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CHASING THE k-COLORABILITY THRESHOLD *

AMIN COJA-OGHLANT AND DAN VILENCHIK

ABSTRACT. For a fixed numbed > 0 andn large letG(n, d/n) be the random graph om vertices in which any two
vertices are connected with probabilifyn independently. The problem of determining the chromatimber ofG (n, d/n)
goes back to the famous 1960 article of Erdés and Rényistaated the theory of random graphs [Magayar Tud. Akad.
Mat. Kutato Int. Kozl.5 (1960) 17-61]. Progress culminated in the landmark papAchfioptas and Naor [Ann. Mati162
(2005) 1333-1349], in which they calculate the chromatimber precisely for alll in a setS C (0, c0) of asymptotic
densitylim, s oo % f(f 1 = % and up to an additive error of one for the remainihgHere we obtain a near-complete
answer by determining the chromatic numbetf, d/n) for all d in a set of asymptotic density.

Mathematics Subject ClassificatioB5C80 (primary), 05C15 (secondary)

1. INTRODUCTION

Let G(n,p) denote the random graph on the vertexiget {1,...,n} in which any two vertices are connected with
probabilityp € [0,1] independently, known as tHerdds-Renyi modell We write p = d/n and refer tod as the
average degreeAs per common practice, we say th@tn, d/n) has a propertwith high probability(‘w.h.p.) if the
probability that the property holds converged tasn — co. We recall that a grapfy’ is k-colorableif it is possible to
assign each vertex one of the coldis. . ., k} such that no edge connects two vertices of the same coloreder,
thechromatic numbey (G) of a graphG is the least integet such thati is k-colorable. Unless specified otherwise,
we always considet, k fixed asn — oc.

1.1. Background and main results. The theory of random graphs was born with the famous 1966ty Erdés
and Reényi[[21], and has grown since into a substantial aressearch with hundreds, perhaps thousands of contribu-
tions dealing with the&7(n, p) model alone. In their paper, Erdés and Rényi showed tleatahdom grapld:(n, p)
undergoes a percolatigrhase transitioratp = 1/n, and phase transitions have been the guiding theme of tbeythe
ever since. In addition, Erdés and Rényi set the agendafiore research by posing a number of intriguing questions,
all of which have been answered over the years except forfona:givend > 0, what is the typical chromatic number
of G(n,d/n)?

It is widely conjectured that for any numbker> 3 of colors there occurs a phase transition&erolorability. That
is, there exists a numbéy._ ., such thatG(n, d/n) is k-colorable w.h.p. ifd < dj_..1, whereas the random graph
fails to bek-colorable w.h.p. ifd > dj_..1. If true, this would imply that the likely value of the chrotimnumber,
viewed as a function of, is a step function that takes the vakuen the intervatl(; _1)_.o1 < d < dk—col-

Towards this conjecture, Achlioptas and Fried@uit [1] prbtreat for any fixed: > 3 there exists aharp threshold
sequencéj_..i1(n). This sequence is such that for any 0,

o if p<(1—e)dr—coi(n)/n, thenG(n,p) is k-colorable with probability tending tb asn — .
o if p> (1+¢)dr—_coi(n)/n, thenG(n,p) fails to bek-colorable with probability tending tb asn — oco.

Whether the sequendg_..1(n) converges to an actual “uniform” threshalgl_., is a well-known open problem.

*An extended abstract version of this work appeared in thededings of the 54th IEEE Symposium on Foundations of Coen&tience
(‘FOCS’), 2013.

TThe research leading to these results has received fundingthe European Research Council under the European Wr@venth Frame-
work Programme (FP/2007-2013) / ERC Grant Agreement n. 27-88TCC.

lActually this model was introduced by Gilbert[24]. In thegminal paper Erdds and Rényi consider a random ge&ph m) in which the
number of edges is a fixed integer [21]. However, withp = m/(’;) both models are essentially equivalént|[26].
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Yet [1] is a pure existence result that does not provide ang ab to the location af;,_..;. In a landmark paper
Achlioptas and Naof 6] proved via the “second moment methioat

liminf dg_co1(n) > dgan = 2(k — 1)In(k — 1) =2kInk — 2Ink — 2 + ox(1). 1.1)
n— oo

Here and throughoudy, (1) denotes a term that tends to zero in the limit of lakg8y comparison, a naive application
of the union bound shows that

limsup di—co1(n) < dp first = 2kInk —Ink. 1.2)
n—oo
Recently[[14], a more sophisticated union bound argumestusad to prove
limsup dy—co1(n) < dj, gy = 2kInk —Ink — 1+ 0x(1). (1.3)

n—oo
Thus, the gap between the lower bound](1.1) and the uppeidddu®) ondy_..i(n) is aboutin k + 1, an expression
thatdivergesask gets large. By improving the lower bound, the following thesa reduces this gap to a small absolute
constantoRIn2 — 1 4 o4(1) =~ 0.39.

Theorem 1.1. Thek-colorability threshold satisfies
lim inf dkfcol(n) Z dk,cond — Ok(l), with dk,cond =2kIlnk —Ink —2In2. (14)
n—oo

The bounds[{T]1)[(1].3) yield an estimate of the chromatiolver of G(n,d/n). Namely, [1.1) implies that for
d < dj an, the random grap&'(n, d/n) is k-colorable w.h.p. Moreovef,_(1.3) shows thatfor dj_1 fest, G(n,d/n)
fails to bek — 1-colorable w.h.p. Consequently, for allin the interval(d,,_, ..., dr.an) Of length aboutn k, the
chromatic number ofi(n, d/n) is preciselyk w.h.p. However, for altl in the subsequent intervédj, ax, d}. first) Of
length aboutn k, (I.3), [1.3) only imply that the chromatic number is eitkesr & + 1 w.h.p. Thus,[[I11) and(1.3)
yield the typical value of (G (n, d/n)) precisely for “about half” of all. Formally, let us say that a (measurable) set
A C R>¢ hasasymptotic density o if lim,_, oo % foz 14 = «, wherel 4 is the indicator ofA. Then the set on which
(1.3), [1.3) determing (G(n, d/n)) has asymptotic density/2 [6, Theorem 2].

Theoren{ Il enables us to pin the chromatic number downsaigobn a set of asymptotic density thereby
obtaining a near-complete answer to the question of Erddse@nyi. More precisely[ (1.2) and (IL.4) imply

Theorem 1.2. There exists a constahg such that the following is true. Let
Sk =(2(k = 1)In(k — 1) — In(k — 1) — 0.99,2kInk — Ink — 1.38) and S =5, Sk
SetF'(d) = k for all d € Si. ThenS has asymptotic densityand
nhﬂngo Px(G(n,d/n)) = F(d)] =1 foranyd € S.

Of course, the constans99 and1.38 in the definition ofS}, can be replaced by any numbers less than on& amg,
respectively. Theoremn 1.2 also answers a question of AlahKaivelevich [8] whether the chromatic number of
G(n,d/n) is concentrated on a single integer for m@&in an appropriately defined send®”.

Independently of the mathematics literature, the randoaplyrcoloring problem has been studied in statistical
physics, where it is known as the “diluted mean-field Pottifemomagnet at zero temperature”. In fact, physicists
have developed a generic, ingenious but highly non-rigefotmalism called the “cavity method” for locating phase
transitions in random graphs and other discrete strucfB&36]. The so-called “replica symmetric” variant of the
cavity method predicts upper and lower boundsign..; [30,[39], namely

dk,cond - Ok(l) S hHilIlf dkfcol(n) S hm sup dkfcol (TL) S dk,ﬁrst- (15)
n—o0 n— o0

Theorenf 111 establishes the lower bound rigorously.

Additionally, the cavity method yields predictions on thentbinatorial nature of the problem, particularly on
the geometry of the set df-colorings of the random graph. The proof of Theodeni 1.1 isedaon a “physics-
enhanced” second moment argument that exploits this gemalantuition. In fact, the physics intuition is one of
two key ingredients that enable us to improve over the ambred Achlioptas and Naof [6]. The second one is a

A proof that the threshold sequendg_ .. (n) converges would imply a one-point concentration resultter chromatic number outside a
countable set of average degrees. However, the known f@&}ualbes not. Alon and KrivelevicH [8] were concerned alsthwihe case that the
average degreéis a growing function of.. In this paper we deal withi fixed asn — oo, the original setting considered by Erdés and Rényi.
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novel approach, based on a local variations argument, tarthlytical challenge of optimizing a certain (non-convex)
function over the Birkhoff polytope. Neither of these idsaem to depend on particular features of the graph coloring
problem, and thus we expect that they will prove vital to tackvariety of further related problems.

An outline of our physics-enhanced second moment argunodiotfs in Sectiori 2. In addition, in Sectidn 2.5
we will see that the density .ona in (1.4) matches theondensatioror Kauzmann phase transitigoredicted by
physicists. This implies that the bound obtained in Thedielnis the best possible one that can be obtained via a
second moment-type argument over a certain class of natumdbm variables (see Sectlonl2.5 for details).

1.2. Related work. As witnessed by the notorious “four color problem” first pddsy De Morgan in 1852, solved
controversially by Appel and Haken in 1976 [9], and re-sdloy Robertson, Sanders, Seymour and Thoinas [40],
the graph coloring problem has been a central subject ier@s) mathematics for well over a century. Thus, it is
unsurprising that the chromatic number problem@m, p) has received a big deal of attention since it was posed
by Erd6s and Rényi. Indeed, the problem has inspired theldement of techniques that are by now widely used in
various areas of mathematics, computer science, physicsther disciplines.

For instance, pioneering the use of martingale tail bougtamir and Spencer [41] proved concentration bounds
for the chromatic number of/(n, p). Their result was enhanced first by tuczakl[33] and then bynAdad Kriv-
elevich [8], who used the Lovasz Local Lemma to prove thatdhromatic number off(n, p) is concentrated on
two consecutive integers:if < n~'/2. In a breakthrough contribution, Bollobas [11] deterndiriee asymptotics of
the chromatic number of dense random graphs (@én, p) with p > n~1/3). This result improved prior work by
Matula [34], whose “merge-and-exposure” technique tudaasik upon to obtain a similar result for sparser random
graphs([32]. However, in the case that= d/n for a fixed reald > 0, the setting originally studied by Erdés and
Rényi, tuczak’s formula is far less precise thank1[I2)1For a comprehensive literature overview $eel[12, 26].

The work of Achlioptas and Nadr[[6], which gave best prioutesn the chromatic number ¢¥(n, d/n), is based
on thesecond moment metholdis use in the context of phase transitions in random dis@teuctures was pioneered
by Achlioptas and Moorée [5] and Frieze and Wormald|[23]. Téehniques of([6] have been used to prove several
further important results. For instance, Achlioptas andkéd4] identified three (and for sonagust two) consecutive
integers on which the chromatic number of the randbragular is concentrated. This was reduced to two integers f
all fixed of d (and one for about half of all) by adding in the small subgraph conditioning technidqué.[R&cently,
the methods developed in this work have been harnessed tovmghis result further stil[[15]. Moreover, Dyer,
Frieze and Greenhil[[20] extended the second moment argufram [6] to the problem of-coloring ~-uniform
random hypergraphs. We expect that our approach can be asddain improved results in the hypergraph case.
Similarly, it should be possible to improve results of Davigore and Olseri[19] on a “decorated” coloring problem.

In several problems, sophisticated applications of thersgmoment method gave bounds very close to the predic-
tions made by the physicists’ cavity method|[35]. Exampleee the physics predictions have (largely) been verified
rigorously in this way include the hypergraptcoloring problem[[15, 18] and the randdeSAT problem [17]. But
thus far a general limitation of the rigorous proof techmgthas been that they only applyttimary problems where
there are only two values available for each variable. Bytres, in random graph coloring each variable (vertex) has
k values (colors) to choose from, whetecan be arbitrarily large. As we will see in Sectidn 2, the éangimber of
available values complicates the problem dramaticallyfiact, random graph coloring remained the last among the
intensely-studied benchmark problems in which there reatha very substantial gap between the physics predictions
and the rigorous results, a situation rectified by the prtepaper. Thus, we view this paper as an important step
towards the long-term goal of providing a mathematical fitation for the cavity method.

In computer science, thalgorithmic problem of finding ak-coloring of G(n, p) in polynomial time is a long-
standing challenge, mentioned prominently in several anftial survey articles (e.g[, [22,128]). Simple greedy algo
rithms find ak-coloring ford < kInk ~ %dk,ml w.h.p. [3[25[ 28], about half thie-colorability threshold. However,
no efficient algorithm is known to beat the, in the words of lBhtaand Spencei[41], “most vexing” factor of two.

In fact, it has been suggested changes in the geometry oéthaf k-colorings that occur af ~ %dk_col cause the
demise of local-search based algorithiis [2, 37]. Interghti some of the very phenomena that seem to make the al-
gorithmic problem of coloring+(n, p) difficult will turn out to be extremely helpful in the consttion of our random
variable and thus in the proof of Theorém]1.1.
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1.3. Notation and preliminaries. In addition toG(n, p), we consider th&(n, m) model, which is a random graph
with vertex set” = {1,...,n} and exactlyn edges, chosen uniformly at random amongst all such grapbkiig
with G(n,m) facilitates the second moment argument because the tat#beof edges is a deterministic quantity.
Nonetheless, Lemnia2.1 below shows that any result&far m) with m = [dn/2] extend toG(n,d/n). Thus,
throughout the paper we always set m = [dn/2].

Since our goal is to establish a statement that holds withaglitity tending tol asn — oo, we are always going
to assume tacitly that the numbeof vertices is sufficiently large for the various estimaéold. Similarly, at the
expense of the error term,(1) in Theoren T we will tacitly assume thiat> k for a large enough constakg.

