
Approximation Schemes for Maximum Weight
Independent Set of Rectangles

Anna Adamaszek∗ Andreas Wiese∗

Abstract

In the Maximum Weight Independent Set of Rectangles (MWISR) problem we are given a
set of n axis-parallel rectangles in the 2D-plane, and the goal is to select a maximum weight
subset of pairwise non-overlapping rectangles. Due to many applications, e.g. in data mining,
map labeling and admission control, the problem has received a lot of attention by various
research communities. We present the first (1 + ε)-approximation algorithm for the MWISR
problem with quasi-polynomial running time 2poly(logn/ε). In contrast, the best known polyno-
mial time approximation algorithms for the problem achieve superconstant approximation ratios
of O(log log n) (unweighted case) and O(log n/ log log n) (weighted case).

Key to our results is a new geometric dynamic program which recursively subdivides the
plane into polygons of bounded complexity. We provide the technical tools that are needed
to analyze its performance. In particular, we present a method of partitioning the plane into
small and simple areas such that the rectangles of an optimal solution are intersected in a very
controlled manner. Together with a novel application of the weighted planar graph separator
theorem due to Arora et al. [3] this allows us to upper bound our approximation ratio by 1 + ε.

Our dynamic program is very general and we believe that it will be useful for other settings.
In particular, we show that, when parametrized properly, it provides a polynomial time (1 + ε)-
approximation for the special case of the MWISR problem when each rectangle is relatively
large in at least one dimension. Key to this analysis is a method to tile the plane in order to
approximately describe the topology of these rectangles in an optimal solution. This technique
might be a useful insight to design better polynomial time approximation algorithms or even
a PTAS for the MWISR problem. In particular, note that our results imply that the MWISR
problem is not APX-hard, unless NP ⊆ DTIME(2polylog (n)).

∗Max-Planck-Institut für Informatik, Saarbrücken, Germany, {anna,awiese}@mpi-inf.mpg.de

1

ar
X

iv
:1

30
7.

17
74

v1
 [

cs
.D

S]
 6

 J
ul

 2
01

3

1 Introduction

One of the most fundamental problems in combinatorial optimization is the Independent Set
problem: given an undirected graph, find a set of pairwise non-adjacent vertices with maximum
total weight. While the general problem is essentially intractable (it is NP-hard to approximate
with a factor n1−ε for any ε > 0 [20]), many special cases allow much better approximation ratios.

One extensively studied setting are graphs which stem from geometric shapes in the 2D-plane.
Given a set of geometric objects in the plane, the goal is to find a set of pairwise non-overlapping
objects with maximum total weight. Depending on the complexity of these shapes, the approxima-
tion factors of the best known polynomial time algorithms range from 1 + ε for fat objects [10], to
nε for arbitrary shapes [12]. Observe that the latter is still much better than the complexity lower
bound of n1−ε for arbitrary Independent Set instances.

Interestingly, there is a very large gap between the best known approximation factors when
the considered objects are squares of arbitrary sizes and when they are rectangles. For squares, a
(1 + ε)-approximation has been known for several years [10]. For the rectangles, the best known
approximation factors are O(log n/ log log n) for the general case [8], and O(log log n) for the cardi-
nality case [6]. Importantly, no constant factor approximation algorithms are known for rectangles,
while the best known hardness result is NP-hardness [11, 14]. These gaps remain despite a lot of
research on the problem [2, 4, 6, 7, 8, 11, 14, 15, 17, 18], which is particularly motivated by its
many applications in areas such as channel admission control [17], map labeling [2, 9], and data
mining [13, 15, 16].

Since even for arbitrary shapes the best known hardness result is NP-hardness, it seems that
more sophisticated algorithmic techniques and/or complexity results are needed to fully understand
the Independent Set problem in the geometric setting.

1.1 Related Work

The maximum weight independent set of rectangles problem has been widely studied. There are
several O(log n) approximation algorithms known [2, 15, 18], and in fact the hidden constant can be
made arbitrarily small since for any k there is a dlogk ne-approximation algorithm due to Berman et
al. [4]. Eventually, a O(log n/ log logn)-approximation algorithm has been presented by Chan and
Har-Peled [8]. Some algorithms have been studied which perform better for special cases of MWISR.
There is a 4q-approximation algorithm due to Lewin-Eytan, Naor, and Orda [17] where q denotes
the size of the largest clique in the given instance. In case that the optimal independent set has size
βn for some β ≤ 1, Agarwal and Mustafa present an algorithm which computes an independent set
of size Ω(β2n) [1].

In a break-through result, Chalermsook and Chuzhoy give a O(log log n)-approximation algo-
rithm for the cardinality case [6], which is based on the natural LP-relaxation of the problem. In
fact, it is a challenging open problem to determine the exact integrality gap of the LP. Currently the
best known upper bounds for it are O(log n/ log log n) [8] for the weighted case, and O(log log n) [6]
for the cardinality case. The best known lower bounds on the integrality gap are 3/2 [6] and 2 [19],
both already for the cardinality case. There is a strong connection between the integrality gap of
the LP and the maximum ratio between the coloring- and the clique-number of a set of rectangles,
see [5] and references therein.

Interestingly, for the special case when all given rectangles are squares of arbitrary sizes, the
problem is much better understood. There is a polynomial time (1+ε)-approximation algorithm by

1

Erlebach, Jansen and Seidel [10], which works even for the more general case of arbitrary fat objects.
For the unweighted squares, and also for the more general setting of unweighted pseudo-disks, even
a simple local search algorithm gives a PTAS [8].

Although the complexity is well-understood in the setting of squares, for rectangles it is still
widely open. In particular, the techniques of the above approximation schemes for squares do not
carry over to rectangles. The PTAS from [10] requires that every horizontal or vertical line intersects
only a bounded number of objects of the optimal solution that are relatively large in at least one
dimension. For rectangles, this number can be up to Θ(n) which is too much. For local search, one
can easily construct examples showing that for any size of the local search neighborhood (which
gives quasi-polynomial running time) the optimum is missed by an arbitrarily large (superconstant)
factor.

For arbitrary shapes in the plane (which can be modeled as a set of line segments) Agarwal and
Mustafa [1] give an algorithm which finds an independent set of size

√
OPT/ log(2n/OPT) which

yields a worst case approximation factor of n1/2+o(1). This was improved by Fox and Pach to nε for
any ε > 0 [12]. Note that already for lines with at most one bend (i.e., lines forming an “L”) the
natural LP-relaxation suffers from an integrality gap of Ω(n).

To the best of our knowledge, no inapproximability result is known for MWISR (and not even
for arbitrary shapes in the 2D-plane). In particular, an important open problem is to construct a
polynomial time constant factor approximation algorithm for MWISR.

1.2 Our Contribution and Techniques

We present the first (1 + ε)-approximation algorithm for the Maximum Weight Independent Set
of Rectangles problem with a quasi-polynomial running time of 2poly(logn/ε). In contrast, the best
known polynomial time approximation algorithms achieve approximation ratios ofO(log n/ log log n)
for the weighted case [8], and O(log log n) for the cardinality case [6]. We are not aware of any previ-
ous algorithms for the problem with quasi-polynomial running time which would give better bounds
than the above mentioned polynomial time algorithms. Our quasi-PTAS rules out the possibility
that the problem is APX-hard, assuming that NP * DTIME(2polylog (n)), and thus it suggests that it
should be possible to obtain significantly better polynomial time approximation algorithms for the
problem. In addition, we present a PTAS for the case that each rectangle is δ-large in at least one
dimension, i.e., if at least one of its edges has length at least δN for some constant δ > 0, assuming
that in the input only integer coordinates within {0, ..., N} occur.

Key to our results is a new geometric dynamic program GEO-DP whose DP-table has one entry
for each axis-parallel polygon P with at most k edges, where k is a fixed parameter. Such a cell
corresponds to a subproblem where the input consists only of the input rectangles contained in P .
The algorithm solves each such subproblem by trying every possible subdivision of P into at most k
polygons with again at most k edges each, and selects the partition with maximum weight according
to the DP-cells of all subproblems.

For analyzing this algorithm, we show that there is a recursive sequence of partitions such that
the rectangles of OPT intersected within that sequence have a total weight of at most ε ·OPT . For
our QPTAS, we first provide a method to tile the plane into polygons such that each rectangle of
the optimal solution is intersected only O(1) times. Using a new stretching method for the input
area, we can guarantee that each face of our partition either contains only rectangles of relatively
small total weight, or contains at most one rectangle. With a planar separator theorem from [3]
we can find a cut in the partition such that the intersected rectangles have only marginal weight

2

and both sides of the cut contain rectangles whose total weight is upper bounded by 2
3OPT . When

using these cuts in every iteration, the recursion terminates after O(log n/ε) levels and we show
that by setting k := (logn

ε)O(1) we obtain an approximation ratio of 1 + ε in quasi-polynomial time.
We demonstrate the potential of our new algorithm by proving that it yields a polynomial time

(1 + ε)-approximation algorithm for the special case when each rectangle is large in at least one
dimension, as defined above. For this result, we employ a finer partition of the plane which ensures
that in the initial partition only large rectangles with small total weight are intersected. Even
more, each face of the subdivision is either a path or a cycle of a small width (strictly smaller than
the longer edge of each large rectangle). Using this, we show that GEO-DP solves each resulting
subproblem within an accuracy of 1 + ε by using only subpolygons with at most a constant number
of edges. Therefore, we prove that GEO-DP parametrized by k := (1/ε)(1/δ)O(1) gives a polynomial
time (1 + ε)-approximation for δ-large rectangles (for any constant δ > 0). In fact, this yields a
PTAS for the case that the lengths of the longer edges of the rectangles differ by at most a constant
factor (when the parameter k is chosen appropriately). We would like to point out that the initial
partition might be a useful ingredient for constructing a PTAS for the general problem since it
sparsely describes the topology of the large rectangles while losing only an ε-fraction of their total
weight.

We can well imagine that our algorithmic approach finds applications for solving the Indepen-
dent Set problem for more general geometric shapes. Given the large gaps in terms of approxima-
tion and hardness results for the Independent Set problem in such settings we hope that our new
techniques will help to bridge these gaps. Finally, we would like to note that our DP might well yield
a constant factor approximation or even a PTAS for MWISR when parametrized by a sufficiently
large parameter k independent of n, e.g., k = (1/ε)O(1). We leave this as an open question.

1.3 Problem Definition

We are given a set of n axis-parallel rectangles R = {R1, ..., Rn} in the 2-dimensional plane. Each
rectangle Ri is specified by two opposite corners (x

(1)
i , y

(1)
i) ∈ N2 and (x

(2)
i , y

(2)
i) ∈ N2, with x(1)

i <

x
(2)
i and y(1)

i < y
(2)
i , and a weight w(Ri) ∈ R+. We define the area of a rectangle as the open set

Ri := {(x, y)|x(1)
i < x < x

(2)
i ∧ y

(1)
i < y < y

(2)
i }. The goal is to select a subset of rectangles R′ ⊆ R

such that for any two rectangles R,R′ ∈ R′ we have R ∩R′ = ∅. Our objective is to maximize the
total weight of the selected rectangles w(R′) :=

∑
R∈R′ w(R). For each rectangle Ri we define its

width gi by gi := x
(2)
i − x

(1)
i and its height hi by hi = y

(2)
i − y

(1)
i .

By losing at most a (multiplicative) factor of (1 − ε)−1 in the objective, we assume that 1 ≤
w(R) ≤ n/ε for each rectangle R ∈ R. First, we scale the weights of all rectangles such that
maxR∈Rw(R) = n/ε. Since then OPT ≥ n/ε, all rectangles R′ with w(R′) < 1 can contribute a
total weight of at most n · 1 = ε · nε ≤ ε · OPT . We remove them from the instance which reduces
the weight of the optimal solution by at most ε ·OPT .

2 The Algorithm GEO-DP

Our results are achieved by using a new geometric dynamic programming algorithm which we call
GEO-DP and which we define in this section. The algorithm is parametrized by a value k ∈ N which
affects both the running time and the achieved approximation ratio. In brief, the algorithm has
a DP-cell for each axis-parallel polygon P with at most k edges, which represents the subproblem

3

0 2n− 1
0

2n− 1

P

P2
P3

P4

P6

P5

P1

P7

P8

Figure 1: The partition of a polygon P (gray area) into at most k smaller polygons, each with at
most k edges.

consisting of all rectangles contained in P . When computing a (near-optimal) solution for this
subproblem, GEO-DP tries all possibilities to subdivide P into at most k polygons with at most k
edges each and recurses.

Without loss of generality we assume that x(1)
i , y

(1)
i , x

(2)
i , y

(2)
i ∈ {0, ..., 2n−1} for each Ri ∈ R. If

this is not the case, we transform the instance in polynomial time into a combinatorially equivalent
instance with the latter property.

Fix a parameter k ∈ N. Let P denote the set of all polygons within the [0, 2n− 1]× [0, 2n− 1]
input square whose corners have only integer coordinates and which have at most k axis-parallel
edges each. Whenever we speak of a polygon, we allow it to have holes and we do not require it
to be simple. In particular, by the edges of a polygon with holes we mean both the outer edges
and the edges bounding the holes. We introduce a DP-cell for each polygon P ∈ P, where a cell
corresponding to P stores a near-optimal solution sol(P) ⊆ RP where RP denotes the set of all
rectangles from R which are contained in P .

Proposition 1. The number of DP-cells is at most nO(k).

To compute the solution sol(P) for some polygon P ∈ P we use the following procedure. If
RP = ∅ then we set sol(P) := RP and terminate. Otherwise, we enumerate all possibilities to
partition P into k′ polygons P1, ..., Pk′ ∈ P such that k′ ≤ k. See Figure 1 for a sketch. Since
by Proposition 1 we have |P| ≤ nO(k), the number of potential partitions we need to consider is
upper bounded by

(
nO(k)

k

)
= nO(k2). Let P1, ..., Pk′ , where k′ ≤ k, be a feasible partition (for any

enumerated set {P1, ..., Pk′} ⊆ P this can be verified efficiently since all polygons have axis-parallel
edges with integer coordinates in {0, ..., 2n − 1}). For each polygon Pi ∈ {P1, ..., Pk′} we look
up the DP-table value sol(Pi) and compute

∑k′

i=1w(sol(Pi)). We set sol′(P) := ∪k′i=1sol(Pi) for
the partition {P1, ..., Pk′} which yields the maximum profit. Now we define sol(P) := sol′(P) if
w(sol′(P)) > maxR∈RP

w(R), and otherwise sol(P) := {Rmax} for a rectangle Rmax ∈ RP with
maximum profit. At the end, the algorithm outputs the value in the DP-cell which corresponds to
the polygon containing the entire input region [0, 2n− 1]× [0, 2n− 1].

