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Abstract—We prove that the abstract Tile Assembly
Model (aTAM) of nanoscale self-assembly is intrinsically
universal. This means that there is a single tile assembly
system U/ that, with proper initialization, simulates any
tile assembly system 7. The simulation is “intrinsic” in
the sense that the self-assembly process carried out by
U is exactly that carried out by 7, with each tile of 7
represented by an m xm “supertile” of {. Our construction
works for the full aTAM at any temperature, and it
faithfully simulates the deterministic or nondeterministic
behavior of each 7.

Our construction succeeds by solving an analog of the
cell differentiation problem in developmental biology: Each
supertile of U/, starting with those in the seed assembly,
carries the “genome” of the simulated system 7. At each
location of a potential supertile in the self-assembly of I/, a
decision is made whether and how to express this genome,
i.e., whether to generate a supertile and, if so, which tile of
T it will represent. This decision must be achieved using
asynchronous communication under incomplete informa-
tion, but it achieves the correct global outcome(s).

I. INTRODUCTION

Structural DNA nanotechnology, pioneered by See-
man in the 1980s [25], exploits the information-
processing capabilities of nucleic acids to engineer
complex structures and devices at the nanoscale. This
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is a very “hands-off” sort of engineering: The right
molecules are placed in solution, and the structures and
devices self-assemble spontaneously according to the
principles of chemical kinetics. Controlling such self-
assembly processes is an enormous technical challenge,
but impressive progress has already been made. Regu-
lar arrays [29], polyhedra [13], fractal structures [11],
[23], maps of the world [24], curved three-dimensional
vases [12], DNA tweezers [30], logic circuits [20], neural
networks [21], and molecular robots [17] are a few of the
nanoscale objects that have self-assembled in successful
laboratory experiments. Motivating future applications
include smaller, faster, more energy-efficient computer
chips, single-molecule detection, and in-cell diagnosis
and treatment of disease.

Theoretical computer science became involved with
structural DNA nanotechnology just before the turn of
this century. In his 1998 Ph.D. thesis, Winfree introduced
a mathematical model of DNA tile self-assembly and
proved that this model is Turing-universal, i.e., that it
can simulate any Turing machine [28]. This implies that
nanoscale self-assembly can be algorithmically directed,
and that extremely complex structures and devices can
in principle be engineered by self-assembly. Rothe-
mund and Winfree [22] subsequently refined this model
slightly, formulating the abstract Tile Assembly Model
(aTAM). The (two-dimensional) aTAM is an idealized
model of error-free self-assembly in two dimensions that
has been extensively investigated.

Very briefly, a tile in the aTAM is a unit square with
a kind and strength of “glue” on each of its sides. A
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tile assembly system T consists of a finite collection
T of tile types (with infinitely many tiles of each type
in T available), a seed assembly o consisting of one
or more tiles of types in 7, and a femperature T.
Self-assembly proceeds from the seed assembly o, with
tiles of types in T" successively and nondeterministically
attaching themselves to the existing assembly. Two tiles
placed next to each other interact if the glues on their
abutting sides match, and a tile binds to an assembly if
the total strength on all of its interacting sides is at least
7. A more complete description of the aTAM appears in
Section II.

Our topic is the intrinsic universality of the abstract
Tile Assembly Model. We now explain what this means,
starting with what it does not mean. By Winfree’s above-
mentioned result, there is a tile assembly system I/ that
simulates a universal Turing machine. This universal
Turing machine, and hence U/, can simulate any tile
assembly system 7 (in fact, there are various aTAM
software simulators available, e.g., [19]). But this is only
a computational simulation. It tells us what 7 does, but it
does not actually do what 7 does. The task of a Turing
machine is to perform a computation, and a universal
Turing machine performs the same computation as a
machine that it simulates. The task of a tile assembly
system is to perform the process of self-assembly, so a
universal tile assembly system should perform the same
self-assembly process as a tile assembly system that it
simulates. This is what is meant by intrinsic universality.

This paper proves that the abstract Tile Assembly
Model is intrinsically universal.