We use the standar@-notation to refer to the limith — oo. Thus, f(n) = O(g(n)) means that there exist
C > 0,n9 > 0 such that for aln > no we have[f(n)| < C - |g(n)|. In addition, we use the standard symbols
o(+),Q(+),©(-). In particularo(1) stands for a term that tends@@sn — co. Furthermore, we writ¢ (n) ~ g(n) if
lim, 00 f(n)/g(n) = 1.

Additionally, we use asymptotic notation in the limit of ggrk. To make this explicit, we inse# as an index.
Thus, f(k) = Ox(g(k)) means that there exiét > 0, ko > 0 such that for alk: > k&, we have|f (k)| < C - |g(k)|.
Further, we writef (k) = Oy (g(k)) to indicate that there exigt > 0, ko > 0 such that for allk > k; we have
[f(R) < (Ink)< - |g(k)].

If G is a graplv is a vertex ofZ, then we denote by (v) the neighborhood of in G, i.e., the set of all vertices
w that are connected toby an edge ofy. Where the grapld: is apparent from the context we just wridé(v). If
s > lis an integer, we writés] for the set{1, 2, ..., s}. Moreover, throughout the paper we use the conventions that
0In0 = 0 and (consistently) thatln § = 0.

2. OUTLINE

In this section we first discuss the second moment methodniargéand the argument pursued[ih [6] specifically and
investigate why it breaks down beyond the dendity ~ from (I3). Then, we see how the physics intuition can be
harnessed to overcome this barrier. Finally, we commerherdondensation phase transition.

2.1. The second moment method.Suppose thaZ = Z(G(n,m)) > 0 is a random variable such th&i{G) > 0
implies thatG is k-colorable. Moreover, suppose that there is a nunibet C(d, k) > 0 that may depend on the
average degregand the number of colo#sbut not onn such that

0<E[Z?]<C-E[Z]. (2.1)
Then thePaley-Zygmund inequality
E[Z]?
> .
P[Z>O]_E[Z2] (2.2)

implies that
lim inf P [G(n,m) is k-colorablé > lim inf P [Z > 0] > (4C)~* > 0.
n—oo

n—r00

This inequality yields a lower bound on tlkecolorability threshold.

Lemma 2.1([1]). If d > 0is such thatim inf,,_,, P [G(n,m) is k-colorablg > 0, thenlim inf,, . dg_co1(n) > d.

Thus, in order to obtain a lower bound dp._..;, we need to define an appropriate random varigbéed verify [2.1).
Both of these steps turn out to be non-trivial.

2.2. Balanced colorings and the Birkhoff polytope. The most obvious choice of random variable seems to be the
total numberZ;, of k-colorings ofG(n, m). But to simplify the calculations, we confine ourselves t@étipular type
of colorings. Namely, a map : [n] — [k] is balanced if ||o~!(i)| — #| < y/nfori =1,... k. LetB = By
denote the set of all balanced maps. MoreoverZlet.; be the number of balancédcolorings ofG(n, m). This is
the random variable that Achlioptas and Nadr [6] work witls. ithappens[(2]11) does not hold for eitli&ror Z, 11
in the entire rang8 < d < dj cona. We need to understand why.
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To get started, we compute the first moment. By Stirling'srfola the number of balanced maps = O (k™).
Furthermore, for to be ak-coloring, the random grapfi(n, m) must not contain any of the

k .
_ Ea0]
Flo) = ; < )
“forbidden” edges that join two vertices with the same calndero. If o is balanced, we easily check tha{o) =
(1 =1/k)(3) + O(n). Thus, lettingN = (%) and using Stirling's formula, we find that the probabilitytlr is a

k-coloring of G(n, m) comes to
(TN (C) = et -umm

m m
Hence, by the linearity of expectation,

E[Zipa] = OF"(1—1/k)¥/?). (2.3)

Working out the second moment is not quite so easy. %@7bal] is the expected number phirs of balanced
k-colorings, we need to compute the probability that € B simultaneouslyappen to bé-colorings ofG(n, m).
Of course, this probability depends on how “similar’r are. To quantify this, we define thiex k overlap matrix
p(o, 7) whose entries

ko . 1 o
pij(o,T):E-b Y@y nr=1() (i,7j=1,...,k) (2.4)
represent the proportion of vertices with colarders and colorj underr.

While in binary problems the relevant overlap parameter is justtimensional (e.g., in randomSAT, the Ham-
ming distance of two truth assignments), here the high-dsiomal overlap matrix is required. The need for this
high-dimensional overlap parameter is what makes:thelorability problem so difficult.

The upshot is thap(o, 7) contains all the information necessary to determine théatriity that botho, 7 are
k-colorings. In fact, letZ, 1.1 be the number of pairs of balancketolorings with overlap, and letR denote the set
of all possible overlap matrices of magpsr € 3. For ak x k matrix p we denote the Frobenius norm by

k 1/2
o= (32
ij=1
Fact 2.2([6]). Uniformly forp € R we have
EZypal = Om)/2) . expln- f(p)],  where (2.5)
k
1 d 2 1
f(p) = fak(p) Ink— E[ > pij hlpu} +gh {1 —rte: |P|§}

i,7=1

Proof. Since the functiory turns out to be the key object in this paper, we include thgkmroof to explain where
it comes from combinatorially. By Stirling’s formula, thetal number otr, 7 € B with overlapp equals

n _ 1.2 Pij Pij
=0nIF)/?) ex n- 7 In J 2.6
<pll%a"'apkk%> ( P Z ( )

7,7=1
Now, suppose that, 7 have overlap. By inclusion/exclusion, the number of “forbidden” edgemjng two vertices
with the same color under eitheror ~ equals
k k
_ > PiiE > pu 2 Pij n/k Pij
Flor) = z( +z z: 1) > o0 ("™ —Z: ).

Let N = (). Then Stirling’s formula y|elds
(N—]:(U,T)) 9 k i 9
P [0, T arek-colorings ofG(n,m)] = (+) =0(1)-exp|m|1- p + Z (f) . (27
m ij=1

The assertion follows froni (2.6}, (2.7) and the linearityempectation. O
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The bound[(Z2)5) is essentially tight as similar calculagishow that

E [Zp,bal] = exp(n : f(p) + O(TL)) (28)
Moreover, by the linearity of expectation we can expresstdtmnd moment as
E[Zl%,bal] = Z E[Zp.,bal]- (29)
PER

As the total number of summands/#8| < n*”, we obtain from[[218) and[{2.9) that
1 ) 1
- InE[Z}; ol ~ max InE[Z, pall ~ max f(p). (2.10)

Further, because we work with balanced colorings, the ratvcatumn sums of any € R arel + O(n~2). Thus,
let D be the set of all doubly-stochasficx k& matrices, theBirkhoff polytope. Together with the continuity of and
the observation tha® N D becomes a dense subsetdfsn — oo, (2.10) implies that

L 2
- in E[Z; pal ~ max f(p). (2.11)

In summary, followingl[6], we have transformed the caldolabf the second moment into the problem of optimiz-
ing f over the Birkhoff polytopeD. Let p be the matrix with all entries equal t;]g), the barycenter oD. A glimpse at
(2.3) reveals thaf (p) %lnE [Z1 va1] corresponds to the square of the first moment. Therefarecassargondi-
tion for the success of the second moment method is that tkenmen (2.11) is attained at. Indeed, iff(p) > f(p)
for somep € D, thenE[Z} ,,,] exceedE[Z; 1,..1]* by anexponentiafactorexp(©(n)). Itis not difficult to show that
this necessary condition is also sufficient. Combinatly;itthe condition thap is the maximizer off indicates that
pairsc, T that, judging by their overlap, look completely uncorrethimake up the lion’s share EI[Z,fybal].

2.3. The singly-stochastic bound.Yet solving the optimization proble (2]11) proves seripuificult. Achlioptas
and Naor resort to a relaxation: withD D the set of allk x k singlystochastic matrices, they study

max f (p)- (2.12)

BecauseS is just a product of simpliced, {2112) turns out to be muchexanenable thah (2111). Achlioptas and Naor
solve [2.1R) completely. More precisely, they optimjzever the set{p € S : ||p||, = s} for eachs, i.e., over the
intersection ofS with a sphere. Their argument relies on the product straaifi§ and a sophisticated global analysis
(going to thesixthderivative). The result is that the maximum bf(2.12) andefare also of[(2.111) is attained at the
doubly-stochastig for d < dj, an-.

However, ford > dj an, the maximum[(Z.32) is attained elsewhere. For instaneaniditrix pp,.;c whose firstk /2
rows coincide with those of the identity matiik (with ones on the diagonal and zeros elsewhere) and whadse/fas
rows have all entries equal 19k yields a larger function value thanfor d > dj an + ox(1). Of course, this matrix
fails to be doubly-stoachastic.

Hence, one might hope thatremains the maximizer of (2.111) farup tody. cona. That is, however, not the case.
Indeed, consider the doubly-stochastic

Pstable = (1 — 1/k)id + k21, (2.13)

wherel denotes the matrix with all entries equal to one. A simplewation reveals that(pstanie) > f(p), and thus
that the second moment argument £y, fails, for d well belowdy, cond-

2.4. A physics-enhanced random variable.Therefore, to prove Theordm 1.1 we need to work with a differan-
dom variable. The key observation behind its definition &t tihe second momert (Z2]11) is driven up by certain
“wild” k-coloringse. Their number behaves like a lottery: while the random grigppically has no wild coloring,

a tiny fraction of graphs have an abundance, boosting thensemoment. To avoid this heavily-tailed random vari-
able, we define a notion of “tame” colorings. This induces eot@positionZy, a1 = Zk tame + Zk,wila SUCh that

E [Zk tame) ~ E [Zk pa1]. The second moment bourdd (R.1) turns out to hold4ptame if d < di cona — 0k(1).

The notion of “tame” is inspired by statistical physics gotidns on the geometry of the set bfcolorings. More
precisely, according to the physicists’ cavity method [88], for (1 + ox(1))kInk < d < dj cona the set of all
6



k-colorings, viewed as a subset [@", decomposes into “tiny clusters” that are “well-separafeaim each other.
Formally, we define theluster of a balanced-coloringo of G(n, m) as the set

C(o) = {r € B: 7is ak-coloring andp;; (o, 7) > 0.51 forall i € [k]}. (2.19)

In words, C(o) contains all balanceé-coloringsT where more thas1% of the vertices in each color class 6f
retain their color. According to the cavity method, tbk dj cona €ach cluster contains only an exponentially small
fraction of allk-colorings ofG(n, m) w.h.p. But for our purposes it suffices to formalize “tiny” Just requiring that
IC(o)] < E[Z].

Futher, to formalize the notion that the clusters are “welbarated”, we call a balancgetoloringo separable if

for any other balancet-coloringr and anyi, j € [k| such thap;; (o, 7) > 0.51 we
indeed havey;; (o, 7) > 1 — k, wherex = In** k/k.
In other words, the overlap matrijxo, ) does not have entries in the interal51,1 — k). Hence, if two color

classes have an overlap of more thdfi, then they must, in fact, be nearly identical. This defimtamsures that the
clusters of two separable coloringsr are either disjoint or identical. We thus arrive at the faflog definition.

(2.15)

Definition 2.3. LetG be a graph withn vertices andn edges. A:-coloring o of G is tameiif

T1: o is balanced,
T2: o is separable, and
T3: |C(0)| < E[Zk(G(n,m))].

In Sectior B we show that a typickicoloring of G(n,m) is indeed tame, which implies that the expected number
of tamek-colorings satisfies the following.

Proposition 2.4. There exists a sequeneg — 0 such that ford = dj, cona — €1 We have
E [Zk,tame] ~E [Zk,bal] = @(GXP(% -f(p))) and f(ﬁ) = QITHQ + Ok(k_l) > 0.

Thus, going from blanaced to tame colorings has no disclereiifect on the first moment, which remains exponen-
tially large inn up to at least! = dj, cond — k-

Working with tame colorings has a substantial impact on #wsd moment. As before, computing the second
moment boils down to a continuous optimization problem. Butomparison to[{2,11), this problem is ovesig-
nificantlyreduced domai;.me C D. Indeed, let us call & x k-matrix p separableif p;; ¢ (0.51,1 — ) for all
i,j € [k]. Further, call k-stableif for any i there isj such thaip;; > 0.51. Let Dy, be the set of alp € D that are
separable but ndt-stable. In particular, the matrix;.p1 from (2.13) doesotbelong toD;..... Geometrically, one
can think of D, as being obtained by cutting out (huge) cylinders from thé&tgiff polytope. In Sectiohl4 we will
see that the second moment calculation4@k .. boils down to showing that

nax f(p) (2.16)
is attained atp. Indeed, that[{2.16) mirrors the second moment calculat@ems reasonable: for any two tame
coloringso, 7 the overlap matrixp(c, 7) is separable bff2. Moreover, ifp(o, 7) is k-stable, themr € C(o) by the
very definition ofC (o), andT3 provides ara priori bound on the number of sueh

Thus, in a sense the proof strategy that we pursue is the ippfsthe one from[[6]. While Achlioptas and
Naorrelax the optimization problem (by working with a rather signifitlg larger domain: singly rather than doubly-
stochastic matrices), here westrict the domain by imposing further physics-inspired constgirThis approach,
carried out in Sectiohl4, yields

Proposition 2.5. Assume thak is sufficiently large and that = (2k — 1) In k£ — ¢ for some numbet = Oy (1). If
E[Zk tame] = QUE[Zg,pal), then0 < E[Z2 . ] < C(k) - E [Zi tame]” -

The proof of Proposition 215 essentially comes down to shgwiat the maximuni(2.16) is attainedatEven
though we work with the reduced domdn,,..., this is anything but straightforward. Indeed, to solve @nalytical
problem, we develop a novel local variations argument basegdroperties of the entropy function (among other
things). We expect that this argument will prove useful tkla many related optimisation problems that come up in
second moment arguments.

