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Abstract

LetP be a collection ofn points in the plane, each moving along some straight line at unit speed.
We obtain an almost tight upper bound ofO(n2+ε), for any ε > 0, on the maximum number of
discrete changes that the Delaunay triangulationDT(P ) of P experiences during this motion. Our
analysis is cast in a purely topological setting, where we only assume that (i) any four points can be
co-circular at most three times, and (ii) no triple of pointscan be collinear more than twice; these
assumptions hold for unit speed motions.
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1 Introduction

Delaunay triangulations. LetP be a finite set of points in the plane. LetVD(P ) andDT(P ) denote the
Euclidean Voronoi diagram and Delaunay triangulation ofP , respectively. The Delaunay triangulation
consists of all triangles spanned byP whose circumcircles do not contain points ofP in their interior. A
pair of pointsp, q ∈ P are connected by a Delaunay edge if and only if there is a circle passing through
p andq that does not contain any point ofP in its interior.

Delaunay triangulations and their duals, Voronoi diagrams, are among the most extensively and
longest studied constructs in computational geometry, with a wide range of applications. For astatic
point setP , bothDT(P ) andVD(P ) have linear complexity and can be computed in optimalO(n log n)
time. See [6, 12, 14] for surveys and a textbook on these structures. The problem has also been studied
in thedynamicsetting, where one seeks to maintainDT(P ) andVD(P ) under updates ofP (insertion
and deletion of points); see, e.g., [7].

The kinetic setting: Previous work. In many applications of Delaunay/Voronoi methods (e.g., mesh
generation and kinetic collision detection) the points of the input setP are moving continuously, so
these diagrams need to be efficiently updated during the motion. Even though the motion of the points is
continuous, the combinatorial structure of the Voronoi andDelaunay diagrams changes only at discrete
times when certain critical events occur. Interest in efficient maintenance of geometric structures under
simple motion1 of the underlying point set goes back at least to Atallah [4, 5].

For the purpose of kinetic maintenance, Delaunay triangulations are nice structures, because, as
mentioned above, they admit local certifications associated with individual triangles (namely, that their
circumcircles beP -empty). This makes it simple to maintainDT(P ) under point motion: an update is
necessary only when one of these empty circumcircle conditions fails—this (typically) corresponds to co-
circularities of certain subsets of four points, where the relevant circumcircle isP -empty. Whenever such
an event, referred to as aDelaunay co-circularityin this paper, happens, a single edge flip easily restores
Delaunayhood.2 In addition, the Delaunay triangulation changes when some triple of points ofP become
collinear on the boundary of the convex hull ofP ; see below for details. Hence, the performance of any
Voronoi- or Delaunay-based kinetic algorithm depends on the maximum possible number ofdiscrete
changes, that is, Delaunay co-circularities and convex hull collinearities, whichDT(P ) experiences
during the motion of its points.

This paper studies the best-known formulation of the problem, in which each point ofP moves along
a straight line with unit speed; see [11, 14]. In this case, the (previously) best-known upper bound on the
number of discrete changes inDT(P ) is O(n3). In the more general (and even more difficult) version
of the problem, each point ofP moves with so-called pseudo-algebraic motion of constant description
complexity. This implies (in particular) that any four points are co-circular at mosts times, and any triple
of points can are collinear at mosts′ times, for some constantss, s′ > 0. Given these (purely topological)
restrictions on the continuous motion ofP , Fu and Lee [15], and Guibas et al. [16] established a roughly
cubic upper bound ofO(n2λs+2(n)), whereλs(n) is the (almost linear) maximum length of an(n, s)-
Davenport-Schinzel sequence [25]. A substantial gap exists between these near-cubic upper bounds and
the best known quadratic lower bound [25]. Closing this gap has been in the computational geometry
lore for many years, and is considered as one of the major openproblems in the field. It is listed as
Problem 2 in the TOPP project; see [11]. A recent work [23] by the author provides an almost tight
bound ofO(n2+ε), for anyε > 0, for a more restricted version of the problem, in which any four points
can be co-circular at mosttwice.

In view of the very slow progress on the above general problem, several alternative structures were

1While there are several ways to define this notion, the simplest would be to assume that each coordinate of each point
p = p(t) in P is a is fixed-degree polynomial int.

2We assume that the motion of the points is generic, so that no more than four points can become co-circular at any given
time.
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studied. For example, Chew [8] proved thatVD(P ) undergoes a near-quadratic number of discrete
changes if it is defined with respect to a “polygonal” distance function. More recent studies [3, 19] show
how to maintain a (non-Delaunay) triangulation ofP so that it undergoes only a near-quadratic number
of changes. Agarwal et al. [2] show how to efficiently maintain a so calledα-stablesubgraph of the
EuclideanDT(P ), which experiences only a near-quadratic number of changes, and whose edges are
robust with respect to small changes in the underlying norm.

Our result. We study the problem in a purely topological setup, where we assume that (i) any four
points ofP are co-circular at most three times during their (continuous) motion, and (ii) any three points
of P can be collinear at most twice. For any point setP whose motion satisfies these two axioms, we
derive a nearly tight upper bound ofO(n2+ε), for anyε > 0, on the overall number of discrete changes
experienced byDT(P ). As is well known (and briefly discussed in Appendix A), theseproperties hold
for points that move along straight lines with a common (unit) speed, so our near-quadratic bound holds
in this case.

Proof ingredients. The majority of the discrete changes inDT(P ) occur at momentst0 when some four
pointsp, q, a, b ∈ P are co-circular, and the corresponding circumdisc contains no other points ofP .
We refer to these events asDelaunay co-circularities. Suppose thatp, a, q, b appear along their common
circumcircle in this order, soab andpq form the chords of the convex quadrilateral spanned by these
points. Right beforet0, one of the chords, saypq, is Delaunay and thus admits aP -empty disc whose
boundary containsp andq. Right after timet0, the edgepq is replaced inDT(P ) by ab, an operation
known as anedge-flip. Informally, this happens because the Delaunayhood ofpq is violated bya andb:
Any disc whose boundary containsp andq contains at least one of the pointsa, b. If pq does not re-enter
DT(P ) after timet0, we can charge the event at timet0 to the edgepq, for a total ofO(n2) such events.
We thus assume thatpq is again Delaunay at some momentt1 > t0.

One of the major observations used in our analysis is that oneof the following always holds: either
the Delaunayhood ofpq is interrupted during(t0, t1) by at leastk2 pairsu, v ∈ P , or this edge can be
made Delaunay throughout(t0, t1) by removal of at mostΘ(k) points ofP . In the former case, each
violating pairu, v contributes during(t0, t1) either a co-circularity ofp, q, u, v, or a collinearity in which
one of the pointsu or v crossespq. This fairly simple observation lies at the heart of our charging
strategy.

Combinatorial charging. Our goal is to derive a recurrence formula for the maximum numberN(n)
of such Delaunay co-circularities induced by any setP of n points (whose motion satisfies the above
conditions). Notice that the number ofall co-circularities, each defined by some four points ofP , can
be as large asΘ(n4). The challenge is thus to show that the vast majority of co-circularity events are not
Delaunay (i.e., their corresponding circumdiscs are penetrated by additional points ofP ).

In Section 2 we study the set of all co-circularities that involve some disappearing Delaunay edge
pq and some other pair of points ofP \ {p, q}, and occur during the period(t0, t1) whenpq is absent3

from DT(P ). A co-circularity is calledk-shallow if its circumdisc contains at mostk points ofP . If
we find at leastΩ(k2) suchk-shallow co-circularities4, involving p, q, and another pair of points, we
can charge them for the disappearance ofpq. We use the routine probabilistic argument of Clarkson and
Shor [9] to show that the number of Delaunay co-circularities, for which this simple charging works,
is O

(

k2N(n/k)
)

. Informally, this term that such Delaunay co-circularities contribute to the overall
recurrence formula (see, e.g., [1] and [21]), yields a near-quadratic bound forN(n). Similarly, if we
find a “shallow” collinearity ofp, q and another point (one halfplane bounded by the line of collinearity
contains at mostk points), we can charge the disappearance ofpq to this collinearity. A combination of
the Clarkson-Shor technique with the known near-quadraticbound on the number of topological changes

3In fact, the analysis in Section 2 is more general, and applies to any interval(t0, t1) with the property thatpq is Delaunay
at one of its endpointst0, t1.

4Each of them would become a Delaunay co-circularity after removal of at mostk points ofP .
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in the convex hull ofP (see [25, Section 8.6.1]) yields an additional near-quadratic term in the recurrence.

Probabilistic refinement. It thus remains to bound the number of the above Delaunay co-circularities,
for which p and q participate in fewer shallow co-circularities and in no shallow collinearity during
(t0, t1). In this case, we show, in what follows we refer to as theRed-Blue Theorem(or Theorem 2.2),
that one can restore the Delaunayhood ofpq throughout(t0, t1) by removal of some subsetA of at most
3k points ofP . To bound the maximum number of such “non-chargeable” events, we incorporate them
into more structured topological configurations (or, more precisely, processes), which are likely to show
up (in the style of the Clarkson-Shor argument) in a reduced Delaunay triangulationDT(R), defined
over a random sampleR ⊂ P of Θ(n/k) points.

For example, suppose that the above co-circularity at timet0, is thelast co-circularity ofp, q, a, b.
Then (at least) one of the pointsa or b must hit the edgepq before it re-entersDT(P ) at timet1. Clearly,
the point which crossespq, let it bea, must belong toA. Notice that the following two events occur
simultaneously, with probabilityΩ

(

1/k3
)

: (1) the random sampleR contains the crossing triplep, a, q,
and (2) none of the points ofA \ {a} belong toR. In such case, we say that the edgepq undergoes a
Delaunay crossing bya in therefinedtriangulationDT(R), which takes place during a certain subinterval
I ⊂ [t0, t1] (such that (i)a hitspq duringI, (ii) pq ∈ DT(R) at the beginning and the end ofI, and (iii)
pq 6∈ DT(R) in the interior ofI, but belongs toDT(R\{a}) throughoutI). A symmetric (time-reversed)
argument applies if we encounter thefirst co-circularity ofp, q, a, b.

As argued in the predecessor paper [23], Delaunay crossingsare especially nice objects due to their
strict structural properties. In particular, as shown in [23]: (i) The edgespa andaq belong toDT(R)
throughout the above intervalI, and (ii) Assuminga hits pq exactly once duringI, every other point
w ∈ R \ {p, q, a} is involved during this interval in a co-circularity withp, q, a.

The roadmap. In Section 3 we show that the number of Delaunay co-circularities is dominated by
the maximum possible number of Delaunay crossings. Notice the previously sketched argument (which
appears in [23]) works only for the first and the last Delaunayco-circularities of the quadruple.

To extend the above reduction to the remaining, “middle” Delaunay co-circularities, we resort in Sec-
tion 3 to a fairly simple argument, expressing the maximum possible number of such co-circularities in
terms of the numbers of extremal Delaunay co-circularitiesand Delaunay crossings that arise in smaller-
size subsets ofP .

In Section 4, we recall (or re-establish) several structural properties of Delaunay crossings, which
will be used throughout the rest of the analysis. Informally, our goal is to show that, for an average pair
(p, r), the pointr is involved in “few” crossings ofp-incident edges. To do so, we express the number of
Delaunay crossings in terms of the maximum number of certainquadruplesin P . Each such quadruple
σ = (p, q, a, r) is composed of a pair of “consecutive” Delaunay crossings ofp-adjacent edgespq and
pa, by the same pointr.

In Section 5 we apply the routine “charge-or-refine” strategy (via our Red-Blue Theorem) to analyze
the maximum number of the above quadruples. This is done in several steps. At each stage we first
try to dispose of as many quadruples as possible by charging each of them either to sufficiently many
“shallow” co-circularities (or collinearities), or to oneof the several kinds of “terminal” triples, for which
we provide back in Section 4 a direct quadratic bound on theirnumber.

There are two main types of such terminal triples(p, q, a). In one of them, we have adouble Delau-
nay crossing—the pointa crossespq twice during the intervalI. In the other the same triple performs
two distinct “single” Delaunay crossings, where, say,a crossespq during one crossing, andq crossespa
during the second one. In both cases the number of such triples is onlyO(n2).

Each step of the analysis enforces additional constraints on the surviving quadruples. There are two
main types of such constraints. The first is to enforce more Delaunay crossings involving sub-triples of
the points of the quadruple. The other is to enforce “almost-Delaunayhood” of various pairs of points
in the quadruple, for progressively larger time intervals.By this we mean that the corresponding edge
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is Delaunay if we remove fromP a small subset of points. The ultimate goal is to enforce sufficiently
many Delaunay crossings, so that some triple of points undergoestwo distinct Delaunay crossings. As
mentioned above, this is the main type of the “terminal” configurations, for which we have a quadratic
bound on their number.

Each step of the analysis yileds a recurrence formula that involves “near-quadratic” terms (of the
kind mentioned earlier) plus terms involving further-constrained configurations, until we finally bottom
out (in Section 7) by reaching the terminal triples mentioned above. In each of the recurrences we make
use of the Clarkson-Shor probabilistic argument [9], in order to get rid of the small “obstruction” subset
of P that we need to remove; this is done by passing to a random sample of P , the standard style of
[9]. The overall collection of recurrences solves to a near-quadratic bound, in a manner similar to many
earlier works involving such recurrences (see, e.g., [1, 17, 21, 22, 24] and [25, Section 7.3.2]).

Unfortunately, the analysis is fairly involved and consists of many steps. In addition to the afore-
mentioned type of quadruples (formed by pairs of Delaunay crossings), we use two additional classes
of quadruples which are studied in Sections 6 and 7, respectively. Note that only the last kind of con-
figurations, referred to asterminal quadruples, can always be traced to some of the above “terminal”
triples.

We postpone the rest of this discussion until Section 4.2, where we provide a more detailed sum-
mary of the three classes of quadruples, and of the connections between these classes, and the Delaunay
crossings.

Finally, we emphasize that the contribution of the paper, and its main ideas, are delivered already in
Sections 1 through 4.

Acknowledgements. I would like to thank my former Ph.D. advisor Micha Sharir whose dedicated
support made this work possible. In particular, I would liketo thank him for the insightful discussions,
and, especially, for his invaluable help in the preparationand careful reading of this paper.

2 Geometric Preliminaries

Delaunay co-circularities. LetP be a collection ofn points moving along pseudo-algebraic trajectories
in the plane, so that any four points are co-circular at mostthree times, and any three points can be
collinear at mosttwice during the motion. In addition, we assume, without loss of generality, that the
trajectories of the points ofP satisfy all the standard general position assumptions; seeAppendix B for
more details.

b

a

p

q

p

b

a

Figure 1:Left: A Delaunay co-circularity ofa, b, p, q. An old Delaunay edgepq is replaced by the new edgeab.
Right: A collinearity ofa, p, b right beforep ceases being a vertex on the boundary of the convex hull.

The Delaunay triangulationDT(P ) changes at discrete time momentst0 when one of the following
two types of events occurs.

(i) Some four pointsa, b, p, q of P become co-circular, so that the cicrumdisc ofp, q, a, b is empty,
i.e., does not contain any point ofP in its interior. We refer to such events asDelaunay co-circularities.
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See Figure 1 (left). At each such co-circularityDT(P ) undergoes anedge-flip, where an old Delaunay
edgepq is replaced by the “opposite” edgeab.

(ii) Some three pointsa, b, p of P become collinear on the boundary of the convex hull ofP . Assume
that p lies betweena andb. In this case, ifp moves into the interior of the hull then the triangleabp
becomes a new Delaunay triangle, and ifp moves outside and becomes a new vertex, the old Delaunay
triangleabp shrinks to a segment and disappears. See Figure 1 (right). The number of such collinearities
on the convex hull boundary is known to be at most nearly quadratic; see, e.g., [25, Section 8.6.1] and
below.

In view of the above, it suffices to obtain a near-quadratic bound on the number of Delaunay co-
circularities. Hence, the rest of this paper is devoted to proving the following main result:

Theorem 2.1.LetP be a collection ofn points moving along pseudo-algebraic trajectories in the plane,
so that (i) any four points ofP are co-circular at most three times, and (ii) no triple of points can be
collinear more than twice. ThenP admits at mostO(n2+ε) Delaunay co-circularities, for anyε > 0.

In what follows, we useN(n) to denote the maximum possible number of Delaunay co-circularities
that can arise in a set ofn points whose motion satisfies the above assumptions.

Shallow co-circularities. We say that a co-circularity event, where four points ofP become co-
circular, haslevel k if its corresponding circumdisc contains exactlyk points ofP in its interior. In
particular, the Delaunay co-circularities have level0. The co-circularities having level at mostk are
calledk-shallow.

We can bound the maximum possible number ofk-shallow co-circularities (fork ≥ 1) in terms of
the maximum number of Delaunay co-circularities in smaller-size point sets using the following fairly
general argument of Clarkson and Shor [9]. Consider a randomsampleR of Θ(n/k)(< n/2) points of
P and observe that anyk-shallow co-circularity (with respect toP ) becomes a Delaunay co-circularity
(with respect toR) with probabilityΘ(1/k4). (For this to happen, the four points of the co-circularity
have to be chosen inR, and the at mostk points ofP inside the circumdisc must not be chosen; see [9]
for further details.) Hence, the overall number ofk-shallow co-circularities isO(k4N(n/k)).

Shallow collinearities. Similar notations apply to collinearities of triples of pointsp, q, r. A collinear-
ity of p, q, r is calledk-shallowif the number of points ofP to the left, or to the right, of the line through
p, q, r is at mostk. The above probabilistic argument of Clarkson and Shor implies, in a similar manner,
that the number of such events, fork ≥ 1, is O(k3H(n/k)), whereH(m) denotes the maximum num-
ber of discrete changes of the convex hull of anm-point subset ofP . As shown, e.g., in [25, Section
8.6.1],H(m) = O(m2β(m)), whereβ(·) is an extremely slowly growing function.5 We thus get that the
number ofk-shallow collinearities isO(kn2β(n/k)) = O(kn2β(n)).

For every ordered pair(p, q) of points ofP , denote byLpq the line passing throughp andq and
oriented fromp to q. DefineL−

pq (resp.,L+
pq) to be the halfplane to the left (resp., right) ofLpq. Notice

that Lpq moves continuously withp and q (since, by assumption,p and q never coincide during the
motion). Note also thatLpq andLqp are oppositely oriented and thatL+

pq = L−
qp andL−

pq = L+
qp. We also

orient the edgepq connectingp andq from p to q, so that the edgespq andqp have opposite orientations.
Any three pointsp, q, r span a circumdiscB[p, q, r] which moves continuously withp, q, r as long as

p, q, r are not collinear. See Figure 2 (left). Whenp, q, r become collinear, say, whenr crossespq from
L−
pq toL+

pq, the circumdiscB[p, q, r] changes instantly from being all ofL+
pq to all ofL−

pq. Similarly, when
r crossesLpq from L−

pq to L+
pq outsidepq, the circumdisc changes instantly fromL−

pq to L+
pq. Symmetric

changes occur whenr crossesLpq from L+
pq to L−

pq.

5Specifically,β(n) =
λ
s+2(n)

n
, wheres is the maximum number of collinearities of any fixed triple ofpoints, and where

λs+2(n) is the maximum length of(n, s+ 2)-Davenport-Schinzel sequences [25].
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p

r q

r
rB[p, q, r]

L−

pq

B[p, q, r]

B[p, q, b]

Lpq

L+
pq

p

q

b

r

f−

b (t)

f+
r (t)

Figure 2:Left: The circumdiscB[p, q, r] of p, q andr moves continuously as long as these three points are not
collinear, and then flips over to the other side of the line of collinearity after the collinearity. Right: A snapshot at
momentt. In the depicted configuration we havef−

b (t) < 0 < f+
r (t).

The red-blue arrangement. As in [16, 23], we use the so called red-blue arrangement to facilitate the
analysis of co-circularities whose corresponding discs touch the same two pointsp, q ∈ P . For the sake
of completeness, we provide below a formal definition of thisarrangement.

For a fixed ordered pairp, q ∈ P , we call a pointa of P \ {p, q} red (with respect to the oriented
edgepq) if a ∈ L+

pq; otherwise it isblue.
We define, for eachr ∈ P \ {p, q}, a pair of partial functionsf+

r , f−
r over the time axis as follows.

If r ∈ L+
pq at timet thenf−

r (t) is undefined, andf+
r (t) is the signed distance of the centerc of B[p, q, r]

from Lpq; it is positive (resp., negative) ifc lies in L+
pq (resp., inL−

pq). A symmetric definition applies
whenr ∈ L−

pq. Here toof−
r (t) is positive (resp., negative) if the center ofB[p, q, r] lies inL+

pq (resp.,
in L−

pq). We refer tof+
r as thered functionof r (with respect topq) and tof−

r as theblue functionof r.
Note that at all times whenp, q, r are not collinear, exactly one off+

r , f−
r is defined. See Figure 2 (right).

The common points of discontinuity off+
r , f−

r occur at moments whenr crossesLpq. Specifically,f+
r

tends to+∞ beforer crossesLpq from L+
pq to L−

pq outside the segmentpq, and it tends to−∞ whenr
does so withinpq; the behavior off−

r is fully symmetric.
LetE+ denote the lower envelope of the red functions, and letE− denote the upper envelope of the

blue functions. The edgepq is a Delaunay edge at timet if and only ifE−(t) < E+(t). Any disc whose
bounding circle passes throughp andq which is centered anywhere in the interval(E−(t), E+(t)) along
the perpendicular bisector ofpq (with the origin on this line lying at the midpoint ofpq) is empty at time
t, and thus serves as a witness topq being Delaunay. Ifpq is not Delaunay at timet, there is a pair of a
red functionf+

r (t) and a blue functionf−
b (t) such thatf+

r (t) < f−
b (t). For example, we can takef+

r

(resp.,f−
b ) to be the function attainingE+ (resp.,E−) at timet; see Figure 3 (left). In such a case, we

say that the Delaunayhood ofpq is violatedby the pair of pointsr, b ∈ P that definef+
r , f−

b . Note that
in general there can be many pairs(r, b) that violatepq (quadratically many in the worst case).

Hence, at any time when the edgepq joins or leavesDT(P ), via a Delaunay co-circularity involving
p, q, and two other points ofP , we haveE−(t) = E+(t). In this case the two other points,a, b, are such
that one of them, saya, lies inL+

pq andb lies inL−
pq, andE+(t) = f+

a (t), E−(t) = f−
b (t).

Let A = Apq denote the arrangement of the2n − 4 functionsf+
r (t), f−

r (t), for r ∈ P \ {p, q},
drawn in the parametric(t, ρ)-plane, wheret is the time andρ measures signed distance to the midpoint
of pq along the perpendicular bisector ofpq. We label each vertex ofA as red-red, blue-blue, or red-blue,
according to the colors of the two functions meeting at the vertex. Note that our general position assump-
tions imply thatA is also in general position, so that no three functions pass through a common vertex,
and no pair of functions are tangent to each other. As discussed above, the functions formingA have
in general discontinuities, at the corresponding collinearities. At the timet0 of each such collinearity,
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r

p

qb

b

p

q

a

a

p

b

q

Figure 3: Left: A snapshot at fixed timet. The red and blue envelopesE+, E− coincide with the functions
f+
r , f−

b , respectively. The edgepq is not a Delaunay edge becauseE+(t) (the hollow center) is smaller than
E−(t) (the shaded center). Center and right: Red-red and red-blueco-circularities.

a red functionf+
r tends to∞ or −∞ on one side oft0, and is replaced on the other side oft0 by the

corresponding blue functionf−
r which tends to−∞ or ∞, respectively.

An intersection between two red functionsf+
a , f+

b corresponds to a co-circularity event which in-
volves p, q, a and b, occurring when botha and b lie in L+

pq. Similarly, an intersection of two blue
functionsf−

a , f−
b corresponds to a co-circularity event involvingp, q, a, b where botha andb lie in L−

pq.
Also, an intersection of a red fuctionf+

a and a blue functionf−
b represents a co-circularity ofp, q, a, b,

wherea ∈ L+
pq andb ∈ L−

pq. We label these co-circularities, as we labeled the vertices ofA, as red-red,
blue-blue, and red-blue (all with respect topq), depending on the respective colors ofa andb. See Figure
3 (center and right).

It is instructive to note that in any co-circularity of four points ofP there are exactly two pairs (the
opposite pairs in the co-circularity) with respect to whichthe co-circularity is red-blue, and four pairs (the
adjacent pairs) with respect to which the co-circularity is“monochromatic”. When the co-circularity is
Delaunay, the two pairs for which the co-circularity is red-blue are those that enter or leave the Delaunay
triangulationDT(P ) (one pair enters and one leaves). The Delaunayhood of pairs for which the co-
circularity is monochromatic is not affected by the co-circularity, which appears in the corresponding
arrangement as abreakpointof eitherE+(t) orE−(t).

The following useful result onApq, which is one of the major tools in our analysis, was established
in [23] by applying routine techniques for analyzing planararrangements. For the sake of completeness,
we provide its proof in Appendix C.

Theorem 2.2(Red-blue Theorem). LetP be a collection ofn points moving in the plane as described
above. Suppose that an edgepq belongs toDT(P ) at (at least) one of the two momentst0 and t1, for
t0 < t1. Letk > 12 be some sufficiently large constant.6 Then one of the following conditions holds:

(i) There is ak-shallow collinearity which takes place during(t0, t1), and involvesp, q and another
point r.

(ii) There areΩ(k2) k-shallow red-red, red-blue, or blue-blue co-circularities (with respect topq)
which occur during(t0, t1).

(iii) There is a subsetA ⊂ P of at most3k points whose removal guarantees thatpq belongs to
DT(P \A) throughout(t0, t1).

Notice that we do not assume thatpq leavesDT(P ) at any moment during(t0, t1) (in that case, case
(iii) holds, withA = ∅). Note also that, although we do not need this property, the theorem continues to
hold in the more general setting of pseudo-algebraic motions of constant description complexity.

6The constants is theO(·) andΩ(·) notations do not depend onk.
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3 From Delaunay Co-Circularities to Delaunay Crossings

Let P be a set ofn points moving in the plane, so that any four points can be co-circular at most three
times, and any triple of points can be collinear more than twice. For the sake of brevity, we will often
take these topological restrictions for granted. As before, N(n) denotes the maximum possible number
of Delaunay co-circularities that can arise in such a setP .

In this section we introduce the notion of a Delaunay crossing, which plays a central role both in
this paper and in its predecessor [23], and express the abovequantityN(n) in terms of the maximum
numbers of Delaunay crossings that can arise in smaller setsof moving points.

Delaunay crossings.A Delaunay crossingis a triple(pq, r, I = [t0, t1]), wherep, q, r ∈ P andI is a
time interval, such that

1. pq leavesDT(P ) at time t0, and returns at timet1 (andpq does not belong toDT(P ) during
(t0, t1)),

2. r crosses the segmentpq at leastonce7 duringI, and

3. pq is an edge ofDT(P \ {r}) during I (i.e., removingr restores the Delaunayhood ofpq during
the entire time intervalI).

q

p
B[p, q, r]

r

p

q
B[p, q, r]

r

Figure 4: A Delaunay crossing ofpq by r from L−

pq to L+
pq. Several snapshots of the continuous motion of

B[p, q, r] before and afterr crossespq are depicted (in the left and right figures, respectively). Hollow points
specify the positions ofr whenpq 6∈ DT(P ). The solid circle in the left (resp., right) figure is the Delaunay
co-circularity that destroys (resp., restores) the Delaunayhood ofpq.

Note that each of the Delaunay co-circularities that destroys the Delaunayhood ofpq at timet0 and
restores it at timet1 must involver.

Note that we also allow Delaunay crossings, where the pointr hits pq at one (or both) of the times
t0, t1. In this case, the crossed edgepq leaves the convex hull ofP at timet0, or enters it at timet1, so
the overall number of such “degenerate” crossings does not exceedO(n2β(n)), and we may ignore them
in what follows.

Assumingn ≥ 5, it is easy to see that the third condition is equivalent to the following condition,
expressed in terms of the red-blue arrangementApq associated withpq: The pointr participates only
in red-blue co-circularites during the intervalI, and these are the only red-blue co-circularities that
occur duringI.8 More specifically, note thatr is red during some portion ofI and is blue during the
complementary portion (both portions are not necessarily connected). During the former portion the
graph off+

r coincides with the red lower envelopeE+ (otherwiseE+(t) < E−(t) would hold sometime
duringI even after removal ofr), so it can only meet the graphs of blue functions. Similarly, during the

7And at most twice, by assumption.
8If n = 4, then, in order for (3) to hold, we also need that the remaining point ofP does not crosspq duringI .
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latter portionf−
r coincides with the blue upper envelopeE−, so it can only meet the graphs of red

functions. When passing from the former portion to the latter, f+
r goes down to−∞, meeting all blue

functions below it, and then it is replaced byf−
r , which goes down from∞. See Figure 4 for a schematic

illustration of this behavior.
Notice that no points, other thanr, crosspq duringI (any such crossing would clearly contradict the

third condition at the very moment when it occurs). Moreover, r does not crossLpq outsidepq duringI;
otherwisepq would belong toDT(P ) whenr belongs toLpq \ pq.

Types of Delaunay co-circularities.We say that a co-circularity event at timet0 involving a, b, p, q has
index1, 2, or 3 if this is, respectively, the first, the second, or the third co-circularity involvinga, b, p, q.
A co-circularity isextremalif its index is1 or 3, and the co-circularities with index2 are referred to as
middleco-circularities.

Let C(n) denote the maximum possible number of Delaunay crossings that can arise in a set ofn
moving pointsR2. To boundN(n) in terms ofC(n) (or, more precisely, in terms ofC(m), for somem ≤
n), we first develop a recurrence which expresses the maximum possible numberNE(n) of extremal
Delaunay co-circularities inP in terms ofC(n/k). (In [23], there were no middle co-circularities, so
the same argument worked forall Delaunay co-circularities.) We then express the maximum possible
numberNM (n) of middle Delaunay co-circularities inP in terms ofC(n/k) andNE(n/k). (Herek is
an arbitrary sufficiently large parameter.)

The number of extremal co-circularities. Consider a Delaunay co-circularity event at timet0 at which
an edgepq of DT(P ) is replaced by another edgeab, because of an extremal red-blue co-circularity
(with respect topq, and, for that matter, also with respect toab) of level0 (that is, a co-circularity that is
Delaunay). Without loss of generality, assume that the co-circularity of p, q, a, b has index3 (the case of
index1 is handled fully symmetrically, by reversing the directionof the time axis).

There are at mostO(n2) such events for which the vanishing edgepq never reappears inDT(P ),
so we focus on the Delaunay co-circularities (of index3) whose corresponding edgepq rejoinsDT(P )
at some future momentt1 > t0. (As reviewed in Section 2,DT(P ) experiences then either a red-blue
Delaunay co-circularity with respect topq, or a hull event, whenpq is crossed by a point ofP \ {p, q}.
In the latter case,pq is not strictly Delaunay at timet1, and joinsDT(P ) right aftert1.) Note that in this
case, at least one of the two other pointsa, b involved in the co-circularity at timet0 must crosspq at
some time betweent0 andt1. Indeed, otherwisep, q, a andb would have to become co-circular again, in
order to “free”pq from its non-Delaunayhood, which is impossible since our co-circularity has index3.
More generally, we have the following lemma:

Lemma 3.1. Assume that the Delaunayhood ofpq is violated at timet0 (or rather right after it) by the
pointsa ∈ L−

pq andb ∈ L+
pq. Furthermore, suppose thatpq re-entersDT(P ) at some future timet1 > t0.

Then at least one of the followings occurs during(t0, t1]:

(1) The pointa crossespq fromL−
pq to L+

pq.
(2) The pointb crossespq fromL+

pq to L−
pq.

(3) The four pointsp, q, a, b are involved in a red-blue co-circularity.

Furthermore, the Delaunayhood ofpq is violated bya andb (so, in particular, the segmentspq and
ab intersect) after timet0 and until the first time in(t0, t1] when at least one of the events in (1)–(3)
occurs.

Clearly, the third scenario is not possible if the co-circularity at timet0 has index3. A symmetric
version of Lemma 3.1 applies if the Delaunayhood ofpq is violated rightbeforetime t0 by a andb, and
this edge is Delaunay at anearlier time t1 < t0.

Proof. Refer to Figure 5. Clearly, the Delaunayhood ofpq remains violated bya andb after timet0
as long asa remains within the capB[p, q, b] ∩ L−

pq, andb remains within the capB[p, q, a] ∩ L+
pq (as

depicted in the left figure).
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Consider the first timet∗ ∈ (t0, t1] when the above state of affairs ceases to hold. Notice that the
Delaunayhood ofpq is violated bya and b (so, in particular,pq is intersected byab) throughout the
interval(t0, t∗). Assume without loss of generality thata leaves the the capB[p, q, b]∩L−

pq. If a crosses
pq, then the first scenario holds. Otherwise,a can leave the above cap only through the boundary of
B[p, q, b] (as depicted in the right figure), so the third scenario occurs.

p

q
a

b p

q
a

b

q
a

bp

Figure 5: Proof of Lemma 3.1. Left: The setup right after timet0. Center and right: the pointa can leave
B[p, q, b] ∩ L−

pq (beforeb leaves the symmetric capB[p, q, a] ∩ L+
pq) in two possible ways, corresponding to cases

(1) and (3) of the lemma.

Notice, however, that the points ofP can defineΩ(n3) collinearities, so a naive charging of extremal
Delaunay co-circularities to collinearities of type (1) or(2) in Lemma 3.1 will not lead to a near-quadratic
upper bound. Before we get to this (major) issue in our analysis, we begin by laying down the infrastruc-
ture of our charging scheme, similar to the one used in [23].

We fix some sufficiently large constant parameterk > 12 and apply Theorem 2.2 to the edgepq
over the interval(t0, t1) of its absense fromDT(P ). Assume first that one of the conditions (i) or (ii)
of the theorem holds, so we can charge the co-circularity ofp, q, a, and b either toΩ(k2) k-shallow
co-circularities (each involvingp, q, and some two other points ofP ), or to ak-shallow collinearity
(involving p, q, and some third point ofP ). As argued in Section 2, the overall number ofk-shallow
co-circularities isO(k4N(n/k)). Eachk-shallow co-circularity is charged by onlyO(1) Delaunay co-
circularities in this manner,9 and it has to “pay” onlyO(1/k2) units every time it is charged. Similarly,
as already argued, the number ofk-shallow collinearities isO(kn2β(n)), and each such collinearity is
charged by at mostO(1) Delaunay co-circularities. Hence, there are at mostO(k2N(n/k) + kn2β(n))
Delaunay co-circularities for which one of the conditions (i) or (ii) holds.

Assume then that condition (iii) holds for our co-circularity. By assumption, there is a setA of at
most3k points (necessarily including at least one ofa or b) whose removal ensures the Delaunayhood
of pq throughout(t0, t1). By Lemma 3.1, at least one the two pointsa, b, let it bea, crossespq during
(t0, t1). As we will shortly show, in the reduced triangulation10 DT(P \ A ∪ {a}), the collinearity of
p, q anda can be turned into one or several Delaunay crossings.

We can now express the number of remaining Delaunay co-circularities of index3 in terms of the
maximum possible number of Delaunay crossings. Recall thatfor each such co-circularity there is a set
A of at most3k points whose removal restores the Delaunayhood ofpq throughout[t0, t1]. In addition,
we assume thata hitspq during(t0, t1], and thena ∈ A.

We sample at random (and without replacement) a subsetR ⊂ P of n/k points, and notice that
the following two events occur simultaneously with probability at leastΩ(1/k3): (1) the pointsp, q, a
belong toR, and (2) none of the points ofA \ {a} belong toR. Sincea crossespq during [t0, t1], andpq
is Delaunay at timet0 and (right after) timet1, the sampleR induces a Delaunay crossing(pq, a, I), for
some time intervalI ⊂ [t0, t1]. (If a crossespq twice, we have either two separate Delaunay crossings,

9Indeed, there are at mostO(1) ways to guessp andq among the four points of the charged co-circularity, and then the
charging co-circularity corresponds to the latest previous disappearance ofpq from DT(P ).

10To simplify the ongoing discourse, we apply slight abuse of notation, where we refer to certain non-Delaunay events as
occurring in a suitable triangulation. These events are closely relatedto the changes that the triangulation undergoes, even
though they themselves are not part of the Delaunay triangulation.
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which occur at disjoint sub-intervals of(t0, t1), or only one Delaunay crossing, during whicha crossespq
twice. This depends on whetherpq manages to become Delaunay inDT(R) in between these crossings.)
We charge the disappearance ofpq from DT(P ) to this crossing (or to the first such crossing if there are
two) and note that the charging is unique (i.e., every Delaunay crossing(pq, a, I) in DT(R) is charged
by at most one disappearancet0 of the respective edgepq fromDT(P ), which islastsuch disappearance
of pq beforea hits pq in I). Hence, the number of Delaunay co-circularities of this kind is bounded by
O(k3C(n/k)), whereC(n) denotes, as above, the maximum number of Delaunay crossingsinduced by
any collectionP of n points whose motion satisfies the above assumptions.

If the Delaunay co-circularity ofp, q, a, b has index1, we reverse the direction of the time axis and
argue as above for the edgeab instead ofpq. We thus obtain the following recurrence for the maximum
possible numberNE(n) of extremal Delaunay co-circularities:

NE(n) = O
(

k3C(n/k) + k2N(n/k) + kn2β(n)
)

. (1)

Remark. Our analysis will generate many recurrences of similar nature. Informally, each recurrence
will have “quadratic” terms (such as the second and the thirdterms in (1)), which, in themselves, lead
to a near-quadratic bound, and “non-quadratic” terms (suchas the first one in (1)), which delegate the
charging to new quantities. These quantities will generaterecurrences of their own, of a similar nature,
and the process will bottom out, in Section 7, with recurrences that have only “quadratic” terms. Using
known techniques, such as in [17] and [25, Section 7.3.2], the whole system of recurrences will yield a
near quadratic bound (for all the involved quantities).

The number of middle Delaunay co-circularities. We now develop a recurrence that expresses the
number of middle Delaunay co-circularities in terms ofC(n/k), NE(n/k), andN(n/k), for an appro-
priate constant parameterk.

Consider such a middle co-circularity event at timet0, when an edgepq of DT(P ) is replaced by an-
other edgeab. As in the previous case, there are at mostO(n2) such events for which the vanishing edge
pq never reappears inDT(P ), so we focus on middle Delaunay co-circularities whose corresponding
edgepq rejoinsDT(P ) at some future momentt1 > t0.

Once again, we fix a sufficiently large constantk > 12 and apply Theorem 2.2 to the red-blue
arrangement ofpq over the interval(t0, t1). Assume first that one of the Conditions (i) and (ii) is satisfied,
or that one of the pointsa, b hits pq during (t0, t1]. Then the preceding analysis (used for extremal
Delaunay co-circularities) can be applied, essentially verbatim, in this case too, and it implies that the
number of such middle co-circularities isO

(

k3C(n/k) + k2N(n/k) + kn2β(n)
)

.
Assuming that the above scenario does not occur, the four points p, q, a, b are involved in an addi-

tional red-blue co-circularity during(t0, t1], which “frees”pq from its violation bya andb. Moreover,
there is a setA of at most3k points whose removal restores the Delaunayhood ofpq throughout[t0, t1].
Let t0 ≤ t∗ ≤ t1 be the time of the additional (third) co-circularity ofp, q, a, b, and letB∗ be the
corresponding circumdisc ofp, q, a, b at timet∗.

If B∗ contains at most14k points, we can charge the disappearance ofpq to the resulting14k-shallow
extremal co-circularity. Clearly, any such co-circularity of index 3 is charged for at most one middle
Delaunay co-circularity. Moreover, the number of14k-shallow extremal co-circularities is bounded
by O

(

k4NE(n/k)
)

using the standard probabilistic argument of Clarkson and Shor [9]. Hence, this
scenario arises for at mostO

(

k4NE(n/k)
)

middle Delaunay co-circularities.
Now assume thatB∗ contains at least14k points ofP . Without loss of generality, assume that the

capB ∩ L+
pq contains at least7k points ofP . That is, the corresponding red function, sayf+

b , has level
at least7k in the red arrangement at timet∗. Refer to Figure 6. Letr be a red point whose respective
function f+

r lies, at timet∗, at red level between3k and7k − 1. That is, the number of red points in
the circumdiscB[p, q, r] ranges from3k to 7k − 1. Then the number of blue points inB[p, q, r] is at
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most3k. Indeed, if there were more that3k blue points inB[p, q, r] then after removingA this disc
would still contain at least one blue point and at least one red point (possiblyr itself), sopq could not
be Delaunay at timet∗. Sincef+

r < f+
b , this disc also containsa (which is still a blue point on the

boundary ofB[p, q, b]), so the Delaunayhood ofpq is violated at timet∗ by r anda. Beforepq re-enters
DT(P ) at time t1, one of the following must happen, according to Lemma 3.1: Either r hits11 pq or
the pointsp, q, r, a are involved in a red-blue co-circularity (whena leavesB[p, q, r] and beforer hits
Lpq). A fairly symmetric argument shows that eitherr hits pq, or p, q, r, a are involved in a red-blue
co-circularity during(t0, t∗) (whena entersB[p, q, r]). Note, however, thatpq is hit by at most3k points
during (t0, t1], all of them inA. Thus, at leastk such pointsr do not hitpq during (t0, t1], so each of
them is involved in two co-circularities withp, q, a during(t0, t1]: one beforet∗, and another afterwards.

a

B∗

q

r

bp

Figure 6:Analysis of middle Delaunay co-circularities. The four pointsp, q, a, b are involved, during[t0, t1], in
their third co-circularity, whose respective circumdiscB∗ contains at least7k red points. At leastk red pointsr,
whose red level ranges between3k and7k, do not hitpq during[t0, t1].

Fix a pointr, as above, which does not crosspq. Notice that at least one of the two promised co-
circularities ofp, q, r, a is extremal. If the above extremal co-circularity ofp, q, r, a, occuring at some
t∗∗ ∈ (t0, t1), is (11k)-shallow, we charge it for the disappearance ofpq. As before, this charging
is unique, and the number of charged co-circularities isO(k4NE(n/k)). Otherwise, the boundary of
B[p, q, r] is crossed during the interval(t∗, t∗∗) (or (t∗∗, t∗)) by at leastk points, so the triplep, q, r
definesΩ(k) (11k)-shallow co-circularities involvingp, q during(t0, t1).

Repeating the same argument for the (at least)k possible choices ofr, we obtainΩ(k2) (11k)-
shallow co-circularities, each involvingp, q and some other pair of points and occurring during(t0, t1].
As in Case (ii) of Theorem 2.2, we charge these co-circularities for the disappearance ofpq.

We have thus established the following recurrence for the maximum possible numberNM (n) of
middle Delaunay co-circularities for a set ofn moving points:

NM (n) = O
(

k4NE(n/k) + k2N(n/k) + kn2β(n) + k3C(n/k)
)

. (2)

Informally, and as will be argued rigorously later on, the combination of (1) and (2) implies that the
maximum number of extremal Delaunay co-circularities is asymptotically dominated by the maximum
number of Delaunay crossings (assuming it is at least quadratic).

4 The Number of Delaunay crossings

The remainder of the paper is devoted to deriving a recurrence relation for the maximum numberC(n)
of Delaunay crossings induced by any setP of n moving points as above. In this section we establish
several basic properties of Delaunay crossings, and outline the forthcoming stages of their analysis. The
eventual system of recurrences that we will derive will expressC(n) in terms of the maximum number
of Delaunay co-circularities of smaller-size sets, plus a nearly quadratic additive term. Plugging that
relation into (1) will yield the near-quadratic bound onN(n) that was asserted in Theorem 2.1.

11Recall that, by assumption,a does not hitpq in the present case.
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4.1 Delaunay crossings: the key properties

Consider a Delaunay crossing(pq, r, I). Recall thatp, q, r can be collinear at most twice. Moreover,
both collinearities can (but do not have to) occur during theintervalI of the same Delaunay crossing of
pq by r. Clearly,r cannot hitLpq outsidepq duringI because, at such an “outer” collinearity,pq, which
is Delaunay whenr is removed, would also be Delaunay in the presence ofr.

The Delaunay crossing ofpq by r is calledsingle (resp.,double) if r hits pq exactly once (resp.,
twice) during the corresponding intervalI of pq’s absence fromDT(P ).

The following lemma holds for both types of Delaunay crossings (see Figure 7).

Lemma 4.1. If (pq, r, I = [t0, t1]) is a Delaunay crossing then each of the edgespr, rq belongs to
DT(P ) throughoutI.

Lemma 4.1, whose explicit proof appears in the predecessor paper [23], is a direct corollary of the
following well-known result onstaticDelaunay triangulations:

Lemma 4.2. LetQ be a finite set of points inR2, and letr be a point not inQ. Letpq be an edge that is
Delaunay inQ, but not inQ ∪ {r}. Then the triangulationDT(Q ∪ {r}) includes the two edgespr and
qr.

For the sake of completeness, we prove Lemma 4.2 in Appendix E.

r

r

p

q

Figure 7:Lemma 4.1. If(pq, r, I) is a Delaunay crossing, then each ofpr, rq belongs toDT(P ) throughoutI.

In the full version of the predecessor paper [23], we obtain an upper bound ofO(n2) on the number
of double Delaunay crossings. Since the argument from [23] holds (as is) also in the setting studied by
this paper, we have the following theorem.

Theorem 4.3. Any setP of n moving points, as above, induces at mostO(n2) double Delaunay cross-
ings.

For the sake of completeness, we supply the complete analysis of double Delaunay crossings in
Appendix D.

It therefore suffices to establish a suitable recurrence forthe maximum possible number of single
Delaunay crossings, and this is what is undertaken in the theremainder of the paper is devoted to the study
of the latter crossings. For the sake of brevity, we shall often refer to single Delaunay crossings simply
as Delaunay crossings, and useC(n) to denote the maximum number of single Delaunay crossings.

We next establish several topological properties of (single) Delaunay crossings.

Single Delaunay crossings: notational conventions.Recall from Section 2 that every edgepq is
oriented fromp to q, and its corresponding lineLpq splits the plane into the left halfplaneL−

pq and the
right halfplaneL+

pq.
Without loss of generality, we assume in what follows that, for any single Delaunay crossing(pq, r, I =

[t0, t1]), the pointr crossespq fromL−
pq toL+

pq duringI. Recall thatr cannot crossLpq outsidepq during
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I, so this is theonly collinearity ofp, q, r in I. If r crossespq in the opposite direction, we denote this
crossing as(qp, r, I = [t0, t1]).

Note that every such Delaunay crossing(pq, r, I) is uniquely determined by the respective ordered
triple (p, q, r), because there can be at most one collinearity12 wherer crosses the lineLpq within pq
from L−

pq toL+
pq.

For convenience of reference, we label each such crossing(pq, r, I) asa clockwise(p, r)-crossing,
and asa counterclockwise(q, r)-crossing, with an obvious meaning of these labels.

The following lemma lies at the heart of our analysis.

Lemma 4.4. Let (pq, r, I = [t0, t1]) be a single Delaunay crossing. Then, with the above conventions,
for any s ∈ P \ {p, q, r} the pointsp, q, r, s define a red-blue co-circularity with respect topq, which
occurs duringI when the points either enters the capB[p, q, r] ∩ L+

pq, or leaves the opposite cap
B[p, q, r] ∩ L−

pq.

Proof. The proof is an adaptation of similar arguments made earlier. By definition,r crossespq at some
(unique) timet0 < t∗ < t1 from L−

pq to L+
pq. The discB[p, q, r] is P -empty att0 and att1 and moves

continuously throughout[t0, t∗) and(t∗, t1]. Just beforet∗, B[p, q, r] is the entireL+
pq, so every point

s ∈ P ∩ L+
pq at timet∗ must have enteredB[p, q, r] during [t0, t∗), forming a co-circularity withp, q, r

at the time it entered the disc.13 See Figure 8 (left). (As mentioned in Section 2, this co-circularity of
p, q, r, s is red-blue with respect topq, that is, the points entersB[p, q, r] through∂B[p, q, r] ∩ L+

pq.) A
symmetric argument (in which we reverse the direction of thetime axis) shows that the same holds for
all the pointss ∈ P that lie inL−

pq at timet∗; see Figure 8 (right).

B[p, q, r]

r

q

p B[p, q, r] p
r

q

Figure 8:Left: Right beforer crossespq, the circumdiscB = B[p, q, r] contains all points inP ∩ L+
pq. Right:

Right afterr crossespq, B contains all points inP ∩ L−

pq.

Our local charging schemes “bottom out” when a carefully chosen triple of points defines two De-
launay crossings (again, possibly in a triangulation of some smaller-size sample). Lemma 4.5 takes care
of this easy case.

Lemma 4.5. The number of triples of pointsp, q, r ∈ P for which there exist two time intervals
I1, I2 such that either (i) both(pq, r, I1) and (qp, r, I2) are Delaunay crossings, (ii) both(pq, r, I1)
and(rq, p, I2) are Delaunay crossings, or (iii) both(pq, r, I1) and(pr, q, I2) are Delaunay crossings, is
at mostO(n2).

Notice that, if some triple of pointsp, q, r in P performs two distinct Delaunay crossings, both of
these crossings must necessarily be single Delaunay crossings (otherwise this triple would be collinear

12If r hitspq twice, then the other crossing ofpq by r is fromL+
pq back toL−

pq .
13If t∗ = t0 then there are no red points whenr hits pq, so we consider only the second interval. The case oft∗ = t2 is

treated symmetrically. As noted in Section 2, in such cases the crossed edgepq either leaves or joins the convex hull ofP at
the time of the collinearity.

14



at least three times). Hence, the statement of the lemma holds in full generality. It is easy to check that
Lemma 4.5 covers all possible scenarios (up to a permutationof p, q, r and/or reversal of the time axis)
where some triplep, q, r is involved two single Delaunay crossings (again, because no three points ofP
can be collinear more than twice).

Proof. We claim that every pairp, q ∈ P participates in at most one triple of each type. Indeed, fix
p, q ∈ P and assume that there exist two pointsr, s such that the triplesp, q, r andp, q, s are involved in
two (single) Delaunay crossings of the same prescribed order type (i), (ii), or (iii). By Lemma 4.4, we
encounter at least one co-circularity ofp, q, r, s during each of the two Delaunay crossings induced by
p, q, r and the two induced byp, q, s. If we show that these four co-circularities are distinct, we reach a
contradiction to the fact that any four points can be co-circular at most three times.

If the aformentioned triplesp, q, r andp, q, s satisfy the first condition, the resulting four crossings of
pq happen during pairwise disjoint intervals of time. Hence, the four co-circularities are clearly distinct.

We now proceed to establish the distinctness in the second and the third cases. Assume next that both
(p, q, r) and(p, q, s) fall into Case (ii); Case (iii) is handled in a fully symmetric manner. By assumption,
we have four pointsp, q, r, s and four time intervalsI1, I2, I3, I4, such that(pq, r, I1), (rq, p, I2), (pq, s, I3),
and(sq, p, I4) are all Delaunay crossings.I1 andI3 are clearly disjoint, and Lemma 4.4 yields two co-
circularities ofp, q, r, s, one occuring duringI1 and one duringI3, both red-blue with respect topq.
Similarly, Lemma 4.4 yields a co-circularity ofp, q, r, s during I2 which is red-blue with respect toqr,
and a co-circularity of the same quadruple duringI4, which is red-blue with respect toqs. Clearly,
these two co-circularities are different, and are also different from the former two co-circularities, since
the vertex opposite toq is different in each of these co-circularities. This completes the proof of the
lemma.

The following lemma defines a natural order on(p, r)-crossings of a given orientation (clockwise or
counterclockwise).

Lemma 4.6. Let(pq, r, I) and(pa, r, J) be clockwise(p, r)-crossings, and suppose thatr hitspq (during
I) before it hitspa (duringJ). ThenI begins (resp., ends) before the beginning (resp., end) ofJ . Clearly,
the converse statements hold too. Similar statements hold for pairs of counterclockwise(p, r)-crossings.

Proof. In the configuration considered in the main statement of the lemma,r crossespq fromL−
pq toL+

pq,
and it crossespa from L−

pa to L+
pa. We only prove the part of the lemma concerning the ending times of

the crossings, because the proof about the starting times isfully symmetric (by reversing the direction of
the time axis). The statement clearly holds ifI andJ are disjoint; the interesting situation is when they
partially overlap. Note thatr entersL+

pq only once during the Delaunay crossing ofpq by r, namely, right
after r hits pq. Indeed, by assumption,r cannot exitL+

pq by crossingpq again duringI, and it cannot
crossLpq \pq because at that timepq, which is Delaunay inDT(P \{r}), would be Delaunay also in the
presence ofr, contrary to the definition of a Delaunay crossing. Hence, wemay assume thatr still lies
in L+

pq when it hitspa during the Delaunay crossing of that edge. Indeed, otherwise the crossing ofpq
would by then be over, so the claim would hold trivially, as noted above. In particular,~pa lies clockwise
to ~pq at that time.

It suffices to prove that the co-circularity ofp, q, r, a, which (by Lemma 4.4) occurs during the
Delaunay crossing ofpa by r, takes place when the crossing ofpq by r is already finished (and, in
particular, after the co-circularity ofp, q, r, a that occurs during the crossing ofpq).