This means that there is a single tile set U that, with
proper initialization (calling the initialized system ),
simulates any tile assembly system 7. The simulation
is “intrinsic” in the sense that the self-assembly process
carried out by U is exactly that carried out by 7, with
each tile of 7 represented by an m x m “supertile” of
U. Our construction works for the full aTAM at any
temperature (the simulating system I{ uses temperature
2), and it faithfully simulates the deterministic or nonde-
terministic behavior of each 7. This notion was studied
by Ollinger [18] and others [4], [5], [10], [14]-[16] in
the context of cellular automata and Wang tiling,

Our construction succeeds by solving an analog of the
cell differentiation problem in developmental biology:
Each supertile of U, starting with those in the seed
assembly, carries a complete encoding of the simulated
system 7 (the “genome” of 7)) along each of its sides,
which we call “supersides”. (This genome accounts for
most of the m tiles of U/ that appear on each super-
side. Additional tiles along the superside identify the
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glue of the simulated tile of 7 and support a variety
of communication mechanisms.) At each location of a
potential supertile a decision is made whether and how to
express this genome, i.e., whether to generate a supertile
and, if so, which tile of 7T it will represent. (This
latter choice will be nondeterministic precisely insofar
as T is nondeterministic at this location.) This decision
depends on very limited local information, but it achieves
the correct global outcome(s). The self-assembly of U/
is thus a “developmental process” in which “supertile
differentiation” is governed by local communication,
while the “genome” is passed intact from supertile to
supertile.

Our construction uses three basic interacting primi-
tives to carry out the asynchronous communication under
imperfect information needed for supertile differentia-
tion and genome copying. These mechanisms are called
frames, crawlers, and probes. The frame of a potential
supertile consists of four layers of tiles just inside each
extant superside. This frame is used for communication
with adjacent supersides, which may or may not exist.
Much of its function is achieved by a symmetry-breaking
“competition” at each corner. Our construction uses
many types of crawlers, which are messengers that copy
and carry various pieces of information from place to
place in the supertile. The probes of a superside are
used to communicate with the opposite superside, which
may or may not exist. The challenge is to program
all this activity without ever blocking a path that may
later be needed for intra-supertile communication. This
summary is greatly oversimplified. An overview of our
construction is presented in Section IV, and the full
construction is presented in [8].

Our result shows that the aTAM is universal for itself,
without recourse to indirect simulations by Turing ma-
chines or other models that obscure important properties
of the model. For example, our result shows that the
tile assembly model is able to simulate local interactions
between tiles, nondeterminism, and tile growth processes
in general, all on a global scale. Thus our intrinsically
universal tile set captures, in a well defined way, all
properties of any tile assembly system.

Intrinsic universality, with its precise notion of “sim-
ulate”, has applications to the theory of self-assembly.
Firstly, a useful type of simulation is where one shows
that for all aTAM systems 7T there exists a tile assembly
system 7 in some other self-assembly model that simu-
lates 7. This style of V7, 3 7”-simulation has been used
previously [1], [2], [6] and is useful when comparing
the power of tile assembly models. However, combining
such a simulation statement with the statement of our
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main result gives the immediate corollary that there is
a single set of tiles U in the other model that, when
appropriately seeded, simulates any aTAM tile assembly
system 7. Hence our main result automatically shows
the existence of a single, very powerful, tile set in the
other model, a seemingly strong statement. Secondly,
and more speculatively, our result opens the possibility
for new research directions in self-assembly. For exam-
ple, taken together with the result in [9], we now know of
two classes of tile assembly systems that exhibit intrinsic
universality: the full aTAM (our main result), and the
more restricted locally consistent systems [9]. This gives
a kind of closure property for these classes of systems.
In the field of cellular automata, the notion of intrinsic
universality has led to the development of formal tools to
classify models of computation in terms of their ability
to simulate each other [5]. The intrinsically universal
cellular automata sit at the top of this “quasi-order”.
As an example of a concrete application of this work,
the notion of intrinsic universality has been used [3],
[4] to show that various elementary cellular automata
are strictly less powerful than others. Specifically, it
was shown that the communication complexity of those
systems is too low for them to exhibit intrinsic univer-
sality, and so there is a wide range of behaviors they
can never achieve. Such statements crucially make use
of the fact that intrinsic universality uses a tight notion
of “simulate”. In tile self-assembly, we currently have
very few tools by which to compare the abilities of
models; the main comparisons essentially boil down to
comparing tile complexity, or establishing whether or
not the system can simulate Turing machines and thus
make arbitrary computable shapes. Both comparisons,
especially the latter, are necessarily rather coarse for
comparing the expressibility of models, and we hope
that our result, and the notion of “simulate” that we use,
can inspire the development of work that elucidates a
fine-grained structure for self-assembly.

