube formed by the box x + ρ In and P0, . . . , PsD splits at every index of I along the
chosen slabs.27 In other words, for each k ∈ I, there exist a node zk of depth tzk = sk
and ρi = ρi(k), for i = 1, . . . , n, such that |ρi| ≤ ρ and∣∣∣ ck + (ak, bk)

(
A≤zk Czk

0 B≤zk

)
(x1 + ρ1, . . . , xn + ρn)T + δ

∣∣∣ ≤ ε,
where the chosen slab is of the form |ck + ak(x1, . . . , xm)T + bk(xm+1, . . . , xn)T + δ| ≤ ε,
with bk ∈ Rn−m and ck ∈ R. Since vk = akA≤zk and x ∈ C[y1, . . . , yr], it follows that∣∣∣ vk(x1 + ρ1, . . . , xm + ρm)T + Aff [ y1, . . . , yr, ρm+1, . . . , ρn ] + δ

∣∣∣ ≤ ε, (24)

where the coefficients in the affine form are of magnitude nO(1).

Figure 7: The choice of slabs at the nodes causes the phase tube to split at the nodes indexed
by I = {2, 4, 6}. The nodes of depth sk for k 6∈ I are represented as black dots: s0, s1, s3, s5, s7
(D = 7). The other nodes in the paths are the white dots.

26 With m = 3, x1 − x3 + δ = 0.2 gives ak = (1, 0,−1) and x2 − x4 + δ = 0.7 produces ak = (0, 1, 0).
27 It is immaterial that x + ρ In might slightly bulge out of the phase space Ωn.
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Lemma 6.4 allows us to eliminate the variables x1, . . . , xm: we premultiply V|I by
the unit vector u to find that

|Aff [ y1, . . . , yr ] + δ | ≤ (ε+ ρ)NO(cm3D), (25)

where the coefficients of the new affine form are bounded by NO(cm3D). (We leave the
constant c in the exponent to highlight its influence.) The remarkable fact is that the
variable δ is assured not to vanish during the elimination. Thus, as long as δ remains
outside a gap of type (ε+ρ)NO(cm3D), the phase tube formed by x+ρ In and P0, . . . , PD
cannot split at every index of I. Counting the number of possible choices of slabs per
node raises the number of gaps to nO(|I|). The argument assumes that δ has the same
value in each of |I| inequalities. It need not be so: each δ in (24) can be replaced by
δ + νk (k ∈ I), for |νk| ≤ ρ, and the new system of inequalities will still imply (25).28

A combinatorial argument shows how adding more gaps to the “exclusion zone” keeps
branching low. Before proceeding with that final part of the proof, we summarize our
results, using the bound |logα| ≥ log e > 1.

Lemma 6.5. Let N = nn
2/γ and β = 1/(cm3 logN), where c is the constant of Lemma 6.4.

Fix a path in T I
m→n−m from the root and pick D + 1 nodes on it of depth 0 = s0 <

· · · < sD satisfying (23); out of these nodes, choose a subset I of size dD1−βm+1e.
There exists an exclusion zone W consisting of the union of at most nO(|I|) gaps of
type (ε + ρ)NO(cm3D), such that, for any interval ∆ ⊆ I \ W of length ρ and any
x ∈ C[y1, . . . , yr], the phase tube formed by x + ρ In cannot split at all the nodes of I in
T ∆
m→n−m (assuming they exist).

The crux of the lemma is that it holds uniformly for all x. To prove Lemma 6.3, we
need to extend the previous lemma to all the paths of the coding tree of the prescribed
length and remove from (23) the lower bound of 1/γ on the distance between consecutive
splitting nodes. Fix D0 ≥ 2(1/γ)n+1

, and let v be a node of T I
m→n−m of depth tv = D0.

