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CHASING THE k-COLORABILITY THRESHOLD ∗

AMIN COJA-OGHLAN† AND DAN VILENCHIK

ABSTRACT. For a fixed numberd > 0 andn large letG(n, d/n) be the random graph onn vertices in which any two
vertices are connected with probabilityd/n independently. The problem of determining the chromatic number ofG(n, d/n)
goes back to the famous 1960 article of Erdős and Rényi thatstarted the theory of random graphs [Magayar Tud. Akad.
Mat. Kutato Int. Kozl.5 (1960) 17–61]. Progress culminated in the landmark paper ofAchlioptas and Naor [Ann. Math.162
(2005) 1333–1349], in which they calculate the chromatic number precisely for alld in a setS ⊂ (0,∞) of asymptotic
densitylimz→∞

1

z

∫

z

0
1S = 1

2
, and up to an additive error of one for the remainingd. Here we obtain a near-complete

answer by determining the chromatic number ofG(n, d/n) for all d in a set of asymptotic density1.
Mathematics Subject Classification:05C80 (primary), 05C15 (secondary)

1. INTRODUCTION

Let G(n, p) denote the random graph on the vertex setV = {1, . . . , n} in which any two vertices are connected with
probability p ∈ [0, 1] independently, known as theErdős-Ŕenyi model.1 We write p = d/n and refer tod as the
average degree. As per common practice, we say thatG(n, d/n) has a propertywith high probability(‘w.h.p.’) if the
probability that the property holds converges to1 asn → ∞. We recall that a graphG is k-colorableif it is possible to
assign each vertex one of the colors{1, . . . , k} such that no edge connects two vertices of the same color. Moreover,
thechromatic numberχ(G) of a graphG is the least integerk such thatG is k-colorable. Unless specified otherwise,
we always considerd, k fixed asn → ∞.

1.1. Background and main results. The theory of random graphs was born with the famous 1960 article by Erdős
and Rényi [21], and has grown since into a substantial area of research with hundreds, perhaps thousands of contribu-
tions dealing with theG(n, p) model alone. In their paper, Erdős and Rényi showed that the random graphG(n, p)
undergoes a percolationphase transitionatp = 1/n, and phase transitions have been the guiding theme of the theory
ever since. In addition, Erdős and Rényi set the agenda forfuture research by posing a number of intriguing questions,
all of which have been answered over the years except for one:for a givend > 0, what is the typical chromatic number
of G(n, d/n)?

It is widely conjectured that for any numberk ≥ 3 of colors there occurs a phase transition fork-colorability. That
is, there exists a numberdk−col such thatG(n, d/n) is k-colorable w.h.p. ifd < dk−col, whereas the random graph
fails to bek-colorable w.h.p. ifd > dk−col. If true, this would imply that the likely value of the chromatic number,
viewed as a function ofd, is a step function that takes the valuek on the intervald(k−1)−col < d < dk−col.

Towards this conjecture, Achlioptas and Friedgut [1] proved that for any fixedk ≥ 3 there exists asharp threshold
sequencedk−col(n). This sequence is such that for anyε > 0,

• if p < (1 − ε)dk−col(n)/n, thenG(n, p) is k-colorable with probability tending to1 asn → ∞.
• if p > (1 + ε)dk−col(n)/n, thenG(n, p) fails to bek-colorable with probability tending to1 asn → ∞.

Whether the sequencedk−col(n) converges to an actual “uniform” thresholddk−col is a well-known open problem.

∗An extended abstract version of this work appeared in the Proceedings of the 54th IEEE Symposium on Foundations of Computer Science
(‘FOCS’), 2013.

†The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Frame-
work Programme (FP/2007-2013) / ERC Grant Agreement n. 278857–PTCC.

1Actually this model was introduced by Gilbert [24]. In theirseminal paper Erdős and Rényi consider a random graphG(n,m) in which the
number of edges is a fixed integerm [21]. However, withp = m/

(

n

2

)

both models are essentially equivalent [26].
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Yet [1] is a pure existence result that does not provide any clue as to the location ofdk−col. In a landmark paper
Achlioptas and Naor [6] proved via the “second moment method” that

lim inf
n→∞

dk−col(n) ≥ dk,AN = 2(k − 1) ln(k − 1) = 2k ln k − 2 lnk − 2 + ok(1). (1.1)

Here and throughout,ok(1) denotes a term that tends to zero in the limit of largek. By comparison, a naive application
of the union bound shows that

lim sup
n→∞

dk−col(n) ≤ dk,first = 2k ln k − ln k. (1.2)

Recently [14], a more sophisticated union bound argument was used to prove

lim sup
n→∞

dk−col(n) ≤ d′k,first = 2k ln k − ln k − 1 + ok(1). (1.3)

Thus, the gap between the lower bound (1.1) and the upper bound (1.3) ondk−col(n) is aboutln k + 1, an expression
thatdivergesask gets large. By improving the lower bound, the following theorem reduces this gap to a small absolute
constant of2 ln 2− 1 + ok(1) ≈ 0.39.

Theorem 1.1. Thek-colorability threshold satisfies

lim inf
n→∞

dk−col(n) ≥ dk,cond − ok(1), with dk,cond = 2k ln k − ln k − 2 ln 2. (1.4)

The bounds (1.1), (1.3) yield an estimate of the chromatic number ofG(n, d/n). Namely, (1.1) implies that for
d < dk,AN, the random graphG(n, d/n) isk-colorable w.h.p. Moreover, (1.3) shows that ford > dk−1,first,G(n, d/n)
fails to bek − 1-colorable w.h.p. Consequently, for alld in the interval(d′k−1,first, dk,AN) of length aboutln k, the
chromatic number ofG(n, d/n) is preciselyk w.h.p. However, for alld in the subsequent interval(dk,AN, d

′
k,first) of

length aboutln k, (1.1), (1.3) only imply that the chromatic number is eitherk or k + 1 w.h.p. Thus, (1.1) and (1.3)
yield the typical value ofχ(G(n, d/n)) precisely for “about half” of alld. Formally, let us say that a (measurable) set
A ⊂ R≥0 hasasymptotic density α if limz→∞

1
z

∫ z

0 1A = α, where1A is the indicator ofA. Then the set on which
(1.1), (1.3) determineχ(G(n, d/n)) has asymptotic density1/2 [6, Theorem 2].

Theorem 1.1 enables us to pin the chromatic number down precisely on a set of asymptotic density1, thereby
obtaining a near-complete answer to the question of Erdős and Rényi. More precisely, (1.2) and (1.4) imply

Theorem 1.2. There exists a constantk0 such that the following is true. Let

Sk = (2(k − 1) ln(k − 1)− ln(k − 1)− 0.99, 2k ln k − ln k − 1.38) and S =
⋃

k≥k0
Sk.

SetF (d) = k for all d ∈ Sk. ThenS has asymptotic density1 and

lim
n→∞

P[χ(G(n, d/n)) = F (d)] = 1 for anyd ∈ S.

Of course, the constants0.99 and1.38 in the definition ofSk can be replaced by any numbers less than one and2 ln 2,
respectively. Theorem 1.2 also answers a question of Alon and Krivelevich [8] whether the chromatic number of
G(n, d/n) is concentrated on a single integer for mostd “in an appropriately defined sense”.2

Independently of the mathematics literature, the random graph coloring problem has been studied in statistical
physics, where it is known as the “diluted mean-field Potts antiferromagnet at zero temperature”. In fact, physicists
have developed a generic, ingenious but highly non-rigorous formalism called the “cavity method” for locating phase
transitions in random graphs and other discrete structures[35, 36]. The so-called “replica symmetric” variant of the
cavity method predicts upper and lower bounds ondk−col [30, 39], namely

dk,cond − ok(1) ≤ lim inf
n→∞

dk−col(n) ≤ lim sup
n→∞

dk−col(n) ≤ dk,first. (1.5)

Theorem 1.1 establishes the lower bound rigorously.

Additionally, the cavity method yields predictions on the combinatorial nature of the problem, particularly on
the geometry of the set ofk-colorings of the random graph. The proof of Theorem 1.1 is based on a “physics-
enhanced” second moment argument that exploits this geometrical intuition. In fact, the physics intuition is one of
two key ingredients that enable us to improve over the approach of Achlioptas and Naor [6]. The second one is a

2A proof that the threshold sequencedk−col(n) converges would imply a one-point concentration result forthe chromatic number outside a
countable set of average degrees. However, the known result[1] does not. Alon and Krivelevich [8] were concerned also with the case that the
average degreed is a growing function ofn. In this paper we deal withd fixed asn → ∞, the original setting considered by Erdős and Rényi.
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novel approach, based on a local variations argument, to theanalytical challenge of optimizing a certain (non-convex)
function over the Birkhoff polytope. Neither of these ideasseem to depend on particular features of the graph coloring
problem, and thus we expect that they will prove vital to tackle a variety of further related problems.

An outline of our physics-enhanced second moment argument follows in Section 2. In addition, in Section 2.5
we will see that the densitydk,cond in (1.4) matches thecondensationor Kauzmann phase transitionpredicted by
physicists. This implies that the bound obtained in Theorem1.1 is the best possible one that can be obtained via a
second moment-type argument over a certain class of naturalrandom variables (see Section 2.5 for details).

1.2. Related work. As witnessed by the notorious “four color problem” first posed by De Morgan in 1852, solved
controversially by Appel and Haken in 1976 [9], and re-solved by Robertson, Sanders, Seymour and Thomas [40],
the graph coloring problem has been a central subject in (discrete) mathematics for well over a century. Thus, it is
unsurprising that the chromatic number problem onG(n, p) has received a big deal of attention since it was posed
by Erdős and Rényi. Indeed, the problem has inspired the development of techniques that are by now widely used in
various areas of mathematics, computer science, physics and other disciplines.

For instance, pioneering the use of martingale tail bounds,Shamir and Spencer [41] proved concentration bounds
for the chromatic number ofG(n, p). Their result was enhanced first by Łuczak [33] and then by Alon and Kriv-
elevich [8], who used the Lovász Local Lemma to prove that the chromatic number ofG(n, p) is concentrated on
two consecutive integers ifp ≪ n−1/2. In a breakthrough contribution, Bollobás [11] determined the asymptotics of
the chromatic number of dense random graphs (i.e.,G(n, p) with p > n−1/3). This result improved prior work by
Matula [34], whose “merge-and-exposure” technique Łuczakbuilt upon to obtain a similar result for sparser random
graphs [32]. However, in the case thatp = d/n for a fixed reald > 0, the setting originally studied by Erdős and
Rényi, Łuczak’s formula is far less precise than (1.1)–(1.2). For a comprehensive literature overview see [12, 26].

The work of Achlioptas and Naor [6], which gave best prior result on the chromatic number ofG(n, d/n), is based
on thesecond moment method. Its use in the context of phase transitions in random discrete structures was pioneered
by Achlioptas and Moore [5] and Frieze and Wormald [23]. The techniques of [6] have been used to prove several
further important results. For instance, Achlioptas and Moore [4] identified three (and for somed just two) consecutive
integers on which the chromatic number of the randomd-regular is concentrated. This was reduced to two integers for
all fixed ofd (and one for about half of alld) by adding in the small subgraph conditioning technique [27]. Recently,
the methods developed in this work have been harnessed to improve this result further still [15]. Moreover, Dyer,
Frieze and Greenhill [20] extended the second moment argument from [6] to the problem ofk-coloringh-uniform
random hypergraphs. We expect that our approach can be used to obtain improved results in the hypergraph case.
Similarly, it should be possible to improve results of Dani,Moore and Olsen [19] on a “decorated” coloring problem.

In several problems, sophisticated applications of the second moment method gave bounds very close to the predic-
tions made by the physicists’ cavity method [35]. Examples where the physics predictions have (largely) been verified
rigorously in this way include the hypergraph2-coloring problem [16, 18] and the randomk-SAT problem [17]. But
thus far a general limitation of the rigorous proof techniques has been that they only apply tobinary problems where
there are only two values available for each variable. By contrast, in random graph coloring each variable (vertex) has
k values (colors) to choose from, wherek can be arbitrarily large. As we will see in Section 2, the large number of
available values complicates the problem dramatically. Ineffect, random graph coloring remained the last among the
intensely-studied benchmark problems in which there remained a very substantial gap between the physics predictions
and the rigorous results, a situation rectified by the present paper. Thus, we view this paper as an important step
towards the long-term goal of providing a mathematical foundation for the cavity method.

In computer science, thealgorithmic problem of finding ak-coloring of G(n, p) in polynomial time is a long-
standing challenge, mentioned prominently in several influential survey articles (e.g., [22, 28]). Simple greedy algo-
rithms find ak-coloring ford ≤ k ln k ∼ 1

2dk−col w.h.p. [3, 25, 29], about half thek-colorability threshold. However,
no efficient algorithm is known to beat the, in the words of Shamir and Spencer [41], “most vexing” factor of two.
In fact, it has been suggested changes in the geometry of the set of k-colorings that occur atd ∼ 1

2dk−col cause the
demise of local-search based algorithms [2, 37]. Interestingly, some of the very phenomena that seem to make the al-
gorithmic problem of coloringG(n, p) difficult will turn out to be extremely helpful in the construction of our random
variable and thus in the proof of Theorem 1.1.
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1.3. Notation and preliminaries. In addition toG(n, p), we consider theG(n,m) model, which is a random graph
with vertex setV = {1, . . . , n} and exactlym edges, chosen uniformly at random amongst all such graphs. Working
with G(n,m) facilitates the second moment argument because the total number of edges is a deterministic quantity.
Nonetheless, Lemma 2.1 below shows that any results forG(n,m) with m = ⌈dn/2⌉ extend toG(n, d/n). Thus,
throughout the paper we always set m = ⌈dn/2⌉.

Since our goal is to establish a statement that holds with probability tending to1 asn → ∞, we are always going
to assume tacitly that the numbern of vertices is sufficiently large for the various estimates to hold. Similarly, at the
expense of the error termok(1) in Theorem 1.1 we will tacitly assume thatk ≥ k0 for a large enough constantk0.

We use the standardO-notation to refer to the limitn → ∞. Thus,f(n) = O(g(n)) means that there exist
C > 0, n0 > 0 such that for alln > n0 we have|f(n)| ≤ C · |g(n)|. In addition, we use the standard symbols
o(·),Ω(·),Θ(·). In particular,o(1) stands for a term that tends to0 asn → ∞. Furthermore, we writef(n) ∼ g(n) if
limn→∞ f(n)/g(n) = 1.

Additionally, we use asymptotic notation in the limit of largek. To make this explicit, we insertk as an index.
Thus,f(k) = Ok(g(k)) means that there existC > 0, k0 > 0 such that for allk > k0 we have|f(k)| ≤ C · |g(k)|.
Further, we writef(k) = Õk(g(k)) to indicate that there existC > 0, k0 > 0 such that for allk > k0 we have
|f(k)| ≤ (ln k)C · |g(k)|.

If G is a graphv is a vertex ofG, then we denote byNG(v) the neighborhood ofv in G, i.e., the set of all vertices
w that are connected tov by an edge ofG. Where the graphG is apparent from the context we just writeN(v). If
s ≥ 1 is an integer, we write[s] for the set{1, 2, . . . , s}. Moreover, throughout the paper we use the conventions that
0 ln 0 = 0 and (consistently) that0 ln 0

0 = 0.

2. OUTLINE

In this section we first discuss the second moment method in general and the argument pursued in [6] specifically and
investigate why it breaks down beyond the densitydk,AN from (1.1). Then, we see how the physics intuition can be
harnessed to overcome this barrier. Finally, we comment on the condensation phase transition.

2.1. The second moment method.Suppose thatZ = Z(G(n,m)) ≥ 0 is a random variable such thatZ(G) > 0
implies thatG is k-colorable. Moreover, suppose that there is a numberC = C(d, k) > 0 that may depend on the
average degreed and the number of colorsk but not onn such that

0 < E
[

Z2
]

≤ C · E [Z]2 . (2.1)

Then thePaley-Zygmund inequality

P [Z > 0] ≥ E [Z]2

E [Z2]
(2.2)

implies that

lim inf
n→∞

P [G(n,m) is k-colorable] ≥ lim inf
n→∞

P [Z > 0] ≥ (4C)−1 > 0.

This inequality yields a lower bound on thek-colorability threshold.

Lemma 2.1([1]). If d > 0 is such thatlim infn→∞ P [G(n,m) is k-colorable] > 0, thenlim infn→∞ dk−col(n) ≥ d.

Thus, in order to obtain a lower bound ondk−col, we need to define an appropriate random variableZ and verify (2.1).
Both of these steps turn out to be non-trivial.