Finally, Theoreni 111 is an immediate consequence of ProposiZ.4 an@2]5 combined with Leminal2.1.
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2.5. The condensation phase transition.Finally, what would it take to close the (small) remainingdpeetween the
new lower bound(1]4) ofi;._..; and the upper bounfi(1.3)? According to the physicists’tganiethod, this gap is
due to a further phase transition, the so-catteddensatioror Kauzmann transitionthat occurs atly, cona + 0 (1),

i.e., the lower bound established in Theofend 1.1. In fa&t,akistence and precise location of this phase transition
(including the term hidden in the, (1)) can be established rigorously [10].

According to the cavity method[B0], the geometry of the det-golorings changes significantly éf .onq. More
precisely, ford < dj cona — 0k (1) the set ofk-colorings decomposes into clusters that each containamBxponen-
tially small fraction of allk-colorings ofG(n, d/n) w.h.p. By contrast, fod > dj, cona + 01 (1), the size of the largest
cluster is conjectured to contaircanstanfraction of allk-colorings. As a result, two randokacolorings are heavily
correlated, as there is a non-vanishing probability they telong to the same cluster. This explains intuitively why
the condensation threshold poses an obstacle to the semmdmhmethod, as we saw that a necessary condition for
the success of the second moment method is that random péairsadorings decorrelate.

More formally, we prove in[[10] that forl > di cona + or(1) there does not exist a random varialie =
Z(G(n,m)) with the following properties. FirstZ(G) > 0 only if G is k-colorable. Second,

E[Z(G(n,m))]"/" ~ k(1= 1/k)*? and E[Z(G(n,m))’] < O(E[Z(G(n,m))]?).
By contrast, Propositiois 2.4 ahd 2.5 show that.me has these two propertiesdf < dj cona — 0x(1). Hence, in

this sense the approach (and random variable) put forwateipresent paper is best possible.

A refined version of the cavity method, the so-calledtep replica symmetry breaking (“1RSB”) ans§@, 31,
[38,[42], yields a precise prediction as to the valuéaf.,; = lim,,_, dr—co1(n) (of course, the existence of the limit
is taken for granted in the physics work). However, this ptéah is not explicit; for instance, it involves the solorti
to a seriously complicated fixed point problem on the set obpbility distributions on thé& + 1-simplex. Yet it is
possible to obtain an expansion in the limit of lakgeccording to whickl ., = 2kIlnk—Ink — 1+ o (1). Proving
the 1RSB prediction fod;_ ., remains an open problem. In a very few binary problems, asyticpsersions of the
1RSB prediction have been proved rigorously (elg., [16pwElver, it seems anything but straightforward to extend
these arguments to the random graph coloring problem. Hightwe expect that any attempt at determiniag ..
precisely would have to build upon the insights gained ia ffaper and very possibly its techniques.

3. THE FIRST MOMENT
Throughout this section we keep the assumptions of Propo&i4 and the notation introduced in Sectidn 2.
The following lemma is the key step towards proving ProposiZ.4.
Lemma 3.1. There exists a sequeneg — 0 such that ford = dj, cona — €1 We have

P [0 is taméo is ak-coloring of G(n,m)] ~ 1 foranyo € B and
2In2

f(p)=2Ink+dn(l —1/k) = +op(k™1) > 0.
In fact, once we have Lemnia 8.1, Proposifiod 2.4 readilyofad from the linearity of expectation, Bayes’ formula
and the formuld{(2]3) foE[Zj bal)-

To establish Lemmla3.1, we denote®@yn, m, o) the random grapli*(n, m) conditional on the event that€ B
is ak-coloring. ThusG(n, m, o) consists ofn edges drawn uniformly at random without replacement ouho$é
edges that are bichromatic underThis probability distribution is also known as the “platht@odel”.

To establish the boun®3 on the cluster size, we show that w.h(¥n, m, o) contains a vast “core” comprising
of vertices that have several neighbors of each color otieer their own that also belong to the core. Formally, if
G = (V, E) is agraph on the vertex sét= {1,...,n} ando € B, we define theore of (G, o) as the largest subset
V'’ C V such that

Hw e N(w)NV':o(w) =14} >100 forallv e V' andalli # o(v). (3.2)

The core is well-defined: ¥/, V" satisfy [3.1), then so dod& U V. (Of course, the constain@0 is a bit arbitrary.)
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As we will see, due to expansion properties no vertex in thre 066G (n, m, o) can be recolored without leaving
the clustelC (o) w.h.p. The basic reason is that recoloring any vertaxthe core sets off an avalanche of recolorings:
to givewv another color, we will have to recolor at least 100 vertited also belong to the core, and so on.

In addition, if a vertex outside the core is such that for each color other than its olwas a neighbor in the core of
that color, then it should be impossible to recalarithout leavingC (o) as well. For to assign some coloti # o (v)
we will have to recolor at least one vertex in the core. Guiblethis observation, we call a vertexo-complete, if
for each colofi # o(v), v has a neighbow in the core witho (v) = 1.

If o-complete vertices do not contribute|tt(o )|, then the cluster size stems from recoloring verticésat fail to
have a neighbor in the core of some calg# o(v). As we shall see, most of these vertices miss out on exacéy on
colori # o(v) and hence have precisely two colors to choose from. Formadiycall a vertex a-freein (G, o) if,
with V’ denoting the core, we havéi € [k] : N(u) N V' Mo~ 1 (i) = 0}| > a+ 1.

The following lemma summarizes the expansion propertiésef m, o) that the proof of Lemmia3.1 builds upon.

Lemma 3.2. Leto € B and assume thatkInk —Ink —2 < d < 2kInk. LetV; = o= *(i)fori = 1,...,k. Then
w.h.p. the random grap&'(n, m, o) has the following four properties.

P1: Leti € [k]. For any subses C V; of size0.509 - # < |S| < (1 — k~°499)2 the number of vertices
v € V'\ V; that do not have a neighbor ifi is less tharf: — |S| — n?/3.

P2: Leti € [k]. No more thargz: verticesv ¢ V; have less than5 neighbors inV;, wherer = In? k/k.

P3: There is no ses C V of size|S| < k~*/3n that spans more thah| S| edges.

P4: At most?(1 + Ox(1/k)) vertices arel-free, and at mosD;, (k~2)n vertices are2-free.

The proof of Lemm&3]2 is based on arguments that are, by aoly, $tandard; in particular, the “core” has, tweaked
in various ways, become a standard tool2, 7[ 13, 37]. Fosdhe of completeness, we give a full proof of Lenima 3.2
in AppendiXA. Here we proceed to show how Lenimd 3.2 impliesiea3.1.

Lemma 3.3. Assume tha2kInk —Ink — 2 < d < 2kInk and leto € B. Theno is separable inG(n, m, o) w.h.p.

Proof. By Lemmal3.2 we may assume that the random gi@ph, m, o) has the propertieB1-P3. Suppose that
T € Bis anothetk-coloring of this random graph and thayj € [k] are such thap;; (o, 7) > 0.51. Our aim is to show
thatp;; (o, 7) > 1 — . Without loss of generality we may assume that j = 1.

LetR = o (1) \771(1),S = 771 (1) no~ (1) andT = 771(1) \ o~ (1). Becauser is ak-coloring, none
of the vertices irl" has a neighbor it5. Furthermore, becauseis balanced we havgs U T'| > % — {/n, and thus
|T| > % —|S| = v/n. Since|S| = £p11(o, 7) > 0.509%, PLimplies that

> (1= k492
k

Now, letU be the set of alb € T that have at least5 neighbors inr=1(1). Then all of these neighbors lie iR,

because is ak-coloring. Further, as, 7 are asymptotically balanced we obtain frdm13.2)
n

[RUU|< o™ (V)] = || + T] < 2 (g5 + V) <n/k*™.

(3.2)

Hence P3applies toR U U. By the definition of andP3, the numbee(R U U) of edges spanned by U U satisfies

15|U| < e(RUU) <5|RUU|, whenceU| < |R|/2. (3.3)
LetW = T\ U. BecauséV consists of vertices with fewer thais neighbors ino=*(1), P2yields
RN
< —. .
W< 5 (3.4)
Sinceo, T are balanced, we have
_ n _
S|+ R = o= (W) ~ = ~ [77 )] = IS+ [U] + [W]. (3.5)
Hence, by[(313) and(3.4)
IR| = [U| + |W| + o(n) < |—§| W+ o(n) < |—§| + ’;—Z +o(n), whenceR| < ?—k” to(n).  (3.6)

Finally, (3.3) and[(316) imply thaty1 (0, 7) = £ - |S| =1+ 0(1) — £ - |R| > 1 — &, as desired. O
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As a next step, we are going to verify that thhe&omplete vertices take the same color in all the coloring¥ &)
w.h.p.; a similar argument was used|[in [2].

Lemma 3.4. Assume tha2kInk — Ink — 2 < d < 2kInk and leto € B. W.h.p. the random grapfi(n, m, o) has
the following property.

If 7 € C(0), then for allo-complete vertices we haver(v) = 7(v) w.h.p.

Proof. By Lemmad 3.2 and 3.3 we may assume faholds and that is separable iG(n, m, o). Let V' be the
core of this random graph. Moreover, set

A+:{veV" T(v) =i# o)}, _:{veV’:T(v);éi:o—(v)} for i € [k], so that
Z]Aﬂ_uvev’ o(v) # Z\A | (3.7)
The assumptions thatis separable and that bodrhT are asymptotically balanced imply that
max AT < (k+ 0(1))n, max |A7| < (k+ 0(1))2. (3.8)
i€ (k] k ic[k] k
We are going to show that
{veV o) #71(v)}=0. (3.9)

By construction, this implies that(v) = 7(v) for all 7-complete vertices.

To establish[(319), les; = A UA; fori = 1,..., k. Because\; is contained in the core, eache A has
at leastl00 neighbors ino =1 (i). SInCET is ak- colorlng all of these ne|ghbors lie in the sBf . Hence, the number
e(S;) of edges spanned hy; is at leastl00|A;"|. On the other hand[(3.8) implies that;| < £=*/3n for all i.

Therefore P3 entails thate(S;) < 5[5;| for all i. Thus, we obtail00|Af| < e(S;) < 5/Si| < 5(|AS| + |A]]).
Consequently,A; | > 2|A | for all 4. Thus, [3.7) shows thak] = A = () for all i, whence[(319) follows. O

Proof of Lemm&3]lLet o € B. We need to show tha¥(n, m, o) enjoys the properties2—T3 from Definition[2.3
w.h.p. The fact thal2 holds w.h.p. follows directly from Lemma3.3.

With respect toT3, by Lemma 34 we may assume that that foretompletev and allT € C(o) we have
7(v) = o(v). Let F; be the set of-free vertices foy = 1,2. By Lemmd 3.2 we may assume that

B < Z(1+ 0u(1/k)), F2 < On(k™)n. (3.10)

By construction, for any vertex € I \ F» there is a se€, C [k] of at most two colors such thafv) € C, for all
T € C(o). Hence,

IC(0)| < 2Fa\F2 . P2 (3.11)
Combining [(3.ID) and(311), we see that w.h.pGim, m, o),
1 In2 -
- < == ) :
nlnC( o) A + Ox(k™?) (3.12)
We need to compare the r.h.s.[0f(3.12) withn E [Z). 1,.1]. By (23) and Taylor expansion,
1 d d (1 1
ﬁlnE[Zk,bal] = 1nk+§1n(1—1/k)—1nk—§<k+2k2+0k( ))

Writing d = dg cona — € = 2kInk —Ink — 2In 2 — ¢, we obtain

2 \k 2k k
Letting, saye, = O (k~'/2), we obtain from[3.12) and(3113) thigt(o')| < E [Zj pa] W.h.p. HenceT3 holds in
G(n,m, o) w.h.p.
Finally, upon direct inspection we finfl p) = 21In k+dIn(1—1/k). Thus, [3AB) shows that far= d cona—cx =
2klnk —Ink —21In2 — ¢, we havek - f(p) =2In2 + ox(1) > 0, as claimed. O
10
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4. THE SECOND MOMENT
In this section we keep the assumptions of Propodifidn 2d3ta& notation introduced in Sectibh 2.

4.1. Overview. The goal is to prove Propositign 2.5. As we already hinted &dctiori 2, this boils down to maxi-
mizing f(p) overp € Diame. Formally, we have

Proposition 4.1. If f(p) < f(p) for anyp € Diame \ {p}, thenE[Z} ] < O(E[Zk tame®).

The proof of Proposition 411, based on the Laplace methadyisre technical exercise, which we put off to Sedtion 5.

Propositiod 4.1l reduces the second moment argument to &epraf analysis. Indeed, neither the functimor
the domairD;.. over which we need to maximize are dependent ¢though both involve the parametetrandk).
In the following, we aim to establish

Proposition 4.2. If p € Diame \ {9}, thenf(p) < f(p).

Thus, Proposition 215 is immediate from Proposition$ 4 d[A3.

The proof of Propositiof 412 is the heart of the second momegument. Of course, we need to take a closer
look at the functionf. As we will see, it consists of two ingredients: an entropyrt&nd a probability term. More
specifically, suppose that: Q — [0, 1] is a probability distribution on a finite sex(i.e.,> ., p(z) = 1). Recalling
our convention that In 0 = 0, we denote by

H(p) = - p(z)Inp(x)
zEeQ

theentropy of p. Since any € D satisfiesy _, ; p;; = k, we can viewk~!p as a probability distribution ofk] x [k].
Hence, we can write

. d 2 2
fp) = HE ') +E@),  with B =912 el
2 k k2
Combinatorially,E(p) corresponds to the (logarithm of the) probability that € B with overlapp simulataneously
happen to bé-colorings, cf. the proof of FaEt2.2.

It is clear that the entropy imaximizecht the barycentrg of the Birkhoff polytope, because !5 is the uniform
distribution on[k] x [k]. Furthermore, among all the matricesvith non-negative entries that sum#op is the one
thatminimizeshe Frobenius norm and hené&p). This shows thap is a stationary point of (p). But how do we
prove thatp is the global maximizer of ?