Since the path is fixed, we can uniquely identify the node v and its ancestors by their
depths and denote by Pt the transition matrix of the node at depth t. Define the node
set J = {1/γ, 2/γ, . . . , D0}, with |J | = dγD0e; recall that 1/γ = tc is an integer. Let K
be the set of ancestors of v at which the phase tube formed by x + ρ In and P0, . . . , PD0

splits (with respect to T I
m→n−m); assume that

|K| ≥ D1−γn+1

0 . (26)

We define I to be the largest subset of K with no two elements of I ∪ {0} at a distance
less than 1/γ; obviously, |I| ≥ bγ|K|c − 1. To define s1, . . . , sD, we add all of J to I (to
keep distances between consecutive nodes small enough) and then clean up the set to
avoid distances lower than allowed: we define J ′ to be the smallest subset of J such that
L = I ∪ (J \ J ′) contains no two elements at a distance less than 1/γ. Each element of

28 This observation is crucial for the degree structure analysis to come next and the need to random-
ize δ.
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I can cause the disappearance of at most two elements in J for the addition of one into
L, hence |J |/2 ≤ |L| ≤ γD0 + 1. By construction, consecutive elements of L are at most
3/γ away from each other, so we can identify L with the sequence s1 < · · · < sD. By
m < n and the specifications of γ in Lemma 6.1 and N, β in Lemma 6.5, we can verify
that

(i) D0 ≥ 2(1/γ)n+1 ≥ γ−12(1/β)m+1+1 and (ii) D1−γn+1

0 ≥ 2
γ (γD0 + 1)1−βm+1

. (27)

Part (i) ensures (23). By Lemma 6.5, keeping δ outside the union W of at most nO(|I|)

gaps of type (ε + ρ)NO(m3D) prevents I from witnessing a phase tube split at each of
its nodes, and hence keeps K ⊇ I from being, as claimed, made entirely of “splitting”
nodes. For this, we need to ensure that |I| ≥ D1−βm+1

, which follows from: (26);
|I| ≥ bγ|K|c − 1; D = |L| ≤ γD0 + 1; and part (ii) of (27).

We conclude that, as long as we choose an interval ∆ ⊆ I \ W of length ρ, the
coding tree T ∆

m→n−m cannot witness splits at all of the nodes of K (if they exist—their
existence is ensured only in T I

m→n−m) for the phase tube formed by any box x + ρ In,
where y1, . . . , yr are fixed and x ∈ C[y1, . . . , yr]. Note the order of the quantifiers: first,
we fix the coordinates yk and the target length D0, and we pick a large enough candidate
splitting node set K in T I

m→n−m; these choices determine the exclusion zone W ; next,
we pick a suitable ∆ and then claim an impossibility result for any x in C[y1, . . . , yr].
To complete the proof of Lemma 6.3, we bound, by 2D0 and nO(nD0) respectively, the
number of ways of choosing K (hence I, L) and the number of nodes v in T I

m→n−m of
depth tv = D0. 2

Proof of Lemma 6.4. We can make the assumption that I includes 0, since all
cases easily reduce to it. Indeed, let l be the smallest index in I. If l > 0, subtract
l from the indices of I to define I ′ ⊇ {0}. Form the matrix V ′|I′ of vectors v′k, where

vk+l = v′kAl · · ·A0. Rewriting V|I as V ′|I′Al · · ·A0 takes us to the desired case: we

(cosmetically) duplicate the last matrix, PD, l times to match the lemma’s assumptions
and observe that, if uTV ′|I′ = 0, then so does uTV|I . We may also assume that all vk are
nonzero since the lemma is trivial otherwise. All the coordinates of vk can be expressed
as O(m2(k + 1) logN)-bit rationals sharing a common denominator; therefore,

N−O((k+1)m2) ≤ ‖vk‖1 ≤ 2−k|logα|+O(logn). (28)

The affine hull of V|I is the flat defined by { zTV|I : zT1 = 1 }: its dimension is called the
affine rank of V|I . Let g(D, r) be the maximum value of |I|, for {0} ⊆ I ⊆ {0, . . . , D},
such that V|I has affine rank at most r and its affine hull does not contain the origin.
Lemma 6.4 follows from this inequality, whose proof we postpone: for r = 0, . . . ,m− 1,

g(D, r) < D1−βm+1
, for any D ≥ 2(1/β)m+1

, (29)

where β = |logα|/(cm3 logN), for constant c large enough. Indeed, given any {0} ⊆
I ⊆ {0, . . . , D} of size at least D1−βm+1