2.2. Balanced colorings and the Birkhoff polytope. The most obvious choice of random variable seems to be the
total numberZk of k-colorings ofG(n,m). But to simplify the calculations, we confine ourselves to a particular type
of colorings. Namely, a mapσ : [n] → [k] is balanced if ||σ−1(i)| − n

k | ≤
√
n for i = 1, . . . , k. Let B = Bn,k

denote the set of all balanced maps. Moreover, letZk,bal be the number of balancedk-colorings ofG(n,m). This is
the random variable that Achlioptas and Naor [6] work with. As it happens, (2.1) does not hold for eitherZk orZk,bal

in the entire range0 < d < dk,cond. We need to understand why.
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To get started, we compute the first moment. By Stirling’s formula the number of balanced maps is|B| = Θ(kn).
Furthermore, forσ to be ak-coloring, the random graphG(n,m) must not contain any of the

F(σ) =

k
∑

i=1

(|σ−1(i)|
2

)

“forbidden” edges that join two vertices with the same colorunderσ. If σ is balanced, we easily check thatF(σ) =
(1 − 1/k)

(

n
2

)

+ O(n). Thus, lettingN =
(

n
2

)

and using Stirling’s formula, we find that the probability that σ is a
k-coloring ofG(n,m) comes to

(

N −F(σ)

m

)

/

(

N

m

)

= Θ((1− 1/k)m).

Hence, by the linearity of expectation,

E [Zk,bal] = Θ(kn(1− 1/k)dn/2). (2.3)

Working out the second moment is not quite so easy. SinceE[Z2
k,bal] is the expected number ofpairs of balanced

k-colorings, we need to compute the probability thatσ, τ ∈ B simultaneouslyhappen to bek-colorings ofG(n,m).
Of course, this probability depends on how “similar”σ, τ are. To quantify this, we define thek × k overlap matrix
ρ(σ, τ) whose entries

ρij(σ, τ) =
k

n
· |σ−1(i) ∩ τ−1(j)| (i, j = 1, . . . , k) (2.4)

represent the proportion of vertices with colori underσ and colorj underτ .

While in binaryproblems the relevant overlap parameter is just a1-dimensional (e.g., in randomk-SAT, the Ham-
ming distance of two truth assignments), here the high-dimensional overlap matrix is required. The need for this
high-dimensional overlap parameter is what makes thek-colorability problem so difficult.

The upshot is thatρ(σ, τ) contains all the information necessary to determine the probability that bothσ, τ are
k-colorings. In fact, letZρ,bal be the number of pairs of balancedk-colorings with overlapρ, and letR denote the set
of all possible overlap matrices of mapsσ, τ ∈ B. For ak × k matrixρ we denote the Frobenius norm by

‖ρ‖2 =

( k
∑

i,j=1

ρ2ij

)1/2

.

Fact 2.2([6]). Uniformly forρ ∈ R we have

E [Zρ,bal] = O(n(1−k2)/2) · exp [n · f(ρ)] , where (2.5)

f(ρ) = fd,k(ρ) = ln k − 1

k

[ k
∑

i,j=1

ρij ln ρij

]

+
d

2
ln

[

1− 2

k
+

1

k2
‖ρ‖22

]

.

Proof. Since the functionf turns out to be the key object in this paper, we include the simple proof to explain where
it comes from combinatorially. By Stirling’s formula, the total number ofσ, τ ∈ B with overlapρ equals

(

n

ρ11
n
k , . . . , ρkk

n
k

)

= O(n(1−k2)/2) · exp



−
k
∑

i,j=1

n · ρij
k

ln
ρij
k



 . (2.6)

Now, suppose thatσ, τ have overlapρ. By inclusion/exclusion, the number of “forbidden” edges joining two vertices
with the same color under eitherσ or τ equals

F(σ, τ) =
k
∑

i=1

(∑

j ρij
n
k

2

)

+
k
∑

j=1

(∑

i ρij
n
k

2

)

−
k
∑

i,j=1

(

ρij
n
k

2

)

≥ 2k

(

n/k

2

)

−
k
∑

i,j=1

(

ρij
n
k

2

)

.

LetN =
(

n
2

)

. Then Stirling’s formula yields

P [σ, τ arek-colorings ofG(n,m)] =

(

N−F(σ,τ)
m

)

(

N
m

) = O (1) · exp



m



1− 2

k
+

k
∑

i,j=1

(ρij
k

)2







 . (2.7)

The assertion follows from (2.6), (2.7) and the linearity ofexpectation. �
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The bound (2.5) is essentially tight as similar calculations show that

E [Zρ,bal] = exp(n · f(ρ) + o(n)). (2.8)

Moreover, by the linearity of expectation we can express thesecond moment as

E[Z2
k,bal] =

∑

ρ∈R

E[Zρ,bal]. (2.9)

As the total number of summands is|R| ≤ nk2

, we obtain from (2.8) and (2.9) that

1

n
ln E[Z2

k,bal] ∼ max
ρ∈R

1

n
ln E[Zρ,bal] ∼ max

ρ∈R
f(ρ). (2.10)

Further, because we work with balanced colorings, the row and column sums of anyρ ∈ R are1 + O(n− 1

2 ). Thus,
let D be the set of all doubly-stochastick × k matrices, theBirkhoff polytope. Together with the continuity off and
the observation thatR∩D becomes a dense subset ofD asn → ∞, (2.10) implies that

1

n
ln E[Z2

k,bal] ∼ max
ρ∈D

f(ρ). (2.11)

In summary, following [6], we have transformed the calculation of the second moment into the problem of optimiz-
ing f over the Birkhoff polytopeD. Let ρ̄ be the matrix with all entries equal to1k , the barycenter ofD. A glimpse at
(2.3) reveals thatf(ρ̄) ∼ 2

n ln E [Zk,bal] corresponds to the square of the first moment. Therefore, anecessarycondi-
tion for the success of the second moment method is that the maximum (2.11) is attained at̄ρ. Indeed, iff(ρ) > f(ρ̄)
for someρ ∈ D, thenE[Z2

k,bal] exceedsE[Zk,bal]
2 by anexponentialfactorexp(Ω(n)). It is not difficult to show that

this necessary condition is also sufficient. Combinatorially, the condition that̄ρ is the maximizer off indicates that
pairsσ, τ that, judging by their overlap, look completely uncorrelated make up the lion’s share ofE[Z2

k,bal].

2.3. The singly-stochastic bound.Yet solving the optimization problem (2.11) proves seriously difficult. Achlioptas
and Naor resort to a relaxation: withS ⊃ D the set of allk × k singlystochastic matrices, they study

max
ρ∈S

f(ρ). (2.12)

BecauseS is just a product of simplices, (2.12) turns out to be much more amenable than (2.11). Achlioptas and Naor
solve (2.12) completely. More precisely, they optimizef over the sets{ρ ∈ S : ‖ρ‖2 = s} for eachs, i.e., over the
intersection ofS with a sphere. Their argument relies on the product structure ofS and a sophisticated global analysis
(going to thesixthderivative). The result is that the maximum of (2.12) and therefore also of (2.11) is attained at the
doubly-stochastic̄ρ for d ≤ dk,AN.

However, ford > dk,AN, the maximum (2.12) is attained elsewhere. For instance, the matrixρhalf whose firstk/2
rows coincide with those of the identity matrixid (with ones on the diagonal and zeros elsewhere) and whose last k/2
rows have all entries equal to1/k yields a larger function value than̄ρ for d > dk,AN + ok(1). Of course, this matrix
fails to be doubly-stoachastic.

Hence, one might hope thatρ̄ remains the maximizer of (2.11) ford up todk,cond. That is, however, not the case.
Indeed, consider the doubly-stochastic

ρstable = (1− 1/k)id + k−2
1, (2.13)

where1 denotes the matrix with all entries equal to one. A simple calculation reveals thatf(ρstable) > f(ρ̄), and thus
that the second moment argument forZk,bal fails, for d well belowdk,cond.

2.4. A physics-enhanced random variable.Therefore, to prove Theorem 1.1 we need to work with a different ran-
dom variable. The key observation behind its definition is that the second moment (2.11) is driven up by certain
“wild” k-coloringsσ. Their number behaves like a lottery: while the random graphtypically has no wild coloring,
a tiny fraction of graphs have an abundance, boosting the second moment. To avoid this heavily-tailed random vari-
able, we define a notion of “tame” colorings. This induces a decompositionZk,bal = Zk,tame + Zk,wild such that
E [Zk,tame] ∼ E [Zk,bal]. The second moment bound (2.1) turns out to hold forZk,tame if d ≤ dk,cond − ok(1).

The notion of “tame” is inspired by statistical physics predictions on the geometry of the set ofk-colorings. More
precisely, according to the physicists’ cavity method [30,42], for (1 + ok(1))k ln k < d < dk,cond the set of all

6



k-colorings, viewed as a subset of[k]
n, decomposes into “tiny clusters” that are “well-separated” from each other.

Formally, we define thecluster of a balancedk-coloringσ of G(n,m) as the set

C(σ) = {τ ∈ B : τ is ak-coloring andρii(σ, τ) > 0.51 for all i ∈ [k]} . (2.14)

In words,C(σ) contains all balancedk-coloringsτ where more than51% of the vertices in each color class ofσ
retain their color. According to the cavity method, ford < dk,cond each cluster contains only an exponentially small
fraction of allk-colorings ofG(n,m) w.h.p. But for our purposes it suffices to formalize “tiny” byjust requiring that
|C(σ)| ≤ E [Zk].

Futher, to formalize the notion that the clusters are “well-separated”, we call a balancedk-coloringσ separable if

for any other balancedk-coloringτ and anyi, j ∈ [k] such thatρij(σ, τ) > 0.51 we
indeed haveρij(σ, τ) ≥ 1− κ, whereκ = ln20 k/k.

(2.15)

In other words, the overlap matrixρ(σ, τ) does not have entries in the interval(0.51, 1 − κ). Hence, if two color
classes have an overlap of more than51%, then they must, in fact, be nearly identical. This definition ensures that the
clusters of two separable coloringsσ, τ are either disjoint or identical. We thus arrive at the following definition.

Definition 2.3. LetG be a graph withn vertices andm edges. Ak-coloringσ ofG is tame if

T1: σ is balanced,
T2: σ is separable, and
T3: |C (σ)| ≤ E [Zk(G(n,m))].

In Section 3 we show that a typicalk-coloring ofG(n,m) is indeed tame, which implies that the expected number
of tamek-colorings satisfies the following.

Proposition 2.4. There exists a sequenceεk → 0 such that ford = dk,cond − εk we have

E [Zk,tame] ∼ E [Zk,bal] = Θ(exp(n2 · f(ρ̄))) and f(ρ̄) = 2 ln 2
k + ok(k

−1) > 0.

Thus, going from blanaced to tame colorings has no discernible effect on the first moment, which remains exponen-
tially large inn up to at leastd = dk,cond − εk.

Working with tame colorings has a substantial impact on the second moment. As before, computing the second
moment boils down to a continuous optimization problem. Butin comparison to (2.11), this problem is over asig-
nificantly reduced domainDtame ⊂ D. Indeed, let us call ak × k-matrix ρ separable if ρij 6∈ (0.51, 1− κ) for all
i, j ∈ [k]. Further, callρ k-stable if for any i there isj such thatρij > 0.51. LetDtame be the set of allρ ∈ D that are
separable but notk-stable. In particular, the matrixρstable from (2.13) doesnot belong toDtame. Geometrically, one
can think ofDtame as being obtained by cutting out (huge) cylinders from the Birkhoff polytope. In Section 4 we will
see that the second moment calculation forZk,tame boils down to showing that

max
ρ∈Dtame

f(ρ) (2.16)

is attained at̄ρ. Indeed, that (2.16) mirrors the second moment calculationseems reasonable: for any two tame
coloringsσ, τ the overlap matrixρ(σ, τ) is separable byT2. Moreover, ifρ(σ, τ) is k-stable, thenτ ∈ C(σ) by the
very definition ofC(σ), andT3 provides ana priori bound on the number of suchτ .

Thus, in a sense the proof strategy that we pursue is the opposite of the one from [6]. While Achlioptas and
Naorrelax the optimization problem (by working with a rather significantly larger domain: singly rather than doubly-
stochastic matrices), here werestrict the domain by imposing further physics-inspired constraints. This approach,
carried out in Section 4, yields

Proposition 2.5. Assume thatk is sufficiently large and thatd = (2k − 1) ln k − c for some numberc = Ok(1). If
E[Zk,tame] = Ω(E[Zk,bal]), then0 < E[Z2

k,tame] ≤ C(k) · E [Zk,tame]
2
.

The proof of Proposition 2.5 essentially comes down to showing that the maximum (2.16) is attained atρ̄. Even
though we work with the reduced domainDtame, this is anything but straightforward. Indeed, to solve this analytical
problem, we develop a novel local variations argument basedon properties of the entropy function (among other
things). We expect that this argument will prove useful to tackle many related optimisation problems that come up in
second moment arguments.

Finally, Theorem 1.1 is an immediate consequence of Propositions 2.4 and 2.5 combined with Lemma 2.1.
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2.5. The condensation phase transition.Finally, what would it take to close the (small) remaining gap between the
new lower bound (1.4) ondk−col and the upper bound (1.3)? According to the physicists’ cavity method, this gap is
due to a further phase transition, the so-calledcondensationor Kauzmann transition, that occurs atdk,cond + ok(1),
i.e., the lower bound established in Theorem 1.1. In fact, the existence and precise location of this phase transition
(including the term hidden in theok(1)) can be established rigorously [10].

According to the cavity method [30], the geometry of the set of k-colorings changes significantly atdk,cond. More
precisely, ford < dk,cond − ok(1) the set ofk-colorings decomposes into clusters that each contain onlyan exponen-
tially small fraction of allk-colorings ofG(n, d/n) w.h.p. By contrast, ford > dk,cond + ok(1), the size of the largest
cluster is conjectured to contain aconstantfraction of allk-colorings. As a result, two randomk-colorings are heavily
correlated, as there is a non-vanishing probability that they belong to the same cluster. This explains intuitively why
the condensation threshold poses an obstacle to the second moment method, as we saw that a necessary condition for
the success of the second moment method is that random pairs of k-colorings decorrelate.

More formally, we prove in [10] that ford > dk,cond + ok(1) there does not exist a random variableZ =
Z(G(n,m)) with the following properties. First,Z(G) > 0 only if G is k-colorable. Second,

E[Z(G(n,m))]1/n ∼ k(1− 1/k)d/2 and E[Z(G(n,m))2] ≤ O(E[Z(G(n,m))]2).

By contrast, Propositions 2.4 and 2.5 show thatZk,tame has these two properties ifd < dk,cond − ok(1). Hence, in
this sense the approach (and random variable) put forward inthe present paper is best possible.

A refined version of the cavity method, the so-called1-step replica symmetry breaking (“1RSB”) ansatz[30, 31,
38, 42], yields a precise prediction as to the value ofdk−col = limn→∞ dk−col(n) (of course, the existence of the limit
is taken for granted in the physics work). However, this prediction is not explicit; for instance, it involves the solution
to a seriously complicated fixed point problem on the set of probability distributions on thek + 1-simplex. Yet it is
possible to obtain an expansion in the limit of largek, according to whichdk−col = 2k ln k− ln k−1+ok(1). Proving
the 1RSB prediction fordk−col remains an open problem. In a very few binary problems, asymptotic versions of the
1RSB prediction have been proved rigorously (e.g., [16]). However, it seems anything but straightforward to extend
these arguments to the random graph coloring problem. That said, we expect that any attempt at determiningdk−col

precisely would have to build upon the insights gained in this paper and very possibly its techniques.

3. THE FIRST MOMENT

Throughout this section we keep the assumptions of Proposition 2.4 and the notation introduced in Section 2.

The following lemma is the key step towards proving Proposition 2.4.

Lemma 3.1. There exists a sequenceεk → 0 such that ford = dk,cond − εk we have

P [σ is tame|σ is ak-coloring ofG(n,m)] ∼ 1 for anyσ ∈ B and

f(ρ̄) = 2 lnk + d ln(1− 1/k) =
2 ln 2

k
+ ok(k

−1) > 0.

In fact, once we have Lemma 3.1, Proposition 2.4 readily follows from the linearity of expectation, Bayes’ formula
and the formula (2.3) forE[Zk,bal].

To establish Lemma 3.1, we denote byG(n,m, σ) the random graphG(n,m) conditional on the event thatσ ∈ B
is ak-coloring. Thus,G(n,m, σ) consists ofm edges drawn uniformly at random without replacement out of those
edges that are bichromatic underσ. This probability distribution is also known as the “planted model”.