The domainD;..,. admits a natural decomposition into several subsets. Lealip € D s-stable if the matrix
has precisely entries that are greater tharb1. Let D, (ame denote the set of all-stablep € Dy,me. Geometrically,
anyp € Dstame IS Close to a — s-dimensional face of the Birkhoff polytope. Forfhass entries greater than
0.51, then by separability these entries are in fact at léasts (with = = In*° k/k as in [ZI5)). Hence is close to
the face where theseentries are equal tb. Indeed, as all other entries pfare smaller tha0.51, p is near a point
“deep inside” that face. Consequently, for any< s < k the setD; (ame IS disconnected: it consists of many tiny
“splinters” near the: — s-dimensional faces ob. Each of these splinters can be mapped to the component where
P11, - -, pss > 0.51 by permuting the rows and columns suitably, which does rfetathe functionf.

In the following, we are going to optimizg¢ separately oveD; (.me for each0 < s < k. We are going to argue
that for eachs, the pointp,_san1. Whose firsts diagonal entries are and whosei, j)-entries are equal tgx — s) !
for i,7 > s comes close to maximizing overD; ame (Up to a negligible errror term in each case). Geometrically
Ds—stable IS the centre of the face defined by; = --- = ps,s = 1. Furthermore, in the case = 0 we have
Ps—stable = p, and we will see that the maximum ovBj ame IS attained at this very point.

We start by showing that we may confine ourselves to matricé®ut an entry in the intervdD.15, 1 — k). Recall
thatS is the set of all singly-stochasticx k-matrices.

Proposition 4.3. For all p € S such thatp;; € [0.15,0.51] for some(, j) € [k] x [k] we havef(p) < 0.
We will see shortly how Propositidn 4.3 implies thas the maximizer off over Dy tame. In addition, there are three

different ranges of < s < k that we deal with separately.
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Proposition 4.4. Suppose that < s < k%999, Then for allp € D; tame We havef(p) < f(p).
Proposition 4.5. Suppose that?-%% < s < k — k%%, Then for allp € D; 1ame We havef(p) < f(p).
Proposition 4.6. Suppose that — k%4° < s < k. Then for allp € D ame We havef(p) < f(p).

The proofs of Propositioris 4.3 and.434.5 are based on bvaiations argument. Roughly speaking, we are go-
ing to argue that ip € D; tame IS “far” from ps_sianie, then a higher function value can be attained by moving gligh
in the direction ofp,_san1.. We expect that this argument can be adapted to perform denoment arguments in
other problems in probabilistic combinatorics. Indeedsuich arguments the function that needs to be optimized is
typically similar in nature to ouyf: an entropy term maximised Atplus a probability term minimized at

More precisely, the following fact is the cornerstone of libeal variations argument. Lete S, leti € [k] be a
row index, and lef) # J C [k] be a set of column indices. Obtagine S from p by letting

pab = pap for all (a,b) & {i} x J andp;, = ﬁ > ey pijforallb e J. (4.1)

Thatis,p is obtained by redistributing in rowthe total mass of the columns jhequally over these columns. Clearly,
the entropy satisfiefl (k—15) > H(k~!p). In fact, this inequality is strict unlegs= p. However, it may well be that
for the probability term we hav&(p) < E(p). The following proposition trades the increase in entroggiast the
drop in the probability term and shows thiis) > f(p) if J is “not too small” andnax e s p;; is “not too big”.

Proposition 4.7. Suppose that € S. Leti € [k] andJ C [k] be such that for some numbgmInk/Ink < A <1
we havelJ| > k*. Moreover, assume thatiax;cs pi; < /2 — Inlnk/Ink. Then the matrix from (41) satisfies

F() = f(p). Infact, if p # f, thenf (5) > f(p).
Let us illustrate the use of Proposition}4.7 by proving
Corollary 4.8. If p € Dy rame \ {7}, thenf(p) < f(p).

Proof. Let p € Dy tame- Thenp;; < 0.51 for all 4, j (asp is 0-stable). In fact, if there arg j such thaf;; > 0.15,
then Proposition 413 implies th#tp) < 0, while f(p) > 0 by Propositiofl 2ZJ4. Hence, we may assume that< 0.15
forall i, j. Let p[l] be the matrix whose firgtrows are identical to those ¢f and whose last — [ rows are identical
to those ofp. Thus,p[0] = p andp[k] = p. We claim that

Floli — 1)) < fpli]) foralli=1,....k. 4.2)

To obtain [4.2), we apply Propositibn #.7 to thk row of p[i — 1] with J = [k] and\ = 1. This is possible because
max; pi;[i — 1] = max; p;; < 0.15. The resulting matriy is preciselyp[i]. Thus, [4.R) follows from Propositidn4.7.
Indeed, Proposition 4.7 shows that one of the inequalfié {s strict (ap # p). Hence,f(p) < f(p). O

Propositio 4P is immediate from Propositidns] #.41-4.6 @odollary[4.8. Thus, we are left to prove Proposi-
tions[4.3E4.)7. In the Sectidn 4.3 we prove Propositioh 4.dildBhg upon that estimate, we then proceed to prove
Proposition§ 413=41.6. But before we start, we introducenggieces of notation and some basic facts.

4.2. Preliminaries. Forz € R we denote byign(z) € {—1,0,1} the sign ofz. Moreover, ifp is matrix, thenp;
denotes théth row of p andp;; the jth entry ofp;. We let||p|| ., = max; ; |pi;|. Further,

h:[0,1] 5 R>p, 2 —zlnz — (1 — 2z)In(1 — 2)
denotes the entropy function. We recall the elementaryuakty 4(z) < z(1 — In 2). In addition, we note that

— < . .
Juax, h(z)—zlnk < 1/k (4.3)

Indeed, we havé(z) — zInk < z(1 —In z — In k) and differentiating twice, we see that— z(1 — ln z — In k) takes
its global maximuml /k atz = 1/k.

We need the following well-known fact about the entropy.

Fact4.9. Letp < [0,1]" be such thaglepi = 1. ThenH (p) > 0 and the following two statements hold.

H1: If pis supported on a set of sizethenH (p) < In s.
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H2: LetZ C [k] and suppose that=Y"._; p; € (0,1). Letp” be the vector with entries
Py =i Licz fori € [k].
ThenH (p) = h(q) + ¢H (¢~ 'p") + (1 — )H((1 — ) (p — 1))
As an immediate consequence of 4.9, we have

Corollary 4.10. Letp < [0, 1]* be such thaE _pi =1

() LetZ C [k]andsely = > .., pi- ThenH (p) < h(q) + qIn|Z| + (1 — q) In(k — |Z]).
(i) LetZ C {2,...,k} beasetofsizé < |Z| <k —1.Setg =), 7 p:. If p1 <1, then

H(p) < h(p1) + (1 = p1)h(q/(1 = p1)) + q¢In(|Z]) + (1 — ¢ — p1) In(k — |Z| = 1),

Proof. The first claim follows simply by first usingi2 and then applyingi1 to ¢~ 'p* and(1 — ¢)~'(p — p*). To
obtain the second assertion, w2 with Z = {1} and then apply (i) to the probability distributigm*p~. O

Let p € S be a singly-stochastic matrix. We can view each ygvas a probability distribution ofk]. With this
interpretation, we see that

H(k™'p) =

k
Z (4.4)

R‘IH

To facilitate the following calculations, we note that

g—plnpz—l—lnp. (4.5)
dp

Moreover, differentiatingz(p) by y = ||p|\§ and recalling thatl = 2k1nk + Oy (In k), we obtain

0 d d Ink

oy 2 MU= 2kHu/l) = e =

—(1+ Ox(1/k)). (4.6)

Further, using the expansidmn(1 + 2) = z + 22/2 + O(z%), we obtain the approximation

2 2
B(p) = 50y {—m ol -2 <1 - %) } + on(1/k), (4.7

Finally, we calculate the function valug$p,_stanic) explicitly; recall thatps _st.bie i the barycentre of the face
of D defined by the equationg; = --- = pss = 1. Let1 < s < k — 1. The firsts rows of ps_stap1e have entropy,
while the lastk — s rows have entropin(k — s). Hence,[4}) yields

Sln(k—s):21nk+(1—s/k)ln(1—s/k)—%lnk. (4.8)

Moreover,Hﬁs,StablCHg = s+ 1. Thus, using[{4]7) and plugging ih= 2k In k — In k — ¢ for some bounded, we get

1 k —
H(k lps—stable) = Ink+ L

N s+ 1 2
E(psfstablc) @ —2k +s+1-2 (1 — o > + Ok(l/k})
c slnk 3 s cs
= _21nk+E+T(1+%_@) 2k2—|—0k(1/k}) (4.9)
Sincef(p) = H(k~1p) + E(p), (&38) and[(4.D) yield
_ c sink s cs
F(ps—stabte) =+ (1= s/k)In(l —s/k) + -5 (3 - E) oz T ok(1/k). (4.10)
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4.3. Proof of Proposition [4.7. We pursue the following strategy. Suppose that < J are such thap;, =
minjey pi; and py, = maxjey pij. I pia = pin, thenp = p and there is nothing to prove. Otherwise, we are
going to argue that increasing, slightly at the expense qf;;, yields a matrixp’ with f(p’) > f(p). We start by
calculating the partial derivatives gf

Lemma4.11. Letp € S. Leti, j,1 € [k] and se® = p;; — p;;. Suppose thas;;, p; > 0. Then

0 0 ) d-o
sign fo_of =sign{l+ — —exp| ————— . (4.12)
Ipi;  Opil, Pij k=24 ¢ 1pll5
Proof. Using [4.5),[(4.6) and the chain rule, we obtain
of ~of _ 1 1n(@>_§. Pil — Pij
Opij  Opi k Pij E1-24% Hpﬂg
Substitutingd = py — ps;, we find
pil d pil — Pij d-6
w(2) B g |
pii) B 1= F g el k(L= F + 2 llolly)
Taking exponentials completes the proof. O

As a next step, we take a closer look at the right hand side.bil{4
Lemma 4.12. Letp € S, leti, j € [k] and assume that;; > 0.

@) If
1 d

P PSS RTTE
pij  k—=2+1lpll5
then there exists a uniqué > 0 such that

L d-o* ]
—:X —_— .
P1%

(4.12)

Pis —2+ % lloll3 ]
* g __d .
Furthermore, for all0 < § < 6* we havel + P~ OXD {’“—”%”8”3 5} > 0.
(2) If @I2) does not hold, then for afl > 0 we havel + - < exp | —4—— ~6} .
Pij Lk—2+%[lell3

Proof. There is at most on& > 0 where the straight liné — 1 + % intersects the strictly convex function
ij

d
[t o]
k—=2+ 1 lell

In fact, there is exactly one sueti iff the differential of the linear function is greater thamat of the exponential
function até = 0, which occurs iff[4.IR) holds. O

Proof of Propositiod 4J7.If p;; = 0 for all j € J, thenp = p and there is nothing to show. Thus, assume that
>_jes Pij > 0. Suppose that € S maximizesf(p) subject to the conditions

i. Pab = pap forall (a,b) ¢ {i} x J and
ii. maxjey pij < Maxjey pij-

Such a maximizep exists because i.—ii. define a compact domain. Because we have
Z[’U = Zpiﬂ" (4.13)
jed JeJ

We claim thatp;; > 0 for all j € J. Indeed, assume that; = 0 for j € J butg;; > 0 for some othef € J. We
recall thatf (p) = H(k~'p) + E(p). As (&3B) and[(416) showd H (k~'p)/9dp;; tends to infinity ap,; approaches,
while |0E(p)/9pi;| remains bounded. Hence, there is- 0 such that the matrix’ obtained fromp by replacings;
by £ andp;; by p;; — € satisfiedf (p’) > f(p), in contradiction to the maximality of (p).

14



Thus, leta be such thap;, = min;c;p;; > 0. Becausep is stochastic, we havhéﬁ”g € (1, k] and|J|pia <
>_jes Pij < 1. Therefore, our assumptions> 3Inln &/ Ink andd < 2k In k imply that

;2|J|2k’\231nk>%. (4.14)
Pia k—2+|plly/k
Thus, [Z.1D) is satisfied. Further, settiig: A\/2 — InIn &/ In k, we find
exp < o . ) < exp (251nk) lasd < 2kInk and||5]? > 1]
k(1—=2/k+ k=2 pl)3)
<EFIn 2k <|J|In %k
< 140/pia [asA > 3Inlnk/Inkandl/p, > |J]]l.  (4.15)

Now, letb € J be such thap;, = max;cs p;; and assume that= p;, — p; > 0. Moreover, recall that we are
assuming thaf;, < max;c; pi; < 0. Sinced < py < 6, (@13) and[[Z.15) yield in combination with Lemnias .11
and4.1? that

of  of

- > 0.
apia 3sz p

Hence, there i§ > 0 such that the matrix’ obtained fromp by increasing;, by £ and decreasing;;, by £ satisfies
f(p") > f(p). But this contradicts the maximality gf(5) subject to i.—ii. Thus, we conclude thaiin;c ; p;; =
Pia = Piv = maxje pip. Therefore [(4.73) implies tha@t= / is the unique maximizer of subject to i.—ii. O

4.4. Proof of Proposition[4.3. To proof is based on two key lemmas. The first one rules out fhalt takes its
maximum ovelp € S at a matrix with an entry close /2.

Lemma 4.13.1f p € S has an entry;; € [0.49,0.51], then there i’ € S such thatf(p') > f(p) + ZE.

Proof. Without loss of generality we may assume thatj) = (1,1) and thatp € S maximizesf subject to the
condition thatp;; € [0.49,0.51]. There are two cases.