, we have |I| > g(D,m− 1), so the affine hull of
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V|I contains the origin. If r is its affine rank, then there exists J ⊆ I of size r + 1 such
that the affine rank of V|J is r and its affine hull contains the origin, hence coincides with
the row space of V|J ,29 which is therefore of dimension r. This implies the existence of
r independent columns in V|J spanning its column space: add a column of r+ 1 ones to
the right of them to form the (r + 1)-by-(r + 1) matrix M . Since the affine hull of V|J
contains the origin, there exists z such that zTV|J = 0 and zT1 = 1, which in turn shows
that 1r+1 lies outside the column space of V|J ;30 therefore M is nonsingular. Since each
one of its rows consists of O(m2D logN)-bit rationals with a common denominator,

|detM | ≥ N−O(m3D). (30)

Let ξ be the (r+ 1)-dimensional vector whose k-th coordinate is the cofactor of the k-th
entry in the last column of ones in M . Simple determinant cofactor expansions show
that

ξTM = (

r︷ ︸︸ ︷
0, . . . , 0 ,detM).

Since the first r columns of M span the column space of V|J , it follows that

ξT (V|J ,1r+1 ) = (

m︷ ︸︸ ︷
0, . . . , 0 , detM).

By Hadamard’s inequality, each coordinate of ξ is at most nO(m) in absolute value, so
straightforward rescaling and padding with zeroes turns ξ into a suitable vector u such
that uTV|I = 0 and uT1 ≥ N−c1m

3D, for an absolute constant c1 that does not depend
on c. Replacing c by max{c, c1} establishes Lemma 6.4.

It suffices now to prove (29), which we do by induction on r. If V|I has affine rank
r = 0 and its affine hull does not contain the origin, then all the rows of V|I are equal
and nonzero. Since V|I has the row v0, it follows from (28) that |I| ≤ 1 + max{k ∈ I} =
O(|logα|−1m2 logN), hence

g(D, 0) ≤ β−1. (31)

Assume now that r > 0 and that V|I has affine rank exactly r. Put I = {k0, k1, . . . , ki},
with k0 = 0, and consider the smallest j such that V|J has affine rank r, where
J = {k0, k1, . . . , kj} ⊆ I. Since the origin is not in the affine hull of V|I hence of V|J , we
can always pick a subset K ⊆ J consisting of r+ 1 independent rows: let M = V|K∪{ki}
denote the (r + 2)-by-m matrix formed by adding the row vki at the bottom of V|K .31

Since V|I has affine rank r, its rank is r + 1 (using once again the noninclusion of O in
the affine hull of V|I), hence so is the rank of M . We show that if ki is large enough, the
system below is feasible in ξ ∈ Rr+2:

ξTM+ = (

m︷ ︸︸ ︷
0, . . . , 0 , 1), (32)

29 Because any yTV|J can be written as (y + (1− yT1)z)TV|J , where zTV|J = 0 and zT1 = 1.
30 Otherwise, 1 = zT1 = zTV|J y = 0.
31 It may be the case that i = j or ki ∈ K. Since r > 0, we have ki ≥ kj ≥ 1 and j > 0.
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Figure 8: Why a large value of ki implies that the affine hull of V|I , hence of M , contains the
origin.

where M+ is the (r + 2)-by-(m + 1) matrix (M,1r+2), which leads to a contradiction.
This is the crux of the argument and makes essential use of the rapid decay of the vectors
vk. Assume that ki > ckj |logα|−1m3 logN , for a large enough constant c. We first show
that M+ is of rank r + 2. Pick r + 1 independent columns of V|K , which is possible
since the latter has rank r+ 1, to form the full-ranked (r+ 1)-by-(r+ 1) matrix Q. Add
a new row to it by fitting the relevant part of vki (the last row of M) and call R the
resulting (r+ 2)-by-(r+ 1) matrix (Fig. 8); consistent with our notation, R+ will denote
the matrix (R,1). A cofactor expansion of the determinant of R+ along the bottom row
shows that

|detR+| ≥ |detQ| −∆‖vki‖1,
where ∆ is an upper bound on the absolute values of the cofactors other than detQ. In
view of (28), the matrix entries involved in these cofactors are all in nO(1); by Hadamard’s
inequality, this shows that we can set ∆ = nO(m). Likewise, we find that

‖vki‖1 ≤ 2−ki|logα|+O(logn).