Since |P| ≤ nO(k) we get the following upper bound on the running time of GEO-DP.

Proposition 2. When parametrized by k the running time of GEO-DP is upper bounded by nO(k2).

4

For bounding the approximation ratio of GEO-DP for any parameter k, it is sufficient to consider
only the special case that the input set R is already a feasible (optimal) solution. Therefore, we
will assume this from now on.

3 Quasi-Polynomial Time Approximation Scheme

In this section we prove that GEO-DP achieves an approximation ratio of 1 + ε when parametrized
by k = (logn

ε)O(1) and is thus a QPTAS for the MWISR problem (using Proposition 2).
Key ingredient for our analysis is to show that for any set of feasible rectangles there is a balanced

cheap cut, i.e., a polygon which consists of only few edges, which intersects rectangles from R of
marginal total weight, and which separates the rectangles from R into two parts of similar size.
By applying such cuts recursively for O(log n/ε) levels, we eventually obtain trivial subproblems.
For proving that such good cuts always exist, we partition the plane into polygons in such a way
that each rectangle is intersected only O(1) times and each face of the partition consists either of
exactly one rectangle or intersects rectangles of only small total weight. To ensure the latter, we
apply a stretching procedure to the input before actually defining the partition. On the constructed
partition we apply the weighted planar graph separator theorem from [3] to obtain the cut.

3.1 Balanced Cheap Cuts

We introduce balanced α-cheap `-cuts, where α is a small positive value. Intuitively, given any set
of non-overlapping rectangles R̄, such a cut is given by a polygon P with at most ` axis-parallel
edges whose boundary intersects rectangles with weight at most α ·w(R̄) such that the interior and
the exterior of P each contain only rectangles whose weight is at most 2/3 · w(R̄).

Definition 3. Let ` ∈ N and α ∈ R with 0 < α < 1. Let R̄ be a set of pairwise non-overlapping
rectangles. A polygon P with axis-parallel edges is a balanced α-cheap `-cut if:

• P has at most ` edges,

• for the set of all rectangles R′ ⊆ R̄ intersecting the boundary of P we have w(R′) ≤ α ·w(R̄),

• for the set of all rectangles Rin ⊆ R̄ contained in P it holds that w(Rin) ≤ 2/3 · w(R̄), and

• for the set of all rectangles Rout ⊆ R̄ contained in the complement of P , i.e., in R2 \ P , it
holds that w(Rout) ≤ 2/3 · w(R̄).

As we will show in the next lemma, GEO-DP performs well if for any set of rectangles there
exists a good cut.

Lemma 4. Let ε > 0. Let α > 0 with α < 1/2 and ` ≥ 4 be values such that for any set R̄
of pairwise non-overlapping rectangles there exists a balanced α-cheap `-cut, or there is a rectangle
R ∈ R̄ such that w(R) ≥ 1

3 · w(R̄). Then GEO-DP has approximation ratio (1 + α)O(log(n/ε)) when
parametrized by k = `2 ·O(log2(n/ε)).

Proof (sketch). Starting with the [0, 2n − 1] × [0, 2n − 1] input square, we either find a rectangle
R with w(R) ≥ 1

3 · w(R̄), or a balanced α-cheap `-cut. In either case we get a decomposition
of the problem into subproblems, where each subproblem is defined by a polygon which contains

5

rectangles whose total weight is at most a 2/3-fraction of w(R). Continuing for O(log n/ε) recursion
levels, we obtain subproblems consisting of at most one rectangle each (as 1 ≤ w(R) ≤ n/ε for each
R ∈ R). Each appearing subproblem can be expressed as the intersection of O(log n/ε) polygons
with at most ` + 4 edges each (we have to add 4 since the boundary of the input square can
become the outer boundary of a polygon). Thus, the boundary of each considered subproblem
consists of O(`2 · log2(n/ε)) edges. Additionally, we can show that each subproblem gives rise to
O(`2 · log2(n/ε)) subproblems in the next recursion level. As GEO-DP tries all partitions of a
polygon into at most k polygons, each with at most k edges, at each recursion level it will consider
the partition corresponding to the cut. Since at each level we lose rectangles whose weight is at
most an α-fraction of the total weight of the rectangles from the current recursion level, we obtain
the claimed approximation ratio.

In the remainder of this section we prove that for any set R̄ and any δ > 0 there is a balanced
O(δ)-cheap

(
1
δ

)O(1)-cut or there is a rectangle R ∈ R̄ with w(R) ≥ 1
3 ·w(R̄). This implies our main

result when choosing δ := Θ(ε/ log(n/ε)). Note that from now on our reasoning does not need to
be (algorithmically) constructive.

3.2 Stretching the Rectangles

For the purpose of finding a good cut, we are free to stretch or squeeze the rectangles of R. We do
this as a preprocessing step in order to make them well-distributed.

Definition 5. A set of rectangles R̄ with integer coordinates in {0, ..., N} is well-distributed if for
any γ > 0 and for any t ∈ {0, ..., N} we have that all rectangles contained in the area [0, N]× [t, t+
γ ·N] have a total weight of at most 2γ · w(R). We require the same for the rectangles contained
in the area [t, t+ γ ·N]× [0, N].

We say that two sets of rectangles R, R̄ are combinatorially equivalent if we can obtain one from
the other by stretching or squeezing the input area, possibly non-uniformly (see Appendix B for a
formal definition).

Lemma 6. Let R be a set of rectangles with arbitrary weights. There is a combinatorially equivalent
set R̄ using only integer coordinates in {0, ..., 4 · |R|} which is well-distributed.

Proof (sketch). Without loss of generality we assume that x(1)
i , y

(1)
i , x

(2)
i , y

(2)
i ∈ {0, ..., 2n − 1} for

each Ri ∈ R, where n = |R|. We stretch the original input square in such a way that the lengths of
its sides double (i.e., increase by another 2|R|), and the distance between two original consecutive
x-coordinates (y-coordinates) xi and xi + 1 increases proportionally to the weight of all rectangles
"starting" at the x-coordinate (y-coordinate) xi. We then need to introduce some rounding, as we
want the new coordinates of all the rectangles to be integral. The new set of rectangles is clearly
equivalent to the original one.

Consider any vertical stripe S in the modified input square with left- and rightmost x-coordinates
x′a and x′b, respectively. There is a set of x-coordinates x1, x2, ..., xm from the original instance
which were mapped to values x′1, x′2, ..., x′m ∈ [x′a, x

′
b]. All rectangles contained in S must have their

respective leftmost x-coordinates in {x′1, x′2, ..., x′m−1}. The total weight of rectangles with leftmost
coordinate x′i is proportional to x

′
i+1−x′i, for each i. Hence, the total weight of rectangles contained

in S is proportional to x′m − x′1 ≤ x′b − x′a. The same is true for horizontal stripes, and so the
modified input instance is well-distributed.

6

Observe that there is a balanced α-cheap `-cut for any values α and ` in the stretched instance
if and only if there is such a cut in the original instance. Thus, suppose from now on that we have a
well-distributed set of pairwise non-intersecting rectangles R, using integer coordinates in {0, ..., N}
for some integer N , and a value δ > 0 such that 1/δ ∈ N. As we do not require any special bound on
the value of N , we can scale up all coordinates of the rectangles by a factor of (1/δ)2, and therefore
we can assume that δ2N is an integer.

3.3 Partitioning the Plane

We define a procedure to partition the input square I := [0, N] × [0, N]. This partition is defined
by only (1/δ)O(1) lines, and it has the properties that each rectangle in R is intersected only O(1)
times and each face either surrounds exactly one rectangle or it has non-empty intersection with
rectangles with small total weight of at most O(δ2w(R)).

We call a rectangle Ri ∈ R large if hi > δ2N or gi > δ2N , and small if hi ≤ δ2N and gi ≤ δ2N .
We denote the subsets of R consisting of large and small rectangles by RL and RS , respectively.
We call a rectangle Ri ∈ R vertical if hi > gi, and horizontal if hi ≤ gi. We say that a line L cuts
a rectangle R ∈ R, if R \ L has two connected components.

We now present the construction of the partition. It will consist of a set of straight axis-parallel
lines L contained in the input square I, and containing the boundary of I. A connected component
of I \ L is called a face, and the set of faces is denoted by F(L). Note that the faces are open
polygons and for any F ∈ F(L) and L ∈ L we have F ∩ L = ∅.

Grid. We subdivide the input square I into 1
δ2
× 1

δ2
grid cells, where each grid cell is a square of

size δ2N × δ2N . Formally, for each i, j ∈ {0, ..., 1/δ2− 1} we have a grid cell [i · δ2N, (i+ 1) · δ2N]×
[j · δ2N, (j + 1) · δ2N]. As δ2N is an integer, the corners of the grid cells have integer coordinates.
The lines subdividing the input square into the grid cells are called grid lines.

We say that a rectangle R ∈ R intersects a grid cell Q, if R ∩ Q 6= ∅ (recall that rectangles
have been defined as open sets). Each rectangle R ∈ RL intersects at least two grid cells, and each
rectangle R ∈ RS intersects at most four grid cells. We say that a rectangle R ∈ R crosses a grid
cell Q, if R intersects Q and R has non-empty intersection with two opposite edges of Q. Notice
that small rectangles do not cross any grid cells.

Rectangle faces. For each large vertical rectangle which is cut by a vertical grid line, and for each
large horizontal rectangle which is cut by a horizontal grid line, we add the edges of the rectangle
to the set of lines L (see Figure 2a). The added edges are called rectangle edges, and the faces
corresponding to such rectangles are called rectangle faces.

Lemma 7. The number of rectangle faces is at most 2(1/δ)4.

Notice that if a large vertical rectangle is not contained in a rectangle face then it is contained in
a single column of grid cells. Similarly, if a large horizontal rectangle is not contained in a rectangle
face then it is contained in a single row of grid cells.

Lines within the grid cells. We now consider each grid cell Q separately, and proceed as follows.
Let RQ denote the set of rectangles from R which are not contained in the rectangle faces, and
which cross Q. Notice that, as the rectangles from R are pairwise non-overlapping, RQ cannot
contain both vertical and horizontal rectangles.

7

a) b)

Figure 2: Creating the partition of the input square. The large rectangles RL are depicted in gray.
The bold edges represent the lines from L.

a) b) c)

L` Lr

Figure 3: Constructing the lines within a single grid cell Q. The depicted gray rectangles are either
in RQ or they are rectangles from RL which have their own respective rectangle face. The bold
lines correspond to the lines of L within the grid cell.

• If RQ = ∅, we add to L the whole boundary of Q, with the exception of the fragments which
are in the interior of the rectangle faces (see Figure 3a).

Notice that the boundaries of the rectangle faces are in L, so in this case L∩Q is connected.

• If RQ consists of vertical rectangles, let L` and Lr be the leftmost and the rightmost vertical
edge of a rectangle from RQ. We add to L the lines L` ∩Q and Lr ∩Q, and the boundary of
Q with the exception of the fragments which are between L` and Lr, or in the interior of the
rectangle faces (see Figure 3b).

Notice that the lines added to L while considering the grid cellQ do not intersect any rectangles
from RQ.

• If RQ consists of horizontal rectangles, we proceed as before, considering horizontal lines
instead of vertical (see Figure 3c).

Notice that the lines from L can overlap (i.e., we can have L1, L2 ∈ L s.t. L1∩L2 is an interval),
but they do not intersect properly (i.e., if for L1, L2 ∈ L we have L1 ∩ L2 = {p}, then p is an
endpoint of at least one of the lines L1, L2). The lines from L cover the boundary of the input
square I. An example of the partition can be seen in Figure 2b.

Graph G(L). We now construct a graph G(L) = (V,E) embedded in the input square I, repre-
senting the partition L. Any point p ∈ I becomes a vertex of G(L) if and only if there is at least

8

one line L ∈ L with an endpoint in p. For any pair of vertices v, w ∈ V for which there is a line
L ∈ L such that {v, w} ∈ L, and for which no vertex lies on the straight line strictly between v
and w, we add an edge vw to G(L) (i.e., edges of G(L) represent subdivisions of lines in L). As⋃
L∈L L =

⋃
e∈E e, the faces of G(L) are exactly F(L). The claim of the next lemma is directly

implied by the construction.

Lemma 8. The graph G(L) is planar and has O((1/δ)4) vertices and O((1/δ)4) edges.

The following lemmas will be needed to show the existence of a balanced cut in G(L).

Lemma 9. Each rectangle from R can be intersected by at most four edges of the graph G(L).

Proof (sketch). The only edges of G(L) intersecting rectangles from R lie on grid cell boundaries.
We can show that any rectangle R ∈ R can be intersected by at most one edge of G(L) at each grid
cell boundary.

As any R ∈ RS intersects at most four grid cell boundaries, the lemma holds for small rectangles.
The lemma clearly holds for any rectangle R ∈ RL contained in a rectangle face. The remaining
case are large rectangles contained in a single row or column of grid cells. From the construction of
L for single grid cells we can show that such a rectangle R ∈ RL can be intersected only at the two
extremal grid cell boundaries within R.

Lemma 10. Let F ∈ F(L). The boundary of F intersects rectangles from R of total weight at most
8δ2w(R). If F is not a rectangle face, then F has non-empty intersection with rectangles from R of
total weight at most 8δ2w(R).

Proof (sketch). The lemma clearly holds for rectangle faces. Let F ∈ F(L) be face which is not a
rectangle face. If F is contained in one grid cell Q then one can show that all rectangles intersecting
F must be contained in the area defined by grid column and grid row containing Q together with
the two adjacent grid rows (see Figure 7a). On the other hand, if F spans several grid cells, one
can show that all rectangles intersecting it must be contained in a single grid row or column (see
Figure 7b). In both cases, the claim follows since R is well-distributed.

3.4 Defining the Cut

For obtaining our desired cut, we apply the following theorem from [3] for the graph G(L). A
V-cycle C is a Jordan curve in the embedding of a given planar graph G which might go along the
edges of G and also might cross faces of G. The parts of C crossing an entire face of G are called
face edges.

Theorem 11 ([3]). Let G denote a planar, embedded graph with weights on the vertices and faces
and with costs on the edges. Let W denote the total weight, and M the total cost of the graph. Then,
for any parameter k̄, we can find in polynomial time a separating V-cycle C such that

• the interior and exterior of C each has weight at most 2W/3,

• C uses at most k̄ face edges, and

• C uses ordinary edges of total cost O(M/k̄).