To establish the boundT3 on the cluster size, we show that w.h.p.G(n,m, σ) contains a vast “core” comprising
of vertices that have several neighbors of each color other than their own that also belong to the core. Formally, if
G = (V,E) is a graph on the vertex setV = {1, . . . , n} andσ ∈ B, we define thecore of (G, σ) as the largest subset
V ′ ⊂ V such that

|{w ∈ N(v) ∩ V ′ : σ(w) = i}| ≥ 100 for all v ∈ V ′ and alli 6= σ(v). (3.1)

The core is well-defined: ifV ′, V ′′ satisfy (3.1), then so doesV ′ ∪ V ′′. (Of course, the constant100 is a bit arbitrary.)
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As we will see, due to expansion properties no vertex in the core ofG(n,m, σ) can be recolored without leaving
the clusterC(σ) w.h.p. The basic reason is that recoloring any vertexv in the core sets off an avalanche of recolorings:
to givev another color, we will have to recolor at least 100 vertices that also belong to the core, and so on.

In addition, if a vertexv outside the core is such that for each color other than its own, v has a neighbor in the core of
that color, then it should be impossible to recolorv without leavingC(σ) as well. For to assignv some colori 6= σ(v)
we will have to recolor at least one vertex in the core. Guidedby this observation, we call a vertexv σ-complete, if
for each colori 6= σ(v), v has a neighborw in the core withσ(v) = i.

If σ-complete vertices do not contribute to|C(σ)|, then the cluster size stems from recoloring verticesv that fail to
have a neighbor in the core of some colori 6= σ(v). As we shall see, most of these vertices miss out on exactly one
color i 6= σ(v) and hence have precisely two colors to choose from. Formally, we call a vertexv a-free in (G, σ) if,
with V ′ denoting the core, we have

∣

∣

{

i ∈ [k] : N(u) ∩ V ′ ∩ σ−1(i) = ∅
}∣

∣ ≥ a+ 1.

The following lemma summarizes the expansion properties ofG(n,m, σ) that the proof of Lemma 3.1 builds upon.

Lemma 3.2. Letσ ∈ B and assume that2k ln k − ln k − 2 ≤ d ≤ 2k ln k. LetVi = σ−1(i) for i = 1, . . . , k. Then
w.h.p. the random graphG(n,m, σ) has the following four properties.

P1: Let i ∈ [k]. For any subsetS ⊂ Vi of size0.509 · n
k ≤ |S| ≤ (1 − k−0.499)nk , the number of vertices

v ∈ V \ Vi that do not have a neighbor inS is less thannk − |S| − n2/3.
P2: Let i ∈ [k]. No more thanκn3k verticesv 6∈ Vi have less than15 neighbors inVi, whereκ = ln20 k/k.
P3: There is no setS ⊂ V of size|S| ≤ k−4/3n that spans more than5|S| edges.
P4: At mostnk (1 + Õk(1/k)) vertices are1-free, and at most̃Ok(k

−2)n vertices are2-free.

The proof of Lemma 3.2 is based on arguments that are, by now, fairly standard; in particular, the “core” has, tweaked
in various ways, become a standard tool [2, 7, 13, 37]. For thesake of completeness, we give a full proof of Lemma 3.2
in Appendix A. Here we proceed to show how Lemma 3.2 implies Lemma 3.1.

Lemma 3.3. Assume that2k ln k − ln k − 2 ≤ d ≤ 2k ln k and letσ ∈ B. Thenσ is separable inG(n,m, σ) w.h.p.

Proof. By Lemma 3.2 we may assume that the random graphG(n,m, σ) has the propertiesP1–P3. Suppose that
τ ∈ B is anotherk-coloring of this random graph and thati, j ∈ [k] are such thatρij(σ, τ) ≥ 0.51. Our aim is to show
thatρij(σ, τ) > 1− κ. Without loss of generality we may assume thati = j = 1.

Let R = σ−1(1) \ τ−1(1), S = τ−1(1) ∩ σ−1(1) andT = τ−1(1) \ σ−1(1). Becauseτ is ak-coloring, none
of the vertices inT has a neighbor inS. Furthermore, becauseτ is balanced we have|S ∪ T | ≥ n

k − √
n, and thus

|T | ≥ n
k − |S| − √

n. Since|S| = n
k ρ11(σ, τ) > 0.509n

k , P1 implies that

|S| ≥ (1− k−0.49)
n

k
. (3.2)

Now, letU be the set of allv ∈ T that have at least15 neighbors inσ−1(1). Then all of these neighbors lie inR,
becauseτ is ak-coloring. Further, asσ, τ are asymptotically balanced we obtain from (3.2)

|R ∪ U | ≤ |σ−1(1)| − |S|+ |T | ≤ 2
( n

k1.49
+
√
n
)

≤ n/k4/3.

Hence,P3applies toR∪U . By the definition ofU andP3, the numbere(R∪U) of edges spanned byR∪U satisfies

15|U | ≤ e(R ∪ U) ≤ 5|R ∪ U |, whence|U | ≤ |R|/2. (3.3)

LetW = T \ U . BecauseW consists of vertices with fewer than15 neighbors inσ−1(1), P2yields

|W | ≤ κn

3k
. (3.4)

Sinceσ, τ are balanced, we have

|S|+ |R| = |σ−1(1)| ∼ n

k
∼ |τ−1(1)| = |S|+ |U |+ |W |. (3.5)

Hence, by (3.3) and (3.4)

|R| = |U |+ |W |+ o(n) ≤ |R|
2

+ |W |+ o(n) ≤ |R|
2

+
κn

3k
+ o(n), whence|R| ≤ 2κn

3k
+ o(n). (3.6)

Finally, (3.5) and (3.6) imply thatρ11(σ, τ) = k
n · |S| = 1 + o(1)− k

n · |R| > 1− κ, as desired. �
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As a next step, we are going to verify that theσ-complete vertices take the same color in all the colorings in C(σ)
w.h.p.; a similar argument was used in [2].

Lemma 3.4. Assume that2k ln k − ln k − 2 ≤ d ≤ 2k ln k and letσ ∈ B. W.h.p. the random graphG(n,m, σ) has
the following property.

If τ ∈ C(σ), then for allσ-complete verticesv we haveσ(v) = τ(v) w.h.p.

Proof. By Lemmas 3.2 and 3.3 we may assume thatP3 holds and thatσ is separable inG(n,m, σ). Let V ′ be the
core of this random graph. Moreover, set

∆+
i = {v ∈ V ′ : τ(v) = i 6= σ(v)} , ∆−

i = {v ∈ V ′ : τ(v) 6= i = σ(v)} for i ∈ [k], so that
k
∑

i=1

∣

∣∆+
i

∣

∣ = |{v ∈ V ′ : σ(v) 6= τ(v)}| =

k
∑

i=1

∣

∣∆−
i

∣

∣ . (3.7)

The assumptions thatσ is separable and that bothσ, τ are asymptotically balanced imply that

max
i∈[k]

|∆+
i | ≤ (κ+ o(1))

n

k
, max

i∈[k]
|∆−

i | ≤ (κ+ o(1))
n

k
. (3.8)

We are going to show that
{v ∈ V ′ : σ(v) 6= τ(v)} = ∅. (3.9)

By construction, this implies thatσ(v) = τ(v) for all σ-complete vertices.

To establish (3.9), letSi = ∆+
i ∪ ∆−

i for i = 1, . . . , k. Because∆+
i is contained in the core, eachv ∈ ∆+

i has
at least100 neighbors inσ−1(i). Sinceτ is ak-coloring, all of these neighbors lie in the set∆−

i . Hence, the number
e(Si) of edges spanned bySi is at least100|∆+

i |. On the other hand, (3.8) implies that|Si| ≤ k−4/3n for all i.
Therefore,P3 entails thate(Si) ≤ 5|Si| for all i. Thus, we obtain100|∆+

i | ≤ e(Si) ≤ 5|Si| ≤ 5(
∣

∣∆+
i

∣

∣ +
∣

∣∆−
i

∣

∣).

Consequently,|∆−
i | ≥ 2|∆+

i | for all i. Thus, (3.7) shows that∆+
i = ∆−

i = ∅ for all i, whence (3.9) follows. �

Proof of Lemma 3.1.Let σ ∈ B. We need to show thatG(n,m, σ) enjoys the propertiesT2–T3 from Definition 2.3
w.h.p. The fact thatT2 holds w.h.p. follows directly from Lemma 3.3.

With respect toT3, by Lemma 3.4 we may assume that that for allσ-completev and all τ ∈ C(σ) we have
τ(v) = σ(v). LetFj be the set ofj-free vertices forj = 1, 2. By Lemma 3.2 we may assume that

|F1| ≤
n

k
(1 + Õk(1/k)), F2 ≤ Õk(k

−2)n. (3.10)

By construction, for any vertexv ∈ F1 \ F2 there is a setCv ⊂ [k] of at most two colors such thatτ(v) ∈ Cv for all
τ ∈ C(σ). Hence,

|C(σ)| ≤ 2F1\F2 · kF2 . (3.11)

Combining (3.10) and (3.11), we see that w.h.p. inG(n,m, σ),

1

n
ln C(σ) ≤ ln 2

k
+ Õk(k

−2). (3.12)

We need to compare the r.h.s. of (3.12) with1
n ln E [Zk,bal]. By (2.3) and Taylor expansion,

1

n
ln E [Zk,bal] = ln k +

d

2
ln(1− 1/k) = ln k − d

2

(

1

k
+

1

2k2
+Ok(k

−3)

)

.

Writing d = dk,cond − εk = 2k ln k − ln k − 2 ln 2− εk, we obtain

1

n
ln E [Zk,bal] = ln k +

d

2
ln(1− 1/k) = ln k − d

2

(

1

k
+

1

2k2
+Ok(k

−3)

)

=
εk + ln 2

k
+Ok

(

ln k

k2

)

. (3.13)

Letting, say,εk = Θk(k
−1/2), we obtain from (3.12) and (3.13) that|C(σ)| ≤ E [Zk,bal] w.h.p. Hence,T3 holds in

G(n,m, σ) w.h.p.

Finally, upon direct inspection we findf(ρ̄) = 2 ln k+d ln(1−1/k). Thus, (3.13) shows that ford = dk,cond−εk =
2k ln k − ln k − 2 ln 2− εk we havek · f(ρ̄) = 2 ln 2 + ok(1) > 0, as claimed. �
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4. THE SECOND MOMENT

In this section we keep the assumptions of Proposition 2.5 and the notation introduced in Section 2.

4.1. Overview. The goal is to prove Proposition 2.5. As we already hinted at in Section 2, this boils down to maxi-
mizingf(ρ) overρ ∈ Dtame. Formally, we have

Proposition 4.1. If f(ρ) < f(ρ̄) for anyρ ∈ Dtame \ {ρ̄}, thenE[Z2
k,tame] ≤ O(E[Zk,tame]

2).

The proof of Proposition 4.1, based on the Laplace method, isa mere technical exercise, which we put off to Section 5.

Proposition 4.1 reduces the second moment argument to a problem in analysis. Indeed, neither the functionf nor
the domainDtame over which we need to maximize are dependent onn (though both involve the parametersd andk).
In the following, we aim to establish

Proposition 4.2. If ρ ∈ Dtame \ {ρ̄}, thenf(ρ) < f(ρ̄).

Thus, Proposition 2.5 is immediate from Propositions 4.1 and 4.2.

The proof of Proposition 4.2 is the heart of the second momentargument. Of course, we need to take a closer
look at the functionf . As we will see, it consists of two ingredients: an entropy term and a probability term. More
specifically, suppose thatp : Ω → [0, 1] is a probability distribution on a finite setΩ (i.e.,

∑

x∈Ω p(x) = 1). Recalling
our convention that0 ln 0 = 0, we denote by

H(p) = −
∑

x∈Ω

p(x) ln p(x)

theentropy of p. Since anyρ ∈ D satisfies
∑

i,j ρij = k, we can viewk−1ρ as a probability distribution on[k]× [k].
Hence, we can write

f(ρ) = H(k−1ρ) + E(ρ), with E(ρ) =
d

2
· ln
(

1− 2

k
+

‖ρ‖22
k2

)

.

Combinatorially,E(ρ) corresponds to the (logarithm of the) probability thatσ, τ ∈ B with overlapρ simulataneously
happen to bek-colorings, cf. the proof of Fact 2.2.

It is clear that the entropy ismaximizedat the barycentrēρ of the Birkhoff polytope, becausek−1ρ̄ is the uniform
distribution on[k] × [k]. Furthermore, among all the matricesρ with non-negative entries that sum tok, ρ̄ is the one
thatminimizesthe Frobenius norm and henceE(ρ). This shows that̄ρ is a stationary point off(ρ). But how do we
prove that̄ρ is the global maximizer off?

The domainDtame admits a natural decomposition into several subsets. Let uscall ρ ∈ D s-stable if the matrix
has preciselys entries that are greater than0.51. LetDs,tame denote the set of alls-stableρ ∈ Dtame. Geometrically,
anyρ ∈ Ds,tame is close to ak − s-dimensional face of the Birkhoff polytope. For ifρ hass entries greater than
0.51, then by separability these entries are in fact at least1− κ (with κ = ln20 k/k as in (2.15)). Hence,ρ is close to
the face where theses entries are equal to1. Indeed, as all other entries ofρ are smaller than0.51, ρ is near a point
“deep inside” that face. Consequently, for any1 ≤ s < k the setDs,tame is disconnected: it consists of many tiny
“splinters” near thek − s-dimensional faces ofD. Each of these splinters can be mapped to the component where
ρ11, . . . , ρss > 0.51 by permuting the rows and columns suitably, which does not affect the functionf .

In the following, we are going to optimizef separately overDs,tame for each0 ≤ s < k. We are going to argue
that for eachs, the pointρ̄s−stable whose firsts diagonal entries are1 and whose(i, j)-entries are equal to(k − s)−1

for i, j > s comes close to maximizingf overDs,tame (up to a negligible errror term in each case). Geometrically,
ρ̄s−stable is the centre of the face defined byρ11 = · · · = ρss = 1. Furthermore, in the cases = 0 we have
ρ̄s−stable = ρ̄, and we will see that the maximum overD0,tame is attained at this very point.

We start by showing that we may confine ourselves to matrices without an entry in the interval(0.15, 1−κ). Recall
thatS is the set of all singly-stochastick × k-matrices.

Proposition 4.3. For all ρ ∈ S such thatρij ∈ [0.15, 0.51] for some(i, j) ∈ [k]× [k] we havef(ρ) < 0.

We will see shortly how Proposition 4.3 implies thatρ̄ is the maximizer off overD0,tame. In addition, there are three
different ranges of1 ≤ s < k that we deal with separately.
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Proposition 4.4. Suppose that1 ≤ s ≤ k0.999. Then for allρ ∈ Ds,tame we havef(ρ) < f(ρ̄).

Proposition 4.5. Suppose thatk0.999 < s < k − k0.49. Then for allρ ∈ Ds,tame we havef(ρ) < f(ρ̄).

Proposition 4.6. Suppose thatk − k0.49 ≤ s < k. Then for allρ ∈ Ds,tame we havef(ρ) < f(ρ̄).

The proofs of Propositions 4.3 and 4.4–4.5 are based on a local variations argument. Roughly speaking, we are go-
ing to argue that ifρ ∈ Ds,tame is “far” from ρ̄s−stable, then a higher function value can be attained by moving slightly
in the direction ofρ̄s−stable. We expect that this argument can be adapted to perform second moment arguments in
other problems in probabilistic combinatorics. Indeed, insuch arguments the function that needs to be optimized is
typically similar in nature to ourf : an entropy term maximised atρ̄ plus a probability term minimized at̄ρ.

More precisely, the following fact is the cornerstone of thelocal variations argument. Letρ ∈ S, let i ∈ [k] be a
row index, and let∅ 6= J ⊂ [k] be a set of column indices. Obtain̂ρ ∈ S from ρ by letting

ρ̂ab = ρab for all (a, b) 6∈ {i} × J andρ̂ib = 1
|J|

∑

j∈J ρij for all b ∈ J. (4.1)

That is,ρ̂ is obtained by redistributing in rowi the total mass of the columns inJ equally over these columns. Clearly,
the entropy satisfiesH(k−1ρ̂) ≥ H(k−1ρ). In fact, this inequality is strict unlesŝρ = ρ. However, it may well be that
for the probability term we haveE(ρ̂) < E(ρ). The following proposition trades the increase in entropy against the
drop in the probability term and shows thatf(ρ̂) ≥ f(ρ) if J is “not too small” andmaxj∈J ρij is “not too big”.

Proposition 4.7. Suppose thatρ ∈ S. Let i ∈ [k] andJ ⊂ [k] be such that for some number3 ln ln k/ lnk ≤ λ ≤ 1
we have|J | ≥ kλ. Moreover, assume thatmaxj∈J ρij < λ/2 − ln ln k/ lnk. Then the matrix̂ρ from (4.1) satisfies
f(ρ̂) ≥ f(ρ). In fact, ifρ 6= ρ̂, thenf(ρ̂) > f(ρ).

Let us illustrate the use of Proposition 4.7 by proving

Corollary 4.8. If ρ ∈ D0,tame \ {ρ̄}, thenf(ρ) < f(ρ̄).