We conclude this introduction with a brief discussion
of related work. The most recent precursor is [9], in
which some of the present authors showed that a re-
stricted submodel of the aTAM is intrinsically univer-
sal. This was an extensive, computationally expressive
submodel of the aTAM, but its provisos (temperature 2,
no glue mismatches, and no binding strengths exceeding
the temperature) were artificially restrictive, awkward to
justify on molecular grounds, and inescapable from the
standpoint of that paper’s proof technique. Our approach
here is perforce completely different. Both papers code
the simulated system’s genome along the supersides,
but the resemblance ends there. The frames, crawlers,
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and probes that we use here are new. (The “probe-like”
structures in [9] are too primitive to work for simulating
the full aTAM.)

As noted in [9], constructions of Soloveichik and
Winfree [26] and Demaine, Demaine, Fekete, Ishaque,
Rafalin, Schweller, and Souvaine [7] can be used to
achieve versions of intrinsic universality for tile as-
sembly at temperature 1, but this appears to be a
severe restriction. Additionally, the latter paper uses a
generalized version of the aTAM (i.e., “hierarchical”
self-assembly or the “two-handed” aTAM) that has a
mechanism for long-range communication that is lacking
in the standard aTAM and that obviates the need for
the distributed communication mechanisms we employ
to build supertiles. Also discussed in [9] are studies of
universality in Wang tiling [27] such as those by Lafitte
and Weiss [14]-[16]. While these studies are very sig-
nificant in the contexts of mathematical logic and com-
putability theory, they are concerned with the existence
of tilings with no mismatches, and not with any process
of self-assembly. In particular, most attempts to adapt
the constructions of Wang tiling studies (such as those
in [14]-[16]) to self-assembly result in a tile assembly
system in which many junk assemblies are formed due
to incorrect nondeterministic choices being made that
arrest any further growth and/or result in assemblies that
are inconsistent with the desired output assembly. We
therefore require novel techniques to ensure that the only
produced assemblies are those that represent the intended
result or valid partial progress toward it. Furthermore,
techniques used in constructing intrinsically universal
cellular automata do not carry over to the aTAM as
the models have fundamental differences; in particular,
when a tile is placed it remains in-place forever, whereas
cellular automata cells can be reused indefinitely. In fact,
many of the challenging issues in proving our result
are related to the fact that tiles, once placed, can block
each other and, of course, that self-assembly is a highly
asynchronous and nondeterministic process.

II. ABSTRACT TILE ASSEMBLY MODEL

This section gives a brief informal sketch of the
abstract Tile Assembly Model (aTAM). See [8] for a
formal definition of the aTAM.

A tile type is a unit square with four sides, each
consisting of a glue label (often represented as a finite
string) and a nonnegative integer strength. We assume a
finite set 1" of tile types, but an infinite number of copies
of each tile type, each copy referred to as a tile. An
assembly (a.k.a., supertile) is a positioning of tiles on the
integer lattice 72 ie., a partial function « : 72 --5 T.
Let AT denote the set of all assemblies of tiles from
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T, and let AZ__ denote the set of finite assemblies
of tiles from 1. Write o« T 3 to denote that « is a
subassembly of (3, which means that dom o« C dom S
and a(p) = S(p) for all points p € dom «. Two adjacent
tiles in an assembly interact if the glue labels on their
abutting sides are equal and have positive strength. Each
assembly induces a binding graph, a grid graph whose
vertices are tiles, with an edge between two tiles if they
interact. The assembly is 7-stable if every cut of its
binding graph has strength at least 7, where the weight
of an edge is the strength of the glue it represents. That
is, the assembly is stable if at least energy 7 is required
to separate the assembly into two parts.