9

First, we need to assign costs to the edges of G(L) and weights to the vertices and faces of
G(L). For each edge e ∈ E we define its cost ce to be the total weight of rectangles intersecting e.
The weights of all vertices are zero. For each face F we define its weight wF to be the total weight
of all rectangles contained in F , plus a fraction of the weight of the rectangles which intersect the
boundary of F . If a rectangle R ∈ R has non-empty intersection with m faces, each of these faces
obtains a 1/m-fraction of the weight of R. From Lemmas 9 and 10 we obtain the following bounds.

Lemma 12. The total cost of edges in G(L) is at most 4w(R). The weight of each non-rectangle
face F is at most 8δ2 · w(R). The total weight of the faces equals w(R).

For constructing the cut we apply Theorem 11 with parameter k̄ = 1/δ to the graph G(L).
The obtained V-cycle C yields a cut in the plane. We replace each face edge crossing some face
F ∈ F(L) by the edges going along the boundary of F . If w(R) ≤ w(R)/3 for each rectangle R ∈ R
and if δ < 1/5, then, from Lemma 10, each face has weight at most w(R)/3. We can then ensure
that each side of the modified cut contains rectangles of total weight at most 2w(R)/3. Using the
upper bound on the number of edges of G(L) from Lemma 8, and upper bounding the total weight
of rectangles intersected by the modified cut (using Lemmas 10 and 12) implies the following result.

Lemma 13. Assume that 1/5 > δ > 0. For any set R of pairwise non-overlapping rectangles not
containing a rectangle of weight at least w(R)/3 there exists a balanced O(δ)-cheap O((1/δ)4)-cut.

When choosing δ := Θ(ε/ log(n/ε)), from Lemma 4 and Lemma 13 we obtain that GEO-DP is
a QPTAS.

Theorem 14. The algorithm GEO-DP parametrized by k = (logn
ε)O(1) yields a quasi-polynomial

time approximation scheme for the maximum weight independent set of rectangles problem.

4 A PTAS for Large Rectangles

In this section we show that GEO-DP yields a polynomial time approximation scheme for input
instances which contain only large rectangles, i.e., in which every rectangle has width or height
greater than a δ-fraction of the length of the edges of the input square, for some constant δ > 0. As
a corollary, we obtain a PTAS for the special case of the MWISR problem when the lengths of the
longer edges the rectangles differ only by a constant factor, i.e., for some constant δ > 0 we have
max{hi, gi} ≤ 1/δ ·max{hi′ , gi′} for all rectangles Ri, Ri′ .

Let ε > 0 and δ > 0. Let R be a set of rectangles, and let N be an integer such that for
each rectangle Ri ∈ R we have x(1)

i , x
(2)
i , y

(1)
i , y

(2)
i ∈ {0, ..., N}. We call a rectangle Ri ∈ R δ-large

if hi > δN or gi > δN . In this section we assume that the input consists of a set R of δ-large
rectangles for some constant δ > 0. Assume w.l.o.g. that 1/δ ∈ N and δN ∈ N. As in the previous
section, for the analysis of GEO-DP we can assume that R itself is the optimal solution, i.e., no
two rectangles in R overlap.

Overview. First, we show that there is a way to partition the plane using a set of at most 1
ε ·(1

δ)O(1)

lines, such that the intersected rectangles have small total weight and each face of the partition is a
path or a cycle of “width” at most δN . Note that the latter bound is strictly smaller than the length
of the longer edge of each rectangle. In a sense, this partition sparsely describes the topology of
the (large) rectangles while losing only rectangles of negligible weight. Then, we show that for each

10

face GEO-DP can solve the resulting subproblem within a (1 + ε)-accuracy, without an increase in
the complexity of the subproblems during the recursion.

When given an input instance, GEO-DP first preprocesses it so that all rectangles have coordi-
nates which are integers in {0, ..., 2n− 1}. Note, however, that this routine might cause that some
rectangles are not δ-large anymore. Therefore, in the analysis in this section, we show that a good
recursive subdivision of the input square exists for the original input with coordinates in {0, ..., N}
for some integer N , and where all the rectangles are δ-large. As the preprocessing consists essen-
tially of stretching and squeezing of the input area, there is a corresponding recursive subdivision
of the preprocessed input instance, whose polygons have the same complexity, and which will be
considered by GEO-DP. W.l.o.g. we assume that δN is an integer.

4.1 Constructing the Partition for Large Rectangles

We define a set of lines L forming a partition in the input square [0, N]× [0, N]. The lines in L will
have the properties that

• |L| ≤ 1
ε · (1

δ)O(1),

• the rectangles intersected by a line in L have a total weight of at most ε · w(R), and

• each face in the partition obtained by L which contains rectangles from R is either a path or
a cycle with “width” at most δN .

Without saying explicitly, from now on each considered line is either horizontal or vertical and its
endpoints have integral coordinates.

Grid and blocks. We construct a grid consisting of 1
δ × 1

δ grid cells in the input square [0, N]×
[0, N], i.e., for each i, j ∈ {0, ..., 1/δ − 1} there is a grid cell with coordinates [i · δN, (i+ 1) · δN]×
[j · δN, (j + 1) · δN].

We slice all rectangles parallel to their longer edge into blocks, i.e., rectangles of unit width or
height. Formally, we cut each rectangle Ri ∈ R with hi > gi into x

(2)
i −x

(1)
i vertical blocks, with the

corners (j, y
(1)
i) and (j + 1, y

(2)
i) for j = {x(1)

i , x
(1)
i + 1, . . . , x

(2)
i − 1}. With a symmetric operation

we generate horizontal blocks for each rectangle Ri ∈ R with hi ≤ gi. We denote by B the set of
all generated blocks and observe that also they have integer coordinates. Like the rectangles, we
define the blocks as open sets. We will first find a partition for the blocks, which essentially means
that in the first version of the partition we can cut the rectangles arbitrarily parallel to their longer
edges. Later we will show how to adjust the partition—by introducing some detours—so that these
cuts will be eliminated.

We use the following notation. A line L touches a rectangle R if L ∩ (R ∪ ∂R) 6= ∅. A line
L intersects a rectangle R if L ∩ R 6= ∅. A line L hits a rectangle R if L touches R, L does not
intersect R, but extending L would result in L intersecting R. A line L cuts a rectangle R if R \ L
has two connected components. We say that a rectangle R (a block B, a line L) intersects a grid
cell Q if R ∩ int(Q) 6= ∅ (B ∩ int(Q) 6= ∅, L ∩ int(Q) 6= ∅). Each rectangle R ∈ R, as well as each
block B ∈ B, intersects at least two grid cells. We say that a block B ∈ B ends in a grid cell Q, if
B intersects Q, and for a short edge e (i.e., an edge with unit length) of B we have e ⊆ Q.

11

Q

Figure 4: The thick lines denote the lines in L0 added for the grid cell Q. The blocks of the
considered instance are depicted in gray.

Initial set of lines. We start by introducing an initial set of lines L0 as follows. First, we add to
L0 four lines which form the boundary of the input square [0, N]× [0, N].

Consider a grid cell Q and its bottom edge e. If possible, we add to L0 the following maximal
lines which do not intersect any block or any line previously added to L0, which touch e, and which
are strictly longer than δN :

• a vertical line with the smallest possible x-coordinate,

• a vertical line with the largest possible x-coordinate,

• a vertical line L which maximizes the length of L ∩Q. If there are several such lines, we add
two: one with the smallest and one with the largest x-coordinate. Lines maximizing |L ∩Q|
are called sticking-in lines for e in Q. The ones added to L0 in this step are called extremal
sticking-in lines.

We do the same operation for the top, left and right edges of Q, where for the left and right
edges we take horizontal lines, considering the y-coordinates instead of the x-coordinates. We do
this in a fixed order, e.g., first we add all vertical lines, and then all horizontal lines. See Figure 4
for an example. We do not want L0 to be a multi-set and thus we add each line at most once. Note
that for any two lines L1, L2 ∈ L0 the intersection L1 ∩ L2 is either empty or consists of one single
point (which is the endpoint of one of the lines). All lines in L0 are maximal, which means that
they cannot be extended without intersecting any perpendicular block or a perpendicular line in L0.

Proposition 15. The set L0 consists of at most 16(1
δ)2 + 4 lines.

Extending lines. A line in L0 might have loose ends which are endpoints which are not contained
in some other line in L0. We fix this by adding a set of lines Lext. We extend each loose end p of
a line in L0 by a path connecting p either to a line in L0 or to a line in the so far computed set
Lext. Such a path will contain O(1/(εδ2)) horizontal or vertical line segments, and will cut only
rectangles of total weight O(εδ2 · w(R)) parallel to their shorter edges. We add the lines of this
path to Lext and continue with the next loose end of a line in L0.

12

a)

L

L1

L2

L3

L̄

p

b)

L

L1

L2

L3

L4
L5

L′

L̄

p

Figure 5: The construction of the lines Lext. A new path is constructed, starting at a loose end p of
a line L ∈ L0. In case a) the construction of the path ends when L3 hits a line L̄ ∈ L0. In case b)
we make a "cheap shortcut", by ending the path L1, . . . , L5 with a line L′, which connects L5 with
a line L̄ ∈ L0. L′ cuts rectangles of small total weight.

The details of the construction can be found in Appendix C. Here we present just the idea of
the construction. As all lines from L0 are maximal, if an endpoint of a line L ∈ L0 does not hit a
line from L0 then it must hit a perpendicular block B ∈ B. The first line L1 on the path goes along
the boundary of B such that it crosses the boundary of a grid cell (as blocks are not contained in a
single grid cell, their longer edges always cross the boundary of a grid cell). We extend L1 so that
it either touches a line from L0 ∪ Lext (and the construction of the path is finished), or hits some
perpendicular block. In the latter case we proceed with the construction of the path, considering
a loose end of L1 instead of L. Notice that in this part of the construction the path does not
intersect any rectangles parallel to their shorter edges (i.e., it does not intersect any blocks). After
O(1/(εδ2)) steps either the path ends by touching a line from L0 ∪Lext, or we can make a shortcut
by adding a line L′ at the end of the path such that L′ goes along a grid cell boundary, connects
the path with a line from L0 ∪ Lext, and cuts rectangles of total weight O(εδ2 · w(R)) parallel to
their shorter edges. See Figure 5 for an example of the construction.

We say that a set of lines L is nicely connected if no two lines L,L′ ∈ L overlap (i.e., share
more than one point) or intersect properly (i.e., such that L ∪ L′ \ {L ∩ L′} has four connected
components) and for any endpoint p of a line L ∈ L there is a line L′ ∈ L, perpendicular to L, such
that L ∩ L′ = {p}.

Lemma 16. The set of lines L0 ∪Lext is nicely connected, |Lext| ≤ 1
ε · (1

δ)O(1), and the total weight
of rectangles in R cut by some line in L0 ∪ Lext parallel to their shorter edge is upper bounded by
ε · w(R). Also, all lines in Lext cutting rectangles in R lie on some grid line and for each line
L ∈ Lext there exists no cell Q such that L ⊆ int(Q).

Faces of the partition. The lines L0 ∪Lext subdivide the input square into a set of faces which
are the connected components of I \ (L0 ∪ Lext) (so in particular, the faces are open sets). Denote
by F(L0 ∪Lext) the set of all faces of this partition, and by F+(L0 ∪Lext) the set of all faces which
contain at least one block from B. As the next lemma shows, inside of each grid cell each face from
the set F+(L0∪Lext) has a simple structure. We say that a polygon P is an L-shape if its boundary
has exactly six axis-parallel edges.

13

Lemma 17. Consider a face F ∈ F+(L0 ∪Lext) and let Q be a grid cell with F ∩Q 6= ∅. Consider
one connected component C of F ∩ Q. Then int(C) is the interior of a rectangle or the interior
of an L-shape. Also, C ∩ ∂Q consists of one or two disjoint lines, where ∂Q denotes the boundary
of Q.

Proof (sketch). First, assume that there is an edge e of Q and two lines L,L′ ∈ L0 ∪ Lext from the
boundary of C such that L ∩ e 6= ∅ 6= L′ ∩ e and the subsegment of e between L ∩ e and L′ ∩ e is
contained in C ∪∂C. Using that the extremal sticking-in lines of Q belong to L0, with some careful
analysis we can show that there is an edge e′ 6= e of Q and two lines L̄, L̄′ connecting L and L′

with e′, respectively (possibly L = L̄ and L′ = L̄′). With this insight and the fact that the lines in
L0 ∪ Lext are nicely connected, we can show that if e′ is opposite of e then int(C) is the interior of
a rectangle, otherwise int(C) is the interior of an L-shape.

Next, we need to show that an edge e and lines L,L′ ∈ L0 ∪ Lext with the needed properties
always exist. First, we show that they exist if C has a non-empty intersection with some block
B ∈ B contained in F . That holds, as for some edge e of Q we have B ∩ e 6= ∅ and then B ∩ e ⊆ C.
As the extremal long lines crossing e are in L0, there are lines L,L′ with the properties above which
“surround” B within Q, and they form the boundary of C. Last, we show that if we have two
neighboring connected components C and C ′ and the needed properties hold for one of them, then
they must hold for the other one as well.

Now we study the structure of the faces in F+(L0 ∪ Lext) at the boundary of the grid cells. In
the following lemma we show that multiple connected components of a face inside one grid cell Q′

cannot merge into one component in a neighboring grid cell Q.

Lemma 18. Let Q and Q′ be grid cells such that Q ∩ Q′ = {e} for an edge e. Consider a face
F ∈ F+(L0 ∪ Lext) such that F ∩ Q 6= ∅, and let C be a connected component of F ∩ Q such that
C ∩ e 6= ∅. Then there is exactly one connected component C ′ of F ∩Q′ such that C ∩ C ′ 6= ∅.

Proof (sketch). Clearly, at least one such component C ′ exists since F ∩ e 6= ∅. Assume for contra-
diction that there are two connected components C ′1 and C ′2 of F ∩Q′ with non-empty intersection
with C. Then there must be a line L ∈ L0 ∪ Lext intersecting Q′ which touches e between C ′1 ∩ e
and C ′2 ∩ e. We can show, from the construction of the lines in L0 ∪ Lext, that L is connected with
a boundary of C in Q via a line from L0 ∪ Lext. This is a contradiction, as then either C ′1 or C ′2
does not intersect C.