SinceQ is nonsingular, we can adapt (30) to derive |detQ| ≥ N−O(m3kj), hence |detR+| >
0. It follows that the linear system (32) is feasible if we replace M+ by R+. As it hap-
pens, there is no need to do so since every column of M missing from R lies in the
column space of the latter: thus the missing homogeneous equalities are automatically
satisfied by the solution ξ. The feasibility of (32) contradicts our assumption that the
origin is outside the affine hull of V|I ; therefore

kj ≥ βki > 0, (33)

where β = |logα|/(cm3 logN). The affine rank of V|{k0,...,kj−1} is r− 1 and its affine hull
does not contain the origin, so j ≤ g(kj−1, r−1), with g(0, r−1) = 1. Let w0 = akj and,
for k > 0, wk = akj+kAkj+k · · ·Akj+1, thus ensuring that vkj+k = wkAkj · · ·A0. Since
the affine hull of V|I does not contain the origin, neither does that of the matrix W with
rows w0, wkj+1−kj , . . . , wki−kj . It follows that the affine rank of W is less than m, so
i− j + 1 ≤ g(ki − kj ,m− 1), hence32 i ≤ g(kj−1, r− 1) + g(ki − kj ,m− 1)− 1. By (33)

32 It would be nice to bound the affine rank as a function of r, but since we never perturb the
transition matrices it is unclear how to do that.
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and i = |I| − 1, we derive, by monotonicity,

|I| ≤ g(k, r − 1) + g(D − k,m− 1),

where βD ≤ k ≤ D; hence, by (31), for m > 0 and D ≥ 0:

g(D, r) ≤


1 if D = 0

β−1 if r = 0

g(n1,m− 1) + · · ·+ g(nr,m− 1) + β−1 if 0 < r < m,

where n1 + · · ·+nr ≤ (1−βs)D, with s = |{ i |ni > 0 }|. Setting η = βm, we check that,
for all D > 0 and m > 0,

g(D,m− 1) ≤ β−2(2D1−η − 1). (34)

The case m = 1 follows from g(D, 0) ≤ β−1. For m > 1, we begin with the case s = 0,
where

g(D,m− 1) ≤ m− 1 + β−1 ≤ β−2(2D1−η − 1).

This follows from α ≥ N−O(1), which implies that βm3 can be made arbitrarily small
by increasing c. For s = 1,

g(D,m− 1) ≤ β−2(2(1− β)1−ηD1−η − 1) +m− 2 + β−1

≤ 2β−2D1−η − (2β−1(1− η)−O(1))D1−η − β−2 + β−1 +m− 2

≤ β−2(2D1−η − 1).

Assume that s > 1. Being concave, the function x 7→ x1−η is subadditive for x ≥ 0;
therefore,

n1−η
1 + · · ·+ n1−η

r ≤ (1− βs)1−ηD1−η.

Setting r = m− 1, relation (34) follows from the inequality,

g(D,m− 1) ≤ β−2(2(1− βs)1−ηD1−η − s) +m− s− 1 + β−1

≤ 2β−2(1− βm−1)1−ηD1−η − 3
2β
−2 ≤ 2β−2D1−η − β−2,

which proves (34), hence (29) and Lemma 6.4. 2

6.3 The degree structure

We decompose the global coding tree into three layers: the top one has no degree
constraints; the second has mean degree less than two; and the third has no branching.
Consider a placement of the B-agents, such that the diameter of each Bi is less than
n−bn. By the agreement rule, the communication subgraph induced by the B-agents is
frozen and its transition matrix Q is fixed and independent of the particular placement
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of the B-agents.33 By Perron-Frobenius, or simply by repeating the proof of Lemma 6.1,
we derive the existence of a rank-r stochastic matrix