A tile assembly system (TAS) is a triple T = (T, 0, 7),
where T is a finite set of tile types, o : Z? --» T is a
finite, 7-stable seed assembly, and T is the temperature.
An assembly « is producible if either « = o or if 3
is a producible assembly and « can be obtained from 3
by the stable binding of a single tile. In this case write
B —T a (a is producible from § by the attachment
of one tile), and write 3 —7 a if  —=7* a (a is
producible from (§ by the attachment of zero or more
tiles). When 7 is clear from context, we may write —
and — instead. An assembly is ferminal if no tile can be
T-stably attached to it. Let A[T] be the set of producible
assemblies of 7, and let Ag[7] C A[T] be the set
of producible, terminal assemblies of 7. A TAS T is
directed (ak.a., deterministic, confluent) if | Ag[T]| = 1.

We make the following assumptions that do not affect
the fundamental capabilities of the model, but which
will simplify our main construction. Since the behavior
of a TAS T = (T,o0,7) is unchanged if every glue
with strength greater than 7 is changed to have strength
exactly 7, we assume henceforth that all glue strengths
are in the set {0,1,...,7}. We assume that glue labels
are never shared between glues of unequal strength.

I1I.

To state our main result, we must formally define what
it means for one TAS to “simulate” another. We focus
in particular on a sort of “direct simulation” via block
replacement (m X m blocks of tiles in the simulating
system represent single tiles in the simulated system).
The intuitive goal of the following definition is identical
to that in [9], and corrects some subtle errors there.

Let m € ZT. An m-block supertile over tile set T is
a partial function « : Z,, X Z,, --+ T, where Z,, =
{0,1,...,m — 1}. Let BL be the set of all m-block
supertiles over 7T'. The m-block with no domain is said
to be empty. For a general assembly « : Z? --» T and
z,y € Z, define o', to be the m-block supertile defined
by o, (i,75) = a(mx—t—z my + j) for 0 < 4,5 < m.

MAIN RESULT
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A partial function R : B3 --» T is said to be a valid
m-block supertile representation from S to T if for any
a,B € B2 such that « C 3 and o € dom R, then
R(a) = R(p).

For a given valid m-block supertile representation
function R from tile set S to tile set 7T, define the
assembly representation function R* : A5 — AT such
that R*(a') = a if and only if a(x, y) = R(a}7,) for all
x,y € Z." For an assembly o/ € A such that R( ) =
a, o is said to map cleanly to a € AT under R* if for
all non empty blocks ", (z +u,y +v) € dom « for
some u,v € {—1,0,1}, or if o’ has at most one non-
empty m-block ag’y. In other words, ' may have tiles
on supertile blocks representing empty space in «, but
only if that position is adjacent to a tile in «.

A TAS S (S,05,7s) simulates a TAS T =
(T,or,7r) at scale m € Z* if there exists an m-block
representation R : BS — T such that the following
hold:

1) Equivalent Production.

a) {R*())|a € A[S]} = A[T].
b) For all o/ € A[S], & maps cleanly to
R*(a).

2) Equivalent Dynamics.

a) If a =7 B for some a, 3 € A[T], then for
all o/ such that R*(a/) = a, o' —° B’ for
some 3’ € A[S] with R*(5') = .

b) If o/ =% B’ for some o/, € A[S], then
R*(o/) =T R*(B3").