Circumventing some rectangles. As the last step of the construction of the partition, we want
to ensure that if a line L in our construction intersects a rectangle R ∈ R, then it cuts R parallel
to its short edge. We achieve this as follows: whenever a line L ∈ L0 ∪ Lext intersects a rectangle
R ∈ R such that R \L has only one connected component or R∩L is longer than δN , then we add
the four edges of R as new lines and remove all parts of lines from L0 ∪ Lext which are inside R.
For any line in L0 ∪ Lext this operation adds at most O(1/δ) new lines. Denote by L the resulting
final set of lines. Similarly as above, the set F(L) denotes all faces, and the set F+(L) denotes all
faces which contain at least one rectangle.

Using the bounds on the number of edges in L0 ∪Lext from Proposition 15 and Lemma 16, and
the upper bound on the total weight of rectangles in R cut by a line from L0 ∪ Lext parallel to its
shorter edge (Lemma 16), we can show the following result.

14

(a) (b)

Figure 6: The thick lines show a cut of a face (a) into two paths with the same complexity as the
original path and (b) into a path and a cycle with the same complexity as the original cycle.

Lemma 19. The set of lines L has the properties that |L| ≤ 1
ε ·
(

1
δ

)O(1) and the total weight of
intersected rectangles is upper bounded by ε · w(R).

4.2 Solving the Subproblems for the Faces

We transform the set of lines L into a graph G(L) = (V,E) in the same way as in Section 3. From
Lemma 19 we get that |V | ≤ (1/ε)(1/δ)O(1) and |E| ≤ (1/ε)(1/δ)O(1). The algorithm GEO-DP
parametrized with k ≥ (1/ε)(1/δ)O(1) tries to subdivide the input square into the faces F(L) and
then recurses on the subproblems given by the faces. Observe that each face in F(L) \ F+(L) does
not contain any rectangle from R and thus we ignore those faces from now on. We distinguish two
types of faces in F+(L): faces which are homeomorphic to a straight line, and those homeomorphic
to a cycle. Note that due to Lemma 17 and Lemma 18 no more complex shapes can arise.

Let F ∈ F+(L) be homeomorphic to a straight line. We claim that GEO-DP finds an optimal
solution for F . To get some intuition, let us pretend that F is the union of a set of complete
grid cells and that all rectangles inside F are blocks, i.e., gi = 1 or hi = 1 for each Ri ∈ R with
Ri ⊆ F . Then there exists a cut through F which splits F into two sub-faces without intersecting
any rectangle (see Figure 6a). Moreover, the boundary of each sub-face will not be more complex
than the boundary of F itself. Due to this, the complexity of the subproblems does not increase
during the recursion process, and the algorithm GEO-DP finds an optimal solution for F . While
for arbitrary faces homeomorphic to a straight line and arbitrary rectangles instead of blocks the
analysis is more technical, and in particular requires circumventing rectangles within F , the key
concept is the same.

Lemma 20. Consider a face F ∈ F+(L) which is homeomorphic to a straight line. Then GEO-DP
parametrized by a value k ≥ (1/ε)(1/δ)O(1) computes an optimal solution for the DP-cell correspond-
ing to F .

Now consider a face F ∈ F+(L) which forms a cycle, i.e., which is homeomorphic to S1. Let us
pretend again that F is the union of some complete grid cells and all rectangles in F are blocks.
Then we can split F into a path-face F1 and a smaller cycle F2 while ensuring that the boundary

15

of the faces F1 and F2 consists of at most (1/ε)(1/δ)O(1) edges each (see Figure 6b). The recursion
terminates when at some recursion level F2 = ∅. When doing this operation repeatedly, we ensure
that the total weight of intersected rectangles is only an ε-fraction of the total weight of the rectangles
in the paths that we detached from the cycle.

Using this construction we can show that GEO-DP parametrized by sufficiently large k computes
a (1 + ε)-approximation for F , using that it solves the subproblems for path-faces optimally. Again,
for arbitrary rectangles and more general cycle-faces F the reasoning is more technical while the
core idea stays the same.

Lemma 21. Consider a face F ∈ F+(L) which is homeomorphic to S1. Then GEO-DP parametrized
by a value k ≥ 1

ε (1
δ)O(1) computes a (1 + ε)-approximative solution for the DP-cell corresponding

to F .

When constructing the partition given by the lines L we intersect (and thus lose) rectangles of
total weight at most ε · w(R). When solving the subproblems given by the faces of the partition
we again lose rectangles of total weight at most ε · w(R). Thus, by choosing k := (1/ε)(1/δ)O(1),
GEO-DP yields a PTAS.

Theorem 22. Let ε > 0 and δ > 0 be constants.

Using standard shifting technique arguments we obtain the following corollary.

Corollary 23. Let ε > 0 and δ > 0 be constants. The algorithm GEO-DP parametrized by
k = (1

ε·δ)O(1) is a polynomial time (1 + ε)-approximation algorithm for instances of MWISR where
for all rectangles Ri, Ri′ it holds that max{hi, gi} ≤ (1/δ) ·max{hi′ , gi′}.

16

References

[1] P. K. Agarwal and N. H. Mustafa. Independent set of intersection graphs of convex objects in
2d. Computational Geometry, 34(2):83–95, 2006.

[2] P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum independent set in
rectangles. Computational Geometry, 11:209 – 218, 1998.

[3] S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial-time approximation
scheme for weighted planar graph tsp. In Proceedings of the ninth annual ACM-SIAM sym-
posium on Discrete algorithms, SODA ’98, pages 33–41, Philadelphia, PA, USA, 1998. Society
for Industrial and Applied Mathematics.

[4] P. Berman, B. DasGupta, S. Muthukrishnan, and S. Ramaswami. Improved approximation
algorithms for rectangle tiling and packing. In Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms, pages 427–436. Society for Industrial and Applied Mathe-
matics, 2001.

[5] P. Chalermsook. Coloring and maximum independent set of rectangles. Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, pages 123–134, 2011.

[6] P. Chalermsook and J. Chuzhoy. Maximum independent set of rectangles. In Proceedings of
the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’09), pages 892–901.
SIAM, 2009.

[7] T. M. Chan. A note on maximum independent sets in rectangle intersection graphs. Information
Processing Letters, 89(1):19–23, 2004.

[8] T. M. Chan and S. Har-Peled. Approximation algorithms for maximum independent set of
pseudo-disks. In Proceedings of the 25th annual symposium on Computational geometry, SCG
’09, pages 333–340, New York, NY, USA, 2009. ACM.

[9] J. S. Doerschler and H. Freeman. A rule-based system for dense-map name placement. Com-
munications of the ACM, 35(1):68–79, 1992.

[10] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for geometric
graphs. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’01), pages 671–679. SIAM, 2001.

[11] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane
are np-complete. Information processing letters, 12(3):133–137, 1981.

[12] J. Fox and J. Pach. Computing the independence number of intersection graphs. In Proceed-
ings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11,
pages 1161–1165. SIAM, 2011.

[13] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining with optimized two-
dimensional association rules. ACM Transactions on Database Systems (TODS), 26(2):179–213,
2001.

17

[14] H. Imai and T. Asano. Finding the connected components and a maximum clique of an
intersection graph of rectangles in the plane. Journal of algorithms, 4(4):310–323, 1983.

[15] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle tiling and pack-
ing. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
’98), pages 384–393. SIAM, 1998.

[16] B. Lent, A. Swami, and J. Widom. Clustering association rules. In Data Engineering, 1997.
Proceedings. 13th International Conference on, pages 220–231. IEEE, 1997.

[17] L. Lewin-Eytan, J. Naor, and A. Orda. Routing and admission control in networks with advance
reservations. Approximation Algorithms for Combinatorial Optimization, pages 215–228, 2002.

[18] F. Nielsen. Fast stabbing of boxes in high dimensions. Theor. Comp. Sc., 246:53 – 72, 2000.

[19] J. Soto. personal communication.

[20] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic
number. Theory of Computing, 3:103–128, 2007.

18

A Proof of Lemma 4

First, we prove a technical lemma which shows a polynomial upper bound on the number of con-
nected components, and the complexity of each connected component, of an intersection of a col-
lection of polygons. The lemma will allow us later to bound the complexity of the generated
subproblems during the recursion of the DP.

Lemma 24. Let P1, . . . , Pm be a collection of axis-parallel polygons, where each Pi has at most ¯̀

edges. Then the intersection
⋂
i=1,...,m Pi consists of at most (m¯̀)2 connected components, and each

connected component P is a polygon with at most (m¯̀)2 edges.

Proof. As the polygons Pi have at most m¯̀ edges in total, and any two edges can cross at most
once, we have at most (m¯̀)2 pairs of crossing edges. Each connected component of the intersection⋂
i=1,...,m Pi has at least four corners, and each corner corresponds to a different pair of crossing

edges. Hence, there are at most (m¯̀)2 connected components. The number of edges of one connected
component P equals the number of vertices of P , which is also upper bounded by the number of
crossing pairs (m¯̀)2.

The following lemma implicitly describes a family of transitions for the DP-subproblems which
we will use in the proof of Lemma 4.

Lemma 25. Let α, ` be values such that conditions of Lemma 4 are satisfied, and let R̄ be a
set of at most n pairwise non-overlapping rectangles with integer coordinates in {0,. . . ,2n-1}. Let
j∗ =

⌈
log3/2 n

2/ε
⌉
. Then for each j ∈ {0, 1, . . . , j∗} there is a family of axis-parallel polygons Pj

with integer coordinates such that:

a) each polygon P ∈ Pj has at most (j + 1)2 · (`+ 4)2 edges,

b) P0 = {[0, 2n− 1]× [0, 2n− 1]},

c) the polygons in Pj are disjoint, and each polygon P ∈ Pj−1 is a disjoint union of at most
(j + 1)2(`+ 4)2 polygons from Pj,

d) each polygon P ∈ Pj∗ contains at most one rectangle from R̄,

e) for each set Pj we get
∑

P∈Pj
w(P) ≥ (1− α)j · w(R̄).

Proof. We set P0 = {[0, 2n−1]× [0, 2n−1]}, i.e., P0 consists of one rectangle which contains all the
rectangles from R̄. We then construct the sets P1, . . . ,Pj∗ one by one, as follows. To construct Pj ,
we consider each polygon P ∈ Pj−1, and we add to Pj the following set of polygons, which together
give a disjoint union of P . If P contains at most one rectangle R ∈ R̄, we add P to the set Pj .
Otherwise, if there is a rectangle R0 ∈ R̄, R0 ⊆ P with w(R0) ≥ 1

3 ·
∑

R∈R̄,R⊆P w(R), we add to Pj
the following polygons: P ∩R0 = R0, and the connected components of P ∩R0, i.e. the connected
components of P \R0. Finally, consider the case that no rectangle R0 ∈ R̄ with R0 ⊆ P has weight
w(R0) ≥ 1

3 ·
∑

R∈R̄,R⊆P w(R). Then there exists a α-cheap `-cut for the set of rectangles from R̄

which are contained in P . Let Pc be the polygon defining this cut, and let P̄c be its complement
intersected with the input square. We can assume that all corners of Pc have integer coordinates.
We add to Pj each connected component of P ∩Pc and P ∩ P̄c. Notice that Pc has at most ` edges,
and so P̄c has at most `+ 4 edges.

19

We now have to check that all required properties are satisfied.
a) The only polygon in P0 has 4 edges. Each polygon P ∈ Pj for j ≥ 1, is a connected component

of an intersection of at most j + 1 polygons with axis-parallel edges and integer corner coordinates,
and at most `+ 4 edges each. P has axis-parallel edges and integer coordinates, and from Lemma
24 it has at most (j + 1)2(`+ 4)2 edges.

b) Defined at the beginning of the proof.
c) From the construction of the sets Pj it can be easily observed that the polygons in Pj are

disjoint, and each polygon P ∈ Pj−1 is a union of polygons from Pj . We now have to upper bound
the number of polygons from Pj which can be contained in one polygon P ∈ Pj−1. Polygon P is a
connected component of an intersection of at most j polygons, each with at most ` + 4 edges. By
construction each polygon P ′ ∈ Pj is contained in some polygon P ∈ Pj−1. Each polygon P ′ ∈ Pj
contained in P is a connected component of an intersection of P with a polygon Pc with at most `
edges, or with a polygon P̄c with at most `+ 4 edges. Therefore P ′ is a connected component of an
intersection of at most j + 1 polygons, each with at most `+ 4 edges. From Lemma 24 the number
of such components is upper bounded by (j + 1)2(`+ 4)2.

d) For a polygon P let w(P) :=
∑

R∈R̄:R⊆P w(R) denote the weight of all rectangles from R̄
contained in P . We will show by induction that if P ∈ Pj contains more than one rectangle from
R̄, then w(P) ≤ 2

3

j
w(R̄) ≤ 2

3

j
n2/ε. That value is at most 1 for P ∈ Pj∗ , and as each rectangle

from R̄ has weight at least 1, P cannot contain more than one rectangle.
For the only polygon P ∈ P0 we have w(P) = w(R̄) ≤ n2/ε. We assume by induction that the

property holds for Pj−1, and we will show that it holds also for Pj . Let P ∈ Pj be contained in a
polygon P0 ∈ Pj−1, where w(P0) ≤ 2

3

j−1
w(R̄) ≤ 2

3

j−1
n2/ε. If P contains more than one rectangle

from R̄, then either P ⊆ P0 \ R for a heavy rectangle R, or P is obtained from P0 by a balanced
cut. In both cases we get w(P) ≤ 2

3w(P0) and we are done.
e) The property holds for P0, as

∑
P∈P0

w(P) = w(R̄). We will give a proof by induction.
Assume that the property holds for Pj−1, i.e.,

∑
P∈Pj−1

w(P) ≥ (1− α)j−1 · w(R̄). The rectangles
which are intersected by Pj , but not by Pj−1, must be intersected by the newly introduced polygons
Pc, which intersect polygons P ∈ Pj−1. As each polygon Pc is a α-cheap `-cut for the set of
rectangles contained in the corresponding polygon P , we get

∑
P ′∈Pj :P ′⊆P w(P ′) ≥ (1−α)w(P) for

each P ∈ Pj−1, and so
∑

P∈Pj
w(P) ≥ (1− α)j · w(R̄).

With this preparation we are able to prove Lemma 4.