Before the Delaunayhood ofpa is restored, we have a co-circularityp, q, r, a in which q leaves
B[p, a, r] ∩ L−

pa. (This is argued in the proof of Lemma 4.4: Right after the crossing, the pointq lies
in B[p, a, r] ∩ L−

pa, as in Figure 9 (left), and has to leave that disc before it becomes empty; it cannot
crosspa duringJ , when this edge undergoes the Delaunay crossing byr). Notice that this is a red-blue
co-circularity with respect topa, and a red-red co-circularity with respect topq; see Figure 9 (right).
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p
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Figure 9: Proof of Lemma 4.6. Left: ifr remains inL+
pq after I and before it crossespa, then q lies in

B[p, a, r] ∩ L+
pa before that last collinearity. Right: The second co-circularity of p, q, r, a which occurs when

q leavesB[p, a, r] ∩ L+
pq. This is a red-red co-circularity with respect topq, so the crossing ofpq is already over.

Since no red-red or blue-blue co-circularities occur during a Delaunay crossing of an edge, the crossing
of pq is already over.

Consecutive crossings. By Lemma 4.6, for any pair of pointsp, r, all the clockwise(p, r)-crossings
can be linearly ordered by the starting times of their intervals, or by the ending times of their intervals,
or by the times whenr hits the correspondingp-edge, and all three orders are indentical. We say that
clockwise(p, r)-crossings(pq, r, I), (pa, r, J) areconsecutiveif they are consecutive in this order. More
generally, we say that these crossings arek-consecutiveif at mostk other clockwise(p, r)-crossings
separate them in this order.

Similar notions of consecutiveness andk-consecutiveness apply to pairs of counterclockwise(p, r)-
crossings(qp, r, I), (ap, r, J).

4.2 The roadmap

In Section 3 we have established a pair of recurrences (1) and(2), whose combination allows to express
the maximum numberN(n) of Delaunay co-circularities in terms of the maximum numberof Delau-
nay crossingsC(m) in smaller-size subsets, plus the maximum number of Delaunay co-circularities in
smaller-size sets, plus a nearly quadratic additive term. Furthermore, we have seen that there can be at
most quadratically many double Delaunay crossings, and quadratically many of pairs of single Delaunay
crossings of the kinds considered in Lemma 4.5.

It therefore suffices to obtain a suitable recurrence, or a system of such recurrences, that express the
maximum possible numberC(n) of (single) Delaunay crossings only in terms of the maximum number
of Delaunay co-circularities in smaller-size sets, plus a nearly quadratic additive term. (In order for the
solution of such a recurrence to be near-quadratic, the respective coefficient of each recursive term of the
form N(n/k) must be roughly equal tok2. See [17], [25, Section 7.3.2], and also [22, Section 4.5] for
further details on solving such systems of recurrences.)

In the predecessor paper [23], we used the following fairly direct charging strategy. For each single
Delaunay crossing(pq, r, I) in P we first checked whether it (or its immediate neighbor) is near-extremal
in the order implied by Lemma 4.6. Notice that(pq, r, I) appears (and thus can be extremal) in two
restricted families of crossings: that of the clockwise(p, r)-crossings, and that of the counterclockwise
(q, r)-crossings. If this were the case, we could charge(pq, r, I) to one of the edgespr andqr, for an
overall quadratic bound. Otherwise, we applied Theorem 2.2in the arrangementsApr andArq, and
tried to charge(pq, r, I), within at least one of these two arrangements, either to a shallow collinearity,
or to sufficiently many shallow co-circularities. Finally,if none of the previous chargings succeeded,
we charged(pq, r, I) to some triple (not necessarilyp, q, r) which performed two Delaunay crossings in
some sub-sample ofP , so our analysis bottomed out via (the weaker analogue in [23] of) Lemma 4.5.
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Unfortunately, the above direct approach no longer works inthe present setting, where any four points
can be co-circular up to three times. Informally, its main weakness stems from the fact that Delaunay
crossings involve triples of points, whereas our primary topological restriction refers to quadruples of
points ofP . Thus, Delaunay crossings are not “rich” enough to capture the underlying combinatorial
structure of the problem.

We therefore consider several additional types of topological configurations that involvequadruples
of moving points, obtained by combining two Delaunay crossings with two common points, such as
(pq, r, I) and(pa, r, J). Recall that, for each Delaunay crossing(pq, r, I), its edgepq is almost Delau-
nay inI = [t0, t1] (and fully Delaunay at the endpointst0, t1), and the other two edgespr andrq are fully
Delaunay inI (by Lemma 3.1). The quadruples that we will shortly introduce more formally, inherit all
these properties of their Delaunay crossings, but will havea rich structure, due to additional interactions
between their edges and subtriples. These quadruples can beviewed as an extension of Delaunay cross-
ings, in the sense that their edges are forced to be either Delaunay, or almost Delaunay, during various
intervals whose endpoints are defined “locally”, in terms ofthe points and the edges of the configura-
tion at hand. Furthermore, initially, by construction, thepoints of each quadruple perform at least two
Delaunay crossings. The major goal of the analysis is to obtain configurations with progressively many
Delaunay crossings

We next review the three types of topological configurationsthat arise in the course of our analysis,
and highlight the intimate relations between these types ofconfigurations, and Delaunay crossings.

r

a

q

p p

a

q

r q

a

q

p

r

Figure 10: A (clockwise) regular quadrupleσ = (p, q, a, r), which is composed of clockwise(p, r)-crossings
(pq, r, I) and(pa, r, J). Left and center: A possible motion ofr, with the two co-circularities ofp, q, a, r that
occur duringI \ J andJ \ I, respectively. Right: The special crossing ofpa by q which we enforce at the end of
the analysis of regular quadruples.

Regular quadruples. Four distinct pointsp, q, a, r ∈ P form a clockwiseregular quadruple(or, sim-
ply, aquadruple) σ = (p, q, a, r) in DT(P ) if there exist clockwise(p, r)-crossings(pq, r, I), (pa, r, J)
that appear in this order in the sequence of clockwise(p, r)-crossings; refer to Figure 10. We say that
the quadruple isconsecutiveif (pq, r, I) and(pa, r, J) are consecutive.

Clearly, every clockwise(p, r)-crossing(pq, r, I) forms the first part of exactly one (clockwise) con-
secutive quadruple, unless it is the last such(p, r)-crossing (with respect to the order given by Lemma
4.6). The overall number of these last crossings is clearly bounded byO(n2). Hence, the maximum num-
berC(n) of single Delaunay crossings is asymptotically dominated by the maximum possible number
Ψ(n) of consecutive regular quadruples.

Let σ = (p, q, a, r) be a consecutive regular quadruple as above. By Lemma 4.1, edge pr of σ is
Delaunay during the respective intervalsI andJ of its two (p, r)-crossings, whereas each of the edges
rq andra is (provably) Delaunay in only one of these two intervals. Inaddition, the edgespq andpa are
almost Delaunay during their respective Delaunay crossings byr.

Regular quadruples are studied extensively in Section 5, where we gradually extend the correspond-
ing (almost-)Delaunayhood intervals of the respective edgespr, rq, ra, pa andpq of each quadrupleσ
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until most of them cover[I, J ] = conv(I ∪ J), including the possible gap betweenI andJ . This is
achieved by applying Theorem 2.2 in the respective red-bluearrangements of these edges. Each such
application of Theorem 2.2 is done over a carefully chosen interval, which guarantees that any shallow
collinearity or co-circularity, that we encounter in the first two cases of the theorem, is charged by only
few quadruples.

In Section 5.1, we show (via Lemmas 4.1 and 4.4) that the points of each regular quadrupleσ =
(p, q, a, r) are co-circular exactly once in each of the intervalsI \ J andJ \ I; see Figure 10 (left and
center). Specifically, the former co-circularity is red-blue with respect to the edgespq andra, and the
latter co-circularity is red-blue with respect topa andrq. Notice that at least one of these co-circularities,
let it be the one inI \ J , is extremal.

Arguing similarly to Section 3, we use the above co-circularities of p, q, a, r (together with the ad-
ditional constraints on the Delaunayhood ofrq, ra and pa) to enforce a pair of additional Delaunay
crossings which occur in smaller-size point sets (which arerandom samples ofP , needed for the appli-
cation of the Clarkson-Shor argument [9]) and involve various sub-triples ofp, q, a, r. Thr analysis in
Section 5 is fairly involved, due to the fact that neither of the above two co-circularities ofσ has to be
Delaunay, or even shallow. If some sub-triple ofσ performs two Delaunay crossings, we immediately
bottom out via Lemma 4.5.

Unfortunately, there may still exist quadruplesσ whose four resulting Delaunay crossings (including
the two original(p, r)-crossings(pq, r, I) and (pa, r, J)) involve four distinct sub-triplesp, q, a, r, so
Lemma 4.5 cannot yet be applied. As our analysis shows, in this only remaining scenario, the edgepa
of σ undergoes a Delaunay crossing(pa, q,I) by q; see Figure 10 (right). We refer to this latter crossing
as aspecial crossingof pa by q, and pass the analysis of such crossings, each accompanied by a regular
quadruple that induces it, to Section 6.

Special quadruples. In Section 6 we analyze the number of special (counterclockwise) crossings by
first arranging them intospecial quadruples. Informally, each special quadrupleχ = (a, p, w, q) is
composed of two special(a, q)-crossings(pa, q,I) and(wa, q,J ) which are consecutive in the order
implied by Lemma 4.6. See Figure 11.
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q

q
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Figure 11: A (counterclockwise) special quadrupleχ = (a, p, w, q), is composed of two special crossings
(pa, q, I) and(wa, q,J ), which respectively correspond to some (clockwise) regular quadruples(p, q, a, r) and
(w, q, a, u).

The treatment of (counterlockwise) special quadruples is fairly symmetric to that of (clockwise)
regular quadruples, in the manner in which we extend the Delaunayhood or almost-Delaunayhood of
their edges, and enforce additional (almost-)Delaunay crossings on some of their sub-triples. However,
here we have a richer topological structure, because the twospecial crossings(pa, q,I) and(wa, q,J )
of each special quadrupleχ are accompanied by two respective regular quadruplesσ1 = (p, q, a, r) and
σ2 = (w, q, a, u) that induce them.

At the final stage of the analysis (and only there), we use the above correspondence with the regular
quadruples in order to charge the surviving special quadruples χ to especially convenient topological
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configurations, referred to asterminal quadruples.

Terminal quadruples. Each terminal quadruple̺ = (p, q, r, w) is formed by an edgepq, and by a
pair of pointsr andw that crosspq in oppositedirections;14 see Figure 12. In addition,̺ must satisfy
several “local” restrictions on the Delaunayhood of its various edges, and on the co-circularities and
collinearities amongp, q, r, w. The analysis of these configurations is delegated to Section 7, where we
directly bound their number in terms of simpler quantities,introduced in Section 2, and thereby complete
the proof of Theorem 2.1. (We again emphasize that the recurrences that bound the number of terminal
quadruples must have only “quadratic” terms.)

w
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r r
q
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Figure 12:A terminal quadruple̺ = (p, q, r, w). The pointsr andw crosspq in opposite directions. The points
of ̺ are co-circular three times. The extremal two co-circularities are red-blue with respect topq, and the middle
one is monochromatic with respect topq. The left figure depicts the first and second co-circularities, and the right
figure depicts the second and third co-circularities.

Informally, the analysis of terminal quadruples manages tobottom out (in contrast to the one of
regular quadruples) because each terminal quadruple comeswith three“well-behaved” co-circularities.
Specifically, the two extremal co-circularities are red-blue with respect to the crossed edgepq (and thus
also with respect torw), and the middle one is mononochromatic with respect topq; see Figure 12.
These patterns allow us to use these co-circularities to enforcethreeadditional Delaunay crossings among
p, q, r, w (in addition to the crossings ofpq by r andw). As a result, some sub-triple amongp, q, r, w is
involved in two Delaunay crossings, so Lemma 4.5 can always be invoked.

5 Regular Quadruples

5.1 Notation and topology

Definition. Four distinct pointsp, q, a, r ∈ P form aclockwise quadrupleσ = (p, q, a, r) in DT(P )
if there exist clockwise(p, r)-crossings(pq, r, I), (pa, r, J) that appear in this order in the sequence
of clockwise(p, r)-crossings. We say that the quadruple isconsecutiveif (pq, r, I) and (pa, q, J) are
consecutive. The definitions of acounterclockwise quadrupleand of a consecutive counterclockwise
quadruple are similar.

Each quadrupleσ is equipped with the intervalsIσ = I = [t0, t1] andJσ = J = [t2, t3] during
which the corresponding edgespq andpa are absent fromDT(P ).

Recall that, by Theorem 4.3, any set ofn moving points admits at mostO(n2) double Delaunay
crossings. Clearly, every clockwise (resp., counterclockwise) single(p, r)-crossing forms the first part
of exactly one clockwise (resp., counterclockwise) consecutive quadruple, unless it is the last such(p, r)-
crossing (with respect to the order given by Lemma 4.6). The overall number of these last crossings is
clearly bounded byO(n2). Therefore, usingΨ(n) to denote in maximum possible number of consecutive

14The lettersp, q, r,w designate the way in which a terminal quadruple is extractedfrom the 6-point configuration of the sur-
viving special quadrupleχ = (a, p, w, q) and its respective pair of regular quadruplesσ1 = (p, q, a, r) andσ2 = (w, q, a, u).
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clockwise quadruples in a set ofn moving points, we have the following obvious bound on the maximum
numberC(n) of all Delaunay crossings:

C(n) ≤ Ψ(n) +O(n2).

The topology of quadruples. According to Lemma 4.4, the points of a clockwise quadrupleσ are
involved in at least one co-circularity duringIσ, and in at least one co-circularity duringJσ . Specifically,
the former co-circularity is red-blue with respect topq (and monochromatic with respect topa), so it
occurs before the beginning ofJσ , during Iσ \ Jσ. Similarly, the latter co-circularity is red-blue with
respect topa (and monochromatic with respect topq), so occurs after the end ofIσ, duringJσ \ Iσ.

Notice that the pointsp, q, r, a are involved in exactly one co-circularity during each of the intervals
I, J . Indeed, recall that the pointa lies outside the discB[p, q, r] right beforeIσ begins and right afterIσ
ends. Moreover,B[p, q, r] switches instantly fromL+

pq toL−
pq only once duringIσ, soa hits the boundary

B[p, q, r] an odd number of times duringIσ. A symmetric behaviour takes place duringJσ, so the points
p, q, a, r are involved in exactly one co-circularity in each interval.

Lemma 5.1. Let σ = (p, q, a, r) be a clockwise quadruple with the associated Delaunay crossings
(pq, r, Iσ = [t0, t1]) and(pa, r, Jσ = [t2, t3]) (occuring in this order). Assume also that the pointr hits
pq again afterIσ and beforer hits pa (and entersL+

pa) during Jσ . Then (with the conventions assumed
above) the edgerq is hit during(t1, t3) by the pointa, which crossesLrq fromL+

rq toL−
rq.

Since the roles ofq anda in σ are interchangable (by reversing the direction of the time axis), we
also have a symmetric variant of the lemma, which applies ifr hits the edgepa beforeJσ but after it hits
pq duringIσ. Symmetric versions of the lemma and this subsequent also hold if σ is a counterclockwise
quadruple.

Proof. Let ζ1 denote the time inJσ \ Iσ when the pointsp, q, a, r are co-circular, and recall that this
co-circularity is red-blue with respect topa. Since any three points can be collinear at most twice, both
pointsr, a lie in L−

pq whenr hits pa duringJσ (this is becauser must lie inL−
pq at that time, soa also

has to lie there whenr hits pa). Hence,q lies then inL+
pa. Right before this event,q lies in the cap

B[p, q, r] ∩ L+
pa. Arguing as in the proof of Lemma 4.4, the pointq enters the above cap at timeζ1; see

Figure 13 (left). In addition, the pointa leaves the capB[p, q, r] ∩ L−
rq at the very same timeζ1.
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Figure 13:Illustrating the proof of Lemma 5.1. Left: Ifr hitspq again before crossingpa, thenq entersB[p, a, r]
during the second co-circularity ofp, q, a, r (anda leaves the capB[p, q, r] ∩ L−

rq). Center: The case wherea lies
in the capB[p, q, r]∩L+

pq right afterr returns toL−

pq. Right: The pointa can enter the capB[p, q, r]∩L−

rq (without
leavingB[p, q, r]) only throughrq.

In particular, the preceding discussion implies that the second collinearity ofp, q, r occurs at some
time t̃ beforeζ1. Sincer can crossLpq only twice, the motion ofB[p, q, r] remains continuous after time
t̃ (whenB[p, q, r] instantly flips fromL−

pq toL+
pq). We distinguish between the following two cases.

(i) Assume first thata lies inL+
pq at timet̃, so it lies in the capB[p, q, r] ∩ L+

pq right afterwards; see
Figure 13 (center). The lemma clearly holds if the pointa remains inB[p, q, r] during the interval(t̃, ζ1).
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Indeed, in this casea lies inL+
rq = L+

pq at timet̃, so it can enter the capB[p, q, r]∩L+
rq (without leaving

B[p, q, r]) only through the edgerq. See Figure 13 (right). Furthermore,a cannot leaveB[p, q, r] during
(t̃, ζ1), because it would have to re-enterB[p, q, r] beforeζ1 (recall that it leavesB[p, q, r] right afterζ1).
But then the points ofσ would have been involved in at leastfour distinct co-circularities, one occuring
during Iσ and before timẽt, the two co-circularities just considered, both occuring during (t̃, ζ1), and
one atζ1 itself. This contradiction establishes the lemma in case (i).

(ii) Now suppose thata lies in L−
pq at time t̃. In this case, as in the proof of Lemma 4.4,a lies in

B[p, q, r] right beforet̃. Sincea lies outsideB[p, q, r] right after the end ofIσ (and since the motion of
B[p, q, r] is continuous between the two collinearities ofp, q, r), the pointa has to cross the boundary of
B[p, q, r] afterIσ and beforẽt. In addition, the pointa must now enterB[p, q, r] during(t̃, ζ1), because
it lies outsideB[p, q, r] right after t̃. Once again, we obtain four distinct co-circularities ofp, q, a, r, a
contradiction that shows that case (ii) is impossible, and thus completes the proof.

Overview. In this section we analyze the maximum number of consecutiveclockwise quadruples. The
underlying intuition behind our (admittedly, faily involved) analysis is the following. We analyze quadru-
ples of four pointsp, q, a, r. The purpose of the analysis is to charge these quadruples tospecial restricted
configurations that are easier to analyze. Theorem 2.2 allows us to charge some quadruples to shallow
co-circularities or collinearities, which forms the basisfor various recurrences that the analysis will be
deriving. In addition, Theorem 4.3 and Lemma 4.5 yield a quadratic bound for the number of quadruples
that can be charged to a double Delaunay crossing of some triple of their points, or to two Delaunay
crossings of the same triple.

Our strategy is therefore to filter away quadruples that can be charged by either of these tools, untill all
quadruples are exhausted. To do so, we keep enforcing our quadruples to be involved with progressively
more Delaunay crossings. Each quadruple is associated withfour triples, and our goal is to force at least
one triple of points to perform two Delaunay crossings, in which case Theorem 4.3 and Lemma 4.5 will
yield the desired quadratic bounds.

Right from the start, a quadrupleσ = (p, q, a, r) already has, by definition, two Delaunay crossings:
of pq by r, and ofpa by r. To enforce additional crossings, we need a careful (and involved) analysis
of the “topological” changes of the four moving points ofσ, where each event is either a collinearity
of three of the points (in which case the order type ofp, q, a, r changes), or a co-circularity of the four
points ofσ (in which case the Delaunayhood of a pair of its edges “flips”).

The analysis of consecutive clockwise quadruples proceedsthrough six stages, numbered0, 1, . . . , 5.
At the i-th stage we consider a certain familyFi of clockwise quadruples, which are defined with respect
to an underlying setP of n points moving as above inR2. (Initially, F0 consists of all consecutive
quadruples in the original point setP . In subsequent stages,P is a smaller sample from the original
point set, but we continue, for simplicity, to denote it asP .) We assume that each quadrupleσ in Fi

satisfies certain topological conditions, which are formulated in terms of the four points ofσ, other
points ofP (and, possibly, also nearby quadruples inFi). Our goal is to bound the maximum possible
cardinalityΨi(n) of Fi. This is achieved by developing a system of recurrences, each expressingΨi in
terms ofΨi+1, except forΨ5, which is analyzed in Section 6. The overall solution of thissystem yields
the desired near-quadratic bound.

5.2 Stage 0: Charging events inApr

Let σ = (p, q, a, r) be a consecutive clockwise quadruple, whose two Delaunay crossings occur during
the intervalsI = Iσ = [t0, t1] andJ = Jσ = [t2, t3]. By Lemma 4.1, the edgepr is Delaunay during
each of the intervalsI, J , but it may leaveDT(P ) during the possible gap betweenI andJ .
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Charging events inApr. We fix a constantk > 12 and apply Theorem 2.2 inApr over the interval
(t1, t3) (which covers the aforementioned gap betweenI andJ , if it exists).

First, assume that at least one of the Conditions (i), (ii) ofTheorem 2.2 holds. In this case, we charge
σ either to ak-shallow collinearity, or toΩ(k2) k-shallow co-circularities, that occur inApr during
(t1, t3). We claim that anyk-shallow collinearity or co-circularity inApr is charged in this manner by
at mostO(1) quadruples. Indeed, consider the momentt∗ when the charged event occurs, and notice
that it involvesp andr (together with one or two additional points ofP ). After guessingp andr (in
O(1) ways),σ is the unique quadruple(p, q, a, r) for which the interval[t1, t3], delimited by the ending
times of the two corresponding Delaunay crossing intervals, containst∗ (by definition of consecutive
quadruples, the intervals[t1, t3] are pairwise openly disjoint, forp andr fixed).

Using the standard bounds on the number ofk-shallow collinearities and co-circularities (established
in Sections 2 and 3), in combination with the fact that each co-circularity pays onlyΘ(1/k2) units when
it is charged, we get that the number of such quadruplesσ for which the red-blue arrangement ofpr
satisfies one of the Conditions (i), (ii) of Theorem 2.2, isO

(

k2N(n/k) + kn2β(n)
)

.
Assume then that the red-blue arrangement ofpr (during(t1, t3)) satisfies Condition (iii) of Theorem

2.2. That is, one can restore the Delaunayhood ofpr during (t1, t3) by removing a setA of at most3k
points ofP (possibly includingq and/ora).15 We now consider a random subsetR of Θ(n/k) points
of P . By the standard probabilistic argument of Clarkson and Shor [9], the following two events occur
simultaneously with probability at leastΘ(1/k4): (1) p, q, a, r ∈ R, and (2) none of the points of
A \ {a, q} belong toR.

Condition (1) guarantees that the smaller setR induces Delaunay crossings(pq, r, IR = [t′0, t
′
1]) and

(pa, r, JR = [t′2, t
′
3]), such thatIR ⊆ I andJR ⊆ J . (The latter property follows because the intervals

of non-Delaunayhood ofpq can only shrink as we pass to the triangulationDT(R) of the reduced set
R.) In particular, both of these crossings are single Delaunay crossings. Clearly,(pq, r, IR) is followed
by (pa, r, JR) in the order implied by Lemma 4.6. In other words, the four pointsp, q, a, r define within
DT(R) a clockwise quadrupleσR. Recall thatpr is Delaunay during each of the intervalsI, J . Condition
(2) guarantees thatpr belongs toDT(R\{q, a}) throughout the interval[t1, t3] which covers the possible
gap betweenI andJ . In particular, this edge belongs toDT(R\{q, a}) throughout the extended interval
[IR, JR] = [t′0, t

′
3] which consists ofIR, JR, and the possible gap between them. See Figure 14 (left).

(As a matter of fact, the Delaunayhood ofpr in R\{q, a} extends (at least) to the bigger interval[t0, t3].)

[IR, JR]

t
t3t0 t2t1

t′1 t′2

JI

IR JR
t

t′0 t′3

b

p

a

q

r

Figure 14:Left: The edgepr of σR belongs toDT(R \ {q, a}) throughout[IR, JR], including the gap between
IR andJR. Right: Any violating pair ofpr in R, such as the pairq, b, must involve eitherq or a.

To recap, we can chargeσ to its more refined counterpartσR, formed by the pair of crossings
(pq, r, IR) and(pa, r, JR), which shows up in the smaller triangulationDT(R), with probability at least
Θ(1/k4).

Let FR denote the family of all such “hereditary” quadruplesσR = (p, q, a, r), each of them corre-
sponding to some consecutive clockwise quadrupleσ = (p, q, a, r) in P , as defined above. Notice that
the quadruples ofFR are not necessarily consecutive inR, as the setR may induce additional Delaunay

15Note that, if the gap betweenI andJ does not exist, thenA = ∅.
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crossings that do not show up inDT(P ). Below we introduce a weaker notion of consecutiveness, which
holds for the quadruples ofFR. In the definitions below,P stands for a generic set, which in general is
a proper subsample of the original input.

Definition. We say that a quadrupleσ = (p, q, a, r) is Delaunayif the edgepr belongs toDT(P \
{q, a}) throughout the interval[Iσ, Jσ ] = conv(Iσ ∪ Jσ).

Definition. LetF be a family of clockwise quadruples. We say thatF is nonoverlappingif for any two
quadruplesσ1 = (p, q1, a1, r) andσ2 = (p, q2, a2, r), that share their first and last points, the clockwise
(p, r)-crossings corresponding toσ1 andσ2 are distinct, except for the possibilitya1 = q2 or a2 = q1,
and occur in non-interleaving order. That is, in the order implied by Lemma 4.6, the two crossings
(pq1, r, I1) and(pa1, r, J1) of σ1 appear either both before or both after the two crossings(pq2, r, I2)
and(pa2, r, J2) of σ2 (again, with the possible coincidence of the second of one quadruple and the first
crossing crossing of the other).

We say that a Delaunay crossing(pq, r, I) is in F if it is either the first or the second crossing for at
least one quadrupleσ in F . (In total, it may show up in at most two quadruples.)

Notice that, as argued above, the “sampled” subfamilyFR includes only Delaunay quadruples. More-
over,FR is nonoverlapping, as the Delaunay crossings inFR (which are defined in terms ofR) inherit
the order, implied by Lemma 4.6, of their ancestors inP (that is, inF).

In the rest of this section, the underlying familyF is typically fixed at each stage of our analysis,
and is assumed to be nonoverlapping, and to consist only of Delaunay quadruples. In particular, by the
“nonoverlapping” property, any ordered triple(p, q, r) in P will define the first (resp., second) crossing
(pq, r, Iσ) (resp.,(pq, r, Jσ)) for at most one quadruple inF . In other words, the following condition
holds:

Proposition 5.2. LetF be a nonoverlapping family of clockwise quadruples. Then every quadrupleσ =
(p, q, a, r) in F is uniquely determined by each of the ordered triples(p, q, r) and(p, a, r) of its points,
which specify, respectively, the first crossing(pq, r, I) and the second crossing(pa, r, J) associated with
σ.

Let Ψ(n) be the maximum number of consecutive quadruples that can be defined by a set ofn
points moving as above inR2. LetΨ0(n) be the maximum cardinality of a nonoverlapping familyF of
Delaunay quadruples, which is defined with respect to a set ofn such moving points. Then the quantities
Ψ(n) andΨ0(n) are related by the recurrence

Ψ(n) = O
(

k4Ψ0(n/k) + k2N(n/k) + kn2β(n)
)

, (3)

wherek ≤ n is an arbitrary parameter.

5.3 Stage 1

To bound the above quantityΨ0(n), we fix the underlying point setP and the nonoverlapping familyF
of Delaunay quadruples. In addition, we fix a pair of constants k ≪ ℓ.

Let σ = (p, q, a, r) be a Delaunay quadruple inF whose two Delaunay crossings occur during the
intervalsI = Iσ = [t0, t1] andJ = Jσ = [t2, t3]. Recall that (by Lemma 4.4) the points ofσ are
involved in two co-circularities, one duringI \ J and one duringJ \ I. (The former co-circularity is
red-blue with respect topq, and the latter one is red-blue with respect topa.) Denote byζ0 ∈ I \ J and
ζ1 ∈ J \ I the times when these co-circularities occur. Clearly, at least one of these co-circularities of
p, q, a, r has to be extremal. Without loss of generality, suppose thatthe co-circularity at timeζ0 is the
first co-circularity of the points ofσ.
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Our analysis (at this stage) proceeds by distinguishing between several possible scenarios, and treat-
ing each of them separately. In all but the last case, we will obtain a bound in terms of quantities that
were already introduced. In the last case (case (e)), the bound will also depend on the cardinality of a
more specialized subfamily of quadruples, which is defined over an appropriate subsample ofP . Such
families are called1-refined, and their analysis is passed on to the subsequent stages.

Case (a).The edgepr is hit during[t0, t3] by at least one of the pointsq, a. In fact, Lemma 4.1 implies
that this additional collinearity must occur during the gap(t1, t2) (afterI and beforeJ), soI andJ are
disjoint in this case. See Figure 15 (left).

Assume, for instance, thatpr is hit by q. Sinceσ is a Delaunay quadruple, the edgepr belongs to
DT(P ) at each of the timest0, t3, and it belongs to the pruned triangulationDT(P \ {a, q}) throughout
[t0, t3]. It thus follows that the edgepr undergoes a Delaunay crossing byq within the triangulation
DT(P \ {a}). That is, the triplep, q, r defines two Delaunay crossings (of distinct order types) within
this smaller triangulation. A routine combination of Lemma4.5 with the probabilistic argument of
Clarkson and Shor [9] (in which we sample, say, half of the points) yields an upper bound ofO(n2) on
the overall number of such triplesp, q, r in P (independently of the fourth pointa). Since each Delaunay
quadruple(p, q, a, r) in F is uniquely determined by the respective ordered triple(p, q, r) (as its first
crossing), the same upper bound also holds for the overall number of such Delaunay quadruples inF .

A similar counting argument applies ifpr is hit by a during [t0, t3]. Namely, we argue that the edge
pr undergoes a Delaunay crossing bya within the triangulationDT(P \{q}), so the triplep, a, r defines
two Delaunay crossings within that reduced triangulation,and the quadratic bound follows from Lemma
4.5, as above. Hence we may assume, from now on, thatpr is not hit byq or a during [t0, t3].

q

p

r

u

p

q

r
a u

p

q

r
a

Figure 15:Left: Case (a). The edgepr is hit by q during(t1, t2). Center: Case (b). At leastk counterclockwise
(q, r)-crossins(uq, r, Iu) end during(t1, t3]. Right: Case (b) – the symmetric scenario. At leastk counterclock-
wise(a, r)-crossings(ua, r, Iu) begin during[t0, t2).

Case (b). At least k counterclockwise(q, r)-crossings(uq, r, Iu) end during(t1, t3] (see Figure 15
(center)), or at leastk counterclockwise(a, r)-crossings(ua, r, Iu) start during[t0, t2) (see Figure 15
(right)). To dispose of such quadruplesσ, we introduce an auxiliary counting scheme that we will use at
several stages of our analysis. We first need a few definitions.

Chargeability. We say that an edgepq is almost Delaunayduring an intervalI = [t0, t1] if there is a
setA of at mostc0 points such thatpq belong toDT(P \ A) throughoutI. Herec0 is some absolute
constant16 smaller than8.

We say that a Delaunay crossing(pq, r, I) = [t0, t1] is (p, r, k)-chargeableif there exists an interval
I = [α0, α1] containingI such that the following two conditions hold: (1) the edgepr is Delaunay
at timesα0 andα1, and almost Delaunay during the the rest ofI, and (2) at leastk counterclockwise

16This condition is similar to Condition (iii) in Theorem 2.2,except that herec0 is a smallabsoluteconstant, whereas the
parameterk in the theorem can be, and is indeed set to, a suitable large value that grows asε ↓ 0.
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(q, r)-crossings(uq, r, Iu) occur withinI (i.e., we haveIu ⊆ I for each of these pointsu). See Figure
16.

t
(uq, r, Iu)

(pq, r, I)

α0 I α1

t

Figure 16:The crossing(pq, r, I) is (p, r, k)-chargeable with reference intervalI = [α0, α1]. At leastk coun-
terclockwise(q, r)-crossings(uq, r, Iu) occur withinI. By Lemma 4.6, each of their respective intervalsIu is
contained in exactly one of the intervals[t0, α1], [α0, t1].

Similarly, we say that a Delaunay crossing(pq, r, I) is (q, r, k)-chargeableif the edgeqr is almost
Delaunay throughout the extended intervalI (and Delaunay at the endpoints ofI), and at leastk clock-
wise(p, r)-crossings(pu, r, Iu) occur withinI.

Several remarks are in order. If(pq, r, I) is a(p, r, k)-chargeable crossing then it need not be theonly
clockwise(p, r)-crossing to occur within the corresponding intervalI = [α0, α1]. Moreover, the other
such(p, r)-crossings(pz, r, Iz), that occur (if at all) withinI, are not necessarily(p, r, k)-chargeable
(because this notion also depends on the other endpointz of the edgepz being crossed byr). Note also
that, according to (a counterclockwise variant of) Lemma 4.6, each of the clockwise(q, r)-crossings
(uq, r, Iu) that contribute to the(p, r, k)-chargeability of(pq, r, I) must satisfy eitherIu ⊆ [α0, t1] or
Iu ⊆ [t0, α1], because the intervalsI andIu are either disjoint or partially overlapping (but not nested).

Informally, the(p, r, k)-chargeability allows us to distribute the “weight” of(pq, r, I) over theΩ(k)
arrangementsAru, which correspond to the above counterclockwise(q, r)-crossings(uq, r, Iu) (each of
these latter crossings is also a clockwise(u, r)-crossing, and is denoted this way). In Section 8 we use
this idea to establish the following theorem:

Theorem 5.3. Let k > 12 be a sufficiently large constant. Then any setP of n points, moving as
above inR2, induces at mostO

(

k2N(n/k) + kn2β(n)
)

Delaunay crossings(pq, r, I) that are either
(p, r, k)-chargeable or(q, r, k)-chargeable.

We next return to the setup of the first subcase of Case (b). Sinceσ is a Delaunay quadruple, the edge
pr is almost Delaunay during the interval[t0, t3] (it suffices to removeq to a to ensure Delaunayhood).
According to Lemma 4.6, each of the(q, r)-crossings(uq, r, Iu) occurs entirely withinI ∪ [t1, t3] =
[t0, t3], that is,Iu ⊆ [t0, t3]. Indeed, by definition, each suchIu ends beforet3 and aftert1, the end ofI,
so it has to start aftert0, whereI starts. Thus,(pq, r, I) is (p, r, k)-chargeable (withI = [t0, t3]). Hence,
by Theorem 5.3, the overall number of the corresponding quadruplesσ is at most

O(k2N(n/k) + kn2β(n)).

A symmetric argument applies if at leastk counterclockwise(a, r)-crossings(ua, r, Iu) begin in
[t0, t2]. Indeed, arguing as in the preceding paragraph, each of these Delaunay crossings has to occur
entirely within [t0, t3] = [t0, t2] ∪ J , so(pa, r, J) is (p, r, k)-chargeable.

Hence, we may assume, from now on, that at mostk counterclockwise(q, r)-crossings end in(t1, t3],
and that at mostk counterclockwise(a, r)-crossings begin in[t0, t2).

Case (c).Either rq is never Delaunay during[t3,∞), or ra is never Delaunay during(−∞, t0]. In the
former case, by Lemma 4.1, no counterclockwise(q, r)-crossings can end in[t3,∞), becauserq has to
be Delaunay throughout the interval of such a crossing. Since case (b) is ruled out,(pq, r, I) is among the

25



lastk + 1 counterclockwise(q, r)-crossings (with respect to the order implied by Lemma 4.6).Clearly,
this can happen for at mostO(kn2) crossings(pq, r, I) (and their respective quadruplesσ). A fully
symmetric argument applies ifra never shows up inDT(P ) during(−∞, t0], in which case(pa, r, J) is
among the firstk + 1 counterclockwise(a, r)-crossings.

Preparing for cases (d) and (e). In the remainder of our analysis we may therefore assume thatneither
of the situations considered in cases (a)–(c) arises. Lettrq denote the first time in[t3,∞) whenrq belongs
toDT(P ). Namely, we havetrq = t3 if rq is Delaunay also at timet3, and otherwisetrq is the first time
after t3 whenrq entersDT(P ) (recall thatrq is Delaunay at timet1); refer to the schematic Figure 17
(left). Similarly, we lettra denote the last time in(−∞, t0] whenra belongs toDT(P ); see Figure 17
(right).

t

t
t3t0 trqt1 t∗

(uq, r, Iu)
rq is not Delaunay

I

t

t
t∗ t3t2

ra is not Delaunay

t0 J

(ua, r, Iu)

tra

Figure 17:Charging events inArq andAra. Left: trq is the first time in[t3,∞) whenrq belongs toDT(P ).
Since case (b) is ruled out,(pq, r, I) is among the lastk + 1 counterclockwise(q, r)-crossings to end before any
event in(t1, trq). Right: tra is the last time in(−∞, t2] whenra belongs toDT(P ). After outruling case (b),
(pa, r, J) is among the firstk + 1 counterclockwise(u, r)-crossings to begin after any event in(tra, t2).

Before proceeding to the cases (d) and (e), we first apply Theorem 2.2 inArq over the interval
(t1, trq), and then apply it inAra over(tra, t2), both times with the second constant parameterℓ.

Consider the first application of Theorem 2.2. If at least oneof its Conditions (i), (ii) holds, we
charge the quadrupleσ, via its first crossing17 (pq, r, I), either toΩ(ℓ2) ℓ-shallow co-circularities, or to
anℓ-shallow collinearity inArq. We claim that each of theseℓ-shallow co-circularities or collinearities
that occurs at some momentt∗ ∈ (t1, trq), is charged at mostO(k) times in this manner. Indeed, such an
event must involve the pointsq andr of σ (together with one or two additional points). To guess the point
p, we use the fact that at mostk counterclockwise(q, r)-crossings end afterI and beforet3. Moreover,
assumingtrq > t3 and recalling Lemma 4.1, no(q, r)-crossings can take place (let alone end) during
(t3, trq] (when the edgerq is not Delaunay). Thus,pq is among thek+1 edges whose counterclockwise
(q, r)-crossings (byr) are the latest to end beforet∗. Therefore, the overall number of quadruplesσ in
F for which such a charging applies is at most

O
(

kℓ2N(n/ℓ) + kℓn2β(n)
)

.

Finally, if Condition (iii) of Theorem 2.2 holds, then the Delaunayhood ofrq can be restored,
throughout the intervalI ∪ [t1, trq] = [t0, trq] (recall thatrq is Delaunay duringI), by removing a
setA of at most3ℓ points ofP (possibly includingp and/ora).

The second application of Theorem 2.2 inAra over (tra, t2) is fully symmetric. If at least one of
Conditions (i), (ii) is satisfied, we dispose ofσ by charging it, via its second crossing(pa, r, J), either
to Ω(ℓ2) ℓ-shallow co-circularities, or to anℓ-shallow collinearity that occur inAra during that interval.
Arguing as above,(pa, r, J) is among the firstk+1 counterclockwise(a, r)-crossings to begin after each
charged event, which also involvesa andr. Hence, every collinearity or co-circularity is charged atmost
O(k) times, so, as above, this charging takes place for at mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

quadruples

17Recall that, according to Proposition 5.2,σ is uniquely determined by the choice of(p, q, r), which specify its first crossing.
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σ. For each of the remaining quadruples we have a setB of at most3ℓ points (possibly includingp
and/orq) whose removal restores the Delaunayhood ofra throughout[tra, t2] ∪ J = [tra, t3].

To recap, in each of remaining cases (d) and (e) we may assume the existence of the two setsA and
B that satisfy the above properties. See Figure 18 (left) for asummary of what we assume now.

t2

ζ1 t3t1ζ0

trqrq,A

t

t

t
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tra ra,B

pr, rq pr, ra

r ∈ L−
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t

t

t3t1

trq

t0

tra r crossespa

t2

r crossespq
r ∈ L+

pq

Figure 18:Left: The situation when entering case (d). If we removeA ∪ B but retainp, q, a, r, then: (i) During
[t0, t1], the edgespr andrq are Delaunay. (ii) During[t2, t3], the edgespr andra are Delaunay. (iii) During
[t0, t3], the edgepr is almost Delaunay. (iv) During[t0, trq], the edgerq is almost Delaunay (and will be Delaunay
if we removep anda). (v) During [tra, t3], the edgera is almost Delaunay (and will be Delaunay if we remove
p andq). Right: The situation when entering case (e). The pointr can leaveL+

pq during(t1, trq] only through the
edgepq. Similarly,r can enterL−

pa during[tra, t2) only through the edgepa (and otherwise remains inL−

pa).

Case (d).The pointp hits the edgerq during(t1, trq), or it hits the edgera during the symmetric interval
(tra, t2). Without loss of generality, we focus on the former scenario, and handle the latter one in a fully
symmetric manner.

As is easy to check, the edgerq undergoes a Delaunay crossing byp in DT((P \A)∪ {p}), with an
appropriate interval that contains the time of the actual crossing. Therefore, Lemma 4.5, in combination
with the Clarkson-Shor argument [9], provides an upper bound of O(ℓn2) on the number of such triples
p, q, r (and of the corresponding quadruplesσ, each of which is uniquely determined by the choice of
(pq, r, I) as its first crossing).

r

a

q

p p

a

q

r

Figure 19: The co-circularities at timesζ0 ∈ I \ J (left) andζ1 ∈ J \ I (right). In the depicted scenario, no
additional collinearity ofp, q, r or p, a, r occurs between the times whenr entersL+

pq andL+
pa.

Case (e).None of the preceding cases holds; this is the most involved case in Stage 1. See Figure 18
(left and right) for a schematic summary of the following properties that we assume now. Recall that
the points ofσ are involved in co-circularities at timesζ0 ∈ I \ J and ζ1 ∈ J \ I (see Figure 19),
and that at least one of these co-circularities has to be extremal. Without loss of generality, suppose, as
already assumed earlier, that the co-circularity at timeζ0 is thefirst co-circularity of the points ofσ. In
addition, we continue to assume that there exists a setA of cardinality at most3ℓ, such thatrq belongs
to DT(P \ A) throughout the interval[t0, trq). Similarly, we assume the existence of a setB of at most
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3ℓ points such thatra belongs toDT(P \ B) throughout the interval(tra, t3]. Finally, since neither of
the preceding cases (a), (d) holds,r can re-enter the halfplaneL−

pq during(t1, trq] (after leaving it during
I = [t0, t1]) only by crossingpq again; otherwise it remains inL+

pq throughout(t1, trq]. Similarly, r can
enterL−

pa during [tra, t2) (before leaving it duringJ = [t2, t3]) only throughpa; otherwise it remains in
L−
pa throughout[tra, t2).

r
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a

aa

q

a
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r
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Figure 20: Case (e): proving thatra is hit by q. Left: a lies in L−

pq whenr entersL+
pq, so r has to enterL−

pa

(throughpa) afterwards and beforeJ . The corresponding trajectory ofa during(ζ0, t2) is depicted. Right:a lies
in L+

pq whenr entersL+
pq, so the Delaunayhood ofra is violated, right beforeζ0, by p andq.

We next argue18 that the edgera must be hit during[tra, t2) by the pointq. We distinguish between
two possible scenarios (see Figure 20).

(i) If a lies inL−
pq = L−

pr whenr entersL+
pq (during I), thenr has to enterL−

pa beforeJ . As noted
above,r can enterL−

pa only throughpa, as depicted in Figure 20 (left). Therefore, according to a suitable
variant of Lemma 5.1, in which the time is reversed and the pointsa andq are interchanged, the pointq
enters the halfplaneL−

ra during [t0, t2], throughra, as claimed.

(ii) Now suppose thata lies in L+
pq whenr enters this halfplane, so the first co-circularity (at time

ζ0) occurs whiler still lies in L−
pq. Hence, the Delaunayhood ofra is violated, right before timeζ0, by

the pointsq ∈ L−
ra andp ∈ L+

ra; see Figure 20 (right). Sincera is Delaunay at timetra and throughout
J = [t2, t3], and since the pointsp, q, a, r are never co-circular beforeζ0, Lemma 3.1 implies that at least
one of the pointsp, q has to hitra during the interval[tra, ζ0), which is clearly contained in[tra, t2).
(Specifically, we apply Lemma 3.1 so that the edgepq in the lemma isra, the pointsa, b in the lemma
areq, p, respectively, and the direction of the time axis is reversed.) Moreover, since case (d) does not
occur,p cannot hitra during the above interval. Hence, the other point,q, has to crossra during[tra, ζ0),
from L+

ra to L−
ra.

If q hits ra twice during[tra, t2), then the tripleq, a, r defines either a double Delaunay crossing,
or two single crossings, which occur in the smaller triangulation DT((P \ B) ∪ {q}). Therefore, we
can use Theorem 4.3, or Lemma 4.5, in combination with the Clarkson-Shor technique, to show that the
overall number of such triples inP is at mostO(ℓn2). Moreover, knowingq, a, r allows us to guessp in
at mostO(k) possible ways, as(pa, r, J) is one of the firstk + 1 counterclockwise(a, r)-crossings to
begin after the above collinearity (or collinearities) ofq, a, r (this follows since we assume that case (b)
does not arise). Hence, this scenario happens for at mostO(kℓn2) quadruplesσ ∈ F .

Assume then thatra is hit by q exactly once during(tra, t2). In this only remaining case, the edge
ra or, more precisely, its reversely oriented copyar undergoes (within[tra, t2)) exactly one (single)
Delaunay crossing byq in the smaller triangulationDT((P \B)∪{q}). To handle these latter quadruples
σ, we apply a similar analysis to the edgerq (keeping in mind that the co-circularity at timeζ1 is not
necessarily extremal).

18Here the symmetry betweenq anda breaks down, because the co-circularity atζ0 is extremal, but the one atζ1 is not.
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Figure 21:Case (e): The proposed trajectory ofq if r re-entersL−

pq before crossingpa. According to Lemma 5.1,
the pointa must hit the edgerq during(t1, t3) ⊆ (t1, trq].

If rq is hit by a during (t1, trq], then the pointsq, a, r define two single19 Delaunay crossings in the
triangulationDT([P \ (A ∪ B)] ∪ {q, a}). A routine combination of Lemma 4.5 with the probabilistic
arugment of Clarkson and Shor shows that the overall number of such triplesq, a, r is at mostO(ℓn2).
Moreover,(pq, r, I) is among thek + 1 last counterclockwise(q, r)-crossings to end before the second
collinearity of q, a, r. Thus, one can guessσ, based onq, a, r, in at mostO(k) possible ways. In
conclusion, the above scenario happens for at mostO(kℓn2) Delaunay quadruples ofF .

To recap, the previous chargings account for

O
(

kℓ2N(n/ℓ) + k2N(n/k) + kℓn2β(n)
)

Delaunay quadruplesσ in F . Hence, recalling that case (d) has been ruled out, we may assume, from now
on, that none of the pointsp, a hits rq during the interval[t1, trq] (which contains[t1, t3]). In particular,
this implies thatq lies inL−

pa = L−
pr at the moment whenr entersL+

pa duringJ (i.e.,r lies then inL+
pq).

Indeed, otherwiser would have to first leaveL+
pq afterI, necessarily through the edgepq (because cases

(a) and (d) do not occur), which is now impossible according to Lemma 5.1. See Figure 21.

p

a

r

q

Figure 22:Case (e). The last two co-circularities ofp, q, a, r that occur at timesζ1 ∈ J \ I andζ2 ∈ (ζ1, trq] \ J .
The edgespa andrq intersect throughout(ζ1, ζ2); that is, the order type ofp, q, a, r does not change there.

Sinceq lies inL−
pa whenr crossespa (duringJ) fromL−

pa toL+
pa, the Delaunayhood ofrq is violated

right after timeζ1 by the pointsp ∈ L−
rq anda ∈ L+

rq, as depicted in Figure 19 (right). (In other words,
ζ1 must occurafter r entersL+

pa, whenq leaves the capB[p, a, r] ∩ L−
pa.) Since neither ofp, a can

crossrq during the interval(ζ1, trq] (which is clearly contained in(t1, trq]), Lemma 3.1 implies that the
pointsp, q, a, r are involved during this interval in a third co-circularity, at some timeζ2 > ζ1, and the
Delaunayhood ofrq is violated byp anda throughout the interval(ζ1, ζ2); see Figure 22. As a matter of
fact, the discussion preceding Lemma 5.1 also implies thatζ2 occurs afterJ .

Recall that each of the remaining quadruplesσ is accompanied by a pair of subsetsA,B ⊂ P ,
whose properties are detailed above. To facilitate the subsequent stages of our analysis, we augment

19Since any three points can be collinear at most twice,a can hitrq at most once.
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the above “obstruction sets”A andB as follows. We add toA every pointu for which there exists a
counterclockwise(q, r)-crossing(uq, r, Iu) that ends in(t1, trq). (In fact, Lemma 4.1 implies that none
of these(q, r)-crossings end aftert3.) This is done to ensure that in the sampled configurations that
we reach no such crossings take place. Similarly, we add toB every pointu for which there exists
a counterclockwise(a, r)-crossing(ua, r, Iu) that begins in(tra, t2). (Again, Lemma 4.1 implies that
none of these(a, r)-crossings begin beforet0.) Since we assume that case (b) does not hold, the above
augmentation increases the cardinality of each of the setsA,B by at mostk ≤ ℓ.

Remark. We may assume thata is not among the (at mostk) points lately added toA, and thatq is not
among the (at mostk) points lately added toB. Indeed, if the edgeqa (or its reversely oriented copy
aq) undergoes a Delaunay crossing byr then the tripleq, a, r defines two Delaunay crossings within
DT((P \A) ∪ {a}). By Lemma 4.5, the overall number of such triples is at mostO(ℓn2). Furthermore,
each of these triples is shared by at mostO(k) quadruples that fall into case (e), so the above scenario
occurs for at mostO(kℓn2) quadruples ofF .

Probabilistic refinement. To proceed, we consider a subsetR of ⌈n/ℓ⌉ points chosen at random from
P . We fix a Delaunay quadrupleσ as above (i.e.,σ was not disposed of by the chargings of the previous
cases, or by the previous chargings of case (e)), and notice that the following two events occur simulta-
neously, with probability at leastΩ(1/ℓ4): (1)R includes the four points ofσ, and (2) none of the points
of (A ∪B) \ {p, q, a} (for the augmented setsA,B) belong toR.

Consider the triangulationDT(R) which is induced by a “successful” sampleR (satisfying (1) and
(2)). Notice that the four points ofσ still define a Delaunay quadruple, now with respect toR. We
continue to denote this new quadruple byσ. (Note, however, that the suitably re-defined intervalsI = Iσ
andJ = Jσ may shrink.)

LetFR denote the family of all such “hereditary” Delaunay quadruplesσ in R (such that the sample
R is successful for their ancestors inF). Clearly,FR is nonoverlapping.

Fix a quadrupleσ = (p, q, a, r) in FR, whose two Delaunay crossings occur (withinDT(R)) during
the intervalsI = [t0, t1], andJ = [t2, t3], and whose first two co-circularities occur at timesζ0 ∈ I \ J
andζ1 ∈ J \ I. As before, lettra denote the last time in(−∞, t0] whenra belongs toDT(R), and let
trq denote the first time in[t3,∞) whenrq belongs the same triangulationDT(R). (Notice that, as we
replaceP byR, tra either remains unchanged or moves ahead, towards (the new)t0. Symmetrically,trq
stays the same or moves back, towards (the new)t3. Hence, the extended intervals[tra, t3] and[t0, trq]
can only shrink as we pass fromDT(P ) to DT(R).) The preceding analysis implies that the following
conditions hold forσ:

(R1) No counterclockwise(a, r)-crossings inFR begin during[tra, t2). Moreover, the edgera belongs
to DT(R \ {p, q}) throughout the interval[tra, t3]. See Figure 23 (left).

(R2) No counterclockwise(q, r)-crossings inFR end during(t1, trq]. Moreover, the edgerq belongs
to DT(R \ {p, a}) throughout the interval[t0, trq].

(R3) The setR \ {p} induces a Delaunay crossing(ar, q,H), whose respective intervalHσ = H is
contained in[tra, t2]. In addition, we encounter a third co-circularity ofp, q, a, r at some time
ζ2 ∈ [t3, trq], so that the Delaunayhood ofrq is violated byp ∈ L−

rq anda ∈ L+
rq throughout

(ζ1, ζ2). See Figures 22 and 23 (right). Finally, none of the pointsa, p crossesrq during(ζ2, trq].

We say that a nonoverlapping familyF of Delaunay quadruples in a setP is1-refinedif its quadruples
satisfy the following modified three conditions, restated with respect toF and its underlying setP .

(Q1) No counterclockwise(a, r)-crossings inF begin during[tra, t2). Moreover, the edgera belongs
to DT(P \ {p, q}) throughout the interval[tra, t3].
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Figure 23:Left: The edgear is crossed byq during[tra, t2). The interval(t3, trq] contains the third co-circularity
ζ2. The edgesar andrq are almost Delaunay during, respectively,[tra, t2) ∪ J = [tra, t3] andI ∪ (t1, trq] =
[t0, trq]. Right: A schematic description of the trajectory ofr.

(Q2) No counterclockwise(q, r)-crossings inF end during(t1, trq]. Moreover, the edgerq belongs to
DT(P \ {p, a}) throughout the interval[t0, trq].

(Q3) The setP \ {p} induces a Delaunay crossing(ar, q,H), whose respective intervalH is contained
in [tra, t2]. In addition, we encounter a third co-circularity ofp, q, a, r at some timeζ2 ∈ [t3, trq],
so that the Delaunayhood ofrq is violated byp ∈ L−

rq anda ∈ L+
rq throughout(ζ1, ζ2). Finally,

none of the points pointa, p crossesrq during(ζ2, trq].