Q̃ = diag (1n1χ
T
1 , . . . ,1nrχ

T
r )

such that χi ∈ Rni and ‖Qk − Q̃‖max ≤ e−kn
−O(n)

. The B-agents find themselves
attracted to the fixed point y = Q̃ξ, where ξ ∈ Rn−m is their initial state vector and

y = (

n1︷ ︸︸ ︷
y1, . . . , y1, . . . ,

nr︷ ︸︸ ︷
yr, . . . , yr ).

Define Υ = Ωm × (Ωn−m ∩ΥB), where

ΥB = y + (n−2bn In−m) ∩ ker Q̃.

If x ∈ Υ, the diameter of any group Bi is at most 2n−2bn < n−bn so the communication
graph induced by their agents is frozen and remains so. The B-agents are attracted
to y.34 This follows easily, as does the next lemma, whose proof we omit, from the
stochasticity of Q and the identities: Q̃Q = QQ̃ = Q̃2 = Q̃.

Lemma 6.6. The set Υ is forward-invariant. Furthermore, any ξ ∈ y + n−2bn In−m
belongs to ΥB if and only if Q̃ξ = y.

We set ε, ρ,D0 as in Lemma 6.3 and call an interval ∆ free if it does not intersect the
exclusion zone W = W (y). As usual, we choose the perturbation sample space n−b I to
make perturbations inconsequential in practice. For counting purposes, it is convenient
to partition n−b I into canonical intervals of length ρ (with possibly a single smaller one).
A gap of W can keep only (1 + ε/ρ)nO(n5D0) canonical intervals from being free, so the
Lebesgue measure of the free ones satisfies:

Leb
{⋃

free canonical intervals
}
≥ 2n−b − (ε+ ρ)nO(n5D0). (35)

Fixing the B-agent attractor. With y fixed, we pick a free canonical interval ∆

and focus on the global coding tree T ∆|Υ
m→n−m, with the superscripts indicating the

perturbation and phase spaces, respectively.35 For any node v of depth tv ≥ tc, the limit
matrix Du in Lemma 6.2 is the same for all nodes u of depth tc. Indeed,∥∥∥P≤v − (0 Cv

0 Q̃

)∥∥∥
max
≤ e−γtv .

33 The system under consideration is the non-Markovian extension defined by the persistent graph H.
34 Although the B-agents in ΥB have been essentially immobilized around y, they are not decoupled

from the rest. Indeed, while the increasingly microscopic movement of the B-agents can no longer
affect their own communication graph, it can still influence the communication among the A-agents:
furthermore, this may still be true even if no edge is ever to join an A-agent to a B-agent.

35 The reason we do not fix the perturbation δ is that it needs to be randomized and it is easier to
avoid randomizing the coding tree itself.
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Pick v of depth tv ≥ 3tc and let w be its ancestor at depth tw = btv/2c. Given
x ∈ Uv ⊆ Υ,

x′ = f tw(x) = P≤w x ∈
(
Cw
Q̃

)
(xm+1, . . . , xn)T + ne−γtw In

∈
(
Cw(xm+1, . . . , xn)T

y

)
+ ne−γtw In.

By Lemma 6.6, x′ ∈ Υ, so there exists a node v′ of depth tv′ = tv − tw ≥ tc such that,

f tv(x) = f tv′ (x′) = P≤v′ x
′ ∈
(
Cv′

Q̃

)
(y+ne−γtw In)+ne−γtv′ In ⊆

(
Cv′y

y

)
+2ne−γtv/3 In.