Proof. Let ρ ∈ D0,tame. Thenρij ≤ 0.51 for all i, j (asρ is 0-stable). In fact, if there arei, j such thatρij > 0.15,
then Proposition 4.3 implies thatf(ρ) < 0, whilef(ρ̄) > 0 by Proposition 2.4. Hence, we may assume thatρij ≤ 0.15
for all i, j. Let ρ[l] be the matrix whose firstl rows are identical to those of̄ρ, and whose lastk − l rows are identical
to those ofρ. Thus,ρ[0] = ρ andρ[k] = ρ̄. We claim that

f(ρ[i− 1]) ≤ f(ρ[i]) for all i = 1, . . . , k. (4.2)

To obtain (4.2), we apply Proposition 4.7 to theith row ofρ[i − 1] with J = [k] andλ = 1. This is possible because
maxj ρij [i− 1] = maxj ρij ≤ 0.15. The resulting matrix̂ρ is preciselyρ[i]. Thus, (4.2) follows from Proposition 4.7.
Indeed, Proposition 4.7 shows that one of the inequalities (4.2) is strict (asρ 6= ρ̄). Hence,f(ρ) < f(ρ̄). �

Proposition 4.2 is immediate from Propositions 4.4–4.6 andCorollary 4.8. Thus, we are left to prove Proposi-
tions 4.3–4.7. In the Section 4.3 we prove Proposition 4.7. Building upon that estimate, we then proceed to prove
Propositions 4.3–4.6. But before we start, we introduce a few pieces of notation and some basic facts.

4.2. Preliminaries. For x ∈ R we denote bysign(x) ∈ {−1, 0, 1} the sign ofx. Moreover, ifρ is matrix, thenρi
denotes theith row ofρ andρij thejth entry ofρi. We let‖ρ‖∞ = maxi,j |ρij |. Further,

h : [0, 1] → R≥0, z 7→ −z ln z − (1− z) ln(1 − z)

denotes the entropy function. We recall the elementary inequality h(z) ≤ z(1− ln z). In addition, we note that

max
0<z<1

h(z)− z ln k ≤ 1/k. (4.3)

Indeed, we haveh(z)− z ln k ≤ z(1− ln z− ln k) and differentiating twice, we see thatz 7→ z(1− ln z− ln k) takes
its global maximum1/k atz = 1/k.

We need the following well-known fact about the entropy.

Fact 4.9. Letp ∈ [0, 1]
k be such that

∑k
i=1 pi = 1. ThenH(p) ≥ 0 and the following two statements hold.

H1: If p is supported on a set of sizes, thenH(p) ≤ ln s.
12



H2: LetI ⊂ [k] and suppose thatq =
∑

i∈I pi ∈ (0, 1). LetpI be the vector with entries

pIi = pi · 1i∈I for i ∈ [k].

ThenH(p) = h(q) + qH(q−1pI) + (1− q)H((1− q)−1(p− pI)).

As an immediate consequence of Fact 4.9, we have

Corollary 4.10. Letp ∈ [0, 1]
k be such that

∑k
i=1 pi = 1.

(i) LetI ⊂ [k] and setq =
∑

i∈I pi. ThenH(p) ≤ h(q) + q ln |I|+ (1− q) ln(k − |I|).
(ii) LetI ⊂ {2, . . . , k} be a set of size0 < |I| < k − 1. Setq =

∑

i∈I pi. If p1 < 1, then

H(p) ≤ h(p1) + (1− p1)h(q/(1 − p1)) + q ln(|I|) + (1− q − p1) ln(k − |I| − 1).

Proof. The first claim follows simply by first usingH2 and then applyingH1 to q−1pI and(1 − q)−1(p − pI). To
obtain the second assertion, useH2 with I = {1} and then apply (i) to the probability distributionq−1pI . �

Let ρ ∈ S be a singly-stochastic matrix. We can view each rowρi as a probability distribution on[k]. With this
interpretation, we see that

H(k−1ρ) = ln k +
1

k

k
∑

i=1

H(ρi). (4.4)

To facilitate the following calculations, we note that

∂

∂p
− p ln p = −1− ln p. (4.5)

Moreover, differentiatingE(ρ) by y = ‖ρ‖22 and recalling thatd = 2k ln k +Ok(ln k), we obtain

∂

∂y

d

2
ln
(

1− 2/k + y/k2
)

=
d

2k2(1− 2/k + y/k2)
=

ln k

k
(1 + Õk(1/k)). (4.6)

Further, using the expansionln(1 + z) = z + z2/2 +O(z3), we obtain the approximation

E(ρ) =
d

2k2



−2k + ‖ρ‖22 − 2

(

1− ‖ρ‖22
2k

)2


+ ok(1/k). (4.7)

Finally, we calculate the function valuesf(ρ̄s−stable) explicitly; recall thatρ̄s−stable is the barycentre of the face
of D defined by the equationsρ11 = · · · = ρss = 1. Let 1 ≤ s ≤ k − 1. The firsts rows of ρ̄s−stable have entropy0,
while the lastk − s rows have entropyln(k − s). Hence, (4.4) yields

H(k−1ρ̄s−stable) = ln k +
k − s

k
ln(k − s) = 2 lnk + (1− s/k) ln(1− s/k)− s

k
ln k. (4.8)

Moreover,‖ρ̄s−stable‖22 = s+1. Thus, using (4.7) and plugging ind = 2k ln k− ln k− c for some boundedc, we get

E(ρ̄s−stable) =
d

2k2

[

−2k + s+ 1− 2

(

1− s+ 1

2k

)2
]

+ ok(1/k)

= −2 lnk +
c

k
+

s ln k

k

(

1 +
3

2k
− s

2k2

)

− cs

2k2
+ ok(1/k). (4.9)

Sincef(ρ) = H(k−1ρ) + E(ρ), (4.8) and (4.9) yield

f(ρ̄s−stable) =
c

k
+ (1− s/k) ln(1− s/k) +

s ln k

2k2

(

3− s

k

)

− cs

2k2
+ ok(1/k). (4.10)
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4.3. Proof of Proposition 4.7. We pursue the following strategy. Suppose thata, b ∈ J are such thatρia =
minj∈J ρij andρib = maxj∈J ρij . If ρia = ρib, thenρ = ρ̂ and there is nothing to prove. Otherwise, we are
going to argue that increasingρia slightly at the expense ofρib yields a matrixρ′ with f(ρ′) > f(ρ). We start by
calculating the partial derivatives off .

Lemma 4.11. Letρ ∈ S. Leti, j, l ∈ [k] and setδ = ρil − ρij . Suppose thatρij , ρil > 0. Then

sign

{

∂f

∂ρij
− ∂f

∂ρil

∣

∣

∣

∣

ρ

}

= sign

{

1 +
δ

ρij
− exp

(

d · δ
k − 2 + 1

k ‖ρ‖22

)}

. (4.11)

Proof. Using (4.5), (4.6) and the chain rule, we obtain

∂f

∂ρij
− ∂f

∂ρil
=

1

k

[

ln

(

ρil
ρij

)

− d

k
· ρil − ρij

1− 2
k + 1

k2 ‖ρ‖22

]

.

Substitutingδ = ρil − ρij , we find

ln

(

ρil
ρij

)

− d

k
· ρil − ρij

1− 2
k + 1

k2 ‖ρ‖22
= ln (1 + δ/ρij)−

d · δ
k(1− 2

k + 1
k2 ‖ρ‖22)

.

Taking exponentials completes the proof. �

As a next step, we take a closer look at the right hand side of (4.11).

Lemma 4.12. Letρ ∈ S, let i, j ∈ [k] and assume thatρij > 0.

(1) If
1

ρij
>

d

k − 2 + 1
k ‖ρ‖22

, (4.12)

then there exists a uniqueδ∗ > 0 such that

1 +
δ∗

ρij
= exp

[

d · δ∗
k − 2 + 1

k ‖ρ‖22

]

.

Furthermore, for all0 < δ < δ∗ we have1 + δ
ρij

− exp
[

d
k−2+ 1

k
‖ρ‖2

2

· δ
]

> 0.

(2) If (4.12) does not hold, then for allδ > 0 we have1 + δ
ρij

< exp
[

d
k−2+ 1

k
‖ρ‖2

2

· δ
]

.

Proof. There is at most oneδ∗ > 0 where the straight lineδ 7→ 1 + δ
ρij

intersects the strictly convex function

δ 7→ exp

[

d

k − 2 + 1
k ‖ρ‖22

· δ
]

.

In fact, there is exactly one suchδ∗ iff the differential of the linear function is greater than that of the exponential
function atδ = 0, which occurs iff (4.12) holds. �

Proof of Proposition 4.7.If ρij = 0 for all j ∈ J , then ρ̂ = ρ and there is nothing to show. Thus, assume that
∑

j∈J ρij > 0. Suppose that̃ρ ∈ S maximizesf(ρ̃) subject to the conditions

i. ρ̃ab = ρab for all (a, b) 6∈ {i} × J and
ii. maxj∈J ρ̃ij ≤ maxj∈J ρij .

Such a maximizer̃ρ exists because i.–ii. define a compact domain. Becauseρ̃ ∈ S we have
∑

j∈J

ρ̃ij =
∑

j∈J

ρij . (4.13)

We claim thatρ̃ij > 0 for all j ∈ J . Indeed, assume thatρ̃ij = 0 for j ∈ J but ρ̃il > 0 for some otherl ∈ J . We
recall thatf(ρ) = H(k−1ρ) + E(ρ). As (4.5) and (4.6) show,∂H(k−1ρ)/∂ρij tends to infinity asρij approaches0,
while |∂E(ρ)/∂ρij | remains bounded. Hence, there isξ > 0 such that the matrixρ′ obtained fromρ̃ by replacingρ̃ij
by ξ andρ̃il by ρ̃il − ξ satisfiedf(ρ′) > f(ρ̃), in contradiction to the maximality off(ρ̃).
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Thus, leta be such that̃ρia = minj∈J ρ̃ij > 0. Becausẽρ is stochastic, we have‖ρ̃‖22 ∈ [1, k] and |J |ρ̃ia ≤
∑

j∈J ρ̃ij ≤ 1. Therefore, our assumptionsλ ≥ 3 ln ln k/ lnk andd ≤ 2k ln k imply that

1

ρ̃ia
≥ |J | ≥ kλ ≥ 3 lnk >

d

k − 2 + ‖ρ̃‖22 /k
. (4.14)

Thus, (4.12) is satisfied. Further, settingδ̂ = λ/2− ln ln k/ lnk, we find

exp

(

dδ̂

k(1− 2/k + k−2 ‖ρ̃‖22)

)

≤ exp
(

2δ̂ ln k
)

[asd ≤ 2k ln k and‖ρ̃‖22 ≥ 1]

≤ kλ ln−2 k ≤ |J | ln−2 k

< 1 + δ̂/ρ̃ia [asλ ≥ 3 ln ln k/ lnk and1/ρ̃ia ≥ |J |]. (4.15)

Now, let b ∈ J be such that̃ρib = maxj∈J ρ̃ij and assume thatδ = ρ̃ib − ρ̃ia > 0. Moreover, recall that we are
assuming that̃ρib ≤ maxj∈J ρij ≤ δ̂. Sinceδ ≤ ρ̃ib ≤ δ̂, (4.14) and (4.15) yield in combination with Lemmas 4.11
and 4.12 that

∂f

∂ρia
− ∂f

∂ρib

∣

∣

∣

∣

ρ̃

> 0.

Hence, there isξ > 0 such that the matrixρ′ obtained fromρ̃ by increasing̃ρia by ξ and decreasing̃ρib by ξ satisfies
f(ρ′) > f(ρ̃). But this contradicts the maximality off(ρ̃) subject to i.–ii. Thus, we conclude thatminj∈J ρ̃ij =
ρ̃ia = ρ̃ib = maxj∈J ρ̃ib. Therefore, (4.13) implies that̃ρ = ρ̂ is the unique maximizer off subject to i.–ii. �

4.4. Proof of Proposition 4.3. To proof is based on two key lemmas. The first one rules out thatf(ρ) takes its
maximum overρ ∈ S at a matrix with an entry close to1/2.

Lemma 4.13. If ρ ∈ S has an entryρij ∈ [0.49, 0.51], then there isρ′ ∈ S such thatf(ρ′) ≥ f(ρ) + lnk
5k .

Proof. Without loss of generality we may assume that(i, j) = (1, 1) and thatρ ∈ S maximizesf subject to the
condition thatρ11 ∈ [0.49, 0.51]. There are two cases.

Case 1:ρ1j < 0.49 for all j ≥ 2: Applying Proposition 4.7 to the setJ = {2, . . . , k} (with λ = ln(k−1)
lnk ), we

see thatρ1j =
1−ρ11

k−1 for all j ≥ 2, due to the maximality off(ρ). Hence, Corollary 4.10 yields

H(ρ1) ≤ h(ρ11) + (1 − ρ11) ln(k − 1) ≤ ln 2 + 0.51 lnk. (4.16)

Moreover, becauseρ11 ≤ 0.51 we have

‖ρ1‖22 ≤ 0.512 + (k − 1)

(

1− ρ11
k − 1

)2

≤ 0.261. (4.17)

Let ρ′ be the matrix obtained fromρ by replacing the first row by(1, 0, . . . , 0). SinceH(1, 0, . . . , 0) = 0,
(4.4) and (4.16) yield

f(ρ)− f(ρ′) = H(k−1ρ)−H(k−1ρ′) + E(ρ)− E(ρ′)

=
H(ρ1)−H(1, 0, . . . , 0)

k
+ E(ρ)− E(ρ′) ≤ ln 2 + 0.51 lnk

k
+ E(ρ)− E(ρ′). (4.18)

Furthermore, (4.17) entails‖ρ‖22 − ‖ρ′‖22 ≤ ‖ρ1‖22 − 1 ≤ −0.739. Hence, (4.6) yields

E(ρ)− E(ρ′) ≤ −(0.739 + Õk(1/k)) ln k/k ≤ −0.73 lnk/k. (4.19)

Combining (4.18) and (4.19), we obtainf(ρ)− f(ρ′) ≤ 1
k [ln 2− 0.22 lnk] ≤ − lnk

5k .
Case 2: there isj ≥ 2 such thatρ1j > 0.49: We may assume thatj = 2. Because

∑

j ρ1j = 1, we see that
maxj≥3 ρ1j ≤ 0.02. Hence, we can apply Proposition 4.7 toJ = {3, . . . , k} (with, say,λ = 1/2). Due to the
maximality off(ρ), we obtainρ1j = (1− ρ11 − ρ12)/(k − 2) for all j ≥ 3. Hence, Corollary 4.10 yields

H(ρ1) ≤ h(ρ11) + h(ρ12) + 0.02 ln(k − 2) ≤ 2 ln 2 + 0.02 lnk. (4.20)
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Further, becauseρ211 + ρ212 ≤ 0.512 + 0.492 asρ11, ρ12 ∈ [0.49, 0.51] andρ11 + ρ12 ≤ 1, we see that

‖ρ1‖22 ≤ 0.512 + 0.492 + (k − 2)

(

1− ρ11 − ρ12
k − 2

)2

≤ 0.501. (4.21)

As in the first case, obtainρ′ from ρ by replacing the first row by(1, 0, . . . , 0). From (4.21) we obtain
‖ρ‖22 − ‖ρ′‖22 ≤ 0.501− 1 = −0.499. Hence, (4.6) yields

E(ρ)− E(ρ′) ≤ −0.499(1 + Õk(1/k)) ln k/k ≤ −0.49 lnk/k. (4.22)

Combining (4.20) and (4.22), we find

f(ρ)− f(ρ′) = H(k−1ρ)−H(k−1ρ′) + E(ρ)− E(ρ′)

≤ 1

k
[2 ln 2 + 0.02 lnk − 0.49 lnk] ≤ − ln k

5k
.

Hence, in either case we obtain the desired bound. �

The second key ingredient is

Lemma 4.14. We havemaxρ∈S f(ρ) ≤ ln k
8k +Ok(1/k).

The proof of Lemma 4.14 requires two intermediate steps. We start with the following exercise in calculus.

Lemma 4.15. Let ξ : b ∈ (0, k/2) 7→ k2b/k(b−1 − k−1). Letµ = k
2 (1−

√

1− 2/ lnk). Thenξ is decreasing on the
interval (0, µ) and increasing on(µ, k/2). Furthermore, we have

− 1/2 ≤ ξ′(b) ≤ −3/2 for b ∈ (0.99, 1.01). (4.23)

Proof. The derivatives ofξ are

ξ′(b) = k2b/k
[

2 lnk

k

(

1

b
− 1

k

)

− 1

b2

]

, ξ′′(b) = 2k2b/k
[

2 ln2 k

k2

(

1

b
− 1

k

)

− 2 lnk

kb2
+

1

b3

]

.