Case 1:py; < 0.49forall j > 2: Applying PropositiofiZl7 to the set = {2,...,k} (with x = 21y e
see thap,; = 1;_? for all j > 2, due to the maximality of (p). Hence, Corollarff410 yields
H(p1) < hipi1)+ (1 —pi1)ln(k—1) <In2+0.511nk. (4.16)
Moreover, because;; < 0.51 we have
loall < 05124 (k—1) (1];_”11)2 < 0.261. (4.17)
Let p’ be the matrix obtained from by replacing the first row by1,0,...,0). SinceH(1,0,...,0) = 0,
(@:4) and[(4.16) yield
flo) = f(p) = HE 'p)—H(k™p') + E(p) — E(p)
H(py) — H]£1,0, 00 E(p) - () < In2 + (])€.511nk CE() - B, (418)
Furthermore [(4.17) entai|{so||§ - |\p’||§ < ||p1H§ — 1< —0.739. Hence, [[4b) yields
E(p) — E(p') < —(0.739 + Ox(1/k)) Ink/k < —0.73Ink /. (4.19)

Combining [4.IB) and{4.19), we obtajiip) — f(p') < 1 [In2 — 0.22Ink] < — 12k,
Case 2: there isj > 2 such thatp,; > 0.49: We may assume thagt= 2. Becausezj p1; = 1, we see that

max;>3 p1; < 0.02. Hence, we can apply Propositionl4.7.te= {3, ..., k} (with, say,\ = 1/2). Due to the
maximality of f(p), we obtainp;; = (1 — p11 — p12)/(k — 2) for all j > 3. Hence, Corollar{z4.10 yields

H(p1) < hipi1) +h(p12) +0.02In(k — 2) < 2In2 + 0.02In k. (4.20)
15



Further, becausg?, + p?, < 0.512 + 0.49% asp11, p12 € [0.49,0.51] andp1; + p12 < 1, we see that
2 9 9 1—pu—pi2°

As in the first case, obtaip’ from p by replacing the first row by1,0,...,0). From [421) we obtain
lolla = 11215 < 0.501 — 1 = —0.499. Hence,[(416) yields

E(p)—E(p)) < —0.499(1+ On(1/k))Ink/k < —0.49Ink/k. (4.22)
Combining [4.2D) and (4.22), we find
fp)=f() = HE 'p)—HE ")+ E(p) — E(p')
1 Ink
< = . —0. < -
< k[21n2+0021nk 0.49Ink] < ok
Hence, in either case we obtain the desired bound. O

The second key ingredient is

Lemma 4.14. We havenax,cs f(p) < 2E + O, (1/k).

The proof of Lemm&a4.14 requires two intermediate steps. téf¢ with the following exercise in calculus.

Lemma 4.15. Leté : b € (0,k/2) — k?*/F(b=1 — k~1). Letp = £(1 — /1 —2/1Ink). Then¢ is decreasing on the
interval (0, 1) and increasing oy, k/2). Furthermore, we have

—1/2 <€ (b) < —-3/2  forb e (0.99,1.01). (4.23)
Proof. The derivatives of are
2Ink (1 1 1 2k (1 1 2Ink 1
/ _ 2b/k |2 (2 2 & " _ 20/k |2 M2 ) 2l -
&) F [ k (b k) bQ}’ &(b) =2k [ k2 (b k:) kb2 +b3]'

The first derivative vanishes at the two poihts- %(1 ++/1—2/Ink) only. Moreover, an elementary calculation

shows thap: = £(1 — /1 —2/1Ink) is a local minimum, while& (1 + /1 —2/Ink) > k/2 is a local maximum.

Hence{ is decreasing on the intervdl, 1) and increasing ofy, k/2). The last assertion follows by direct inspection
of the above expression féf. O

Lemma 4.16. Letp € S. Suppose thate [k] is such thajp;; ¢ [0.49,0.51] for all j € [k].
(1) Suppose that;; < 0.49 for all j € [k]. Letp’ be the stochastic matrix with entries
Phj = pnj andp;; = 1/k  forall j € [k], h € [k]\ {i}.

Thenf(p) < f(p'). .
(2) Suppose that;; > 0.51 for somej € [k]. Then there is a number = 1/k + Oy (1/k?) such that for the
stochastic matrix” with entries

1—
Phj = phj andpj; =1 —a, pij, = k__o; forall j € [k],h € [k] \ {i}

we havef(p) < f(p").

Proof. To obtain the first assertion, we simply apply Proposifiohtd.row: and.J = [k] (with A\ = 1). With respect
to the second claim, we may assume without loss thatj = 1 andp;; > 0.51. Letp € S be the matrix that
maximizesf subject to the conditions

i. p11 > 0.51.
ii. po =pqforalla e {2,... k}. (Inwords, the lask — 1 rows of 5 andp coincide.)
16



Sincepy; <1 — p11 < 0.49 for all j > 2, Propositio 47 applies td = {2,..., k} (with A = ln(lﬁ;”) and yields
1—pn

5o = By — , 4.24
P12 P1k E—1 ( )
Letd = p11 — pia, let0 < B8 < 0.49k be such thap;; = 1 — 3/kandletQ =1 — 1/k + ||p||3/k>.
Because is the maximizer off subject to i. and ii., LemmaZ.lL1 implies that
eitherg € {0,0.49%k}, or1 + Aé = exp (5—d) . (4.25)
P12 kQ

We are going to argue th&t (4]25) entails that 1 + Oy (1/k).

First, we observe that > 0. For [£5) shows that the derivatise (p;)/dp11 of the entropy of rowp; tends
to —oo aspy; approaches, while (4.8) implies that the derivativ@E (p)/9p11 remains bounded in absolute value.
Hence, the maximality of (p) implies thats > 0.

Further, sincé{p||3 € [1, k], we haveR) > (1—1/k)?. Moreover,[Z24) implies that= p1; —Ox(1/k). Therefore,
recalling thatd = 2k Ink + Oy (In k), we obtain

exp (1%) = k*n (1 + Ok(l/k)) = K21=B/M(1 4+ O (In k/k)),
p e = C kDo e s b 0u(1/R) [aspi = 1 — B/K].
P12 P12 1—pn
Thus, withé (b) = k2*/%(h=1 — k~1) the function from LemmB&4.15, we see that for a certaia Oy, (In k/k),
) od
=g < (14 Jow (~75) < €9 (4.26)

Letp = £(1 — /1=2/Ink) = (1 + ox(1))5£5. By Lemma4.Ib¢ is decreasing o0, ). Moreover,£'(b) is
negative and bounded away franfor b close tol. Hence, setting = In? k/k, we find

€B) <€+ <@+~ if € [1+7,u.
In addition, is increasing oriu, k/2). Thus,
1 1
< E(0.49K) < KO8 ( —— — = ! i A9K].
£09) < €049 < 1% (g = 1) < () 5 € [1,0.49%
Plugging these two bounds infa (4126), we get
142 exp <ﬁ> if 3€[1+7,0.49k]. (4.27)
P12 kQ

Similarly, because: is the unique local minimum of, we have

EB) =61 —7y)>1—-n~" fBe(0,1-7).

Hence, [[4.26) yields
) od
14— > — if Be(0,1—7). 4.28
2> e (1) fe 1) (4.29)
Since we already know that > 0, (4.28), (4.2)) and(4.28) impl§ € [1 —v,1+~]. Thus,8 = 1+ Ox(1/k) and
consequently; = 1 — B/k =1 —1/k + O(k~2), as desired. O

Proof of Lemm&4.34Lemmd4.IB implies thahax,cs f(p) is attained at a matrix without entries in0.49, 0.51].
Therefore, LgmmﬂjG shows that the maximjzéias the following form for some integér< s < k and certain
a; =1/k+ Ok(1/k?):

l—o; ifi=je€ls],
pij = g ifie(s],j#1, (4.29)
1/k  otherwise.
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Thus, fori € [s] we have

H(p;)) = h(l—qa;)+a;ln(k—1)<h(o)+ a;lnk, (4.30)
loals = (1= )’ +ai/(k-1). (4.31)
Let o’ be the matrix obtained from by replacing the first rows by(1, 0, ..., 0). This matrix satisfies
H(p) = 0, lgllz=1 foriels]. (4.32)
Seta =137 | a; = £ + Ok (k™2). Then [43),[[2.30)E(Z.32) and the concavityxdifmply that
-1, = -1, = ) < f <&y @
H(k™'p)— H(k™'p)) - ZH (pi) < 7 [Ale) +alnk] < —=[1 —Ina+Ink] < ==[1+Ink], (4.33)
o2 1002 < 3 [(1 —a 1] = a2 a1/ 1)
=1 =1
= as[-2+ Ok(l/k)] (4.34)
Plugging [4:34) into[{4]6), we obtain
Ink 2
E(p)—E(p)) < as[-2+ O0x(1/k)] - (1+ Ok(l/k))n— < _% [mk +0(1/k)] . (4.35)
Combining [4.3B) and{4.35) and recalling that= 1/k + O (1/k?), we see that
2as
1) = 1(0) < =2 [1+ Oc1/R)] < 37k (4.36)

To complete the proof, we calculafép’). Recall thatd = 2kInk — Ink — ¢ with ¢ bounded. Moreoveri (4.82)
shows thaﬂp’ng =1fori =1,...,s. Inaddition, sincey;; = 1/kforalli > s, j € [k], we geth’ng = 1/k for
1> s. Hence,Hp’Hg =1+ (1 —1/k)s. Thus, using[(4]7) and performing an elementary calcuiatie get

2
d N2
E(p) - m[—%ﬂwi—z(w%)]+ok<1/k>

slnk 1 s cs
= —21nk—|—k+ A (14—%—@) 2k2—|—0k(1/k})

Further,H (p.) = 0 for i < s, while H(p}) = Ink fori > s. Hence,[([4}) yield$l (k~'p') = Ink + (1 — s/k)Ink =
2Ink — 7 Ink. Thus,

F6) = HO 4B =+ S0 (- g ) - g o/
= Sl 1;1: o+ on(1/k) = (1 - o/k) - 2k + Ox(1/k). (4.37)

Finally, combining[(4.36) and(4.87), we see tiigt) < £ (1—s/k)-2E+0,(1/k) < —,f Ox(1/k), as claimed. O

Proof of Propositio 413.Suppose thap € S has an entry;; € [0.49,0.51]. We claim thatf(p) < 0. Indeed, by

Lemmad 413 and 4114
Ink  Ink Ink

f(p)érppggf(p’)—% <k + Ok (1/k) — - <0

Now, suppose that € S has a rowi such thatmax;c pi; € [0.15,0.49]. Without loss of generality, we may
assume = 1 andp1; = max;e[x pij- In fact, we may assume thatis the maximizer off subject to the condition
p11 = max; p1; € [0.15,0.49]. Again, we show thaf(p) < 0

What can we say about this maximize? We apply Proposition 4.7 to= 1 andJ = {2,...,k}: if we let
A = In(k —1)/Ink, then|J| = k — 1 > k*. Moreover,p;; < 0.49 < /2 —10/Ink for all j € J. Hence,
Proposition 4.7 implies that

P12 =+ = Pik. (4.38)
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Thus, Corollar§ 4,710 shows that the entropyefis
H(p1) < h(p11) + (1= p11)n(k—1).
By comparison, lep be the matrix obtained from by replacing the first row b%l. ThenH (p1) = Ink. Therefore,

(4.3) yields

H(kp)— H('p) = -1

Ink
% Ink —h(p11) = (1 = p11)In(k = 1)] < —PunT + Ok(1/k).  (4.39)
Moreover, [Z3B) yield§p: |12 = p2, + (1 — p11)2/(k — 1) and||p1 || = 1/k, whence

(1—p11)?
kE—1

Hence, [45) implieE (p) — E(p) < p2,2% + Ok (1/k?). Combining this estimate witf{ZB9), we get

ol = 11All; < pfi+ — 1/k < pi;.

R _ 1. R Ink
flp)—f(p)=H(k™'p) — H(k™'p)+ E(p) — E(p) < —p11(1 — 011)7 + Or(1/k). (4.40)
Sincef(p) < 2E + O, (1/k) by LemmdZ4.I4, we obtain frori{4140)
1 Ink
flp) < 3 p1i(l = p11) DT + Ok(1/k).
The assertion follows becauge (1 — p11) > 1/8 for p11 € [0.15,0.49]. O

4.5. Proof of Proposition[44. Let 1 < s < k%99 and letp € Ds tame be the maximiser off. Without loss of
generality we may assume that > 0.51 fori = 1,...,s and f(p;;) < 0.51 forall (,5) & {(1,1),...,(s,s)}.
Becausep is separable, this implies that in fagt; > 1 — x fori = 1,...,s, with x = In* k/k as in [2.15).
Furthermore, if there is a paii, j) ¢ {(1,1),...,(s,s)} such thatp;; > 0.15, then Proposition 413 implies that
f(p) < 0. Inthis case we are done, becay$g) > 0 by Propositio Z}4. Thus, assume from now on fhat< 0.15
forall (¢,5) € {(1,1),...,(s,9)}.
Let p be the singly-stochastic matrix with entries

L Pij ifielk],j<s,

Pig = ﬁ Dusspia fie[k],j> s
Sincek — s = (1 — 0x(1))k andmax;>, p;; < 0.15, we can apply Propositidn 4.7 tb = [k] \ [s] for anyi € []
(with, say,\ = 1/2). Hence,

flp) < f(p)- (4.41)

We are going to comparg(p) with f(7s—stable), the barycentre of the face &f where the firsk diagonal entries are
equal to one. To this end, we need to estimydte) = H(k~'p) + E(p).

As p is stochastic and;; = p;; > 1 — « fori < s, we find that
qi = Zﬁi]‘ =1- pii <K for i <s. (442)
J#i
Further, lety; = ijl pi; fori > s. Because is doubly-stochastic anel; > 1 — « for ¢ < s, we see that

ZQi:ZZﬁij:ZZPij:ZZPUS”S' (4.43)

i>5 i>s5 j=1 i>s5 j=1 =1 j>s

Based on[(4.42)E(4.43), we obtain the following estimatthefentropy.
Claim 4.17. We haveH (k~'5) < H (k™ ps_stabie) + 0 (1/k).