Proof of Lemma 4. Suppose we parametrize GEO-DP by k :=
(⌈

log3/2 n
2/ε
⌉

+ 1
)2
·(`+4)2. Denote

by Pj , with j ∈ {0, 1, . . . , j∗} for j∗ =
⌈
log3/2 n

2/ε
⌉
, the families of axis-parallel polygons with

integer coordinates as given in Lemma 25.
From Lemma 25a) any polygon P ∈ Pj has at most k edges, and so Pj ⊆ P and GEO-DP has

a DP-cell for P . If P ∈ Pj∗ , from Lemma 25d) we know that P contains at most one rectangle,
and so w(sol(P)) = w(P) where for each polygon P we denote by w(P) the total weight of all
rectangles in R which are contained in P . From Lemma 25c) each polygon P ∈ Pj is a union of
at most k polygons P1, . . . , Pm ∈ Pj+1. Therefore GEO-DP tries the subdivision of P into these
components and we get that w(sol(P)) ≥ ∑m

i=1w(sol(Pi)), which for the input polygon P0 ∈ P0

20

(see Lemma 25b) gives

w(sol(P0)) ≥
∑
P∈Pj∗

w(sol(P)) =
∑
P∈Pj∗

w(P) ≥ (1− α)j
∗ · w(R̄) ,

where the last inequality comes from Lemma 25e). Therefore, the overall approximation ratio

of GEO-DP is (1− α)−j
∗

=
(

1
1−α

)dlog3/2 n
2/εe

= (1 + α)O(log(n/ε)) when parametrized by k =(⌈
log3/2 n

2/ε
⌉

+ 1
)2
· (`+ 4)2.

B Proofs from Section 3

Definition 26. Let R = {R1, ..., Rn} and R̄ = {R̄1, ..., R̄n} be sets of rectangles s.t. Ri and R̄i

have coordinates x(1)
i , y

(1)
i , x

(2)
i , y

(2)
i and x̄(1)

i , ȳ
(1)
i , x̄

(2)
i , ȳ

(2)
i , respectively. We say that R and R̄ are

combinatorially equivalent (or equivalent for short) if we have that w(Ri) = w(R̄i), x
(t)
i ≤ x

(t′)
i′ ⇔

x̄
(t)
i ≤ x̄

(t′)
i′ , x(t)

i < x
(t′)
i′ ⇔ x̄

(t)
i < x̄

(t′)
i′ , y(t)

i ≤ y
(t′)
i′ ⇔ ȳ

(t)
i ≤ ȳ

(t′)
i′ , and y(t)

i < y
(t′)
i′ ⇔ ȳ

(t)
i < ȳ

(t′)
i′ , for

all t, t′ ∈ {1, 2} and all i, i′ ∈ {1, ..., n}.

Proof of Lemma 6. W.l.o.g. we can assume that x(1)
i , y

(1)
i , x

(2)
i , y

(2)
i ∈ {0, . . . , 2n− 1} for each Ri ∈

R, where n = |R|. The set of rectangles R̄ will consist of rectangles R̄1, ..., R̄n, where for each
i = 1, . . . , n we have w(R̄i) = w(Ri). We set the coordinates x̄(1)

i , ȳ
(1)
i , x̄

(2)
i , ȳ

(2)
i of R̄i as follows.

For j = 1, . . . , 2n we define Rx(j) := {Ri ∈ R : x
(1)
i < j} and Ry(j) := {Ri ∈ R : y

(1)
i < j}.

For i ∈ {1, ..., n} and t ∈ {1, 2} we set

x̄
(j)
i := x

(j)
i +

⌈
w(Rx(x

(j)
i)) · 2|R|

w(R)

⌉
, ȳ

(j)
i := y

(j)
i +

⌈
w(Ry(y(j)

i)) · 2|R|
w(R)

⌉
.

As the weights w(Rx(j)) and w(Ry(j)) are monotonically non-decreasing with j, the sets R and
R̄ are equivalent, and in particular for any t, t′ ∈ {1, 2} and i, i′ ∈ {1, ..., n} we have x(t)

i < x
(t′)
i′ ⇔

x̄
(t)
i < x̄

(t′)
i′ .

As for any j we have w(Rx(j)), w(Ry(j)) ∈ [0, w(R)], the rectangles from R̄ have integer
coordinates in {0, ..., 4 · |R|}. We now have to show that R̄ is well-distributed.

W.l.o.g. it is enough to show that for any γ > 0 and any vertical stripe S of the square
[0, 4|R|]× [0, 4|R|] of width γ · 4|R| all rectangles from the set R̄ contained in S have a total weight
of at most 2γ · w(R̄).

Let R̄(S) be the set of rectangles from R̄ contained in S, and assume that R̄(S) 6= ∅. Let
R̄` and R̄r be rectangles from R̄(S) minimizing x̄(1)

i and maximizing x̄(2)
i , respectively. We have

x̄
(2)
r − x̄(1)

` ≤ 4γ|R|. As x̄(2)
r > x̄

(1)
` , we have x(2)

r > x
(1)
` , and:

x̄(2)
r − x̄(1)

` = (x(2)
r − x(1)

`) +

(⌈
w(Rx(x(2)

r)) · 2|R|
w(R)

⌉
−
⌈
w(Rx(x

(1)
`)) · 2|R|

w(R)

⌉)
≥
(
w(Rx(x(2)

r))− w(Rx(x
(1)
`))

)
· 2|R|
w(R)

≥ w(R̄(S)) · 2|R|
w(R)

,

as R̄(S) ⊆ Rx(x
(2)
r) \ Rx(x

(1)
`). We get 4γ|R| ≥ w(R̄(S)) · 2|R|

w(R) , which gives us w(R̄(S)) ≤
2γw(R) = 2γw(R̄). The set of rectangles R̄ is well-distributed.

21

Proof of Lemma 7. There are (1/δ)2 − 1 vertical grid lines which can cut rectangles from the set
R. Each of the grid lines has length N , so it cuts less than (1/δ)2 large vertical rectangles. An
analogous condition holds for horizontal grid lines and large horizontal rectangles, giving an upper
bound of 2(1/δ)4 on the number of rectangle faces.

Proof of Lemma 8. Take the embedding of G(L) which is induced by the lines L. By construction
of the set L, the lines in L do not intersect properly. Thus, due to the definition of G(L) this yields
a planar embedding of G(L).

Now we bound the number of vertices and edges of G(L). Each vertex of G(L) is an endpoint
of a line from L. From Lemma 7 there are at most 2(1/δ)4 rectangle faces, which yield at most
8(1/δ)4 vertices of G(L). All remaining vertices are endpoints of lines contained in single grid cells.
As each grid cell Q can be intersected by at most 4 rectangle faces, and by at most two lines of L
corresponding to rectangles crossing Q, that gives at most 12 new vertices per each grid cell. As
the number of grid cells is (1/δ)4, we get |V | ≤ 20(1/δ)4.

As G(L) is planar, and all edges of G(L) are horizontal or vertical, the degree of each vertex is
at most 4 and we get |E| ≤ 40(1/δ)4.

Proof of Lemma 9. The only lines from L which intersect rectangles from R are the lines which lie
on the boundary of the grid cells, as all other lines lie on the boundaries of some rectangles from
R, and the rectangles in R are pairwise non-overlapping. The only vertices of G(L) which can lie
in the interior of any rectangle from R are the corners of the grid cells, as all remaining vertices
of G(L) lie on the boundaries of rectangles from R (either a rectangle generating a rectangle face,
or a rectangle crossing a grid cell). Therefore, if a rectangle R ∈ R intersects at most m grid cell
boundaries, it is intersected by at most m edges of G(L). We instantly get that a rectangle from
RS is intersected by at most 4 edges of G(L).

Let R ∈ RL be a rectangle contained in a single row or column of grid cells. Let Q and Q′

be the extremal grid cells intersected by R (i.e., such that R intersects Q and Q′, and the shorter
edges of R are contained in Q and Q′). We will show that R can be intersected by edges of G(L)
only at the boundaries of Q and Q′, i.e., R is intersected by at most 2 edges of G(L). Consider a
grid cell boundary e = Q1 ∩Q2 for some grid cells Q1 and Q2, where R crosses Q1 and Q2. Then
R ∈ RQ1 ,RQ2 , and the lines added to L while considering the grid cells Q1 and Q2 do not intersect
R.

Let us consider the last case. Let R ∈ RL be a rectangle which is not contained in a single row
or column of grid cells. Then R is contained in a rectangle face, and it is not intersected by any
edges of G(L).

Proof of Lemma 10. From the construction of the lines L we obtain the following propositions.

Proposition 27. Let p be a corner of a grid cell. If p does not lie on any line L ∈ L, then p ∈ F
for some rectangle face F ∈ F(L).

Proposition 28. Let e be a horizontal (resp. vertical) edge of a grid cell Q, and let p ∈ e such that
p is not a corner of Q. If p does not lie on a rectangle face, and p does not lie on a line from L,
then Q is crossed by a large vertical (resp. horizontal) rectangle.

Let F ∈ F(L) be a face contained in a single grid cell Q. As all large rectangles not contained
in the rectangle faces are contained in a single row or column of grid cells, and all small rectangles
have width and height at most δ2N , all rectangles which have non-empty intersection with F are

22

a)

F

b)

F

Figure 7: All rectangles from R intersecting a face F ∈ F(L) which is not a rectangle face are
contained in thin stripes of the input square. The rectangles of R intersecting F are depicted in
gray. The shaded area denotes the stripes.

contained in a horizontal stripe of I of width 3δ2N , or in a vertical stripe of I of width δ2N (see
Figure 7a). As the set of rectangles R is well-distributed, we get that the total weight of rectangles
intersecting F is at most 8δ2w(R).

Let F ∈ F(L) be a face which is not a rectangle face, and which is not contained in a single
grid cell. We will show that F is contained in a single row or column of grid cells. Assume, for
contradiction, that F is not contained in a single row or column of grid cells. Then there must
be a grid cell Q with vertical and horizontal edges e and e′, respectively, such that F ∩ e 6= ∅ and
F ∩ e′ 6= ∅. As F ∩⋃L∈L L = ∅, and therefore F ∩ E = ∅, Proposition 27 and Proposition 28 give
us that Q is crossed both by horizontal and vertical rectangles from R, which gives contradiction.
The face F must be contained in a single row or column of grid cells.

Assume w.l.o.g. that F is contained in a single column of grid cells, but not in a single grid cell
(see Figure 7b). Then for each grid cell Q for which F ∩Q 6= ∅, F ∩Q is contained between the lines
L` and Lr which are parts of edges of vertical rectangles crossing Q. In particular, no rectangle
from R can intersect L` and Lr. If a rectangle from R has non-empty intersection with F ∩Q, then
it must be contained in the same column of grid cells as F , i.e., all rectangles intersecting F are
contained in a stripe of I of width δ2N , and have total weight at most 2δ2w(R).

As the boundary of a rectangle face does not intersect any rectangles from R, we instantly
get that the boundary of any face F ∈ F(L) intersects rectangles from R of total weight at most
8δ2w(R).

Proof of Lemma 12. From Lemma 9 each rectangle from R can be intersected by at most 4 edges
of the graph G(L). That gives us that the total cost of edges in G(L) is at most 4w(R).

From Lemma 10 each face of F which is not a rectangle face has non-empty intersection with
rectangles from R of total weight at most 8δ2w(R), and so the weight of F is at most 8δ2w(R).

As each rectangle R ∈ R intersecting m faces contributes w(R)/m to the weight of each of the
m faces, the total weight of the faces is w(R).

23

Proof of Lemma 13. Let L be the set of lines, and G(L) = (V,E) the graph constructed for the set
of rectangles R. From Lemma 8 G(L) is planar, and so we can apply Theorem 11 to the embedding
given by the lines L.

Let C be the V-cycle of G(L) from Theorem 11 for k̄ = 1/δ. We will transform C into a cycle C ′

which uses only ordinary edges of G(L). We consider the face edges one by one, and we substitute
each face edge uv for a face F with a path in G(L) connecting u and v and using only edges which
are on the boundary of F . We can choose this path in two ways, depending on whether we want F
to become a part of the interior, or the exterior of C ′. We always merge F with the part of lower
weight. Notice that C ′ might not be a simple cycle, but we can always modify C ′ so that each edge
appears only O(1) times in C ′.

We will show that the cycle C ′ gives a balanced O(δ)-cheap O((1/δ)4)-cut. From Lemma 8 we
get that |E| = O((1/δ)4). The cycle C ′ uses O((1/δ)4) edges, and so C ′ is a O((1/δ)4)-cut.

We will now upper bound the total weight of rectangles fromR intersected by C ′. From Theorem
11 the ordinary edges of C have cost O(M/k̄), which from Lemma 12 is O(δw(R)), and so they
intersect rectangles from R of a total weight O(δw(R)). The remaining edges of C ′ lie on the
boundaries of at most k̄ = 1/δ faces, and from Lemma 10 the boundary of each face intersects
rectangles of weight O(δ2 · w(R)). The edges of C ′ intersect rectangles of total weight O(δw(R)),
and so C ′ is a O(δ)-cheap cut.

From Theorem 11 the interior and the exterior of C have weights at most 2W/3, and from
Lemma 12 we get that W = w(R). Each rectangle in R has weight smaller than w(R)/3, and so
the weight of each rectangle face of G(L) is smaller than w(R)/3. From Lemma 12 the weight of
any other face of G(L) is at most 8δ2 ·w(R), which is also smaller than w(R)/3 for δ < 1/5. From
the construction of C ′ the interior and the exterior of C ′ have weights at most 2w(R)/3. The cut
C ′ is balanced.

Proof of Theorem 14. From Lemma 13, for any 1/5 > δ > 0 and for any set R of pairwise non-
overlapping rectangles which does not contain a rectangle of weight at least w(R)/3 there exists a
balanced (c · δ)-cheap O((1/δ)4)-cut for some constant c > 0.

Applying Lemma 4 gives us, that the algorithm GEO-DP has approximation ratio (1 + c ·
δ)O(log(n/ε)) when parametrized by some k = (1/δ)8 ·O(log2(n/ε)). Let us fix δ = Θ

(
ε

log(n/ε)

)
such

that the approximation ratio is at most 1+ε. Such choice of δ requires k = (logn
ε)O(1). The running

time of GEO-DP is then n(logn/ε)O(1) according to Proposition 2, and so GEO-DP is a QPTAS for
the maximum weight independent set of rectangles problem.

C Complete Construction of Lext

For any two points p, p′ we denote by L[p, p′] the straight line from p to p′. Also, we define
L(p, p) := L[p, p′] \ {p, p′}.

For each endpoint p0 of a line L ∈ L0 such that L does not hit a perpendicular line in L0∪Lext at
p0 we will create a path of lines connecting L with a line in L0∪Lext, and we will add the constructed
lines to the set Lext. Ideally, we would like the added lines to intersect no blocks. However, as we
want the size of the partition to be small, we will have to allow the lines to cut some blocks.