The first derivative vanishes at the two pointsb = k
2 (1 ±

√

1− 2/ lnk) only. Moreover, an elementary calculation
shows thatµ = k

2 (1 −
√

1− 2/ lnk) is a local minimum, whilek2 (1 +
√

1− 2/ lnk) > k/2 is a local maximum.
Hence,ξ is decreasing on the interval(0, µ) and increasing on(µ, k/2). The last assertion follows by direct inspection
of the above expression forξ′. �

Lemma 4.16. Letρ ∈ S. Suppose thati ∈ [k] is such thatρij 6∈ [0.49, 0.51] for all j ∈ [k].

(1) Suppose thatρij ≤ 0.49 for all j ∈ [k]. Letρ′ be the stochastic matrix with entries

ρ′hj = ρhj andρ′ij = 1/k for all j ∈ [k] , h ∈ [k] \ {i} .
Thenf(ρ) ≤ f(ρ′).

(2) Suppose thatρij ≥ 0.51 for somej ∈ [k]. Then there is a numberα = 1/k + Õk(1/k
2) such that for the

stochastic matrixρ′′ with entries

ρ′′hj = ρhj andρ′′ii = 1− α, ρ′′ih =
1− α

k − 1
for all j ∈ [k] , h ∈ [k] \ {i}

we havef(ρ) ≤ f(ρ′′).

Proof. To obtain the first assertion, we simply apply Proposition 4.7 to rowi andJ = [k] (with λ = 1). With respect
to the second claim, we may assume without loss thati = j = 1 andρ11 ≥ 0.51. Let ρ̂ ∈ S be the matrix that
maximizesf subject to the conditions

i. ρ̂11 ≥ 0.51.
ii. ρ̂a = ρa for all a ∈ {2, . . . , k}. (In words, the lastk − 1 rows ofρ̂ andρ coincide.)

16



Sinceρ̂1j ≤ 1− ρ̂11 ≤ 0.49 for all j ≥ 2, Proposition 4.7 applies toJ = {2, . . . , k} (with λ = ln(k−1)
ln k ) and yields

ρ̂12 = · · · = ρ̂1k =
1− ρ̂11
k − 1

. (4.24)

Let δ = ρ̂11 − ρ̂12, let 0 ≤ β ≤ 0.49k be such that̂ρ11 = 1− β/k and letQ = 1− 1/k + ‖ρ̂‖22/k2.
Becausêρ is the maximizer off subject to i. and ii., Lemma 4.11 implies that

eitherβ ∈ {0, 0.49k}, or1 +
δ

ρ̂12
= exp

(

δd

kQ

)

. (4.25)

We are going to argue that (4.25) entails thatβ = 1 + Õk(1/k).

First, we observe thatβ > 0. For (4.5) shows that the derivative∂H(ρ1)/∂ρ11 of the entropy of rowρ1 tends
to −∞ asρ11 approaches1, while (4.6) implies that the derivative∂E(ρ)/∂ρ11 remains bounded in absolute value.
Hence, the maximality off(ρ) implies thatβ > 0.

Further, since‖ρ̂‖22 ∈ [1, k], we haveQ ≥ (1−1/k)2. Moreover, (4.24) implies thatδ = ρ̂11−Ok(1/k). Therefore,
recalling thatd = 2k ln k +Ok(ln k), we obtain

exp

(

δd

kQ

)

= k2ρ̂11

(

1 + Õk(1/k)
)

= k2(1−β/k)(1 +Ok(ln k/k)),

1 +
δ

ρ̂12
=

ρ̂11
ρ̂12

=
(k − 1)ρ̂11
1− ρ̂11

= k2(1/β − 1/k)(1 +Ok(1/k)) [asρ11 = 1− β/k].

Thus, withξ(b) = k2b/k(b−1 − k−1) the function from Lemma 4.15, we see that for a certainη = Ok(ln k/k),

(1 − η) · ξ(β) ≤
(

1 +
δ

ρ̂12

)

exp

(

− δd

kQ

)

≤ (1 + η) · ξ(β). (4.26)

Let µ = k
2 (1 −

√

1− 2/ lnk) = (1 + ok(1))
k

2 ln k . By Lemma 4.15,ξ is decreasing on(0, µ). Moreover,ξ′(b) is
negative and bounded away from0 for b close to1. Hence, settingγ = ln2 k/k, we find

ξ(β) ≤ ξ(1 + γ) < (1 + η)−1 if β ∈ [1 + γ, µ].

In addition,ξ is increasing on(µ, k/2). Thus,

ξ(β) ≤ ξ(0.49k) ≤ k0.98
(

1

0.49k
− 1

k

)

< (1 + η)−1 if β ∈ [µ, 0.49k].

Plugging these two bounds into (4.26), we get

1 +
δ

ρ̂12
< exp

(

δd

kQ

)

if β ∈ [1 + γ, 0.49k]. (4.27)

Similarly, becauseµ is the unique local minimum ofξ, we have

ξ(β) ≥ ξ(1 − γ) > (1 − η)−1 if β ∈ (0, 1− γ).

Hence, (4.26) yields

1 +
δ

ρ̂12
> exp

(

δd

kQ

)

if β ∈ (0, 1− γ). (4.28)

Since we already know thatβ > 0, (4.25), (4.27) and (4.28) implyβ ∈ [1− γ, 1+ γ]. Thus,β = 1+ Õk(1/k) and
consequentlŷρ11 = 1− β/k = 1− 1/k + Õk(k

−2), as desired. �

Proof of Lemma 4.14.Lemma 4.13 implies thatmaxρ∈S f(ρ) is attained at a matrixρ without entries in[0.49, 0.51].
Therefore, Lemma 4.16 shows that the maximizerρ has the following form for some integer0 ≤ s ≤ k and certain
αi = 1/k + Õk(1/k

2):

ρij =







1− αi if i = j ∈ [s] ,
αi

k−1 if i ∈ [s] , j 6= i,

1/k otherwise.
(4.29)
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Thus, fori ∈ [s] we have

H(ρi) = h(1− αi) + αi ln(k − 1) ≤ h(αi) + αi ln k, (4.30)

‖ρi‖22 = (1− αi)
2 + α2

i /(k − 1). (4.31)

Let ρ′ be the matrix obtained fromρ by replacing the firsts rows by(1, 0, . . . , 0). This matrix satisfies

H(ρ′i) = 0, ‖ρ′i‖
2
2 = 1 for i ∈ [s] . (4.32)

Setα = 1
s

∑s
i=1 αi =

1
k + Õk(k

−2). Then (4.4), (4.30)–(4.32) and the concavity ofh imply that

H(k−1ρ)−H(k−1ρ′) =
1

k

s
∑

i=1

H(ρi) ≤
s

k
[h(α) + α ln k] ≤ αs

k
[1− lnα+ ln k] ≤ 2αs

k
[1 + ln k] , (4.33)

‖ρ‖22 − ‖ρ′‖22 ≤
s
∑

i=1

[

(1− αi)
2 +

α2
i

k − 1
− 1

]

=

s
∑

i=1

αi [−2 + αi(1 + 1/(k − 1))]

= αs [−2 +Ok(1/k)] . (4.34)

Plugging (4.34) into (4.6), we obtain

E(ρ)− E(ρ′) ≤ αs [−2 +Ok(1/k)] · (1 + Õk(1/k))
ln k

k
≤ −2αs

k

[

ln k + Õk(1/k)
]

. (4.35)

Combining (4.33) and (4.35) and recalling thatα = 1/k + Õk(1/k
2), we see that

f(ρ)− f(ρ′) ≤ 2αs

k

[

1 + Õk(1/k)
]

≤ 3/k. (4.36)

To complete the proof, we calculatef(ρ′). Recall thatd = 2k ln k − ln k − c with c bounded. Moreover, (4.32)
shows that‖ρ′i‖22 = 1 for i = 1, . . . , s. In addition, sinceρ′ij = 1/k for all i > s, j ∈ [k], we get‖ρ′i‖22 = 1/k for

i > s. Hence,‖ρ′‖22 = 1 + (1 − 1/k)s. Thus, using (4.7) and performing an elementary calculation, we get

E(ρ′) =
d

2k2



−2k + ‖ρ′‖22 − 2

(

1− ‖ρ′‖22
2k

)2


+ ok(1/k)

= −2 lnk +
c

k
+

s ln k

k

(

1 +
1

2k
− s

2k2

)

− cs

2k2
+ ok(1/k).

Further,H(ρ′i) = 0 for i ≤ s, whileH(ρ′i) = ln k for i > s. Hence, (4.4) yieldsH(k−1ρ′) = ln k+(1− s/k) ln k =
2 lnk − s

k ln k. Thus,

f(ρ′) = H(ρ′) + E(ρ′) =
c

k
+

s ln k

k

(

1

2k
− s

2k2

)

− cs

2k2
+ ok(1/k)

=
c

k
+

s

k
(1− s/k) · ln k

2k
− cs

2k2
+ ok(1/k) =

s

k
(1− s/k) · ln k

2k
+Ok(1/k). (4.37)

Finally, combining (4.36) and (4.37), we see thatf(ρ) ≤ s
k (1−s/k)· lnk

2k +Ok(1/k) ≤ ln k
8k +Ok(1/k), as claimed. �

Proof of Proposition 4.3.Suppose thatρ ∈ S has an entryρij ∈ [0.49, 0.51]. We claim thatf(ρ) < 0. Indeed, by
Lemmas 4.13 and 4.14

f(ρ) ≤ max
ρ′∈S

f(ρ′)− ln k

5k
≤ ln k

8k
+Ok(1/k)−

ln k

5k
< 0.

Now, suppose thatρ ∈ S has a rowi such thatmaxj∈[k] ρij ∈ [0.15, 0.49]. Without loss of generality, we may
assumei = 1 andρ11 = maxj∈[k] ρij . In fact, we may assume thatρ is the maximizer off subject to the condition
ρ11 = maxj ρ1j ∈ [0.15, 0.49]. Again, we show thatf(ρ) < 0.

What can we say about this maximizerρ? We apply Proposition 4.7 toi = 1 andJ = {2, . . . , k}: if we let
λ = ln(k − 1)/ lnk, then |J | = k − 1 ≥ kλ. Moreover,ρ1j ≤ 0.49 < λ/2 − 10/ lnk for all j ∈ J . Hence,
Proposition 4.7 implies that

ρ12 = · · · = ρ1k. (4.38)
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Thus, Corollary 4.10 shows that the entropy ofρ1 is

H(ρ1) ≤ h(ρ11) + (1− ρ11) ln(k − 1).

By comparison, let̂ρ be the matrix obtained fromρ by replacing the first row by1k1. ThenH(ρ̂1) = ln k. Therefore,
(4.4) yields

H(k−1ρ)−H(k−1ρ̂) = − 1

k
[ln k − h(ρ11)− (1− ρ11) ln (k − 1)] ≤ −ρ11

ln k

k
+Ok(1/k). (4.39)

Moreover, (4.38) yields‖ρ1‖22 = ρ211 + (1 − ρ11)
2/(k − 1) and‖ρ̂1‖22 = 1/k, whence

‖ρ‖22 − ‖ρ̂‖22 ≤ ρ211 +
(1− ρ11)

2

k − 1
− 1/k ≤ ρ211.

Hence, (4.6) impliesE(ρ)− E(ρ̂) ≤ ρ211
ln k
k + Õk(1/k

2). Combining this estimate with (4.39), we get

f(ρ)− f(ρ̂) = H(k−1ρ)−H(k−1ρ̂) + E(ρ)− E(ρ̂) ≤ −ρ11(1− ρ11)
ln k

k
+Ok(1/k). (4.40)

Sincef(ρ̂) ≤ ln k
8k +Ok(1/k) by Lemma 4.14, we obtain from (4.40)

f(ρ) ≤
[

1

8
− ρ11(1− ρ11)

]

ln k

k
+Ok(1/k).

The assertion follows becauseρ11(1 − ρ11) > 1/8 for ρ11 ∈ [0.15, 0.49]. �

4.5. Proof of Proposition 4.4. Let 1 ≤ s ≤ k0.999 and letρ ∈ Ds,tame be the maximiser off . Without loss of
generality we may assume thatρii ≥ 0.51 for i = 1, . . . , s andf(ρij) < 0.51 for all (i, j) 6∈ {(1, 1), . . . , (s, s)}.
Becauseρ is separable, this implies that in factρii ≥ 1 − κ for i = 1, . . . , s, with κ = ln20 k/k as in (2.15).
Furthermore, if there is a pair(i, j) 6∈ {(1, 1), . . . , (s, s)} such thatρij ≥ 0.15, then Proposition 4.3 implies that
f(ρ) < 0. In this case we are done, becausef(ρ̄) > 0 by Proposition 2.4. Thus, assume from now on thatρij < 0.15
for all (i, j) 6∈ {(1, 1), . . . , (s, s)}.

Let ρ̂ be the singly-stochastic matrix with entries

ρ̂ij =

{

ρij if i ∈ [k] , j ≤ s,
1

k−s

∑

l>s ρil if i ∈ [k] , j > s.

Sincek − s = (1 − ok(1))k andmaxj>s ρij < 0.15, we can apply Proposition 4.7 toJ = [k] \ [s] for any i ∈ [k]
(with, say,λ = 1/2). Hence,

f(ρ) ≤ f(ρ̂). (4.41)

We are going to comparef(ρ̂) with f(ρ̄s−stable), the barycentre of the face ofD where the firsts diagonal entries are
equal to one. To this end, we need to estimatef(ρ̂) = H(k−1ρ̂) + E(ρ̂).

As ρ̂ is stochastic and̂ρii = ρii ≥ 1− κ for i ≤ s, we find that

qi =
∑

j 6=i

ρ̂ij = 1− ρii ≤ κ for i ≤ s. (4.42)

Further, letqi =
∑s

j=1 ρ̂ij for i > s. Becauseρ is doubly-stochastic andρii ≥ 1− κ for i ≤ s, we see that

∑

i>s

qi =
∑

i>s

s
∑

j=1

ρ̂ij =
∑

i>s

s
∑

j=1

ρij =

s
∑

i=1

∑

j>s

ρij ≤ κs. (4.43)

Based on (4.42)–(4.43), we obtain the following estimate ofthe entropy.

Claim 4.17. We haveH(k−1ρ̂) ≤ H(k−1ρ̄s−stable) + ok(1/k).

Proof. By Corollary 4.10 and (4.42),

H(ρ̂i) ≤ h(qi) + qi ln k ≤ h(κ) + κ ln k for i ≤ s. (4.44)

Once more by Corollary 4.10,

H(ρ̂i) ≤ h(qi) + qi ln s+ (1− qi) ln(k − s) ≤ h(qi) + qi ln s+ ln(k − s) for i > s. (4.45)
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Sinceh is concave, (4.43) and (4.45) yield

1

k

∑

i>s

H(ρ̂i) ≤
k − s

k
ln(k − s) +

1

k

∑

i>s

(h(qi) + qi ln s) ≤
k − s

k
ln(k − s) + h

(κs

k

)

+
κs

k
ln s. (4.46)

Plugging the bounds (4.44) and (4.46) into (4.4), we arrive at

H(k−1ρ̂) = ln k +
1

k

k
∑

i=1

H(ρ̂i)

≤ ln k +
s

k
(h(κ) + κ lnk) +

k − s

k
ln(k − s) + h(κs/k) +

κs

k
ln s

≤ ln k +
k − s

k
ln(k − s) + ok(1/k) [asκ = Õk(1/k) ands ≤ k0.999]

= H(k−1ρ̄s−stable) + ok(1/k) [by (4.8)],

thereby proving the claim. �

Claim 4.18. We haveE(ρ̂) ≤ E(ρ̄s−stable) + ok(1/k).

Proof. As a first step, we show that there is a constantγ > 0 such that

‖ρ‖22 ≤ s+ 1 + (κs)2 ≤ s+ 1 + k−γ . (4.47)

Indeed, aŝρ is a stochastic matrix, we have

‖ρ̂i‖22 ≤ 1 for i = 1, . . . , s. (4.48)

Furthermore, since
∑

j>s ρij ≤ 1 for eachi ∈ [k] \ [s], we have

∑

i>s

∑

j>s

ρ̂2ij = (k − s)
∑

i>s

(

∑

j>s ρij

k − s

)2

≤ 1. (4.49)

Moreover, (4.43) shows that
∑

i>s qi =
∑

i>s

∑

j≤s ρ̂ij ≤ κs. Hence,

∑

i>s

∑

j≤s

ρ̂2ij ≤
(

∑

i>s

∑

j≤s

ρ̂ij
)2 ≤ (κs)2. (4.50)

As s ≤ k0.999 and becauseκ = ln20 k/k, there is a constantγ > 0 such thatκs ≤ k−0.001 ln20 k ≤ k−γ/2 (provided
thatk is sufficiently large). Thus, combining (4.48)–(4.50), we obtain (4.47).