Proof. By Corollary[4.10 and(4.42),
H(p;)) < h(g)+qInk <h(k)+rlnk fori <s. (4.44)
Once more by Corollafy 4.10,

H(p;) < h(g)+qgns+(1—¢)ln(k—3s)<h(g;)+qgilns+1n(k—s) fori > s. (4.45)
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Sinceh is concave [(4.43) anf (4145) yield
1 k—s 1 k
— 0:) < _ _ . . <
A E H(pz) = hl(k S) =+ L E (h(Qz) + ¢ 1n 5) <

i>5 1>8

Plugging the bound§(4.14) ad (4.46) ifia [4.4), we arrive a

— S

n(k — s) + h (%) + s (446)

k

1
Hk p)=Ink+ - H(p;
(~'p) n+k; (p3)

<Ilnk+ 2 (h(k)+klnk) + K ; i In(k — s) + h(ks/k) + % Ins
<Ilnk+ hs In(k — s) + o (1/k) lask = Ox(1/k) ands < k0-999]
= H(k_lﬁs—stable) + Ok(l/k) [by mju
thereby proving the claim. O
Claim 4.18. We haveE(p) < E(ps—stable) + 0k (1/k).
Proof. As a first step, we show that there is a constant 0 such that
ol <s+1+4 (ks)> <s+1+k77. (4.47)
Indeed, ag is a stochastic matrix, we have
lpilla <1 fori=1,...,s. (4.48)

Furthermore, sincd_; ., p;; < 1foreachi € [k] \ [s], we have

2

D ph=k=5)) (%) <1 (4.49)

i>s j>s i>s

Moreover, [4.4B) shows thal,_ . ¢; = >_,. . >, pij < Ks. Hence,

S < (D02 ) < (ko) (4.50)

i>s j<s 1>5 j<s

As s < k%99 and because = In*" k/k, there is a constant > 0 such thatss < k=291 1n* k < k=7/2 (provided
thatk is sufficiently large). Thus, combining(4148)=(4.50), wetain [4.47).

By comparison, we havij, _sabiel|3 = s + 1. Hence, the bound(4.6) on the derivativefofand [Z47) yield
E(p) < E(ps—stable) + 0k (1/k), as claimed. 0

Combining Claim§ 437 add 4118, we see tfigd) < f(ps—stable) + 0x(1/k). Hence,[441) yields
f(/’) < f(ﬁ) < f(psfstabIC) =+ 0(1/k)

< % +(1—s/k)In(1 — s/k) + % (3 - %) - % + o (1/k) [due to [Z1D)
< % + (1= s/k)In(1 — s/k) + ox(1/k) [because < k099
§%—%(1—s/k)+ok(1/k) [asIn(1 — x) < —z]
= f(p) - 2(1 — 5/k) + ox(1/k) loy Propositiofi 214

The last expression is decreasingsitfor 1 < s < £%999). Thus,f(p) < f(p) — 1/k + ox(1/k). This implies the
assertion because we chgs® be the maximizer of overD; tame- O
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4.6. Proof of Proposition[4.3. Suppose that®%%° < s < k — k%49 and letp € D; tame be the maximizer of over
Ds tame- We may assume without loss thaf > 0.51fori =1,...,sandp;; < 0.51for (i,7) & {(1,1),...,(s,s)}.
Due to separability, we thus haye; > 1 — x fori = 1,...,s. Further, we may assume that < 0.15 for all
(i,7) € {(1,1),...,(s,s)} as otherwise Propositibn 4.3 yieldép) < 0 < f(p).

Let p be the stochastic matrix with entries

i iti=jels,
ﬁzle[s]\{i} pa i j<s,i#j,
e fj>s,
%Zlgspu if j <s<i.

Sincemax;; p;; < 0.15 ands, k — s > k9, we can apply Propositidn 4.7 th = [k] \ [s] and toJ] = [s] \ {i} for
all 7 € [k] (with, say,A = 0.4). We thus obtain

pij =

fp) < (). (4.51)
To estimatef(p), let
q; = Zpij = Zﬁ” for 4 < Sandqi = Zpij = Zﬁ” fori > s.
g>s j>s j<s i<s

Sincep is doubly-stochastic angl; > 1 — « for i < s, we see that

S

q = ZQi:ZQigzl—PiiSHS- (4.52)

i>s i<s i=1
In addition, let
Jels\{i} Jels\{i}
. 3¢(2+1Ink Ink 2Ink <
Claim 4.19. We haver () < 2Ink + 212K i — s/m) — 2 Z + ;: 3t + O(1/k).
=1
Proof. Applying Corollary[4.10, we obtain
H(p;)) < h(t;)+t;lns+h(g)+ qn(k —s) fori <s. (4.54)

Set
~ 1
H = T E h(t;) +t; lns.

i<s

Summing[(4.54) up, recalling frorh (452) that= 3, ¢;, and using the convavity df, we get
EXS:H(‘) < B+ 2n(g/s)+ Lin(k —s) (4.55)
v 2 pi) < v q/s . n s). .

Furthermore, again by Corollary 4110, for- s we have
H(pi) < Nhg)+gilns+(1—gq)nk—s).
Once more due to the concavity bfand as; = >
1 R k—s q k—s—q
— ) < — = - — ). :
k;mpl) < ——hg/(k=9)+ s+ ————In(k—s) (4.56)

Combining [4.5b) and (4.56), we get
k—s

H(p) < fl—i—lnk—i—Eh(q/s)—i—%ln(k—s)]-i—{ —h(q/(k— ) + 1 s +k_72_qln(k—s).

i~s 7i» We see that
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Using the elementary inequalify(z) < z(1 — In 2) to simplify the above, we get
~ k

H(p)~H < Wnk+ 2+ n(s/q) + n((k = 5)/q) + s + In(k — )] + ——— In(k — s)

_Sln(k—s)

< Ink+ &2+ 21n(s) +In(k - 5) - 2Ing) +

3‘](2;1“) + k;S In(k — s) + Oy(1/k)  [as—zlnz < 1forallz > 0]

3¢(2 +Ink) + (1= s/k)In(l — s/k) — slnk

IN

Ink +

= 2Ink+ + Or(1/k). (4.57)

k
Sinces < k, we obtain
) 2lnk 1 1
H-— 3 t; = kgh ti(lns —2Ink) < k;h(ti)—tilnk§E [due to [4:B)]. (4.58)
Finally, the assertions follows by combiniig(4.57) an&8}. O

Claim 4.20. We haveB(p) = —21Ink + $10k (1 4 3 — 2.) — 2k 57 4.4 Oy (1/k).

Proof. As a first step, we show that

ol < s+1-2>"ti +or(1/Ink). (4.59)
=1

Indeed, together with the definition pf equation[(4.53) shows that foE [s],

0 < (1—t)?=1—2t; +12 <1—2t; + K? and (4.60)
t; 2 K2
oo o= (s—l)-(s_’1> gs_lgn? (4.61)
jels\{i}
Moreover, since is stochastic and;; > 1 — « if i < s, we have
o <k foriels]. (4.62)
JE[k\[s]

Combining [4.6D){4.62) and recalling that= O, (k~'), we obtain

STl < s+36%s—23 i =s+on(1/Ink) 23t (4.63)
=1

1=1 1=1
Further, sincey;; > 1 — & for j < s and becausg is doubly-stochastic, we hayg; < « forall j < s < i. By the
construction o, this implies thap;; < « forall j < s <. Furthermoreq = > ,_ . > . pij < ks by (452). As
a sum of squares is maximized if the summands are as unequesgsible, we obtain

SN < KPs=o(1/Ink). (4.64)
i>s5 j€[s]

In addition, once more by the constructionf

Y = Zk—s)<%)2§(k—s)2-(kis)Q_l. (4.65)

1>s j>s 1>8

Combining [4.6B)-£(4.85), we obtain (4]159).
By comparison, we havii, _siable||3 = s + 1. Hence, [416) implies together with (4]59) that

2Ink < -
2N+ On(1/k).

i=1

Plugging in the expressioh (4.9) félps_stable) Yields the assertion. O
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Finally, combining ClaimE4.19 aid 4]20, we see that

F0) < 1) < (1—s/k)n(1L — s/k) + SR Sl“k(3 .

- +— %—ﬁ>+0(1/1€)
= (1-s/k)In(1 —s/k) + O(1/k) < —%(1 — s/k) + On(1/k). (4.66)

Our assumptior®? < s < k — k%42 ensures that- £ (1 — s/k) + O (1/k) < 0. Thus, [4:66) and Propositién 2.4
show thatf(p) < 0 < f(p). This completes the proof aswas chosen to be the maximizer pbverD; (ame. O

4.7. Proof of Proposition[4.8. Suppose that — vk < s < k— 1 and thap e D5 tame Maximizes off overD; tame.
As before, we assume without loss that > 0.51 fori = 1,...,s andp;; < 0.51 for (4,5) & {(1,1),...,(s,9)}.
Thus,p;; > 1 —kfori=1,...,saspis separable. Further, if;; > 0.15 for some(s, j) € {(1,1),...,(s,s)}, then
f(p) <0< f(p) by Propositiof . 413. Hence, we assumg < 0.15 for all (¢,5) € {(1,1),...,(s,s)}.

Letq; = >_,; pij fori € [s]. Becausg is doubly-stochastic angl; > 1 — « for i < s, we see that

(JZZQi:ZZsz:Zl—anHS- (4.67)
i=1 i=1

i=1 j#£i

In addition, let

S

tizzpij; t:ZtZ

J>s =1
Sincep is doubly-stochastic, we have
DI WIED ) Wt (469
i=1j>s i>s5 j=1

We are going to comparg(p) with f(id), whereid is the identity matrix (with ones on the diagonal and zeros
elsewhere).

Claim 4.21. WithH = 1 37| h(p;;) we haveH (k~'p) < Ink +H + LInk + 0.51(k — s)12£.

Proof. Corollary[4.10 implies together with the concavity/othat

1< 1<
— . < = . ) s . _ L4
z ;:1 H(p;) < : ;:1 h(pii) + qih(ti/qi) + tiIn(k — s) + (¢; — t;)Ins

q t q—t
< 1 Z _ z -
< H+ kh(t/q)—i— kln(kz s)+ A In(s)

< HA+ %(1 —Int+1Ing) + % In(k —s) + qT—t In(s) [ash(z) < z(1 —Inz)]. (4.69)

Because-zInz < 1forall z > 0, we have—£ Int < 1/k. Moreover, ag is doubly-stochasti¢ (4.68) implies that
t < k — s. Additionally, (Z.67) shows that < ks < kk = O (1), because: = In*° k/k. Thus,

t k—

£ —Int+lng) < TS - Op(Inlnk).
Plugging this last estimate into (4169), we obtain

1 t q—t k—s
— . < — — - - . .
: ;:1 H(p)) < H+ v In(k — s) + 2 In(s) + k: Or(Inlnk) (4.70)
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Furthermore, using Corollafy 4110, (4168) and the congafit:, we see that

%Zﬂ(m) < kzh(zpw>+zpuln (1—pr> k—s)

i>5 1>8

k k— k
k— k—s—t1
. "2+ - lns + — In(k — s) [ash(z) < In2forall z]. (4.71)

Plugging [4.7D) and (4.71) intb (4.4), we find
H(k™'p) < lnk—i-?{—i-%lnk—l-k

k— t k—s—1
< Sh(—)—i—glns—i—éln(lﬂ—s)

<

— S

In(k — s) + % - Ok(Inln k)

k— k—
< lnk—l-?-[—l-%lnk—l- 2kslnk+ k8~0k(1nlnk) lask — s < V&
In k
< lnk—l—H—l—klnk—i-OSl(k— )HT, (4.72)
as claimed. O

Claim 4.22. We haveB(p) < E(id) + (1 + Ok (1/k))ZE (—0.85(k — s) + 325, (p% — 1)) .

Proof. The Frobenius norm gf can be estimated as follows. Singg > 1 — « for all i < s andp is stochastic, we
havep;; < rforalli < s, j # i. Hence, the bound{457) implies together with the fact ¢hatim of squares is
maximized by having the summands as unequal as possible that

S 5 q S S ~ S
Z; loalls < [ 2] w2+ Z}pi < sk + Z}pi < Ox(1/k) + lei- lask < In® k/H. (4.73)

A similar argument applies to the remaining rows. More el if i > s thenp;; < 0.15 for all j by our initial
assumption omp. Therefore,

> leills < % -(0.15)% = 0.15(k — s). (4.74)
i>8 ’
Combining [4.7B) and (4.74), we arrive at
lolls < 37 02 +0.15(k — 5) + Ow(1/k). (4.75)

=1
By comparison|fid||5 = k. Thus, [Z7b) yield§p|5 — [[id||5 < —0.85(k—s)+>7_, (p% —1)+Ox(1/k). Combining
this estimate with[{(4]6) completes the proof. O

Observing tha#/ (k~'id) = In k and using Claim§4.21 ahd 4122, we obtain

flp) = f(id) = H(k™'p) —Ink+ E(p) - E(id)
< ’H+%1nk— kgk 1nk+(1+0k(1/k))h;f Z(p“.—n. (4.76)

1=1
To complete the proof, let, = 1 — p;; fori = 1,...,s. Then [48V) shows that = > 7, ;. Moreover,{ =
>0 h(r;),ash(l — z) = h(z) for all z. Sincer; < s = Ok(1/k), we have
Ink 5 1< )
I (Pu‘ -1) T Z [h(rs) +rilnk + (1 —r)* — 1) Ink]|

i=1 =1

Hot Tk +——
1 S

= 7 Z [h(r;) 4+ rilnk + (r} — 2r;) Ink|
i=1

Or(1/k?) + Zh (ri) —rilnk < Ox(1/k)  [by @3)]

i=1

IN

24



Plugging this bound intd (4.76) and recalling that k — 1, we get

k—s
flp) < — 2k

Finally, we calculatef (id) = Ink + £ In(1 — 1/k) = 3 f(p). Sincef(p) > 0 (by Propositiof.2}4), we conclude that
f(@id) < f(p). Thus, the assertion follows frof (4177).