Let Ψ1(m) denote the maximum possible cardinality of a 1-refined family of Delaunay quadruples,
that is defined over a set ofm points moving inR2 as above. The preceding discussion implies that
the maximum cardinalityΨ0(n) of any nonoverlapping familyF of Delaunay quadruples in a set ofn
moving points satisfies the recurrence:

Ψ0(n) = O
(

ℓ4Ψ1(n/ℓ) + kℓ2N(n/ℓ) + k2N(n/k) + kℓn2β(n)
)

,

for any pair of parametersk ≪ ℓ < n.

Proposition 5.4. Let F be a 1-refined family of Delaunay quadruples. Then each quadruple σ =
(p, q, a, r) in F is uniquely determined by the ordered tripleq, a, r. (That is, there is no other quadruple
in F that shares its last three points withσ.)

Proof. By Conditions (Q1) and (Q3),(pa, r, Jσ) is the first counterclockwise(a, r)-crossing (inF) to
begin afterq hitsar during the corresponding intervalH = Hσ.

The subsequent chargings — Overview. To bound the above quantityΨ1(n), we fix an underlying
setP of n moving points and a1-refined familyF of nonoverlapping Delaunay quadruples. In addition,
we fix a quadrupleσ = (p, q, a, r) in F , whose Delaunay crossings occur during the intervalsI = Iσ =
[t0, t1] andJ = Jσ = [t2, t3] (in this order). Recall that the pointsp, q, a, r are involved in three co-
circularities, at timesζ0 ∈ I \ J , ζ1 ∈ J \ I, andζ2 > t3, and that the Delaunayhood of edgerq is
violated during(ζ1, ζ2) by the pointsp anda. Furthermore, since the co-circularities at timesζ1 andζ2
have the same order type, the Delaunayhood ofpa is violated right after timeζ2 by the pointsq andr.

Informally, the remainder of this section (except for Stage5) is devoted to showing that the co-
circularity at timeζ2 yields a Delaunay crossing ofpa by q. Similarly to the crossing ofar by q in
Condition (Q3), this crossing occurs in an appropriately reduced triangulation, and only ifσ is not pre-
viously disposed of by one of the standard chargings (using Theorems 2.2 and 5.3).
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The above implication is relatively easy to establish ifpa undergoes only few Delaunay crossings
after(pa, r, J) and before timeζ2, when it is violated byq andr. Indeed, following the general strategy
demonstrated in Section 3 (and at Stage 1), we consider threepossible scenarios.

If pa never re-entersDT(P ) after timeζ2, then(pa, r, J) (and, thereby,σ) can be charged to the
edgepa, because it is then among the few last Delaunay crossings of this edge. Otherwise, we consider
the first timetpa afterζ2 whenpa entersDT(P ) and apply Theorem 2.2 inApa over the interval[t3, tpa].
Notice that, according to Lemma 3.1,pa is crossed during this interval (or, more precisely, duringits
proper subinterval(ζ2, tra]) by at least one ofr andq. (This follows because no further co-circularities
of p, q, a, r can occur afterζ2.)

If at least one of the Conditions (i), (ii) of Theorem 2.2 holds, we dispose ofσ by charging it within
Apa (and, again, via its second crossing(pa, r, J)) either to sufficiently many shallow co-circularities,
or to a shallow collinearity. As in the previous similar cases, the charging of each event inApa is almost
unique, as(pa, r, J) is among the few last Delaunay crossings ofpa to end before it.

Finally, if Condition (iii) of Theorem 2.2 holds, then we endup with a “small” subsetA of P (in-
cluding at least one ofr, q) whose removal restores the Delaunayhood ofpa throughout[t3, tpa]. Hence,
pa undergoes, within a suitably sampled triangulationDT(R), a Delaunay crossing by one of the points
q, r. If pa is crossed byr during [t3, tpa], then we can again dispose of such quadruplesσ using Lemma
4.5. Otherwise, we say that the edgepa undergoes withinDT(R) a special crossingby the pointq. By
our assumption, each special crossing is charged by only a small number of triplesp, a, r (and quadruples
σ). In Section 6 we derive a recurrence for the maximum possible number of these special crossings,
which, combined with the recurrences derived in this section, and in the preceding ones, yield the asserted
near-quadratic bound on the number of Delaunay co-circularities.

Unfortunately, the above argument does not work if the edgepa of σ undergoes “too many” Delau-
nay crossings during(t3, ζ2). In this case, we cannot easily trace the events that occur inApa, back to
(pa, r, J) (and toσ); that is, there are too many ways to guessr. At Stage 4 we use Theorems 2.2 and
5.3 to dispose of such quadruples. To facilitate the fairly involved analysis of that stage, we first extend
the almost-Delaunayhood ofra andrq from, respectively,[tra, t3] and [t0, trq], to their superinterval
[tra, trq], which coversζ0, ζ1, ζ2 together with the aforementioned crossing ofar by q. These extensions
are performed at the auxiliary Stages 2 and 3, and they also involve the sampling argument of Clark-
son and Shor. (Hence, the instantstra and trq are each time redefined with respect to the underlying,
progressively reduced subset ofP .)

5.4 Stage 2: Charging events inApr (again)

Before extending the almost-Delaunayhood ofra andrq, as promised in the previous paragraph, we first
tackle the edgepr, and extend its almost-Delaunayhood. Handlingra andrq will be done in the next
Stage 3.

Let σ = (p, q, a, r) be a quadruple in the1-refined familyF . Recall that the edgepr is almost
Delaunay during[I, J ] = [t0, t3] (and that it is in fact Delaunay ifq anda are removed). We extend the
almost-Delaunayhood ofpr to a (potentially) larger interval[ζ−pr, ζ

+
pr], which covers[tra, trq]. To do so,

we fix a (new) pair of constantsk ≪ ℓ.

Stage 2a.First, we consider the interval[tra, t3], where, by assumption, the edgera is almost Delaunay.
Refer to Figure 24 (left).

If at leastk clockwise (p, r)-crossings(pu, r, Ju) begin in (tra, t2), then the Delaunay crossing
(pa, r, J) is (a, r, k)-chargeable withI = [tra, t3]. Indeed, according to Lemma 4.6, each of the cor-
responding intervalsJu has to be contained in[tra, t3] = [tra, t2] ∪ J (sinceJu starts beforet2, the
starting time of(pa, q, J), it has to end beforet3). Hence, and according to Theorem 5.3, the overall
number of such crossings(pa, r, J) is at mostO

(

k2N(n/k) + kn2β(n)
)

. Clearly, this also bounds the
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overall number of such quadruplesσ. Therefore, we can assume, from now on, that at mostk clockwise
(p, r)-crossings(pu, r, Iu) begin during(tra, t2).

t

t

t2 t3t1t0 JItra

ζ−pr (pu, r, Ju) (pu, r, Iu)

I t2
t

trq

ζ+pr

t

t3t1t0

t0

J

Figure 24:Left: Extending the almost-Delaunayhood ofpr from [t0, t3] to (ζ−pr, t0) (left) and(t3, ζ+pr] (right).

If the edgepr is never Delaunay during(−∞, tra], then(pq, r, I) and(pa, r, J) are among the first
k+1 clockwise(p, r)-crossings, so there are onlyO(kn2) such crossings (and quadruplesσ). Otherwise,
let ζ−pr denote the last time in(−∞, tra] whenpr belongs toDT(P ).

We now apply Theorem 2.2 inApr over the interval(ζ−pr, t2), with the thresholdℓ. Note thatpr is
Delaunay at timesζ−pr andt2 (in addition to its being Delaunay throughoutI ⊆ [ζ−pr, t2)). If at least one of
the Conditions (i), (ii) of that theorem is satisfied, we chargeσ (via (pa, r, J)) either toΩ(ℓ2) ℓ-shallow
co-circularities, or to anℓ-shallow collinearity. As in the previous such chargings, the crucial observation
is that(pa, r, J) is among the firstk + 1 clockwise(p, r)-crossings to begin after each charged event in
Apr. Hence, anyℓ-shallow co-circularity or collinearity is charged, as above, by at mostO(k) quadruples
σ. Clearly, the above charging succeeds for at mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

quadruplesσ in F .
Finally, if Condition (iii) of Theorem 2.2 holds, we end up with a setA of at most3ℓ points so that

pr belongs toDT(P \ A) throughout the interval[ζ−pr, t3]. (Note thatA can include one, or both of the
pointsq, a.) For each(p, r)-crossing(pu, r, Ju) that begins in(tra, t0) we add the respective pointu to
the “obstruction set”A, whose cardinality then increases by at mostk ≪ ℓ. (Informally, as earlier, this
allows us to assume that, in the refined configuration, no such(p, r)-crossings occur.)

Stage 2b. We next consider the interval[t0, trq] where, by assumption, edgerq is almost Delaunay.
Refer to Figure 24 (right). The argument is fully symmetric to the one in Stage (2a), but we repeat it for
the sake of completeness.

If at leastk clockwise(p, r)-crossings(pu, r, Iu) end in(t1, trq), then the crossing(pq, r, I) is clearly
(q, r, k)-chargeable withI = [t0, trq] , as each of the corresponding intervalsIu begins aftert0 (by
Lemma 4.6). As before, this scenario happens for at mostO

(

k2N(n/k) + kn2β(n)
)

quadruplesσ in
F . Hence, we may assume, from now on, that the above scenario does not happen forσ.

If pr is never Delaunay during[trq,∞), then the crossings(pq, r, I) and(pa, r, J) are among the last
k + 1 clockwise(p, r)-crossings; as above, the number of these situations isO(kn2). Otherwise, letζ+pr
denote the first time aftertrq whenpr is Delaunay.

We now apply Theorem 2.2 inApr over the interval(t1, ζ+pr), with the thresholdℓ (noting thatpr
is Delaunay at timest0 and ζ+pr). If at least one of the Conditions (i), (ii) holds, we dispose of σ by
charging it either toΩ(ℓ2) ℓ-shallow co-circularities, or to anℓ-shallow collinearity. As before, each
event inApr is charged at mostO(k) times, as(pq, r, I) and(pa, r, J) are among the lastk + 1 clock-
wise(p, r)-crossings to end before this event. Hence, the overall number of such quadruples is at most
O
(

kℓ2N(n/ℓ) + kℓn2β(n)
)

.
Finally, if Condition (iii) of Theorem 2.2 holds, we end up with a setB of at most3ℓ points (possibly

including and/ora) so thatpr belongs toDT(P \ B) throughout[t0, ζ+pr]. For each(p, r)-crossing
(pu, r, Ju) that ends in(t1, trq) we add the respective pointu to B, whose cardinality then increases by
at mostk ≪ ℓ.

To recap, we may assume the existence of setsA,B, each of size at most3ℓ+ k ≤ 4ℓ, for which the
edgepr belongs toDT(P \ (A∪B)) throughout the intervalIpr = [ζ−pr, ζ

+
pr], which covers[tra, trq]. In
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addition,pr belongs toDT(P ) at timesζ−pr andζ+pr.

Probabilistic refinement. Consider a subsetR of ⌈n/ℓ⌉ points, chosen at random fromP . Fix a
quadrupleσ in F , and note that, with probability at leastΩ(1/ℓ4), (1)R contains the four pointsp, q, a, r
of σ, and (2) none of the points ofA ∪B \ {q, a} belong toR.

Assuming that the sampleR is successful for the chosenσ, the four pointsp, q, a, r define a Delaunay
quadruple, now with respect toR. We continue to denote this new quadruple byσ. As is easy to check,
the family FR of all such “hereditary” quadruplesσ (such that the sampleR is successful for their
ancestors inF) is 1-refined with respect to the new point setR. Moreover, each quadruple inFR

satisfies the following new condition:

(Q4) The edgepr belongs toDT(R \ {q, a}) throughout an intervalIpr = [ζ−pr, ζ
+
pr] which covers20

[tra, trq], and it belongs toDT(R) at timesζ−pr andζ+pr. Moreover, no clockwise(p, r)-crossings (inFR)
begin in(tra, t0) or end in(t3, trq).

Definition. Let F be a1-refined family of Delaunay quadruples. We say thatF is 2-refined if its
quadruples also satisfy the above condition (Q4) with respect to the underlying point setP (instead of
R).

Without loss of generality, we can putζ−pr to be the last time in(−∞, tra] whenpr belongs toDT(R).
Similarly, we can putζ+pr to be the first time in[trq,∞) when the edgepr belongs toDT(R).

LetΨ2(n) denote the maximum cardinality of a2-refined familyF , which is defined over a setP of
n moving points. The preceding discussion implies the following relation between the quantitiesΨ1(n)
andΨ2(n):

Ψ1(n) = O
(

ℓ4Ψ2(n/ℓ) + kℓ2N(n/ℓ) + k2N(n/k) + kℓn2β(n)
)

. (4)

5.5 Stage 3

To bound the above quantityΨ2(n), we fix a2-refined familyF which is defined over a setP of n points
moving as above inR2, and a Delaunay quadrupleσ in F .

By assumption, the edgesrq andra of σ are almost Delaunay during the respective intervals[t0, trq]
and [tra, t3]. The goal of this stage is to extend the almost-Delaunayhoodof these two edges to the
interval [tra, trq]. For the purpose of our analysis, we fix new constantsk andℓ such thatk ≪ ℓ.

trqt2 t3t1t0 JI

ζ−pr

tra

t

t

(uq, r, Iu)

trqt2 t3t1 JI

(ua, r, Ju) ζ+pr

t

t
t0tra

Figure 25: Left: Extending the almost-Delaunayhood ofrq from [t0, trq] to [tra, trq]. Right: Extending the
almost-Delaunayhood ofra from [tra, t3] to [tra, trq].

Charging events inArq. Refer to Figure 25 (left). If at leastk Delaunay counterclockwise(q, r)-
crossings(uq, r, Iu) begin in(tra, t0), then the crossing(pq, r, I) is again(p, r, k)-chargeable. Indeed,
according to Lemma 4.6, each of these crossings occurs within the larger interval[ζ−pr, t0]∪ I = [ζ−pr, t1],

20As in the previous step, the timestra andtrq must be appropriately redefined with respect to the setR at hand, and the
interval [tra, trq] may shrink. The same applies to the timesζ−pr andζ+pr.
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where, by property (Q4), the edgepr is assumed to be almost Delaunay. Moreover,pr belongs toDT(R)
at timesζ−pr andt1. Therefore, Theorem 5.3 provides an upper bound ofO

(

k2N(n/k) + kn2β(n)
)

on
the overall number of such crossings(pq, r, I) (and, hence, of their corresponding quadruplesσ, as
implied by Proposition 5.2). Thus, we can assume, from now on, that the above scenario does not
happen forσ. (Notice that the above application of Theorem 5.3 has been prepared by the previous Stage
2, which has extended the almost-Delaunayhood ofpr from [t0, t3] to [ζ−pr, ζ

+
pr].)

We now apply Theorem 2.2 inArq over the interval(tra, t0), with the thresholdℓ (noting thatrq is
Delaunay at timet0, and recalling that Theorem 2.2 also holds ifrq is Delaunay at only one endpoint
of the interval under consideration). If one of the Conditions (i), (ii) holds, we dispose ofσ by charging
it (via (pq, r, I)) either toΩ(ℓ2) ℓ-shallow co-circularities or to anℓ-shallow collinearity. As in the
previous such chargings, each event inArq is charged at mostO(k) times, as(pq, r, I) is among the
k + 1 first counterclockwise(q, r)-crossings to begin after it. Hence, this charging is applicable for at
mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

quadruplesσ in F .
Finally, if Condition (iii) of Theorem 2.2 holds, we end up with a setA of at most3ℓ points such that

the edgerq belongs toDT(P \ A) throughout the interval[tra, t1].

Charging events inAra. We now apply a symmetric analysis to the edgera, spelling it out for the sake
of completeness. Refer to Figure 25 (right).

If at least k counterclockwise(a, r)-crossings(ua, r, Ju) end during(t3, trq) then the crossing
(pa, r, J) is (p, r, k)-chargeable, as each of the respective intervalsIu is the contained in(t2, ζ+pr] (when
the edgepr is almost Delaunay). By Theorem 5.3 (and sincepr is Delaunay at timest2 and ζ+pr),
the overall number of such crossings(pa, r, J) (and of their corresponding quadruplesσ) is at most
O
(

k2N(n/k) + kn2β(n)
)

.
Otherwise, we apply Theorem 2.2 inAra over the interval(t3, trq) (noting thatra is Delaunay at

time t3). If one the Conditions (i), (ii) of that theorem holds, we dispose ofσ by charging it (now via
(pa, r, J)) either toΩ(ℓ2) ℓ-shallow co-circularities, or to anℓ-shallow collinearity. Once again, each
event inAra is charged at mostO(k) times, as(pa, r, J) is among thek + 1 last counterclockwise
(a, r)-crossings to end before it.

Finally, if Condition (iii) of Theorem 2.2 holds, we end up with a setB of at most3ℓ points such that
the edgera belongs toDT(P \B) throughout the interval[t1, trq].

To recap, we may assume, in what follows, that there exist setsA,B as above, each of cardinality at
most3ℓ.

Probabilistic refinement. We consider a subsetR of ⌈n/ℓ⌉ points chosen at random fromP . We fix a
quadrupleσ, not disposed of by the previous chargings, and notice that the following two events occur
simultaneously, with probability at leastΩ(1/ℓ4): (1) R contains the four pointsp, q, a, r of σ, and (2)
none of the points ofA ∪B \ {q, a, r} belong toR.

LetFR denote the family of all hereditary quadruplesσ (such thatR is successful for their ancestors
in F). As is easy to check,FR is 2-refined (inR). Moreover, the following new conditions hold for
every quadrupleσ in F :

(Q5) The edgera belongs toDT(R \ {p, q}) throughout the interval[tra, trq].

(Q6) The edgerq belongs toDT(R \ {p, a}) throughout the interval[tra, trq].

We say that a familyF of Delaunay quadruples is3-refinedif (1) it is 2-refined, and (2) its quadru-
ples satisfy Conditions (Q5) and (Q6) with respect to the underlying point set. LetΨ3(n) denote the
maximum cardinality of a3-refined family of Delaunay quadruples that is defined over a set ofn moving
points (that we keep denoting asP , replacingR in these conditions). The preceding discussion implies
the following relation between the quantitiesΨ2(n) andΨ3(n):
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Ψ2(n) = O
(

ℓ4Ψ3(n/ℓ) + kℓ2N(n/ℓ) + k2N(n/k) + kℓn2β(n)
)

. (5)

5.6 Stage 4

To bound the above quantityΨ3(n), we fix a3-refined familyF which is defined over an underlying set
P of n moving points. (That is,F satisfies all the six condtions (Q1)–(Q6).) Proposition 5.3implies that
every quadrupleσ = (p, q, a, r) in F is uniquely determined by the ordered triple(q, a, r).

For the purpose of our analysis, we also fix three new constants k, ℓ, h such that12 < k ≪ ℓ ≪ h.
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trqζ2ζ1
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t4 tr

t2 t3H
rq, ra are almost-Delaunay
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Wqar
a

q

r
p

C−
rq

Figure 26:The topological setup during the interval[tra, trq]. Left: The edgear is hit at some timetr ∈ [tra, t2]
by q. Center: we havetra ≤ t4 ≤ tr ≤ t5 < t2 < ζ1 < t3 < ζ2. Right: The motion ofB[q, a, r] is continuous
throughout(tr, ζ2] (the hollow circles represent the co-circularities at timesζ1 andζ2).

Topological setup.We fix a quadrupleσ = (p, q, a, r) in F , whose two Delaunay crossings take place
during the intervalsI = [t0, t1] andJ = [t2, t3] (in this order). Refer to Figure 26.

SinceF is 1-refined, there exists a timetra ≤ t0 which is the last time before21 t0 when the edge
ra belongs toDT(P ), and a symmetric first timetrq ≥ t3 when rq belongs toDT(P ). Moreover,
by Conditions (Q5) and (Q6), the edgera belongs toDT(P \ {p, q}), and the edgerq belongs to
DT(P \ {p, a}), throughout the interval[tra, trq].

Let us summarize what we know so far aboutσ. By Condition (Q3), the pointsp, q, a, r of σ are
co-circular at timesζ0 ∈ I \ J , ζ1 ∈ J \ I, andζ2 ∈ (t3, trq]. Moreover, the Delaunayhood ofpa is
violated, throughout(ζ1, ζ2), by the pointsq ∈ L−

pa andr ∈ L+
pa. In particular,p lies throughout that

interval within the wedgeWqar = L+
qa ∩ L−

ra and inside the capC−
rq = B[q, a, r] ∩ L−

rq; see Figure 26
(right). We emphasize that the order type of the quadruple(p, q, a, r) remains unchanged during(ζ1, ζ2),
and is exactly as depicted in this figure.

In addition, by the same Condition (Q3), the smaller setP \{p} induces a (single) Delaunay crossing
(ar, q,Hσ), whose intervalH = Hσ = [t4, t5] is contained in[tra, t2); see Figure 26 (left and center).
In particular,q hits ar at some moment22 tr ∈ H, and crossesLar from L−

ar to L+
ar. Sinceq lies inL+

ar

at timesζ1 > t2 andζ2, no further collinearities ofq, a, r can occur during(tr, ζ2]. (Otherwise, the point
q would have to re-enterL+

ar, after previously crossingLar back toL−
ar, and then the tripleq, a, r would

21If ra is Delaunay at timet0 then we putt0 = tra.
22Recall from Section 5.3 thatq can crossar either before or afterζ0, depending on the location ofa whenr crossespq. Our

analysis only relies on the fact thattr < ζ1 < ζ2, which follows becauseζr < t2 andζ1 ≥ t2.
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be collinear three times, contrary to our assumptions.) To recap, the discB[q, a, r] moves continuously
throughout the interval(tr, ζ2], which is obviously contained in[tra, trq].

r′

a

r′

r′

q

p′

Figure 27:A quadrupleσ′ = (p′, q, a, r′) in Fqa. The edgear′ undergoes an(a, q)-crossing(ar′, q,Hσ′) within
the triangulationDT(P \ {p′}).

Let Fqa denote the subfamily of all quadruplesσ′ = (p′, q, a, r′) in F , whose middle pointsq and
a are fixed and equal to those ofσ. (In particular,Fqa containsσ.) For eachσ′ = (p′, q, a, r′) in Fqa,
the appropriately pruned setP \ {p′} induces the(a, q)-crossing(ar′, q,Hσ′); see Figure 27. In what
follows, we keepσ andFqa fixed and distinguish between several cases.

Case (a).The familyFqa contains at leastk quadruplesσ′ whose respective crossings(ar′, q,Hσ′) end
during (t5, trq). Refer to Figure 28. Recall that, according to Proposition 5.3, the pointp′ is uniquely
determined by the choicer′.

a
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Ĥσ′

t

tra t4 t5

Ĥσ

Figure 28: Case (a). Left: At leastk of the crossings(ar′, q,Hσ′) end during(t5, trq). Right: A successful
sampleP̂ yields Delaunay crossings(ar, q, Ĥσ) and(ar′, q, Ĥσ′), which occur within[t4, trq].

Informally, we would like to dispose ofσ using Theorem 5.3, by showing that the counterclockwise
(r, q)-crossing(ar, q,H) is (r, q,Θ(k))-chargeable (for the intervalI = [t4, trq]). Unfortunately, the
(a, q)-crossings(ar′, q,Hσ′) to be charged are defined with respect to (potentially) distinct setsP \{p′},
and thus do not fit the definition of chargeability.

To free sufficiently many crossings(ar′, q,Hσ′) from their violating pointsp′, we pass fromP to
a sampleP̂ of ⌈n/2⌉ points chosen at random fromP . Notice though thatFqa can potentially include
quadruplesσ′ = (p′, q, a, r′) with p′ = r, which cannot be freed without destroyingrq and(ar, q,H).

Fortunately, by Proposition 5.3, for any quadrupleσ = (p, q, a, r) in Fqa there is at most one other
quadrupleσ = (p′, q, a, r′), also inFqa, with r′ = p. The pigeonhole principle then implies that at least
half of the quadruplesσ = (p, q, a, r) in Fqa satisfy the following converse condition:

(PH) There is at most one quadrupleσ′ = (p′, q, a, r′) in Fqa with p′ = r.

In more detail, consider the (possibly partial) mapλ : Fqa → Fqa, so thatλ maps each quadruple
σ = (p, q, a, r) ∈ Fqa to the unique quadrupleλ(σ) = (ω, q, a, p) ∈ Fqa if it exists, and otherwiseλ is
undefined atσ. Putµσ = |{σ′ | λ(σ′) = σ}|, for eachσ ∈ Fqa. Then

∑

σ∈Fqa
µσ ≤ M = |Fqa|, so the

number of quadruplesσ with µσ ≥ 2 is at mostM/2. All the remaining quadruples satisfy (PH).
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Sinceq anda are arbitrary points ofP , (PH) holds for at least half of all quadruples inF ; hence we
may assume that it holds for the quadrupleσ under consideration.

Let σ′ be a quadruple inFqa \ {σ} whose crossing(ar′, q,H ′ = Hσ′) ends in(t5, trq). We further
assume thatp′ 6= r andr′ 6= p. Then we have the following relaxed version of Lemma 4.6, which can
be established by observing that its original proof holds also in the new setup. (An alternative proof of
Lemma 5.5 can be obtained through examining the two co-circularities that are performed bya, q, r, r′,
according to Lemmas 4.1 and 4.4, during the intervalsH \H ′ andH ′ \H, and then applying Lemma
4.6 for the reduced setP \ {p, p′}.)

Lemma 5.5. Let P be a set of points moving as above inR2, and let(ar, q,H) and (ar′, q,H ′) be a
pair of clockwise(a, q)-crossings that occur in the respective reduced triangulationsDT(P \ {p}) and
DT(P \ {p′}), for p, p′ ∈ P .23 Furthermore, assume thatr 6= p′ and r′ 6= p. Then the statement of
Lemma 4.6 holds for(ar, q,H) and(ar′, q,H ′). That is,q hits ar (duringH) before it hitsar′ (during
H ′) if and only ifH begins (resp., ends) before the beginning (resp., end) ofH ′.

Clearly, the above restriction onp′ andr′ is now satisfied by at leastk − 2 ≥ k/2 of the quadruples
σ′ = (p′, q, a, r′) that are assumed to exist in the current case (a). Since theirintervalsH ′ end in(t5, trq),
Lemma 5.5 implies that, for each of them,H ′ starts aftert4, and the pointq hits ar′ (duringH ′) after
time tr.

We now return to the samplêP and observe that the following two events occur simultaneously, with
at least some fixed constant probability:

(1) The sampleP̂ includes the three pointsq, a, r, but notp. Hence,P̂ induces a single Delaunay
crossing(ar, q, Ĥ = Ĥσ) of ar by q.

(2) The sampleP̂ includes the pointr′, but not p′, for at leastk/16 of the above quadruples
σ′ = (p′, q, a, r′). For each of thesek/16 quadruples, the samplêP yields a Delaunay(a, q)-crossing
(ar′, q, Ĥσ′) with Ĥσ′ ⊆ Hσ′ .

(To see (2), note that this property holds for any single quadruple with probability at least1/4, so the
expected number of successful quadruples is at leastk/8. By a variant of Markov’s bound, the probability
of having at leastk/16 successful quadruples is at least14/15.)

Suppose that the samplêP is indeed successful forσ. Recall that, for each quadrupleσ′ in (2), q hits
the respective edgear′ (duringHσ′) after it hitsar (duringHσ).

We now pass to the sampled triangulationDT(P̂ ). Lemma 4.6 implies, in combination with the
containmentĤσ′ ⊆ Hσ′ , that all the Delaunay crossings(ar′, q, Ĥσ′) in (2) end afterĤ and beforetrq;
see Figure 28 (right). Therefore, all of them must occur within the intervalHσ ∪ [t5, trq] ⊆ [t4, trq],
where the edgerq is assumed to be almost Delaunay.24 In addition, the edgerq belongs toDT(P̂ ) at
both timest4 andtrq, becausêP does not includep. Sinceσ′ and(ar′, q, Ĥσ′) can be chosen in at least
k/16 distinct ways, the crossing(ar, q, Ĥ) is (r, q, k/16)-chargeable (with respect tôP ).

By Theorem 5.3, the overall number of such triples(q, a, r) in P̂ is O
(

k2N(n/k) + kn2β(n)
)

.
Clearly, the same bound must hold for the overall number of quadruplesσ that fall into case (a).

Preparing for cases (b), (c): Charging events inAqa. We can assume, from now on, that the familyFqa

contains at mostk quadruplesσ′ whose “almost Delaunay” crossings(ar′, q,Hσ′) end during(t5, trq).
Before proceeding to the subsequent cases, we apply Theorem2.2 inAqa over the interval(t5, trq),

now with the second constantℓ. Notice that the edgeqa belongs toDT(P \ {p}) at timet5, so we omit
p and apply the theorem with respect to that smaller triangulation.

If at least one of the Conditions (i), (ii) of Theorem 2.2 is satisfied, we chargeσ either to an(ℓ+ 1)-
shallow collinearity, or toΩ(ℓ2) (ℓ+ 1)-shallow co-circularities. (Each of these events isℓ-shallow with

23We do not require thatp andp′ be distinct.
24Notice that the timestrq, t4 andt5 are defined with respect to the original point setP .
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respect toP \ {p}, and its depth can go up by1 whenp is added back.) It remains to check that each
(ℓ + 1)-shallow event, which occurs inAqa at some timet∗ ∈ (t5, trq), is charged by at mostO(k)
quadruplesσ. Indeed,q anda are among the three or four points involved in the event. We guessq and
a (in O(1) possible ways) and consider all “almost Delaunay” crossings of the form(ar′, q,Hσ′), each
of them associated with some (unique) “candidate” quadruple σ′ = (p′, q, a, r′) in Fqa. Since case (a) is
ruled out (and sincet∗ belongs to(t5, trq)), (ar, q,H = Hσ) is among thek last such “almost Delaunay”
crossings to end before timet∗. Sincep is uniquely determined by the choice ofq, a and r, we can
guessσ in O(k) possible ways. Hence, this scenario happens for at mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

quadruples.
Now assume that Condition (iii) of Theorem 2.2 holds. ThenP contains a subsetA of at most3ℓ

points such that the edgeqa belongs toDT(P \(A∪{p})) throughout the intervalH∪[t5, trq] = [t4, trq].
In particular, the following property must hold:

At most3ℓ pointss ∈ P \ {p} hit qa during the interval(tr, ζ2) (⊆ (trq, trq)).

Case (b).There exist at leastℓ points, distinct fromp, that enter the capC−
rq = B[q, a, r] ∩ L−

rq during
(tr, ζ2). We refer to Figure 29 and lets be any of these points. By Condition (Q6),s cannot hitrq
during the interval(tr, ζ2) (which is covered by[tra, trq]). Note also thatC−

rq is contained in the wedge
Wqar = L+

qa ∩ L−
ra. Therefore, and since the wedgeWqar is empty immediately after timetr (whenq, a

andr are collinear), the above points has to enterWqar, through one its rays~ar, ~aq, during(tr, ζ2) and
before it entersC−

rq.
Furthermore, Condition (Q6) implies thats can enter the capC−

rq only through the boundary of
B[q, a, r], which results in a co-circularity ofq, a, r, s. (Recall also thats enters each halfplaneL+

qa and
L−
ra at most once, so it crosses the ray~ar or ~aq outsidethe respective edgear or aq when enteringWqar

as above. Indeed, otherwises would be able to accessC−
rq, after crossing one of these two edges, only

through the interior ofrq.)

a

q

r

C−
rq

Waqr

s

s
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trqζ2

s entersWqar s entersC−
rq

tra tr
t

t∗s

Figure 29:Case (b). At leastℓ pointss 6= p enter the capC−

rq during(tr, ζ2) (p is not shown). Each of the firstℓ
of these points causes an(ℓ+1)-shallow co-circularity withq, a, r. Each of them must first enter the wedgeWqar,
which is empty at timetr, through one of the rays~aq, ~ar (outside the edgesaq andar), because none of them can
crossrq.

Assume thats is among the firstℓ points to enterC−
rq during (tr, ζ2). Let t∗s denote the time of the

corresponding co-circularity ofq, a, r, s, which occurs whens entersC−
rq. Sinceσ satisfies Condition

(Q6) (andt∗s belongs to(tra, trq)), the opposite capC+
rq = B[q, a, r]∩L+

rq contains no points ofP \ {p}
at timet∗s. (Otherwise, the Delaunayhood ofrq would then be violated bys and another point ofP \{p},
contrary to (Q6).) Therefore, and since the motion ofB[q, a, r] is continuous during(tr, ζ2), the co-
circularity at timet∗s has to be(ℓ− 1)-shallow inP \ {p}, and thusℓ-shallow inP .

Note also that the crossing(ar, q,H) has to end beforet∗s (that is,t5 < t∗s). Indeed, the Delaunayhood
of qr is violated, right after timet∗s, by s anda, which is forbidden by Lemma 4.1 duringH.

We distinguish between two possible subcases. In each of them we dispose ofσ by charging it,
within one of the arrangementsAra,Aqa, either toΩ(ℓ2) (2ℓ)-shallow co-circularities, or to a(2ℓ)-
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shallow collinearity.

Case (b1).At least half of the above pointss cross the lineLra, fromL+
ra to L−

ra, during(tr, t∗s). Since
s lies in L−

ra at timet∗s, s entersL−
ra exactly once during(tr, t∗s), and it does not return toL+

ra before
t∗s; see the motion of the marked points in Figure 29 (left). Moreover, by Condition (Q5), each of these
crossings occurs outsidera (i.e., within one of the outer rays ofLra).

To dispose ofσ, we again fix one of the aforementioned pointss and argue as in Section 3. If
the halfplaneL−

ra contains at most2ℓ points ofP whens enters it, then we encounter a(2ℓ)-shallow
collinearity ofa, r, s. Otherwise, the discB[a, r, s] contains at least2ℓ points right after the crossing,
so the three pointsr, a, s are involved in at leastℓ (2ℓ)-shallow co-circularities before timet∗s (when the
open discB[a, r, s], equal toB[a, r, q] at that time, containsℓ or fewer points ofP ). After repeating the
above argument for each of the (at least)ℓ/2 possible choices ofs, we encounter inAra (during(tr, ζ2))
eitherΩ(ℓ2) (2ℓ)-shallow co-circularities, or a(2ℓ)-shallow collinearity. In both cases, we chargeσ to
these events.

We claim that each(2ℓ)-shallow event, which occurs inAra at some timet∗ ∈ (tr, ζ2), is charged by
at mostO(1) quadruplesσ. Indeed,r anda are among the three or four points involved in every charged
event. Moreover, according to Condition (Q5) and the argument in case (e) of Stage 1,q is among the
last two points to hit the edgera before timet∗. Hence, knowingt∗ allows us to guess the three points
q, a, r (which uniquely determineσ) in at mostO(1) ways. In conclusion, the above scenario happens
for at mostO

(

ℓ2N(n/ℓ) + ℓn2β(n)
)

quadruplesσ in F .

Case (b2).At least half of the above pointss remain inL−
ra throughout the respective intervals(tr, t∗s).

Each of these points must enterWqar (during(tr, t∗s)) through the ray emanating fromq in direction ~aq,
thereby crossingLqa from L−

qa to L+
qa. (Recall that such a collinearity ofq, a, s can occur only once

during(tr, t∗s).)
Once again, we fix one of the above pointss and letts denote the time in(tr, ζ2) whens entersWqar

through the ray emanating fromq in direction ~aq. Arguing as in the previous case, we conclude that
the three pointsq, a, s are involved (during(ts, t∗s) ⊂ (tr, ζ2)) either in a(2ℓ)-shallow collinearity, or in
Ω(ℓ2) (2ℓ)-shallow co-circularities. Below we prove that each of the(2ℓ)-shallow events, that occur in
Aqa during (tr, ζ2), can be traced back toσ in at mostO(k) ways.25 Hence, it is charged at mostO(k)
times. We then repeat the same argument for each of the remaining ℓ/2 − 1 choices ofs, and use (as in
case (b1)) the standard bounds on the number of(2ℓ)-shallow events of each type. As a result, we obtain
an upper bound ofO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

of the number of such quadruplesσ.
To conclude, the overall number of quadruplesσ that fall into Case (b) is at most

O
(

kℓ2N(n/ℓ) + kℓn2β(n)
)

.

To complete the analysis of Case (b), we show that each(2ℓ)-shallow event that occurs inAaq during
(tr, ζ2) is charged as above by at mostO(k) quadruplesσ that fall into case (b2). Lett∗ be the time of
such an event. First, we guess the pointsq, a, in O(1) possible ways, from among the three or four points
involved in the event. Recall that, in the charging scheme ofcase (b2), each(2ℓ)-shallow co-circularity
or collinearity that we charge inAqa is “obtained” via some points, which is also involved in this event
and entersL+

qa at some prior timets. We, therefore, guesss among the remaining one or two points that
participate in the event under consideration. To guess the remaining pointsr andp of σ, we examine all
“candidate” quadruplesσ′ ∈ Fqa whose two “middle” points are shared withσ. Recall that each of these
quadruplesσ′ = (p′, q, a, r′) is accompanied by an “almost Delaunay” crossing(ar′, q,Hσ′), wherer′

entersL+
qa at some timetr′ ∈ Hσ′ . Also recall thatσ′ is uniquely determined by the choice ofr′ (as long

asq anda remain fixed).
It suffices to consider only quadruplesσ′ = (p′, q, a, r′), in Fqa, with the following properties: (1)

s 6= p′, r′, (2) tr′ < ts, and (3)s lies inL+
ar′ during the second portion ofHσ′ (aftertr′). This is because

25Note the difference between the two subcases: Here we only know q, a, and then guessingr is not immediate.
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each of these conditions holds forσ′ = σ (and fors) in the charging scheme of case (b2). For example,
(3) follows because we assume that case (b1) does not occur (and sincet5 < t∗s). The corresponding
pointsr′, which determine the above quadruplesσ′, are calledcandidates(for r).
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Figure 30:Top: Proposition 5.6:r is among the lastk + 3 candidatesr′ to enterL+
qa before timets; the various

critical events occur in the depicted order. Bottom: Proof of Proposition 5.6. The candidater′ remains inWqar

throughout(tr′ , t∗s). If Hσ′ ends aftert∗s, then the points remains inWqar′(⊂ Wqar) throughout(ts, t∗s).

Proposition 5.6. With the above assumptions, the pointr is among the lastk + 3 candidatesr′ to enter
the halfplaneL+

qa beforets (each candidate at the respective timetr′).

Proof. Refer to Figure 30. Assume to the contrary that the proposition does not hold (forσ ands 6=
p, q, a, r as above). Hence, we have at leastk candidatesr′ such thattr < tr′ < ts andr′ 6∈ {p, r}, and
such that the pointsp′ of their respective quadruplesσ′ = (p′, q, a, r′) are distinct fromr. (We continue
to assume thatσ satisfies property (PH), introduced in case (a), so the last two restrictions onp′ andr′

exclude from our consideration at most three candidatesr′, with their quadruplesσ′.)
To establish the proposition, we fix a candidater′ and its corresponding quadrupleσ′ = (p′, q, a, r′),

as above, and argue that the respective intervalHσ′ ends during(t5, trq). Repeating the same argument
for the remainingk − 1 possible choices ofr′ will imply that the quadrupleσ falls into case (a) and
thereby reach a contradiction.

Indeed, sincetr < tr′ , Lemma 5.5 shows that the intervalHσ′ ends afterH = [t4, t5]. (As in case
(a), the lemma relies on the assumption thatp 6= r′ andr 6= p′.) It remains to check thatHσ′ ends before
trq.

If Hσ′ ends beforet∗s, then we are done (ast∗s < trq). Hence, we may also assume that both times
tr′ andt∗s belong to the intervalHσ′ (as depicted in Figure 30 (top-right)). This, and the choiceof r′ as a
candidate forr, implies thatr′ remains in the halfplanesL+

qa, L
+
sa throughout the interval(tr′ , t∗s) ⊆ Hσ′ .

Indeed,r′ cannot re-enterL−
qa during the second portion ofHσ′ , after enteringL+

qa at timetr′ ∈ Hσ′ .
(This is becauseq, a, r′ perform only one collinearity during the crossing(ar′, q,Hσ′).) Similarly, since
σ′ satisfies property (3), the points remains inL+

ar′ throughout(tr′ , t∗s) (sor′ remains inL+
sa). We thus

conclude thats lies insideWqar′ = L+
qa ∩ L−

r′a throughout the interval(ts, t∗s); see Figure 31 (bottom).
Also notice that, with the above assumptions,r′ must lie, throughout the longer interval(tr′ , t∗s) ⊆

Hσ′ , inside the wedgeWqar = L+
qa ∩L−

ra. Indeed,r′ entersWqar at timetr′ ∈ (tr, t
∗
s)(⊆ (tr, ζ2)∩Hσ′)

and cannot again cross the ray~aq duringHσ′ . Moreover, ifr′ leavesWqar (during(tr′ , t∗s)) through the
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other ray ~ar, then the edgear′ is hit by r, or the edgear is hit by r′. Clearly, the former crossing is
forbidden by Lemma 4.1 during the intervalHσ′ (wherear′ experiences a Delaunay crossing byq), and
the latter one is ruled out by Condition (Q5). (As a matter of fact, in the second caser′ must also cross
rq, thereby entering△qar, before it reachesra. This collinearity is also impossible by Condition (Q6).)
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Figure 31:Proof of Proposition 5.6: The scenario wherer′ lies withinB[q, a, r] at timet∗s. Left: r′ entersC−

rq

during(tr, t∗s) through the arcC[q, a, r] ∩ L−

rq, at some timeξ′ (left). Right: r′ must leaveC−

rq beforetrq (and
afterHσ′ ). Below: The pointsq, a, r, r′ are co-circular at timesξ ∈ Hσ \Hσ′ , ξ′ ∈ Hσ′ \Hσ andξ′′ ∈ (ξ′, trq].
The intervalHσ′ ends beforeξ′′ (and, thus, beforetrq).

To recap, we can assume thatHσ′ endsafter t∗s, and that the edgesaq, as, ar′ andar appear, at time
t∗s, in counterclockwise order arounda. To show thatHσ′ ends beforetrq, we distinguish between two
possible cases.

(1) If r′ lies outsideB[q, a, s] = B[q, a, r] at timet∗s, then the Delaunayhood of the edgear′ is violated,
at that very moment, by the pointss ∈ L+

ar′ and r ∈ L−
ar′ (as depicted in Figure 30 (left)). Since

p′ 6∈ {s, r}, the crossing(ar′, q,Hσ′) (occurring inDT(P \{p′})) has to end beforet∗s, which is contrary
to our assumptions.

(2) Now suppose thatr′ lies at timet∗s within B[q, a, r], as depicted in Figure 31 (left). Sincer′ remains in
Wqar throughout(tr′ , t∗s] (and sincer′ lies outsideB[q, a, r] at timetr′ , when it entersWqar), it can enter
B[q, a, r] (or, more precisely, its capC−

rq) during (tr′ , t∗s) only through the circular arcC[q, a, r] ∩ L−
rq.

When that happens, we encounter a co-circularity ofq, a, r, r′ at some timeξ′ ∈ (tr′ , t
∗
s] ⊆ Hσ′ , right

after which the Delaunayhood ofrq is violated byr′ ∈ L−
rq anda ∈ L+

rq. Sincep 6= r′ andr 6= p′, this
co-circularity occurs afterH = Hσ.

Applying Lemma 4.4 to(ar, q,H) shows that another co-circularity ofq, a, r, r′ (red-blue with re-
spect toar and thus monochromatic with respect toar′) must occur at some timeξ < ξ′ during the
symmetric intervalHσ \Hσ′ . As is easy to check26, ξ andξ′ are the only co-circularities ofq, a, r, r′ to
occur duringHσ andHσ′ .

To complete our analysis, we apply Lemma 3.1 for the edgerq, with the reference interval(ξ′, trq].
By Conditions (Q3) and (Q6), neither ofa, r′ can crossrq during the larger interval[tr, trq]. Therefore,
we encounter a third co-circularity ofq, a, r, r′ at some timeξ′′ in (ξ′, trq], which occurs whenr′ leaves
the capC−

rq. See Figure 31 (right). Sinceξ andξ′ are the only co-circularities to occur duringHσ ∪Hσ′ ,

26Note, for instance, that(a, r, r′, q) is a counterclockwise quadruple inDT(P \{p, p′}), so the argument preceding Lemma
5.1 applies to it.
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the third co-circularityξ′′ must occurafterHσ′ . (See Figure 31 (bottom).) Hence,Hσ′ has to end before
trq also in this last case.

Case (c).Assume that none of the previous cases or preliminary chargings applies toσ. In particular,
since the charging withinAqa following case (a) does not apply, at most3ℓ points ofP \ {p} crossqa
during (tr, ζ2). Furthermore, since case (b) does not occur, at mostℓ points ofP \ {p} enter the cap
C−
rq = B[q, a, r] ∩ L−

rq, during the interval(tr, ζ2). See Figure 32 (left).
We again emphasize that, by condition (Q5), no point inP \ {p, q} can hit the edgera during the

interval [tra, trq] (which contains[tr, ζ2]). Similarly, condition (Q6) implies that no point inP \ {p, a}
can hit the edgerq during that interval.

p

At mostℓ points At most3ℓ points

Wqar a

q

r
C−
rq

t3

ζ2

t
tpa

pa ∈ DT(P )
tr

pa 6∈ DT(P )

ζ1

≤ 4ℓ points crosspa

t2

J , pa ∈ DT(P )

pa violated byq andr

Figure 32:Left: Case (c). At mostℓ points ofP \{p} enterC−

rq, and at most3ℓ points ofP \{p} crossqa, during
(t,rζ2). Hence, at most4ℓ points crosspa during(ζ1, ζ2). Right: a schematic summary of our setup in case (c).

We claim that at most4ℓ points ofP \ {p, a} can hit the edgepa during the interval(t3, ζ2) (⊆
(ζ1, ζ2)). Indeed, fix any of these pointss. Recall the edgepa is contained during the interval(ζ1, ζ2) in
the regionB[q, a, r]∩Wqar; see Figures 26 (right) and 32 (left). Hence,s has to lie inB[q, a, r]∩Wqar

when it hitspa, as well. SinceWqar contains no points ofP at time tr, the points has to enter this
wedge during(tr, ζ2) through one of the rays~ar, ~ap. If s crossespa within L−

rq then, in particular, it
has to enter the capC−

rq during(tr, ζ2). Otherwise, ifs hits pa within L+
rq, then it must have previously

entered the triangle△qar through the edgeqa. (By Conditions (Q5) and (Q6),s cannot crosses either
of the edgesra, rq during (tr, ζ2).) We thus conclude that the overall number of points inP that cross
pa during(t3, ζ2) cannot exceedℓ+ 3ℓ = 4ℓ.

Charging events inApa. The above analysis implies, in particular, that the edgepa undergoes at most
4ℓ Delaunay crossings within(t3, ζ2). If the edgepa never re-entersDT(P ) after timeζ2, then(pa, r, J)
is among the last4ℓ + 1 Delaunay crossings ofpa. Clearly, this scenario happens for at mostO(ℓn2)
quadruplesσ.

Otherwise, lettpa be the first time afterζ2 whenpa re-entersDT(P ). Refer to the schematic Figure
32 (right). Since the co-circularity at timeζ2 is the last co-circularity of the points ofσ, Lemma 3.1
implies that the edgepa is hit during(ζ2, tpa] ⊆ (t3, tpa] by at least one of the remaining two pointsq
andr.

We apply Theorem 2.2 inApa over the interval(t3, tpa), with the third constant parameterh (noting
thatpa is Delaunay at both endpoints of that interval). If one of theConditions (i), (ii) holds, we charge
σ (via (pa, r, J)) either to anh-shallow collinearity, or toΩ(h2) h-shallow co-circularities (where each
charged event occurs during(t3, tpa) and involvesp anda, together with one or two additional points of
P ). Any suchh-shallow event is charged by at mostO(ℓ) quadruples. Indeed, the two pointsp, a can
be guessed in at mostO(1) possible ways out of the three or four points involved in it, and (pa, r, J) is
among the last4ℓ+1 Delaunay crossings ofpa to end before the respective time of the event. Therefore,
the above charging accounts for at mostO

(

ℓh2N(n/h) + ℓhn2β(n)
)

quadruplesσ.

43



ζ2

t
tpatr

q or r hitspa
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Figure 33:Left: If Condition (iii) of Theorem 2.2 holds, then we have a subsetB of at most3h points whose
removal restores the Delaunayhood ofpa throughout[t2, tpa] = J ∪ [t3, tpa]. Right: If q hits pa during [t3, tpa],
then(P \B) ∪ {q} induces a Delaunay crossing ofpa by q.

Assume then that Condition (iii) of Theorem 2.2 holds. That is,P contains a subsetB of at most3h
points (possibly including one, or both of the pointsq, r) such that the edgepa belongs toDT(P \ B)
throughout the intervalJ ∪ [t3, tpa] = [t2, tpa]. See Figure 33 (left).

If pa is crossed byr during[t3, tpa], then the smaller set(P \B)∪{r} yields two Delaunay crossings
of pa by the same pointr. The routine combination of Lemma 4.5 with the probabilistic argument of
Clarkson and Shor implies that the overall number of such triplesp, a, r in P is at mostO(hn2). Clearly,
this also bounds the overall number of such quadruplesσ.

Assume then thatpa is hit byq, as depicted in Figure 33 (right). If this happens twice during (t3, tpa)
then the smaller set(P \B)∪{q} induces either two single Delaunay crossings or one double Delaunay
crossing, of the edgepa by q. In each of these cases, we can show, as usual, that the overall number of
such triplesp, q, a in P is at mostO(hn2) by combining Lemma 4.5 or Theorem 4.3 with the probabilistic
argument of Clarkson and Shor. Furthermore,(pa, r, J) is among the last4ℓ+1 Delaunay crossings that
the edgepa undergoes before being hit byq. Hence, this scenario occurs for at mostO(ℓhn2) Delaunay
quadruplesσ in F .

To recap, we may assume thatq hits the edgepa only once during(t3, tpa), so this edge undergoes a
single Delaunay crossing byq within (P \B) ∪ {q}.

Probabilistic refinement. Consider a random sampleR of ⌈n/h⌉ points chosen at random fromP .
Notice that the following two conditions hold simultaneously, with probability at leastΩ(1/h4): (1) the
four points ofσ belong toR, and (2)R includes none of the points ofB \ {q, r}.

If the sampleR is indeed successful, the four pointsp, q, a, r define a Delaunay quadruple with
respect toR. Let FR be the resulting family of such hereditary Delaunay quadruples inR. Clearly,
FR is 3-refined (with respect to the underlying setR). In addition, each quadrupleσ in FR satisfies the
following new condition:

(Q7) The edgepa belongs to the triangulationDT(R \ {q, r}) throughout the interval(t2, tpa), where
tpa denotes the first time afterζ2 when the edgepa re-entersDT(R). Moreover,pa is hit in (t3, tpa] by
q, but not byr, and this occurs only once during(t3, tpa]. In particular, the point setR \ {r} induces a
single Delaunay crossing(pa, q,Ir), whose intervalIr is contained in(t3, tpa].

We say that a familyF of quadruples is4-refinedif (1) it is 3-refined, and (2) its quadruples satisfy
the above condition (Q7) with respect to the underlying point setP (i.e., withR replaced byP ). For
each quadrupleσ in such a4-refined familyF , we refer to the corresponding crossing(pa, q,Ir) (which
figures in condition (Q7)) as thespecial crossingof pa by q in F .

As in the previous conditions, when regardingR as an underlying point set, some of the critical times
(e.g.,tpa) may shift. As is easy to check Condition (Q7), we have the following analogue of Propositions
5.2 and 5.3, showing that the notion of a special crossing is well defined:
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Proposition 5.7. Let F be a 4-refined family of Delaunay quadruples. Then every quadruple σ =
(p, q, a, r) in F is uniquely determined by its triple(p, a, q). Hence, there is one-to-one correspondence
between Delaunay quadruples ofF and their special crossings, so it remains to bound the number of the
latter.

Proof. We are to show that the fourth point,r, of σ, is uniquely determined by the first three points
p, a, r. Indeed, by condition (Q7),r the last point ofP to crosspa, fromL−

pq to L+
pq, beforeq performs

this same type of crossing.

Let Ψ4(m) denote the maximum cardinality of a4-refined familyF of Delaunay quadruples that
is defined with respect to a set ofm moving points. The preceding discussion implies the following
recurrence:

Ψ3(n) = O
(

h4Ψ4(n/h) + ℓh2N(n/h) + kℓ2N(n/ℓ) + k2N(n/k) + ℓhnβ(n)
)

, (6)

for any triple of parameters12 ≪ k ≪ ℓ ≪ h.

By the above Proposition 5.7, there is one-to-one correspondence between Delaunay quadruplesσ =
(p, q, a, r) of a 4-refined familyF , and their respective triples(p, q, a), which yield the corresponding
special crossings, so it suffices to bound the number of the latter configurations. This is indeed done in
Section 6, whose analysis is formulated mainly in the terms of specialcrossings. However, before we
proceed in that direction, one last refinement is in order.

5.7 Stage 5: Extending the almost-Delaunayhood ofpq

Let F be a4-refined family of Delaunay quadruples, which is defined overa setP of n moving points.
Let σ = (p, q, a, r) be a Delaunay quadruple inF , which satisfies all the seven conditions (Q1)–(Q7)
that were enforced in the course of the preceding four stages.