By comparison, we have‖ρ̄s−stable‖22 = s + 1. Hence, the bound (4.6) on the derivative ofE and (4.47) yield
E(ρ̂) ≤ E(ρ̄s−stable) + ok(1/k), as claimed. �

Combining Claims 4.17 and 4.18, we see thatf(ρ̂) ≤ f(ρ̄s−stable) + ok(1/k). Hence, (4.41) yields

f(ρ) ≤ f(ρ̂) ≤ f(ρ̄s−stable) + o(1/k)

≤ c

k
+ (1− s/k) ln(1 − s/k) +

s lnk

2k2

(

3− s

k

)

− cs

2k2
+ ok(1/k) [due to (4.10)]

≤ c

k
+ (1− s/k) ln(1 − s/k) + ok(1/k) [becauses ≤ k0.999]

≤ c

k
− s

k
(1 − s/k) + ok(1/k) [asln(1− x) ≤ −x]

= f(ρ̄)− s

k
(1− s/k) + ok(1/k) [by Proposition 2.4].

The last expression is decreasing ins (for 1 ≤ s ≤ k0.999). Thus,f(ρ) < f(ρ̄) − 1/k + ok(1/k). This implies the
assertion because we choseρ to be the maximizer off overDs,tame. �
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4.6. Proof of Proposition 4.5. Suppose thatk0.999 < s < k − k0.49 and letρ ∈ Ds,tame be the maximizer off over
Ds,tame. We may assume without loss thatρii ≥ 0.51 for i = 1, . . . , s andρij < 0.51 for (i, j) 6∈ {(1, 1), . . . , (s, s)}.
Due to separability, we thus haveρii ≥ 1 − κ for i = 1, . . . , s. Further, we may assume thatρij ≤ 0.15 for all
(i, j) 6∈ {(1, 1), . . . , (s, s)} as otherwise Proposition 4.3 yieldsf(ρ) < 0 < f(ρ̄).

Let ρ̂ be the stochastic matrix with entries

ρ̂ij =















ρij if i = j ∈ [s] ,
1

s−1

∑

l∈[s]\{i} ρil if i, j ≤ s, i 6= j,
1

k−s

∑

l>s ρil if j > s,
1
s

∑

l≤s ρil if j ≤ s < i.

Sincemaxi6=j ρij ≤ 0.15 ands, k− s > k0.49, we can apply Proposition 4.7 toJi = [k] \ [s] and toJ ′
i = [s] \ {i} for

all i ∈ [k] (with, say,λ = 0.4). We thus obtain

f(ρ) ≤ f(ρ̂). (4.51)

To estimatef(ρ̂), let

qi =
∑

j>s

ρij =
∑

j>s

ρ̂ij for i ≤ s andqi =
∑

j≤s

ρij =
∑

j≤s

ρ̂ij for i > s.

Sinceρ is doubly-stochastic andρii ≥ 1− κ for i ≤ s, we see that

q =
∑

i>s

qi =
∑

i≤s

qi ≤
s
∑

i=1

1− ρii ≤ κs. (4.52)

In addition, let

ti =
∑

j∈[s]\{i}

ρ̂ij =
∑

j∈[s]\{i}

ρij ≤ 1− ρii ≤ κ for i ≤ s. (4.53)

Claim 4.19. We haveH(ρ̂) ≤ 2 lnk +
3q(2 + ln k)

k
+ (1− s/k) ln(1− s/k)− s ln k

k
+

2 lnk

k

s
∑

i=1

ti +Ok(1/k).

Proof. Applying Corollary 4.10, we obtain

H(ρ̂i) ≤ h(ti) + ti ln s+ h(qi) + qi ln(k − s) for i ≤ s. (4.54)

Set

H̃ =
1

k

∑

i≤s

h(ti) + ti ln s.

Summing (4.54) up, recalling from (4.52) thatq =
∑

i≤s qi, and using the convavity ofh, we get

1

k

s
∑

i=1

H(ρ̂i) ≤ H̃ +
s

k
h(q/s) +

q

k
ln(k − s). (4.55)

Furthermore, again by Corollary 4.10, fori > s we have

H(ρ̂i) ≤ h(qi) + qi ln s+ (1 − qi) ln(k − s).

Once more due to the concavity ofh and asq =
∑

i>s qi, we see that

1

k

∑

i>s

H(ρ̂i) ≤ k − s

k
h(q/(k − s)) +

q

k
ln s+

k − s− q

k
ln(k − s). (4.56)

Combining (4.55) and (4.56), we get

H(ρ̂) ≤ H̃ + ln k +
[ s

k
h(q/s) +

q

k
ln(k − s)

]

+

[

k − s

k
h(q/(k − s)) +

q

k
ln s

]

+
k − s− q

k
ln(k − s).
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Using the elementary inequalityh(z) ≤ z(1− ln z) to simplify the above, we get

H(ρ̂)− H̃ ≤ ln k +
q

k
[2 + ln(s/q) + ln((k − s)/q) + ln s+ ln(k − s)] +

k − s− q

k
ln(k − s)

≤ ln k +
q

k
[2 + 2 ln(s) + ln(k − s)− 2 ln q] +

k − s

k
ln(k − s)

≤ ln k +
3q(2 + ln k)

k
+

k − s

k
ln(k − s) +Ok(1/k) [as−z ln z ≤ 1 for all z > 0]

= 2 ln k +
3q(2 + ln k)

k
+ (1− s/k) ln(1− s/k)− s ln k

k
+Ok(1/k). (4.57)

Sinces ≤ k, we obtain

H̃ − 2 ln k

k

s
∑

i=1

ti =
1

k

∑

i≤s

h(ti) + ti(ln s− 2 ln k) ≤ 1

k

s
∑

i=1

h(ti)− ti ln k ≤ 1

k
[due to (4.3)]. (4.58)

Finally, the assertions follows by combining (4.57) and (4.58). �

Claim 4.20. We haveE(ρ̂) = −2 lnk + s ln k
k

(

1 + 3
2k − s

2k2

)

− 2 ln k
k

∑s
i=1 ti + Õk(1/k).

Proof. As a first step, we show that

‖ρ‖22 ≤ s+ 1− 2
s
∑

i=1

ti + ok(1/ lnk). (4.59)

Indeed, together with the definition ofρ̂, equation (4.53) shows that fori ∈ [s],

ρ̂2ii ≤ (1− ti)
2 = 1− 2ti + t2i ≤ 1− 2ti + κ2 and (4.60)

∑

j∈[s]\{i}

ρ̂2ij = (s− 1) ·
(

ti
s− 1

)2

≤ κ2

s− 1
≤ κ2. (4.61)

Moreover, sincêρ is stochastic and̂ρii ≥ 1− κ if i ≤ s, we have
∑

j∈[k]\[s]

ρ̂2ij ≤ κ2 for i ∈ [s] . (4.62)

Combining (4.60)–(4.62) and recalling thatκ = Õk(k
−1), we obtain

s
∑

i=1

‖ρ̂i‖22 ≤ s+ 3κ2s− 2
s
∑

i=1

ti = s+ ok(1/ lnk)− 2
s
∑

i=1

ti. (4.63)

Further, sinceρjj ≥ 1 − κ for j ≤ s and becauseρ is doubly-stochastic, we haveρij ≤ κ for all j ≤ s < i. By the
construction of̂ρ, this implies that̂ρij ≤ κ for all j ≤ s < i. Furthermore,q =

∑

i>s

∑

j∈[s] ρ̂ij ≤ κs by (4.52). As
a sum of squares is maximized if the summands are as unequal aspossible, we obtain

∑

i>s

∑

j∈[s]

ρ̂2ij ≤ κ2s = ok(1/ lnk). (4.64)

In addition, once more by the construction ofρ̂,

∑

i>s

∑

j>s

ρ̂2ij =
∑

i>s

(k − s)

(

∑

j>s ρij

k − s

)2

≤ (k − s)2 ·
(

1

k − s

)2

= 1. (4.65)

Combining (4.63)–(4.65), we obtain (4.59).

By comparison, we have‖ρ̄s−stable‖22 = s+ 1. Hence, (4.6) implies together with (4.59) that

E(ρ̂) ≤ E(ρ̄s−stable)−
2 lnk

k

s
∑

i=1

ti + Õk(1/k).

Plugging in the expression (4.9) forE(ρ̄s−stable) yields the assertion. �
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Finally, combining Claims 4.19 and 4.20, we see that

f(ρ) ≤ f(ρ̂) ≤ (1− s/k) ln(1− s/k) +
3q(2 + ln k)

k
+

s ln k

k

(

3

2k
− s

2k2

)

+ Õ(1/k)

= (1− s/k) ln(1 − s/k) + Õ(1/k) ≤ − s

k
(1− s/k) + Õk(1/k). (4.66)

Our assumptionk0.999 < s < k − k0.49 ensures that− s
k (1− s/k) + Õk(1/k) < 0. Thus, (4.66) and Proposition 2.4

show thatf(ρ) < 0 < f(ρ̄). This completes the proof asρ was chosen to be the maximizer off overDs,tame. �

4.7. Proof of Proposition 4.6. Suppose thatk−
√
k ≤ s ≤ k− 1 and thatρ ∈ Ds,tame maximizes off overDs,tame.

As before, we assume without loss thatρii ≥ 0.51 for i = 1, . . . , s andρij < 0.51 for (i, j) 6∈ {(1, 1), . . . , (s, s)}.
Thus,ρii ≥ 1− κ for i = 1, . . . , s asρ is separable. Further, ifρij > 0.15 for some(i, j) ∈ {(1, 1), . . . , (s, s)}, then
f(ρ) < 0 < f(ρ̄) by Proposition 4.3. Hence, we assumeρij ≤ 0.15 for all (i, j) 6∈ {(1, 1), . . . , (s, s)}.

Let qi =
∑

j 6=i ρij for i ∈ [s]. Becauseρ is doubly-stochastic andρii ≥ 1− κ for i ≤ s, we see that

q =

s
∑

i=1

qi =

s
∑

i=1

∑

j 6=i

ρij =

s
∑

i=1

1− ρii ≤ κs. (4.67)

In addition, let

ti =
∑

j>s

ρij , t =
s
∑

i=1

ti.

Sinceρ is doubly-stochastic, we have

t =

s
∑

i=1

∑

j>s

ρij =
∑

i>s

s
∑

j=1

ρij . (4.68)

We are going to comparef(ρ) with f(id), whereid is the identity matrix (with ones on the diagonal and zeros
elsewhere).

Claim 4.21. WithH = 1
k

∑s
i=1 h(ρii) we haveH(k−1ρ) ≤ ln k +H + q

k ln k + 0.51(k − s) ln k
k .

Proof. Corollary 4.10 implies together with the concavity ofh that

1

k

s
∑

i=1

H(ρi) ≤ 1

k

s
∑

i=1

h(ρii) + qih(ti/qi) + ti ln(k − s) + (qi − ti) ln s

≤ H+
q

k
h(t/q) +

t

k
ln(k − s) +

q − t

k
ln(s)

≤ H+
t

k
(1− ln t+ ln q) +

t

k
ln(k − s) +

q − t

k
ln(s) [ash(z) ≤ z(1− ln z)]. (4.69)

Because−z ln z ≤ 1 for all z > 0, we have− t
k ln t ≤ 1/k. Moreover, asρ is doubly-stochastic (4.68) implies that

t ≤ k − s. Additionally, (4.67) shows thatq ≤ κs ≤ κk = Õk(1), becauseκ = ln20 k/k. Thus,

t

k
(1− ln t+ ln q) ≤ k − s

k
· Ok(ln ln k).

Plugging this last estimate into (4.69), we obtain

1

k

s
∑

i=1

H(ρi) ≤ H+
t

k
ln(k − s) +

q − t

k
ln(s) +

k − s

k
·Ok(ln ln k). (4.70)
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Furthermore, using Corollary 4.10, (4.68) and the concavity of h, we see that

1

k

∑

i>s

H(ρi) ≤ 1

k

∑

i>s

h





s
∑

j=1

ρij



+

s
∑

j=1

ρij ln(s) +



1−
s
∑

j=1

ρij



 ln(k − s)

≤ k − s

k
h

(

t

k − s

)

+
t

k
ln s+

k − s− t

k
ln(k − s)

≤ k − s

k
ln 2 +

t

k
ln s+

k − s− t

k
ln(k − s) [ash(z) ≤ ln 2 for all z]. (4.71)

Plugging (4.70) and (4.71) into (4.4), we find

H(k−1ρ) ≤ ln k +H+
q

k
ln k +

k − s

k
ln(k − s) +

k − s

k
· Ok(ln ln k)

≤ ln k +H+
q

k
ln k +

k − s

2k
ln k +

k − s

k
· Ok(ln ln k) [ask − s ≤

√
k]

≤ ln k +H+
q

k
ln k + 0.51(k − s)

ln k

k
, (4.72)

as claimed. �

Claim 4.22. We haveE(ρ) ≤ E(id) + (1 + Õk(1/k))
lnk
k

(

−0.85(k− s) +
∑s

i=1(ρ
2
ii − 1)

)

.

Proof. The Frobenius norm ofρ can be estimated as follows. Sinceρii ≥ 1 − κ for all i ≤ s andρ is stochastic, we
haveρij ≤ κ for all i ≤ s, j 6= i. Hence, the bound (4.67) implies together with the fact thata sum of squares is
maximized by having the summands as unequal as possible that

s
∑

i=1

‖ρi‖22 ≤
⌈ q

κ

⌉

· κ2 +

s
∑

i=1

ρ2ii ≤ sκ2 +

s
∑

i=1

ρ2ii ≤ Õk(1/k) +

s
∑

i=1

ρ2ii [asκ ≤ ln20 k/k]. (4.73)

A similar argument applies to the remaining rows. More precisely, if i > s thenρij ≤ 0.15 for all j by our initial
assumption onρ. Therefore,

∑

i>s

‖ρi‖22 ≤ k − s

0.15
· (0.15)2 = 0.15(k − s). (4.74)

Combining (4.73) and (4.74), we arrive at

‖ρ‖22 ≤
s
∑

i=1

ρ2ii + 0.15(k − s) + Õk(1/k). (4.75)

By comparison,‖id‖22 = k. Thus, (4.75) yields‖ρ‖22−‖id‖22 ≤ −0.85(k−s)+
∑s

i=1(ρ
2
ii−1)+Õk(1/k). Combining

this estimate with (4.6) completes the proof. �

Observing thatH(k−1id) = ln k and using Claims 4.21 and 4.22, we obtain

f(ρ)− f(id) = H(k−1ρ)− ln k + E(ρ)− E(id)

≤ H+
q

k
ln k − k − s

3k
ln k + (1 + Õk(1/k))

ln k

k

s
∑

i=1

(ρ2ii − 1). (4.76)

To complete the proof, letri = 1 − ρii for i = 1, . . . , s. Then (4.67) shows thatq =
∑s

i=1 ri. Moreover,H =
1
k

∑s
i=1 h(ri), ash(1− z) = h(z) for all z. Sinceri ≤ κ = Õk(1/k), we have

H +
q

k
ln k +

ln k

k

s
∑

i=1

(ρ2ii − 1) =
1

k

s
∑

i=1

[

h(ri) + ri ln k + ((1− ri)
2 − 1) ln k

]

=
1

k

s
∑

i=1

[

h(ri) + ri ln k + (r2i − 2ri) ln k
]

≤ Õk(1/k
2) +

1

k

s
∑

i=1

h(ri)− ri ln k ≤ Ok(1/k) [by (4.3)].
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Plugging this bound into (4.76) and recalling thats ≤ k − 1, we get

f(ρ) ≤ −k − s

3k
ln k +Ok(1/k) + f(id) ≤ f(id)− k − s

3k
ln k +Ok(1/k) < f(id). (4.77)

Finally, we calculatef(id) = ln k + d
2 ln(1 − 1/k) = 1

2f(ρ̄). Sincef(ρ̄) > 0 (by Proposition 2.4), we conclude that
f(id) < f(ρ̄). Thus, the assertion follows from (4.77).

5. THE LAPLACE METHOD

In this section we keep the assumptions of Proposition 2.5 and the notation introduced in Section 2.

In this section we prove Proposition 4.1. Recalling thatR = Rn,k is the (discrete) set of overlap matrices, let

Zρ′,tame = |{(σ, τ) ∈ B × B : σ, τ are tamek-colorings ofG(n,m) andρ(σ, τ) = ρ′}| for ρ′ ∈ R.

Then we can cast the second moment as

E
[

Z2
k,tame

]

=
∑

ρ∈R

E [Zρ,tame] . (5.1)

Because any tamek-coloring is balanced, Fact 2.2 yields

E [Zρ,tame] ≤ E [Zρ,bal] ≤ O(n(1−k2)/2) · exp(n · f(ρ)) uniformly for ρ ∈ R. (5.2)

By Taylor-expandingf aroundρ̄, we can estimate the contribution to the sum (5.1) resultingfrom ρ nearρ̄.