Before we show the construction of the paths, we need the following lemma. Note that it holds
for arbitrary lines L, and not only for lines in L0 ∪ Lext.

24

Lemma 29. Let Q be a grid cell and p ∈ Q. Let L be a line which does not intersect any blocks
and lines from L0, which has one endpoint at p, and the other endpoint outside of Q. If L hits a
perpendicular block B at p, but it does not hit a perpendicular line from L0 at p, then:

• p ∈ int(Q), and

• one end of B is in Q, and the other one is outside of Q.

Proof. Assume w.l.o.g. that L is vertical, p is at the top end of L, and B crosses the boundary of
the grid cell to the right of p. Let L′ be the maximal line which contains the bottom edge of B and
does not intersect any blocks or lines from L0. As p ∈ L′, we get that L′ /∈ L0.

Assume that p is at the boundary of Q. If p lies on the bottom or right edge of Q, L′ is the
bottom-most long line crossing the right edge of Q. If p lies on the top edge of Q, L′ is the top-most
long line crossing the right edge of Q. If p lies on the left edge of Q, L′ is the bottom-most long line
crossing the left edge of Q. In each of the cases we have that L′ ∈ L0, which gives a contradiction.

As p ∈ int(Q), B intersects Q. If B does not end in Q, then L′ cuts Q. If L′ is the bottom-most
sticking-in line for the left edge of Q then L′ ∈ L0, which gives a contradiction. Otherwise, the
bottom-most sticking-in line for the left edge of Q is below L′ and cuts Q, so it intersects L, and
again we get a contradiction, as L does not intersect edges from L0. Block B must end in Q.

We now present the construction of the paths. For each endpoint p0 of a line L ∈ L0 such that
L does not hit a perpendicular line in L0 ∪ Lext at p0, we construct a set of lines {L1, . . . , Lm} as
follows. Let Q be a grid cell such that p0 ∈ Q, and let B be the block hit by L at p0. Such a block
exists, as L is maximal, and L does not hit a line from L0∪Lext at p0. The line L together with p0,
Q and B satisfy the conditions of Lemma 29. We get that p0 ∈ int(Q), and B has one end in Q.
Let Q′ 6= Q be the grid cell with the other end of B. Let Lmax be a maximal line which contains
the edge of B containing p, and does not intersect any blocks or lines from L0 ∪Lext. Let p1 be the
endpoint of Lmax such that L[p0, p1] ∩Q′ 6= ∅. We set L1 = L[p0, p1]. We know that p1 /∈ Q, so L1

intersects at least two grid cells. See Figure 8 for a sketch.
We fix a parameter M = 641

ε (1
δ)2. We have to consider the following cases:

1. There is a line L′ ∈ Lext such that |L1∩L′| > 1 (see Figure 8a). Such a situation can happen,
as lines from Lext are not necessarily maximal. As L1 does not hit L′ at p0 and L1 cannot be
extended beyond p1, we get that L′ ⊆ L1. The construction of the path is finished.

2. Case 1) does not happen, but L1 hits a line from L0 ∪ Lext at p1, (see Figure 8b). The
construction of the path is finished.

3. Cases 1) and 2) do not happen. In this case, L1 hits some perpendicular block at p1 (see
Figure 8c). We proceed as before, considering the line L1 and its endpoint p1 instead of L
and p. The conditions of Lemma 29 are satisfied, as L1 intersects at least two grid cells. We
continue extending the path, until one of the cases 1) or 2) applies, or the number of lines in
the path reaches the upper bound M .

Let {L1, . . . , Lm} be the collection of lines obtained as described above, for some m ≤ M . We
have Li = L[pi−1, pi]. We modify the set Lext as follows. If the construction of the set ended in
case 1), we add the set of lines {L1, . . . , Lm−1} to Lext. Let L′ ∈ Lext be the line contained in Lm.
We extend L′, so that it has an endpoint in pm−1. Notice, that all the lines which were touching L′

25

a)

B

Q Q′

p0

L

L′

B

Q Q′

p0

L

L1 = L′

b)

B

Q Q′

p0

L

B

Q Q′

p0

L

L1

c)

B

Q Q′

p0

L

B

Q Q′

p0 p1

L

L1

L2

Figure 8: Construction of the paths. The line L hits the block B at the point p0. We construct
a line L1 starting at p0, following the bottom edge of B until we hit a perpendicular line which is
already in L0 ∪ Lext, or a perpendicular block. In case a) the new line L1 overlaps an existing line
L′ ∈ L0 ∪Lext in which case we extend L′ so that it reaches p0 (and do not add L1 to Lext). In case
b) we simply add L1 to Lext and we are done. In case c) we continue constructing the path from
the point p1, where L1 hits a perpendicular block.

26

L

L1

L2
L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

L14

Lm

s1ms2m

p0

Figure 9: The construction of the lines Lext. The blocks of the considered instance are depicted in
gray.

after extending are still touching L′. If the construction of the set ended in case 2), we add the set
of lines {L1, . . . , Lm} to Lext.

Let us now consider the difficult case, i.e., when after M steps the path L1, . . . , LM does not hit
any line from L0 ∪ Lext. We do not want to extend the path any further, as the number of lines in
Lext would become too large. We have to find a place to create a "shortcut" which connects some
part of the path L1, . . . , LM to a line from L0 ∪ Lext, cutting some blocks. We will ensure that the
rectangles cut during this operation have small total weight. The cut will go along the boundary of
some grid cell. An example can be seen on Figure 9.

Each line Li intersects least two grid cells. For each i ∈ {1, ...,M} let Qi be the grid cell in which
Li ends, i.e, such that pi ∈ Qi. From the construction of the path we know that pi ∈ int(Qi). Let ei
be the edge of Qi intersected by Li, and let p0

i = Li ∩ ei. Let s1
i and s

2
i be the segments on ei which

connect Li with the two neighboring lines from L0∪Lext∪{L1, . . . , LM}, i.e. for j = {1, 2} we have
sji = [p0

i , p
j
i] such that pji ∈ L0 ∪Lext ∪ {L1, . . . , LM} and (p0

i , p
j
i)∩ (L0 ∪Lext ∪ {L1, . . . , LM}) = ∅,

and p1
i 6= p2

i .
We will show that such segments always exist. Li crosses the edge ei of Qi, and the maximal

line containing Li which does not intersect any blocks or lines from L0 is long (as at least some
part of Li goes along a long edge of a block). As Li /∈ L0, Li lies between two lines from L0 — the
leftmost and the rightmost long lines crossing the edge ei of Qi, and so the segments s1

i and s2
i are

contained in ei. A segment sji possibly cuts some blocks. Let Rji be the set of rectangles cut by sji .

Lemma 30. Any rectangle R ∈ RL belongs to at most four sets Rji , where i ∈ {1, . . . ,M} and
j ∈ {1, 2}.

Proof. If R is not contained in a single row or column of grid lines, it cannot be cut by any segment

27

sji , and so it does not belong to any set Rji . Assume w.l.o.g. that R is vertical and it is inside a
single column of grid cells. Let Q1 and Q2 be the grid cells where the blocks of R end.

Let e be a grid cell boundary which intersects R such that e ∩ Q1 = ∅ and e ∩ Q2 = ∅. Let Q
and Q′ be the grid cells for which e = Q ∩Q′. R crosses Q and Q′, and so the vertical sticking-in
lines in Q and Q′ cross Q and Q′, and R is contained between them. If a line Li ends in Q or Q′,
its end cannot lie between the sticking-in lines (as there are no perpendicular blocks which could
be hit by Li), and so R ∩ sji = ∅ for j ∈ {1, 2}, and R /∈ Rji .

At the boundary e of Q1 or Q2 the rectangle R can be cut by at most two segments sji and s
j′

i′ ,
such that L(p0

i , p
0
i′) ∩ {L1, . . . , LM} = ∅, and (R ∩ e) ⊆ L[p0

i , p
0
i′].

From Lemma 30 we get that there is a line Li in {L1, . . . , LM} and a segment sji for which
w(Rji) ≤ 2

Mw(RL). We have two cases:

• sjj connects the line Li with a line from L0 ∪ Lext ∪ {Lj}j<i.
We then continue the path from L only until the point p0

i = Li∩ sji , and then extend it by the
segment sji . Formally, we add the lines L1, . . . , Li−1, the line L[pi−1, p

0
i] ⊆ Li and the segment

sji into Lext.

• sjj connects the line Li with a line Li′ for i′ > i.

We then continue the path from L until the intersection of Li′ with sji , and then extend
it by the segment sji . Let p = Li′ ∩ sji . Formally, we add the lines L1, . . . , Li′−1, the line
L[pi′−1, p] ⊆ Li′ and the segment sji into Lext.

We do this procedure iteratively for all endpoints p of a line L ∈ L0 which are not connected to
some other line in L0 ∪ Lext, i.e., if {p} ∩ (L0 ∪ Lext \ {L}) = ∅, for the so far computed set Lext.

D Proofs from Section 4

Proof of Lemma 16. We will start by showing that the set of lines L0 ∪ Lext is nicely connected.
From the construction of the lines it is clear that no two lines from L0 ∪ Lext overlap or intersect
properly. We need to show that for any line L ∈ L0 ∪ Lext and any endpoint p of L there is a line
L′ ∈ L0 ∪ Lext perpendicular to L such that L ∩ L′ = {p}.

For each endpoint p of a line L ∈ L0 which does not hit a perpendicular line from L0 ∪ Lext

we added a perpendicular line touching p to the set Lext. The path of lines connecting p with a
line from L0 ∪ Lext is constructed in such a way, that each line added to Lext has both endpoints
touching perpendicular lines from L0∪Lext. If a line from Lext gets extended, it is extended in such
a way that the new endpoint touches a perpendicular line from L0 ∪Lext. The set of lines L0 ∪Lext

is nicely connected.
We will now show an upper bound on |Lext|. From Proposition 15 the set L0 consists of

16(1/δ)2 + 4 lines. For each endpoint of a line from L0, except from the four lines in L0 bound-
ing the input square, we added at most M + 1 = O(1/(εδ2)) lines to the set Lext, which gives
|Lext| = O(1/(εδ4)).

We will now upper bound the total weight of rectangles from R which are cut by a line from
L0 ∪ Lext parallel to their shorter edge. The only lines from L0 ∪ Lext which cut rectangles along
their shorter sides, i.e., which cut all blocks corresponding to a given rectangle, are the lines from

28

p

L

Lmax

Lb

Lt

e

e′

Figure 10: In the proof of Lemma 31 the line Lmax is the bottom-most sticking-in line for e′, and
so it belongs to the set L0.

Lext which correspond to segments sji . Each segment sji cuts only the set of rectangles Rji , and we
add to Lext only such segments sji , for which w(Rji) ≤ 2

Mw(R). The number of segments sji added
to Lext is upper bounded by 32(1/δ)2. That gives an upper bound of 32(1/δ)2 · 2

Mw(R) ≤ εw(R)
(as M = 641

ε (1
δ)2) on the total weight of rectangles from R which are cut by a line from L0 ∪ Lext

parallel to their shorter edge.
From the construction of the lines Lext it is clear that all lines from Lext cutting rectangles in

R lie on grid lines, and a line from Lext cannot be contained in the interior of a grid cell.

Proof of Lemma 17. First we prove some additional lemmas.

Lemma 31. Let L ∈ L0 ∪ Lext be a line and let Q be a grid cell such that L is a sticking-in line
(not necessarily extremal) for an edge e of Q, and L does not cross Q. Let p ∈ Q be an endpoint of
L. Then there exists a line L̄ ∈ L0 perpendicular to L such that L ∩ L̄ = {p}, L̄ does not end at p
and L̄ is an extremal sticking-in line for an edge e′ of Q perpendicular to e.

Proof. From Lemma 16 the set of lines L0 ∪ Lext is nicely connected, which means that there is a
line L̄ ∈ L0 ∪ Lext perpendicular to L such that L ∩ L̄ = {p}. We will show that L̄ satisfies the
remaining conditions of the lemma statement. Without loss of generality we assume that e is the
bottom edge of Q.

Let Lmax be a maximal line containing L̄ which does not intersect any blocks or lines from L0.
We will show that Lmax is the bottom-most sticking-in line for an edge e′ of Q. As L is a sticking-in
line for e and L does not cross Q (i.e. L does not touch the edge of Q parallel to e), L cannot be
extended at p. Either L hits L̄ at p, or L hits a perpendicular block at p. In either case Lmax does
not end at p.

We first show that Lmax is a long line (i.e. longer than the grid granularity). If L̄ ∈ L0, then L̄
is long and so is Lmax. If L̄ ∈ Lext then, from the construction of Lext, L̄ goes along a long edge of
a block, and Lmax is long as it contains a long edge of a block.

Lmax is not contained in Q, i.e., it intersects an edge e′ of Q perpendicular to e (see Figure 10).
Let Lb ∈ L0∪Lext be a line which intersects e′ below Lmax∩ e′. As Lb cannot intersect L and Lmax
extends beyond L, we get |Lb ∩Q| < |Lmax ∩Q|.

If Lmax crosses Q, then it is the bottom-most line intersecting e′ and maximizing the length of
the intersection with Q. Assume that Lmax does not cross Q. As Lmax is a maximal line which does
not intersect any blocks or lines from L0, it ends in Q by hitting a perpendicular line from L0 or a

29

a)

L L′

L̃

L̃′

b)

L L′

L̃ = L̃′

c)

L L′

L̃

LT

LR

L̃′

d)

L L′

L̃′

LR

e)

L L′

Figure 11: Neighboring lines L,L′ ∈ L0 ∪ Lext touch perpendicular lines which intersect the same
edge of Q.

perpendicular block. This line or block does not intersect the bottom boundary of Q, as it would
yield a long line crossing e which reaches further than L, which gives a contradiction, as L is a
sticking-in line for e. The line or block hit by Lmax crosses the top edge of Q and does not intersect
any lines from L0 ∪ Lext. Therefore any line Lt ∈ L0 ∪ Lext which intersects e′ above Lmax ∩ e′
satisfies |Lt ∩Q| ≤ |Lmax ∩Q|.

We get that Lmax is the bottom-most long line maximizing the length of the intersection with
Q, and so it is the bottom-most sticking-in line for e′. We get that Lmax ∈ L0, and so L̄ = Lmax.
L̄ satisfies all conditions of the lemma statement.