Note that the edgepq belongs toDT(P \ {r}) throughout the intervalI of its Delaunay crossing by
r. Furthermore, by condition (Q7), the edgepa undergoes inP \ {r} a Delaunay crossing(pa, q,Ir =
[λ0, λ1]). Hence, Lemma 3.1 implies thatpq belongs toDT(P \{r}) also duringIr. We next extend the
almost-Delaunayhood ofpq from I andIr to the rest of[I,Ir] = conv(I ∪ Ir).

pa violated

t1 t3ζ1

J

qr violated

t2t0

t
tpaλ0ζ2

pa ∈ DT(P \ {q, r})

Ir

λ1

pq ∈ DT(P \ {r})

ϑq

pa hit by q
by p anda

I
by q andr

q

p

r

a

q

Figure 34:Left: The setup at the beginning of Stage 5. Note that the edgepq belongs toDT(P \ {r}) throughout
each of the intervalsI andIr. The Delaunayhood ofrq is violated byp anda between the last two co-circularities
ζ1, ζ2. The edgepa is hit byq at some timeϑq ∈ (ζ2, tpa), and its Delaunayhood is violated byq andr throughout
the interval(ζ2, ϑq). Right: A possible motion ofq during(ζ2, ϑq).
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Setup. Refer to Figure 34. By condition (Q3), the Delaunayhood ofrq is violated byp ∈ L−
rq and

a ∈ L+
rq between the last two co-circularitiesζ1 ∈ J andζ2 > t3 of p, q, a, r (both of them red-blue

with respect topa andrq). Right after timeζ2 (whenrq is freed from the above violation byp anda),
the Delaunayhood ofpa is violated byq ∈ L−

pa andr ∈ L+
pa. By condition (Q7),pa re-entersDT(P )

at some timetpa > ζ2 (which is the first such time afterζ2), and belongs toDT(P \ {r, q}) throughout
(t3, λpa]. Finally, pa is hit at some time in(t3, tpa] by q but not byr. Hence, applying Lemma 3.1 from
timeζ2, we conclude thatq crossespa fromL−

pa toL+
pa at some momentϑq ∈ (ζ2, tpa], with the property

that the Delaunayhood ofpa is violated byq ∈ L−
pq andr ∈ L+

pq throughout(ζ2, ϑq). In particular, the
aforementioned special crossing(pa, q,Ir) in P \ {r} occurs entirely during(t3, tpa], and its intervalIr
contains the above timeϑq whenq entersL+

pa. (However,Ir need not necessarily containζ2.)
The preceding discussion implies that the intervalsI = [t0, t1] and Ir = [λ0, λ1] (wherepq is

known to be almost Delaunay) are indeed disjoint. We also emphasize that the edgespa andrq intersect
throughout(ζ1, ϑq) = (ζ1, ζ2) ∪ (ζ2, ϑq).

To enforce the almost-Delaunayhood ofpq in the resulting gap(t1, λ0), we fix a pair of constants
12 < k ≪ ℓ and proceed in two steps.

Charging events inArq. As a preparation, we first extend the almost-Delaunayhood ofrq. Recall that,
by condition (Q6),rq belongs toDT(P \ {p, a}) throughout the interval(tra, trq). Heretrq denotes the
first time aftert3 whenrq is Delaunay, andtra denotes the last time before (or at)t0 whenra is Delaunay.
Note that(tra, trq) contains the respective timesζ0, ζ1 andζ2 of the three co-circularities co-circularities
of p, q, a, r. Recall also thatζ2 occurs after the ending timet3 of J . Hence, the inequalitytrq > t3 is
strict, sorq is not Delaunay right before timetrq.

We next extend the almost-Delaunayhood ofrq to a potentially larger interval(tra, ϑq) (where, as
above,ϑq denotes the time inIr whenq enters the halfplaneL+

pa throughpa). We can assume, with
no loss of generality, thattrq < ϑq. (Otherwise, we are done.) Therefore, and sinceζ2 < trq, the
Delaunayhood ofpa is violated byq ∈ L−

pa andr ∈ L+
pa throughout the interval(trq, ϑq) ⊂ (ζ2, ϑq).

We apply Theorem 2.2 inArq over the interval(trq, ϑq), and with the first constantk. (This is
possible becauserq is Delaunay at timetrq.) In the first two cases of Theorem 2.2, we chargeσ (via
(pq, r, I)) either to ak-shallow collinearity, or toΩ(k2) k-shallow co-circularities. Below we argue that
any event inArq is charged as above by at mostO(1) quadruplesσ.

τ3

J

t0

pa

ϑqtra I ζ2 trq

rq, ra

ra′
τ4 τr τ5 τ0 τ1

J ′

τ2

I ′

tpa

t

t

H ′

τra′

t3t1 t2

Figure 35:Proposition 5.8: The subfamilyΓqr contains at most3 quadruplesσ′ = (p′, q, a′, r) whose respective
crossings(p′q, r, I ′) end in(t1, ϑq). To establish the proposition, we fix such a quadrupleσ′, with p′ 6= a and
a′ 6= p, and argue that the second crossing(p′a′, r, J ′) of σ′ ends afterϑq.

Note that the respective pointsq and r of σ can be chosen inO(1) possible ways from among
the three or four points involved in the event. Now consider the subfamilyΓqr of all quadruples
σ′ = (p′, q, a′, r) ∈ F whose second and fourth points are equal toq andr, respectively. (In particular,
Γqr includes the quadrupleσ = (p, q, a, r) under consideration.) Notice that eachσ′ ∈ Γqr is composed
of two clockwise(p′, r)-crossings(p′q, r, I ′ = [τ0, τ1]), (p′a′, r, J ′ = [τ2, τ3]), and comes with a coun-
terclockwise(r, q)-crossing(a′r, q,H ′ = [τ4, τ5]) (which occurs in the smaller setP \ {p′}, and before
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J ′ begins). Note also that the first crossing(p′q, r, I ′) of σ′ is also a counterclockwise(q, r)-crossing.
Proposition 5.8 below implies that the first crossing(pq, r, I) of σ is among the last four such(q, r)-

crossings(p′q, r, I ′) to end before any event that occurs inArq during (trq, ϑq). (See Figure 35 for a
schematic illustration.)

Proposition 5.8. With the above notation, the familyΓqr contains at most3 quadruplesσ′ = (p′, q, a′, r)
whose respective first crossings(p′q, r, I ′ = [τ0, τ1]) end in(t1, ϑq).

Hence, anyk-shallow co-circularity ork-shallow collinearity is charged as above by at mostO(1)
quadruples ofΓqr, so the above charging accounts for at mostO

(

k2N(n/k) + kn2β(n)
)

quadruples
σ ∈ F .

We can assume, then, that Condition (iii) of Theorem 2.2 holds, so there is a setArq of at most3k
point whose removal restores the Delaunayhoodrq throughout(trq, ϑq).

Proof of Proposition 5.8. Propositions 5.2, 5.3 and 5.7 imply that (i) there exist at most 2 quadruples
σ′ = (p′, q, a′, r) ∈ Γqr with p′′ = a or a′′ = p, and (ii) for any other choice ofσ′ ∈ Γqr \ {σ}, all the
six pointsp, q, a, r, p′, a′ are distinct.

Consider all the quadruples quadruplesσ′ ∈ Γqr that fall into the second category, and whose first
crossings(p′q, r, I ′) end in(trq, ϑq). Let σ′ be the unique quadruple of this kind whose respective first
crossing(p′q, r, I ′ = [τ0, τ1]) endsfirst. (That is, there is no other quadrupleσ′′ = (p′′, q, a′′, r) ∈ Γqr

that satisfies{p′′, a′′} ∩ {p, a} = ∅, and whose first crossing(p′′q, r, I ′′) ends in(trq, τ1).) Refer to
Figure 35.

Let τra′ denote the last time before (or at) the beginningτ0 of I ′ when the edgera′ is Delaunay.
Sinceσ′ is 4-refined, the respective intervalsI ′ = [τ0, τ1], J

′ = [τ2, τ3], andH ′, of σ′, are all contained
in [τra′ , τ3]. Condition (Q6) onσ′ implies thatrq belongs toDT(P \ {p′, a′}) throughout[τra′ , τ3].
Therefore, and since bothI ′ andJ ′ end aftertrq, we get thatζ2 < τra′ . (Otherwise, we would get
τra′ < ζ2 < trq < τ1 < τ3, so the above interval[τra′ , τ3] would contain the timeζ2, right before which
the Delaunayhood ofrq is violated byp anda).

By the choice ofσ′, any quadrupleσ′′ = (p′′, q, r, a′′) ∈ Γqr whose respective(q, r)-crossing
(p′′q, r, I ′′) ends in(trq, τ1), must satisfyp′′ = a or a′′ = p. Furthermore, Condition (Q2) (onσ′)
implies that there exist no quadruplesσ′′ ∈ Γqr whose respective(q, r)-crossings(p′′q, r, I ′′) end in
(τ1, τ3). It, therefore, suffices to show thatτ3 > ϑq (that is, that the second crossing(p′a′, r, J ′) of σ′

ends afterq entersL+
pa).

q

p

a

ra′
p′
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a′

a

p

a′

a

p

r

Figure 36:Proof of Proposition 5.8. We assume, for a contradiction, that τ3 < ϑq, so both crossings(a′r, q,H ′)
and(p′a′, r, J ′) occur within(ζ2, ϑq). Left: At the timeτq ∈ H ′ whenq hits a′r, the Delaunayhood ofpa is
violated bya andr′. Center: Ifar′ andpa still intersect at the time inJ ′ whenr hitsp′a′, then the Delaunayhood
of pa is violated byp′ anda′ at some moment during(ζ2, ϑq) ⊂ (t3, tpa). Right: The last scenario, wherepa
recovers from its previous violation bya′ andr through a co-circularity.

Indeed, assume for a contradiction thatτ3 < ϑq. Then, recalling thatτra′ > ζ2, we conclude that
[τra′ , τ3] is contained in the interval(ζ2, ϑq), where the Delaunayhood ofpa is violated byq andr.
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By condition (Q1) onσ′, its edgera′ belongs toDT(P \ {p′, q}) throughout[τra′ , τ3]. Hence, at
the timeτr ∈ H ′ ⊂ [τra′ , τ3] whenq entersL+

a′r, the edgepa is intersected bya′r = a′q ∪ qr, so the
Delaunayhood ofpa is violated then byr anda′. See Figure 36 (left). (Otherwise, the Delaunayhood of
ra′ would be violated byp anda, which is impossible during[τra′ , τ3].)

If ra′ still intersectspa at the time inJ ′ ⊂ (ζ2, ϑq) whenr hits p′a′ during the second crossing of
σ′, then the same argument shows that Delaunayhood ofpa is violated then byp′ anda′, contrary to
condition (Q7) onσ. (See Figure 36 (center).) Otherwise, there is a time in(τr′ , τ3) when the edge
pa recovers from its previous violation byr anda′. Notice that, by condition (Q7), none ofr, a′ can
hit pa during the above interval (which is contained in(ζ2, ϑq) ⊂ (t3, tpa)). Applying Lemma 3.1 for
{p, a, r, a′}, we get that the four pointsp, a, r, a′ are involved during(τra′ , τ3) in a red-blue co-circularity
with respect topa andra′ (as depicted in Figure 36 (right)), contrary to the almost-Delaunayhood ofra′

in (τra′ , τ3). This final contradiction completes the proof of Proposition 5.8.�

We thus can assume, in what follows, that there is a subsetArq of at most3k points whose removal
restores the Delaunayhood ofrq throughout(trq, ϑq).

Charging events inApq. We apply Theorem 2.2 inApq over the interval(t1, ϑq), which covers the
gap(t1, λ0) betweenI andIr.

In cases (i) and (ii) of Theorem 2.2, we chargeσ within Apq either to anℓ-shallow collinearity or to
Ω(ℓ2) ℓ-shallow co-circularities. We claim that any such event, which occurs inApq during (t1, ϑq), is
charged in this manner by at mostO(k) quadruplesσ = (p, q, a, r).

Indeed, the pointsp andq of σ can be guessed inO(1) possible ways among the three or four points
involved in the event. LetQpq denote the sub-family of all quadruplesσ′ = (p, q, a′, r′) ∈ F whose first
two points are equal top andq, respectively. Note thatQpq includes the quadrupleσ under consideration,
and that, for eachσ′ ∈ Qpq, its first crossing is of the form(pq, r′, I ′). Proposition 5.9 (below) implies
that the first crossing(pq, r, I) of σ is among the last6k + 3 such crossings to end before anyℓ-shallow
event that we charge inApq. Hence, the above charging applies to at mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

quadruples.

I ′

t1t0

t
tpaλ0ζ2 λ1ϑq
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pq
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△pqr ⊂ L+
pa

Figure 37:Extending the almost-Delaunayhood ofpq to (t1, λ0). We apply Theorem 2.2 over the larger interval
(t1, ϑq). By Proposition 5.9, the familyQpq contains at most6k+2 quadruplesσ′ = (p, q, a′, r′) whose respective
first crossings(pq, r′, I ′) end in(t1, ϑq).

Finally, if Condition (iii) of Theorem 2.2 is satisfied, we end up with a subsetApq of at most3ℓ
points whose removal restores the Delaunayhood ofpq throughout(t1, ϑq). In this case, we can “free”σ
from the points ofApq \{a, r} (thereby extending the almost-Delaunayhood ofpq to (t1, λ0) ⊂ (t1, ϑq))
through the standard probabilistic argument.

Proposition 5.9. The familyQpq contains at most6k+2 quadruplesσ′ = (p, q, a′, r′) whose respective
crossings(pq, r′, I ′) end in(t1, ϑq).

Proof. Sincep andq are fixed, Propositions 5.2 and 5.7 imply that anyσ′ ∈ Qpq is uniquely determined
by each of its respective pointsa′, r′. Hence, we have at most twoσ′ = (p, q, a′, r′) ∈ Qpq that satisfy
a′ = r or r′ = a, and, for any other quadruple inQpq, none of its respective pointsa′ andr′ is equal to
a or r.
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Fix σ′ = (p, q, a′, r′) ∈ Qpq whose respective first crossing(pq, r′, I ′) ends in(t1, ϑq), and with
the property that{a, r} ∩ {a′, r′} 6= ∅. To establish the proposition, it suffices to show that, for any
suchσ′, at least one of its pointsa′, r′ belongs to the setArq (obtained at the end of the preceding step)
of cardinality is at most3k. Indeed, we have at most3k quadruplesσ′ with a′ ∈ Arq, and at most3k
quadruplesσ′ with r′ ∈ Arq, and eachσ′ ∈ Qpq is uniquely determined by each of its respective points
a′ andr′.

We, therefore, proceed to establishing the latter property. Notice that the intervalsI and I ′ are
disjoint, so we haveI ′ ⊂ (t1, ϑq). Note also thatr lies inL+

pq right after timet1, and also at the later
timeϑq whenq hitspa (thereby freeingpa from its previous violation byq ∈ L−

pa andr ∈ L+
pa). Hence,

r has to remain inL+
pq throughout(t1, ϑq) (or, else, it would crossLpq three times duringI ∪ (t1, ϑq));

see Figure 37. We thus conclude that, at the moment inI ′ whenr′ hits pq, r′ enters the triangle△pqr
(whose order type remains fixed throughout(t1, ϑq)).

Claim 5.10. Let t′ be the time inI ′ when the above pointr′ ∈ P \ Pσ enters△pqr through the interior
of pq. Thenr′ must leave△pqr during (t′, ϑq).

Proof. Assume for a contradiction thatr′ remains in△pqr throughout(t′, ϑq). Recall thatpa is inter-
sected byrq throughout(t3, ϑq) ⊂ (ζ1, ζ2)∪ (ζ2, ϑq), with q ∈ L−

pa andr ∈ L+
pa. Observe that there is a

time in [t3, ϑq) whenr′ lies within△pqr∩L−
pa. Indeed, this property clearly holds ifr′ entersL+

pa in the
interval(t3, ϑq), wherepq is contained inL−

pa; see Figure 38 (center). Assume then thatr′ enters△pqr
beforet3 (i.e.,t3 ∈ (t′, ϑq)). However, in this caser′ has to lie at timet3 within △pqr∩L−

pa, as depicted
in Figure 38 (left). (Otherwise,r′ would lie at that moment in the capB[p, a, r] ∩ L+

pa ⊃ △pqr ∩ L+
pa,

which is known to beP -empty throughout the second portion ofJ = [t2, t3].)
To see a contradiction, notice that△pqr lies at timeϑq entirely within the closure ofL+

pa; see Figure
38 (right). Therefore,r′ too has to enterL+

pa during(t3, ϑq). However,r′ cannot crossLpa during(t3, ϑq)
through one of its rays outsidepa and while remaining inside the triangle△pqr (because the segmentspa
andrq intersect there), and condition (Q7) onσ implies thatr′ cannot hitpa during(t3, ϑq) ⊂ [t3, tpa].
This contradiction completes the proof of Claim 5.10.

Consider the first time in(t′, ϑq) whenr′ leaves△pqr, through one of the edgespr, pq, rq. (Here,
as before,t′ denotes the time whenr′ hits pq during the first Delaunay crossing(pq, r′, I ′) of σ′ =
(p, q, a′, r′).) Recall thatr′ cannot crosspr during (t1, t3), becauseσ is a Delaunay quadruple (that is,
pr belongs toDT(P \ {q, a}) throughout[I, J ] = [t0, t3]). Furthermore,r′ cannot crosspr in (t3, ϑq)
either: otherwiser′ would first have to enterL+

pa through the relative interior ofpa, contrary to condition
(Q7) onσ. We, thereby, conclude thatr′ can leave△pqr during (t′, ϑq) ⊂ (t1, ϑq) only through one of
the remaining edgesqr andpq.

r′
r

p

a

q q
r
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a

p

r′ a

p

q

Figure 38: Proof of Claim 5.10. Left: Ifr′ enters△pqr during [t3, ϑq), this can happen only withinL−

pa.
Center: Ift′ < t3 thenr′ lies in △pqr ∩ L−

pa at timet3 (because the rest of△pqr lies inside theP -empty cap
B[p, a, r] ∩ L+

pa). Right: In both cases,r′ must exit△pqr before timeϑq (at which△pqr passes entirely toL+
pa).

If r′ exits△pqr during (t′, ϑq) ⊂ (t1, ϑq) through the relative interiorrq, then, by condition (Q2),
this can occur only in the smaller interval(trq, ϑq) (and only ifϑq > trq). Hence, in this caseq belongs
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toArq, and we are done.
Assume, then, thatr′ leaves△pqr through the edgepq, as depicted in Figure 39. Consider the

second Delaunay crossing(pa′, r′, J ′) of σ′ = (p, q, a′, r′). Recall thatI ′ begins aftert1 and before the
beginning ofJ ′, so (pa′, r′, J ′) occurs too after the end ofI. Sinceσ′ ∈ Qpq is 4-refined, the point
r′ remainsL+

pq after t′ and until the end ofJ ′ (or, else,r′ would crossLpq three times). Therefore,J ′

ends beforer′ exits△pqr throughpq (and, in particular, beforeϑq). To conclude, the second crossing
(pa′, r′, J ′) of σ′ occurs entirely within(t1, ϑq). To complete our analysis, we distinguish between the
following two sub-cases:

If a′ lies in L+
rq at the time inJ ′ when r′ hits pa′, then rq is intersected at that moment by the

Delaunay edger′a′; see Figure 39 (left). Hence, Delaunayhood ofrq is violated at some moment in
J ′ ⊂ (t1, ϑq) by r′ anda′. Furthermore, condition (Q2) onσ implies that the above violation is possible
only during(trq, ϑq), so at least one ofa′, r′ must belong toArq.

r′

p

a

r
q
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r′

p

a

q

r

a′

Figure 39:Proof of Proposition 5.9. The second(p, r′)-crossing(pa′, r′, J ′) of σ′ ends beforer′ hits pq again.
The two possible scenarios are depicted.

Assume, then, thata′ lies in L−
rq whenr′ hits pa′ during J ′. Hence, both pointsr′, a′ lie at that

time inside the triangle△pqr; see Figure 39 (right). Arguing as before, we conclude thata′ leaves△pqr
beforeϑq through one of the edgesrq andpq. However, condition (Q7) onσ′ implies thata′ cannot leave
△pqr through the edgepq: otherwiseq would enter the halfplaneL+

pa twice (once during the respective
special crossing ofσ′, and another time through one of the outer rays ofLpa \pa). Therefore, in this case
a′ can leave△pqr beforeϑq only through the relative interior ofrq. Arguing as before, we conclude that
a′ again belongs toArq.

To recap, the previous chargings withinApq andArq altogether account for at mostO(kℓ2N(n/ℓ)+
k2N(n/k)+kℓn2β(n)) quadruples in our4-refined familyF . Each surviving quadrupleσ = (p, q, a, r)
in F comes with a subsetApq of at most3ℓ points so thatpq is Delaunay inP \ Apq throughout the gap
(t1, λ0) ⊂ (t1, ϑq) between the respective intervalsI andIr of σ.

Probabilistic refinement. We apply the probabilistic argument of Clarkson and Shor [9]one more
time.

We say that a familyF of Delaunay quadruples is5-refinedor, simply,refinedif it is 4-refined with
respect to the underlying point setP , and each quadrupleσ in F satisfies the following new condition:

(Q8) The edgepq belongs toDT(P \ {a, r}) throughout the respective interval[I, Ir] = [t0, λ1]. (Here,
as above,I = [t0, t1] is the interval of the first(p, r)-crossings ofσ, andIr = [λ0, λ1] is the interval of
the special crossing ofpa by q.)

That is, we require that the familyF is nonoverlapping, and that its quadruples are Delaunay and
satisfy all the8 conditions (Q1) – (Q8).

Let Ψ5(n) denote the maximum cardinality of a refined family of Delaunay quadruples, that can be
defined over an underlying set ofn moving points.

The routine sampling argument of Clarkson and Shor [9] leadsto the following recurrence:
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Ψ4(n) ≤ O
(

ℓ4Ψ5(n/ℓ) + kℓ2N(n/ℓ) + k2N(n/k) + kn2β(n)
)

.

As argued in the previous section, there is one-to-one correspondence between (1) quadruplesσ =
(p, q, a, r) in a refined familyF , (2) their respective triples(p, q, a), and (3) the special crossings
(pa, q,Ir) performed by these triples.

As reviewed in the beginning of this section, the analysis ofΨ5(m) is delegated to Section 6, which
primarily deals with the third type of configurations.

6 Special Crossings and Special Quadruples

In the preceding section we have established a sequence of recurrences implying that the maximum
numberΨ(n) of consecutive quadruples (and, hence, the maximum numberN(n) of Delaunay co-
circularities) in a setP of n moving points is (asymptotically) dominated by the maximumpossible
cardinalityΨ5(m) of a refinedfamily F of Delaunay quadruples that is defined over of a certainm-size
subsampleR ⊂ P .

To bound the above quantityΨ5(n), for any n > 0, we fix a setP , and a refined familyF of
(clockwise) Delaunay quadruples that is defined overP . That is,F is nonoverlapping, and each of its
quadruplesσ = (p, q, a, r) satisfies the eight conditions (Q1) – (Q8) (stated in terms ofp, q, a, r, F and
P ).

In particular, every triple of points ofσ = (p, q, a, r) ∈ F yield a Delaunay crossing, which some-
times occurs within areducedtriangulation obtained by omitting fromP the remaining fourth point of
σ. Indeed, recall thatσ, as any clockwise quadruple, is formed by a pair of clockwise(p, r)-crossings
(pq, r, I) and(pa, r, J). The two additional crossings(ar, q,H) and(pa, q,Ir) have been enforced at
Stages 1 and 4 of Section 5, as parts of the respective conditions (Q3) and (Q7), and they occur within
the respective appropriatelyreducedtriangulationsDT(P \ {p}) andDT(P \ {r}).

Recall also that, according to Propositions 5.2, 5.3, and 5.7, each quadrupleσ in F is uniquely
determined byeachof the four ordered triples(p, q, r), (p, a, r), (a, r, q), and(p, a, q), which realize its
four Delaunay crossings. (That is, in each triple the third point performs a clockwise Delaunay crossing
of the edge connecting the first two points.)

To bound the cardinality ofF , we focus, for each quadrupleσ = (p, q, a, r) in F , on the last type
of crossing(pa, q,Ir), realized by its first three pointsp, q, a, and referred to as the special crossing of
pa by q. We emphasize that(pa, q,Ir) is also a regular Delaunay crossing which occurs in the smaller
triangulationDT(P \ {r}). For convenience of notation, we refer tor as theouter pointof (pa, q,Ir).

We further label each special crossing(pa, q,Ir) as aclockwise (special)(p, q)-crossing, and as
a counterclockwise (special)(a, q)-crossing. Notice that Lemma 4.6 need not hold forspecial(p, q)-
crossings of the same type (that is, either clockwise or counterclockwise), because these are defined
with respect to reduced point sets, each omitting the respective outer pointr. As a matter of fact, the
respective outer points of any two such(p, q)-crossings are always distinct, because, as noted above,
their ancestor quadruples inF are uniquely determined by the respective triples(p, q, r). Hence, any
two (p, q) crossings (of the same type) are always defined with respect to distinct point sets. Instead,
we use Lemma 5.5, which imposes certain restrictions on the almost-Delaunay crossings that can be
compared by it. For example, two counterclockwise special(a, q)-crossings(pa, q,Ir) and(wa, q,Iu),
with respective outer pointsr andu, become incompatible if and only ifr = w or p = u.

We first perform a preliminary pruning step that will ensure,in particular, that Lemma 5.5 indeed
applies to any pair of surviving counterclockwise special(a, q)-crossings. This will be done by con-
sidering all possible pairs ofdistinct such(a, q)-crossings(pa, q,Ir) and(wa, q,Iu), and by omitting
from F their corresponding quadruplesσ = (p, q, a, r) andσ′ = (w, q, a, u) if they share one or more
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additional points, apart fromq anda. A similar pruning step will ensure that any two clockwise special
(p, q)-crossings(pa, q,Ir) and(pw, q,Iu) share only the pair(p, q).

The crucial observation is that the overall number of quadruples that we omit fromF , at both steps,
does not exceedO(n2). Indeed, assume, for instance, that a pair(pa, q,Ir) and(wa, q,Iu) of counter-
clockwise special(a, q)-crossings share an additional, third point (again, apart from q anda). Recalling
that each quadrupleσ in F is uniquely determined by any ordered sub-triple of its points, we conclude
thatp 6= w andr 6= u. That is, we haver = w or p = u. Assume, with no loss of generality, thatr = w.
Recall that each ordered sub-triple inσ or in σ′ performs a Delaunay crossing (perphaps within a suit-
ably reduced triangulation). We therefore get fromσ the crossing(ar, q,H), within P \ {p}, and we get
from σ′ the crossing(wa, q,Iu) = (ra, q,Iu), within P \ {u}. We thus obtain twodistinct27 Delaunay
crossings which are performed by thesametriple (a, r = w, q) and within the same reduced triangulation
DT(P \{p, u}). Hence, a routine combination of Lemma 4.5 with the probabilistic argument of Clarkson
and Shor implies that the underlying point setP contains at mostO(n2) such triples(a, q, r). Clearly,
this also bounds the overall number of such quadruplesσ = (p, q, a, r) andσ′ = (w = r, q, a, u) that we
omit. A symmetric analysis is peformed for pairs(pa, q,Ir) and(pw, q,Iu) of clockwise(p, q)-crossings
that have a third point in common, and their respective quadruplesσ = (p, q, a, r) andσ′ = (p, q, w, u).

To conclude, we can assume, from now on, that any pair which consists of any two counterclockwise
special(a, q)-crossings, or of any two special clockwise(p, q)-crossings, involves six distinct points
(including the two outer points) and, therefore, satisfies the conditions of Lemma 5.5. Therefore, all
the remaining counterclockwise special(a, q)-crossings, witha, q-fixed, can be linearly ordered by the
starting times of their intervals, or by the ending times of their intervals, or by the times whenq hits
the correspondinga-edge, and all three orders are identical. Furthermore, Lemma 5.5 imposes a similar
order on the remaining clockwise special(p, q)-crossings, withp, q fixed.

Special quadruples. We say that two counterclockwise special(a, q)-crossings areconsecutiveif they
are consecutive with respect to the natural order induced byLemma 5.5. That is, no other counterclock-
wise special(a, q)-crossings appear in this order between them.

Four pointsa, p, w, q form aspecial quadrupleχ = (a, p, w, q) if we encounter two (distinct) coun-
terclockwise special(a, q)-crossings(pa, q,Ir) and(wa, q,Ju), with the respective outer pointsr andu,
that occur in this order (that is,q crossespa beforewa); these crossings need not be consecutive. Refer
to Figure 40. We then usePχ to denote the set which consists of the four pointsa, p, w, q of χ, and of
the two outer pointsr andu.

Remark. Our notation requires some understanding from the reader: Whenever we talk about a special
quadrupleχ = (a, p, w, q), we also need to specify the two outer pointsr andu. We generally do so,
but do not consider them as an integral part of the quadruple,because, until Stage 4, they do not play any
role in the topological changes that the quadruple undergoes. However, the outer points will “return to
life” in Stage 4, and then their presence will lead to so called terminal quadrupleswhich we will use to
finish up the analysis. See also the overview below.

Fix a special quadrupleχ = (a, p, w, q), as above. Lemma 4.4 implies28 that the four pointsa, p, w, q
are involved in at least one co-circularity duringIr, and in at least one co-circularity duringJu. Specif-
ically, the former co-circularity is red-blue with respectto the edgespa andqw, so it must occur before
the beginning ofJu, duringIr \ Ju. (See Figure 40 (center).) Similarly, the latter co-circularity is red-
blue with respect to the edgeswa andpq, so it must occur after the end ofIr, duringJu \Ir. (See Figure
40 (right).) Furthermore, the same argument as in Section 5.1 shows that the points ofχ are involved in

27Indeed, recall that, in our notation,q crossesar (duringH) from L−

ar toL+
ar, and it crosses the reversely oriented copyra

of ar (duringIu) from L+
ra = L−

ar toL−

ra.
28Since the crossings ofχ are defined with respect to reduced points setsP \ {r} andP \ {u}, this implication critically

relies on the assumption thatp 6= u andw 6= r.
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Figure 40:The special quadrupleχ = (a, p, w, q). The respective intervalsIr andJu of the two special crossings
associated withχ are either disjoint, or partially overlapping (left). The points of χ are co-circular at times
ξ0 ∈ Ir \ Ju (center) andξ1 ∈ Ju \ Ir (right).

exactly oneco-circularity during each of the intervalsIr andJu, and we denote the respective times of
these co-circularities asξ0 ∈ Ir \ Ju andξ1 ∈ Ju \ Ir.

It is also instructive to note that the triangulationDT(P \ {r, u}) contains an ordinary counterclock-
wise quadruple(a, p, w, q), with the associated Delaunay crossings(pa, q,I) and(wa, q,J ), such that
I ⊆ Ir andJ ⊆ Ju. This immediately implies that the statement of Lemma 5.1 (or, more precisely, of
its counterclockwise variant) must hold also for the counterclockwisespecialquadruples.

Consecutive special quadruples.We say that the special quadrupleχ = (a, p, w, q), as above, is
consecutiveif its counterclockwise(a, q)-crossings(pa, q,Ir) and (wa, q,Ju) are consecutive in the
previously established order (implied by Lemma 5.5). In this case,χ = (a, p, w, q) is uniquely deter-
mined by each of its crossings(pa, q,Ir), (wa, q,Ju). This, combined with Propositions 5.2, 5.3 and
5.7, implies thatχ is uniquely determined by every (ordered) triple of points that are chosen from the
samequadruple(p, q, a, r) or (w, q, a, u); see Figure 41. That is, the following statement holds (withthe
above assumptions):

Proposition 6.1. Let χ = (a, p, w, q) be a consecutive special quadruple, and let(pa, q,Ir) and
(wa, q,Ju) be the special crossings associated withχ, with respective outer pointsr andu. Thenχ is
uniquely determined by each of the following eight triples:(p, q, a), (p, q, r), (p, a, r), (a, r, q), (w, q, a),
(w, q, u), (w, a, u), and(a, u, q).

w

p

r

q

a

q

q

u

Figure 41:A consecutive counterclockwise special quadrupleχ = (a, p, w, q), composed of two special crossings
(pa, q, Ir) and(wa, q,Ju), with respective outer pointsr andu. The special crossings ofχ correspond to regular
Delaunay quadruples(p, q, a, r) and(w, q, a, u) in F .

Let Φ(n) denote the maximum number of consecutive special quadruples that can be induced by a
set ofn moving points and a refined familyF of Delaunay quadruples. The preceding discussion implies
the following relation between the maximum possible numbers of special crossings (identified with their
respectiveordinary quadruples inF) and consecutivespecialquadruples:

Ψ5(n) = Φ(n) +O(n2).
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Overview. The analysis of special consecutive (counterclockwise) quadruples proceeds through five
stages, numbered0, 1, . . . , 4.

At thei-th stage we consider a certain subclass of consecutive (counterclockwise) special quadruples,
defined with respect to a refined familyF , which is constructed over the underlying setP of n moving
points. We assume that each quadrupleχ = (a, p, w, q) under consideration satisfies certain topological
conditions, which are formulated in terms of the extended set Pχ (including the outer pointsr andu of
the two special crossings associated withχ), F , andP . At each new stage we enforce one, or several
new conditions, so our special quadruples become progressively constrained.

The first four stagesi = 0, . . . , 3 are almost identical to the corresponding stages describedin Section
5. Informally, we put the outer pointsr andu aside and then gradually enforce upon our quadruplesχ the
counterclockwise variants of the six conditions (Q1)–(Q6), which arise in the similar stages of Section
5. As noted above, this requires some caution, as the corresponding special(a, q)-crossings(pa, q,Ir)
and(wa, q,Ju) are defined in terms of the (distinct) reduced point setsP \ {r} andP \ {u}.

At each of these four stages, we first invoke Theorems 2.2, 4.3and 5.3, and Lemma 4.5, in order to
dispose of all special quadruples that fail to satisfy the newly enforced conditions, even after removal of
a small-size subset ofP . The surviving quadruples are passed on to the next stage, after an appropriate
probabilistic refinement.

At the last Stage 4 we follow the same strategy and first apply asequence of preparatory chargings,
similar to those described in Section 5.6. To handle the remaining quadruplesχ (that are not disposed
of by these chargings) we re-introduce the corresponding outer pointsr, u of their special crossings
(pa, q,Ir) and (wa, q,Ju) to our analysis. This allows us to charge such quadruplesχ to especially
convenient topological configurations, referred to asterminal quadruples.

Informally, each terminal quadruple is formed by an edge, say e = pq, and by a pair of points that
crosse in oppositedirections (i.e., one of them crossese from L−

pq to L+
pq, and the other crossese from

L+
pq to L−

pq). The analysis of these configurations is delegated to Section 7, where we directly bound
their number in terms of simpler quantities, introduced in Section 2 (and thereby complete the proof
of Theorem 2.1). To do so, we show that, for “most” terminal quadruples (if their number is at least
superquadratic), some three of their four points perform two Delaunay crossings, again allowing us to
use Lemma 4.5, to obtain a quadratic bound on their number.

The emergence of terminal quadruples can be attributed to the following interplay between spe-
cial quadruples and their outer points. Fix a consecutive (counterclockwise) special quadrupleχ =
(a, p, w, q), as above. Recall that the four points ofχ are co-circular at some timesξ0 ∈ Ir \ Ju and
ξ1 ∈ Ju \ Ju. Assume, with no loss of generality, that the co-circularity at time ξ0 is the first co-
circularity of a, p, w, q, and has index1. (A similar assumption was made for ordinary quadruples in
Section 5.) At Stage 1 we enforce upon such special quadruplesχ a suitable counterclockwise variant of
condition (Q3), according to which the edgeqw undergoes a Delaunay crossing byp (where it crosses
wq from L+

wq to L−
wq). Recall, however, that the underlying familyF includes the ordinary quadruple

(w, q, a, u), so the reversely-oriented copywq of qw undergoes a Delaunay crossing by the outer pointu
(which then crossesLwq from L−

wq to L+
wq). This makes(w, q, u, p) an obvious candidate for a terminal

quadruple thatχ can charge. A symmetric behaviour occurs if the co-circularity at timeξ1 has index3.

6.1 Stage 0: Charging events inAqa

Fix a consecutive special quadrupleχ = (a, p, w, q), whose two special(a, q)-crossings(pa, q,Ir) and
(wa, q,Ju), with respective outer pointsr andu, correspond to quadruples(p, q, a, r) and(w, q, a, u)
in the underlying refined familyF . See Figure 41. Recall that, according to Proposition 6.1,χ is
uniquely determined by each of the ordered triples(p, a, q), (w, a, q), which perform its two special
(a, q)-crossings(pa, q,Ir = [λ0, λ1] and (wa, q,Ju = [λ2, λ3]). Our goal is to extend the almost-
Delaunayhood ofqa to the possible gap[λ1, λ2] betweenIr andJu. To do so, we fix a suitable constant
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k and apply Theorem 2.2 inAqa over the interval(λ1, λ3), which covers the aforementioned gap (if it
exists). Notice that the edgeqa is not necessarily Delaunay (inDT(P )) at timesλ1 andλ3, so we apply
this theorem with respect to the smaller setP \{r} (where, by Lemma 4.1,DT(P \{r}) clearly contains
qa at timeλ1.

If at least one of the Conditions (i) or (ii) of Theorem 2.2 holds, we can chargeχ either to ak-
shallow collinearity, or toΩ(k2) k-shallow co-circularities, which are encountered in the reduced red-

blue arrangementA(r)
qa , defined overP \ {r}, during(λ1, λ3). (Each of these events is(k + 1)-shallow

in in Aqa when defined over the entire setP .) It suffices to check that each(k + 1)-shallow collinearity
or co-circularity, that occurs in the larger arrangementAqa at some timet∗ ∈ (λ1, λ3), is charged by at
mostO(1) special quadruplesχ. Indeed, the pointsq anda of χ can be guessed in at mostO(1) ways
among the three or four points involved in the shallow event.Furthermore, no counterclockwise special
(a, q)-crossings(p′a, q,Ir′) end in(λ1, λ3), so(pa, q,Ir) is the last such(a, q)-crossing to end before
time t∗. This gives us the third pointp, and Proposition 6.1 then completes the proof of the claim. To
conclude, the Clarkson-Shor probabilistic argument implies that the above scenario happens for at most

O
(

k2N(n/k) + kn2β(n)
)

special quadruplesχ.
Now suppose that Condition (iii) of Theorem 2.2 is satisfied.Then there is a subsetA of at most

3k points (not includingr) such that the edgeqa belongs toDT(P \ (A ∪ {r})) throughout the interval
Ir ∪ [λ1, λ3] = [λ0, λ3].

To proceed, we consider a random subsetR of ⌈n/k⌉ points ofP . LetFR denote the induced family
of surviving (regular) Delaunay quadruples. Namely, a (regular) quadrupleσ in F yields a counterpart
in FR if and only if R includes the four points ofσ. As is easy to check,FR is also refined with respect
to its underlying setR. Furthermore, it can be viewed as a subset ofF , because each of its quadruples
has a (unique) ancestor inF . Therefore,FR yields no new Delaunay crossings, whose counterparts did
not arise already in the context ofF .

Note that the following two events occur simultaneously with probability at leastΩ(1/k6): (1) R
includes the six points ofPχ, and (2) none of the points ofA \ Pχ belongs toR.

Assume that the sampleR is indeed successful (for the chosen special quadrupleχ). Then the family
FR still contains the quadruples(p, q, a, r) and(w, q, a, u). Hence,FR still yields the special crossings
of pa andwa by q (with the same outer pointsr andu). We continue to denote these crossings by
(pa, q,Ir) and(wa, q,Ju) but observe that the corresponding intervalsIr = [λ0, λ1] andJu = [λ2, λ3]
may shrink in the process. (See Section 5.2 for more details.) Therefore,R andFR also yield the
(counterclockwise) special quadruple(a, p, w, q), which we continue to denote byχ. Furthermore,χ is
again consecutive with respect toR andFR (because the underlying familyFR induces no new special
crossings, which did not arise in the context ofF). Moreover, sinceR′ contains none of the pointsr, u,
the edgeqa now belongs toDT(R \ {r, u, p, w}) throughout the extended interval[Ir,Ju] = [λ0, λ3];
see Figure 42.

Definition. Let P be a (finite) set of moving points, and letF be a refined family constructed overP .
We say that a consecutive special quadrupleχ = (a, p, w, q), formed by counterclockwise special(a, q)-
crossings(pa, q,Ir = [λ0, λ1]) and(wa, q,Ju = [λ2, λ3]) (both of them inF) is Delaunay(again, with
respect toP andF), if its edgeaq belongs toDT(P \ {p,w, r, u}) throughout the extended interval
[Ir,Ju] = [λ0, λ3].

Let Φ0(m) denote the maximum number of consecutive Delaunay special quadruples that can be
induced by a refined familyF defined overn moving points. The preceding discussion implies the
following recurrence.

Φ(n) ≤ O
(

k6Φ0(n/k) + k2N(n/k) + kn2β(n)
)

, (7)
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DT(P )

DT(R)

Figure 42:After replacing the underlying setP by its subsampleR, the edgeqa belongs toDT(R \ {r, u, p, w})
throughout[Ir,Ju] = conv(Ir ∪Ju), including the gap betweenIr andJu. (The intervalsIr andJu may shrink
in the process.)

for any constant parameterk ≥ 12.

6.2 Stage 1

To bound the above quantityΦ0(n), we fix an underlying setP of n moving points, a refined family
F , and a consecutive Delaunay special quadrupleχ = (a, p, w, q), obtained from the corresponding
special crossings(pa, q,Ir = [λ0, λ1]) and(wa, q,Ju = [λ2, λ3]); r andu are the corresponding outer
points. See Figure 41. By definition, the edgeqa belongs toDT(P \{p,w, r, u}) throughout the interval
[λ0, λ3].

As in Section 5, we fix constants12 < k ≪ ℓ and distinguish between five possible scenarios,
where the roles of the edgespq andwq are mostly symmetric. In all but the last case, we will be ableto
bound the number of (the relevant) Delaunay special quadruples in terms of quantities that were already
introduced in Section 2. In the last case (case (e)), our bound will also depend on the number of special
quadruples of a more restricted type, which are defined over an appropriate subsample ofR of P . Such
quadruples will be called1-restricted, and their analysis will be passed on to the subsequent stages.

Case (a).The edgeqa is hit during [λ0, λ3] by at least one of the pointsp,w. Clearly, this collinearity
can happen only during the gap betweenIr andJu (if it exists).

If qa is hit by p then the triplep, a, q defines two distinct (single) Delaunay crossings within the
smaller triangulationDT(P \ {w, r, u}). (Here we exploit the fact that the crossed edgeqa is almost
Delaunay throughout[λ0, λ3].) According to Lemma 4.5, combined with the Clarkson-Shor argument,
where we use a sample of sizen/2, the overall number of such triples(p, q, a) (and, hence, of such special
quadruplesχ = (a, p, w, q), each of them uniquely determined by its corresponding triple (p, q, a)) is at
mostO(n2).

If qa is hit byw then we similarly argue that the triple(w, a, q) defines two distinct Delaunay cross-
ings within DT(P \ {p, r, u}), so the number of such special quadruplesχ (each of them uniquely
determined by the corresponding triple(w, q, a)) is at mostO(n2) too.

Case (b).At leastk clockwise special(p, q)-crossings(pa′, q,Ir′) end in(λ1, λ3], or at leastk clockwise
special(w, q)-crossings(wa′, q,Ju′) begin in[λ0, λ2); each of these crossings comes with its respective
outer pointr′ or u′.

Without loss of genarality, we consider only the former scenario, and handle the latter one in a fully
symmetric manner. Recall that a special(p, q)-crossing(pa′, q,Ir′) is uniquely determined by each
of the triples(p, a′, q) and (p, q, r′). Hence, at most one of these special crossings hasa′ equal tou.
Moreover, the preliminary pruning (applied to clockwise special (p, q)-crossings) guarantees that none
of them can haver′ = a or a′ = r.

We apply Theorem 5.3, in combination with the standard argument of Clarkson and Shor, in order
to dispose of such special quadruplesχ. To do so, we consider a random subsetR of ⌈n/4⌉ points
of P and notice that the following two conditions hold simultaneously with probabilityΩ(1): (1) R
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Figure 43:Case (b): at leastk clockwise special(p, q)-crossings(pa′, q, Ir′) end in(λ1, λ3].

includes the pointsp, q anda, but none ofr, u, and (2) for at least a constant fraction of the above special
(p, q)-crossings(pa′, q,Ir′), the setR includes the pointa′ but notr′.

Specifically, (1) holds with some constant probability close to(1/4)3(3/4)2. Concerning (2), assume
without loss of generality that the number of relevant crossings(pq′, q,Ir′) is exactlyk (so at leastk−1 of
them satisfya′ 6= u). Then, conditioning on the success of (1), the expected number of these crossings
that satisfy the property in (2) is very close to(k − 1)(3/16), or larger. Hence, Markov’s inequality
implies that, with an appropriate choice of parameters, theprobability of (2), conditioned on the success
of (1), is also some fixed constant. Hence, the probability that both (1) and (2) hold is alsoΩ(1), as
claimed.

If the sampleR is successful (for the givenχ), then it clearly yields an (ordinary) Delaunay crossing
(pa, q,I), whose respective intervalI is contained in[λ0, λ1] (asR ⊆ P \ {r, u}). It remains to check
that this crossing is(a, q,Θ(k))-chargeable, with respect to the interval[λ0, λ3].

To see the latter property, note that each of the above special (p, q)-crossings(pa′, q,Ir′), for which
the sampleR includesa′ but not r′, yields the Delaunay crossing(pa′, q,I ′) in R, with I ′ ⊆ Ir′ .
Therefore, Lemma 4.6 implies that(pa′, q,I ′) occurs within[λ0, λ1] ∪ Ir′ ⊆ [λ0, λ3]. Moreover,aq
belongs toDT(R) at timesλ0 andλ3 (in addition to its almost-Delaunayhood inDT(R), with only two
pointsp,w removed, during[λ0, λ3]).

Theorem 5.3 implies, then, that the overall number of such triples(p, q, a) in R is only

O
(

k2N(n/k) + kn2β(n)
)

.

Clearly, this also bounds the overall number of Delaunay special quadruplesχ falling into case (b).

To conclude, we can assume, from now on, that case (b) does notoccur. That is, fewer thank
clockwise special(p, q)-crossings end in(λ1, λ3], and fewer thank clockwise special(w, q)-crossings
begin in the symmetric interval[λ0, λ2).

Case (c).No clockwise special(p, q)-crossings(pa′, q,Ir′), with r′ 6∈ {w, u}, end during[λ3,∞), or
no clockwise special(w, q)-crossings(wa′, q,Ju′), with u′ 6∈ {p, r}, begin during(−∞, λ0].

Without loss of generality, we consider only the first subcase and handle the other one in a fully
symmetric manner. Note that the preliminary pruning (combined with the fact that(pa, q,Ir) is uniquely
determined by the triple(p, q, r)) guarantees that no clockwise special(p, q)-crossing(pa′, q,Ir′) can
haver′ in {r, a}.

Since case (b) does not occur,(pa, q,Ir) is among thek + 3 last clockwise special(p, q)-crossings
(in the standard order provided by Lemma 5.5). Indeed, at most k such special crossings(pa′, q,Ir′) end
in (λ1, λ3], and at most two of them can end afterλ3, namely those whose outer point is eitheru or w
(recalling that this outer point, together withp, q, uniquely determines the crossing). Therefore, we can
charge(pa, q,Ir) andχ to the edgepq, so this situation happens for at mostO(kn2) special quadruples
χ.
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wq ∈ DT(P \ {u′})
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λ3λwq
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(pa′, q,Ir′)
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Figure 44: Assuming (c) does not hold, we putλpq to be the first time in[λ3,∞) whenpq belongs to some
reduced triangulationDT(P \ {r′}), for r′ 6∈ Pχ. Similarly, we putλwq to be the last time in(−∞, λ0] whenwq
belongs to some reduced triangulationDT(P \ {u′}), for u′ 6∈ Pχ.

Preparing for cases (d) and (e). For the remainder of this stage, we assume that none of the cases (a),
(b) or (c) occurs. In particular, there is a special(p, q)-crossing(pa′, q,Ir′), whose outer pointr′ satisfies
r′ 6∈ {w, u}, that ends afterλ3. (Refer to Figure 44.) Therefore, and according to Lemma 4.1, pq belongs
toDT(P \{r′}) either at timeλ3 or at some later time. Moreover,r′ does not belong toPχ because, after
the preliminary pruning, there remain no clockwise special(p, q)-crossings(pa′, q,Ir′) with r′ ∈ {a, r}.
Let λpq be the first time in[λ3,∞) whenpq belongs to some triangulationDT(P \ {r′}), for some
r′ 6∈ Pχ. More precisely, we putλpq = λ3 if pq belongs to such a triangulation at timeλ3, and otherwise
we setλpq to be the first time afterλ3 whenpq entersDT(P \ {r′}) (for somer′ 6∈ Pχ).

A symmetric argument (adapted for clockwise special(w, q)-crossings) shows that there is a special
(w, q)-crossing(wa′, q,Ju′), with an outer pointu′ 6∈ {a, r}, that begins beforeλ0 (sowq ∈ DT(P \
{u′}) at some time before or atλ0). We defineλwq to be the last time in(−∞, λ0] when the edgewq
belongs to some triangulationDT(P \ {u′}), for someu′ 6∈ Pχ. In what follows, we user′ andu′ to
denote a fixed29 pair of points, outsidePχ, whose removal restores the Delaunayhood ofpq andwq at
respective timesλpq andλwq, and for whichλpq is smallest andλwq is largest.

Before proceeding to the cases (d) and (e), we first apply Theorem 2.2 inApq over the interval
(λ1, λpq), and then apply it inAwq over the symmetric interval(λwq, λ2), both times with the second
constantℓ ≫ k.

Consider the first application of Theorem 2.2. It is performed with respect to thereducedtriangu-
lation DT(P \ {r, r′}), which containspq at timeλpq. If (at least) one of the first two conditions of
Theorem 2.2 holds, we chargeχ, via (pa, q,Ir), either toΩ(ℓ2) (ℓ+2)-shallow co-circularities, or to an
(ℓ+2)-shallow collinearity. (Each of these events isℓ-shallow with respect toP \{r, r′}.) As before, the
crucial observation is that each co-circularity or collinearity, which occurs at some timet∗ ∈ (λ1, λpq),
is charged in the above manner by at mostO(k) special quadruplesχ. Indeed, the pointsp andq of χ
can be chosen inO(1) ways among the three or four points involved in the event. Furthermore, recall
thatχ is uniquely determined by the triple(a, p, q), so it suffices to guessa (for the chosenp, q andt∗).

Since case (b) has been ruled out, at mostk clockwise special(p, q)-crossings(pa′, q,Ir′) end in
(λ1, λ3). Moreover, assumingλpq > λ3, no such crossing can end in(λ3, λpq] unless its respective
outer pointr′ belongs to{w, u} (which happens for at most two special(p, q)-crossings). Therefore,
(pa, q,Ir) is among the lastk + 3 clockwise special(p, q)-crossings to end before timet∗.

To conclude, the above charging accounts for at mostO
(

kℓ2N(n/ℓ) + kℓn2β(n)
)

special quadru-
plesχ.

Finally, if Condition (iii) of Theorem 2.2 holds, then the Delaunayhood ofpq can be restored through-
out the interval[λ1, λpq] by removing a subsetA of at most3ℓ+ 2 points ofP (includingr andr′); see
Figure 45.

The second application of Theorem 2.2 inAwq is fully symmetric, and it is done with respect to the
setP \{u, u′} in the interval(λwq, λ2). If at least one of the Conditions (i), (ii) is satisfied, we dispose of

29Notice that we do not claim that the choicer′ andu′ is unique.
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Figure 45:Extending the almost-Delaunayhood ofpq andwq, in preparation for cases (d) and (e), respectively,
from Ir = [λ0, λ1] to [λ0, λpq], and fromJu = [λ2, λ3] to [λwq, λ3].

χ by charging it (via(wa, q,Ju)) to (ℓ+ 2)-shallow collinearities and co-circularities that occur inAwq

during(λwq, λ2). (Since case (b) has been ruled out,(wa, q,Ju) is among the firstk+3 special counter-
clockwise(w, q)-crossings to begin after each charged event. Hence, every collinearity or co-circularity
is charged at mostO(k) times.) As before, this accounts for at mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

special
quadruplesχ.

For each of the remaining special quadruples we have a setB of at most3ℓ+ 2 points (includingu
andu′) whose removal restores the Delaunayhood ofwq throughout[λwq, λ2]; see Figure 45 again.

To recap, in each of the remaining cases (d) and (e), we may assume the existence of the first time
λpq ≥ λ3 whenpq belongs to some reduced triangulationDT(P \ {r′}), and of the symmetric last time
λwq ≤ λ0 whenwq belongs to a similarly reduced triangulationDT(P \{u′}), whereu′ andr′ are fixed
points outsidePχ. In addition, there exist setsA (including r andr′) andB (includingu andu′), both
of cardinality at most3ℓ + 2, whose removal restores the Delaunayhood ofpq andwq throughout the
respective intervals[λ1, λpq] and [λwq, λ2] (and, therefore, extends the almost-Delaunayhood of these
edges to the respective larger intervals[λ0, λpq] = Ir ∪ [λ1, λpq] and[λwq, λ3] = [λwq, λ2] ∪ Ju).

Case (d). The pointa hits the edgepq during [λ1, λpq], or it hits the edgewq during the symmetric
interval [λwq, λ2].