Let REPR denote the set of all supertile representation
functions (i.e., m-block supertile representation func-
tions for some m € Z™). Let € be a class of tile assembly
systems, and let U be a tile set.> Note that every element
of €, REPR, and AZOO is a finite object, and hence can
be represented in a suitable format for computation in
some formal system such as Turing machines. We say U
is intrinsically universal for € if there are computable
functions R : € — REPR and S : ¢ — AY__ and
7/ € Z* such that, for each T = (T,0,7) € €, there
is a constant m € N such that, letting R = R(T),
or = S(T), and Ur = (U,o7,7'), Ur simulates T
at scale m and using supertile representation function
R. That is, R(7T) outputs a representation function that
interprets assemblies of Uy as assemblies of 7, and
S(T) outputs the seed assembly used to program tiles
from U to represent the seed assembly of 7.

INote that R* is a total function since every assembly of S
represents some assembly of 7'; the other functions such as R and
« are partial to allow undefined points to represent empty space.

2TAS’s having tile set U are not necessarily elements of €, although
this will be true in our main theorem since € will be the set of all
TAS’s.
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Our main theorem states that there is a single tile set
capable of simulating any tile assembly system.

Theorem IIL.1. There is a tile set U that is intrinsically
universal for the class of all tile assembly systems.

Our intrinsically universal tile set U works at temper-
ature 7/ = 2. Throughout this paper, 7 = (T, 0, 7) will
denote an arbitrary TAS being simulated. Let g € Z*
denote the number of different glues in 7'; note that
g = O(|T). In our main construction, we achieve scale
factor m = O(g*log g); an interesting open question is
decreasing this scale factor or proving a nontrivial lower
bound on it.

IV. HIGH-LEVEL DESCRIPTION OF CONSTRUCTION

In the remainder of this extended abstract we sketch
an intuitive overview of the construction. The full con-
struction, including detailed figures, is contained in [8].
Let T = (T,0,7) be a TAS being simulated by U =
(U,o7,2), where U is the universal tile set and o7 is
the appropriate seed assembly for U to simulate 7. The
seed assembly o7 encodes information about the glues
from 7 that are on the perimeter of o, with each exposed
tile-side of o encoded as a “superside” . In particular,
glues are simply encoded as binary strings of length
O(log |T'|). (Glue strengths are not explicitly encoded
since their effect on binding is implicitly accounted
for by other parts of the design.) Most importantly,
each of these supersides, as well as each superside of
all subsequently grown supertiles, encodes information
about the entire TAS 7. This information is like the
“genome” of the system that is transported to each
supertile of the assembly in order to help direct its
growth based on the contents of 7.

A. The fundamental problem of simulating arbitrary tile
systems

The basic problem faced by any superside adjacent to
an empty supertile is this: the superside must determine
what other superside(s) are adjacent to the same empty
supertile, what glue(s) are on those sides, whether those
glues are part of a tile type ¢ € 1" and whether they
have enough strength to bind ¢ (and to choose among
multiple tile types if more than one match the glues),
and if so, the supersides on the remaining sides of ¢
must be constructed (i.e., placed as “output” on empty
supersides). This must be done in concert with other su-
persides that will be attempting the same thing, possibly
“unaware” of each others’ presence, and it must be done
without prior knowledge of which other supersides will
eventually arrive and the order and timing of their arrival.
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(a) The north side has to talk with the south side, and the consensus
is that there is no tile whose north side is ‘N’ and whose south side
is ‘S’. Better luck next time!

7?7 m N = ?
N

|

W wm

|
S

? m S = 9

mWWEEm

S
|

(b) Uh oh! Sometime later on, there seems to be no way to “com-
municate” from the west side to the east that the “WE’ tile should be
represented here.

Fig. 1: How should supertiles communicate across a gap
without “cutting the supertile in two”?

To illustrate the nontriviality of this problem, consider
the following scenario illustrated in Figure la. Two
supertiles arrive at positions that are north and south
of an empty supertile position, with the east and west
positions being unoccupied. The south superside has no
choice but to attempt to “contact” the north superside, for
it may be the case that their glues match that of some tile
type t € T', in which case the west and east supersides
representing the sides of ¢ must be put in place. But
suppose that although there is a north superside, the glue
it represents is not shared with the south glue on any
tile type in 7', or perhaps their combined strength is
less than 7. (See Figure la.) Intuitively, it seems that
to determine this, the north and south supersides must
connect, in order to bring their glues together and do a
computation/lookup to find that no tile type in 7" shares
them. But once they have connected, the west and east
sides of the supertile are now sealed off from each other.