Lemma 32. Let Q be a grid cell, and let e be an edge of Q. Let L,L′ ∈ L0 ∪ Lext be two lines
intersecting Q, touching e at pL and pL′ respectively, such that there is no line L′′ ∈ L0 ∪ Lext

which intersects Q and touches e between pL and pL′. Then there is an edge e′ 6= e of Q and lines
L̄, L̄′ ∈ L0 ∪ Lext touching e′ such that L ∩ L̄ 6= ∅, L′ ∩ L̄′ 6= ∅.

Proof. First observe that the lemma statement allows that L = L̄ or L′ = L̄′.
Assume w.l.o.g. that e is the bottom edge of Q, pL is on the left of pL′ , and that |L∩Q| ≥ |L′∩Q|.

We have to consider three cases. We start with the most interesting case, where both L and L′ do
not cross Q. Let p and p′ be the endpoints of L and L′, respectively, in Q. Let L̃ and L̃′ be two lines
from L0 ∪ Lext perpendicular to L and L′ such that L ∩ L̃ = {p} and L′ ∩ L̃′ = {p′}, respectively.
From Lemma 16 such lines exist and they are not contained in int(Q), i.e., each of them touches
an edge of Q. If L̃ touches the right edge of Q, then L̃′ also touches the right edge of Q and we are
done (see Figure 11a). If L̃′ touches the left edge of Q, then |L ∩Q| = |L′ ∩Q|, L̃ = L̃′ and we are
done (see Figure 11b).

30

The only remaining possibility is that L̃ touches only the left edge of Q, and L̃′ only the right
edge of Q (see Figure 11c). As there are no edges in L0 ∪ Lext intersecting Q and touching e in
between pL and pL′ , L is a sticking-in line for the edge e of Q. From Lemma 31 L̃ is the bottom-most
sticking-in line for the left edge of Q, and it does not end at p. L̃ does not touch the right edge of
Q, and applying Lemma 31 to L̃ gives us that L̃ hits a perpendicular sticking-in line LT in Q. LT
does not touch the bottom edge e of Q, as we would have |LT ∩Q| > |L∩Q|, and L is a sticking-in
line. LT touches the top edge of Q, and LT is a sticking-in line for this edge. As LT ends in Q,
applying Lemma 31 to LT gives, that it hits a perpendicular (i.e. touching the right edge of Q)
sticking-in line LR. Either LR = L̃′, or LR is above L̃′, so LR does not hit L′, or any line to the
right of L′. Applying Lemma 31 to LR gives that LR hits a perpendicular sticking-in line, and the
only candidate for such a line hit by LR is L. L touches LR and LR touches the right edge of Q,
and we are done.

In the second case the line L touches the top edge of Q, and L′ does not. Let L̃′ ∈ L0 ∪Lext be
the perpendicular line touching L′ at its endpoint p′ ∈ Q. From Lemma 16 such line exists and is
not contained in int(Q). As L is to the left of L′, L̃′ touches the right edge of Q (see Figure 11d).
Let LR be a sticking-in line for the right edge of Q. Such line exists, as the maximal line containing
L̃′ is a candidate for it. We will show that LR touches L. If LR crosses Q, then LR must touch L
(and either L or LR goes along an edge of Q). If LR does not cross Q, from Lemma 31 we get that
LR hits a perpendicular sticking-in line in Q. As L is the rightmost line crossing Q (all lines to the
right of L cannot exceed L̃′), it is the rightmost sticking-in line and LR touches L. We set L̄ = LR.

In the last case, when both L and L′ touch the upper edge of Q, the claim is immediate (see
Figure 11e).

First we will consider the case when C has non-empty intersection with some block B ∈ B
contained in F . Let e be an edge of Q such that e ∩ int(B) 6= ∅. Assume w.l.o.g. that e is the
bottom edge of Q (see Figure 12a). Let L,L′ ∈ L0 ∪Lext be lines which intersect Q and touch e at
some points pL and pL′ , respectively, such that pL is to the left of e ∩ int(B), pL′ is to the right of
e ∩ int(B), and no line from L0 ∪ Lext which intersects Q touches e in between pL and pL′ . Such
lines exist, as no line from L0∪Lext intersects e inside e∩ int(B), the leftmost long line intersecting
Q and touching e (which belongs to L0) either contains the left edge of B or is to the left of it, and
the rightmost long line intersecting Q and touching e (which also belongs to L0) either contains the
right edge of B or is to the right of it.

Parts of the lines L,L′ lie on the boundary of C. Denote by L̄ and L̄′ the lines given by applying
Lemma 32 to L and L′. If L̄ and L̄′ both intersect the top edge of Q then the claim follows and in
particular int(C) is the interior of a rectangle. Otherwise, assume w.l.o.g. that they intersect the
right edge eR of Q and assume w.l.o.g. that L̄ is the bottommost line touching L and eR and L̄′ is
the topmost line touching L′ and eR. From Lemma 16 the set of lines L0 ∪Lext is nicely connected,
and by construction, all lines in L0 ∪ Lext with non-empty intersection with int(Q) for some grid
cell Q touch the boundary of Q. Hence, there can be no line in L0 ∪ Lext intersecting eR between
eR ∩ L̄ and eR ∩ L̄′. Hence, the claim follows.

We already know that the lemma holds for any connected component C of F ∩Q for any grid
cell Q such that C has non-empty intersection with int(B) for some block B ∈ B contained in F .
Now we will show that if the lemma is satisfied for some connected component C of F ∩Q, then it
is also satisfied for a connected component C ′ of F ∩Q′ if C ∩ C ′ 6= ∅ (see Figure 12b). That will
prove the lemma.

Let e = Q ∩Q′, and let p ∈ C ∩ C ′. Let L0, L
′
0 ∈ L0 ∪ Lext be lines bounding C and touching

31

a)

L L′B

L̄′

L̄

e
eR

b)

L0

L

L′
0 = L′

p

Q Q′

Figure 12: A connected component of a face F ∈ F+(L0 ∪ Lext) within a grid cell (denoted by a
shaded area) must have a simple shape, i.e., it is either a rectangle or an L-shape.

e. From the construction above we know that such lines exist. We want to show that there are two
lines L,L′ ∈ L0 ∪ Lext intersecting Q′ and touching e such that p ∈ L(e ∩ L, e ∩ L′) and there are
no lines intersecting Q′ and touching e in L(e ∩ L, e ∩ L′). Then, by proceeding exactly as in the
first case, we prove the lemma.

Assume w.l.o.g. that e is a vertical edge and that L0 is above L′0. We show only that there is
a line L̄ intersecting Q′ and touching e above p (with a similar reasoning one can show that there
is a line intersecting Q′ and touching e below p). Let L̄0 be the top-most horizontal line in L0

intersecting Q and touching e. We will first show that such line exists and it is not below L0. If
L0 ∈ L0, then either L̄0 = L0 or L̄0 is above L0 and we are done. Otherwise L0 ∈ Lext and, from the
construction of Lext, L0 goes along a long edge of a block, and the maximal line Lmax containing
L0 which does not intersect blocks and lines from L0 is long. As Lmax /∈ L0, there must be a line
L̄0 ∈ L0 which is above Lmax.

If L̄0 intersects Q′, we set L̄ := L̄0 and we are done. Otherwise, observe that L̄0 ∈ L0 and hence
it is maximal. We claim that L̄0 hits a perpendicular line LT ∈ L0 at L̄0 ∩ e (and, as the name
suggests, it will turn out that LT crosses the top edge of Q′). As L̄0 is maximal, it has to hit a
perpendicular block B or a perpendicular line from L0 ∪Lext at its endpoint in Q′. If the first case
occurs, then the maximal long line going along the left edge of B is the leftmost long line intersecting
the top edge of Q′, and it belongs to L0. We get that L̄0 hits a perpendicular line LT ∈ L0 ∪ Lext

at its endpoint in Q′. We cannot have LT ∈ Lext, as the maximal long line containing LT is the
leftmost long line intersecting the top edge of Q′, and so it belongs to L0. We have that LT ∈ L0.

As p ∈ C ∩ C ′ we have that p /∈ LT . Thus, LT ends above p by hitting a perpendicular line
L̄ ∈ L0 ∪ Lext or a perpendicular block B′. In the first case we are done. In the second case, the
topmost long line L̃ intersecting Q′ and touching e contains the upper edge of B′ and crosses e
above p. Hence, we can set L̄ := L̃ and we are done.

Proof of Lemma 18. Let p ∈ C ∩ e. Let C ′ be a connected component of F ∩Q′ containing p. We
get that C ∩ C ′ 6= ∅, and so there exists a component C ′ which satisfies the desired properties.

We now show that C ′ is unique. Assume otherwise, i.e. that there are two connected components
C ′1 and C ′2 of F ∩ Q′ which have non-empty intersection with C. Let L ∈ L0 ∪ Lext be a line
intersecting Q′, such that L ∩ e is between C ′1 ∩ C and C ′2 ∩ C (see Figure 13). Such line exists, as
C ′1 ∩Q′ and C ′2 ∩Q′ are not connected. Let L1, L2 ∈ L0 ∪Lext be the lines intersecting Q, touching

32

C

C ′
1

C ′
2

eQ Q′

L
L1

L2

pL

Figure 13: Lemma 18 shows that it cannot happen that a connected component C of F ∩Q "forks"
into two connected components C ′1 and C ′2 in a neighboring grid cell Q′, as shown in this figure. In
particular, one of the gray segments on e must be contained in L0 ∪ Lext.

e and bounding C ∩ Q. Then there is no line L3 ∈ L0 ∪ Lext which intersects Q and touches e
between L1 ∩ e and L2 ∩ e. As L ∩ e is between C ′1 ∩ C and C ′2 ∩ C, it holds that L ∩ e is between
L1 ∩ e and L2 ∩ e. That gives us that L cannot intersect Q, and so L has an endpoint pL ∈ e. We
will now show that one of the segments L[pL, L1 ∩ e] and L[pL, L2 ∩ e] is contained in L0 ∪ Lext,
which gives contradiction, as it requires C ′1 ∩ C = ∅ or C ′2 ∩ C = ∅. Hence, the component C ′ is
unique.

We will now show the following lemma.

Lemma 33. Let Q and Q′ be two neighboring grid cells and let e = Q∩Q′. Let s ⊆ e be a maximal
segment of L0 ∪ Lext contained in e, and assume that s does not contain any endpoint of e. Then
s is incident with lines L,L′ ∈ L0 ∪ Lext (where possibly L = L′) such that L intersects Q and L′

intersects Q′.

Proof. From the construction of L0 and Lext, the segment s consists of one or multiple segments
sji , as any other line from L0 ∪ Lext would touch an endpoint of e. Let sj0i0 ⊆ s be the first one
added to Lext. W.l.o.g. assume that in the construction of the path, the line L ∈ Lext preceding
sj0i0 on the path intersects Q. Let L′ ∈ L0 ∪ Lext be the line perpendicular to e which is at the
other end of sj0i0 . If L′ intersects Q′, we are done. Assume, for contradiction, that L′ intersects Q
and has an endpoint at p′ ∈ e. We have that L′ does not hit a perpendicular line from L0 ∪ Lext

at p′ as otherwise such a line would be contained in the leftmost long line crossing the top or the
bottom edge of Q′ which are by definition in L0 and the segment sj0i0 has by construction non-empty
intersection with all lines in L0 ∪ Lext. Assume that L′ ∈ Lext. From the construction of Lext, in
particular from Lemma 29, we get that the successor of L′ on the path must be a segment sji (as if
L′ was not "shortened", it would end in the interior of a grid cell). Then sj0i0 is neighboring to the
segment sji , which has been added to Lext before sj0i0 . As then s

j
i ⊆ s from the maximality of s, we

get a contradiction, as sj0i0 was the first segment from s added to Lext.
Assume that L′ ∈ L0. Then, as L′ is maximal and it does not hit a perpendicular line from

L0 ∪Lext at p′, L′ hits a perpendicular block B ∈ B at p′. The long edge of B containing p′ is then
an extremal long line crossing an edge of Q perpendicular to e, and do it belongs to L0. We get a
contradiction, as L′ does not hit a perpendicular line from L0 at p′.

33

C

Q

C ′

Q′

Figure 14: Left: the dashed lines denote the lines in the set L(C) for the component C in the cell Q.
Right: the dashed lines represent a ground set from which the pairs in the set L(C) are created.
The bold pair of lines represents an example of an element in L(C).

We obtain that L′ intersects Q′, which proves the lemma.

As pL is an endpoint of L, L touches a perpendicular line from L0 ∪ Lext at pL. Let s be
a maximal segment of e containing pL and contained in L0 ∪ Lext. From Lemma 33 segment s
contains an endpoint of e, or s is incident with a line intersecting Q. In any case, one of the
segments L[pL, L1 ∩ e], L[pL, L2 ∩ e] is contained in s, i.e. it is contained in L0 ∪ Lext.

Proof of Lemma 19. From Proposition 15 we get that |L0| = O((1
δ)2). From Lemma 16 |Lext| ≤

1
ε · (1

δ)O(1). For any line L ∈ L0 ∪ Lext the number of rectangles intersected, but not cut by L
is at most 2. As the length of L is at most N , the number of rectangles R cut by L such that
|L ∩ R| > δN is smaller than 1/δ. The number of circumvented polygons is therefore at most
1
ε · (1

δ)O(1). Circumventing a polygon generates four lines in L, and possibly splits some lines from
L0 ∪ Lext in two. The number of lines in L is at most 1

ε · (1
δ)O(1).

The added lines do not intersect rectangles. The only rectangles intersected by a line in L are
the rectangles cut by a line from L0 ∪Lext parallel to their shorter edge. From Lemma 16 the total
weight of such rectangles is upper bounded by ε · w(R).