S Ink + O(1/k) < £(id). (4.77)

Ik + O(1/k) + f(id) < f(id) —

5. THE LAPLACE METHOD

In this section we keep the assumptions of Propodifidn 2d3ta& notation introduced in Sectibh 2.

In this section we prove Propositibn#.1. Recalling tRat R, 1 is the (discrete) set of overlap matrices, let
Zy tame = [{(0,7) € B x B : o, are tamék-colorings ofG(n, m) andp(o, 7) = p'}| forp’ € R.

Then we can cast the second moment as

Zk tamc Z E P, tamc . (51)
pPER

Because any tamie-coloring is balanced, Falct 2.2 yields

E[Z)1ame) < E[Zppa] < O F)/2) cexp(n- f(p))  uniformlyforp € R. (5.2)
By Taylor-expanding’ aroundp, we can estimate the contribution to the sliml(5.1) resuftimm p nearp.
Lemma 5.1. There exisC = C(k) > 0 andn = n(k) > 0 such that withlR, = {p € R : ||p — p||, < n} we have

Z E [Zp,tame] S C- E[Zk,tame]2-
PERo

Proof. By construction, we hav§:i.“_’j:1 pi; = kforall p € R. Therefore, we can parameteriReas follows. Let

£:00,1 7" —0,1)", p = (Pij) . jyem2\{(ki)y — £(P) = (Lij(P))ijerr, Where
Lij(p) = pij for (i,§) # (k,k) and Liwe(p)=k— > pij.
(i,9)#(k,k)

Moreover, letR = £~ (R) andj = L~ (p).
We compute the Hessian ¢fo £L = H o L + E o £ atp. A direct calculation yields fofa, b) # (4, j)

0 HoL(p)|. =0 o — _HoL(p)| .=-2 a721@5(” =1 (5.3)
Opij Plp=p = op3; p=p 7 9pii0pab Plo=p =+ '
Furthermore,
02 2 0? 2
” . — -5 0 ~ _,:4 _— 0 L. =
M 12N Lo =0, g5 1EONE =4 g5 1O
Thus, by the chain rule
0 R 0? . 2d 0? R d
e e VT R e S T
Combining [5.B) and{5l4), we see that the first derivativ¢ ofL at the pointp vanishes, and that the Hessian is
d
D? Noeg=—|(1— 55— ] -(id+1 55
foﬁ(p”p—l’ ( k2(1—1//€)2) (1 + )v ( )

wherel denotes the matrix with all entries equal to one ahid the identity matrix.
Asid is positive definite] is positive semidefinite and/ (k?(1 — 1/k)?) = Ox(Ink/k) < 3, (6.3) shows that the
Hessian is negative definite At In fact, by continuity there exist numbefis¢ > 0 independent of: such that the

largest eigenvalue db2 f o £ is smaller than-¢ at all pointsp such that| — j||. < 7. Further, becausé is linear
25



there is am-independenty > 0 such thatforalp € Ry = {p € R : ||p— pll, < n} we have| L~ (p) — pll2 < 7.
Hence, by Taylor's formula there is a numiger 0 that does not depend ensuch that

FoL(p)<f(p)—& > (py—1/k)?* forallpeRo=L"(Ro). (5.6)
(i,9)# (k,k)
Combining [5.2) and{516), we obtain

Z E[Zp.,tamc] S exp (f(ﬁ)n) 1 k2)/2 Z eXp [—TL 5 Z sz - 1/k ]

peRo P )
< exp(f(p)n)-O(1) exp | —¢ i — 1/k)? | dz
/R’“2 { <w>§<:kk> }
oo k-1
< (om0 | [ ewl-e2a| 0w -ewiem. 67

Finally, a direct calculation shows th#tp) = 2(Ink + £ In(1 — 1/k)), whenceexp (f(p)n) = O(k™(1 — 1/k)™)?

(asm = [dn/2]). Thus, the assertion follows from Proposition|2.4 dnd))(5.7 O
To estimate the contribution ef¢ R, we decompos® \ R, into three subsets:
R1 = {pe€R\Ry:pfailsto be separable
Ra = {peR\(RoUR:):foreach: there isj such thap;; > 0.51},
Rs = R\N(RoUR1UR2).
ConditionT2 from Definition[2.3 directly implies that
E[Z, tame] =0 forallp € R;. (5.8)

With respect tdR», we have

Lemma 5.2. There is a numbef = C(k) > 0 such thaty_ E [Z, tame] < C - E[Zk tame)*-

PER2

Proof. Let R}, be the set of alk-stablep’ € R (i.e., pi; > 0.51 for all i € [k]). Because we restrict ourselves to
balanced:-colorings, the row and column sums of each matrix R arel +O(n~'/2). Hence, for any matrix € R
there is at most one entry greater thahl in each row or column. Thus, suppose that are tamek-colorings of
G(n,m) such thap(o, ) € Ro. Then each row and each columnudé, 7) haveexactlyone entry that is greater than
0.51. Therefore, there exists a permutation[k] — [k] such that, 7o are two colorings such thato, mo7) € RY.

Consequently,
Z p tamc < k' Z p tamc . (59)
PER2 PERS,

Further, ifo, 7 are k-colorings such thap(o, 7) € RS, thent € C(o) by the very definition of the cluste?(o).
Therefore, by the Iinearity of expectation and Bayes’ folamwe have
Z Z, tame) Z E[C (o) |0 is a tamek-coloring - P [0 is a tamek-coloring (5.10)
pER) oceB

Now, if o is a tamek-coloring, then byr3 we know thatC (o) < E[Zj, 1] with certainty. Thus[(5]9) yields
> E(Zptame] < E[Zppa] Y Ploisatamei-coloring < E [Zy pa - E [Zk tame]

PER, oceB
< (1+0(1)E [Zk,tamc]2 [by Propositiod Z.K]. (5.11)
Combining [5:9) and(5.11), we g§§p€R2 E[Z,tame) < O(E [Zk,tame]z), as claimed. O

To bound the contribution gf € R3, we need the following observation.

Lemma 5.3. There is a numbet’ = C(k) > 0 such that for any € R there isp’ € D with ||p — p’|, < C/\/n.
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Proof. Let p € R. By construction, we hav®_, ; p;; = k. Hence, while there i$ € [k] such that the row sum is
Zj pij = 1+ a > 1, there must be another roisuch thatzj pij = 1 —a < 1. Thus, by replacing row by

(1 —a")p; and rowl by p; + o p; for some suitable’’ < 2k/\/n, we can ensure that at least one of the row sums is
one. After at most: — 1 steps, we thus obtain a stochastic magfixsuch that|p — p” || = 2k3/+/n. Repeating the
same operation for the columns yields the desired doublghststicy’. O

Lemma5.4.If f(p) < f(p) foranyp € Deame \ {p}, thend" . E[Z) tame] < E[Zk tame)?-

Proof. Letn > 0 be the number from Lemnja®.1 and et be the set of alp € Diame such that|p — p||, > n/2.
The setD’ is compact. Hence, our assumption thigh) < f(p) for anyp € Diame \ {p} implies that there exists a
numbery > 0 (independent ofi) such that

max flp) < f(p) —~. (5.12)

In fact, because the functiofis uniformly continuous oif, 1]’“2, there is) < § < 7/3 such that

max f(p) < f(5) —~/2,  where D" ={pe[0,1]" :thereisy’ € D' with |p— ||, <6}.  (5.13)

peD

We claim thatRs3 C D”. Indeed, any € R satisfies||p — p|l, > 7 (as otherwise € Ry), is separable (as
otherwisep € R4), and is not stable (as otherwipec R5). Moreover, by Lemm&T5l3 there is a doubly-stochastic
p’" such that|p — p'||, < C/y/n. However, this matrix’ may or may not be separable and/or stable. To rectify this,
we form a convex combination betweghand a suitable doubly-stochastic matrix. More preciselpp®se that the
matrix p has precisely < k£ — 1 entries that are greater tharb1. Each row and each column contain at most one
such entry (ap € B). Thus, we may assume without loss of generality fhat. .., p; > 0.51. Now, letp” be the
doubly-stochastic matrix with; = --- = p;; = 1 andp}; = (k — )=t fori,j > 1. If 3> 0is asmall enough
number, then” = (1 — B)p’ + Bp” € D" and||p — p"’||, < 4. Thus,p € D".

AsR3; C D", (513) yields

max flp) < f(p) — /2 (5.14)
Thus, [5.2) implies
> BlZptamel < [Rslexp(n(f(p) —7/2)) < [R|exp(n(f(p) —7/2))
pERs < ¥ exp(n(f(p) — 7/2)) < exp(n(f(p) —/3)). (5.15)

Upon direct inspection, we finfl(p) = 2(Ink + £In(1 — 1/k)). Recalling thatn = [dn/2], we thus obtain from
Propositiod 2\
exp(n(f(p) = 7/3)) < E [Zk.samel” - exp(—yn/4). (5.16)
Combining [5.1b) and (5.16), we obtain
2

Z E[Zp,tamc] =B [Zk.,tamc]2 : nk2 eXp(—’Yn/4) S E [Zk,tamc] 5
PER3

thereby completing the proof. O
Finally, Propositio 4]l follows froni (5.8) and Lemnias| &2 and 5.4.
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APPENDIXA. PROOF OFLEMMA [3.2

Throughout this section, we assume thain k — Ink — 2 < d < 2kIn k. In addition, we fix some € B and we let
Vi=o (i) fori=1,... n.

To simplify the calculations we consider the following \art of the planted model. Given n andq € (0, 1), we
let G(n, q,0) be the random graph in which any two vertieesv with o(v) # o(w) are adjacent with probability
independently. The following observation relates this gld¢d the planted modél (n, m, o) from Lemmd3.P.

Fact A.1. Giveno € B, letp be such that the expected number of edgeXin p, o) is equal tom = [dn/2]. There
is a numbelC = C(k) > 0 such that

P[G(n,m,0) € A| < Cy/n-P[G(n,p,0) € A for any eventA.

Proof. By the choice o, the numbee(G(n, p, o)) of edges of the random grajgh(n, p, o) has a binomial distribu-

tion with mean
n (Vi
(2> — E ( 5 ) =m. (A1)

i=1

Hence, Stirling’s formula shows that for some numbee= C (k) > 0 we haveP [e(G(n,p,0)) = m] > (Cy/n)~L.
Further, given that(G(n, p, o)) = m, the distribution of the random gragtin, p, o)) is identical to that o&Z(n, m, o).
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Thus, for any event

—m S C\/ﬁp[g(napvo) € "4]7
as claimed. O

From here on out, we fix € B and choose € (0, 1) such that the expected number of edges(in, p, o) is equal to
m; becauser is balanced,[(A]l) implies that

Ed
In the following, we are going to show that the properBds-P4are satisfied it (n, p, o) with probabilityl—O(1/n).
Then FacEAL readily implies that they holdd@(n, m, o) w.h.p.

The following instalment of the Chernoff bound will proveetigl.

Lemma A.2([26]). Letp(z) = (14 2)In(1 + ) — z. Let X be a binomial random variable with mean> 0. Then
for anyt > 0,

PIX > E[X]+t] <exp(—p-¢(t/p), P[X <E[X]—1] <exp(—p-o(—t/p)).
In particular, for anyt > 1 we haveP [X > tu] < exp [—tuln(t/e)].

A.1. Proof of P1. We may assumé = 1 without loss of generality. Led.509 < o < 1 — k=949 and letS c V;
be a set of siz¢S| = an/k. Because irG(n,p, o) edges occur independently, for anye V' \ V; the number of
neighbors ofv in S has distributiorBin(an/k, p). Hence, agr is balanced the numbe¥s of v € V' \ V; with no
neighbor inS has a binomial distribution with mear(1 — 1/k + o(1))(1 — p)*"/*. Our assumption od and [A.2)
imply that (1 — p)**/* < exp [~anp/k] < 2k~2. Thus,

E[Xs] < (14 o(1)n(1 — 1/k) - 2k 2>, (A.3)
Consequently, by LemniaA.2
P [XS >(1—a)n/k— n2/3} < exp {—(1 —a+ 0(1))% -In <1 2—ea . k%‘_l)} . (A.4)

By comparison, becauseis balanced, for a given the number of ways to chooseis

A I (e B R

Let us callS a-badif Xg > (1 — a)% — n?/3. Combining [A:3), [A%) and{Al5) and taking the union bownar
S C Vi with |S| = an/k, we obtain

P [there is am-badS] < exp {@ ~ (1 —In(1 —a) —In (1 ;ea ~k2"‘_1)> + o(n)} .

To complete the proof dP1, we are going to show that the right hand sidesis(—Q(n)).
Thus, we need to estimate

l—a o0 _ 2¢ 1—2a
1-In(l-a) 1n( 5 k ) = ln<(1_a)2k .

exp K% - a) mk} < 1\/;: (A.6)

By convexity, the exponential function on the I.h.s. andlthear function on the r.h.s. intersect at most twice, and
between these two intersections the linear function istgredurther, an explicit calculation verifies that thegs.h.
of (A.6) is larger than the L.h.s. at both = 0.509 anda = 1 — k%49, Thus, [A.®) is true in the entire range
0.509 < a < 1 — k0499, O
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A.2. Proof of P2. In G(n,p,0), for each vertex € V \ V; the number of neighbors af in V; has distribution
Bin(|V;|, p). Due to [A.2) and becauseis balanced, the mean s = |Vi[p ~ %p > 2Ink. Hence, by Stirling’s
formula the probability that has fewer thai5 neighbors in; is ¢ < 2\ exp(—\) < 2k~21n'* k. Further, because
the event of having fewer thal neighbors inl/; occurs independently for all € V' \ V;, the total numbeF; of such
vertices has a binomial distributid@in(|V \ V;|, ¢). As o is balanced, the mean|&\ V;|¢ < (1—1/k+o(1))n-¢ <
3k2In'* k. Since we chose = k~'1n*’k, a straightforward application of Lemnia A.2 (the Chernafihd)
implies thatP [V; > £%] < exp(—Q(n)), as desired. O

A.3. Proof of P3. Let0 < a < k~%/3 and letS  V of size|S| = an. The number(S) of edges spanned by
in G(n,p, o) is stochastically dominated by a random variable with ttistion Bin((%"), p). For any two vertices
v, w € S are connected with probability at magstn G(n, p, o) (as the probability is exactly if o(v) # o(w) and0

otherwise). Thus,
Ple(S) > 5/S]] < P [Bm ((C;”),p) § 5044 . (252)195“"-

Now, let X,, be the number of set§ of size|S| = an such thate(S) > 5|S|. Letd’ = pn ~ 2. By the union

k—1"
bound,
W) (D) g - (£Y {0\
P[Xa>0] < (om) (5an>p = (a) ( 10 =

’ 5 an
e(%) a4‘| . (A.7)

Further, letX = " X,, where the sum ranges ovek a < k~%/% such thatwn is an integer. Ther (Al 7) implies
together with the assumption that< k~*/3 that

P[X >0] < za: [e (%)5 aﬂ - =0(1/n).