Lemma 5.1. There existC = C(k) > 0 andη = η(k) > 0 such that withR0 = {ρ ∈ R : ‖ρ− ρ̄‖2 < η} we have
∑

ρ∈R0

E [Zρ,tame] ≤ C · E[Zk,tame]
2.

Proof. By construction, we have
∑k

i,j=1 ρij = k for all ρ ∈ R. Therefore, we can parameterizeR as follows. Let

L : [0, 1]
k2−1 → [0, 1]

k2

, ρ̂ = (ρ̂ij)(i,j)∈[k]2\{(k,k)} 7→ L(ρ̂) = (Lij(ρ̂))i,j∈[k], where

Lij(ρ̂) = ρ̂ij for (i, j) 6= (k, k) and Lkk(ρ̂) = k −
∑

(i,j) 6=(k,k)

ρ̂ij .

Moreover, letR̂ = L−1(R) andρ̃ = L−1(ρ̄).

We compute the Hessian off ◦ L = H ◦ L+ E ◦ L at ρ̃. A direct calculation yields for(a, b) 6= (i, j)

∂

∂ρ̂ij
H ◦ L(ρ̂)

∣

∣

ρ̂=ρ̃
= 0,

∂2

∂ρ̂2ij
H ◦ L(ρ̂)

∣

∣

ρ̂=ρ̃
= −2,

∂2

∂ρ̂ij∂ρ̂ab
H ◦ L(ρ̂)

∣

∣

ρ̂=ρ̃
= −1. (5.3)

Furthermore,

∂

∂ρ̂ij
‖L(ρ̂)‖22

∣

∣

ρ̂=ρ̃
= 0,

∂2

∂ρ̂2ij
‖L(ρ̂)‖22

∣

∣

ρ̂=ρ̃
= 4,

∂2

∂ρ̂ij∂ρ̂ab
‖L(ρ̂)‖22

∣

∣

ρ̂=ρ̃
= 2.

Thus, by the chain rule

∂

∂ρ̂ij
E ◦ L(ρ̂)

∣

∣

ρ̂=ρ̃
= 0,

∂2

∂ρ̂2ij
E ◦ L(ρ̂)

∣

∣

ρ̂=ρ̃
=

2d

k2(1− 1/k)2
,

∂2

∂ρ̂ij∂ρ̂ab
E ◦ L(ρ̂) = d

k2(1− 1/k)2
. (5.4)

Combining (5.3) and (5.4), we see that the first derivative off ◦ L at the point̃ρ vanishes, and that the Hessian is

D2f ◦ L(ρ̂)|ρ̂=ρ̃ = −
(

1− d

k2(1− 1/k)2

)

· (id + 1) , (5.5)

where1 denotes the matrix with all entries equal to one andid is the identity matrix.

As id is positive definite,1 is positive semidefinite andd/(k2(1− 1/k)2) = Ok(ln k/k) <
1
2 , (5.5) shows that the

Hessian is negative definite atρ̃. In fact, by continuity there exist numbersη̃, ξ̃ > 0 independent ofn such that the
largest eigenvalue ofD2f ◦ L is smaller than−ξ̃ at all pointsρ̂ such that‖ρ̂− ρ̃‖2 < η̃. Further, becauseL is linear
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there is ann-independentη > 0 such that for allρ ∈ R0 = {ρ ∈ R : ‖ρ− ρ̄‖2 < η} we have‖L−1(ρ) − ρ̃‖2 < η̃.
Hence, by Taylor’s formula there is a numberξ > 0 that does not depend onn such that

f ◦ L(ρ̂) ≤ f(ρ̄)− ξ
∑

(i,j) 6=(k,k)

(ρ̂ij − 1/k)2 for all ρ̂ ∈ R̂0 = L−1(R0). (5.6)

Combining (5.2) and (5.6), we obtain

∑

ρ∈R0

E [Zρ,tame] ≤ exp (f(ρ̄)n) · O(n(1−k2)/2)
∑

ρ̂∈R̂0

exp



−n · ξ
∑

(i,j) 6=(k,k)

(ρ̂ij − 1/k)2





≤ exp (f(ρ̄)n) · O(1)

∫

Rk2
−1

exp



−ξ
∑

(i,j) 6=(k,k)

(ẑij − 1/k)2



 dẑ

≤ exp (f(ρ̄)n) · O(1)

[∫ ∞

−∞

exp
[

−ξz2
]

dz

]k2−1

= O(1) · exp (f(ρ̄)n) . (5.7)

Finally, a direct calculation shows thatf(ρ̄) = 2(ln k + d
2 ln(1 − 1/k)), whenceexp (f(ρ̄)n) = O(kn(1 − 1/k)m)2

(asm = ⌈dn/2⌉). Thus, the assertion follows from Proposition 2.4 and (5.7). �

To estimate the contribution ofρ 6∈ R0, we decomposeR \R0 into three subsets:

R1 = {ρ ∈ R \ R0 : ρ fails to be separable} ,
R2 = {ρ ∈ R \ (R0 ∪R1) : for eachi there isj such thatρij > 0.51} ,
R3 = R \ (R0 ∪R1 ∪R2) .

ConditionT2 from Definition 2.3 directly implies that

E [Zρ,tame] = 0 for all ρ ∈ R1. (5.8)

With respect toR2, we have

Lemma 5.2. There is a numberC = C(k) > 0 such that
∑

ρ∈R2
E [Zρ,tame] ≤ C · E[Zk,tame]

2.

Proof. Let R′
2 be the set of allk-stableρ′ ∈ R (i.e., ρ′ii > 0.51 for all i ∈ [k]). Because we restrict ourselves to

balancedk-colorings, the row and column sums of each matrixρ ∈ R are1+O(n−1/2). Hence, for any matrixρ ∈ R
there is at most one entry greater than0.51 in each row or column. Thus, suppose thatσ, τ are tamek-colorings of
G(n,m) such thatρ(σ, τ) ∈ R2. Then each row and each column ofρ(σ, τ) haveexactlyone entry that is greater than
0.51. Therefore, there exists a permutationπ : [k] → [k] such thatσ, π◦τ are two colorings such thatρ(σ, π◦τ) ∈ R′

2.
Consequently,

∑

ρ∈R2

E [Zρ,tame] ≤ k!
∑

ρ∈R′

2

E [Zρ,tame] . (5.9)

Further, ifσ, τ arek-colorings such thatρ(σ, τ) ∈ R′
2, thenτ ∈ C(σ) by the very definition of the clusterC(σ).

Therefore, by the linearity of expectation and Bayes’ formula, we have
∑

ρ∈R′

2

E [Zρ,tame] =
∑

σ∈B

E [C (σ) |σ is a tamek-coloring] · P [σ is a tamek-coloring] (5.10)

Now, if σ is a tamek-coloring, then byT3 we know thatC (σ) ≤ E[Zk,bal] with certainty. Thus, (5.9) yields
∑

ρ∈R′

2

E [Zρ,tame] ≤ E [Zk,bal]
∑

σ∈B

P [σ is a tamek-coloring] ≤ E [Zk,bal] · E [Zk,tame]

≤ (1 + o(1))E [Zk,tame]
2 [by Proposition 2.4]. (5.11)

Combining (5.9) and (5.11), we get
∑

ρ∈R2
E [Zρ,tame] ≤ O(E [Zk,tame]

2), as claimed. �

To bound the contribution ofρ ∈ R3, we need the following observation.

Lemma 5.3. There is a numberC = C(k) > 0 such that for anyρ ∈ R there isρ′ ∈ D with ‖ρ− ρ′‖2 < C/
√
n.
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Proof. Let ρ ∈ R. By construction, we have
∑

i,j ρij = k. Hence, while there isi ∈ [k] such that the row sum is
∑

j ρij = 1 + α > 1, there must be another rowl such that
∑

j ρlj = 1 − α′ < 1. Thus, by replacing rowi by
(1− α′′)ρi and rowl by ρl + α′′ρi for some suitableα′′ ≤ 2k/

√
n, we can ensure that at least one of the row sums is

one. After at mostk − 1 steps, we thus obtain a stochastic matrixρ′′ such that‖ρ− ρ′′‖2 = 2k3/
√
n. Repeating the

same operation for the columns yields the desired doubly-stochasticρ′. �

Lemma 5.4. If f(ρ) < f(ρ̄) for anyρ ∈ Dtame \ {ρ̄}, then
∑

ρ∈R3
E [Zρ,tame] ≤ E[Zk,tame]

2.

Proof. Let η > 0 be the number from Lemma 5.1 and letD′ be the set of allρ ∈ Dtame such that‖ρ− ρ̄‖2 ≥ η/2.
The setD′ is compact. Hence, our assumption thatf(ρ) < f(ρ̄) for anyρ ∈ Dtame \ {ρ̄} implies that there exists a
numberγ > 0 (independent ofn) such that

max
ρ∈D′

f(ρ) < f(ρ̄)− γ. (5.12)

In fact, because the functionf is uniformly continuous on[0, 1]k
2

, there is0 < δ < η/3 such that

max
ρ∈D′′

f(ρ) < f(ρ̄)− γ/2, where D′′ = {ρ ∈ [0, 1]
k2

: there isρ′ ∈ D′ with ‖ρ− ρ′‖2 < δ}. (5.13)

We claim thatR3 ⊂ D′′. Indeed, anyρ ∈ R3 satisfies‖ρ− ρ̄‖2 ≥ η (as otherwiseρ ∈ R0), is separable (as
otherwiseρ ∈ R1), and is not stable (as otherwiseρ ∈ R2). Moreover, by Lemma 5.3 there is a doubly-stochastic
ρ′ such that‖ρ− ρ′‖2 < C/

√
n. However, this matrixρ′ may or may not be separable and/or stable. To rectify this,

we form a convex combination betweenρ′ and a suitable doubly-stochastic matrix. More precisely, suppose that the
matrix ρ has preciselyl < k − 1 entries that are greater than0.51. Each row and each column contain at most one
such entry (asρ ∈ B). Thus, we may assume without loss of generality thatρ11, . . . , ρll > 0.51. Now, letρ′′ be the
doubly-stochastic matrix withρ′′11 = · · · = ρ′′ll = 1 andρ′′ij = (k − l)−1 for i, j > l. If β > 0 is a small enough
number, thenρ′′′ = (1− β)ρ′ + βρ′′ ∈ D′ and‖ρ− ρ′′′‖2 < δ. Thus,ρ ∈ D′′.

AsR3 ⊂ D′′, (5.13) yields
max
ρ∈R3

f(ρ) < f(ρ̄)− γ/2. (5.14)

Thus, (5.2) implies
∑

ρ∈R3

E[Zρ,tame] ≤ |R3| exp(n(f(ρ̄)− γ/2)) ≤ |R| exp(n(f(ρ̄)− γ/2))

≤ nk2

exp(n(f(ρ̄)− γ/2)) ≤ exp(n(f(ρ̄)− γ/3)). (5.15)

Upon direct inspection, we findf(ρ̄) = 2(ln k + d
2 ln(1 − 1/k)). Recalling thatm = ⌈dn/2⌉, we thus obtain from

Proposition 2.4
exp(n(f(ρ̄)− γ/3)) ≤ E [Zk,tame]

2 · exp(−γn/4). (5.16)

Combining (5.15) and (5.16), we obtain
∑

ρ∈R3

E[Zρ,tame] = E [Zk,tame]
2 · nk2

exp(−γn/4) ≤ E [Zk,tame]
2
,

thereby completing the proof. �

Finally, Proposition 4.1 follows from (5.8) and Lemmas 5.1,5.2 and 5.4.
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APPENDIX A. PROOF OFLEMMA 3.2

Throughout this section, we assume that2k ln k − ln k − 2 ≤ d ≤ 2k ln k. In addition, we fix someσ ∈ B and we let
Vi = σ−1(i) for i = 1, . . . , n.

To simplify the calculations we consider the following variant of the planted model. Givenσ, n andq ∈ (0, 1), we
let G(n, q, σ) be the random graph in which any two verticesv, w with σ(v) 6= σ(w) are adjacent with probabilityp
independently. The following observation relates this model to the planted modelG(n,m, σ) from Lemma 3.2.

Fact A.1. Givenσ ∈ B, let p be such that the expected number of edges inG(n, p, σ) is equal tom = ⌈dn/2⌉. There
is a numberC = C(k) > 0 such that

P [G(n,m, σ) ∈ A] ≤ C
√
n · P [G(n, p, σ) ∈ A] for any eventA.

Proof. By the choice ofp, the numbere(G(n, p, σ)) of edges of the random graphG(n, p, σ) has a binomial distribu-
tion with mean

p

[

(

n

2

)

−
k
∑

i=1

(|Vi|
2

)

]

= m. (A.1)

Hence, Stirling’s formula shows that for some numberC = C(k) > 0 we haveP [e(G(n, p, σ)) = m] ≥ (C
√
n)−1.

Further, given thate(G(n, p, σ)) = m, the distribution of the random graphG(n, p, σ)) is identical to that ofG(n,m, σ).
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Thus, for any eventA

P [G(n,m, σ) ∈ A] ≤ P [G(n, p, σ) ∈ A]

P [e(G(n, p, σ)) = m]
≤ C

√
n · P [G(n, p, σ) ∈ A] ,

as claimed. �

From here on out, we fixσ ∈ B and choosep ∈ (0, 1) such that the expected number of edges inG(n, p, σ) is equal to
m; becauseσ is balanced, (A.1) implies that

p ∼ k

k − 1
· d
n
. (A.2)

In the following, we are going to show that the propertiesP1–P4are satisfied inG(n, p, σ) with probability1−O(1/n).
Then Fact A.1 readily implies that they hold inG(n,m, σ) w.h.p.

The following instalment of the Chernoff bound will prove useful.

Lemma A.2 ([26]). Letϕ(x) = (1+ x) ln(1+ x)− x. LetX be a binomial random variable with meanµ > 0. Then
for anyt > 0,

P [X > E [X ] + t] ≤ exp(−µ · ϕ(t/µ)), P [X < E [X ]− t] ≤ exp(−µ · ϕ(−t/µ)).

In particular, for anyt > 1 we haveP [X > tµ] ≤ exp [−tµ ln(t/e)] .

A.1. Proof of P1. We may assumei = 1 without loss of generality. Let0.509 ≤ α ≤ 1 − k−0.499 and letS ⊂ V1

be a set of size|S| = αn/k. Because inG(n, p, σ) edges occur independently, for anyv ∈ V \ V1 the number of
neighbors ofv in S has distributionBin(αn/k, p). Hence, asσ is balanced the numberXS of v ∈ V \ V1 with no
neighbor inS has a binomial distribution with meann(1 − 1/k + o(1))(1 − p)αn/k. Our assumption ond and (A.2)
imply that(1− p)αn/k ≤ exp [−αnp/k] ≤ 2k−2α. Thus,

E [XS ] ≤ (1 + o(1))n(1 − 1/k) · 2k−2α. (A.3)

Consequently, by Lemma A.2

P
[

XS ≥ (1− α)n/k − n2/3
]

≤ exp

[

−(1− α+ o(1))
n

k
· ln
(

1− α

2e
· k2α−1

)]

. (A.4)

By comparison, becauseσ is balanced, for a givenα the number of ways to chooseS is
(

(1 + o(1))n/k

(1 − α+ o(1))n/k

)

≤
(

e

1− α

)(1−α+o(1))n
k

= exp
[n

k
(1 − α+ o(1)) (1− ln(1 − α))

]

. (A.5)

Let us callS α-bad if XS ≥ (1 − α)nk − n2/3. Combining (A.3), (A.4) and (A.5) and taking the union boundover
S ⊂ V1 with |S| = αn/k, we obtain

P [there is anα-badS] ≤ exp

[

(1− α)n

k
·
(

1− ln(1− α)− ln

(

1− α

2e
· k2α−1

))

+ o(n)

]

.

To complete the proof ofP1, we are going to show that the right hand side isexp(−Ω(n)).

Thus, we need to estimate

1− ln(1 − α)− ln

(

1− α

2e
· k2α−1

)

= ln

(

2e2

(1 − α)2
k1−2α

)

.