Proof of Lemma 20. We first prove the lemma for the setting that each rectangle is a block, i.e., for
each Ri we have hi = 1 or gi = 1. Consider a face F ∈ F+(L) which is homeomorphic to a line. For
each grid cell Q and for each connected component C of F ∩ Q we will define a set of lines L(C).
Due to Lemma 17 the component C is either a rectangle or an L-shape (note that here we can have
a "degenerated L-shape" with only four edges). If C is a rectangle, we consider any edge e of Q
such that C ∩ e 6= ∅, and we define L(C) to be the set of all maximal lines perpendicular to e, with
integer endpoints, which are contained in C or in the boundary of C (see Figure 14). Observe that
if all rectangles are blocks, the lines in L(C) do not intersect any rectangles. Now consider the case

34

A(C)

C

Figure 15: An element of F(F) (dark gray) for a face F (light gray). The element of F(F) is a
union of subareas A(C), one for each connected component C of F within a grid cell. The chosen
subareas A(C) for different components C are consistent.

when C is an L-shape and let e, e′ be the (perpendicular) edges of Q such that C ∩ e 6= ∅ 6= C ∩ e′.
(Notice that we can have a special case that C intersects only one edge e of Q, i.e., the face F does
not extend beyond C. However, then we take as e′ the edge of Q perpendicular to e which contains
the boundary edge of C perpendicular and non-adjacent to C∩e. Intuitively, that is the edge where
the face would continue beyond C if it was not blocked by a line from L.) We define L(C) to be the
set of all pairs of straight lines (L,L′) with integer endpoints contained in C, which do not intersect
any blocks, and such that L is perpendicular to e and L′ to e′, and there is a point p such that L
has one endpoint at e and the other one at p, and L′ has one endpoint at e′ and the other one at p
(see Figure 14).

Next, we define a family of faces F(F) contained in the face F . Each face F ′ ∈ F(F) will have
bounded complexity (i.e., at most 1

ε · (1
δ)O(1) boundary lines). We will construct F(F) in such a

way that F ∈ F(F) and each face in F(F) which is not a rectangle of unit height or width can be
decomposed into a bounded number of subfaces in F(F) without intersecting any block. During the
recursion of GEO-DP, when parametrized with large enough k, the algorithm will consider exactly
this decomposition. Thus, GEO-DP optimally solves the subproblem induced by the face F .

Now we define the family F(F). For any grid cell Q and for any connected component C of
F ∩Q we select two elements from the set of lines L(C), allowing to select the same element twice,
but not allowing the two chosen elements to intersect properly. Let A(C) denote the subarea of
C which is strictly between the two selected elements from L(C) (i.e., the chosen elements from
L(C) do not belong to A(C)), see Figure 15. We require the selected elements for the different
components to be consistent, meaning that for any two connected components C,C ′ of F within
some grid cells such that C ∩ C ′ 6= ∅ we have A(C) ∩ C ∩ C ′ = A(C ′) ∩ C ∩ C ′ (i.e., the subareas
chosen for different grid cells match at the boundaries of the grid cells), and

⋃
C A(C) is connected.

For any choice of consistent elements for all connected components C we add F ′ :=
⋃
C A(C) to

F(F). Due to the definition of F(F), every face in F(F) which is not a rectangle of unit height or
width can be decomposed in two disjoint elements of F(F). Every face in F(F) which is a rectangle
of unit height or width contains at most 1

δ blocks, and GEO-DP finds an optimal solution for it.
The decomposition can be seen as follows. Let F ′ ∈ F(F). Take a component C of F ′ within

35

a grid cell Q which is a dead-end, i.e, there is only one edge e of Q such that C ∩ e 6= ∅. Draw a
line L0 splitting C into two components without intersecting any block, such that one end of the
line touches the boundary of F ′ (if C is an L-shape we might need two lines for that). We take
the loose end of L0 and extend it until we touch the boundary of F ′ or we hit a perpendicular
block. In case we touch the boundary of F ′, we are done. If L0 hits a block B at some point p,
we continue similarly as in case of loose ends of the lines in L0. We draw a new line L1 starting at
p and following the edge of B so that we cross a grid cell boundary. We continue iteratively until
we draw a line Lm whose end touches the boundary of F ′. Then the lines L0, ..., Lm define a path
splitting F ′ into two subpaths. See Figure 6.

It remains to upper bound the complexity of the faces in F(F), i.e., bound the number of
their boundary edges. By definition, the latter quantity is in the order of the number of connected
components of F ∩Q for all grid cells Q. The reason is that for each face F ′ ∈ F(F) the boundary
of a connected component of F ′ ∩Q (for any grid cell Q) has only a constant number edges. As the
number of lines in L is upper bounded by 1

ε · (1
δ)O(1) (see Lemma 19) and there are O((1

δ)2) grid
cells, the number of such components C is upper bounded by 1

ε · (1
δ)O(1).

We conclude that if all rectangles are blocks, GEO-DP finds an optimal solution for F if k ≥
1
ε · (1

δ)O(1). For the case of arbitrary rectangles we observe that the boundary of each face in F(F)
intersects rectangles from R contained in F only parallel to their longer edges. Hence, for any face
F ′ ∈ F(F) there are only 1

ε · (1
δ)O(1) rectangles R(F ′) which are contained in F and intersected

by the boundary edges of F ′. Hence, whenever in the above argumentation we decompose a face
F ′ ∈ F(F) into two disjoint elements F1, F2 ∈ F(F), we can instead argue that the face F ′ \R(F ′)
is decomposed into the faces F1 \ R(F1) and F2 \ R(F2) and the at most 1

ε · (1
δ)O(1) rectangles

(R(F1) ∪R(F2)) \ R(F ′). Also, again each face F \ R(F) has a boundary with at most 1
ε · (1

δ)O(1)

edges. Note that in this case F \ R(F) can consist of multiple (at most 1
ε · (1

δ)O(1)) connected
components and GEO-DP recurses on each of them separately. Hence, in the case of arbitrary
rectangles, GEO-DP parametrized with k ≥ 1

ε · (1
δ)O(1) finds an optimal solution for F .

Proof of Lemma 21. Like in the proof of Lemma 20 above, let us first assume that all rectangles are
blocks. Consider a face F ∈ F+(L) which is homeomorphic to a cycle. We now describe a procedure
to draw a path consisting of a set of lines L0, L1, ..., L`, which will either add further structure to F
so that it becomes a path-face or will subdivide F into a cycle-face and a path-face. The endpoints
of the lines will have integer coordinates, and their number ` can be arbitrarily large (in particular,
larger than 1

ε · (1
δ)O(1) etc.). The lines will not intersect any blocks contained in F .

Consider an arbitrary connected component C of F ∩Q for some grid cell Q, such that C is an
L-shape. Such a component exists since otherwise F would not be a cycle. It is always possible to
draw a line L within C which does not intersect any blocks and which subdivides C into a rectangle
and an L-shape or into two rectangles (see Figure 16). In the second case the line L transforms
F into a path-face and we are done. Now consider the first case. We define L0 as a maximal line
containing L which does not intersect any block and which does not cross the boundary of F or
overlap an edge from the boundary of F . If both endpoints of L0 touch the boundary of F , we are
done. Otherwise, we continue very similarly as in the construction of the lines Lext. Let p0 be an
endpoint of L0 which hits a perpendicular block B ∈ B. Observe that this must happen within a
connected component C ′ of F where C ′ is an L-shape. As B is large, one of its endpoints must lie
outside of C ′. Denote by Lmax the maximal line within F containing p0 and going along the edge
of B which does not intersect any blocks. Denote by p1 the endpoint of Lmax which is outside of

36

a)

C

b)

C

Figure 16: Subdividing an L-shape into a rectangle and an L-shape (case a)) or into two rectangles
(case b)). The splitting line L is depicted in dark gray. Notice that L does not intersect any blocks
(pictured as gray rectangles).

C ′. We define L1 := L[p0, p1] and continue iteratively. Observe that in contrast to the definition of
the lines Lext, we do not stop after some fixed number of iterations, but continue until the added
line L` either touches the boundary of F , or hits some line Li with i < `. Let LF := {L0, ..., L`}. If
the path touches both boundaries of the cycle-face F , it transforms F into a path-face. Otherwise
(i.e., if the path touches the same boundary twice or ends by hitting itself), the path subdivides F
into a path-face F ′ and a cycle-face F ′′.

As in the proof of Lemma 20, we can formulate F ′′ as the union of sets A(C), where for each
component C we select two elements from the set L(C). For each component C we do this as
follows. If C is not intersected by the path LF , we choose the two elements of L(C) going along
the boundaries of C. Otherwise, if L` does not end in C, we select the element in L(C) which is
given by the last line(s) in LF crossing C and one element L(C) which describes the boundary of
C not touched by LF . If L` ends in C, we also select the boundary of C not touched by LF , and
additionally an element in L(C) which consists of L`∩C and a segment of of Li∩C where Li denotes
the penultimate line in LF crossing C. With a similar reasoning as in the proof of Lemma 20, we
can then upper bound the complexity of the boundaries of F ′′ by 1

ε · (1
δ)O(1). See Figure 17 for an

example of the described operation.
Now let us focus on F ′. In case the boundary of F ′ is more complex than our upper bound of

1
ε · (1

δ)O(1) edges allows, we split F ′ into a set of consecutive paths F1, ..., Fm, each of them having a
boundary whose complexity is at most 1

ε · (1
δ)O(1). We perform these necessary cuts along grid lines.

Each connected component of F ′ ∩ Q is a rectangle or an L-shape (where we treat a rectangular
component C within a cell Q like an L-shape if C ∩ e 6= ∅ 6= C ∩ e′ for two perpendicular edges e, e′

of Q). Let C1, . . . , Cm′ be the set of all consecutive connected components of F ′ within single grid
cells such that Ci is an L-shape. For each 1/ε-th component Ci, starting with a random offset, we
cut F ′ inside Ci, along a grid cell boundary (intuitively, we cut F ′ after every 1/ε bends). There is
an offset for which the total weight of intersected blocks is at most a ε-fraction of the total weight of
the blocks in F ′. Each resulting path Fi can be expressed as the union of a set of at most O(1/(εδ))
components, where each component is a rectangle or an L-shape within some component C of F ,
and therefore the complexity of Fi is at most 1

ε · (1
δ)O(1).

One can show, in the same way as when upper bounding the complexity of the boundary of F ′′,
that for any m′ ≤ m the total boundary of each set Fm′ ∪∂Fm′ ∪Fm′+1∪∂Fm′+1∪ . . .∪Fm∪∂Fm∪
F ′′ ∪ ∂F ′′ has at most 1

ε · (1
δ)O(1) edges. Hence, GEO-DP parametrized with k ≥ 1

ε · (1
δ)O(1) tries

37

F1

F2

F3

F4 = Fm

F ′′

Figure 17: Partitioning a cycle-face into a set of paths F1, ..., Fm and a cycle face F ′′.

to partition F step by step, in the i-th step splitting off the path Fi from the remaining area of
F . Finally, it partitions F into path-faces F1, ..., Fm and a cycle-face F ′′. Knowing from the proof
of Lemma 20 that GEO-DP solves the subproblem for each path optimally if k is sufficiently large
compared to the length of the path, we conclude that GEO-DP parametrized with k ≥ 1

ε · (1
δ)O(1)

computes a solution for F ′ with weight at least (1−ε)w(F ′). By continuing with the same arguments
for F ′′, in case F ′′ 6= ∅, we get that GEO-DP computes a solution for F whose weight is at least
(1− ε)w(F).

With similar adjustments as in the proof of Lemma 20 we show that the same is true in the
setting of arbitrary rectangles at the cost of an increase in complexity by a factor of (1

δ)O(1).

Proof of Theorem 22. Fix k := (1/ε)(1/δ)O(1). For each set of rectangles R and for each polygon
in the original input instance there is a corresponding polygon, containing the same subset of
rectangles, in the instance obtained after the preprocessing performed by GEO-DP (which ensures
that all corners of rectangles have coordinates within {0, ..., 2n − 1}, where n = |R|). Hence, it
suffices to show that GEO-DP, when executing without the preprocessing routine, achieves the
claimed approximation ratio on the original input instance.

Let R be an optimal solution for a given instance of the problem, and let L be the set of lines
constructed for R. From Lemma 19 we have |L| ≤ (1/ε)(1/δ)O(1), and so L partitions the original
input square into at most k faces, and GEO-DP will consider such a partition of the input square.
From Lemma 19, the total weight of intersected rectangles from the optimal solution R in this
partition is upper bounded by ε · w(R). When recursing on each resulting face, due to Lemmas 20
and 21 GEO-DP obtains a (1 + ε)-approximative solution for each subproblem. Thus, in total we

38

obtain an approximation ratio of 1 +O(ε).
When GEO-DP performs the preprocessing first, in the modified input instance it will consider

the same recursive partitioning of the input square, obtaining the same approximation ratio. From
Proposition 2, the running time of GEO-DP parametrized with k = (1/ε)(1/δ)O(1) is upper bounded
by n(1/ε)2(1/δ)O(1) , and so it yields a PTAS for δ-large rectangles for any constant δ > 0.

Proof of Corollary 23. Suppose that we are given an input instance for which there is a value K
such that for any rectangle Ri we have max{gi, hi} ∈ [K, 1/δ · K], and all input coordinates are
within {0, ..., N} for some integer N . We define a grid with offset a ∈ N whose grid cells have height
and width 1/δ ·K/ε, i.e., we define a cell [a + i · 1/δ ·K/ε, a + (i + 1) · 1/δ ·K/ε] × [a + j · 1/δ ·
K/ε, a+ (j + 1) · 1/δ ·K/ε] for each i, j ∈ {−1, ..., dNε/(1/δ ·K)e}.

Since max{gi, hi} ≤ (1/δ) · K for each rectangle Ri, when choosing a random offset a ∈
{0, ..., d1/δ ·K/εe}, in expectation the intersected rectangles from an optimal solution OPT have
a total weight of at most O(ε) · w(OPT). We take this random offset and consider the resulting
subproblems in each grid cell which contains at least one input rectangle (there can be at most
n such grid cells), i.e., each subproblem consists of the original instance restricted to the rect-
angles contained in the respective grid cell. Since each grid cell has height and width 1/δ · K/ε
and max{gi, hi} ∈ [K, 1/δ ·K] for each rectangle Ri, we conclude that each grid cell constitutes a
subinstance in which all rectangles are (ε · δ)-large. During the recursion process, GEO-DP guesses
exactly this subdivision (not all at once but e.g., in a quad-tree fashion). Using Theorem 4 we know
that GEO-DP computes a (1 + ε)-approximation for each of them, given that k ≥ (1/ε)(ε · δ)O(1).
Altogether, we obtain a (1 +O(ε))-approximation algorithm for the overall problem.

39

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution and Techniques
	1.3 Problem Definition

	2 The Algorithm GEO-DP
	3 Quasi-Polynomial Time Approximation Scheme
	3.1 Balanced Cheap Cuts
	3.2 Stretching the Rectangles
	3.3 Partitioning the Plane
	3.4 Defining the Cut

	4 A PTAS for Large Rectangles
	4.1 Constructing the Partition for Large Rectangles
	4.2 Solving the Subproblems for the Faces

	A Proof of Lemma ??
	B Proofs from Section ??
	C Complete Construction of Lext
	D Proofs from Section ??