Thus, the probability that there is a set violatiPgis O(1/n). O

A.4. Proof of P4. We start by estimating the size of the core; the proof of thiewieng proposition draws on argu-
ments developed in[2] 7].

Proposition A.3. With probabilityl — exp (—£2(n)), the core olG(n, p, o) contains(1 — Oy (k~1))n vertices.

The proof of Propositio Al3 is constructive: basically, itezatively remove vertices of that have too few neighbors
of some color other than their own among the remaining vestidlore precisely, we consider the following process.
For a vertexv and a sefS of vertices lete(v, S) denote the number of neighborswoin S in G(n, p, o).

CRL: Fori,j € [k], i # j, 1etWy; = {v € V; : e(v, V}) < 300}, Wi, = 0, Wi = UK_ W, andW = UK, W,
CR2: For: # j, let Ul'j = {1} eV;: 6(1), Wj) > 100} andU = Ui;ﬁjUij.
CR3: SetZ(® = U and repeat the following far > 0:

eifthereisv € V'\ Z() such thak(v, Z(") > 100, pick one suchy and letZ(+1) = Z() y {v};

e otherwise, leZz “+1) = Z() U {v}.

Let Z = U;>0Z be the final set resulting fro@R3. By construction, the séf \ (W U Z) is contained in the core.
To complete the proof of Propositibn A.3, we bound the siZé8oU andZ (LemmasAAAb and Al6).

Lemma A.4. With probability at least — exp (—(n)) we haveW;;| < Oy (k~3) for anyi, j.

Proof. Fix i, j, i # j. Due to the independence of the edge§im, p, o), for anyv € V; the numbet(v, V;) of
neighbors inV; has distributionBin(|V;|,p). As ¢ is balanced,[(Al2) shows that the meanuis= |V;[p > 2Ink.
Using the Chernoff bound (LemriaA.2), we obt&ifle(v, V;)| < 300] < exp (—2Ink + Oy (Inlnk)) = O (k~2).
Hence, by the linearity of expectation and becamiebalancedE[|W;;|] < Ok (k~2) - |Vi| = n - Ox(k~3). Further,
once more due to the independence of the edgeHinp, o), |IW;;| is a binomial random variable. Thus, using
the Chernoff bound once more (with, say= k~*n), we see thaP[|W;;| < Ox(k~%)n] > 1 — exp(—Q(n)), as
required. O

Lemma A.5. With probability at leastl — exp (—(n)) we haveU| < n/k%°.
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Proof. We define two sets whose union contains:
Ui/j = {’U eV G(U,Wj \ Wﬂ) > 50}, U{; = {’U eV;: 6(1), Wﬂ) > 50}
Thus, it suffices to bound the sizes(@f;,
Let's start withU};. By construction, which vertices belongli; \ IW;; is independent of the edges between color
classed/;, V;. Hence, for any € V; the numbee(v, W; \ W;;) has distributiorBin(|W; \ W;;|, p). Thus,

U} separately.

B [e(, Wi \ Wji) | W5 \ Wyi| < Ox(k~)] < pn Op(h7%) < Op(k ™).
Therefore, the Chernoff bound (LemimalA.2) applied with, say 45 yields
Ploey;

i

Wi\ Wil <n- Ok(k_Q)] < Ou(k™). (A.8)

Once more due to the independence of the edgééinp, o), the events € U, are mutually independent fore V.
by Lemmd A%, this event occurs with probability- exp(—Q(n)). In effect, givenW; \ Wi| < n- Ox(k2), U]
has a binomial distribution. Thug, (A.8) implies togethéhvihe Chernoff bound (applied with, say= k~1%9n) that

P {|Ui’j| > k=40 W, \ Wyi| < n- Ok(k—z)} < exp(—Q(n)). (A.9)

Further, Lemm&ZA} implies th&[|W; \ W;;| < n - Or(k~2)] > 1 — exp(—Q(n)). Combining this bound with
(A.10), we obtain
P [|U};| > nk™*°] < exp(—Q(n)). (A.10)

With respect tdJ;”, we observe the following. Given that € W;;, we know thatw has fewer thas00 neighbors
in V;. But the fact thatv € W;; has no implications as twhichv € V; vertexw is adjacent to. Thus, given that
w € W, and givere(w, V;), the actual set of neighbors afin V; is a random subset df; of sizee(w, V;) < 300. In
fact, these sets are mutually independent fora#t W;;. Thus, we can bound’;?| by means of the following balls
and bins experiment: let us think of the verticedinas bins. Then each vertex € W;; tosses300 balls randomly
into the binsV;, independently of all other vertices #vj;. In this experiment, lek’ be the set ob € V; that receive

at least 50 balls. Thejt/;%| is dominated byX'| stochastically.

Now, consider one € V;. Given|W;;|, the number of balls that land inhas distributiorBin(300|W;|, |Vi|~1).
Therefore, the Chernoff bound yields

P [v € X|[ Wil <n- ok(w)} <P [Bin(@k(k_3)n, (1 + o(1))k/n) > 50} <k,
Hence, by the linearity of expectatidiX’| < nk~*°. Hence, Azuma’s inequality yields

PIUg] > nk™ Wil < n- Op(k™)| <P [12] > nk™[|Wji| < n- Ox(k™?)| < exp(—Q(n)).

Thus, Lemm&AlM} implies
P [|U5] > nk™*] < exp(—Q(n)). (A.11)
Finally, the assertion follows froni (A.10) arld (A]11), withom to spare. O

Lemma A.6. With probability at leastt — exp (—£(n)) we haveZ| < n/k*.

Proof. LemmaAB entails that with probability at least- exp (—(n)), |U| < n/k3°. Assume that this is indeed
the case. Further, suppose that\ U| > i* = n/k%. Let us stop the proce®R3 at this point, and leZ* = Z(").
By construction, the graph induced 6n= U U Z* spans at least00:* > 50|S| edges, whilgS| < 2k~3“n. Thus,
the setS violates conditiorP3. But since we saw in Sectign’A.3 tha8is satisfied with probability — exp(—Q(n)),
the assertion follows. O

Now, Propositiof /AB is immediate from Lemnfas .45A.6. FaeaY C V let us denote by (Y) the set of all
verticesv € V that have a neighbor il in G(n, p, o). As a further step towards the proof®4, we establish

Lemma A.7. With probabilityl — exp(—(n)) the random graplgj(n, p, o) has the following property.

LetY C V be asetofY| < nk=2% vertices. ThenN (V)| < nk—20, (A.12)
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Proof. Let o < k=27 be the largest number such that is an integer and lef = 1 — (1 — p)*". Forasety C V
with |Y| = an the number of vertices € V \ Y that have a neighbor il in G(n, p, o) is stochastically dominated
by Bin(n, ¢). This is because for any vertgxc Y the probability thab, y are adjacent is either(if o(v) # o(y)) or

0 (if o(v) = o(y)). Hence, observing that< anp and using the Chernoff bound, we get

P[IN(Y)\ Y| > nk™?'] <P [Bin(n,q) > nk~>'] < exp(—nk™?"). (A.13)

Now, let X be the number of sef§ with |Y| = an such that N (Y) \ Y| > nk—2%. Together with the union bound,
(A13) shows

PIX >0 < ( " > exp(—nk™*") <exp [n (a(1 —Ina) — k7?")] < exp(—Q(n)); (A.14)
an
the last inequality follows becaus€1 — Ina) < 32k~ Ink for 0 < o < k=29, Thus, we obtain fron{{A14) that

X, = 0 for all sucha with probability 1 — exp(—£(n)). If so, we see that any s&t of size|Y| < nk=2° satisfies
INV)| <Y+ |INY)\ Y| <n(k~2 + k=2 < nk=2° as claimed. O

Corollary A.8. With probabilityl — exp(—(n)) we havg N (Z)| < nk=2°,
Proof. This is immediate from Lemmé&s A.6 and A.7. O

We define two sets of vertices, which capture the 1-free afré@vertices. In what follows, when always let
i,j € [k], i # j. LetSy be the set of vertices that have zero neighbors in some clales other than their own.
Moreover,S; = {v € V\'Sy : Ji,j s.t.v € V; andN(v) N V; C W, }. By the construction of the core, we have

Fact A.9. If v is 1-free, therw € Sy U ST UZ U N(Z).

We proceed by estimating the sizes%f S;.
Lemma A.10. With probabilityl — exp(—£(n)) we haveSy| < 7.

Proof. Consider a vertex € V;. The numbee(v, V;) of neighbors ofV; in V; has distributiorBin(|V;|, p). Sinceo
is balanced [(AR) yieldB [e(v, V;) = 0] < (1 — p)!Vsl < k=2, Thus, by the union bound,

Plve S <> Ple(v,V;)=0] < (k— 1)k (A.15)
J
Because the eventsy € Sy} are mutually independent for all € V;, the Chernoff bound and(A1L5) yield
P [|So N Vi| > n/k?] < exp(—Q(n)). Taking the union bound ovércompletes the proof. a
Lemma A.11. With probabilityl — exp(—Q(n)) we haveS;| < Oy (k2)n.

Proof. Fixi # j. The total numbee(V;, V;) of edges joining/; andV; in G(n, p, o) has distributiorBin(|V; x V}|, p).
Because is balanced, the Chernoff bound yields

P [e(V,1) 2 3h-20%] > 1 - exp(-0(0) (A16)
In addition, we claim that the numbefV;, ;) of V;-W;-edges satisfies
P [e(Vi, W) < Ok~ *)np| > 1 = exp(—0(n)). (A17)

Indeed, by LemmiaAl4 we may assume thi#lt \ W;;| < Oy (k~2)n. By construction, the sét/; \ W, is independent
of the random bipartite subgraph @fn, p, o) consisting of thé/;-V;-edges. Hence, the numbgi;, W, \ W;;) of
edges betweel; andW; \ W;; has distributiorBin(|V; x (W; \ Wj;), p). Given the upper bound di’; \ W, |, the
Chernoff bound thus implies that

P [e(Vi, W5 \ W) < Ox(™*)n%p] = 1= exp(~9(n)). (A.18)

Further, by construction the numbergf W;;-edges is bounded 00| ;|. Since by LemmRAl4 we may assume
that|W;| < nOy(k~?), (BI8) implies [AIY).
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Let us condition on the event thatb = e(V;, V; \ W;) > sk~ 2n?p andr = e(V;, W;) < Ox(k~%) < n’p. Letus
think of the vertices irl/; as bins, and of th&;-V; \ V; edges as balls that are tossed independently and unifonioly i
the bins. More precisely, we think of thg-V; \ W; edges as blue balls, and of thg1V;-edges as red balls. Lat;;
be the number of bins € V; that receive at least one ball but that do not receive a bllleNaw, given that receives
[ balls in total, the probability that all the balls it recesvare red is equal to the probability that a hypergeometric
random variable with parametdr®, » takes the valué Therefore, summing over dll> 1 and using our conditions
onb, r, we see thaP [v € X;;] < Oy (k~?). Because is balanced, we thus obtain

B[l X[ A] < 7 - On(k™). (A.19)

In fact, because the balls are tossed into the bins indepégde each other, Azuma’s inequality implies together

with (A.19) that

P[] < Ox(k™")n | A] > 1 — exp(—Q(n)). (A.20)
SinceP[A] > 1 — exp(—Q(n)) by (A18) and[AIV),[A20) yields that[|X;;| < Or(k~*)n] > 1 — exp(—Q(n)).
Taking the union bound ovérj completes the proof becauSe C U; ; X;;. O

FactfA.9 implies together with Lemnha_A.6, Corolldary A.8, Lera[A.10 and Lemma_A.11 the desired bound on
the number ofi-free vertices. To bound the numberbfree variables, we need

Lemma A.12. Leti, j,1 € [k] be distinct. With probability at leagt— exp(—Q(n)) there are no more thanOy, (k—°)
verticesv € V; such thate(v, V;) < 100 ande(v, V;) < 100.

Proof. For anyv, e(v,V;), e(v,V;) are independent binomial variables. Becausis balanced, their means are
(1+0(1)) 2p. Hence,[AR) shows tht [e(v, V), e(v, Vi) < 100] < Ox(k~*). Consequently, the expected number of
v € V; with e(v, V), e(v, V}) <100 is nOx(k~®). In fact, this is a binomial random variable due to the indefence

of the edges i§j(n, p, o). Thus, the assertion follows from the Chernoff bound. O

Now, letS; be the set of alb € V; such that there exist distingt! € [k] \ {i} such thate(v,V;) < 100 and
e(v, V;) < 100. By construction, ifv is 2-free, therw € S, U Z U N(Z) (note thatU C Z). Thus, the desired bound
on the number o?-free vertices follows from Lemnia A.6, Corolldry A.8 and LeaA.12. O
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