Suppose that at a later time, a superside arrives on the
west, and its encoded glue is shared with the west glue
on some tile type ¢ € T' (with a north glue mismatching
that of the supertile already present there; see Figure 1b).
This means that ¢’s east glue must now be represented
by constructing an east output superside; however, this
information cannot be communicated from the west side
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of the supertile because the previous attempt to connect
the south and north has created a barrier between east
and west.

Note that such problems do not appear in Wang tiling
constructions because the nondeterministic operator can
simply guess what the other sides are.

This is not the only potential pitfall to be faced, but
it illustrates an example of the difficulty of coordinating
interaction between multiple supersides in the absence of
knowledge about which supersides will eventually arrive,
the order in which they will arrive, and what glues they
will represent.’

B. Basic protocol

Here we give a high-level overview of our construc-
tion.

1) Frame: Each superside fills in a 4-layer “frame” in
the supertile before doing anything else. The purpose of
the frame is to give each superside as much information
as possible about the other available supersides, to help
coordinate their interaction. Each superside attempts to
“become an input superside” of the supertile by compet-
ing to place a single tile at a particular position on its
left end, and another on its right end. It is competing
with a (potential) adjacent superside near their common
corner; for example, the south superside competes on
its left end with the west superside (at the southwest
corner) and on its right end with the east superside (at the
southeast corner). Therefore there are four competitions,
one at each corner, and for each corner there is both a
winner superside and a loser superside. The “loser” may
simply be a superside that is not present and never will
be, or it may be a superside that is present but lost the
competition because it arrived later. Corner tiles initiate
the growth of the first (outermost) layer of the frame, and
it is by the initiation from a corner that it lost that a losing
side gains the information that there was an adjacent
side to compete with. For corners that it won, it cannot
know whether an adjacent superside is present and lost,
or whether there is simply no adajacent superside.*

The first layer of the frame grows from the corners
of the superside to its center, at which point the entire

3These problems would be easier (if cumbersome) to overcome by
growing in three dimensions, but achieving a planar construction is
nontrivial. Furthermore, since two is the standard number of dimen-
sions in tile assembly, a planar construction is required if we want our
result to be most applicable to other (future) results in the abstract tile
assembly model, as well as in the wide spectrum of other tile assembly
models.

“Parallel programmers may be reminded of a similar phenomenon:
a thread locking a mutex does not know whether other threads will
eventually attempt to access it, but a thread encountering a locked
mutex knows for sure that another thread is currently accessing it.
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superside knows whether it won or lost each corner.
The subsequent layers of the frame allow the pattern
of wins and losses for each side to be propagated
among adjacent sides in a well defined way. The careful
design of the frame and the algorithm for passing this
information allows the large set of possible scenarios
(of all subsets of sides which may be present in all
possible orderings) to be condensed into a much smaller
set of equivalent classes of scenarios which can then be
properly handled by the next portions of the supertile to
grow (as necessary) from the frame: “crawlers” which
grow along adjacent supersides, and “probes” which
grow across the centers of supertile spaces attempting
to communicate with opposite supersides (if they exist).
It is notable that, as the frame grows, it propagates all
information from the superside of the adjacent supertile
(which is acting as an output side for that supertile that
initiates the formation of this potential input side for a
new supertile), including the encoding of the glue on
that superside and the encoding of the system 7 (i.e.
the “genome”), into the interior of the new supertile.

Reference [8] details the algorithm used to grow the
frame to achieve this gathering of information.