It is important to note that v′ depends only on v and not on x ∈ Uv: indeed, the phase
tube from Uv between time tw and tv does not split; therefore f tw(Uv) ⊆ Uv′ . It follows
that, for tv ≥ 3tc and v′ = v′(v),

Vv ⊆
(
Cv′y

y

)
+ 2ne−γtv/3 In. (36)

The A-agents evolve toward convex combinations of the B-agents, which themselves
become static. The weights of these combinations (ie, the barycentric coordinates of
the A-agents), however, might change at every node, so there is no assurance that the
orbit is always attracted to a limit cycle. The layer decomposition of the coding tree,
which we describe next, allows us to bound the nesting time while exhibiting weak yet
sufficient conditions for periodicity.

Figure 9: The global coding tree is stratified into three layers, with decreasing branching rates.

To stratify the coding tree T ∆|Υ
m→n−m into layers, we set up three parameters D0, D1, and

D2: the first targets the topological entropy; the second specifies the height of the first
layer; the third indicates the nesting time. We examine each one in turn and indicate
their purposes and requirements.
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First layer. By (36), the phase tubes get thinner over time at a rate of roughly e−γ/3,
while the tree is branching at a rate of nO(n). To ensure that the topological entropy is
zero, the product of these two rates should be less than 1: with γ < 1, this is far from
being the case, so we need a sparsification mechanism. This is where Lemma 6.3 comes

in. Indeed, deep enough in T ∆|Υ
m→n−m, the size of a subtree of height D0 is at most36

D0(nO(n))D
1−γn+1

0 ,

while the tubes get thinner at a rate of 2ne−γD0/3 for every consecutive D0 nodes: the
choice of D0 below ensures that the product is less than 1, as desired. We justify this
choice formally below.

D0 ≥ 2(1/γ)n+2
[ D0 big enough for thinning to outpace branching ]. (37)

Second layer. Technically, Lemma 6.3 addresses only the branching of the phase
tube formed by a small box x + ρ In, for x ∈ C[y1, . . . , yr], whereas we are concerned

here with phase tubes originating at some cell Vv of T ∆|Υ
m→n−m. To make Vv thin enough,

we choose a node v deep in the tree.37 By (36), Vv ⊆ x + ρ In, for x ∈ C[y1, . . . , yr],
provided that tv ≥ D1 and

D1 ≥
3

γ
log

2n

ρ
[ D1 big enough for tree branches to be thinner than ρ ]. (38)

Note that the requirement in (36) that tv ≥ 3tc = 3/γ is implied by tv ≥ D1. In view

of Lemma 6.3, the number of nodes in T ∆|Υ
m→n−m of depth no greater than t ≥ D1, is

bounded by

nO(nD1)︸ ︷︷ ︸
depth D1

× nO(nD1−γn+1

0 b(t−D1)/D0c)︸ ︷︷ ︸
from D1 to t in chunks of D0

× nO(nD0)︸ ︷︷ ︸
truncated chunk

× D0︸︷︷︸
single paths

;

hence, for any t ≥ D1,∣∣∣ { v ∈ T ∆|Υ
m→n−m | tv ≤ t }

∣∣∣ ≤ nO(nD0+nD1+ntD−γ
n+1

0 ) . (39)

36 This assumes a thinness condition we discuss below. The factor D0 comes from the nonbranching
paths in the subtree spanned by the phase tubes from Υ.

37 Factoring out the B-agents gives us the sort of fixed-point attraction that is required by Lemma 6.3:
it is a dimension reduction device in attractor space.
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Third layer. The bottom layer of the stratified global coding tree begins at a depth
D2 ≥ D0 + D1. If the node v of depth tv ≥ D2 has nontrivial branching,38 then, by
continuity, Vv contains a point right on the boundary of the global margin. By (36), this
implies the existence of ζ ∈ Rn such that ‖ζ‖∞ ≤ 2ne−γ D2/3 and Aff [y + ζ] = δ, where
the coefficients of the affine form are of magnitude nO(1) and depend only on the node

v. It then follows from (39) that T ∆′|Υ
m→n−m has no nontrivial branching at depth D2,

provided that ∆′ = ∆ \W ′, where W ′ consists of gaps of type nO(1)e−γ D2/3 numbering
at most

nO(nD0+nD1+nD2D
−γn+1

0 )︸ ︷︷ ︸
# nodes at depth D2

× nO(1)︸ ︷︷ ︸
# margin slabs

.