In the former scenario, the triple(a, p, q) defines two Delaunay crossings withinDT((P \A)∪{p}),
and, in the latter, the symmetric triple(a,w, q) defines two Delaunay crossings withinDT((P \ B) ∪
{w}). In both cases, we can use Lemma 4.5, in combination with the sampling argument of Clarkson
and Shor, to show that the overall number of the relevant triples inP is at mostO(ℓn2). As in case (a),
this also bounds the overall number of such special quadruplesχ = (a, p, w, q).

Case (e).None of the previous cases (a)–(d) occurs, and none of the preliminary charging arguments
apply toχ.

In particular, since cases (a) and (d) have been ruled out, either the pointq either remains inL+
pa after

the endλ1 of Ir and until crossingwa (duringJu), or else it re-entersL−
pa during that period, through

the relative interior ofpa. Similarly, q must remain inL−
wa after crossingpa (during Ir) and until the

beginningλ2 of Ju, unless it crosseswa (from L+
wa toL−

wa) during that period.
In addition, we assume the existence of the setsA andB, as above, whose removal restores the

Delaunayhood ofpq andwq throughout the respective intervals[λwq, λ3] and[λ0, λpq].
Recall that, according to Lemma 4.4, the four points ofχ are co-circular at timesξ0 ∈ Ir \ Ju and

ξ1 ∈ Ju \Ir (see, e.g., Figure 40). Clearly, at least one of these co-circularities is extremal. We therefore
distinguish between two subcases (whose treatment remainsfully symmetric untill the beginning of Stage
4).

Case (e1): The co-circularity at timeξ1 has index3. In this case, we say thatχ is a right special
quadruple. We claim that in this case the edgepq is hit during(λ1, λpq] by the pointw, which crosses it
from L+

pq toL−
pq. To show this, we distinguish between two sub-scenarios.
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(i) If p lies inL−
wa whenq enters the opposite halfplaneL+

wa (duringJu), then the Delaunayhood ofpq
is violated, right after timeξ1, by w ∈ L+

pq anda ∈ L−
pq. See Figure 46 (left). Hence,pq is hit by at

least one of these two points during(ξ1, λpq] ⊆ (λ2, λpq], as prescribed in cases (i) and (ii) of Lemma
3.1 (case (iii) thereof cannot arise sinceξ1 has index3). Since case (d) has been ruled out,a cannot hit
pq during (λ0, λpq]. Hence,pq must be hit byw, which then crosses it fromL+

pq to L−
pq (this crossing

direction is also prescribed by the lemma).

q

p

a

q

q
w

p

a
p

q

w pp

Figure 46:Case (e1):ξ1 is the last co-circularity ofa, p, w, q. Arguing that the edgeqp is crossed byw during
(λ1, λpq]. Left: A possible motion ofq if p ∈ L−

wa whenq crosseswa (duringJu). Right: A possible motion ofp
(afterIr) if q re-entersL−

pa throughpa.

(ii) If p lies inL+
wa whenq enters this halfplane, thenq must re-enterL−

pa afterIr and before it reaches
L+
wa. Hence, the co-circularity at timeξ1 is as depicted in Figure 46 (right); that is, it occurs withp ∈ L+

wa

andq ∈ L−
wa. Since none of the preceding cases (a), (d) holds,q can re-enterL−

pa during this interval
only through the edgepa. Therefore, the counterclockwise variant of Lemma 5.1 (adapted for special
quadruples, as described in the introduction to this section) implies that in this case toow crossespq
from L+

pq to L−
pq, during(λ1, λ3] ⊆ (λ1, λpq]; see Figure 46 (right). (As a matter of fact, this collinearity

must occur during(λ1, ξ1).)

To conclude, in both sub-scenarios the edgeqp undergoes a Delaunay crossing byw within the
smaller triangulationDT((P \ A) ∪ {w}), and the respective intervalH = [λ4, λ5] of that crossing is
contained in[λ1, λpq]. (We again emphasize thatA includes both pointsr, r′ 6= w, so the edgepq belongs
toDT((P \ A) ∪ {w}) throughoutIr = [λ0, λ1] and at timeλpq.)

If w hitspq twiceduring(λ1, λpq], thenpq undergoes withinDT((P \A)∪{w}) either two (single)
Delaunay crossings, or a double Delaunay crossing, by the same pointw. We thus chargeχ to the
respective triple(p, q, w) and use Theorem 4.3 or Lemma 4.5, in combination with the probabilistic
argument of Clarkson and Shor, to show that the overall number of such triples(p, q, w) is at most
O(ℓn2). Since case (b) does not occur,(pa, q,Ir = [λ0, λ1]) is among the lastk + 3 special clockwise
(p, q)-crossings to end before the above crossings ofpq by w. (Namely, at mostk such(p, q)-crossings
end during(λ1, λ3], and at most two of them can end in(λ3, λpq], if λ3 6= λpq; see the analysis preceding
case (e) for more details.) In particular, any triple(p, q, w) is shared by at mostk+3 charging quadruples
χ. Hence, the above additional collinearities ofp, q, w are encountered for at mostO(kℓn2) special
quadruples.

A similar argument applies if the edgewq is hit by p during30 [λwq, λ2). In this case, the triple
(p, q, w) performs two distinct single Delaunay crossings within thetriangulationDT((P \ (A ∪ B)) ∪
{w, p}) (namely, the crossing ofqp byw, and the crossing ofwq by p). The same boundO(kℓn2) holds
in this case too.

We thus assume, from now on, thatw hitspq exactly once during(λ1, λpq], and thatp does not cross
wq during the symmetric interval[λwq, λ2). In particular, this implies thatq lies inL−

wa when it enters

30Sincep 6= u, the pointp cannot crosswq duringJu = [λ2, λ3], aswq belongs toDT(P \ {u}) during that interval.
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L+
pa duringIr. Indeed, otherwiseq would have to crossLwa (thereby leavingL+

wa) between the times
when it enters the halfplanesL+

pa andL+
wa (both times during the respective special crossings). Since

neither of the cases (a), (d) holds,q can crossLwa, for the first time, only withinwa. However, in this
latter case the counterclockwise variant Lemma 5.1 would imply thatp hitswq during [λwq, λ2) (which
has been ruled in the previous paragraph).

p

a

w
q

q

p does not crossqw

t

t

(pa, q, Ir)

λ0
λpq

ξ0ξ−1

(wa, q,Ju)

λ1

λ2 λ3ξ1

λwq

pq ∈ DT(P \ {r′})

wq ∈ DT(P \ {u′})

A, w crossesqp

B,

Figure 47:Case (e1). Left: A possible motion ofq before and duringIr. The Delaunayhood ofwq is violated,
right beforeξ0, by p anda. The points ofχ are involved, at some timeξ−1 ∈ [λwq, ξ0) in another co-circularity
(of index1). The order type ofχ remains fixed throughout[ξ−1, ξ0]. Right: A schematic summary of what we
eventually assume at the end of case (e1).

We may therefore assume thatw lies in L+
pa = L+

qa whenq crossespa (during Ir). See Figure 47
(left). Arguing as in the previous similar situations, we conclude that the Delaunayhood ofwq is violated,
right beforeξ0, by p ∈ L−

wq anda ∈ L+
wq. (That is,w enters the capB[p, q, a] ∩ L+

pa at timeξ0.) By
Lemma 3.1 (applied with respect toDT(P \ {u, u′})), and since none of the pointsa, p is allowed to
crosswq during [λwq, λ2], the four pointsp, q, a, w must be co-circular at some timeξ−1 ∈ [λwq, ξ0),
right before which the Delaunayhood ofpa is violated byq ∈ L−

pa andw ∈ L+
pa. (We must have

λwq ≤ ξ−1 < ξ0 < λ2 < ξ1.) Moreover,wq is intersected bypa throughout[ξ−1, ξ0]. (In other words,
the order type ofa, p, w, q remains fixed there.)

A schematic summary of what we assume in case (e1) (by the end of its analysis) is given in Figure
47 (right).

Case (e2): The co-circularity at timeξ0 has index1. In this case, we say thatχ is a left special
quadruple. We apply a fully symmetric topological analysis (in which we switch the roles ofpq andwq,
and reverse the direction of the time axis).

q
p

a

w

q

q
w

a

p

w
w

w

q

Figure 48: Case (e2):ξ0 is thefirst co-circularity ofa, p, w, q. Arguing thatp hits qw in [λwq, λ2). Left: A
possible motion ofq if w lies inL+

pa = L+
qa whenq hitspa (duringIr). Right: A possible motion ofw if q hitswa

also beforeJu (and after its hitspa in Ir).

Briefly, we use one of the Lemmas 3.1 or 5.1 to show thatp crosseswq, fromL+
wq toL−

wq, during the
interval[λwq, λ2]. As in case (e1), we distinguish between two possible scenarios, now depending on the
location ofw whenq crossespa (duringIr).
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(i) If w lies inL+
pa whenq crossespa duringIr then the Delaunayhood ofwq is violated, right before

ξ0, by p ∈ L−
wq anda ∈ L+

wq. Hence, the promised crossing follows from thetime-reversedvariant of
Lemma 3.1 (and because case (d) has been ruled out); see Figure 48 (left).

We again emphasize that, in this subscenario of case (e2), the crossing ofwq by p occurs afterλwq

andbeforeξ0. (Note that Figure 48 (left) depicts a possible trajectory of q in the standard time direction.
In the time-reversed application of Lemma 3.1, the pointq movesbackwards, sop crosseswq from L−

wq

toL+
wq. In the standard time direction, the crossing is fromL+

wq to L−
wq, as asserted.)

(ii) If w lies inL−
pa = L−

pq (i.e.,q andp lie in L+
wa) whenq crossespa, thenq will have to enterL−

wa

before the beginning ofJu (and only through the interior ofwa, as cases (a) and (d) have been ruled
out). Therefore, the asserted crossing ofwq by p now follows from a suitable (counterclockwise and
time-reversed) variant of Lemma 5.1; see Figure 48 (right).

(Again, Figure 48 (right) depicts a possible trajectory ofw in the standard time direction. In the
time-reversed application of Lemma 5.1, the roles ofp andw in the statement of the lemma are switched,
andp crosseswq in the opposite direction, fromL−

wq to L+
wq.)

If p hitswq twice during[λwq, λ2), or if w hits pq during (λ1, λpq], then we can dispose ofχ using
Theorem 4.3 or Lemma 4.5. Namely, we then argue that the triple (p,w, q) is involved withinDT((P \
(B∪A))∪{q, w}) either in two distinct single Delaunay crossings, or in one double Delaunay crossing.
Hence, the overall number of such triples inP is at mostO(ℓn2). Furthermore, any triple(p,w, q) is
shared by at mostk + 3 special quadruplesχ (namely, such special quadruplesχ = (a, p, w, q) whose
second crossings(wa, q,Ju) are among the firstk + 3 clockwise special(w, q)-crossings to begin after
p crossesqw from L−

qw to L+
qw); see case (e1) for a fully symmetric argument.
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t

(pa, q, Ir)
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B, p crossesqw

λ1ξ0λ0
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λpqξ2

λ3
λ2

(wa, q,Ju)

A, w does not crossqp

Figure 49: Case (e2). Left: A possible motion ofq duringJu, and afterwards. The Delaunayhood ofpq is
violated, right afterξ1, by a andw. The points ofχ are involved, at some timeξ2 ∈ (ξ1, λpq] in another co-
circularity (of index3). The order type ofχ remains fixed throughout[ξ1, ξ2]. Right: A schematic summary of
what we eventually assume at the end of case (e2).

To conclude, we may assume thatp hitswq only once during[λwq, λ2) (crossing it fromL+
wq toL−

wq),
and thatw does not crosspq during[λ1, λpq]. Lemma 3.1 then implies that the points ofχ are co-circular
at some timeξ2 ∈ (λ1, λpq], and thatpq is intersected byaw throughout[ξ1, ξ2]; see Figure 49 (left). A
schematic summary of what we assume by the end of case (e2) is given in Figure 49 (right).

Probabilistic refinement. For each clockwise special(p, q)-crossing(pa′, q,Ir′) that ends during
(λ1, λpq) we add the corresponding pointa′ to the obstruction setA of pq. Similarly, for each clockwise
special(w, q)-crossing(wa′, q,Ju′) that begins during(λwq, λ2) we add the pointa′ to the obstruction
setB of wq. As in Section 5, this is done in order to dispose of the corresponding special(p, q)- and
(w, q)-crossings. Since we add at mostk + 2 elements to each set, and sincek ≪ ℓ, each of the sets
A,B still contains at most4ℓ points ofP .

Consider a subsetR of ⌈n/ℓ⌉ points chosen at random fromP . Let FR denote the refined family
induced byF overR. Notice that the following two conditions hold simultaneously with probability at
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leastΩ(1/ℓ6): (1) The 6 points ofPχ belong toR, and (2)R includes none of the points of(A∪B)\Pχ.
Assume that the above sampleR is indeed successful for the chosenχ = (a, p, w, q). Then the points

of Pχ still yield a Delaunay consecutive special quadruple (of the same topological type, which can be
either right or left) with respect toR andFR. We continue to denote this new quadruple asχ but note
that the respective intervalsIr andJu of the special crossings(pa, q,Ir) and(wa, q,Ju) may shrink as
we pass fromDT(P ) toDT(R). We next review the additional properties gained byχ in DT(R).

First, recall that the old timeλpq (defined after case (c) in terms ofP ) was accompanied by a point
r′ 6∈ Pχ, whose removal restored the Delaunayhood ofpq at that time. Sincer′ is among the omitted
points ofA, we can redefineλpq as the first time in[λ3,∞) whenpq belongs toDT(R). Similarly, we
redefineλwq as the last time in(−∞, λ0] whenwq belongs toDT(R). (In both cases, we refer to the
new values ofλ0 andλ3.) By what has just been noted, the new value ofλpq (resp., ofλwq) decreases
(resp., increases) from its old value.

Second, the following three conditions hold with respect toR andFR, and with the new values of
λ0, λ1, λ2, λ3, λpq andλwq (see Figure 50 for a schematic summary):

(S1) The edgepq belongs toDT(R \ {a, r, w, u}) throughout the interval[λ0, λpq]. Furthermore, no
clockwise special(p, q)-crossings(pa′, q,Ir′) end during(λ1, λpq) (except perhaps for the special cross-
ings ofpu andpw by q).

(S2) The edgewq belongs toDT(R \ {p, a, r, u}) throughout the interval[λwq, λ3]. Furthermore, no
clockwise special(w, q)-crossings(wa′, q,Iu′) begin during(λwq, λ2) (except perhaps for the special
crossings ofwr andwp by q).

(S3a)If χ is aright quadruple, then the setP \ {a, r, u} induces a Delaunay crossing(qp,w,H) which
occurs within(λ1, λpq]. Furthermore,w hits pq only once during(λ1, λpq], so this is a single Delaunay
crossing. Moreover, the points ofχ are co-circular at some timeξ−1 ∈ [λwq, ξ0), and the edgeqw is
violated bya ∈ L+

qw andp ∈ L−
qw throughout the interval(ξ−1, ξ0). Finally, p does not crossqw in

[λwq, λ2].

(S3b) If χ is a left quadruple, then the setP \ {a, r, u} induces a Delaunay crossing(qw, p,H), which
occurs within[λwq, λ2). Furthermore,p hitswq only once during[λwq, λ2), so this is a single Delaunay
crossing. Moreover, the points ofχ are co-circular at some timeξ2 ∈ (ξ1, λpq], and the edgepq is
violated bya ∈ L−

pq andw ∈ L+
pq throughout the interval(ξ1, ξ2). Finally, w does not crossqp in

[λ1, λpq].

Definition. Assume that we are given a setP of moving points, and a refined familyF . Let χ =
(a, p, w, q) be a consecutive Delaunay special quadruple that is defined with respect toF andP . We
say thatχ is 1-restrictedif it satisfies the above three conditions (S1), (S2), and (S3a) or (S3b), where
the reference setsR andFR are replaced byP andF , respectively. (We also implicitly require that the
valuesλpq andλwq, mentioned in conditions (S1) and (S2), actually exist.)

Let Φ1(m) denote the maximum number of1-restricted special quadruples that can be defined over
a set ofn moving points (and a refined family of regular Delaunay quadruples). Then the following
recurrence holds:

Φ0(n) ≤ O
(

ℓ6Φ1(n/ℓ) + kℓ2N(n/ℓ) + k2N(n/k) + kℓn2β(n)
)

.

Proposition 6.2. With the above assumptions, any ordered triple(p, q, w) can be shared by at most three
1-restricted special quadruplesχ = (a, p, w, q) of each topological type (i.e., right or left).

Proof. Let χ = (a, p, w, q) be a1-restricted right special quadruple. By Conditions (S2) and (S3a),
(pa, q,Ir) is among the3 last special counterclockwise(p, q)-crossings to end beforew entersL+

pq

(during H). Hence,a is determined, up to three possible values, by the choice of(p, q, w). A fully
symmetric argument applies ifχ is a left special quadruple.
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Figure 50:A schematic summary of the properties ofχ within DT(R). The edgepq is Delaunay at timeλpq , and
it is almost Delaunay (with the omission of onlya, r, u) throughout[λ0, λpq ]. The edgewq is Delaunay at time
λwq, and it is almost Delaunay (with the same omission) throughout [λwq, λ3]. Top: If χ is a right quadruple, then
qp undergoes the crossing(qp, w,H) within (λ1, λpq], and we encounter an additional co-circularity ofa, p, w, q
at some timeξ−1 ∈ [λwq, ξ0). Bottom: Ifχ is a left quadruple, thenqw undergoes the crossing(qw, p,H) within
[λwq, λ2), and the additional co-circularity occurs at some timeξ2 ∈ (ξ1, λpq] (below).

The subsequent stages — Overview.Fix a refined familyF , defined with respect to an underlying set
P of n moving points. Letχ = (a, p, w, q) be a1-refined Delaunay quadruple, consistent withP andF
and induced by special crossings(pa, q,Ir) and(wa, q,Ju). The correspondence between special cross-
ings and their ordinary quadruples inF implies that the edgespq andwq undergo Delaunay crossings
by the respective outer pointsr andu; see Figure 41. Furthermore, ifχ is a right special quadruple, then
condition (S3a) implies thatpq or, more precisely, its reversely oriented copyqp, undergoes a Delaunay
crossing (in the reduced triangulationDT(P \{a, r, u})) byw, so the pointsr andw crosspq in opposite
directions. Similarly, if χ is a left special quadruple, then the edgewq undergoes two oppositely oriented
Delaunay crossings, byu andp (the latter occuring withinDT(P \ {a, r, u}), as above).

Our general strategy is to chargeχ to one of the above configurations(p, q, r, w) or (w, q, u, p)
(depending on the right or left nature ofχ), which will be referred to asterminal quadruples. Notice
that each of those configurations involves one of the outer points r andu, in addition to some three
regular points ofχ. Nevertheless, several preparatory restrictions need to be enforced upon our special
quadruples before actually charging them to terminal quadruples. Informally, this is done to further
restrict the arising terminal quadruples and, consequently, to facilitate their eventual treatment at Stage 4
and in Section 7.

At the subsequent Stages 2 and 3, we do not distinguish between left and right special quadruples
χ = (a, p, w, q). The topological restrictions enforced during these stages on special quadruples are
fairly analogous to the ones enforced on ordinary quadruples during the parallel stages in Section 5.
Namely, for eachχ as above we extend the almost-Delaunayhood of its three edgesaq, pq, andwq from,
respectively,[λ0, λ3], [λ0, λpq], and [λwq, λ3] to larger intervals, which cover[λwq, λpq]. The intimate
correspondence between special crossings and ordinary quadruples is largely ignored throughout these
technical stages, and the outer pointsr andu do not play any meaningful role.
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At the last Stage 4, we finally distinguish between left and right special quadruples. In both cases,
we exploit the interplay between our quadruples and their respective outer pointsr andu, which re-enter
the analysis and finally give rise to terminal quadruples. (As noted above, for each of the two types, only
one outer point is used.) This analysis is preceded by several preparatory charging arguments, analogous
to the ones described in Section 5.6.

6.3 Stage 2

Letχ = (a, p, w, q) be a1-restricted (Delaunay) special quadruple. Our next goal isto extend the almost
Delaunayhood ofqa from [λ0, λ3] = [Ir,Ju] to some larger interval[ξ−qa, ξ

+
qa], which covers[λwq, λpq].

As in the parallel Section 5.4, we proceed in two steps, afterfixing the constant parameters12 < k ≪ ℓ.

Stage (2a).First, we consider the interval[λwq, λ3] where, by assumption,wq is almost Delaunay. (It
is in fact Delaunay inP \ {u} throughoutJu = [λ2, λ3] and at timeλwq.) Refer to Figure 51 (left).
If at leastk special counterclockwise(a, q)-crossings(w′a, q,Ju′) (in F) begin during[λwq, λ2), then
we can bound the overall number of such special quadruplesχ via the already routine combination of
Theorem 5.3 with random sampling.

Note, as a preparation, that the preliminary pruning (described in at beginning of this section) ensures
that each of the above special(a, q)-crossings(w′a, q,Ju′), whereu′ is its respective outer point, satisfies
{w′, u′} ∩ Pχ = ∅. Therefore, Lemma 5.5 implies thatq hits each of the respective edgesw′a (during
Ju′) before it hitswa (duringJu).

t

t

ξ−qa

λ1 Ju λ3Irλ0 λ2

A

λwq

qa ∈ DT(P \ {u′})

(w′a, q, Iu′)

qa ∈ DT(P \ {r′})

λpq

(p′q, a, Ir′)

λ0 Ir λ1 λ2 λ3Ju

t

t

ξ+qaB

Figure 51:Extending the almost-Delaunayhood ofqa from [λ0, λ3] to [ξ−qa, λ0] (left) and to[λ3, ξ
+
qa] (right).

To set the stage for an application of Theorem 5.3, we consider a random subset̂P ⊂ P of ⌈n/2⌉
points, and argue that, with some fixed positive probability, (wa, q,Ju) becomes a(w, q,Θ(k))-chargeable
Delaunay crossing in̂P (with a potentially shrunk intervalJu), with the reference interval[λwq, λ3] (the
proof of this property is identical to that given in Sections5.6 and 6.2). Briefly, this follows becausêP
satisfies the following two conditions with probabilityΩ(1): (1) P̂ includesa,w, q but notu, and (2)
for at least a constant fraction of the above special(a, q)-crossings(w′a, q,Ju′), P̂ includesw′ but not
u′. The former condition guarantees thatP̂ yields a Delaunay crossing(wa, q,J ), for some interval
J ⊆ Ju, and thatqa belongs toDT(P̂ ) at timesλwq andλ3. The latter condition implies thatΩ(k)
(ordinary) counterclockwise(a, q)-crossings occur within[λwq, λ2) ∪ J ⊆ [λwq, λ3].

Theorem 5.3 now implies that the overall number of the above triples (w, q, a) in P̂ is at most
O
(

k2N(n/k) + kn2β(n)
)

. By Proposition 6.1, this yields the same bound on the maximum number
of the special quadruplesχ that fall into the present scenario. Assume, then, that at most k clockwise
special(a, q)-crossings(w′a, q,Ju′) begin during[λwq, λ2).

If no clockwise special(a, q)-crossings begin in(−∞, λwq], then (wa, q,Ju) is among the first
k + 1 such special(a, q)-crossings(w′a, q,Ju′), so it can be charged to the pair(a, q). (After the
preliminary pruning, there remain no counterclockwise special (a, q)-crossings(w′a, q,Ju′) with u′ ∈
Pχ. Furthermore, Lemma 4.1 implies that no other such(a, q)-crossings, withu′ 6∈ Pχ, can begin
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in [ξ−qa, λwq).) Therefore, and because of Proposition 6.1, this happens for at mostO(kn2) special
quadruplesχ.

Assume next that some clockwise special(a, q)-crossing(w′a, q,Ju′) begins in(−∞, λwq]. There-
fore, using Lemma 4.1, there is a last timeξ−qa in (−∞, λwq] when the edgeqa belongs to some reduced
triangulationDT(P \{u′}), for u′ 6∈ Pχ. In what follows, we useu′ to denote such a (fixed) point whose
removal restores the Delaunayhood ofqa at (the last possible) timeξ−qa.

To proceed, we apply Theorem 2.2 inAqa over the interval(ξ−qa, λ2). We do this for the above,
reduced triangulationDT(P \ {u′}), and with the second constantℓ. If at least one of the Conditions (i),
(ii) of that theorem holds, we chargeχ (via (wa, q,Ju)) either to an(ℓ + 1)-shallow collinearity or to
Ω(ℓ2) (ℓ+ 1)-shallow co-circularities. (Each of these events isℓ-shallow inDT(P \ {u′}).) The choice
of ξ−qa implies that no special(a, q)-crossing(w′a, q,Ju′) begins in[ξ−qa, λwq), and therefore, arguing as
above, it guarantees that any event inAqa is charged by at mostO(k) quadruples. Hence, this charging
accounts for at mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

quadruplesχ.
Finally, if Condition (iii) of Theorem 2.2 holds, then thereis a setA of at most3ℓ+1 points (including

u′) whose removal restores the Delaunayhood ofqa throughout[ξ−qa, λ3].

Stage (2b).We similarly use Theorem 5.3 to extend the almost-Delaunayhood ofqa from Ir = [λ0, λ1]
to the interval(λ1, λpq] where, by assumption, the edgepq is almost Delaunay. (It is Delaunay inP \{r}
throughoutIr = [λ0, λ1] and at timeλpq.) The argument is fully symmetric to the one in Stage (2a), but
we briefly repeat it for the sake of completeness.

Refer to Figure 51 (right). If at leastk special(a, q)-crossings(p′a, q,Ir) end in(λ1, λpq] then we
again use Theorem 5.3 to show that the number of such special quadruples is at mostO

(

k2N(n/k) + kn2β(n)
)

.
In short, we argue that a random subset of⌈n/2⌉ points yields a(p, q,Θ(k))-chargeable Delaunay cross-
ing of pa by q, with probabilityΘ(1).) Hence, we can assume that at mostk special(a, q)-crossings, as
above, end during(λ1, λpq].

If no clockwise special(a, q)-crossings begin in[λpq,∞), then(wa, q,Ju) is among the lastk + 1
such special(a, q)-crossings(p′a, q,Ir′), so it can be charged to the pair(a, q). Clearly, that scenario
occurs for at mostO(kn2) special quadruplesχ.

Otherwise, we choose the first timeξ+qa in [λpq,∞) when the edgeqa belongs to some reduced
triangulationDT(P \ {r′}), with r′ 6∈ Pχ. In what follows, we user′ to denote such a (fixed) point
whose removal restores the Delaunayhood ofqa at timeξ+qa. We then apply Theorem 2.2 inAqa over the
interval(λ1, ξ

+
qa). This is done with respect to the point setP \ {r′}, and with the constantℓ.

If at least one of the Conditions (i), (ii) is satisfied, we dispose ofχ by charging it (via(pa, q,Ir)) to
(ℓ+1)-shallow events inAqa, and argue, as above, that each event is charged by at mostO(k) quadruples.
Hence, the above charging accounts for at mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

special quadruples.
Finally, if none of the preceding scenarios occur, we end up with a subsetB of at most3ℓ+ 1 points

(includingr′) whose removal restores the Delaunayhood ofaq throughout[λ0, ξ
+
qa].

Probabilistic refinement. We say that a special quadrupleχ = (a, p, w, q) is 2-restricted if (1) it is
1-restricted with respect to the underlying setP and refined familyF , and (2) it satisfies the following
new condition:

(S4) The edgeqa belongs toDT(P \ {p,w, u, r}) throughout the interval[ξ−aq, ξ
+
aq], whereξ−aq (resp.,

ξ+aq) denotes the last time in(−∞, λwq] (resp., first time in[λpq,∞)) when the edgeaq is Delaunay (and
where we assume that the timesξ−qa, ξ

+
qa exist).

Let Φ2(m) denote the maximum number of2-restricted special quadruples that can be defined over
a set ofm moving points (and a refined familyF). The preceding analysis, combined with the standard
sampling argument of Clarkson and Shor, leads to the following recurrence:

Φ1(n) = O
(

ℓ6Φ2(n/ℓ) + kℓ2N(n/ℓ) + k2N(n/k) + kℓn2β(n)
)

. (8)
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6.4 Stage 3

To bound the above quantityΦ2(n), we fix a setP of n moving points, and a refined familyF . In
addition, we fix a2-restricted special quadrupleχ = (a, p, w, q) (with outer pointsr andu), which is
defined with respect toP andF .

Recall that the edgepq is Delaunay at timeλpq, and that it is almost Delaunay during[λ0, λpq]
(it is Delaunay with the omission ofa,w, r and u). Similarly, wq is Delaunay at timeλwq, and it
is almost Delaunay during[λwq, λ3] (it is Delaunay with the omission ofa, p, r, u). Our goal in this
stage is (i) to extend the almost-Delaunayhood ofpq to a (possibly) larger interval[ξpq, λpq], for some
ξpq ≤ ξ−qa ≤ λwq, and (ii) to extend the almost-Delaunayhood ofwq to an interval[λwq, ξwq], for some
ξwq ≥ ξ+qa ≥ λpq.

Our analysis consists of two symmetric arguments, similar to the ones used in Section 6.2 (cases
(b) and (c)). Both arguments use Theorem 5.3 (in combinationwith the almost-Delaunayhood ofqa in
[ξ−qa, ξ

+
qa]) and refer to the same pair of constant parameters12 < k ≪ ℓ.

Extending the almost-Delaunayhood ofpq. Refer to Figure 52 (left). If at leastk special(p, q)-
crossings(pa′, q,Ir′) begin during[ξ−qa, λ0), then we can invoke Theorem 5.3 to show that the number
of such special quadruplesχ is at mostO

(

k2N(n/k) + kn2β(n)
)

.
Specifically, recall that the edgeqa is Delaunay at timesξ−qa, ξ

+
qa, and that it is almost Delaunay (with

only four potentially obstructing pointsp,w, u, r) during [ξ−qa, ξ
+
qa] ⊃ [ξ−qa, λ0) ∪ Ir = [ξ−qa, λ1]. Hence,

a random subset̂P ⊂ P of ⌈n/2⌉ points would make(pa, q,Ir), with some fixed positive probability,
an(a, q,Θ(k))-chargeable crossing in̂P with [ξ−qa, λ1] as a reference interval (whereξ−qa andλ1 are still

defined with respect toP , andIr is possibly shrunk in̂P ).

pq ∈ DT(P \ {r′})

pq ∈ DT(P \A)

t

t

Ju λ3λ2λ1Irλ0 ξ+qa

λpq

ξ−qa

(pa′, q,Ir′)ξpq
(wa′, q,Ju′)

ξ+qa

ξ−wq

wq ∈ DT(P \ {u′})

Juλ2λ1Irλ0
t

t

ξ−qa

λwq
wq ∈ DT(P \ B)

λ3

Figure 52: Left: Extending the almost-Delaunayhood ofpq from [λ0, λpq ] to [ξpq, λpq ]. Right: Extending the
almost-Delaunayhood ofwq from [λwq, λ3] to [λwq, ξwq].

Assume then that at mostk clockwise special(p, q)-crossings begin during[ξ−qa, λ0). If no such
(p, q)-crossings(pa′, q,Ir′), with r′ 6∈ Pχ, begin beforeλ0, then(pa, q,Ir) is among the firstk + 3
clockwise special(p, q)-crossings (including such crossings whose respective outer pointr′ belongs to
Pχ).31 Clearly, the overall number of such quadruplesχ is at mostO(kn2).

We may therefore assume that the previous sub-scenario doesnot occur. In particular, there exists
ξpq which is the last time in(−∞, ξ−qa] whenpq belongs to some reduced triangulationDT(P \ {r′}),
for r′ 6∈ Pχ. In what follows, we user′ to denote such a fixed point, whose removal restores the
Delaunayhood ofpq at (the latest possible) timeξpq.

To proceed, we apply Theorem 2.2 inApq over the interval(ξpq, λ0). We do so with the second
constantℓ, and with respect to the reduced point setP \ {r′}.

If at least one of the Conditions (i), (ii) of Theorem 2.2 holds, we chargeχ (via (pa, q,Ir)) either to
Ω(ℓ2) (ℓ+ 1)-shallow co-circularities, or to an(ℓ+ 1)-shallow collinearity. As above, the choice ofξpq
guarantees that(pa, q,Ir) is among the firstk + 3 special(p, q)-crossings to begin after any event that

31Recall from Section 6.2 that at most two such crossings haver′ ∈ Pχ.
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we charge withinApq, so any event is charged as above by at mostO(k) quadruplesχ. Hence, the above
charging is applicable for at mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

special quadruples.
Finally, if Condition (iii) of Theorem 2.2 is satisfied, we have a setA of at most3ℓ + 1 points

(includingr′, and perhaps some ofa,w, r, u) whose removal restores the Delaunayhood ofpq throughout
[ξpq, λ0]. We further add to our conflict setA every pointa′ whose respective(p, q)-crossing(pa′, q,Ir′)
begins in[ξpq, λ0). (This is done to ensure that these(p, q)-crossings do not arise in the following Stage
4. Note that at most2 such crossings(pa′, q,Ir′) begin in[ξpq, ξ−qa), and each of them satisfiesr′ ∈ Pχ.)
Since there are at mostk + 2 crossings of this kind, and sincek ≪ ℓ, the cardinality of the augmented
setA does not exceed4ℓ.

Extending tha almost-Delaunayhood ofwq. The argument is fully symmetric to the one that was
used forpq, but we briefly repeat it for the sake of completeness.

Refer to Figure 52 (right). If at leastk special(w, q)-crossings(wa′, q,Ju′) end during(λ3, ξ
+
qa],

we consider a random subset of⌈n/2⌉ points and argue as before that(wa, q,Ju) becomes, with some
fixed positive probability, an(a, q,Θ(k))-chargeable special crossing (now with[λ2, ξ

+
qa] as the reference

interval). Therefore, Theorem 5.3 implies that the number of such special quadruplesχ is at most
O
(

k2N(n/k) + kn2β(n)
)

.
Assume then that at mostk clockwise special(w, q)-crossings(wa′, q,Ju′) end during(λ3, ξ

+
qa].

Furthermore, we may assume that there existsξwq, which is the first time in[ξ+qa,∞) when the edgewq
belongs to some triangulationDT(P \ {u′}), for u′ 6∈ {a, r, w, u}. (Otherwise,(wa, q,Ju) would be
among the lastk + 3 clockwise special(w, q)-crossings, which can happen for at mostO(kn2) special
quadruples of the kind considered here.) In what follows, weuseu′ to denote a fixed point whose removal
restores the Delaunayhood ofwq at timeξwq.

To proceed, we apply Theorem 2.2 inAwq over the interval(λ3, ξwq), with the second parameterℓ
and respect to the point setP \ {u′}.

If at least one of the Conditions (i), (ii) of Theorem 2.2 holds, we dispose ofχ by charging it (via
(wa, q,Ju)) to (ℓ + 1)-shallow events inAwq. The choice ofξwq guarantees that each collinearity or
co-circularity is charged in this manner by at mostO(k) quadruplesχ. Hence, the above charging is
applicable for at mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

special quadruples.
Finally, if Condition (iii) of Theorem 2.2 is satisfied, we end up with a subsetB of at most3ℓ + 1

points (includingu′ and perhaps some ofa, p, r, u) whose removal restores the Delaunayhood ofwq
throughout the interval[λ3, ξwq]. We add toB every pointa′ whose respective crossing(wa′, q,Ju′) ends
in (λ3, ξ

+
qa]. (As before, this is done to ensure that these(w, q)-crossings do not arise in the following

Stage 4.) As above, the cardinality of the augmented setB does not exceed4ℓ.

Probabilistic refinement. We say that a special quadrupleχ is 3-restrictedif (1) it is 2-restricted, and
(2) it satisfies the following additional conditions:

(S5)The edgepq belongs toDT(P \ {a,w, u, r}) throughout the interval[ξpq, λpq], whereξpq denotes
the last time in(−∞, ξ−qa] when the edgepq is Delaunay (and we assume the existence of such a time
ξpq). In addition, at most two special(p, q)-crossings(pa′, q,Ir′) begin during[ξpq, λ0) (namely, the
possible crossings ofpw andpu by q).

(S6)The edgewq belongs toDT(P \ {a, p, u, r}) throughout the interval[λwq, ξwq], whereξwq denotes
the first time in[ξ+qa,∞) when the edgewq is Delaunay (and we assume the existence of such a time
ξwq). In addition, at most two special(w, q)-crossings(wa′, q,Ju′) end during(λ3, ξwq] (namely, the
possible crossings ofwp andwr by q).

Let ΦR
3 (m) (resp.,ΦL

3 (m)) denote the maximum number of3-restricted right (resp., left) special
quadruples that can be defined over a set ofm moving points (and a fixed refined familyF). The
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preceding analysis, in combination with the routine sampling argument of Clarkson and Shor, implies
the following recurrence:

Φ2(n) = O
(

ℓ6ΦR
3 (n/ℓ) + ℓ6ΦL

3 (n/ℓ) + kℓ2N(n/ℓ) + k2N(n/k) + kℓn2β(n)
)

(9)

6.5 Stage 4: The number of right quadruples

To bound the maximum possible numberΦR
3 (n) of 3-restricted right special quadruples, we fix the

underlying setP of n moving points, and a refined familyF .

Topological setup. According to Proposition 6.2, any3-restricted quadrupleχ = (a, p, w, q) shares
its triple (p, q, w) with at most two other such quadruples. (In other words, it suffices to bound the
overall number of the corresponding triples(p, q, w).) We strengthen the above property, by considering,
without loss of generality, at mostone3-restricted right quadruple for each triple(p, q, w). Therefore, in
what follows every special quadrupleχ = (a, p, w, q) under consideration will be uniquely determined
by its triple(p, q, w).

To proceed, we fix a3-restricted right special quadrupleχ = (a, p, w, q), with respect toP andF ,
whose two special(a, q)-crossings take place during the intervalsIr = [λ0, λ1] andJu = [λ2, λ3] (in
this order), wherer andu are the respective outer points. Recall that the original “regular” familyF
includes the quadruplesσ1 = (p, q, a, r) andσ2 = (w, q, a, u).

Refer to Figure 53. Sinceχ is 3-restricted, there exist a timeλwq ≤ λ0 which is the last time before32

λ0 when the edgewq belongs toDT(P ), and a symmetric first timeλpq ≥ λ3 whenpq belongs to
DT(P ). By Condition (S4), there exist the first timeξ+qa in [λpq,∞), and the last timeξ−qa in (−∞, λwq]
when the edgeqa is Delaunay, so that this edge is almost-Delaunay during theinterval [ξ−qa, ξ

+
qa] (with

only p,w, u, r as the possible obstructing points). Moreover, by Conditions (S5) and (S6), there exist
the first timeξwq ∈ [ξ+qa,∞), and the symmetric last timeξpq ∈ (−∞, ξ−qa] when the respective edges
wq andpq are Delaunay. Moreover,wq andpq are almost Delaunay during, respectively,[λwq, ξwq] and
[ξpq, λpq] (each with four obstructing points, as specified in these conditions).

q

p

q

w

q
λ0

t

λ4 λ5λ1
ξpq λwq

ξ−1 ξ0 λq

H
t

λpqξwqIr

B[p, q, w]

p

w

q a

C−
qw

Wqpw

Figure 53:The topologt76ical setup during the interval(ξ−1, λq) ⊆ [λwq, λpq ]. Left: The edgeqp is hit at some
time λq ∈ [λ1, λpq] by w, so it undergoes a Delaunay crossing(qp, w,H = [λ4, λ5]) within DT(P \ {a, r, u}).
Right: We haveλwq ≤ ξ−1 < ξ0 < λ4 < λq < λ5 < ξwq. Bottom: The motion ofB[p, q, w] is continuous
throughout[ξ−1, λq) (the hollow circles represent the co-circularities at times ξ−1 andξ0).

32If wq is Delaunay at timeλ0 then we putλwq = λ0.
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Let us summarize what we know so far about the motion ofa, p, w, q. By Condition (S3a), these
points are co-circular at timesξ−1 ∈ [λwq, λ0), ξ0 ∈ Ir \ Ju, and ξ1 ∈ Ju \ Ir. Moreover, the
Delaunayhood ofwq is violated, throughout(ξ−1, ξ0), by the pointsa ∈ L+

wq and p ∈ L−
wq (so, in

particular, neither of these points crosseswq during this period). Hence,a lies throughout that interval
within the wedgeWqpw = L+

pq ∩L−
pw and inside the capC−

qw = B[p, q, w]∩L−
qw.We emphasize that the

order type of the quadruple(q, p, w, a) remains unchanged during(ξ−1, ξ0).
In addition, by the same Condition (S3a), the smaller setP \ {a, r, u} yields a (single) Delaunay

crossing(qp,w,Hχ), whose intervalH = Hχ = [λ4, λ5] is contained in(λ1, λpq]. In particular,w hits
pq at some moment33 λq ∈ H, whenw crossesLpq from L+

pq to L−
pq. Sincew lies inL+

pq at timesξ−1

andξ0, no further collinearities ofp,w, q can occur during[ξ−1, λq). (Otherwise, the pointw would
have to re-enterL+

pq beforeλq, and then the triplep, q, w would be collinear three times, contrary to our
assumptions.) To conclude, the discB[p, q, w] moves continuously throughout the interval[ξ−1, λq),
which is obviously contained in[ξpq, λpq] ∩ [λwq, ξwq] = [λwq, λpq].

Overview. We fix three constant parametersk, ℓ, h, such that12 < k ≪ ℓ ≪ h, and distinguish
between four possible cases. The first two cases (a)–(b) are fairly similar to the cases (a)–(b) that we
encountered in Section 5.6 when handling ordinary quadruples, and case (c) is very similar to the pre-
ceding case (b). In case (a) we bound the number of right special quadruplesχ, that fall into it, using
Theorem 5.3. In each of the subsequent cases (b) and (c), we manage to bound the number of special
quadruplesχ, that fall into that case, by charging them within the arrangementsApw, Apq andAwq. (The
crucial difference between the two setups is that the extremal co-circularity amongξ0 andξ1 now occurs
during thesecondcrossing(wa, q,Ju), so the topological analysis of Section 5.6 must be performed in
a “time-reversed” manner.)

In the final, most involved, case (d), we re-introduce at lastthe outer pointr. (The other outer point
u is not used in the analysis of right special quadruples.) Thecorrespondence between(pa, q,Ir) and
its ancestor quadrupleσ = (p, q, a, r) in F implies that the pointsr andw cross the same edgepq in
opposite directions. Hence,χ can be charged to the resulting so-calledterminal quadruple(p, q, r, w).
In Section 7 we express the number of these terminal quadruples in terms of more elementary quantities,
that were introduced in Section 2. This, combined with a parallel (and mostly symmetric, although con-
siderably simplified) analysis of3-restrictedleft special quadruples, finally produces a complete system
of recurrences whose solution isO(n2+ε), for anyε > 0.

In what follows, we consider the familyGR
pw of all 3-restricted right special quadruples of the form

χ′ = (a′, p, w, q′), which share their middle pair withχ. We may assume that eachχ′ = (a′, p, w, q′) ∈
GR
pw is uniquely determined by the choice ofq′ (as the only “free” point in the triple(p, q′, w)). Note that

the setPχ′ of eachχ′ includes, in addition to the four pointsa′, p, w, q′ of χ′, the respective outer points
r′ andu′ of its special crossings(pa′, q′,Ir′) and(wa′, q′,Ju′). Furthermore, each of these quadruples
χ′ ∈ GR

pw is accompanied by a counterclockwise(p,w)-crossing(q′p,w,Hχ′ = H′), which occurs
within the smaller triangulationDT(P \{a′, r′, u′}). See Figure 54. We useλq′ to denote the time inH′

when the respective pointq′ of χ′ enters the halfplaneL+
pw (or, equivalently, whenw crossesq′p from

L+
pq′ = L−

q′p toL+
q′p).

Notice that Lemma 5.5 readily generalizes to the above(p,w)-crossings. Namely, a pair of such
crossings(qp,w,Hχ) and(q′p,w,Hχ′), which occur within the respective triangulationsDT(P\{a, r, u})
andDT(P \ {a′, r′, u′}), arecompatible, provided thatq′ 6= a, r, u andq 6= a′, r′, u′, in the sense that
the orders in which the intervalsHχ andHχ′ begin or end are both consistent with the time stampsλq

andλq′ .

33Recall from Section 6.2 thatw can crossqp either before or afterξ2, depending on the location ofp whenq crosseswa.
Our analysis only relies on the fact thatλq > ξ0 > ξ−1.
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q

Figure 54:Each right special quadrupleχ′ = (a′, p, w, q′) ∈ GR
pw (with respective outer pointsr′ andu′) comes

with a counterclockwise(p, w)-crossing(q′p, w,Hχ′ ), which occurs withinDT(P \ {a′, r′, u′}).

To proceed, we distinguish between four possible cases.

Case (a). For at leastk of the above quadruplesχ′ = (a′, p, w, q′) ∈ GR
pw, their respective(p,w)-

crossings(q′p,w,H′) either begin in[λwq, λ4], or end in[λ5, ξwq]. Refer to Figure 55. Recall that, by
condition (S6), the edgeqw is Delaunay at each of the timesλwq andξwq, and that it is almost Delaunay
during the entire interval[λwq, ξwq].

To bound the number of such quadruplesχ, we wish to argue that the crossing(qp,w,H) is (q, w,Θ(k))-
chargeable, for the reference interval[λwq, ξwq]. Unfortunately (and we have already encountered this
technical issue before, e.g., in Section 5.6), the crossing(qp,w,H) occurs within the reduced triangu-
lation DT(P \ {a, r, u}), whereas each of the above crossings(q′p,w,H′) occurs within a possibly
different (and also reduced) triangulationDT(P \ {a′, r′, u′}).

As in the previous similar situations (including the matching scenario (a) in Section 5.6), we can
free sufficiently many crossings(q′p,w,H′) from their “violators”a′, r′ andu′ by passing to a smaller
triangulationDT(P̂ ), which is induced by a random subsetP̂ ⊂ P of ⌈n/4⌉ points. Note though that
GR
pw can potentially include many quadruplesχ′ with q ∈ {a′, r′, u′}, which cannot be freed without

destroying(qp,w,H).
Fortunately, for any special quadrupleχ = (a, p, w, q) ∈ GR

pw (with outer pointsr andu) the family
GR
pw includes at most three other quadruplesχ′ = (a′, p, w, q′) whose respective pointsq′ are equal

to one ofa, r or u. The pigeonhole principle then implies that at leastone quarterof all quadruples
χ = (a, p, w, q) in GR

pw satisfy the following condition:

(PHR1) There exist at most three quadruplesχ′ ∈ GR
pw with q ∈ {a′, r′, u′}.

(See Section 5.6 for the short proof of a similar claim, with the matching condition (PH).)

Sincep andw are arbitrary points ofP , (PHR1) holds for at least a quarter of all3-restricted right
special quadruples under consideration; hence we may assume that it holds for the special quadrupleχ
at hand. Therefore, at leastk− 6 ≥ k/2 of the relevant quadruplesχ′ = (a′, p, w, q′) ∈ GR

pw \ {χ} (with
respective outer pointsr′ andu′, and with(q′p,w,H′) starting in[λwq, λ4] or ending in[λ5, ξwq]) satisfy
(i) q 6∈ {a′, r′, u′}, and (ii)q′ 6∈ {a, r, u}.

A suitable extension of Lemma 5.5 then implies that at leastk/2 of the above crossings(q′p,w,H′)
fully occur within [λwq, ξwq]. Returning to the sampled triangulationDT(P̂ ), it is easy to check that the
following two conditions hold simultaneously with some fixed probability (see Stage 1 of this section for
a similar argument): (1) the set̂P includesp, q andw, but none ofa, r, u, and (2) for at leastΘ(k) of the
above quadruplesχ′ (with Hχ′ starting in[λwq, λ4) or ending in(λ5, ξwq]), the samplêP includes their
respective pointsq′, but none ofa′, r′, u′.

In the case of success,̂P yields a(q, w,Θ(k))-chargeable (ordinary) Delaunay crossing ofqp by w,
for the reference interval[λwq, ξwq]. To see this, recall thatwq is Delaunay at both timesλwq andξwq, and
that it is almost Delaunay in(λwq, ξwq) (it is Delaunay with the omission ofa, p, r, u). Then, according to
condition (1), the samplêP yields some single Delaunay crossing(qp,w, Ĥχ), whose respective interval
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Ĥχ

Hχλwq

Figure 55:Case (a): At leastk counterclockwise(p, w)-crossings(q′p, w,Hχ′) either begin in[λwq, λ4) or end
in (λ5, ξwq] (one such crossing of the former type is depicted). Then, with some fixed and positive probability, the
sampleP̂ yields a Delaunay crossing(qp, w, Ĥχ) that is(q, w,Θ(k))-chargeable with respect to[λwq, ξwq].

Ĥχ is contained inHχ (as depicted in Figure 55). Similarly, according to condition (2),P̂ yields at least
Θ(k) counterclockwise Delaunay(p,w)-crossings that occur within[λwq, ξwq].

To conclude, Theorem 5.3 implies that the overall number of such triples(p, q, w) in P does not
exceed

O
(

k2N(n/k) + kn2β(n)
)

,

which immediately also bounds the overall number of the corresponding3-restricted quadruplesχ.

Preparing for cases (b) and (c): Charging events inApw. We may assume, from now on, that there
exist at mostk special quadruplesχ′ ∈ GR

pw whose respective(p,w)-crossings(q′p,w,H′) either begin
in [λwq, λ4], or end in[λ5, ξwq].

Before proceeding to the following cases, we apply Theorem 2.2 in Apw in order to extend the
almost-Delaunayhood ofpw fromH = [λ4, λ5] to [λwq, ξwq]. Notice that[λwq, ξwq] \H consists of two,
possibly empty, intervals[λwq, λ4) and(λ5, ξwq], and we consider each of them separately. Note also
that the edgepw belongs duringH to the reduced triangulationDT(P \ {a, r, u}) (but not necessarily to
DT(P )), so Theorem 2.2 must be applied with respect to this smallerset.

Consider, for instance, the interval[λwq, λ4). We apply Theorem 2.2 withinApw over (λwq, λ4),
with our second parameterℓ, and with respect to the reduced setP \ {a, r, u}, noting thatpw belongs to
DT(P \ {a, r, u}) at the end of this interval.

If at least one of the Conditions (i), (ii) holds, we chargeχ within Apw, via (qp,w,H), either to an
(ℓ+3)-shallow collinearity, or toΩ(ℓ2) (ℓ+3)-shallow co-circularities inP . (Each of these events isℓ-
shallow with respect to the reduced setP \{a, r, u}.) Notice that the pointsp andw are involved in each
of these events, and since case (a) has been ruled out, at mostk other(p,w)-crossings(q′p,w,H′) of this
kind begin after the respective timet∗ of any charged event and before(qp,w,H). That is,(qp,w,H)
is among the firstk + 1 such(p,w)-crossings to begin aftert∗. Hence, any(ℓ + 3)-shallow collinearity
or co-circularity is charged in the above manner by at mostO(k) special quadruplesχ. To conclude, the
above scenario occurs for at mostO

(

kℓ2N(n/ℓ) + kℓn2β(n)
)

quadruplesχ.
Otherwise, if Condition (iii) holds, one can restore the Delaunayhood ofpw throughout[λwq, λ4] by

removing at most3ℓ+ 3 points ofP (includinga, r, u).
A fully symmetric argument can be used to extend the almost-Delaunayhood ofpw to the symmetric

interval (λ5, λwq]. At the end, we have either disposed ofχ through conditions (i), (ii) of Theorem
2.2 or ended up with a setApw of at most6ℓ + 3 points (includinga, r, u) whose removal restores the
Delaunayhood ofpw throughout[λpq, ξwq]. Hence, we may assume, in what follows, that the above set
Apw exists.

Case (b).There exist a total of at leastℓ points ofP , distinct froma, r, u, such that each of them appears
in the capC−

qw = B[p, q, w] ∩ L−
qw at some time during the interval(ξ−1, λq). (Note that some of these

points may belong toApw.) Recall thatλq denotes the time inH whenw entersL−
pq, throughpq, and
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Figure 56: Case (b). A total of at leastℓ pointss 6= a, r, u appear in the capC−

qw during (ξ−1, λq). Each of
them must leave the capC−

qw (through the boundary ofB[p, q, w]) and then leave the wedgeWqpw (through one
of the rays~pq, ~pw, outside the respective edgespq andpw) before timeλq. Left: The geometric scenario. Right:
A symbolic summary of the corresponding events.

that no additional collinearities ofp, q, w can occur during(ξ−1, λq), so the motion ofB[p, q, w] is fully
continuous there.

Refer to Figure 56. Lets ∈ P \ {a, r, u} be one of the points that visitC−
qw during(ξ−1, λq). Since

the above capC−
qw is fully contained in the wedgeWqpw = L+

pq ∩ L−
pw during that interval,s must leave

Wqpw before timeλq (whenWqpw shrinks to the single ray~pq = ~pw) through one of the rays~pw, ~pq.
We also note that, by condition (S6) (and since(ξ−1, λq) ⊆ [λwq, ξwq]), wq ∈ DT(P \ {a, p, r, u})
throughout(ξ−1, λq), sos, which has to leaveC−

qw before it leavesWqpw, can do so only through the
boundary ofB[p, q, w]. This results in a co-circularity ofp, q, w, s, and is easily seen to imply thats
leavesWqpw by crossing one of the rays~pw or ~pq outsidethe respective edgepw or pq.