2) Crawlers and lookup tables: Once the frame has
formed, information about the glues represented by the
supersides, the simulated tile system 7, and the win/loss
status of each side (possibly along with information
about additional sides) is presented on the inside of
the frame. At this point, pairs of adjacent edges (i.e.
those sharing a corner) may initiate the growth of a
“crawler” component. (The determination of whether or
not a particular pair will do so is discussed later.) At
a high level, when a crawler is initiated it contains the
encoding of the glue for one superside, and as it forms
it grows across the adjacent superside, gathering the
information of the glue on that side as it grows across
it. Next, it grows across the encoding of a “tile lookup
table” which is an encoding of the tile set 7" that allows it
to determine if the glues that it has collected so far match
atile in ¢ € T  and have sufficient strength for ¢ to bind. If
so, then this supertile should simulate ¢ and the crawler’s
job becomes to grow around the remaining sides of the
supertile and to create output supersides for those sides
which aren’t already occupied by input supersides.

Of course, this is an ideal scenario; what could go
wrong? Perhaps the glues do not match a tile type.
Perhaps another superside arrived while we were at-
tempting to output on that side. Perhaps there are only
supersides on the south and north, and they must reach
across the gap of the empty supertile between them to
cooperate and place east and west output supersides.
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More generally, a crawler crawls around a supertile
“collecting” input glues. It starts in an unfilled state
until a tile lookup reveals that it has collected glues with
sufficient strength to place an output tile type; at this
point the crawler enters a full state. However, it has
not yet committed to creating an output tile type because
there may be other crawlers present that are also full.
Some symmetry-breaking is used to determine when a
full crawler changes to an output state and takes
responsibility for determining the output tile type and
placing output supersides. Our main goal in justifying the
correctness of the construction is proving that if subsets
of supersides represent glues that are sufficient to bind
a tile, then eventually exactly one crawler will enter the
output state and decide the output tile type ¢ (or two
crawlers in the special case where they originate from
meeting probes and are guaranteed to make the same
output decision).

3) More general crawler protocol: The more general
protocol followed by crawlers is this. Whenever two
supersides “connect”, at a corner as in Figure 2a, or by
reaching across the gap as in Figure 2b, they (sometimes,
depending on information supplied by the frame) initiate
a crawler that first combines their glues and does a
lookup to see if a tile matches these glues. Crawlers
always move counterclockwise around a supertile. The
general rule is: Initiate a crawler when two sides meet,
unless we have enough information from the frame to see
that another crawler will be on its way from another
corner. Note that sometimes two crawlers are initiated
because the “later” crawler (the crawler in the more
counterclockwise direction) does not “know” (based on
only its two adjacent sides) about the first crawler. If
the lookup is successful, the crawler becomes full
and will attempt to place output supersides if there are
potentially empty supersides. On each potential output
superside, the crawler first “tests” to see if an output
side is already present, only outputting if necessary. If
the lookup is unsuccessful (i.e., the glues available to the
crawler were not sufficient to bind a tile), the unfilled
crawler crawls to the edge of the supertile to wait for a
potential new input superside to arrive. If this superside
ever does arrive, it will initiate its own crawler that will
combine the information from the first crawler (and its
two glues), to see if all three glues are sufficient by
performing a new lookup. This new crawler will follow
the same protocol.

4) Multiple crawlers: As previously mentioned, there
are some situations in which two crawlers may be
initiated and begin growth. In such a situation, a crawler
c1 may arrive at a side to find that another crawler
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co has already begun growth from there; if so, c¢;
crawls over the “back” of cy to see if ¢, became
full (i.e., had a successful table lookup). If cy is
full, c; stops, allowing co to take responsibility for
outputting. Otherwise, c¢; does its own lookup using
all glues (whatever glues that ¢; has already collected
before encountering co, plus the new glue on the side
that initiated the growth of c3). It is possible for c;
to receive this additional information from co because
crawlers pass all collected and computed information
up through themselves. This is necessary for supporting
such “piggybacking” crawlers, as well as making the
necessary information available when it becomes time
to create output supersides. In this case c¢; may overtake
co to place output.