This calculation, in which ε played no role, puts a bound of D2 on the nesting time. It
follows that

Leb (W ′) ≤ e−γ D2/3nO(nD0+nD1+nD2D
−γn+1

0 ) (40)

Pick an arbitrarily small εo > 0 and a large enough constant d = d(b, c); recall that
γ = n−cnto . We set the parameters ρ = ε2

o n
−dn5D0 and ε ≤ min { ρ, e−γD2 }, where,

rounding up to the nearest integer,
D0 = 2d(1/γ)n+2

D1 = d2

γ (n6D0 + |log εo|)
D2 = d

γ (n2D1 + |log εo|).
(41)

We verify that conditions (37, 38) are both satisfied and that

D1 ≥ D2D
−γn+1

0 . (42)

Thus the measure bound (40) implies that Leb (W ′) ≤ ρ2−D0 . By making ε tend to 0, the
point x vanishes with arbitrarily small probability for random δ ∈ ∆′. By Lemma 4.4,
this implies that, with probability at least 1 − 2−D0 , subjecting the system’s margin
to a perturbation δ chosen randomly in ∆ makes the orbit of any x ∈ Υ attracted to
a limit cycle (or a switching leaf):39 we call this success. The sum of the period and
preperiod is bounded by the number of nodes of depth at most D2 (the nesting time),
which, by (39, 42), is no greater, conservatively, than

p̄ = nO(nD1) ≤ (1/εo)
O(γ−2) 2D0γ−1nO(1)

. (43)

We bound the attraction rate by appealing to Lemmas 4.5 and 6.2. Note that if p is
the period then so is pd(log 2n)/γe. This choice of p still satisfies the upper bound (43)
while ensuring that, at every period, the error bound in Lemma 6.2 is at most 1

2n . The

38 A node is branching nontrivially if it has at least two children neither of which is switching or
vanishing.

39 The regions W and W ′, which make perturbation a requirement, depend only y. But perturbation
is also needed to avoid vanishing, which depends on the initial state x.
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row-sums in A in Lemma 4.5 are at most 1/2, so we can set µ = e−γ . Since ν ≤ D2 and
(#Sν)d(log 2n)/γe ≤ p̄, it follows that

θα ≤ DO(D0)
0 (1/εo)

O(γ−2) log 1
α , (44)

for any 0 < α < 1/2. The perturbation space is not ∆ but n−b I, so we apply the previous
result to each free canonical interval and argue as follows. If Λ is the measure of the
union of all the free canonical intervals, then the perturbations that do not guarantee
success have measure at most (2n−b−Λ) + 2−D0Λ. Dividing by 2n−b and applying (35)
shows that

Prob [ failure in T n−b I |Υ
m→n−m ] ≤ 1− (1− 2−D0)( 1− (ε+ ρ)nO(n5D0) ) ≤ 21−D0 . (45)

The nesting time is at most D2, which, by (39, 42), implies that

h(T n−b I |Υ
m→n−m) ≤ O(D1n log n) ≤ 1

γ (D0 + |log εo|)nO(1). (46)

Freeing the B-agents. Set D3 = d3btcn log ne and fix x in Ωn. Let ξ denote the
projection of fD3(x) onto the last n−m coordinate axes. By Lemma 6.2 and tc = 1/γ

(Lemma 6.1), the coding tree T n−b I
m→n−m has nO(ntc) nodes u such that tu = tc and

ξ ∈ y + ne−γD3 In−m ⊆ y + n−2bn In−m,

where y = Du(xm+1, . . . , xn)T . The state vector for the B-agents is ξ at time D3

and Qt−D3ξ at t > D3, where Q is the transition matrix of the frozen communication
subgraph joining the B-agents at time D3. By taking t to infinity, it follows that y = Q̃ξ
and, by Lemma 6.6, ξ ∈ ΥB hence fD3(x) ∈ Υ. We can then apply the previous result.
Since x is fixed, only the choice of random perturbation δ can change which path in
T n−b I
m→n−m the orbit will follow. The failure probability of (45) needs to be multiplied by

the number of nodes u, which yields an upper bound of nO(ntc)21−D0 ; hence

Prob [ failure in T n−b I
m→n−m ] ≤ 2−D0/2. (47)

If T ∗ denotes the part of the global coding tree extending to depth D3, then

T n−b I
m→n−m = T ∗ ⊗ T n−b I |Υ

m→n−m.