In what follows, we assume thats is among the lastℓ points to leaveC−
qw during (ξ−1, λq). Let t∗s

denote the time of the corresponding co-circularity ofp, q, w, s, which occurs whens leavesC−
qw through

the boundary ofB[p, q, w]. Sinceχ satisfies condition (S6), the opposite capC+
qw = B[p, q, w] ∩ L+

qw

contains no points ofP \ {a, r, u} at timet∗s. (Otherwise, the Delaunayhood ofwq would be violated, at
time t∗s, by s and any of these points.) Therefore, the co-circularity at time t∗s has to be(ℓ − 1)-shallow
in P \ {a, r, u}, and thus(ℓ+ 2)-shallow inP .

Note also that the co-circularity at timet∗s is red-blue with respect to the edgewq, which is violated
right before it byp ands. Lemma 4.1, together with the choice ofs 6= a, p, r, u, imply that this co-
circularity cannot occur during the crossing(qp,w,Hχ = [λ4, λ5]) (which occurs inP \ {a, r, u}), so
t∗s < λ4. (However, condition (S6) does not rule out the violation ofwq by p ands during the larger
interval[λwq, ξwq]\H, because the Delaunayhood ofwq is assumed to hold there only under the omission
of a, r, u, and ofp.)

To proceed, we distinguish between two possible subcases. In each of them we manage to dispose of
χ by charging it, within one of the arrangementsApq,Apw, either toΩ(ℓ2) (2ℓ)-shallow co-circularities,
or to a(2ℓ)-shallow collinearity.

Case (b1).At least half of the above pointss cross the lineLpq, fromL+
pq to L−

pq, during(t∗s, λq). (This
also includes pointss that possibly crossLpq outside the ray~pq, after leavingWqpw through the other
ray ~pw.) By Condition (S5) (and since(t∗s, λq) ⊆ (ξ−1, λq) ⊆ [ξpq, λpq]), each of these crossings occurs
outsidepq, within one of the corresponding outer rays ofLpq.

For eachs we argue, exactly as in Section 5.6, that the pointsp, q, s are involved during(t∗s, λq) ⊆
(ξ−1, λq) either in a(2ℓ)-shallow collinearity, or inΩ(ℓ) (2ℓ)-shallow co-circularities. That is, ass
approachesLpq, the discB[p, q, s] “swallows” the entire halfplaneL+

pq. If the disc, which contains at
mostℓ + 2 points at the beginning of the process, “swallows” at leastℓ − 2 points in this process, then
each of the firstℓ − 2 resulting co-circularities are(2ℓ)-shallow (inP ). Otherwise, the collinearity of
q, p, s is (2ℓ)-shallow.

Sinces can be chosen in at leastΩ(ℓ) different ways, the pointsp andq are involved during(ξ−1, λq)
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either inΩ(ℓ2) (2ℓ)-shallow co-circularities, or in a(2ℓ)-shallow collinearity. In both cases, we charge
χ to these events.

Note that each(2ℓ)-shallow event, which occurs inApq at some timet∗ ∈ (ξ−1, λq), can be traced
back to(qp,w,H) (and, by Proposition 6.2, also toχ) in at mostO(1) possible ways becausew is
among the first four points to hit the edgepq after timet∗, according to condition (S5). Hence, the above
scenario happens for at mostO(ℓ2N(n/ℓ) + ℓn2β(n)) special quadruplesχ.

Case (b2).At least half of the above pointss 6= a, r, u remain inL+
pq throughout the respective intervals

(t∗s, λq). Each of these points must leaveWqpw = L+
pq ∩ L−

pw, also during(t∗s, λq), through the ray
emanating fromw in direction ~pw, thereby crossingLpw from L−

pw toL+
pw. (Recall thats can crossLpw

from L+
pw to L−

pw at most once, because the triplep,w, s can be collinear at most twice.)
We again fix one of these pointss, and useλs to denote the corresponding time in(t∗s, λq) whens

leavesWqpw through the ray emanating fromw in direction ~pw. As in the previous case, we conclude
that either the collinearity ofp,w, s at timeλs is (2ℓ)-shallow, or the pointsp,w, s are involved inΩ(ℓ)
(2ℓ)-shallow co-circularities during the preceding interval(t∗s, λs). As in Section 5.6, the main challenge
is to argue that each of the above(2ℓ)-shallow events, which occur inApw during (t∗s, λs] ⊆ (ξ−1, λq),
can be traced back toχ in at mostO(k) ways.34

To show this, lett∗ ∈ (ξ−1, λq) be the time of a(2ℓ)-shallow collinearity or co-circularity that occurs
in Apw. First, we guess the pointsp andw of χ in O(1) possible ways among the three or four points
involved in the event. We next recall that, in the charging scheme of case (b2), each(2ℓ)-shallow co-
circularity or collinearity that we charge inApw is obtained via some points, which is also involved in
the event, that leavesL−

pw at the respective timeλs. We therefore guesss among the remaining one or
two points involved in the event. To guess the remaining pointsa andq of χ, we examine all “candidate”
special quadruplesχ′ ∈ GR

pw whose two middle points(p,w) are shared withχ. Recall that each of
these quadruples is accompanied by the(p,w)-crossing(q′p,w,H′ = Hχ′), whereq′ entersL+

pw at the
respective timeλq′ ∈ H′. Recall also thatχ′ is uniquely determined by the choice ofq′ (as long asp and
w remain fixed).

Clearly, withs fixed, it suffices to consider only special quadruplesχ′ = (a′, p, w, q′) in GR
pw with

the following properties: (1)s 6= a′, r′, u′, wherer′ andu′ are the outer points ofχ′, (2) λq′ > λs, and
(3) s lies in L+

pq′ during the first portion ofHχ′ (beforeλq′). This is because each of these conditions
holds forχ ands in the charging scheme of case (b2). For example, (3) followsbecause case (b1) does
not occur fors (and sincet∗s < λ4).

If a special quadrupleχ′ = (a′, p, w, q′) ∈ GR
pw satisfies the above three conditions (1)–(3), we say

that the respective pointq′ (which uniquely determinesχ′) is acandidate(for beingq).
Proposition 6.3 below guarantees that each(2ℓ)-shallow event, which occurs inApw at some time

t∗ ∈ (ξ−1, λq), is charged by at mostk + 7 quadruples inχ′ ∈ GR
pw, because the corresponding points

q′ of these quadruples are among the firstk + 7 candidates to leaveL−
pw after timeλs. Repeating the

same argument for each of theΩ(ℓ) possible choice ofs shows that at mostO
(

kℓ2N(n/ℓ) + kℓn2β(n)
)

special quadruples can fall into case (b2).

Proposition 6.3. With the above assumptions, the pointq is among the firstk + 6 candidatesq′ to leave
the halfplaneL−

pw afterλs.

Proof. The fairly technical proof of this proposition is symmetricto the one of Proposition 5.6, so we
only briefly review it.

Assume to the contrary that the proposition does not hold (for χ ands 6= a, r, u as above). Hence,
we have at leastk candidatesq′ such thatλs < λq′ < λq andq′ 6∈ {a, r, u}, and such that the first points
a′, and the outer pointsr′ andu′, of their quadruplesχ′ = (a′, p, w, q′) are all distinct fromq. (We
continue to assume thatχ satisfies property (PHR1), introduced in case (a), so the last two restrictions

34As in Section 5.6, the multiplicity of the chargings is the major difference between case (b1) and the present case (b2).
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Figure 57:Proposition 6.3. Left:q is among the firstk + 7 candidatesq′ to leaveL−

pw after timeλs. The figure
depicts a pointq′ lying outsideB[p, q, w] at the timet∗s whens leaves the capC−

qw . Right: The various critical
events occur in the depicted order. Note thatλs occurs either beforeλ4, or in (the first part, precedingλq, of)
H = [λ4, λ5].

q′ 6= {q, a, r} andq 6= {a′, r′, u′} (the latter using (PHR1)) exclude from our consideration atmost six
candidatesq′ 6= q together with their quadruplesχ′.)

To establish the proposition, we fix a candidateq′ and its corresponding quadrupleχ′ = (a′, p, w, q′)
(with outer pointsr′ andu′), as above, and argue that the respective intervalHχ′ begins during(λwq, λ4).
See Figure 57 (right). Repeating the same argument for the remainingk − 1 possible choices ofq′ will
imply that the quadrupleχ falls into case (a) and we would thereby reach a contradiction.

Indeed, sinceλq′ < λq (andq′ 6= a, r, u andq 6= a′, r′, u′), a suitable variant of Lemma 5.5 shows
that the intervalHχ′ begins beforeHχ = [λ4, λ5]. It thus remains to check thatHχ′ begins afterλwq.

If Hχ′ begins aftert∗s, then we are done (ast∗s > λwq). Hence, we may also assume that both timest∗s
andλq′ belong to the intervalHχ′ . (More precisely,t∗s belongs to the first part ofHχ′ , beforeλq′ ; this is
the situation considered in Figure 57 (right).) This, and the above conditions (2)–(3) (which hold forχ′

becauseq′ is a candidate point), imply thatq′ remains in the halfplanesL−
pw, L

−
ps throughout the interval

(t∗s, λq′). Therefore,s lies insideWq′pw = L+
pq′ ∩ L−

pw throughout the interval(t∗s, λs).
In addition, the standard properties ofχ andχ′ as3-restricted special quadruples imply thatq′ must

lie, throughout the longer interval(t∗s, λq′) ⊆ Hχ′ ∩ (ξ−1, λq), inside the wedgeWqpw = L+
pq ∩ L−

pw.
(Otherwise either the pointsq′, p andw would be collinear more than once duringHχ′ , or the edgeq′p
would be hit byq, or the edgeqp would be hit byq′. The first two cases are impossible by the definition
of (q′p,w,Hχ′), and the last one is ruled out by condition (S5).)

To recap, we may assume thatHχ′ beginsbeforet∗s, and that the edgespq, pq′, ps, andpw appear,
at timet∗s, in this clockwise order aroundp. To show thatHχ′ begins afterλwq, we distinguish between
two possible cases.

(1) If q′ lies outsideB[p,w, s] = B[p, q, w] at timet∗s (as depicted in Figure 57 (left)), then the Delau-
nayhood ofpq′ is violated, at that very moment, bys andq. Hence, the crossing(q′p,w,Hχ′) (occurring
in DT(P \ {a′, r′, u′})) has to begin aftert∗s, contrary to our assumptions.

p

w

q
q′

s q′

p

w

q

Figure 58:Proof of Proposition 6.3: Left: The scenario whereq′ lies within B[p, q, w] at timet∗s. Right: The
candidateq′ must have enteredC−

qw, throughB[p, q, w], afterλwq (and beforet∗s , H = Hχ andHχ′ ).
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(2) If q′ lies at timet∗s within B[p, q, w] (as depicted in Figure 58 (left)), then the interplay between
the (p,w)-crossings(qp,w,Hχ) and(q′p,w,Hχ′) yields three co-circularities of the pointsp,w, q, q′.
Namely, the last two co-circularities occur duringHχ′ \Hχ andHχ \Hχ′ . The first co-circularity occurs
whenq′ entersC−

qw after timeλwq, whenwq is fully Delaunay, and beforet∗s, when the Delaunayhood
of wq is violated byq′ ∈ C−

qw andp ∈ B[p, q, w] ∩ L+
qw. (Briefly, this follows since, by conditions (S2)

and (S5), none ofp, q′ can crosswq in the interval[λwq, λq]; see the proof of Proposition 6.3 for a fully
symmetric argument.) As is easy to check, the pointsp,w, q andq′ are co-circular only once during each
of the intervalsHχ′ andHχ, so their first co-circularity occurs beforeHχ′ ; see Figure 58 (right). Hence,
to allow room for the first co-circularity to occur,Hχ′ has to begin afterλwq also in this case. As noted
above, this completes the proof of the proposition.

Case (c).A total of at leastℓ pointss ∈ P \Apw appear in the capC+
pw = B[p, q, w]∩L+

pw at some time
during (ξ−1, λq). HereApw continues to denote the subset of at most6ℓ + 3 points, includinga, r and
u, whose removal restores the Delaunayhood ofpw throughout the interval[λwq, ξwq]. (Recall thatApw

was obtained by applying Theorem 2.2 inApw, after ruling out case (a).)

Wpqw

q
w

p

s
C+
pw

Figure 59:Case (c). A total of at leastℓ pointss ∈ P \ Apw appear in the capC+
pw during(ξ−1, λq). Each of

them must leave the capC+
pw (through the boundary ofB[p, q, w]) and then exit the wedgeWpqw (through one of

the rays~qp, ~qw, outside the respective edgespq andwq) before timeλq.

Clearly,C+
pw is contained in the wedgeWpqw = L+

pq ∩ L−
wq, which shrinks at timeλq to the ray

~qp = ~qw. Hence, each of these pointss has to leaveC+
pw andWpqw (in this order) before timeλq.

Furthermore,s can leaveC+
pw only through the boundary ofB[p, q, w], at a co-circularity ofp, q, w, s.

(Otherwises would have to hitpw and, therefore, belong toApw.) In addition,s can leaveWpqw only
through one of the rays~qp and ~qw (outside the respective segmentsqp, qw). See Figure 59.

As in the previous case (b), we restrict our attention to the lastℓ such pointss of P \Apw to leaveC+
pw

during(ξ−1, λq), and uset∗s to denote the time of the respective co-circularity. Clearly, the opposite cap
C−
pw = B[p, q, w]∩L−

pw contains then no points ofP \Apw. Indeed, otherwise the Delaunayhood ofpw
would be violated bys and any one of these points (contrary to our assumption thatpw ∈ DT(P \Apw)
throughout[λwq, ξwq] ⊃ (ξ−1, λq)). Hence, the resulting co-circularity ofp, q, w, s at timet∗s is (7ℓ+2)-
shallow inP , because, at the time of co-circularity, the circumdiscB[p, q, w] = B[p, s, w] can contain
in its interior at most the6ℓ+ 3 points ofApw and at mostℓ− 1 points ofP \ Apw.

Case (c1).If at least half of the above pointss cross the lineLpq (fromL+
pq toL−

pq) during their respective
intervals(t∗s, λq), then we argue exactly as in subcase (b1). Namely, we fix one ofthese pointss and
notice that the pointsp, q, s are involved, during(t∗s, λq), either in an(8ℓ)-shallow common collinearity,
or in Ω(ℓ) (8ℓ)-shallow co-circularities, occuring within the whole setP . That is, ass approachesLpq,
the discB[p, q, s] “swallows” the entire halfplaneL+

pq. If the disc, which contains at most7ℓ+ 2 points
at the beginning of the process, “swallows” at leastℓ−2 points in this process, then each of the firstℓ−2
resulting co-circularities are(8ℓ)-shallow (inP ). Otherwise, the collinearity ofq, p, s is (8ℓ)-shallow.

We thus repeat the above argument for each of the (at least)ℓ/2 possible choices ofs and chargeχ
within Apq (via (qp,w,H)) either toΩ(ℓ2) (8ℓ)-shallow co-circularities, or to an(8ℓ)-shallow collinear-
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ity. As in case (b1), each(8ℓ)-shallow collinearity or co-circularity occurs during(ξ−1, λq), and involves
p andq, so it is charged by at mostO(1) special quadruplesχ (becauseχ is uniquely determined by
(p, q, w) andw is among the first four points to hitpq after the respective timet∗ of the event, because
of condition (S5)).

Case (c2).We may assume, then, that at least half of the above pointss leaveWpqw through the ray~qw
(outside the segmentqw). For each of these pointss, a symmetric variant of the argument in case (c1)
implies that the pointsq, w, s are involved during(t∗s, λq) either in an(8ℓ)-shallow collinearity, or in
Ω(ℓ) (8ℓ)-shallow co-circularities. As before, we repeat the above argument for the (at least)ℓ/2 eligible
choices ofs and chargeχ, within Awq, either toΩ(ℓ2) (8ℓ)-shallow co-circularities or to an(8ℓ)-shallow
collinearity.

We claim that each of the resulting(8ℓ)-shallow events, which occur inAwq during (ξ−1, λq), can
be traced back toχ in at mostO(1) possible ways. Indeed, fix any of the above events, which occurs in
Awq at some timet∗ ∈ (ξ−1, λq). We first guessw andq in O(1) possible ways among the three or four
points involved in the event. To guess the pointa (which would then uniquely determine(wa, q,Ju) and
thereby alsoχ), we consider all special(w, q)-crossings(wa′, q,Ju′) (in F) and recall that, according to
conditions (S2) and (S6), at mostO(1) such crossings can begin during[λwq, λ2) or end during(λ3, ξwq].
Notice also that the interval[λwq, ξwq], which covers(ξ−1, λq), is the union of[λwq, λ2), Ju = [λ2, λ3],
and(λ3, ξwq].

To guessa (based ont∗, q andw), we distinguish between two possible situations.
(i) If t∗ belongs to(λ3, λq) ⊆ (λ3, ξwq] then (wa, q,Ju = [λ2, λ3]) is among the last three special
clockwise(w, q)-crossings to end beforet∗, becauseχ satisfies condition (S6). See Figure 60 (left).

Ju

λwq ξ−1 t∗ ξwqλq

t
λ2 λ3

Ju

λwq ξwqλq

t
λ2 λ3

t∗ξ−1

(wa′, q,Ju′)

Figure 60: Case (c2): Guessinga based ont∗, w andq. Left: If t∗ ∈ (λ3, λq), then(wa, q,Ju = [λ2, λ3])
is among the last three special clockwise(w, q)-crossings to end beforet∗. Right: If t∗ ∈ (ξ−1, λ3], then
(wa, q,Ju) is among the firstO(1) special clockwise(w, q)-crossings to end aftert∗. Any other such(w, q)-
crossing(wa′, q,Ju′) (with u′ 6= p), that ends in(t∗, λ3) ⊂ (ξ−1, λ3), must begin afterξ−1 (and, therefore, in
[λwq, λ2)).

(ii) If t∗ belongs to the interval(ξ−1, λ3], which is contained in[λwq, λ2) ∪ Ju, then we resort to a more
subtle argument, in which we show that(wa, q,Ju = [λ2, λ3]) is among the firstO(1) special clockwise
(w, q)-crossings to end aftert∗. See Figure 60 (right).

Our goal is to bound the number of special clockwise(w, q)-crossings that end in(t∗, λ3). Note that
the preliminary pruning (peformed before the definition of special quadruples) guarantees that each of
these crossings(wa′, q,Ju′) satisfiesa′ 6= u andu′ 6= a, and therefore begins beforeJu = [λ2, λ3] (by
Lemma 5.5). Furthermore, note that we haveu′ = p for at most one of these crossings(wa′, q,Ju′),
because each of them is uniquely determined by the respective triple w, q, u′. We claim that each of
the remaining(w, q)-crossings(wa′, q,Ju′) under consideration (satisfying alsou′ 6= p) must begin in
(ξ−1, λ2) ⊆ [λwq, λ2). This, together with condition (S2), implies that their number isO(1) too.

To see this final claim, note that if a(w, q)-crossing(wa′, q,Ju′), as above, begins beforeξ−1, then
its respective intervalJu′ contains the timeξ−1 (because it ends aftert∗ > ξ−1), right after which the
Delaunayhood ofwq is violated byp anda. This, however, is impossible because, by Lemma 4.1,wq is
Delaunay throughoutJu′ in P \ {u′}, andu′ 6= p, a.

To recap, in each of the cases (c1) and (c2) we chargeχ either toΩ(ℓ2) (8ℓ)-shallow co-circularities,
or to an(8ℓ)-shallow collinearity, which occur in one of the arrangements Apq, Awq during the interval
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(ξ−1, λq). Furthermore, each(8ℓ)-shallow event is charged by at mostO(1) special quadruples. Hence,
at mostO

(

ℓ2N(n/ℓ) + ℓn2β(n)
)

special quadruplesχ fall into case (c).

Case (d).Assume that none of the preceding cases occurs. In particular, there is a subsetApw of at most
6ℓ + 3 points (includinga, r andu) whose removal restores the Delaunayhood ofpw throughout the
interval[λwq, ξwq]. Furthermore, a total of fewer thanℓ points ofP \{a, r, u} ever appear in the capC−

qw

during(ξ−1, λq), and a total of fewer thanℓ points ofP \ Apw points ever appear in the capC+
pw during

that interval.35

In this last remaining scenario, we finally consider the interplay between the special quadrupleχ
under consideration and the ordinary Delaunay quadrupleσ = (p, q, a, r) in F , which corresponds to
the first special(a, q)-crossing(pa, q,Ir) of χ. At the end of this section, we shall chargeχ to the
terminal quadruple̺ = (p, q, r, w), which is composed of the edgepq, and of the two pointsr andw
that crosspq in opposite directions. (The outer pointu of the second special(a, q)-crossing(wa, q,Ju)
is not used for right quadruples; it will be used in the mostlysymmetric analysis of left quadruples, given
in Section 6.6.)

Before chargingχ to the above terminal quadruple̺, we enforce a Delaunay crossing of one of the
edgespr, qr by the pointw. In addition, we shall have to enforce two more crossings performed by the
points of̺ in order to ensure that at least two of the resultingfivecrossings are performed by the same
sub-triple of̺ (so as to allow us to apply our cornerstone Lemma 4.5 and thereby obtain a quadratic
bound on the number of such quadruples).

To facilitate the forthcoming analysis, we first establish several auxiliary claims.

Lemma 6.4. With the above assumptions, a total of at most8ℓ + 1 points ofP appear in the cap
C+
pq = B[p, q, w] ∩ L+

pq during (ξ−1, λq).

Proof. Refer to Figure 61. Recall that the motion ofB[p, q, w] is continuous throughout(ξ−1, λq).
Notice that the above capC+

pq = B[p, q, w]∩L+
pq (which containsw on its boundary) is empty right before

timeλq, when the edgepq is crossed byw. Hence, any points that appears in this cap during(ξ−1, λq)
has to leave it beforeλq. Furthermore, condition (S5) (together with the inclusion(ξ−1, λq) ⊆ [ξpq, λpq])
implies thats cannot escapeC+

pq through the edgepq, unless it is equal to one ofa, r, u. Therefore,
any such points 6= a, r, u has to leaveC+

pq through one of the circular arcs bounding the earlier caps
C−
qw, C

+
pw, so it must first appear in one of the capsC−

qw or C+
pw. Since cases (b) and (c) have been

ruled out, and sincea, r, u belong to the setApw, the overall number of such points cannot exceed
(ℓ− 1) + (ℓ− 1) + (6ℓ+ 3) = 8ℓ+ 1.

We next consider the ordinary quadrupleσ = (p, q, a, r) in F , which corresponds to the first special
crossing(pa, q,Ir) of χ. Refer to Figure 62. We continue to denote the two Delaunay crossings of
σ by (pq, r, I = [t0, t1]) and (pa, r, J = [t2, t3]). Recall that the points ofσ are co-circular at times
ζ0 ∈ I \ J, ζ1 ∈ J \ I andζ2 > t3. By condition (Q3) onσ, the last two co-circularities ofσ (at times
ζ1 andζ2) have the same order type, and the Delaunayhood ofrq is violated byp ∈ L−

rq anda ∈ L+
rq

throughout the interval(ζ1, ζ2) (see Figure 62 (left)). Therefore, the Delaunayhood ofpa is violated right
after timeζ2 by r andq.

Remark:Note thatσ andχ have “opposite” topological behaviour, in the sense that the additional co-
circularity ofσ (outsideI andJ) occurs at timeζ2, after the respective second intervalJ of σ, whereas the
corresponding additional co-circularity ofχ (outsideIr andJu) occurs at timeξ−1, before the respective
first intervalI of χ.

35Note the built-in asymmetry betweenqw andpw in the analysis: The former is almost Delaunay in the interval [λwq , ξwq ]
(and Delaunay at both endpointsλwq , ξwq ]), whereas the latter becomes Delaunay there only after the removal ofApw (which
includesa, p, r, u).
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B[p, q, w]

q
w

p

C+
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qw

C+
pq = B[p, q, w] ∩ L+

pq

Figure 61:Lemma 6.4: A total of at most8ℓ+1 pointss of P appear in the capC+
pq = B[p, q, w]∩L+

pq (consisting
of all the shaded portions) during(ξ−1, λq). All of them must leaveC+

pq beforeλq. None of these pointss can
leaveC+

pq throughpq, unless it is one ofa, r, u.

ξ0

pa ∈ DT(P \ {q, r})

Jt2 t3

ξ−1 λ0 λ1

ζ2

I

ζ1ζ0

t0 t1

λq

Ir

tpa

r

p

q a

Figure 62:The (regular) clockwise quadrupleσ = (p, q, a, r) of (pa, q, Ir) is composed of two(p, r)-crossings
(pq, r, I = [t0, t1]), (pa, r, J = [t2, t3]). The pointsp, q, a, r are co-circular at timesζ0 ∈ I \ J, ζ1 ∈ J \ I, and
ζ2 > t3 (left). The last two co-circularities have the same order type, and the Delaunayhood ofrq is violated byp
anda throughout(ζ1, ζ2) (right).

By condition (Q7), the edgepa re-entersDT(P ) at some timetpa ≥ ζ2 > t2. Furthermore,pa
belongs toDT(P \ {r, q}) throughout the interval[t2, tpa] = J ∪ [t3, tpa], which coversJ (including
ζ1 ∈ J \I) andζ2. Moreover, we recall that (using the Delaunayhood ofpa at timet3, and the extremality
of ζ2, via Lemma 3.1),q crossespa from L−

pa to L+
pa during (t3, tpa]. As argued in Section 5.6, this

yields the Delaunay crossing(pa, q,Ir = [λ0, λ1]) in P \ {r} as the unique special crossing ofσ, with
Ir ⊂ (t3, tpa].

To conclude, the second crossing(pa, r, J = [t2, t3]) of σ and the first crossing(pa, q,Ir = [λ0, λ1])
of χ occur during disjoint intervals and in this order.36

Finally, by condition (Q8), the edgepq belongs toDT(P \ {r, a}) throughout the interval[t0, λ1] =
[I,Ir](= conv(I ∪Ir)). Therefore, the almost-Delaunayhood ofpq extends from[ξpq, λpq] to the poten-
tially larger interval[t0, λpq] (assumingξpq > t0, that is,I = [t0, t1] is not contained in[ξpq, λpq]).

The following claim is crucial for understanding the interplay betweenσ andχ.

Lemma 6.5. With the above assumptions, we haveζ1 ∈ (ξ−1, ξ0).

ξ0

Ir

ζ1 λqξ−1

J

Figure 63:Lemma 6.5 claims thatζ1 ∈ (ξ−1, ξ0).

36Note that, even thoughq hits pa afterζ2, during the above special crossing, it is not known whether the last co-circularity
ζ2 of σ occurs inIr or beforehand, in(t3, λ0].
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Proof. The inequalityζ1 < ξ0 follows becauseζ1 occurs during the second crossing(pa, r, J) of σ,
whereasξ0 occurs during the first special crossing(pa, q,Ir) of χ (which begins afterJ). See Figure 63
(left) and Figure 63.

To establish the inequalityζ1 > ξ−1, let us assume for a contradiction thatζ1 ≤ ξ−1; see Figure
64. Sinceσ = (p, q, a, r) belongs to the refined familyF (and, therefore, satisfies condition (Q3)), its
point q remains inB[p, a, r] ∩ L−

pa after r entersL+
pa duringJ = [t2, t3] and until timeζ1 ∈ J (when

q leaves the capB[p, a, r] ∩ L−
pa). Also note that, with the above assumption thatζ1 < ξ−1, the pointq

cannot leaveL−
pa during (ζ1, ξ−1). Indeed,q lies in L−

pa at both endpoints of that interval, because the
quadruplesσ andχ satisfy the respective conditions (Q3) and (S3a), and it canenter the halfplaneL+

pa

only once (which occurs duringIr and afterξ−1).

λ0
J

tpa

λqξ0ζ1 ξ−1

t3t2 λ1
Ir

q

r

w

p

a q

p

a

w

ξ−1

Figure 64: Proof of Lemma 6.5. Ifζ1 < ξ−1 (left) thenw has to enterB[p, q, a] ∩ L+
pa, which is empty at

time ζ1 (center), before leaving it at timeξ−1 (right). By Condition (Q7),w can enterB[p, q, a] ∩ L+
pa during

(ζ1, ξ−1) ⊂ (t2, tpa) only through the boundary ofB[p, q, a].

The above reasoning implies that the motion ofB[p, q, a] is continuous throughout(ζ1, ξ−1). Fur-
thermore,w lies outside the capB[p, q, a]∩L+

pa at timeζ1, for otherwise the Delaunayhood ofpa would
be violated byq andw (which cannot happen during the intervalJ , wherepa belongs toDT(P \ {r}));
see Figure 64 (center). By condition (S3a),w leaves the capB[p, q, a] ∩ L+

pa at timeξ−1. Therefore,
w must have previously entered that cap, in the interval(ζ1, ξ−1). Note that, sinceξ−1 < λ0, the latter
interval is contained in(ζ1, tpa), wheretpa denotes the first time afterζ1 andζ2 whenpa again belongs
toDT(P ).

Sinceσ satisfies condition (Q7),w cannot enterB[p, q, a] ∩ L+
pa during (ζ1, ξ−1) ⊆ (t2, λ1) ⊆

(t2, tpa) through the edgepa. Furthermore,w cannot enterB[p, q, a] ∩ L+
pa during that interval through

the boundary ofB[p, q, a], as that would cause a forbidden fourth co-circularity ofp, q, a, w; see Figure
64 (right). Hence, we have reached a contradiction, and the claim follows.

By Lemma 4.1, none of the co-circularitiesξ−1, ξ0 can occur duringJ , so we haveJ ⊂ (ξ−1, ξ0).
This, combined with the properties (S1)–(S3a) ofχ, implies that(ξpq <)ξ−1 < t2 < ζ1 < t3 < λ0 <
ξ0 < λ1 < λq(< λpq). See Figure 65 (left).

Sinceσ satisfies condition (Q3),r cannot return toL−
pq (after leaving it duringI) before timeζ1

(whenr leaves the capB[p, q, a] ∩ L+
pq), for otherwise the triplep, q, r would be collinear at least three

times.
Furthermore, ifr re-entersL−

pq throughpq during the subsequent interval(ζ1, λpq], then the edgepq
undergoes two Delaunay crossings byr within the triangulationDT(P \ {a, u,w}). Indeed, Lemma
6.5 implies that(ζ1, λpq) is contained in[ξ−1, λpq] ⊂ [ξpq, λpq], and the edgepq belongs toDT(P \
{a, r, u, w}) throughout the latter interval by condition (S5) (in addition to its being Delaunay at the
endpointsξpq andλpq). By Lemma 4.5 and Proposition 5.2, this happens for at mostO(n2) special
quadruplesχ.

To conclude, ignoring the favourable quadruples just considered, we may assume that the above
scenario does not occur, sor does not crosspq in the interval(t1, λpq]. (However,r can still return to
L−
pq during(t1, λpq], or, more precisely, during(ζ2, λpq], by crossing one of the outer rays ofLpq, outside

pq.) See Figure 65 (right).
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ζ1ξ−1ξpq λpq

r lies inL+
pq

t1t0 I J

λqξ0

λ1t3 λ0
λqζ1ξ−1ξpq

r lies inL+
pq

t1t0 I J Ir

r does not crosspq
λpq

ξ0

λ1t3 λ0t2

Figure 65: Left: The setup implied by Lemma 6.5. We haveξpq < ξ−1 < ζ1 < ξ0 < λq < λpq, and
J ⊂ (ξ−1, ξ0). The pointr remains inL+

pq throughout(t1, ζ1). Right: If r were to hitpq also in (ζ1, λpq),
thenpq would undergo two Delaunay crossings byr within DT(P \ {a, w, u}). Hence, we can assume that no
such collinearity occurs.

The three co-circularities of p, q, r, w. We now argue that the four pointsp, q, r, w are involved in
exactly three co-circularities, and characterize the order types of these co-circularities. First, recall that
one such co-circularity occurs at some timeδ0 ∈ I, according to Lemma 4.4. Since this co-circularity is
induced by the crossing ofpq by r, it is red-blue with respect topq and torw. Moreover, as will follow
from the subsequent analysis, this is the first co-circularity of this quadruple; see Figure 66.

q

w

r

p

Figure 66:The co-circularity ofp, q, r, w occurring at some timeδ0 ∈ I. It is red-blue with respect to the edges
pq andrw.

To obtain the second co-circularity ofp, q, r, w, we recall that (as reviewed at the beginning of this
section, and depicted in Figure 53 (bottom)) the Delaunayhood ofwq is violated byp ∈ L−

wq anda ∈ L+
wq

throughout the interval(ξ−1, ξ0), and the order type ofp, q, w remains fixed (i.e,w lies inL+
pq) throughout

the larger interval(ξ−1, λq).
By Lemma 6.5, the interval(ξ−1, ξ0) containsζ1, soa lies at that time in the capC−

qw ⊂ C+
pq (after it

entersC−
qw at timeξ−1, and before escaping it at timeξ0). Since the pointsp, q, a, r are involved at time

ζ1 in a red-red co-circularity with respect topq (as prescribed by condition (Q3) onσ), botha andr lie
at timeζ1 within the capC+

pq = B[p, q, w] ∩ L+
pq; see Figure 67 (left).

Sincew remains inL+
pq throughout the longer interval(ξ−1, λq), the four pointsp, q, r, w are in-

volved, during(ζ1, λq), in a co-circularity, which occurs whenr leaves the above capB[p, q, w] ∩ L+
pq.

(Otherwiser would have to escapeB[p, q, w] ∩ L+
pq through the interior ofpq before this cap shrinks

to pq at timeλq, which cannot happen during(t1, λq] ⊆ (t1, λpq] by condition (Q8).) Clearly, this co-
circularity is red-red with respect to the edgepq, and occurs afterI and betweenζ1 ∈ J \ I andλq. We
denote byδ1 the time of thefirst such co-circularity event in(ζ1, λq), at whichr leavesB[p, q, w]∩L+

pq.
(As will soon turn out, this is the second co-circularity ofp, q, r, w.)

Remark.We again emphasize thatδ1 ∈ (ζ1, λq) ⊂ (ξ−1, λq), and thatr remains in the capB[p, q, w] ∩
L+
pq throughout the interval[ζ1, δ1). (However, the order betweenδ1 andξ0 is not known, and is imma-

terial for our analysis.)

We next claim that the pointsp, q, r, w are involved in a third co-circularity, red-blue with respect
to pq, at some timeδ2 ∈ (δ1, λpq]. Notice that the desired co-circularity cannot be obtainedby simply
applying Lemma 4.4 to the crossing(qp,w,H), because it is defined only with respect to the reduced
point setP \ {a, r, u}.
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C−
qw

q a
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w

λpqζ1 λq

wq violated byp anda

δ1ξ0

r leavesC+
pq

ξ−1

Figure 67:Obtaining the second co-circularityδ1 of p, q, r, w. The co-circularity ofp, q, a, r at timeζ1 is red-red
with respect topq, and belongs to the interval(ξ−1, ξ0), during whicha lies inC−

qw(⊂ C+
pq). Hence,r lies at that

time within the capC+
pq = B[p, q, w] ∩ L+

pq, soδ1 necessarily occurs in(ζ1, λq), whenr escapes the above cap
C+

pq (without crossingpq). This is also a red-red co-circularity with respect topq.

Instead, we consider the four-point triangulationDT({p, q, r, w}), and observe that the edgeqp
undergoes there a Delaunay crossing byw, which takes place during some sub-interval of(δ1, λpq] that
containsλq (the time of the actual collinearity of the three points). Indeed,pq is Delaunay in{p, q, r, w}
at timesδ1 < λq andλpq ≥ λq > δ1, and it is Delaunay in{p, q, r} throughout(δ1, λpq] (becauser is
assumed not to crosspq in the even larger interval(t1, λpq]).

Furthermore, the above crossing inDT({p, q, r, w}) must be single. Indeed, sincew lies inC−
wq ⊂

L+
pq throughout the interval(ξ−1, ξ0) which containsζ1, it has to remain inL+

pq throughout[ζ1, λq] ⊃
[δ1, λq] (or, else,w would crossLpq three times). Furthermore,w does not crosspq again in(λq, λpq]
(by condition (S3b)). We hence apply Lemma 4.4 to this singlecrossing, which gives us the desired third
co-circularity (see Figure 68).

p

q

w

r

w w

Figure 68:The third co-circularity ofp, q, r, w occurs at some timeδ2 ∈ (δ1, λpq], and is red-blue with respect
to the edgespq andrw. This co-circularity is part of a Delaunay crossing ofqp by w, which occurs within the
four-point triangulationDT({p, q, r, w}), during some subinterval of(δ1, λpq] that containsλq.

To conclude, the four pointsp, q, r, w are involved in three co-circularities, which occur at timesδ0 ∈
I = [t0, t1], δ1 ∈ (ζ1, λq)(⊂ (ξ−1, λq)), andδ2 ∈ (δ1, λpq). The two extremal co-circularities (which
occur at timesδ0 andδ2) are red-blue with respect to the edgespq andwr, and thus monochromatic with
respect topr, qr, pw, qw. The middle co-circularity (at timeδ1) is red-red with respect topq.37

We are now ready to establish the following important consequence of Lemma 6.4.

Lemma 6.6. With the above assumptions, at most8ℓ+1 clockwise (Delaunay)(p, r)-crossings(pq′, r, I ′)
in F , and at most8ℓ + 1 counterclockwise (Delaunay)(q, r)-crossings(p′q, r, I ′) in F , can end in the
interval (t1, δ1).

Recall that an (ordinary) Delaunay crossing is inF if it is either the first or the second crossings of
some Delaunay quadruple inF . In Section 5 we have already enforced comparable restrictions (via

37This alternation in the order type is crucial of the forthcoming analysis.
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conditions (Q2) and (Q4)), which imply that no clockwise(p, r)-crossings(pq′, r, I ′) in F , and no
counterclockwise(q, r)-crossings(p′q, r, I ′) in F , end after timet1 and before timetrq > t3(> ζ1),
which is first such time afterζ1 when the edgerq belongs toDT(P ). See Figure 69. (In addition,
conditions (Q2) and (Q3) imply thatrq belongs toDT(P \{a, p}) throughout(t1, trq], and neithera nor
p can hitrq in that interval.) Unfortunately, the order oftrq andδ1 is not known, so condition (Q4) does
not immediately imply the above property.

t1I

t0 ζ1t2 t3

J

δ1 λq

trq

Figure 69:Preparing for the proof of Lemma 6.6. By conditions (Q2) and (Q4), no clockwise(p, r)-crossings,
and no counterclockwise(q, r)-crossings inF end in the shaded interval betweent1 andtrq > t3(> ζ1), where
trq is the first such time afterζ1 whenrq belongs toDT(P ). Unfortunately, the order ofδ1 andtrq is not known.

Proof of Lemma 6.6.We first consider clockwise(p, r)-crossings. Let(pq′, r, I ′) be such a Delaunay
crossing that ends in(t1, δ1). Note that the pointq′ has to be distinct froma (for, otherwise,(pq′, r, I ′)
would co-incide with(pa, r, J)), and that the pointsp, q, q′, r form an (ordinary, not necessarily con-
secutive quadruple) clockwise quadruple. Recall also thatr remains inL+

pq after entering that halfplane
during I = [t0, t1] and until timeδ1 (whenr escapesC+

pq = B[p, q, w] ∩ L+
pq). In particular,q lies in

L−
pr = L−

pq′ whenr entersL+
pq′ (duringI ′). Hence, the pointsp, q, r, q′ are involved in a co-circularity at

some timeζ ′ ∈ I ′ \ I, right after which the Delaunayhood ofrq is violated byp andq′. See Figure 70
(left).

r

q′
w

p

q

p

p′

q
r

w

Figure 70: Proof of Lemma 6.6. Left:(pq′, r, I ′) is a clockwise(p, r)-crossing that ends(t1, δ1). The points
p, q, r, p′ are co-circular at some timeζ′ ∈ I ′ \ I. If ζ′ occurs in(ζ1, δ1), thenp′ lies inC+

pq = B[p, q, w] ∩ L+
pq

at that moment. Right:(p′q, r, I ′) is a counterclockwise(q, r)-crossing that occurs within(ζ1, δ1]. The points
p, p′, q, r are co-circular at some timeζ′ ∈ I ′ \ I, when bothr andp′ lie insideC+

pq.

We first argue thatζ ′ cannot occur beforeζ1. Indeed, otherwise, applying Lemma 3.1 for the edge
rq, from timeζ ′, would imply that at least one of the following events must occur betweenζ ′ andtrq
(which is the first time afterζ1 whenrq belongsDT(P )): (1) q′ hits rq, (2) p hits rq, or (3) the four
pointsp, q, q′, r are involved in an additional co-circularity of the same order type.

However, cases (1), (2) are impossible by conditions (Q2) and (Q3) onσ (using thatζ1 < trq).
Moreover, the co-circularity in (3) can occur only after theend of bothI andI ′ (becausep, q, q′ andr
form a regular clockwise quadruple; see Section 4.1), in which case(pq′, r, I ′) has to end beforetrq,
contrary to condition (Q4) onσ. Hence,ζ ′ must occur afterζ1.

We may thus assume thatζ ′ belongs to the interval(ζ1, δ1) which, by Lemma 6.5, is contained in
(ξ−1, λq), so bothq′ andr′ lie at timeζ ′ within the capC+

pq = B[p, q, w] ∩ L+
pq. According to Lemma

6.4, the overall number of such pointsq′ is at most8ℓ+ 1.
The treatment of counterclockwise(q, r)-crossings (also inF) is similar (but somewhat simpler).

Indeed, let(p′q, r, I ′) be such a crossing. Condition (Q2) implies that it cannot endin the interval(t1, ζ1]
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(becauseζ1 belongs toJ \ I ⊂ (t1, λrq)). Furthermore, Lemma 4.1 implies that any counterclockwise
(q, r)-crossing(p′q, r, I ′) that ends afterζ1 has to begin also afterζ1. (Otherwise, its respective interval
I ′ would contain the timeζ1 of a red-blue co-circularity with respect torq, contrary to the Delaunayhood
of rq duringI ′.) We consider the co-circularity ofp, p′, q, r, which must occur at some timeζ ′ ∈ I ′ \ I
and notice, as in the previous case, that bothr andp′ lie at that moment in the capC+

pq; see Figure 70
(right). Therefore, the overall number of such pointsp′ does not exceed8ℓ+ 1.

Cases (d1) and (d2): Overview. To proceed, we distinguish between two possible subcases. In subcase
(d1), we assume that the middle co-circularity, which occurs at timeδ1, is red-blue with respect to the
edgespr andwq (see Figure 71 (left)), and then use it to enforce (via Lemma 3.1) the following two
additional crossings: (i) a Delaunay crossing ofpr by at least one the pointsw, q, and (ii) a Delaunay
crossing ofwq by at least one of the pointsp, r. (For the second crossing, it will suffice to argue that
wq is hit by one of the pointsp, r in the interval[λwq, λpq] ⊆ [λwq, ξwq].) However, this can easily be
established by applying Lemma 3.1 towq backwardsfrom the second co-circularityδ1 ∈ [λwq, λpq] of
p, q, r, w.)

q

w
w

r

p

q w
w

r

p

Figure 71:Left: Case (d1). The co-circularity at timeδ1 is red-blue with respect to the edgespr andwq. Right
afterwards, the Delaunayhood ofpr is violated byq andw. Right: Case (d2). The co-circularity at timeδ1 is
red-blue with respect to the edgesrq andpw. Right afterwards, the Delaunayhood ofrq is violated byp andw.

Therefore, the pointsp, q, r, w (or, more precisely, their sub-triples) will perform four distinct De-
launay crossings—the two new crossings just promised and the two “old” ones, ofpq by r and byw. If
a pair of these crossings is performed by thesametriple, we will use Lemma 4.5 to bound the overall
number of such special quadruplesχ. Otherwise we will chargeχ to the (probabilistically refined) termi-
nal quadruple̺ = (p, q, r, w), whose four possible sub-triples are involved infour Delaunay crossings,
namely, the crossings ofpq by r andw, the crossing ofpr byw, and the crossing ofwq by r.

In Section 7 we will use the third co-circularityδ2 to enforce, for each terminal quadruple̺ =
(p, q, r, w) of the above kind, an additional, fifth crossing (namely, a crossing ofrw by p or q). As a
result, some sub-triple ofp, q, r, w will be involved in two Delaunay crossings, which will allowus to
obtain a “quadratic” recurrence for the number of such quadruple, via Lemma 4.5.

In subcase (d2), we assume the co-circularity at timeδ1 to be red-blue with respect to the edges
rq andpw (see Figure 71 (right)), and then use it to enforce a Delaunaycrossing ofrq by at least one
of p andw. If rq is crossed byp, we can dispose ofχ via Lemma 4.5. Otherwise, we chargeχ to the
(probabilistically refined) terminal quadruple̺ = (p, q, r, w) (whose points are known, so far, to perform
only threecrossings).

In Section 7 we will enforce, for each terminal quadruple̺ = (p, q, r, w) of the latter type,two
additional crossings, namely, a crossing ofpw by one ofr, q, and a crossing ofrw by one ofp, q. Hence,
once again we will be able to use Lemma 4.5 to handle such terminal quadruples too.

Case (d1).The co-circularity at timeδ1 is red-blue with respect to the edgepr whose Delaunayhood is
violated right afterwards byq andw (see Figure 71 (left)).

Note that the above violation ofpr does not hold either right before, or right after timeλq. More
precisely, it does not hold for that side ofλq whenw andr lie in the same side ofLpq, in which case the
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segmentspq andrw do not even intersect; see Figure 68.
Therefore, and sinceδ1 is theonly red-red co-circularity ofp, q, r, w with respect topq, applying

Lemma 3.1 over the interval(δ1, λq), within the triangulationDT({p, q, r, w}), shows thatpr is hit
during(δ1, λq) by at least one ofq or w. See Figure 72 (top).

A very similar argument shows that the edgewq is hit by one ofp or r afterr entersL+
pq (duringI)

and beforeδ1. Indeed, letυpq denote the time inI whenr hits pq. Note that the edgewq is violated
right beforeδ1 by p andr, and that the above violation did not hold at timeυpq. Therefore, another
application of Lemma 3.1 inDT({p, q, r, w}), from timeδ1 backwards, shows that the edgewq is hit
during(υpq, δ1) by at least one of the two pointsp or r. See Figure 72 (bottom).
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Figure 72:Lemma 6.7. Top: Possible trajectories ofw (left) or r (right) during(δ1, λq), which realize the crossing
of pr by the respective point. Bottom: Possible trajectories ofw during(υpq, δ1), which realize the crossing ofwq
by r (left) or byp (right).

To conclude, we have established the following claim.

Lemma 6.7. With the above notation, the following two properties hold in case (d1):
(i) The edgewq is hit in (υpq, δ1) by at least one of the pointsp, r. Namely, eitherr crosseswq from

L−
wq to L+

wq, or p crosseswq in the reverse direction. Moreover, the Delaunayhood ofwq is violated by
p andr after the last such crossing and untilδ1.

(ii) The edgepr is hit in (δ1, λq) by at least one of the pointsw, q. Namely, eitherw crossespr from
L+
pr to L−

pr, or q crossespr in the reverse direction. Moreover, the Delaunayhood ofpr is violated byw
andq after δ1 and until the first such crossing.

Case (d1) – the crossing ofwq by p or r. We next turn the crossing in Lemma 6.7 (i) into a Delaunay
crossing ofwq by r. Recall thatδ1 belongs to the interval(λwq, ξwq). Therefore, and sincewq is
Delaunay at timeλwq (and at timeξwq), the crossing in Lemma 6.7 (i) has to occur in the interval
[λwq, δ1); see Figure 73. Therefore, and sincewq is Delaunay inDT(P \ {a, p, r, u}) during [λwq, ξwq]
(by condition (S6)),wq undergoes within that latter interval a Delaunay crossing by p or r within a
suitably reduced triangulationDT(P \ {a, r, u}) or DT(P \ {a, p, u}).

If wq is hit by p during [λwq, δ1], then the pointsp, q, w define two Delaunay crossings within the
reduced triangulationDT(P \ {r, a, u}). A routine combination of Lemma 4.5 with the Clarkson-Shor
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ξ−1 ζ1

wq ∈ DT(P )

wq ∈ DT(P \ {a, p, r, u})

wq hit by p or r

λwq ξwqδ1 λq

Figure 73:Case (d1)–obtaining a crossing ofwq by at least one ofp, r. The edgewq is Delaunay at timesλwq

andξwq. Since the Delaunayhood ofwq is violated byp andr right before timeδ1 ∈ [λwq, ξwq], it is hit by one of
these points during[λwq, δ1).

probabilistic argument implies that the overall number of such triples(p, q, w) in P isO(n2). By Propo-
sition 6.2, this also bounds the overall number of such special quadruplesχ.

We may therefore assume thatwq is hit during[λwq, δ1) by the pointr, in which case the smaller set
P \ {a, p, u} induces a Delaunay crossing ofwq by r. Note that each such triple(q, w, r) is shared by
at mostO(1) special quadruplesχ as above. Indeed, by Lemma 4.1,r cannot hitwq during the crossing
(wa, q,Ju) (which is defined with respect toP \ {u}). If r hitswq in [λwq, λ2) then, by condition (S2),
(wa, q,Ju) is among the first three clockwise special(w, q)-crossings to begin after that collinearity.
Otherwise, ifr hitswq in (λ3, ξwq], then condition (S6) similarly implies that(wa, q,Ju) is among the
last three such(w, q)-crossings to end before this collinearity. We thus have established the following
claim:

Lemma 6.8. With the above assumptions, for any given triple(q, w, r) there remain at most six3-
restricted special quadruplesχ = (a′, p′, w′, q′), with respective outer pointsr′ and u′, that satisfy
(q′, w′, r′) = (q, w, r).

In other words, any triple(q, w, r) is shared by at mostsix special quadruples that have survived the
previous chargings (after falling into case (i)). Hence, the special quadrupleχ under consideration is
almost-uniquely determined by the choice of(q, w, r).

In what follows, we therefore assume that the edgewq undergoes (within a suitably reduced triangu-
lationDT(P \ {a, p, u})) a Delaunay crossing byr, and thatχ and̺ are almost uniquely determined by
this additional crossing triple(q, w, r).

Case (d1)–the crossing ofpr by q or w. We next turn the crossing in Lemma 6.7 (ii) into a Delaunay
crossing ofpr by w. If pr does not re-enterDT(P ) after timeδ1 then, by Lemma 6.6,(pq, r, I) is
among theO(ℓ) last (regular)(p, r)-crossings (becausepr is Delaunay during each of these crossings).
By Proposition 6.1, this can happen for at mostO(ℓn2) special quadruplesχ. Therefore, we may assume
thatpr re-entersDT(P ) afterδ1.

pr hit by q orw

t1 ζ1 δ1

pr ∈ DT(P )

ξprt0

I pr 6∈ DT(P )

Apr

Figure 74:Case (d1)–enforcing a crossing ofpr by one of the pointsq, w. The edgepr is Delaunay throughout
I = [t0, t1] and at timeξpr > δ1, which is the first such time afterδ1 whenpr re-entersDT(P ). The Delaunayhood
of pr is violated byq andw right afterδ1 ∈ (t1, ξpr], so it is hit by one of these points during(δ1, ξpr].

Let ξpr denote the first time in[δ1,∞) when the edgepr is again Delaunay (inP ); see Figure 74.
Clearly, the time whenpr is hit by one ofq, w (as prescribed by Lemma 6.7 (ii)) belongs to the interval
(δ1, ξpr], which is contained in(ζ1, ξpr] ⊆ (t1, ξpr]. To turn this crossing into a Delaunay crossing, we
apply Theorem 2.2 inApr over the interval(t1, ξpr), with the third constanth ≫ ℓ.
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If at least one of the Conditions (i), (ii) of Theorem 2.2 holds, we can chargeχ, within Apr, either to
anh-shallow collinearity or toΩ(h2) h-shallow co-circularities. Lemma 6.6 ensures that eachh-shallow
event, that occurs inApr at some timet∗ ∈ (t1, ξpr), is charged in this manner by at mostO(ℓ) special
quadruples. Indeed, the corresponding pointsp andr are involved in the event, so we can guess them in
O(1) possible ways, and(pq, r, I) is among the last8ℓ+2 clockwise(p, r)-crossings to end before time
t∗. Therefore, the above charging accounts for at mostO

(

ℓh2N(n/h) + ℓhn2β(n)
)

special quadruples
χ.

We may assume, then, that Condition (iii) of Theorem 2.2 holds. That is, there is a subsetApr of at
most3h points (perhaps including some ofq, a, u andw) whose removal restores the Delaunayhood of
pr throughout the interval[t1, ξpr].

If pr is crossed during(δ1, ξpr] by q (from L−
pr to L+

pr), then the triplep, q, r performs two Delaunay
crossings within the triangulationDT((P \Apr) ∪ {q}). A routine combination of Lemma 4.5 with the
probabilistic argument of Clarkson and Shor implies thatP contains at mostO(hn2) triplesp, q, r of this
kind. By Proposition 6.1, this also bounds the overall number of such special quadruplesχ.

To conclude, we are left with the case where the edgepr is crossed during(δ1, ξpr] by w (from
L+
pr to L−

pr). Hence, the reversely oriented copyrp of pr undergoes within the smaller triangulation
DT((P \Apr)∪{w}) a Delaunay crossing(rp,w,T = [τ0, τ1]), whereT ⊆ [t1, ξpr] (the crossing must
begin aftert1, sincepr is Delaunay duringI, by Lemma 4.1).

Lemma 6.9. With the above assumptions, for any given triple(p, r, w) there remain at most8ℓ + 2
3-restricted special quadruplesχ = (a′, p′, w′, q′), with respective outer pointsr′ andu′, that fall into
case (d1) and satisfy(p′, r′, w′) = (p, r, w).

Proof. By Proposition 6.1, eachχ as above is uniquely determined by(pq, r, I) which, according to
Lemma 6.6, is among the last8ℓ+2 clockwise(p, r)-crossings to end beforew hitspr (as prescribed by
Lemma 6.7).