In cases where all four supersides are present, al-
though the output crawler does not need to deposit
output supersides, it must still decide on an output tile
type so that the representation function can uniquely
decode which tile type is represented by the supertile.
In this case, it may be the case that two crawlers exist
but one of them does not run into the other. However, we
still require symmetry-breaking so that only one of them
changes to the output state. In this case, once a crawler
has encountered the fourth superside (which happens
after it has traversed the full length of two supersides,
it has complete information (gathered from the frame)
about the win-loss configuration and therefore knows
whether another crawler was independently initiated. In
this case, a precedence ranking on corners that initiate
crawlers (NW > SW > SE > NE) is used to determine
whether to transition to the output state or to simply
die (in effect, letting the other, higher-precedence crawler
become the unique output crawler).

5) Probes: “Probes” are used for communication
across a gap between two potential input supersides on
opposite sides (i.e. north and south or east and west)
when necessary. Suppose the south superside needs to
communicate with the north superside. Recall that the
south superside’s frame either won or lost on each end of
the superside. If either end lost, then this means there is a
supertile adjacent to both south and north (west if south
lost in the southwest corner, and east if south lost in the
southeast corner). Therefore there is no need for probes,
since crawlers will eventually connect the south glue
with the north glue. Only if the south superside is “win-
win” does it send probes to potentially connect with the
north superside. Since all supersides follow this rule, this
ensures that at most two sides ever grow probes, and if
so, then they are opposite sides (since adjacent sides
cannot both be win-win). This ensures that orthogonal
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south (the scenario described in Fig. 1). A single (orange) crawler
is initiated from the north-west corner and outputs to the east. North
and south grow probes, that do not meet.
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(b) Two-sided binding for two opposite sides on north and south.
North and south grow probes (red and blue), which meet and initiate
two (orange) crawlers. These crawlers output to the east and west
respectively.

Fig. 2: Two examples of how probes and crawlers work together to enable cooperative binding of supersides.

probes cannot grow and interfere with each other.

The design of probes ensures that they “close the gap”
(connect two sides of the supertile) if and only if their
supersides represent glues that map to a tile type ¢t € T’
and have sufficient strength for ¢ to bind. The probes
grow from a region on the superside known as the “probe
region”. Each glue in 7" has its own unique subregion
in the probe region . The supersides do not grow probes
symmetrically: north and east grow probes in one way,
and west and south grow them in a complementary way.
Suppose the glue on the north is n and the glue on the
south is s. The north superside will grow a probe in the
subregion associated with n. For every glue g that has the
property that there is some tile type ¢ € 1" with g on the
north, s on the south, and g and s have combined strength
at least 7, the south superside will grow a probe in the
subregion associated with that g. If no tile type matches
glue s on the south and n on the north (or if n and s have
insufficient combined strength), but both north and south
probes form, they will be guaranteed to leave sufficiently
wide gaps for crawlers, which may be initiated and arrive
later, to make their way around and between the probes
. This is because each probe subregion is at least Q(|T|)
tiles from its adjacent probe subregions, but crawlers are
only O(log |T|) tiles wide. If the probes do meet in the
middle of the supertile (indicating that a tile type t € T'
matches the north/south glues and has sufficient strength
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to bind), they initiate their own crawlers which can place
the output supersides representing the west and east sides
of t.

6) Simulation of nondeterministic tile systems: In
each of these cases, if the simulated system 7 is
nondeterministic, there may be more than one tile type
that matches a given set of input glues. To handle
this scenario, a “random number” is produced through
nondeterministic attachment of tile types to a special
“random number selector component” and used as an
index to select one of the possible tile types. (A similar
mechanism was used in [9].) It is crucial that if two
probes cut off two sides of a supertile from each other,
each side’s crawlers must use the same random number
to select the tile type to output, or else they may
choose differently and place output glues that are not
consistent with any single tile type in 7'. This is why
probes generate a random number and advertise it to
each side of the probe. However, if probes do not meet,
then eventually a single crawler will be responsible for
choosing an output tile type, so it is sufficient for the
crawler to generate a random number just before it
begins a tile lookup.

The full details of the construction are described in
reference [8].
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