This is negative iff

exp

[(

1

2
− α

)

ln k

]

<
1− α√

2e
. (A.6)

By convexity, the exponential function on the l.h.s. and thelinear function on the r.h.s. intersect at most twice, and
between these two intersections the linear function is greater. Further, an explicit calculation verifies that the r.h.s.
of (A.6) is larger than the l.h.s. at bothα = 0.509 andα = 1 − k−0.499. Thus, (A.6) is true in the entire range
0.509 < α < 1− k−0.499. �
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A.2. Proof of P2. In G(n, p, σ), for each vertexv ∈ V \ Vi the number of neighbors ofv in Vi has distribution
Bin(|Vi|, p). Due to (A.2) and becauseσ is balanced, the mean isλ = |Vi|p ∼ n

k p > 2 ln k. Hence, by Stirling’s
formula the probability thatv has fewer than15 neighbors inVi is q ≤ 2λ14 exp(−λ) ≤ 2k−2 ln14 k. Further, because
the event of having fewer than15 neighbors inVi occurs independently for allv ∈ V \ Vi, the total numberYi of such
vertices has a binomial distributionBin(|V \Vi|, q). Asσ is balanced, the mean is|V \Vi|q ≤ (1−1/k+o(1))n ·q ≤
3k−2 ln14 k. Since we choseκ = k−1 ln20 k, a straightforward application of Lemma A.2 (the Chernoff bound)
implies thatP

[

Yi >
κn
3k

]

≤ exp(−Ω(n)), as desired. �

A.3. Proof of P3. Let 0 < α < k−4/3 and letS ⊂ V of size|S| = αn. The numbere(S) of edges spanned byS
in G(n, p, σ) is stochastically dominated by a random variable with distributionBin(

(

αn
2

)

, p). For any two vertices
v, w ∈ S are connected with probability at mostp in G(n, p, σ) (as the probability is exactlyp if σ(v) 6= σ(w) and0
otherwise). Thus,

P [e(S) ≥ 5|S|] ≤ P

[

Bin

((

αn

2

)

, p

)

≥ 5αn

]

≤
(
(

αn
2

)

5αn

)

p5αn.

Now, letXα be the number of setsS of size |S| = αn such thate(S) ≥ 5|S|. Let d′ = pn ∼ dk
k−1 . By the union

bound,

P [Xα > 0] ≤
(

n

αn

)(
(

αn
2

)

5αn

)

p5αn ≤
( e

α

)αn
(

eαd′

10

)5αn

≤
[

e

(

ed′

10

)5

α4

]αn

. (A.7)

Further, letX =
∑

α Xα, where the sum ranges over0 < α < k−4/3 such thatαn is an integer. Then (A.7) implies
together with the assumption thatα < k−4/3 that

P [X > 0] ≤
∑

α

[

e

(

ed′

10

)5

α4

]αn

= O(1/n).

Thus, the probability that there is a set violatingP3 isO(1/n). �

A.4. Proof of P4. We start by estimating the size of the core; the proof of the following proposition draws on argu-
ments developed in [2, 7].

Proposition A.3. With probability1− exp (−Ω(n)), the core ofG(n, p, σ) contains(1 − Õk(k
−1))n vertices.

The proof of Proposition A.3 is constructive: basically, weiteratively remove vertices of that have too few neighbors
of some color other than their own among the remaining vertices. More precisely, we consider the following process.
For a vertexv and a setS of vertices lete(v, S) denote the number of neighbors ofv in S in G(n, p, σ).

CR1: For i, j ∈ [k], i 6= j, letWij = {v ∈ Vi : e(v, Vj) < 300},Wii = ∅, Wi = ∪k
j=1Wij , andW = ∪k

i=1Wi.
CR2: For i 6= j, letUij = {v ∈ Vi : e(v,Wj) > 100} andU = ∪i6=jUij .
CR3: SetZ(0) = U and repeat the following fori ≥ 0:

• if there isv ∈ V \ Z(i) such thate(v, Z(i)) ≥ 100, pick one suchv and letZ(i+1) = Z(i) ∪ {v};
• otherwise, letZ(i+1) = Z(i) ∪ {v}.

LetZ = ∪i≥0Z
(i) be the final set resulting fromCR3. By construction, the setV \ (W ∪Z) is contained in the core.

To complete the proof of Proposition A.3, we bound the sizes of W , U andZ (Lemmas A.4, A.5 and A.6).

Lemma A.4. With probability at least1− exp (−Ω(n)) we have|Wij | ≤ Õk(k
−3) for anyi, j.

Proof. Fix i, j, i 6= j. Due to the independence of the edges inG(n, p, σ), for anyv ∈ Vi the numbere(v, Vj) of
neighbors inVj has distributionBin(|Vj |, p). As σ is balanced, (A.2) shows that the mean isµ = |Vj |p ≥ 2 lnk.
Using the Chernoff bound (Lemma A.2), we obtainP [|e(v, Vj)| ≤ 300] ≤ exp (−2 lnk +Ok (ln ln k)) = Õk(k

−2).

Hence, by the linearity of expectation and becauseσ is balanced,E[|Wij |] ≤ Õk(k
−2) · |Vi| = n · Õk(k

−3). Further,
once more due to the independence of the edges inG(n, p, σ), |Wij | is a binomial random variable. Thus, using
the Chernoff bound once more (with, say,t = k−4n), we see thatP[|Wij | ≤ Õk(k

−3)n] ≥ 1 − exp(−Ω(n)), as
required. �

Lemma A.5. With probability at least1− exp (−Ω(n)) we have|U | ≤ n/k30.
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Proof. We define two sets whose union containsUij :

U ′
ij = {v ∈ Vi : e(v,Wj \Wji) ≥ 50}, U ′′

ij = {v ∈ Vi : e(v,Wji) ≥ 50}.
Thus, it suffices to bound the sizes ofU ′

ij , U
′′
ij separately.

Let’s start withU ′
ij . By construction, which vertices belong toWj \Wji is independent of the edges between color

classesVi, Vj . Hence, for anyv ∈ Vi the numbere(v,Wi \Wji) has distributionBin(|Wi \Wji|, p). Thus,

E
[

e(v,Wi \Wji)
∣

∣ |Wj \Wji| ≤ n · Õk(k
−2)
]

≤ pn · Õk(k
−2) ≤ Õk(k

−1).

Therefore, the Chernoff bound (Lemma A.2) applied with, say, t = 45 yields

P
[

v ∈ U ′
ij

∣

∣ |Wj \Wji| ≤ n · Õk(k
−2)
]

≤ Õk(k
−45). (A.8)

Once more due to the independence of the edges inG(n, p, σ), the eventsv ∈ U ′
ij are mutually independent forv ∈ Vi.

by Lemma A.4, this event occurs with probability1− exp(−Ω(n)). In effect, given|Wj \Wji| ≤ n · Õk(k
−2), |U ′

ij |
has a binomial distribution. Thus, (A.8) implies together with the Chernoff bound (applied with, say,t = k−100n) that

P
[

|U ′
ij | > nk−40

∣

∣ |Wj \Wji| ≤ n · Õk(k
−2)
]

≤ exp(−Ω(n)). (A.9)

Further, Lemma A.4 implies thatP[|Wj \ Wji| ≤ n · Õk(k
−2)] ≥ 1 − exp(−Ω(n)). Combining this bound with

(A.10), we obtain
P
[

|U ′
ij | > nk−40

]

≤ exp(−Ω(n)). (A.10)

With respect toU ′′
ij , we observe the following. Given thatw ∈ Wji, we know thatw has fewer than300 neighbors

in Vi. But the fact thatw ∈ Wji has no implications as towhich v ∈ Vi vertexw is adjacent to. Thus, given that
w ∈ Wji and givene(w, Vi), the actual set of neighbors ofw in Vi is a random subset ofVi of sizee(w, Vi) ≤ 300. In
fact, these sets are mutually independent for allw ∈ Wji. Thus, we can bound|U ′′

ij | by means of the following balls
and bins experiment: let us think of the vertices inVi as bins. Then each vertexw ∈ Wji tosses300 balls randomly
into the binsVi, independently of all other vertices inWji. In this experiment, letX be the set ofv ∈ Vi that receive
at least 50 balls. Then|U ′′

ij | is dominated by|X | stochastically.

Now, consider onev ∈ Vi. Given|Wji|, the number of balls that land inv has distributionBin(300|Wji|, |Vi|−1).
Therefore, the Chernoff bound yields

P
[

v ∈ X
∣

∣|Wji| ≤ n · Õk(k
−3)
]

≤ P
[

Bin(Õk(k
−3)n, (1 + o(1))k/n) ≥ 50

]

≤ k−45.

Hence, by the linearity of expectationE|X | ≤ nk−45. Hence, Azuma’s inequality yields

P
[

|U ′′
ij | > nk−40

∣

∣|Wji| ≤ n · Õk(k
−3)
]

≤ P
[

|X | > nk−40
∣

∣|Wji| ≤ n · Õk(k
−3)
]

≤ exp(−Ω(n)).

Thus, Lemma A.4 implies
P
[

|U ′′
ij | > nk−40

]

≤ exp(−Ω(n)). (A.11)

Finally, the assertion follows from (A.10) and (A.11), withroom to spare. �

Lemma A.6. With probability at least1− exp (−Ω(n)) we have|Z| ≤ n/k29.

Proof. Lemma A.5 entails that with probability at least1 − exp (−Ω(n)), |U | ≤ n/k30. Assume that this is indeed
the case. Further, suppose that|Z \ U | ≥ i∗ = n/k30. Let us stop the processCR3 at this point, and letZ∗ = Z(i∗).
By construction, the graph induced onS = U ∪ Z∗ spans at least100i∗ ≥ 50|S| edges, while|S| ≤ 2k−30n. Thus,
the setS violates conditionP3. But since we saw in Section A.3 thatP3 is satisfied with probability1− exp(−Ω(n)),
the assertion follows. �

Now, Proposition A.3 is immediate from Lemmas A.4–A.6. For asetY ⊂ V let us denote byN(Y ) the set of all
verticesv ∈ V that have a neighbor inY in G(n, p, σ). As a further step towards the proof ofP4, we establish

Lemma A.7. With probability1− exp(−Ω(n)) the random graphG(n, p, σ) has the following property.

LetY ⊂ V be a set of|Y | ≤ nk−29 vertices. Then|N(Y )| ≤ nk−20. (A.12)
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Proof. Let α < k−29 be the largest number such thatαn is an integer and letq = 1 − (1 − p)αn. For a setY ⊂ V
with |Y | = αn the number of verticesv ∈ V \ Y that have a neighbor inY in G(n, p, σ) is stochastically dominated
byBin(n, q). This is because for any vertexy ∈ Y the probability thatv, y are adjacent is eitherp (if σ(v) 6= σ(y)) or
0 (if σ(v) = σ(y)). Hence, observing thatp ≤ αnp and using the Chernoff bound, we get

P
[

|N(Y ) \ Y | ≥ nk−21
]

≤ P
[

Bin(n, q) ≥ nk−21
]

≤ exp(−nk−21). (A.13)

Now, letX be the number of setsY with |Y | = αn such that|N(Y ) \ Y | ≥ nk−21. Together with the union bound,
(A.13) shows

P [X > 0] ≤
(

n

αn

)

exp(−nk−21) ≤ exp
[

n
(

α(1− lnα)− k−21
)]

≤ exp(−Ω(n)); (A.14)

the last inequality follows becauseα(1 − lnα) ≤ 32k−29 ln k for 0 < α < k−29. Thus, we obtain from (A.14) that
Xα = 0 for all suchα with probability1 − exp(−Ω(n)). If so, we see that any setY of size|Y | ≤ nk−29 satisfies
|N(Y )| ≤ |Y |+ |N(Y ) \ Y | ≤ n(k−29 + k−21) ≤ nk−20, as claimed. �

Corollary A.8. With probability1− exp(−Ω(n)) we have|N(Z)| ≤ nk−20.

Proof. This is immediate from Lemmas A.6 and A.7. �

We define two sets of vertices, which capture the 1-free and 2-free vertices. In what follows, when always let
i, j ∈ [k], i 6= j. Let S0 be the set of vertices that have zero neighbors in some color class other than their own.
Moreover,S1 = {v ∈ V \ S0 : ∃i, j s.t. v ∈ Vi andN(v) ∩ Vj ⊆ Wj}. By the construction of the core, we have

Fact A.9. If v is 1-free, thenv ∈ S0 ∪ S1 ∪ Z ∪N(Z).

We proceed by estimating the sizes ofS0, S1.

Lemma A.10. With probability1− exp(−Ω(n)) we have|S0| ≤ n
k .

Proof. Consider a vertexv ∈ Vi. The numbere(v, Vj) of neighbors ofVi in Vj has distributionBin(|Vj |, p). Sinceσ
is balanced, (A.2) yieldsP [e(v, Vj) = 0] ≤ (1− p)|Vj | ≤ k−2. Thus, by the union bound,

P [v ∈ S0] ≤
∑

j

P [e(v, Vj) = 0] ≤ (k − 1)k−2. (A.15)

Because the events{v ∈ S0} are mutually independent for allv ∈ Vi, the Chernoff bound and (A.15) yield
P
[

|S0 ∩ Vi| > n/k2
]

≤ exp(−Ω(n)). Taking the union bound overi completes the proof. �

Lemma A.11. With probability1− exp(−Ω(n)) we have|S1| ≤ Õk(k
−2)n.

Proof. Fix i 6= j. The total numbere(Vi, Vj) of edges joiningVi andVj in G(n, p, σ) has distributionBin(|Vi×Vj |, p).
Becauseσ is balanced, the Chernoff bound yields

P

[

e(Vi, Vj) ≥
1

2
k−2n2p

]

≥ 1− exp(−Ω(n)). (A.16)

In addition, we claim that the numbere(Vi,Wj) of Vi-Wj-edges satisfies

P
[

e(Vi,Wj) ≤ Õk(k
−3)n2p

]

≥ 1− exp(−Ω(n)). (A.17)

Indeed, by Lemma A.4 we may assume that|Wj \Wji| ≤ Õk(k
−2)n. By construction, the setWj \Wji is independent

of the random bipartite subgraph ofG(n, p, σ) consisting of theVi-Vj-edges. Hence, the numbere(Vi,Wj \Wji) of
edges betweenVi andWj \Wji has distributionBin(|Vi × (Wj \Wji), p). Given the upper bound on|Wj \Wji|, the
Chernoff bound thus implies that

P
[

e(Vi,Wj \Wji) ≤ Õk(k
−3)n2p

]

≥ 1− exp(−Ω(n)). (A.18)

Further, by construction the number ofVi-Wji-edges is bounded by300|Wji|. Since by Lemma A.4 we may assume
that|Wji| ≤ nÕk(k

−3), (A.18) implies (A.17).
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Let us condition on the eventA thatb = e(Vi, Vj \Wj) ≥ 1
3k

−2n2p andr = e(Vi,Wj) ≤ Ok(k
−3) ≤ n2p. Let us

think of the vertices inVi as bins, and of theVi-Vj \Vj edges as balls that are tossed independently and uniformly into
the bins. More precisely, we think of theVi-Vj \Wj edges as blue balls, and of theVi-Wj-edges as red balls. LetXij

be the number of binsv ∈ Vi that receive at least one ball but that do not receive a blue ball. Now, given thatv receives
l balls in total, the probability that all the balls it receives are red is equal to the probability that a hypergeometric
random variable with parametersl, b, r takes the valuel. Therefore, summing over alll ≥ 1 and using our conditions
on b, r, we see thatP [v ∈ Xij ] ≤ Õk(k

−3). Becauseσ is balanced, we thus obtain

E[|Xij | | A] ≤ n

k
· Ok(k

−3). (A.19)

In fact, because the balls are tossed into the bins independently of each other, Azuma’s inequality implies together
with (A.19) that

P[|Xij | ≤ Õk(k
−4)n | A] ≥ 1− exp(−Ω(n)). (A.20)

SinceP[A] ≥ 1 − exp(−Ω(n)) by (A.16) and (A.17), (A.20) yields thatP[|Xij | ≤ Õk(k
−4)n] ≥ 1 − exp(−Ω(n)).

Taking the union bound overi, j completes the proof becauseS1 ⊂ ∪i,jXij . �

Fact A.9 implies together with Lemma A.6, Corollary A.8, Lemma A.10 and Lemma A.11 the desired bound on
the number of1-free vertices. To bound the number of2-free variables, we need

Lemma A.12. Let i, j, l ∈ [k] be distinct. With probability at least1−exp(−Ω(n)) there are no more thannÕk(k
−5)

verticesv ∈ Vi such thate(v, Vj) ≤ 100 ande(v, Vl) ≤ 100.

Proof. For anyv, e(v, Vj), e(v, Vl) are independent binomial variables. Becauseσ is balanced, their means are
(1+o(1))nk p. Hence, (A.2) shows thatP [e(v, Vj), e(v, Vl) ≤ 100] ≤ Õk(k

−4). Consequently, the expected number of
v ∈ Vi with e(v, Vj), e(v, Vl) ≤ 100 is nOk(k

−5). In fact, this is a binomial random variable due to the independence
of the edges inG(n, p, σ). Thus, the assertion follows from the Chernoff bound. �

Now, letS2 be the set of allv ∈ Vi such that there exist distinctj, l ∈ [k] \ {i} such thate(v, Vj) ≤ 100 and
e(v, Vl) ≤ 100. By construction, ifv is 2-free, thenv ∈ S2 ∪ Z ∪N(Z) (note thatU ⊂ Z). Thus, the desired bound
on the number of2-free vertices follows from Lemma A.6, Corollary A.8 and Lemma A.12. �
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