The tree T ∗ has at most nO(ntc)D3 nodes; therefore, by (46),

h(T n−b I
m→n−m) ≤ O(tcn log n+ logD3) + h(T n−b I |Υ

m→n−m) ≤ 1
γ (D0 + |log εo|)nO(1). (48)
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6.4 Removing persistence

We use direct products to relax the condition that the permanent graph H be fixed
once and for all. This touches on the non-Markovian nature of the system, a feature
we chose to ignore in the previous section. We explain now why this was legitimate.
Because the switching condition is about time differences and not absolute times, any
subpath in the coding tree has an incarnation as a path from the root. Equivalently,
any interval of a trajectory appears as the prefix of another trajectory. This property
explains why, following (23), we could argue that Ak was of the form A≤w. Likewise,
in the derivations leading to (36), we used the fact that f tv(x) = f tv−tw(f tw(x)), an
identity that might not always hold in a non-Markovian setting, but which, in this case,
did. Finally, weren’t we too quick to appeal to Lemma 4.4 for periodicity since its
proof relied heavily on the Markov property? To see why the answer is no, observe that
the argument did establish the periodicity of the “wrap-around” system derived from

T ∆′|Υ
m→n−m by redirecting any trajectory that reaches the nesting depth to the root. The

only problem is that this system, being Markovian, is not the one modeled by the coding
tree. Wrapping around resets the time to zero, which might cause switching conditions
to be missed and trajectories to be continued when they should be stopped: none of
this stops nonvanishing orbits from being periodic, however.

We now show how to relax the permanent graph assumption. The idea is to begin
with H set as the complete graph and update it at each switching leaf by removing the
edge(s) whose missing presence causes the node to be a switching leaf. We then append
to each such leaf the coding tree, suitably cropped, defined with respect to the new
value of H. We model this iteration by means of direct products, using mk to denote
the number of A-agents in the block-directional system used in the k-th product:

T n−b I
n =⇒

k0⊗
k=1

T n−b I
mk→n−mk . (49)

The upper limit k0 is bounded by n(n − 1); note that each decision procedure Gij
needs it own counter. To keep the failure probability small throughout the switching
of dynamics, we need to update the value of D0 in (41) at each iteration, so we define
Ck as its suitable value for a persistent graph consisting of k (nonloop) directed edges
and let φk denote the maximum failure probability for such a graph: Cn(n−1) ≥ D0 and
φ0 = 0. The logarithm of the number of switching leaves is at most the word-entropy;40

by (47, 48), for k > 0,

φk ≤ 2−Ck/2 + 2γ
−1(Ck+|log εo|)naφk−1,

for some constant a > 0. Setting

Cn(n−1)−j = dγ−jn2aj(D0 + 3|log εo|)e,

40 No two switching leaves can have the same ancestor at a depth equal to the nesting time. Because
we can bound the number of switching leaves, we may dispense with (10) altogether.
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for j = 0, . . . , n(n−1), we verify by induction that φk ≤ 21−Ck/2, for k = 0, . . . , n(n−1);
hence,

Prob [ failure in nonpersistent T n−b I
m→n−m ] ≤ φn(n−1) ≤ 21− 1

2
(D0+3|log εo|) ≤ εo.

The attraction rate is still exponential: using (44) yields a geometric series summing
up to

θα ≤ CO(C0)
0 (1/εo)

O(γ−2) log 1
α ≤ On,εo,to(log 1

α), (50)

for any 0 < α < 1/2. By (43), the period and preperiod are bounded by

(1/εo)
O(γ−2) 2C0γ−1nO(1) ≤ (1/εo)

On,εo,to (1),

which completes the proof of Theorem 1.1. 2
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