If the above Delaunay crossing ofrp by w, which occurs within the reduced triangulationDT((P \
Apr) ∪ {w}), is a double Delaunay crossing, then we can chargeχ to this crossing. A standard com-
bination of Lemma 4.5 with the probabilistic argument of Clarkson and Shor implies that the overall
number of such triples(p, r, w) in P is only O(hn2), so the overall number of such special quadru-
plesχ does not exceedO(ℓhn2). Therefore, we may assume, in what follows, that the above crossing
(rp,w,T = [τ0, τ1]) is asingleDelaunay crossing.

To facilitate the subsequent steps of the analysis, we augment the above conflict setApr as follows.
For each clockwise(p, r)-crossing(pq′, r, I ′) (in F) that ends during(t1, δ1) we add the respective point
q′ to Apr. Informally, this is done to get rid of these(p, r)-crossings(pq′, r, I ′) (see below for details).
Since there are only at most8ℓ+ 1 such pointsq′ (and sinceℓ ≪ h), the overall cardinality ofApr, after
the augmentation, is at most3h+ 8ℓ+ 1 ≤ 4h.

To conclude, in case (d1), after disposing ofO
(

N(ℓh2N(n/h) + ℓhn2β(n)
)

special quadruples, we
may assume that the four points of̺ = (p, q, r, w) perform at least four Delaunay crossings, namely,
(pq, r, I), (qp,w,H), the crossing ofwq by r (which occurs inP \ {a, p, u} and within[λwq, ξwq]), and
the lately enforced single Delaunay crossing(rp,w,T = [τ0, τ1]) (which occurs in(P \ Apr) ∪ {w}).

Case (d1) – converging.In Section 7.1, we will exploit the third co-circularity ofp, q, r, w, which occurs
at timeδ2 ∈ (δ1, λpq] and is red-blue with respect topq andrw, to enforce the crossing ofrw by at least
one ofp andq. As a result, one of the triples(p, r, w) of (q, r, w) will perform two Delaunay crossings
in an appropriately refined triangulation, and our analysiswill bottom out into a quadratic bound via
Lemma 4.5.

To obtain the above crossing ofrw, we will first apply Theorem 2.2 in the red-blue arrangement
of this edge, so as to extend the (almost-)Delaunayhood interval of rw from T = [τ0, τ1] (whererp
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undergoes an almost-Delaunay crossing byw) to a larger interval that will contain bothδ2, and a time
whenrw is hit by p or q. At the end of the analysis, we will manage either to charge the quadruple
(p, q, r, w) within Arw (in cases (i) and (ii) of Theorem 2.2), or else to extract the desired Delaunay
crossing ofrw.

The above use of Theorem 2.2 will be prepared by applying Theorem 5.3 for the clockwise(r, w)-
crossing(rp,w,T = [τ0, τ1]), so as to ensure that each event inArw be charged by only few other such
terminal quadruples̺ ′ = (p′, q′, r, w), via the respective(r, w)-crossings(rp′, w,T ′). That is, if we
encounter too many(r, w)-crossings(rp′, w,T ′) that can charge such an event, the crossing(rp,w,T )
will become(p,w)-chargeable, and can thus be accounted for by Theorem 2.2.

In order for the crossing(rp,w,T ) to be(p,w)-chargeable, we need an appropriate timeξpw afterδ2
when the edgepw is Delaunay (or, at least, almost Delaunay, with none of the obstruction points equal to
r, p, w). In addition, the edgepw must be almost Delaunay throughout the entire interval where Theorem
5.3 is applied. We next proceed to accomplish all these stepsin more detail.

δ1 λq

λ5λ4 H

ζ1ξ−1

λwq

λpq

ξpw
ξwq

pw ∈ DT(P \ {a′, r′, u′})

pw ∈ DT(P \Apw)

Figure 75:In the preparation for cases (b) and (c), we have extended theDelaunayhood ofpw fromH = [λ4, λ5]
(where it belongs toDT(P \ {a, r, u})) to the larger interval[λwq, ξwq]. We next extend the almost-Delaunayhood
of pw beyondξwq, until some timeξpw whenpw belongs to some reduced triangulationDT(P \ {a′, r′, u′}) (for
a′, r′, u′ 6∈ {q, r}).

Charging even more events inApw. Our first step is to extend the almost-Delaunayhood ofpw. Refer
to Figure 75. Recall that, in preparation for cases (b) and (c), we have already extended the almost-
Delaunayhood ofpw from H = Hχ = [λ4, λ5] (whereqp is crossed byw) to the interval[λwq, ξwq],
which coversH = [λ4, λ5], (ξ−1, λq) and λpq. (In particular, [λwq, ξwq] containsδ1 ∈ (ζ1, λq) ⊂
(ξ−1, λq) and δ2 ∈ (δ1, λpq].) This has been achieved at the cost of removing a certain subsetApw,
which consists of at most6ℓ + 3 points, includinga, r, u. Unfortunately, the above obstruction setApw

containsr (and perhaps alsow), so removingApw in its entirety would destroy the Delaunay crossing
(rp,w,T ) (instead of facilitating its(p,w)-chargeability in a smaller triangulation).

We next obtain a timeξpw > ξwq whenpw belongs to some reduced triangulationDT(P\{a′, r′, u′}),
for a′, r′, u′ 6∈ {q, r}, and extend the almost-Delaunayhood ofpw from λ5 beyondξwq, until ξpw.

To do so, we return to the familyGR
pw of 3-restricted right special quadruplesχ′ = (a′, p, w, q′) that

share their middle pointsp,w with χ. (In particular,GR
pw includesχ.)

Recall that each special quadrupleχ′ ∈ GR
pw is accompanied by a(p,w)-crossing(q′p,w,H′), which

is defined with respect to the corresponding setP \ {a′, r′, u′}. Without loss of generality, we assume
that all quadruples inGR

pw fall into case (d1), and that none of them have been disposed of by the pre-
vious chargings withinApr. (In addition, we continue to assume that the special quadruple χ under
consideration satisfies condition (PHR1).)

By Lemma 6.9, any triple(p, r′, w) can be shared by at most8ℓ + 2 special quadruplesχ′ =
(a′, p, w, q′) ∈ GR

pw under consideration (each with its respective outer pointsr′ andu′). Therefore,
the pigeonhole principle implies that at least some fixed fraction of all 3-restricted quadruplesχ =
(a, p, w, q) ∈ GR

pw under consideration (again, with respective outer pointsr andu) satisfy the following
condition:

(PHR2) At mostO(ℓ) other3-restricted quadruplesχ′ = (a′, p, w, q′) ∈ GR
pw (each with its respective
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outer pointsr′ andu′) can satisfyr ∈ {a′, r′, u′}.

(Briefly, this can be shown by considering themulti-functionµ : GR
pw → GR

pw mapping each special
quadrupleχ = (a, p, w, q), with respective outer pointsr andu, to at most(8ℓ + 2) × 3 = O(ℓ) other
quadruplesχ′ = (a′, p, w, q′), whose respective outer pointsr′ are chosen froma, r, u. Hence, average
“in-degree” of each quadrupleχ ∈ GR

pw, which is exactly the number of quadruplesχ′ so that at least
one of their respective pointsa′, r′, u′ is equal to the first outer pointr of χ, is alsoO(ℓ).)

Therefore, we can assume, in what follows, that the above condition holds forχ at hand. Combining
this38 with (PHR1) shows that all but at most3 + O(ℓ) = O(ℓ) special quadruplesχ′ = (a′, p, w, q′) ∈
GR
pw, with respective outer pointsr′ andu′, have{q, r} ∩ {a′, r′, u′} = ∅. Recall also that, since case (a)

has been ruled out,GR
pw contains at mostk quadruplesχ′ whose respective(p,w)-crossings(q′p,w,Hχ′)

end in(λ5, ξwq]. See Figure 76.

ξwq

Hχ′
pw ∈ DT(P \ {a′, r′, u′})

t
λ5Hχλ4

Figure 76:The familyGR
pw contains at mostO(ℓ) quadruplesχ′ with non-empty intersection{a′, r′, u′}∩ {q, r},

and at mostk quadruplesχ′ whose respective(p, w)-crossings end in(λ5, ξwq]. If GR
pw contains no special quadru-

plesχ′ that satisfy{a′, r′, u′} ∩ {q, r} = ∅, and whose respective(p, w)-crossings(q′p, w,Hχ′) end afterξwq,
then(qp, w,H) is among the lastO(ℓ) such(p, w)-crossings.

Assume first thatGR
pw contains no special quadruplesχ′ = (a′, p, w, q′) (with respective outer points

r′ andu′) that satisfy{a′, r′, u′} ∩ {q, r} = ∅, and whose respective(p,w)-crossings(q′p,w,Hχ′) end
afterξwq. Therefore,GR

pw contains at mostk +O(ℓ) = O(ℓ) such quadruplesχ′ whose(p,w)-crossings
(q′p,w,Hχ′) end after the ending timeλ5 of H = Hχ (including the at mostk such quadruples whose
(p,w)-crossingsχ′ end in(λ5, ξwq], and the at mostO(ℓ) such quadruplesχ′ with non-empty intersection
{a′, r′, u′}∩ {q, r}). Hence, we can chargeχ, via its respective(p,w)-crossing(qp,w,Hχ = H), to the
edgepw, so the above scenario occurs for at mostO(ℓn2) special quadruplesχ under consideration.

Assume, then, that, for someχ′ ∈ GR
pw, with {q, r} ∩ {a′, r′, u′} = ∅, its respective(p,w)-crossing

(q′p,w,Hχ′) ends afterξwq. By Lemma 4.1,pw belongs toDT(P \ {a′, r′, u′}) throughoutHχ′ . In
particular, we can choose a timeξpw ∈ [ξwq,∞), which is the first such time when the edgepw belongs
to some reduced triangulationDT(P \{a′, r′, u′}), wherea′, r′, u′ ∈ P \{r, q}. In what follows, we use
a′, r′ andu′ to denote the above three pointsa′, r′, u′, whose removal restores the Delaunayhood ofpw
at timeξpw.

The preceding discussion implies that at mostO(ℓ) of the above(p,w)-crossings(q′p,w,Hχ′) can
end in(ξwq, ξpw] (and that, for each of those crossings, its respective obstruction set{a′, r′, u′} intersects
{q, r}). Therefore, and since case (a) has been ruled out, at mostk + O(ℓ) = O(ℓ) of the above(p,w)-
crossings can end in(λ5, ξpw).

We are finally ready to apply Theorem 2.2 inApw over the interval(λ5, ξpw) (see Figure 77). This
is done with the third constanth ≫ ℓ and with respect to the smaller setP \ {a′, r′, u′}. If at least
one of the first two conditions of Theorem 2.2 holds, we chargeχ within Apw either to an(h + 3)-
shallow collinearity, or toΩ(h2) (h + 3)-shallow co-circularities (as in the previous chargings, these
events areh-shallow inP \ {a′, r′, w′}, and (h + 3)-shallow inP ). Clearly, each(h + 3)-shallow
event inApw is charged as above by at mostO(ℓ) special quadruplesχ, because(qp,w,Hχ′) is among
the lastO(ℓ) such(p,w)-crossings to end before the event. Hence, the above charging accounts for

38As a matter of fact, our previous inability to enforce (PHR2)was the only reason why the present analysis inApw had not
been applied right after handling case (a), in a more generalcontext.
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ℓh2N(n/h) + ℓhn2β(n)
)

special quadruplesχ.

λ4

Hχ′

ξwq

pw ∈ DT(P \ {a′, r′, u′})

pw ∈ DT(P \ {a, r, u})

t
λwq Hχ λ5

ξpw
Ãpw

Figure 77: Extending the almost-Delaunayhood ofpw to [λ5, ξpw]. ξpw is the first time in[ξwq,∞) whenpw
belongs to some reduced triangulationDT(P \ {a′, r′, u′}), for {a′, r′, u′} ∩ {q, r} = ∅. We apply Theorem
2.2 withinApw over the interval(λ5, ξpw), noting that(qp, w,Hχ) is among the lastO(ℓ) such(p, w)-crossings
(q′p, w,Hχ′) to end before any charged event.

We can therefore assume that Condition (iii) of Theorem 2.2 holds. Hence, there is a subsetÃpw

of at most3h + 3 points (including the above three pointsa′, r′, u′ ∈ P \ {p, q, r, w}), whose removal
restores the Delaunayhood ofpw throughout(λ5, ξpw). Therefore,pw belongs toDT(P \ (Apw ∪ Ãpw))
throughout the entire interval[λwq, ξpw] = [λwq, ξwq] ∪ (λ5, ξpw] (whereApw denotes the set of at most
6ℓ+3 points, includinga, r, u, whose removal restores the Delaunayhood ofpw throughout[λwq, ξwq]).

Case (d1)–Wrap up.We again emphasize that the times of the various events discussed so far appear in
the order

ξpq < λwq < ξ−1 < ζ1 < δ1 < λq < λpq < ξwq < ξpw,

that δ2 ∈ (δ1, λpq], and thatw crossesrp from L−
rp to L+

rp in the interval(δ1, λq), as part of a single
Delaunay crossing(rp,w,T = [τ0, τ1]) (which occurs in(P \ Apr) ∪ {w}). Refer to Figure 78.

ξ−1

Tτ0 τ1

δ1 ξwq

Apw ∪ Ãpwλwq ξpw

w hits rp

λpqλq

I

λ1

Ir

t0 t1δ0

ξpq

ζ1 λ0 p

r
w

w

w
w
δ1

δ2

q

Figure 78:Case (d1): A (partial) summary of what we assume at the end of the analysis. Left: Various events
occur in the depicted order (andδ2 lies in (δ1, λpq]). Right: A possible motion ofw afterr entersL+

pq (duringI).

By the definition ofApw andÃpw (of total cardinality6ℓ+3+3h+3 = O(h)), the edgepw belongs
to DT(P \ (Apw ∪ Ãpw)) throughout the interval[δ1, ξpw] ⊆ [λwq, ξpw]. Furthermore,pw belongs at
time ξpw to the triangulationDT(P \ {a′, r′, u′}), wherea′, r′, u′ ∈ Ãpw \ {q, r}.

Recall also that, sinceζ1 belongs to both intervals[t0, λ1] = conv(I ∪Ir) and(ξ−1, ξ0) ⊂ [ξpq, λpq],
the combination of conditions (Q8) and (S6) (on, respectively, σ andχ) implies that the edgepq belongs
toDT(P \ {a,w, r, u}) throughout the interval[t0, λpq] ⊆ [t0, λ1] ∪ [ξpq, λpq].

Finally, we continue to assume that the edgewq undergoes a Delaunay crossing byr within P \
{a, p, u}. (The precise interval of this crossing is immaterial for our future analysis.)

In what follows, we useA+
pq to denote the set of all points ofP that appear in the capC+

pq at some
time in (ξ−1, λq). By Lemma 6.4, the cardinality ofA+

pq does not exceed8ℓ+ 1.

Case (d1) – charging terminal quadruples.To proceed, we draw a random sampleR of ⌈n/h⌉ points
of P . Notice that the following two events occur simultaneouslywith probability at leastΩ(1/h4): (1)

90



The four pointsp, q, w, r belong toR, and (2)R includes none of the points of

(A+
pq ∪ Ãpw ∪Apw ∪Apr ∪ {a, u}) \ {p, q, r, w}.

Suppose that the sampleR is indeed successful for the3-restricted right special quadrupleχ =
(a, p, w, q) at hand, with respective two outer pointsr andu. Then we can chargeχ to the quadruple
̺ = (p, q, r, w), which satisfies the following conditions with respect to the sampleR (see Figure 106 in
Section 7.1 for a schematic summary, withR replaced byP ).

(A1) The edgepq undergoes (inR) a Delaunay crossing(pq, r, I = [t0, t1]) and is crossed byw, from
L+
pq to L−

pq, at some later timeλq > t1. In addition,pq is again Delaunay at some timeλpq which is
the first such time aftertq, and it belongs toDT(P \ {r, w}) throughout(t1, λpq). Hence, its reversely
oriented copyqp undergoes inR \ {r} (and entirely within(t1, λpq]) a Delaunay crossing byw.

(A2) The pointsp, q, w, r are co-circular at timesδ0 ∈ I, δ1 ∈ [t1, λq], andδ2 ∈ (δ1, λpq], and the
following properties hold:
(i) The co-circularity at timeδ0 is red-blue with respect topq.
(ii) The co-circularity at timeδ1 is red-red with respect topq and red-blue with respect to the edgepr,
whose Delaunayhood is violated right after timeδ1 by q andw. Furthermore, the open capC+

pq =
B[p, q, w] ∩ L+

pq contains no points ofP at timeδ1.
(iii) The co-circularity at timeδ2 is again red-blue with respect topq. It arises during a single Delaunay
crossing ofqp by w, which occurs inDT({p, q, r, w}) during some sub-interval of(δ1, λpq].

(A3) The setR \ {q} induces a (single) Delaunay crossing(rp,w,T = [τ0, τ1]), wherew crossesrp
from L−

rp toL+
rp during(δ1, λq).

Similarly, the setR \{p} induces a Delaunay crossing ofwq by r, wherer crosseswq beforeδ1, and
from L−

wq toL+
wq.

(A4) There exists a timeξpw > λpq so that (i) the edgepw is Delaunay (inR) at timeξpw, and (ii) pw
belongs toDT(R \ {q, r}) throughout the interval[δ1, ξpw].

In Section 7.1 we show thatpw is Delaunay also at timeδ1. In addition, Lemma 4.1 implies that
pw belongs toDT(R \ {q}) throughout the intervalT = [τ0, τ1], which obviously intersects[δ1, ξpw](⊃
[δ1, λq]).

Notice that any such quadruple̺= (p, q, r, w) in R is charged as above by at most one3-restricted
right special quadrupleχ = (a, p, w, q) in F (with outer pointsr andu), because the latter quadruple is
uniquely determined by each of the triples(p, q, r) and(p, q, w).

We say that a quadruple̺= (p, q, r, w) is terminal of type Aif it satisfies the above four conditions
(A1)–(A4) with respect to the underlying setR. (In Section 7, we shall again useP to denote the
underlying point set of our terminal quadruples. See Figure106 in that section for a partial summary of
the properties of terminal quadruples of type A.)

Let ΣA
R denote the resulting family of terminal quadruples̺ = (p, q, r, w) (of type A) inR that are

charged by3-restricted right special quadruples inP through the above probabilistic argument.

Lemma 6.10. With the above assumptions, each terminal quadruple̺ = (p, q, r, w) in ΣA
R is uniquely

determined by each of its sub-triples(p, q, r), (p, q, w), (p, r, w). Furthermore, any triple(q, r, w) is
shared by at most six terminal quadruples ofΣA

R.

Proof. Clearly, the second part of the lemma is directly implied by Lemma 6.8, so it suffices to establish
the first part of it.

By condition (A1),w is the first point ofP to hit the edgepq after its Delaunay crossing(pq, r, I =
[t0, t1]) by r. Hence,̺ = (p, q, r, w) is uniquely determined by the choice ofp, q andr. A similar
agrument implies that̺ = (p, q, r, w) is uniquely determined by the triple(p, q, w).
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To see that̺ is uniquely determined by(p, r, w), let us assume for a contradiction thatΣA
R contains

another such quadruple̺′ = (p, q′, r, w) (of type A and withq′ 6= q). Furthermore, assume with no loss
of generality that the respective(p, r)-crossing(pq′, r, I ′) of ̺′ ends afterI = [t0, t1]. Note though that
I ′ must end beforew entersL−

pr throughpr (as prescribed by condition (A3)). However, in that case
I ′ would end in(t1, δ1), soq′ would have been included in the respective setApr of ̺, and, therefore,
omitted39 from R, contrary to the choice of̺′ ∈ ΣA

R.

To simplify the presentation, in what follows we only consider a subfamilyΣA = ΣA
R of terminal

quadruples of type A whose members̺ = (p, q, r, w) are uniquely determinedby each one of their
respective four sub-triples(p, q, r), (p, q, w), (p, r, w), and(q, r, w). This stronger uniqueness condition
can be enforced by prunningΣA

R (without affecting its asymptotic cardinality), so that, for each triple
(q, r, w), we keep inΣA

R only one terminal quadruple(p, q, r, w), if such quadruples exist at all inΣA
R.

Let TA(m) denote the maximum cardinality of a familyΣA of terminal quadruples of type A (with
the above uniqueness property) that can be defined over a set of m moving points. The preceding analysis
implies that the overall number of special quadruples that fall into Case (d1) is at most

O
(

h4TA(n/h) + ℓh2N(n/h) + ℓhn2β(n)
)

.

Case (d2). The co-circularity at timeδ1 is red-blue with respect to the edgeqr, whose Delaunayhood
is violated right after that byp andw. We continue to assume thatr does not crosspq again during
(t1, λpq].

As in case (d1), we useυpq to denote the time inI = [t0, t1] whenr enters the halfplaneL+
pq. We

have the following lemma, whose proof is fully symmetric to that of Lemma 6.7.

Lemma 6.11. With the above notation, the following two properties hold in case (d2):
(i) The edgepw is hit in (υpq, δ1) by at least one of the pointsq, r. Namely, eitherr crossespw from

L−
pw to L+

pw, or q crossespw in the reverse direction. Moreover, the Delaunayhood ofpw is violated by
q andr after the last such crossing and untilδ1.

(ii) The edgerq is hit in (δ1, λq) by at least one of the pointsp,w. Namely, eitherw crossesrq from
L+
rq to L−

rq, or p crossesrq in the reverse direction. Moreover, the Delaunayhood ofrq is violated byw
andq after δ1 and until the first such crossing.

Refer to Figure 79. To prove part (i) of Lemma 6.11, we note that, right before timeδ1, the Delau-
nayhood ofpw is violated byq ∈ L−

pw andr ∈ L+
pw, and that this violation does not hold either right

before, or right after the timeυpq whenr crossespq. Hence, to obtain the desired crossing ofpw, we
can apply the time reversed variant Lemma 3.1 for the triangulation DT({p, q, r, w}), over the interval
(υpq, δ1).

To prove part (ii) of Lemma 6.11, we apply (the regular variant of) Lemma 3.1 inDT({p, q, r, w})
over the interval(δ1, λq), noting that the violation ofrq by p ∈ L−

rq andw ∈ L+
rq, which holds right after

time δ1, no longer exists either right before, or right after, the timeλq whenw hitspq.

Case (d2) – enforcing the crossing ofrq by p or w. Our argument is fully symmetric to the one used in
case (d1) to enforce a Delaunay crossing ofpr by q orw.

Recall that, according to Lemma 6.6, at most8ℓ + 1 counterclockwise(q, r)-crossings can end in
the interval(t1, δ0). If rq never re-entersDT(P ) after timeδ1, then(pq, r, I) is among the last8ℓ + 2
counterclockwise Delaunay(q, r)-crossings inF (with respect to the standard order implied by Lemma
4.6). Clearly, this scenario happens for at mostO(ℓn2) special quadruplesχ, because each of them is
uniquely determined by the respective triple(p, q, r) (according to Proposition 6.1). Therefore, we may

39Clearly, we haveq′ 6= w (i.e., there is no crossing(pw, r, I ′)), becauser can enter the halfplaneL+
pw only once, and it is

already assumed to cross the lineLpw , fromL−

pw toL+
pw, andoutsidepw (as prescribed by Lemma 6.7 (ii)).

92



q w

w

p

r r

p

w

w
q

p

w

w

r

q

q

r

p

w

r

Figure 79:Lemma 6.11. Top: Possible trajectory ofw during(υpq, δ1), which realize the crossing ofpw by r
(left) or q (right). Bottom: Possible trajectories ofw (left) andr (right) during(υpq, δ1), which realize the crossing
of rq by the respective point.

assume, in what follows, thatrq re-entersDT(P ) at some future timeξrq > δ1 (which is thefirst such
time whenrq is Delaunay); see Figure 80. By Lemma 6.11 (ii),rq is hit during(δ1, ξrq] ⊂ (t1, ξrq] by
p or w. Furthermore, Lemma 6.6 (combined with Lemma 4.1) implies at most8ℓ+ 1 counterclockwise
(Delaunay)(q, r)-crossings inF can end during(t1, ξrq].

rq ∈ DT(P )

ζ1 δ1

Arq rq hit by p orw

ξrqt0

I pr 6∈ DT(P )

t1

Figure 80: Case (d2)–enforcing a crossing ofrq by at least one of the pointsp, w. The edgerq is Delaunay
throughoutI = [t0, t1] and at timeξrq > δ1, which is the first such time afterδ1 whenrq re-entersDT(P ). The
Delaunayhood ofrq is violated byq andw right afterδ1 ∈ (t1, ξrq], so it is hit by one of these points during
(δ1, ξrq].

To enforce the desired crossing ofrq, we apply Theorem 2.2 inArq over the interval(t1, ξrq), with
the third thresholdh ≫ ℓ.

If one of the Conditions (i), (ii) holds, we chargeχ (via (pq, r, I)) either to anh-shallow collinear-
ity or to Ω(h2) h-shallow co-circularities. Clearly, each of theseh-shallow events is charged at most
O(ℓ) times in the above manner, because(pq, r, I) is among the last8ℓ + 2 counterclockwise(q, r)-
crossings (inF) to end before the time of the event. Hence, the above charging accounts for at most
O(ℓh2N(n/h) + ℓhn2β(n)) special quadruplesχ.

Assume, then, that Condition (iii) of Theorem 2.2 holds, so we have a subsetArq of at most3h
points (possibly includingp or w, or both) whose removal restores the Delaunayhood ofrq throughout
the entire interval[t0, ξrq] = I ∪ [t1, ξrq]. To facilitate the subsequent analysis, we augment the setApr

as follows. For each crossing(p′q, r, I ′) (in F) that ends in the interval(t1, δ1) we add the respective
point p′ to Arq.

If rq is hit during(δ1, ξrq] by p, then the triple(p, q, r) is involved in two Delaunay crossings, which
occur within the smaller triangulationDT((P \Arq)∪{p}). According to Lemma 4.5, the overall number
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of such triples inP does not exceedO(hn2). By Proposition 6.1, this also bounds the overall number of
the respective special quadruplesχ.

To conclude, we may assume, in what follows, thatrq is hit during(δ1, ξrq] ⊂ (t1, ξrq) byw (which
crosses it fromL+

rq toL−
rq). Therefore, the reversely oriented copyqr of rq undergoes, within the reduced

triangulationDT((P \ Arq) ∪ {w}), a Delaunay crossing(qr, w,T = [τ0, τ1]).
Notice that(pq, r, I) is among the last8ℓ+ 2 (q, r)-crossings inF to end beforew crossesrq from

L+
rq to L−

rq, which implies the following symmetric analogue of Lemma 6.9:

Lemma 6.12. Any triple (q, r, w) is shared by at most8ℓ + 2 3-restricted special quadruplesχ =
(a, p, w, q) (with respective outer pointsr andu) of the above kind.

If the above crossing(qr, w,T = [τ0, τ1]) is a double Delaunay crossing, we apply Lemma 4.5 (in
combination with the Clarkson-Shor argument) to establishan upper bound ofO(hn2) on the overall
number of such triples(q, r, w) in P , which immediately yields an upper bound ofO(ℓhn2) on the
number of special quadruplesχ of this kind. Hence, we may assume, in what follows, that the above
crossing ofqr by w in DT((P \Arq) ∪ {w}) is asingleDelaunay crossing.

We again emphasize thatλwq < δ1 < λq < λpq < ξwq andδ2 ∈ (δ1, λpq], and thatw hits qr (during
T = [τ0, τ1]) in the interval(δ1, λq). Furthermore, by condition (S6),wq belongs toDT(P \{a, p, r, u})
throughout[λwq, ξwq] ⊂ (δ1, ξwq) (and is Delaunay at timesλwq andξwq). See Figure 81.
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Figure 81:Case (d2): A (partial) summary of what we assume at the end of the analysis. Left: Various events
occur in the depicted order (andδ2 lies in (δ1, λpq]). Right: A possible motion ofw afterr entersL+

pq (duringI).

Case (d2) – charging terminal quadruples.As in case (d1), letA+
pq denote the set of at most8ℓ + 1

points that show up in the capC+
pq = B[p, q, w] ∩ L+

pq at some time in(ξ−1, λq) (see Lemma 6.4).
To proceed, we draw a random sample ofR of ⌈n/h⌉ points ofP . Notice that the following two

events occur simultaneously with probability at leastΩ(1/h4): (1) The four pointsp, q, w, r belong to
R, and (2)R includes none of the points of

(Apw ∪Arq ∪A+
pq ∪ {a, u}) \ {p, q, r, w}

Suppose that the sampleR is indeed successful for the3-restricted right specialχ = (a, p, w, q) at
hand (with respective two outer pointsr andu). Then we can chargeχ to the quadruple̺ = (p, q, r, w),
which satisfies the following conditions with respect to thesampleR:

(B1) The edgepq undergoes a Delaunay crossing(pq, r, I = [t0, t1]) and is crossed byw, from L+
pq to

L−
pq, at some later timeλq > t1. In addition,pq is again Delaunay at some timeλpq which is the first

such time aftertq, and it belongs toDT(R \ {r, w}) throughout(t1, λpq). Hence, its reversely oriented
copyqp undergoes inR \ {r} (and entirely within(t1, λpq]) a Delaunay crossing byw. Finally, r does
not crosspq in (t1, λpq].

(B2) The pointsp, q, w, r are co-circular at timesδ0 ∈ I, δ1 ∈ [t1, λq], andδ2 ∈ (δ1, λpq], and the
following properties hold:
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(i) The co-circularity at timeδ0 is red-blue with respect topq.
(ii) The co-circularity at timeδ1 is red-red with respect topq and red-blue with respect to the edge
rq, whose Delaunayhood is violated right after timeδ1 by p andw. (In particular, this implies thatr
remains inL+

pq throughout(t1, δ1), after entering this halfplane duringI.) Furthermore, the open cap
C+
pq = B[p, q, w] ∩ L+

pq contains no points ofP at timeδ1.
(iii) The co-circularity at timeδ2 is again red-blue with respect topq. It arises during a single Delaunay
crossing ofqp by w, which occurs inDT({p, q, r, w}) during some sub-interval of(δ1, λpq].

(B3) The setR \ {p} induces a (single) Delaunay crossing(qr, w,T = [τ0, τ1]), wherew crossesrq,
from L+

rq toL−
rq, during(δ1, λq).

(B4) There exists a timeξqw > λpq so that (i) the edgeqw is Delaunay at timeξqw, and (ii) the edgesqw
andpw belong to, respectively,DT(R \ {p, r}) andDT(R \ {q.r}) throughout the interval[δ1, ξqw].

Notice that any such quadruple̺= (p, q, r, w) in R is charged as above by at most one3-restricted
right special quadrupleχ = (a, p, w, q) in F (with respective outer pointsr andu), because the latter
quadruple is uniquely determined by each of the triples(p, q, r) and(p, q, w).

We say that a quadruple̺= (p, q, r, w) is terminal of type Bif it satisfies the above four conditions
with respect to the underlying setR. (In Section 7, we shall again useP to denote the underlying set of
our terminal quadruples.)

Let ΣB
R denote the resulting family of terminal quadruples̺ = (p, q, r, w) (of type B) inR that are

charged by3-restricted right special quadruples inP through the above probabilistic argument.

Lemma 6.13. With the above assumptions, each terminal quadruple̺ = (p, q, r, w) in ΣB
R is uniquely

determined by each of its sub-triples(p, q, r), (p, q, w), (q, r, w).

Proof. By condition (B1),w is the first point ofP to hit the edgepq after its Delaunay crossing
(pq, r, I = [t0, t1]) by r. Hence,̺ = (p, q, r, w) is uniquely determined by the choice ofp, q andr.
A similar agrument implies that̺ = (p, q, r, w) is uniquely determined by the triple(p, q, w).

To see that̺ is uniquely determined by(q, r, w), let us assume for a contradiction thatΣB
R contains

another such quadruple̺′ = (p′, q, r, w) (of type B and withp′ 6= p). Furthermore, assume with no loss
of generality that the respective counterclockwise(q, r)-crossing(p′q, r, I ′) of ̺′ ends afterI = [t0, t1].
Note though thatI ′ must end beforew entersL−

pr throughpr (as prescribed by condition (A3)). However,
in that caseI ′ would end in(t1, δ1), soq′ would be included in the respective setArq of ̺, and, thereby,
omitted40 from R, contrary to the choice of̺′ in ΣB

R.

LetTB(m) denote the maximum cardinality of any familyΣB of terminal quadruples of type B (with
the uniqueness property stated in Lemma 6.13) that can be defined over a setP of m moving points. The
preceding discussion implies that the number of special quadruples that fall into case (d2) is at most

O
(

h4TB(n/h) + ℓh2N(n/h) + ℓhn2β(n)
)

.

We delegate the analysis of terminal quadruples of type B to Section 7.2. Note that the points of each
such terminal quadruple̺= (p, q, r, w) perform at least three Delaunay crossings (namely, the crossings
of pq by r andw, and the crossing ofqr byw). Hence, it suffices to enforce two more crossings in order
to ensure that some sub-triple of̺ be involved intwodistinct Delaunay crossings.

As in the case of terminal quadruples of type A, we shall exploit the co-circularity at timeδ2, which
is red-blue with respect torw, in order to enforce a Delaunay crossing of that edge by at least one of the
two pointsp, q. In addition, we shall enfore a Delaunay crossing ofpw by at least one ofr, q (during
whichpw will be hit by r or q, as suggested by Lemma 6.11 (i) and depicted in Figure 79 (top)).

40Clearly, we havep′ 6= w (i.e., there is no crossing(wq, r, I ′)), becauser is already assumed to cross the lineLwq , from
L−

wq toL+
wq , outsidepw (as prescribed by Lemma 6.11 (ii)).
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3-restricted right special quadruples–wrap up.Putting together the previously established bounds on
the maximum possible numbers of3-restricted right special quadruples that fall into cases (a), (b), (c),
(d1) and (d2) yields the following recurrence:

ΦR
3 (n) =

O
(

h4TA(n/h) + h4TB(n/h) + ℓh2N(n/h) + kℓ2N(n/ℓ) + k2N(n/k) + ℓhn2β(n)
)

. (10)

Discussion. Notice that the roles ofp and q in subcases (d1) and (d2) are largely symmetric, which
enables us to enforce a Delaunay crossing of the respective edgepr or rq by at least one of the remaining
two points ofp, q, r, w. In both scenarios, we first apply Theorem 2.2 (with threshold h ≫ ℓ) in order
to extend the (almost-)Delaunayhood ofpr or qr from I = [t0, t1] (wherepq undergoes the Delaunay
crossing byr) to a larger interval. Lemma 6.6 implies that each event, that arises within the respective
red-blue arrangementApr or Arq during the gap interval, can be traced back toχ (via (pq, r, I)) in only
O(ℓ) possible ways.

The main difference between the two subcases stems from condition (S6), according to whichwq
is almost-Delaunay in the interval[λwq, ξwq], and isfully Delaunayat the endpointsλwq, ξwq. Since
the latter interval containsδ1, in subcase (d1) the corresponding Lemma 6.7 (i) immediately yields a
Delaunay crossing ofwq by (at least) one of the pointsp, r.

In subcase (d2), however, we only know thatpw belongs throughout[λwq, ξwq] to some reduced
triangulationDT(P \ Apw), whereApw is a subset of cardinality at most6ℓ+ 3 which includesa, r, u,
and perhaps alsoq. That is, we are not necessarily able to restore the Delaunayhood ofpw at times
λwq andξwq without removing some ofr, q, and thereby destroying̺ = (p, q, r, w). In fact, it is not
even known whether the collinearity mentioned in Lemma 6.11(i) occurs in[λwq, ξwq] or beforeλwq. In
Section 7.2 we use conditions (B1)–(B4) obtained above, to enforce the long-awaited crossing ofpw by
q or r.

6.6 Stage 4: The number of left special quadruples

To bound the maximum possible numberΦL
3 (n) of 3-restricted right special quadruples, we fix the

underlying setP of n moving points, and a refined familyF .

Topological setup.According to Proposition 6.2, any3-restricted left special quadrupleχ = (a, p, w, q)
shares its triple(p, q, w) with at most two other such quadruples. (In other words, it suffices to bound the
overall number of the corresponding triples(p, q, w).) We strengthen the above property, by considering
at mostone3-restricted left quadruple for each triple(p, q, w). Therefore, in what follows every special
quadrupleχ = (a, p, w, q) under our consideration will be uniquely determined by its triple (p, q, w).

To proceed, we fix a3-restricted left special quadrupleχ = (a, p, w, q), with respect toP andF ,
whose two special(a, q)-crossings take place during the intervalsIr = [λ0, λ1] andJu = [λ2, λ3] (in
this order), wherer andu are the respective outer points. Recall that the original “regular” familyF
includes the quadruplesσ1 = (p, q, a, r) andσ2 = (w, q, a, u).

By assumption,χ satisfies the six conditions (S1)–(S2), (S3b), and (S4)–(S6). We emphasize that
all these conditions, except for (S3b), are common toall 3-restricted special quadruples, including the
right special quadruples studied in Section 6.5. Moreover,one can switch the rolesp andw by reversing
the direction of the time axis, so our condition (S3b) of leftspecial quadruples is fully symmetric to
condition (S3a) on right special quadruples (which has beenassumed throughout the analysis Section
6.5). See below for details.

Refer to Figure 82. As reviewed in the preceding Section 6.6,the 3-restrictedness ofχ implies
that there exist timesλwq ≤ λ0, ξpq ≤ λwq, λpq ≥ λ3 andξwq ≥ λpq, whose properties have been
summarized in the beginning of that section. In particular,pq is Delaunay at timesλpq andξpq, andwq
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is Delaunay at the symmetric timesλwq andξwq. Furthermore,pq andwq are almost Delaunay during,
respectively,[ξpq, λpq] and[λwq, ξwq].

p

q

w

q
Ju

t

t
ξwqλpqλ3λ2λ4

λq ξ2ξ1

H λ5λwqξpq

Wpwq

w

p

q

a

C−
pq

Figure 82:The topological setup during the interval(λq, ξ2) ⊆ [ξpq, ξwq]. Left: The edgeqw is hit at some time
λq ∈ [λwq, λ2) by p, so it undergoes a Delaunay crossing(qw, p,H = [λ4, λ5]) within DT(P \ {a, r, u}). Right:
We haveξpq ≤ λ4 ≤ λq < λ5 < ξ1 < ξ2 ≤ λpq. Bottom: The motion ofB[p, q, w] is continuous throughout
(λq, ξ2] (the hollow circles represent the co-circularities at times ξ1 andξ2).

Let us summarize what we know so far about the motion ofa, p, w, q if χ = (a, p, w, q) is a 3-
restricted left special quadruple. By Condition (S3b), these points are co-circular at timesξ0 ∈ Ir \ Ju,
andξ1 ∈ Ju \Ir, andξ2 ∈ (λ3, λpq]. Moreover, the Delaunayhood ofpq is violated, throughout(ξ1, ξ2),
by the pointsa ∈ L−

pq andw ∈ L+
pq. In particular,a lies throughout that interval within the wedge

Wpwq = L+
wp ∩ L−

wq and inside the capC−
pq = B[p, q, w] ∩ L−

pq.We emphasize that the order type of the
quadruple(q, p, w, a) remains unchanged during(ξ1, ξ2).

In addition, by the same Condition (S3b), the smaller setP \ {a, r, u} yields a (single) Delaunay
crossing(qw, p,Hχ), whose intervalH = Hχ = [λ4, λ5] is contained in[λwq, λ2). Specifically,w hits
pq at some moment41 λq ∈ H, whenp crossesLwq from L+

wq to L−
wq. Sincep lies in L−

wq at times
ξ1 andξ2, no further collinearities ofp,w, q can occur during[λq, ξ2). (Otherwise, the pointp would
have to re-enterL+

wq beforeξ2, and then the triplep, q, w would be collinear three times, contrary to
our assumptions.) To conclude, the discB[p, q, w] moves continuously throughout the interval(λq, ξ2],
which is obviously contained in[ξpq, λpq] ∩ [λwq, ξwq] = [λwq, λpq].

Overview. We fix three constant parametersk, ℓ, h, such that12 < k ≪ ℓ ≪ h, and distinguish
between four possible cases. The first three cases (a)–(c) are fully symmetric to the cases (a)–(c) that we
encountered in Section 6.5 when handling right quadruples.(Moreover, the first two cases (a) and (b) are
very similar to the the corresponding cases (a) and (b) in Section 5.6.)

In the final, most involved, case (d), we re-introduce at lastthe outer pointu. (The other outer
point r is not used in the analysis of left special quadruples.) The correspondence between(wa, q,Ju)
and its ancestor quadrupleσ2 = (w, q, a, u) in F implies that we have a single Delaunay crossing
(wq, u, I = [t0, t1]) (which is the first among the two(w, u)-crossings ofσ2). Since the pointsu andp

41Recall from Section 6.2 thatp can crossqw either before or afterξ0, depending on the location ofw whenq crossespa.
Our analysis only relies on the fact thatλq < ξ1 < ξ2.
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cross the same edgewq in opposite directions,χ can again be charged to the resulting terminal quadruple
(w, q, u, p).

After ruling out cases (a)–(c), we may assume, in the last remaining case (d), that a total of at most
8ℓ+1 points ofP appear in the capC−

wq = B[p, q, w]∩L−
wq during(λq, ξ2). (Notice that this condition

is fully symmetric to the one in Lemma 6.4.)
As in Section 6.5, we use the interplay betweenχ = (a, p, w, q) andσ2 = (w, q, a, u) to enforce as

many Delaunay crossings as possible amongw, q, u, p before chargingχ to this terminal quadruple. Our
analysis is largely simplified42 by the property that the intervalI = [t0, t1] of the first crossing ofσ2 is
entirely contained in the above interval(λq, ξ2); see below for details.

We establish symmetric variants of Lemmas 6.7 and 6.11. Namely, we argue that (i) the edgewu is
hit in (λq, t0) by at least one ofp, q, or else (ii) the edgeuq is hit in (λq, t0) by at least one ofp, r.43

In the first case (denoted as (d1)), we also show thatu hits qp in (λq, t0). In the second case (denoted
as (d2)) we similarly show thatu also hitspw in (λq, t0). In both scenarios, we invoke Theorem 2.2
to amplify the above two additional collinearities into full-fledged Delaunay crossings. Therefore, by
the time we chargeχ to the terminal quadruple̺, its various sub-triples amongw, q, u, p perform four
Delaunay crossings (where some of these crossings occur in appropriately reduced subsets ofP ).

In Section 7 we express the number of such terminal quadruples, which arise in the analysis of left
special quadruples, in terms of more elementary quantities, that were introduced in Section 2. To do so,
we enforce an additional, fifth crossing amongw, q, u, p (namely, the crossing ofpu by w or q). As a
result, some sub-triple amongw, q, u, p is involved in two Delaunay crossings, so our analysis bottoms
out via Lemma 4.5.

In what follows, we consider the familyGL
pw of all 3-restricted left special quadruples of the form

χ′ = (a′, p, w, q′), which share their middle pair withχ. We may assume that eachχ′ = (a′, p, w, q′) ∈
GL
pw is uniquely determined by the choice ofq′ (as the only “free” point in the triple(p, q′, w)). Note that

the setPχ′ of eachχ′ includes, in addition to the four pointsa′, p, w, q′ of χ′, the respective outer points
r′ andu′ of its special crossings(pa′, q′,Ir′) and(wa′, q′,Ju′). Furthermore, each of these quadruples
χ′ ∈ GL

pw is accompanied by a counterclockwise(w, p)-crossing(q′w, p,Hχ′ = H′), which occurs
within the smaller triangulationDT(P \{a′, r′, u′}). See Figure 83. We useλq′ to denote the time inH′

when the respective pointq′ of χ′ enters the halfplaneL+
wp (or, equivalently, whenp crossesq′w from

L+
wq′ = L−

q′w to L+
q′w).

q′

w

p

q

Figure 83:Each left special quadrupleχ′ = (a′, p, w, q′) ∈ GL
pw (with respective outer pointsr′ andu′) comes

with a counterclockwise(w, p)-crossing(q′w, p,Hχ′ ), which occurs withinDT(P \ {a′, r′, u′}).

Notice that Lemma 5.5 readily generalizes to the above(w, p)-crossings. Namely, a pair of such
crossings(qw, p,Hχ) and(q′w, p,Hχ′), which occur within the respective triangulationsDT(P\{a, r, u})
andDT(P \ {a′, r′, u′}), arecompatible, provided thatq′ 6= a, r, u andq 6= a′, r′, u′, in the sense that

42In contrast, in thealmost-symmetric case of right special quadruples we did not know whether the first crossing(pq, r, I)
of σ1 = (p, q, a, r) at all overlaps(ξ−1, λq).

43These collinearities are fairly symmetric to the crossingsof pr andrq that we enforced in Section 6.5.
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the orders in which the intervalsHχ andHχ′ begin or end are both consistent with the time stampsλq

andλq′ .
Clearly, for any special quadrupleχ = (a, p, w, q) ∈ GL

pw (with outer pointsr andu) the family
GR
pw includes at most three other quadruplesχ′ = (a′, p, w, q′) whose respective pointsq′ are equal

to one ofa, r or u. The pigeonhole principle then implies that at leastone quarterof all quadruples
χ = (a, p, w, q) in GL

pw satisfy the following condition:

(PHL1) There exist at most three quadruplesχ′ ∈ GL
pw with q ∈ {a′, r′, u′}.

Sincep andw are arbitrary points ofP , (PHL1) holds for at least a quarter of all3-restricted left
special quadruples under consideration; hence we may assume that it holds for the special quadrupleχ
at hand. Therefore, for all but6 quadruplesχ′ = (a′, p, w, q′) ∈ GL

pw \ {χ} (with respective outer points
r′ andu′) their respective(w, p)-crossings(q′w, p,Hχ′) are compatible with(qw, p,H) via a suitable
extension of Lemma 5.5.

With the above preparations, we can now proceed with our caseanalysis.

Case (a). For at leastk of the above quadruplesχ′ = (a′, p, w, q′) ∈ GL
pw, their respective(w, p)-

crossings(q′w, p,H′) either begin in[ξpq, λ4), or end in(λ5, λpq]. Refer to Figure 84. Recall that, by
condition (S5), the edgepq is Delaunay at each of the timesξpq andλpq, and that it is almost Delaunay
during the entire interval[ξpq, λpq].

To bound the number of such quadruplesχ that fall into case (a), we pass to a random sub-sampleP̂
of n/4 points inP , and argue that, with some fixed positive probability, the crossing(qw, p,H) becomes
(q, p,Θ(k))-chargeable there, for the reference interval[ξpq, λpq]. Therefore, Theorem 5.3 implies that
the overall number of such triples(p, q, w) in P does not exceed

O
(

k2N(n/k) + kn2β(n)
)

,

which also bounds the overall number of the corresponding3-restricted left special quadruplesχ.

ξpq
t

t

λ5

λq′

λq
λ4

Ĥχ

HχHχ′λpq

Figure 84:Case (a): At leastk counterclockwise(w, p)-crossings(q′w, p,Hχ′) either begin in[ξpq, λ4) or end
in (λ5, λpq] (one such crossing of the former type is depicted). Then, with some fixed and positive probability, the
sampleP̂ yields a Delaunay crossing(qw, p, Ĥχ) that is(q, p,Θ(k))-chargeable with respect to[ξpq, λpq].

Preparing for cases (b) and (c): Charging events inApw. We may assume, from now on, that there
exist at mostk special quadruplesχ′ ∈ GL

pw whose respective(w, p)-crossings(q′w, p,H′) either begin
in [ξpq, λ4), or end in(λ5, λpq].

Before proceeding to the following cases, we apply Theorem 2.2 in Apw in order to extend the
almost-Delaunayhood ofpw from H = [λ4, λ5] to [ξpq, λpq]. We emphasize that[ξpq, λpq] \ H consists
of two intervals[ξpq, λ4) and (λ5, λpq] (where the former interval can be empty), which we consider
separately. Note also that the edgepw belongs duringH to the reduced triangulationDT(P \ {a, r, u})
(but not necessarily toDT(P )), so Theorem 2.2 must be applied, for each of these two intervals, with
respect toP \ {a, r, u}.
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In each of these applications, in cases (i) and (ii) we chargeχ (via its respective(w, p)-crossing
(qw, p,H)) to (ℓ + 3)-shallow collinearities and co-circularities that occur in the full red-blue arrange-
mentApw. Since case (a) has been ruled out, the charging is almost unique, and accounts for at most
O
(

kℓ2N(n/ℓ) + kℓn2β(n)
)

left special quadruples.
At the end, we have either disposed ofχ through (conditions (i), (ii) of) Theorem 2.2 or ended up

with a setApw of at most6ℓ + 3 points whose removal restores the Delaunayhood ofpw throughout
[ξpq, λpq]. Namely,Apw is composed ofa, r, u, and of the two sets of at most3ℓ points each, which
are obtained by separately applying Theorem 2.2, withinApw, over the intervals(ξpq, λ4) and(λ5, λpq).
Hence, we may assume, in what follows, that the above setApw exists.

s

w

p

qC−
pq

Wpwq

Wpwq empty

t
ξpq λpqλq ξ2

s entersC−

pqs entersWqpw

λs t∗s

Figure 85:Case (b). At leastℓ pointss 6= a, r, u visit the capC−

pq during(λq, ξ2). Each of them must enter the
wedgeWpwq (through one of the rays~wp, ~wq, outside the respective edgespw andwq) after timeλq and then
enter the capC−

pq (through the boundary ofB[p, q, w]).

Case (b).A total of at leastℓ points ofP , distinct froma, r, u, appear in the capC−
pq = B[p, q, w] ∩L−

pq

at some time during the interval(λq, ξ2). (Note that some of these pointss may belong toApw.) Recall
thatλq denotes the time inH whenp entersL−

wq, throughwq, and that no additional collinearities of
p, q, w can occur during(λq, ξ2), so the motion ofB[p, q, w] is fully continuous in that interval.

Refer to Figure 85. Lets ∈ P \ {a, r, u} be one of the points that visitC−
pq during (λq, ξ2). Since

the above capC−
pq is fully contained there in the wedgeWpwq = L+

wp ∩ L−
wq, s must enterWpwq after

timeλq (whenWpwq co-incides with the single ray~wp = ~wq) through one of the rays~wp, ~wq. We also
note that, by condition (S5) (and since(λq, ξ2) ⊆ [ξpq, λpq]), the edgepq is Delaunay inP \ {a,w, r, u}
throughout(λq, ξ2), so s, which has to enterC−

pq before it entersWpwq, can do so only through the
boundary ofB[p, q, w]. This results in a co-circularity ofp, q, w, s, and is easily seen to imply thats
entersWpwq by crossing one of the rays~wp or ~wq outsidethe respective edgeswp or wq.

In what follows, we assume thats is among the lastℓ points to leaveC−
pq during (λq, ξ2). Let t∗s

denote the time of the corresponding co-circularity ofp, q, w, s, which occurs whens leavesC−
pq through

the boundary ofB[p, q, w]. Sinceχ satisfies condition (S5), the opposite capC+
pq = B[p, q, w] ∩ L+

qp

contains no points ofP \{a, r, u} at timet∗s. (Otherwise, the Delaunayhood ofwq would be violated bys
and any of these points.) Therefore, the co-circularity at timet∗s has to be(ℓ−1)-shallow inP \{a, r, u},
and thus(ℓ+ 2)-shallow inP .

Note also that the co-circularity at timet∗s is red-blue with respect to the edgepq, which is violated
right before it byw and s. Lemma 4.1, together with the choice ofs 6= a, r, u, imply that this co-
circularity cannot occur during the crossing(qw, p,Hχ = [λ4, λ5]) (which occurs inP \ {a, r, u}), so
t∗s > λ5.

As in the symmetric case (b) of Section 6.5, we distinguish between two possible subcases. In each
of them we manage to dispose ofχ by charging it, within one of the arrangementsAwq,Apw, either to
Ω(ℓ2) (2ℓ)-shallow co-circularities, or to a(2ℓ)-shallow collinearity.

Case (b1).At least half of the above pointss cross the lineLwq, fromL+
wq toL−

wq, during(λq, t
∗
s). (This

also includes pointss that possibly crossLwq outside the ray~wq, before enteringWpwq through the other
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ray ~wp.) By Condition (S6) (and since(λq, t
∗
s) ⊆ (λq, ξ2) ⊆ [λwq, ξwq]), each of these crossings occurs

outsidewq, within one of the outer rays ofLwq.
For eachs we argue, exactly as in Section 5.6, that the pointsw, q, s are involved during(λq, t

∗
s) ⊆

(λq, ξ2) either in a(2ℓ)-shallow collinearity, or inΩ(ℓ) (2ℓ)-shallow co-circularities. That is, right afters
entersL−

wq at timeλq (outsidewq), the discB[w, q, s] “swallows” the entire halfplaneL+
wq. (In addition,

s must remain inL−
wq until time t∗s, for otherwise the pointsw, q, s would be collinear more than twice.)

If this disc, which contains at mostℓ + 2 points at the end of the process, contains at least2ℓ points
at timeλq, then each of the lastℓ − 2 resulting co-circularities are(2ℓ)-shallow (inP ). Otherwise, the
collinearity ofq, p, s is (2ℓ)-shallow.

Sinces can be chosen in at leastΩ(ℓ) different ways, the pointsw andq are involved during(λq, ξ2)
either inΩ(ℓ2) (2ℓ)-shallow co-circularities, or in a(2ℓ)-shallow collinearity. In both cases, we charge
χ to these events.

Note that each(2ℓ)-shallow event, which occurs inApq at some timet∗ ∈ (λq, ξ2), can be traced
back to(qw, p,H) (and, by Proposition 6.2, also toχ) in at mostO(1) possible ways becausep is among
the last four points to hit the edgewq before timet∗, according to condition (S6). Hence, the above
scenario happens for at mostO(ℓ2N(n/ℓ) + ℓn2β(n)) special quadruplesχ.

Wpwq

w

p

q
s

q′ C−
pq

λ4 λ5 λpqξ2
t

H

λq λsλq′

s entersL+
wp

t∗s
q entersL+

wp

q′ entersL+
wp

ξpq

Figure 86:Proposition 6.14. Left:q is among the lastk+7 candidatesq′ to enterL+
wp before timeλs. Right: The

various critical events occur in the depicted order. Note thatλs may occur in (the second part of)H = [λ4, λ5].

Case (b2).At least half of the above pointss 6= a, r, u remain inL−
wq throughout the respective intervals

(λq, t
∗
s). Each of these points must enterWpwq, also during(λq, t

∗
s), through the ray emanating from

p in direction ~wp, thereby crossingLpw from L−
wp to L+

wp. (See Figure 86 (left). Recall that such a
collinearity can occur at most once, because the triplep,w, s can be collinear at most twice.)

We again fix one of these pointss, and useλs to denote the corresponding time in(λq, t
∗
s) whens

entersWpwq through the ray emanating fromw in directionpw. As in the previous case, we conclude
that either the collinearity ofp,w, s at timets is (2ℓ)-shallow, or the pointsp,w, s are involved inΩ(ℓ)
(2ℓ)-shallow co-circularities during the preceding interval(λs, t

∗
s). As in the matching scenarios (b2) in

Sections 5.6 and 6.5, the main challenge is to argue that eachof the above(2ℓ)-shallow events, which
occur inApw during(λs, t

∗
s] ⊆ (λq, ξ2), can be traced back toχ in at mostO(k) ways.

To show this, lett∗ ∈ (λq, ξ2) be the time of a(2ℓ)-shallow collinearity or co-circularity that occurs
in Apw. First, we guess the pointsp andw of χ in O(1) possible ways among the three or four points
involved in the event. We next recall that, in the charging scheme of case (b2), each(2ℓ)-shallow co-
circularity or collinearity or collinearity that we chargein Apw is obtained via some points, which is
also involved in the event, that entersL+

wp at the respective timeλs. We, therefore, guesss among the
remaining one or two points involved in the event at timet∗. To guess the remaining pointsa andq of χ,
we examine all “candidate” special quadruplesχ′ ∈ GL

pw whose two “middle” points(p,w) are shared
with χ. Recall that each of these quadruples is accompanied by the(w, p)-crossing(q′w, p,H′ = Hχ′),
whereq′ entersL+

wp at the respective timeλq′ ∈ H′. Recall also thatχ′ is uniquely determined by the
choice ofq′ (as long asp andw remain fixed).
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Clearly, it suffices to consider only special quadruplesχ′ = (a′, p, w, q′) in GL
pw with the following

properties: (1)s 6= a′, r′, u′, wherer′ andu′ are the outer points ofχ′, (2) λq′ < λs, and (3)s lies in
L−
wq′ during the second portion ofHχ′ (afterλq′). This is because each of these conditions holds forχ

ands in the charging scheme of case (b2). For example, (3) followsbecause case (b1) does not occur for
s (andt∗s > λ5).

If a special quadrupleχ′ = (a′, p, w, q′) ∈ GL
pw satisfies the above three conditions (1)–(3), we say

that the respective pointq′ (which uniquely determinesχ′) is a candidate (forq).
The following symmetric variant of Proposition 6.3 guarantees that each(2ℓ)-shallow event, which

occurs inApw at some fixed timet∗ ∈ (λq, ξ2), is charged by at mostk + 7 quadruples inχ′ ∈ GL
pw,

because its pointsq is among the lastk+7 similar candidatesq′ to enterL+
wp before timeλs. See Figure

86.

Proposition 6.14. With the above assumptions, the pointq is among the lastk+7 candidatesq′ to enter
the halfplaneL+

wp beforeλs.

We omit the fairly technical proof of Proposition 6.14, noting that it is fully symmetric to the proof
of Proposition 6.3, and very similar to the proof of Proposition 5.6.

Repeating the same charging argument for each of theΩ(ℓ) possible choice ofs shows that at most
O
(

kℓ2N(n/ℓ) + kℓn2β(n)
)

special quadruples can fall into case (b2).

Case (c).A total of at leastℓ pointss ∈ P \Apw appear in the capC−
wp = B[p, q, w]∩L−

wp at some time
during(λq, ξ2). HereApw continues to denote the subset of at most6ℓ+ 3 points, includinga, r andu,
whose removal restores the Delaunayhood ofpw throughout the interval[ξpq, λpq]. (Recall thatApw was
obtained by applying Theorem 2.2 inApw, after ruling out case (a).)

Wpqw q

w

sC+
pw

p

Figure 87:Case (c). A total of at leastℓ pointss ∈ P \ Apw enter in the capC−

wp during(λq, ξ2). Each of them
must enter the wedgeWpqw (through one of the rays~qp, ~qw, outside the respective edgespq andwq), and only
then capC−

wp (through the boundary ofB[p, q, w]).

Clearly,C−
wp is contained in the wedgeWpqw = L+

pq ∩ L−
wq, which shrinks at timeλq to the ray

~qp = ~qw. Hence, each of these pointss has to enterWpqw andC−
wp (in this order) before timeλq.

Furthermore,s can leaveC+
pw only through the boundary ofB[p, q, w], at a co-circularity ofp, q, w, s.

(Otherwises would have to hitpw and, therefore, belong toApw.) In addition,s can leaveWpqw only
through one of the rays~qp and ~qw (outside the respective segmentsqp, qw). See Figure 87.

As in the previous case (b), we may assume that eachs under consideration is among the firstℓ
such points ofP \ Apw to enterC−

wp during (λq, ξ2), and uset∗s to denote the time of the respective
co-circularity. Clearly, the opposite capC+

wp = B[p, q, w] ∩ L+
wp contains then no points ofP \ Apw.

Indeed, otherwise the Delaunayhood ofpw would be violated bys and any one of these points (contrary
to our assumption thatpw ∈ DT(P \ Apw) throughout[ξpq, λpq] ⊃ (λq, ξ2)). Hence, the resulting
co-circularity ofp, q, w, s at timet∗s is (7ℓ + 2)-shallow inP , because, at the time of co-circularity, the
circumdiscB[p, q, w] = B[p, s, w] can contain in its interior at most6ℓ + 3 points ofApw and at most
ℓ− 1 points ofP \Apw.
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Case (c1). If at least half of the above pointss cross the lineLwq (from L+
wq to L−

wq) during their
respective intervals(λq, t

∗
s), then we argue exactly as in subcase (b1).

Namely, we fix one of the these pointss and notice that, right afters entersL−
wq outsidewq, the disc

B[w, q, s] contains the entire halfplaneL−
wq. Therefore, the pointsp, q, s are involved, during(λq, t

∗
s),

either in an(8ℓ)-shallow common collinearity (which occurs whens entersL−
wq), or inΩ(ℓ) (8ℓ)-shallow

co-circularities.
We repeat the above argument for each of theℓ/2 possible choices ofs and chargeχ within Awq

(via (qw, p,H)) to the above(8ℓ)-shallow events. As in case (b1), each(8ℓ)-shallow collinearity or
co-circularity occurs during(λq, ξ2), and involvesw and q, so it is charged by at mostO(1) special
quadruplesχ (becauseχ is uniquely determined by(p, q, w) andp is among the last four points to hit
wq before the respective timet∗ of the event).

Case (c2). We may assume, then, that at least half of the above pointss enterWpqw through the ray
~qp. For each of these pointss, the tripleq, p, s are involved during(λq, t

∗
s) either in an(8ℓ)-shallow

collinearity, or inΩ(ℓ) (8ℓ)-shallow co-circularities. As before, we repeat the above argument for the
ℓ/2 eligible choices ofs and chargeχ, within Apq, either toΩ(ℓ2) (8ℓ)-shallow co-circularities or to an
(8ℓ)-shallow collinearity.

We claim that each of the resulting(8ℓ)-shallow events, which occur inApq during (λq, ξ2), can
be traced back toχ in at mostO(1) possible ways. Indeed, fix any of the above events, at some time
t∗ ∈ (λq, ξ2). We first guessp andq in O(1) possible ways among the three or four points involved in
the event.

To guess the pointa (which would immediately determine(pa, q,Ir) and thereby alsoχ), we con-
sider all special(p, q)-crossings(pa′, q,Ir′) (in F) and recall that, according to conditions (S1) and
(S5), at mostO(1) such crossings can begin during[ξpq, λ0) or end during(λ1, λpq]. Notice also that
the interval[λpq, ξpq], which covers(λq, ξ2), is contained in the union of[ξpq, λ0), Ir = [λ0, λ1], and
(λ1, λpq].

To guessa (based ont∗, q andp), we distinguish between two possible situations. As before, our
analysis is fully symmetric to that given in case (c2) of Section 6.5, so we only briefly review it.
(i) If t∗ belongs to(λq, λ0) ⊆ [ξpq, λ0) then (pa, q,Ir = [λ0, λ1]) is among the lastO(1) special
clockwise(p, q)-crossings to begin aftert∗, becauseχ satisfies condition (S5). See Figure 88 (left).

t
λpq

λq t∗ξpq ξ2

Irλ0 λ1 t
λpq

λqξpq

Irλ0 λ1

t∗ ξ2
(pa′, q, Ir′)

Figure 88:Case (c2): Guessinga based ont∗, p andq. Left: If t∗ ∈ (λq , λ0), then(pa, q, Ir = [λ0, λ1]) is among
the firstO(1) special clockwise(p, q)-crossings to begin aftert∗. Right: If t∗ ∈ [λ0, ξ2), then(pa, q, Ir) is among
the lastO(1) special clockwise(p, q)-crossings to begin before (or at)t∗.

(ii) If t∗ belongs to the interval[λ0, ξ2], which is contained inIr ∪ (λ1, λpq], then we resort to a more
subtle argument (which is fully symmetic to the one given in case (c1) of Section 6.5) to show that
(pa, q,Ir) is among the lastO(1) special clockwise(p, q)-crossings to begin beforet∗. See Figure 88
(right).

To recap, in each of the cases (c1) and (c2) we chargeχ (via (pa, q,Ir)) either toΩ(ℓ2) (8ℓ)-shallow
co-circularities, or to an(8ℓ)-shallow collinearity, which occur in one of the arrangements Apq, Awq

during the interval(λq, ξ2). Furthermore, each(8ℓ)-shallow event is charged by at mostO(1) special
quadruples. Hence, at mostO

(

ℓ2N(n/ℓ) + ℓn2β(n)
)

special quadruplesχ fall into case (c).

Case (d). Assume that none of the preceding cases occurs. In particular, there is a subsetApw of at
most6ℓ + 3 points (includinga, r andu) whose removal restores the Delaunayhood ofpw throughout
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the interval[ξpq, λpq]. Furthermore, a total of fewer thanℓ points ofP \ {a, r, u} appear in the capC−
pq

during (λq, ξ2), and a total of fewer thanℓ points ofP \ Apw points appear in the capC−
pw during that

interval.
The above assumptions imply the following symmetric variant of Lemma 6.4, whose proof is also

fully symmetric to its predecessor (see Figure 89 (left)).

Lemma 6.15. With the above assumptions, a total of at most8ℓ + 1 points ofP appear in the cap
C−
wq = C[p, q, w] ∩ L−

wq during (λq, ξ2).

s

w

q

pC−
wq

C−
pq

C−
wp

ξ2ξ1

t3

p hitsqw Ju

I J

wq ∈ DT(P \ {a, u})

t0 t2t1

λ2 λ3
λq

Figure 89:Left: Lemma 6.15. A total of at most8ℓ+ 1 pointss of P appear in the capC−

wq = B[p, q, w] ∩ L−

wq

(consisting of all the shaded portions) during(λq, ξ2). All of these points must enterC−

wq after λq, and none
of them can enterC−

wq throughwq, unless it is one ofa, r, u. Right: The regular quadrupleσ2 of (wa, q,Ju)
is composed of two(w, u)-crossings(wq, u, I), (wa, u, J), which end before the beginning timeλ2 of Ju. By
condition (Q8), the edgewq belongs toDT(P \ {a, u}) throughout[t0, λ3], implying thatλq < t0.

With the above preparations, we can finally describe the interplay between the special quadrupleχ
under consideration and the ordinary Delaunay quadrupleσ2 = (w, q, a, u) in F , which corresponds
to thesecondspecial(a, q)-crossing(wa, q,Ju = [λ2, λ3]) of χ. At the end of this section, we shall
chargeχ to the terminal quadruple̺ = (w, q, u, p), which is composed of the edgewq, and of the two
pointsu andp that crosspq in opposite directions. As in the case of right special quadruples, we first try
to enforce as many Delaunay crossings as possible amongw, q, u, p, before chargingχ to this terminal
quadruple.

Recall that the quadrupleσ2 = (w, q, a, u) belongs to the refined familyF , so it satisfies the eight
properties (Q1)-(Q8). (Refer to Figure 89 (right).) Specifically, σ2 is composed of two clockwise(w, u)-
crossings(wq, u, I = [t0, t1]) and (wa, u, J = [t2, t3]), whereI ends before the endt3 of J , andJ
ends before the beginningλ2 of Ju. (In particular,Ju is disjoint from both ofI, J .) Sinceσ2 satisfies
condition (Q8), the edgewq belongs toDT(P \{a, u}) throughout the interval[I,Ju] = conv(I∪Ju) =
[t0, λ3]. Therefore (and sinceλq < λ2 < λ3), the pointp can crosswq (at timeλq, and fromL+

wq toL−
wq)

only before the beginningt0 of I, and the entire crossing(qw, p,H = [λ4, λ5]) occurs inP \ {a, r, u}
beforeI. We thus obtain the following important property of3-restricted left special quadruples (see
Figure 90 (left)):44

Proposition 6.16. With the above assumptions, the first Delaunay crossing(wq, u, I = [t0, t1]) occurs
entirely within(λq, λ2) ⊂ (λq, ξ1) ⊂ (λq, ξ2). In particular, p crosseswq at timeλq (fromL+

wq to L−
wq)

beforeu does so in the opposite direction (duringI, fromL−
wq to L+

wq).

Recall thatp remains inL−
wq throughout the interval(λq, ξ2), which containsI; see Figure 90 (left).

Note that the open capB[w, q, u] ∩L−
wq contains no points ofP at timet0 (when the Delaunay crossing

of wq by u begins). Hence,u lies at that moment within the capC−
wq = B[p, q, w] ∩ L−

wq; see Figure 90
(right). SinceC−

wq is empty right after timeλq, the pointu has to enterC−
wq in the interval(λq, t0).

44Though it is not necessary for our analysis, Proposition 6.16 holds for all 1-restricted left special quadruplesχ =
(a, p,w, q), with respective outer pointsr andu.
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ξwqt0 t1

δ1

λwq λq ξ2

p ∈ L−

wq

wq ∈ DT(P \ {a, p, r, u})

I

q

p
C−
wq

w

u

u

Figure 90: Left: Proposition 6.16: The intervalI = [t0, t1] (wherewq undergoes a crossing byu) is fully
contained in the interval(λq , ξ2), during whichp lies inL−

wq. Right: The capC−

wq is empty right after timeλq, so
u must enterC−

wq before the beginningt0 of I. Unlessu crossesqw in (λwq, t0) ⊃ (λq, t0), u must enterC−

wq at a
blue-blue co-circularity ofw, q, u, p with respect towq, at some timeδ1 ∈ (λq , t1).

Assume first thatu hitswq during(λwq, t0). (In particular, this includes the scenario whereu enters
C−
wq during (λq, t0) through the relative interior ofwq.) Recall thatwq is Delaunay inP \ {a, p, r, u}

throughout[λwq, t0] ⊂ [λwq, ξwq] (in addition to its Delaunayhood inP at timesλwq andt0). Hence, in
the reduced setP \ {a, p, r}, the edgewq or, more, precisely, its reversely oriented copyqw, undergoes
a Delaunay crossing byu during some sub-interval of[λwq, t0). Therefore, together with the crossing
(wq, u, I), the triplew, q, u performs two single Delaunay crossings inP \{a, p, r}. Combining Lemma
4.5 with the probabilistic argument of Clarkson and Shor, weobtain that the number of such triples
q, w, u in P cannot exceedO(n2). By Proposition 6.1, the same quadratic bound must also holdfor the
overall number of such left special quadruplesχ.

Case (d): The three co-circularities ofw, q, u, p. Assume, then, thatu does not crosswq in [λwq, t0).
In particular, u entersB[p, q, w] in (λq, t0) through the boundary ofB[p, q, w], at a blue-blue co-
circularity of w, q, u, p with respect towq (as depicted in Figure 91 (right)). We claim that this is the
second co-circularity ofw, q, u, p, denoting its time byδ1.

Indeed, by Lemma 4.4, another co-circularity ofw, q, u, p occurs at some timeδ2 ∈ I = [t0, t1]
(wherewq undergoes a single Delaunay crossing byu), and is red-blue with respect towq. Refer to
Figure 91 (left). Furthermore, sinceu does not hitwq during [λwq, δ1) ⊂ [λwq, t0) (andwq belongs to
DT({w, q, u, p}) at timesλwq andδ1), the edgeqw undergoes a Delaunay crossing byp in the triangu-
lation of{w, q, u, p} too. This crossing occurs during some sub-interval of[λwq, δ1) so, by Lemma 4.4,
w, q, u, p are involved in another co-circularity at some timeδ0 ∈ [λwq, δ1); see Figure 91 (center).

q
p

C−
wq

w

u
u

p

q

w

p

u

ξ2

p ∈ L−

wq

wq ∈ DT(P \ {a, p, r, u})

t0

δ2δ0

ξwqt1

δ1

λwq λq

Figure 91: Left: The red-blue co-circularity ofw, q, u, p with respect towq, which must occur at some time
δ2 ∈ I. Center: The pointsw, q, u, p are involved at some timeδ0 ∈ [λwq, δ1) in their first co-circularity, which is
also red-blue with respect towq. Right: A schematic summary of the motion ofw, q, u, p (assuming thatu does
not crosswq during(λq , t0)).

To conclude, the four pointsw, q, u, p are co-circular at timesδ0 ∈ [λwq, t0), δ1 ∈ (δ0, t0), andδ2 ∈
I = [t0, t1]. (See Figure 91 (right) for a schematic summary.) Here the two extremal co-circularities,
which occur at timesδ0 andδ1, are red-blue with respect to the edges, and the middle co-circularity at
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time δ1, is blue-blue with respect towq (and occurs whenu enters the capC−
wq). We emphasize thatu

remains inC−
wq throughout(δ1, t0).

Furthermore, the order type of the third co-circularity (attime δ2 ∈ I) is completely determined by
Proposition 6.16 and the fact thatp lies in L−

wq throughout(λq, ξ2). Hence, this co-circularity occurs
during the second portion ofI (i.e., afteru entersL+

wq), whenp leaves the capB[w, q, u] ∩ L−
wq.

Notice that the capsB[w, q, u] ∩ L−
wq andC−

wq coincide at timeδ2 ∈ I ⊂ (λq, ξ2). Therefore,
Lemma 6.15, together withP -emptiness ofB[w, q, u] ∩ L+

wq during the second portion ofI, imply that
the co-circularity at timeδ2 is (8ℓ+ 1)-shallow.

Recall that(wq, u, I) is a clockwise(w, q)-crossing, and a counterclockwise(q, u)-crossing. Lemma
6.15 yields the following symmetric analogue of Lemma 6.6 (with somewhat simpler proof, due to
Proposition 6.16).

Lemma 6.17. With the above assumptions, at most8ℓ + 1 clockwise(w, u)-crossings(wq′, u, I ′), and
at most8ℓ+ 1 counterclockwise(q, u)-crossings(w′q, u, I ′), can begin in the interval(δ1, t0).

Proof. Let (wq′, u, I ′) be a clockwise(w, u)-crossing that begins in(δ1, t0). By Lemma 4.4, the four
pointsw, q, u, q′ are co-circular at some momentζ ′ ∈ I ′ \ I ⊂ (δ1, t0), and this co-circularity is red-blue
with respect to the edgeswq′, uq, and monochromatic with respect towq. Furthermore, sincep remains
in C−

wq throughout(δ1, t0) ⊂ (λq, ξ2), the above co-circularity is, in fact, blue-blue with respect towq
(see Figure 92). Hence, both pointsu, q′ lie at timeζ ′ inside the capC−

wq. Lemma 6.15 now implies
that the overall number of such pointsq′ (and, therefore, of their respective(w, u)-crossings(wq′, u, I ′))
cannot exceed8ℓ+ 1.

C−
wq

w

q

p q′

u

Figure 92:Lemma 6.17: Proving that at most8ℓ+1 clockwise(w, u)-crossings(wq′, u, I ′) begin in(δ1, t0). For
each of these crossings, the four pointsw, q, u, q′ are involved in a blue-blue co-circularity with respect towq at
some timeζ ∈ I ′ \ I ⊂ (δ1, t0), so their respective pointsq′ enterC−

wq during(λq, ξ2).

A fully symmetric argument shows that at most8ℓ+1 counterclockwise(q, u)-crossings(w′q, u, I ′)
can begin in the interval(δ1, t0), because their respective pointsw′ must appear inC−

wq at some moment
during(δ1, t0) ⊂ (λq, ξ2).

To proceed, we distinguish between two possible cases depicted in Figure 93.

Case (d1).The co-circularity at timeδ1 is red-blue with respect to the edgewu whose Delaunayhood is
violated right beforeδ1 by p ∈ L−

wu andq ∈ L+
wu (see Figure 93 (left)).

Note that the above violation ofwu does not hold at timeλq, when the segmentspq andwu do not
even intersect. Therefore, and sinceδ1 is theonly blue-blue co-circularity ofw, q, u, p with respect to
wq, applying (the time-reversed variant of) Lemma 3.1 inDT({w, q, u, p}) over the interval(λq, δ1)
shows thatwu is hit in that interval by at least one ofp or q (see Figure 94).

A very similar argument shows that the edgepq, whose Delaunayhood is violated right after timeδ1
by u ∈ L−

pq andw ∈ L+
pq, is hit byu afterδ1 and beforeu entersL+

wq (duringI). Indeed, letυwq denote
the time inI whenu hitswq. Note that the above violation ofpq does not hold at timeυwq. Therefore,
another application of Lemma 3.1 inDT({p, q, w, u}) shows that the edgepq is hit during(δ1, υwq) by
at least one of the two pointsw or u. Recall, however, thatI ⊂ (λq, ξ2) (by Proposition 6.16). Hence,
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C−
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Figure 93:Left: Case (d1). The co-circularity at timeδ1 is red-blue with respect to the edgeswu andpq. Right
before timeδ1, the Delaunayhood ofwu is violated byp andq. Right: Case (d2). The co-circularity at timeδ1 is
red-blue with respect to the edgesuq andwp. Right before timeδ1, the Delaunayhood ofuq is violated byp and
w.

both timesδ1 ∈ (λq, t0) andυwq ∈ I = [t0, t1] belong to the interval(λq, ξ2) (during whichp lies in
L−
wq), ruling out the crossing ofpq by w in (δ1, υwq). Hence, it must be the case thatpq is by u, as

depicted in Figure 94.

q

p

w

u

uu

u
q

p

w

u
u

u

u

Figure 94:The two possible trajectories ofu according to Lemma 6.7. The edgeuw is hit in (tq, δ1) by p (left)
or q (right). In both scenarios,u hits the edgepq afterδ1 and before the timeυwq ∈ I whenu hitswq.

To conclude, we have established the following lemma.

Lemma 6.18. With the above notation, the following two claims hold in case (d1):
(i) The edgepq is hit in (δ1, υwq) byu, which crossespq fromL−

pq toL+
pq.

(ii) The edgewu is hit in (λq, δ1) by at least one of the pointsp, q. Namely, eitherp crosseswu from
L+
wu to L−

wu, or q crosseswu in the reverse direction. Moreover, the Delaunayhood ofwu is violated by
p andq right after the last such crossing and untilδ1.

Case (d1) – the crossing ofpq by u. Refer to Figure 95. Recall that bothλq andδ1 belong to the interval
(λq, ξ2) ⊂ (ξpq, λpq) where, by condition (S5),pq belongs toDT(P \ {a,w, r, u}) (in addition to its
Delaunayhood inP at timesξpq, λpq).

By Lemma 6.18 (i),pq is hit by u in (λq, δ1) ⊂ [ξpq, λpq]. Therefore, and sincepq is Delaunay
at timesξpq andλpq, this edge (or its reversely oriented copyqp) undergoes a Delaunay crossing byu
within a suitably reduced triangulationDT(P \ {a,w, r}).

Case (d1)–enforcing the crossing ofwu by p or q. If the edgewq is never Delaunay inP before time
δ1 then, by Lemma 6.17,(wq, u, I) is among the firstO(ℓ) clockwise(w, u)-crossings (becausewu is
Delaunay during each of these crossings). Proposition 6.1 implies that this can occur for at mostO(ℓn2)
special quadruplesχ. Therefore, we may assume thatwu has appeared inDT(P ) also beforeδ1.

Let ξwu denote the last time in(−∞, δ1) when the edgewu belongs toDT(P ); see Figure 96. Notice
that the time whenwu is hit by one ofp, q, as prescribed by Lemma 6.18 (ii), must belong to the interval
[ξwu, δ1), which is contained in[ξwu, t0). To enforce the desired Delaunay crossing ofwu, we apply
Theorem 2.2 inAwu over the interval(ξwu, t0), with the third constanth ≫ ℓ.
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pq ∈ DT(P \ {a, w, r, u})

δ1

λq

I

t1 ξ2ξpq λpq

pq ∈ DT(P )
u hitspq

υwqt0

Figure 95:Case (d1)–obtaining a Delaunay crossing ofpq by u. The edgepq is Delaunay at timesξpq andλpq,
and almost Delaunay in(ξpq , λpq). Sinceu hits pq in (δ1, υwq) ⊂ (ξpq, λpq), pq undergoes a Delaunay crossing
by u in P \ {a, w, r}.

ξwu

Awu

t1

wu 6∈ DT(P )

wu hit by p or q

wu ∈ DT(P )

δ1 t0

I

Figure 96: Case (d1)–enforcing a crossing ofwu by at least one of the pointsp, q. The edgewu is Delaunay
throughoutI = [t0, t1] and at timeξwu < δ1 (which is the last such time beforeδ1). The Delaunayhood ofwu is
violated byp andq right beforeδ1 ∈ (ξwu, t0], so the promised crossing ofpq, by at least one ofp, q, must occur
in [ξwu, δ1).

If at least one of the Conditions (i), (ii) holds, we can charge χ, within Awu, either to anh-shallow
collinearity or toΩ(h2) h-shallow co-circularities. Lemma 6.6 ensures that eachh-shallow event, that
occurs inAwu at some timet∗ ∈ (ξwu, t0), is charged in this manner by at mostO(ℓ) left special
quadruples. Indeed, the corresponding pointsw andu are involved in the event, so we can guess them
in O(1) possible ways, and(wq, u, I) is among the first8ℓ + 2 clockwise(w, u)-crossings to begin
after timet∗. Therefore, the above charging accounts for at mostO

(

ℓh2N(n/h) + ℓhn2β(n)
)

special
quadruplesχ.

We may assume, then, that Condition (iii) of Theorem 2.2 holds. That is, there is a subsetAwu of at
most3h points (perhaps including some ofp, q, a, andr) whose removal restores the Delaunayhood of
wu throughout the interval[ξwu, t0].

If wu is crossed during[ξwu, t0) by q (from L−
wu to L+

wu), then, together with(wq, u, I), the triple
w, q, u performs two Delaunay crossings in(P \Awu)∪{q}. A routine combination of Lemma 4.5 with
the probabilistic argument of Clarkson and Shor implies that P contains at mostO(hn2) triplesw, q, u
of this kind. By Proposition 6.1, this also bounds the overall number of such left special quadruplesχ.

To conclude, we may assume that the edgewu (or its reversely oriented copyuw) undergoes a
Delaunay crossing byp in the smaller set(P \Awu)∪ {p}. In addition, we have shown that the edgepq
(or its reversely oriented copyqp) undergoes a Delaunay crossing byu in P \ {a, r, w}. (Note that one,
or both of these crossings can be a double Delaunay crossing.) Therefore, together with the crossings
(wq, u, I) and(qw, p,H), each of the four possible sub-triples ofw, q, u, p performs a Delaunay crossing
within a suitably refined triangulation.

Finally, recall that the four pointsw, q, u, p are involved at some timeδ2 ∈ I ⊂ (λq, ξ2) in their
third (and last) co-circularity, which is red-blue with respect to the edgeswq andpu. Moreover, this
co-circularity is(8ℓ+1)-shallow inP (because of Lemma 6.15), and the Delaunayhood ofup is violated
right after it byq ∈ L−

pu andp ∈ L+
pu. LetAδ2 be the set of at most8ℓ+1 points that lie at timeδ2 within

the circumdisc ofw, q, u, p.

Case (d1): Charging terminal quadruples. We consider a subsetR of ⌈n/h⌉ points chosen at random
from P . Notice that the following two events occur simultaneously, with probability at leastΩ(1/h4):
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(1)R contains the four pointsw, q, u, p, and (2) none of the points of(Awu∪Aδ2 ∪{a, r}) \{w, q, u, p}
belong toR.

In the case of success, we chargeχ to the quadruple̺ = (w, q, u, p), which satisfies the following
two conditions with respect toR (see Figure 97):

(C1) The edgepq (or qp) undergoes a Delaunay crossing byu in R \ {w}. Similarly, the edgewu (or
uw) undergoes a Delaunay crossing byp in R \ {q}.

(C2) The four points of̺ are involved in a Delaunay co-circularity, right after which the Delaunayhood
of pu is violated byq ∈ L−

pu andw ∈ L+
pu. Furthermore, this is the last co-circularity ofw, q, u, p.

Note thatχ is uniquely determined by̺.

Definition.Let P be a finite set of moving points inR2. We say that a quadruple̺= (w, q, u, p) in P is
terminal of type Cif it satisfies the above conditions (C1) and (C2), withR replaced byP .

p

w

qu

u

u

u

Figure 97:A possible trajectory ofu if ̺ = (w, q, u, p) is a terminal quadruple of type C. The points of̺ are
involved in an extremal (last) Delaunay co-circularity, right after which the Delaunayhood ofpu is violated by
q ∈ L−

pu andw ∈ L+
pu.

Let TC(m) denote the maximum possible number of terminal quadruples of type C that can arise in
an underlying set ofm moving points. Then the overall number of 3-restricted leftspecial quadruples
that fall into case (d1) is at most

O
(

h4TC(n/h) + ℓh2N(n/h) + ℓhn2β(n)
)

.

In Section 7.3 we will use the corresponding extremal Delaunay co-circularity ofw, q, u, p of each
terminal quadruple̺ to enforce a Delaunay crossing ofpu by at least one of the remaining two points
w, q of ̺. Together with the Delaunay crossings in condition (C1), atleast one of the triplesp, u,w or
p, u, q will perform two (single) Delaunay crossings. Therefore, our analysis will again bottom up via
Lemma 4.5.

Remark. Notice that in condition (C1) we omit the crossings(wq, u, I) and(qw, p,H) which gave rise
to the terminal quadruple̺= (w, q, u, p), after having used them to enforce the crossings ofp, u,w and
p, u, q.

Case (d2). The co-circularity at timeδ1 is red-blue with respect to the edgeuq whose Delaunayhood
is violated right beforeδ1 by p ∈ L−

uq andw ∈ L+
uq (see Figure 93 (right)).

Usingυwq as before to denote the unique time inI = [t0, t1] whenu hitswq, we have the following
symmetric variant of Lemma 6.18, which can be established byswitching the roles ofw andq in the
argument that implied Lemma 6.18.

Lemma 6.19. With the above notation, the following two properties hold in case (d2):
(i) The edgewp is hit in (δ1, υwq) byu, which crosseswp fromL−

wp toL+
wp.

(ii) The edgeuq is hit in (λq, δ1) by at least one of the pointsp,w. Namely, eitherp crossesuq from
L+
uq toL−

uq, or w crossesuq in the reverse direction. Moreover, the Delaunayhood ofuq is violated byp
andw right after the last such crossing and untilδ1.
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Figure 98:The two possible trajectories ofu according to Lemma 6.19. The edgeuq is hit in (tq, δ1) by p (left)
orw (right). In both scenarios,u hits the edgewp afterδ1 and before the timeυwq ∈ I whenu hitswq.

We next amplify the collinearities in Lemma 6.19 into full-fledged Delaunay crossings. We again
emphasize that(wq, u, I) is a clockwise(w, u)-crossing, and a counterclockwise(u, q)-crossing, so the
role of uq in the present case (d2) is fully symmetric to the role ofwu in case (d1). In particular, the
crossing ofuq (or of its reversed copyqu) by p orw will be enforced using essentially the same argument
as was used in case (d1) to enforce the Delaunay crossing ofwu by p or q.

In contrast, the properties ofpq (in case (d1)) andwp (in case (d2)) arenot symmetric. Indeed,
the edgepq (which was crossed byu in case (d1)) is almost Delaunay throughout the interval[ξpq, λpq]
(which covers(λq, ξ2) ⊃ (δ1, υwq), wherewp is hit by u or q), and Delaunay at both timesξpq, λpq.
However, the edgewp (which is crossed byu in the present case (d2)) becomes Delaunay in[ξpq, λpq]
only after removal of a subsetApw of at most6ℓ+ 3 points (includingu), which is not enough to obtain
a Delaunay crossing ofwp by u.

Case (d2): Enforcing a Delaunay crossing ofwp by u. We emphasize that the third co-circularity of
w, q, u, p is (8ℓ + 1)-shallow and occurs at some timeδ2 during the second portion ofI, starting right
after the unique timeυwq in I whenu hitswq. Recall also thatI begins afterδ1 and is contained in the
nested intervals(λq, ξ2) and(ξpq, λpq) (where the Delaunayhood ofpw can be restored by removing the
above setApw of at most6ℓ+ 3 points).

λq t0ξpq λpq

pw ∈ DT(P \Apw)

I

ξ2t1δ2
pw ∈ DT(P \ {a′, r′, u′})

ξpw
u hitspw

δ1 υwq

Figure 99:Case (d2)–enforcing the crossing ofwp by u. The edgepw is Delaunay inP \ Apw throughout the
interval [ξpq, λpq], which containsδ1 andI (inclduingυwq andδ2). We first obtain a timeξpw ≤ ξpq whenpw
belongs to some reduced triangulationDT(P \{a′, r′, u′}), so that none of the obstruction pointsa′, r′, u′ is equal
to u. Note thatu hitspw in the interval(ξpw, δ2).

Notice that the Delaunayhood ofpw at timeδ2 can be enforced by removing the subsetAδ2 of at
most8ℓ + 1 points that lie at timeδ2 in the interior of the circumdisc ofw, q, u, p. SinceAδ2 does not
includeu, its removal does not destroy the crossing triplew, p, u.

We first obtain a timeξpw ≤ ξpq when the edgepw belongs to some reduced triangulationDT(P \
{a′, r′, u′}), for somea′, r′, u′ ∈ P \ {w, p, u}. In particular, (ξpw, δ2) contains the above time in
(δ1, υwq) when u crosseswp from L−

wp to L+
wp. We then use Theorem 2.2 to extend the almost-

Delaunayhood ofpw to [ξpw, ξpq), so as to cover the entire[ξpw, λpq]. As a result,wp will undergo
a Delaunay crossing byu during some sub-interval of[ξpw, δ2] (and in an appropriately reduced subset
of P ).

To obtain the above timeξpw ≤ ξpq, we return to the subfamilyGL
pw of all 3-restricted left special
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quadruplesχ′ = (a′, p, w, q′) (each coming with respective outer pointsr′ andu′) whose two middle
points are equal top andw, respectively. Recall that each quadruple inGL

pw is uniquely determined by its
respective pointq′. In addition, we can assume that all quadruples inGL

pw fall into case (d2) of the present
analysis (because the remaining quadruples inGL

pw are handled using previous charging arguments). In
particular,GL

pw contains the quadrupleχ = (a, p, w, q) under consideration.
Our analysis relies on the following uniqueness property:

Lemma 6.20. With the above assumptions, the familyGL
pw contains at most3ℓ+1 other 3-restricted left

special quadruplesχ′ = (a′, p, w, q′), with respective outer pointsr′ andu′, that fall into case (d2) and
satisfyu′ = u.

In other words, any triplew, p, u can be shared by at most3ℓ+ 2 3-restricted left special quadruples
χ under consideration.

Proof. Notice that, for each terminal quadrupleχ′ = (a′, p, w, q′) ∈ GL
pw under consideration, with

respective outer pointsr′ andu′ = u, the four pointsw, u, p, q′ are involved in their third co-circularity
at some timeδ′2 during the respective regular crossing ofwq′ byu. Right after timeδ′2, the Delaunayhood
of pu is violated byq′ ∈ L−

pu andw ∈ L+
pu. Clearly, the lemma will follow if we show thatδ2 is among

the first8ℓ+2 such timesδ′2 to occur afteru crosseswp fromL−
wp toL+

wp (as prescribed in Lemma 6.19
(i)). (See Figure 100.)

C−
wq

q

w

p
q′

u
u

λq

u hitspw

u ∈ B[p.q, w]

t0δ′2δ1 t1δ2 ξ2

I

Figure 100:Proof of Lemma 6.20. We fix a quadrupleχ′ = (a′, p, w, q′) ∈ GL
pw whose second outer pointu′

equal tou, so that the third co-circularity ofw, p, u, q′ occurs at some timeδ′2 afteru crosseswp (from L−

wp to
L+
wp) and beforeδ2. We claim thatq′ lies at timeδ′2 in the capC−

wq. The two hollow circles in the left figure
represent the location ofu when it hitswp, and at timeδ2 > δ′2 (whenu leavesB[p, q, w]).

To establish the last claim, letχ′ = (a′, p, w, q′) be a3-restricted left quadruple, with respective
outer pointsr′ andu′ = u, and such that the corresponding third co-circularity ofw, u, p, q′ occurs at
some timeδ′2 afterw entersL+

wp throughwp and beforeδ2. We claim thatq′ lies at timeδ2 within the
capC−

wq = B[p, q, w] ∩ L−
wq (as depicted in Figure 100 (left)), so, by Lemma 6.15, the overall number

of such pointsq′ (and, therefore, also of their respective quadruplesχ′) cannot exceed8ℓ+ 1.
Indeed, recall that the motion ofB[p, q, w] is continuous in the interval(λq, ξ2), which contains

δ1 ∈ (λq, t0) andδ2 ∈ I = [t0, t1]. Therefore, and sinceδ2 is (the time of) the last co-circularity of
w, q, u, p, the pointu must remain inB[p,w, q] after timeδ1, whenu enters that disk, and until the
time δ2, whenu leavesB[p, q, w]. Therefore, bothu andq′ lie in B[p, q, w] ∩ L+

wp at timeδ′2, when we
encounter a red-red co-circularity ofp,w, u, q′ with respect towp. It hence suffices to show thatq′ lies
in L−

wq at timeδ2.
Assume for a contradiction thatq′ lies at timeδ′2 in the opposite capC+

wq = B[p, q, w] ∩ L+
wq. This

readily implies that the four edgeswp,wq,wq′, andwu, appear aroundw in this clockwise order at
time δ2; see Figure 101 (left). In particular, the pointu too lies at timeδ′2 in C+

wq, so δ′2 belongs to
the second portion ofI (which starts at timeυwq, whenu hitswq); see Figure 101 (right). Notice that
the Delaunayhood ofwq is violated in(υwq, δ2) by p ∈ L−

wq andu ∈ L+
wq, so p must lie in the cap
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B[w, q, u] ∩ L−
wu at timeδ′2 ∈ (υwq, δ2). However, since the co-circularity ofw, u, p, q′ at timeδ′2 is

blue-blue with respect towu, the above capB[w, q, u] ∩ L−
wu must then contain also the pointq′. In

particular,q′ lies at timeδ′2 within the diskB[w, q, u], contrary to theP -emptiness ofB[w, q, u] ∩ L+
wq

during the second portion ofI.

w

q

q′

p

u u

B[w, q, u]
λq

ξ2

u hitspw u lies inL+
wq

δ1 t1δ2t0

δ′2

q′ ∈ B[w, q, u] ∩ L+
wq

υwq

Figure 101:If q′ lies at timeδ′2 in the opposite capC+
wq, then this co-circularity occurs during the second portion

(υwq, t1] of I. In this hypothetic case,q′ lies at timeδ2 within the diskB[w, q, u], contrary to theP -emptiness of
B[w, q, u] ∩ L+

wq during(υwq, t1].

To conclude, the above contradiction implies thatq′ lies at timeδ′2 in the capB[p, q, w]∩L−
wq. Hence,

Lemma 6.15 implies the overall number of such pointsq′ cannot exceed8ℓ + 1. Therefore, the family
GL
pw contains at most8ℓ+ 1 3-restricted left special quadruplesχ′ = (a′, p, w, q′), with respective outer

pointsr′ andu′ = u, that fall into case (d2), and whose respective third co-circularitiesδ′2 occur afteru
crosseswp from L−

wp to L+
wp and beforeδ2. In other words,δ2 is among the first8ℓ+ 2 such timesδ′2 to

occur afteru crosseswp as above.

Lemma 6.20 implies, through the standard pigeonhole argument, that at least some constant positive
fraction of all 3-restricted left special quadruplesχ = (a, p, w, q) under consideration (with respective
outer pointsr andu) satisfy the following condition:

(PHL2) There exist at mostO(ℓ) quadruplesχ′ ∈ GL
pw, with respective outer pointsr′ andu′, so that

u ∈ {a′, r′, u′}.
We may assume, with no loss of generality, that (PHL2) holds for χ under consideration. With these

preparations, we can proceed to the main argument inApw. Recall that each such quadrupleχ′ ∈ GL
pw

is uniquely determined by the respective pointq′, and is accompanied by a counterclockwise(w, p)-
crossing(q′w, p,Hχ′) which occurs in the reduced triangulationDT(P \ {a′, r′, u′}).

λ5 λpq

H = Hχ

ξpq

(q′w, p,Hχ′)

λ4
H = Hχ

ξpwHχ′

pw ∈ DT(P \ {a′, r′, u′})

λ4 λ5 λpq
ξpq

Figure 102:Left: If there exists no quadrupleχ′ (with respective outer pointsr′ andu′) in GL
pw that satisfies

a′, r′, u′ 6= u, and whose respective(w, p)-crossing(q′w, p,Hχ′ ) begins beforeξpq, thenGL
pw contains a total of

at mostO(ℓ) quadruplesχ′ whose respective(w, p)-crossings(q′w, p,Hχ′) begin before the starting timeλ4 of
H = Hχ. Right: Otherwise, there is a timeξpw ≤ ξpq which is the last such time whenpw belongs to some
reduced triangulationDT(P \ {a′, r′, u′}), for a′, r′, u′ 6= u.

Refer to Figure 102. Assume first that there is no quadrupleχ = (a′, p, w, q′) ∈ GL
pw (with respective

outer pointsr′ andu′) such thata′, r′, u′ 6= u, and whose respective(w, p)-crossing(q′w, p,Hχ′) begins
beforeξpq. (See Figure 102 (left).) Since case (a) has been ruled out,GL

pw contains at mostk special
quadruples whose respective(w, p)-crossings begin in[ξpq, λ4). Thus,GL

pw contains a total of at most
O(k + ℓ) quadruples whose respective(w, p)-crossing(q′w, p,Hχ′) begin before the startingλ4 of
H = Hχ (including the at mostO(ℓ) such(w, p)-crossings that begin beforeξpq and have one of their
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respective obstruction pointsa′, r′, u′ equal tou). We chargeχ to the edgepw, noting that the above
scenario can occur for at mostO(ℓn2) 3-restricted left special quadruples under consideration.

We thus can assume, in what follows, that there is at least onequadrupleχ′ = (a′, p, w, q′), with
respective outer pointsr′ and u′, that satisfiesa′, r′, u′ 6= u, and whose respective(w, p)-crossing
(q′w, p,H′) in P \ {a′, r′, u′} begins before (or at)ξpq. (See Figure 102 (right).) In particular, Lemma
4.1 implies that there is a time before (or at)ξpq when pw belongs to some reduced triangulation
DT(P \ {a′, r′, u′}), for some three pointsa′, r′, u′ distinct fromu. We chooseξpw as thelast such
time in (∞, ξpq].

Notice that the above choice ofξpw guarantees that there exist at mostO(ℓ) quadruplesχ′ ∈ GL
pw

whose respective(w, p)-crossings begin in[ξpw, λ4). In what follows, we will usea′, r′, u′ to denote
some three fixed points whose removal restores the Delaunayhood ofpw at timeξpw.

We next apply Theorem 2.2 inApw over the interval(ξpw, λ4). This is done with respect to the
reduced setP \ {a′, r′, u′} (which ensures the Delaunayhood ofpw at the endpointξpw), and with the
third constanth ≫ ℓ.

In cases (i), (ii) of Theorem 2.2 we chargeχ within the reduced arrangementApw either toΩ(h2)
h-shallow co-circularities, or to anh-shallow collinearity. Notice that each of the charged events is
(h+3)-shallow with respect to the original setP , and is charged by at mostO(ℓ) left special quadruples
χ. (The latter holds because the respective(w, p)-crossing(qw, p,H = [λ4, λ5]) of χ is among the first
O(ℓ) such(p,w)-crossings to begin after the time of the event.) Therefore,the above charging accounts
for at mostO

(

ℓh2N(n/h) + ℓhn2β(n)
)

special quadruplesχ.

ξpw λpq

Apw

δ2

pw ∈ DT(P \Aδ2)u hitspwpw ∈ DT(P \ {a′, r′, u′})

λ4 λ5

H = Hχ

Ãpw

ξpq

Figure 103:In case (iii) of Theorem 2.2 we end up with a subsetÃpw of at most3h+3 points (includinga′, r′, u′)
whose removal restores the Delaunayhood ofpw throughout[ξpw, λ4]. In addition,pw is Delaunay inP \ Apw

throughout the interval[ξpq , λpq] (which containsH = [λ4, λ5], δ2, and the time beforeδ2 whenu crosseswp from
L−

wp toL+
wp), and it is Delaunay inP \Aδ2 at timeδ2. Hence, if we omit theO(h) points of(Ãpw∪Apw∪Aδ2 )\{u},

the edgewp (or pw) undergoes a Delaunay crossing byu.

Finally, in case (iii) of Theorem 2.2 we end up with a subsetÃpw of at most3h+3 points (including
the three pointsa′, r′, u′ which were put aside) whose removal restores the Delaunayhood ofpw through-
out [ξpw, λ4]; see Figure 103. In particular,pw is Delaunay inP \ (Apw ∪ Ãpw) throughout the interval
[ξpq, λpq] = [ξpw, λ4) ∪ [ξpq, λpq], which containsδ2 and the above time in(δ1, υwq) ⊂ (δ1, δ2) when
u crosseswp from L−

wp to L+
wp. Furthermore, recall that the co-circularity ofp, q, w, u at timeδ2 is a

Delaunay co-circularity inP \Aδ2 , whereAδ2 ⊂ P is a subset of cardinality at most8ℓ+1. In particular,
pw is Delaunay inP \Aδ2 at timeδ2. Hence, in the even more reduced set(P \(Aδ2∪Apw∪Ãpw))∪{u},
the edgewp (or its reversely oriented copypw) undergoes a Delaunay crossing byu during some sub-
interval of[ξpw, δ2). (Specifically, the Delaunayhood ofwp at timesξpw andδ2 is guaranteed by removal
of a′, r′, u′ ∈ Ãpw \ {u} andAδ2 ⊂ P \ {p, q, w, u}.)

Case (d2): enforcing the crossing ofqu by p or w. If the edgeuq is never Delaunay inP before timeδ1,
Lemma 6.17 implies that(wq, u, I) is among the firstO(ℓ) counterclockwise(q, u)-crossings (because
uq is Delaunay during each of these crossings). Proposition 6.1 implies that this can occur for at most
O(ℓn2) special quadruplesχ. Therefore, we may assume thatuq appears inDT(P ) also beforeδ1.

Let ξuq denote the last time beforeδ1 when the edgeuq belongs toDT(P ); see Figure 104. Notice
that the time whenuq is hit by one ofp,w, as prescribed by Lemma 6.18 (ii), must belong to the interval
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uq ∈ DT(P )

δ1
ξuq

uq hit by p orw

uq 6∈ DT(P ) (wq.u, I)

Auq

t0 t1

Figure 104:Case (d2)–enforcing a Delaunay crossing ofqu by at least one of the pointsp, w. The edgequ is
Delaunay throughoutI = [t0, t1] and at timeξuq < δ1 (which is the last such time beforeδ1). The Delaunayhood
of uq is violated byp andw right beforeδ1 ∈ (ξuq, t0), so it is hit in[ξuq, δ1) by at least one ofp, w.

[ξuq, δ1), which is contained in[ξuq, t0). To enforce the desired Delaunay crossing ofqu, we apply
Theorem 2.2 inAqu over the interval(ξqu, t0), with the third constanth ≫ ℓ.

If at least one of the Conditions (i), (ii) holds, we can charge χ, within Auq, either to anh-shallow
collinearity or toΩ(h2) h-shallow co-circularities. Lemma 6.6 ensures that eachh-shallow event, that
occurs inAuq at some timet∗ ∈ (ξuq, t0), is charged in this manner by at mostO(ℓ) left special quadru-
ples. Indeed, the corresponding pointsu andq are involved in the event, so we can guess them inO(1)
possible ways, and(wq, u, I) is among the first8ℓ + 2 (regular) counterclockwise(q, u)-crossings to
begin after timet∗. Therefore, and sinceχ is uniquely determined by(wq, u, I) (see Proposition 6.1),
the above charging accounts for at mostO

(

ℓh2N(n/h) + ℓhn2β(n)
)

special quadruplesχ.
We may assume, then, that Condition (iii) of Theorem 2.2 holds. That is, there is a subsetAuq of at

most3h points (perhaps including some ofp, q, a, andr) whose removal restores the Delaunayhood of
uq throughout the interval[ξuq, t0].

If uq is crossed during[ξuq, t0) byw (fromL−
uq toL+

uq), then the triplew, q, u performs two Delaunay
crossings in(P \ Auq) ∪ {w}. A routine combination of Lemma 4.5 with the probabilistic argument of
Clarkson and Shor implies thatP contains at mostO(hn2) triplesw, q, u of this kind. By Proposition
6.1, this also bounds the overall number of such left specialquadruplesχ.

Case (d2): Converging. To recap, after excludingO
(

ℓh2N(n/h) + ℓhn2β(n)
)

special quadruplesχ,
we may assume that the edgeuq is hit in (ξuq, t0) by p, so it (or its reversely oriented copyqu) undergoes
a Delaunay crossing byp in the smaller set(P \ Auq) ∪ {p}.

In addition, the four pointsw, q, u, p are involved at some timeδ2 ∈ I in their third (and last)
co-circularity, which is red-blue with respect to the edgeswq andpu. Moreover, this co-circularity is
(8ℓ+1)-shallow inP , and the Delaunayhood ofup is violated right after it byq ∈ L−

pu andp ∈ L+
pu. As

before, we useAδ2 to denote the set of at most8ℓ+ 1 points that lie at timeδ2 within the circumdisc of
w, q, u, p.

Finally, there exist setsApw andÃpw that contain at mostO(ℓ+h) = O(h) points in total, so thatwp
(or its reversely oriented copypw) undergoes a Delaunay crossing byu in (P \(Aδ2∪Apw∪Ãpw))∪{u}.
(Note that one, or both of these crossings can be a double Delaunay crossing.)

Case (d2): Charging terminal quadruples. We consider a subsetR of ⌈n/h⌉ points chosen at random
fromP . Notice that the following two events occur simultaneously, with probability at leastΩ(1/h4): (1)
R contains the four pointsw, q, u, p, and (2) none of the points of(Auq∪Apw∪ Ãpw∪Aδ2)\{w, q, u, p}
belong toR.

In the case of success, we chargeχ to the quadruple̺ = (w, q, u, p), which satisfies the following
two conditions with respect toR (noting thatχ is uniquely determined by̺); see Figure 105:

(D1) The edgewp (or wp) undergoes a Delaunay crossing byu in R \ {q}. Similarly, the edgequ (or
uq) undergoes a Delaunay crossing byp in R \ {q}.
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(D2) The four points of̺ are involved in a Delaunay co-circularity, right after which the Delaunayhood
of pu is violated byq ∈ L−

pu andw ∈ L+
pu. Furthermore, this is the last co-circularity ofw, q, u, p.

Definition.Let P be a finite set of moving points inR2. We say that a quadruple̺= (w, q, u, p) in P is
terminal of type Dif it satisfies the above conditions (D1) and (D2), withR replaced byP .

p

q

w

u

u

u

u

Figure 105:A possible trajectory ofu if ̺ = (w, q, u, p) is a terminal quadruple of type D. The points of̺ are
involved in an extremal (last) Delaunay co-circularity, right after which the Delaunayhood ofpu is violated by
q ∈ L−

pu andw ∈ L+
pu.

Let TD(m) denote the maximum possible number of terminal quadruples of type D that can arise in
an underlying set ofm moving points. Then the overall number of 3-restricted leftspecial quadruples
that fall into case (d1) is at most

O
(

h4TD(n/h) + ℓh2N(n/h) + ℓhn2β(n)
)

.

In Section 7.3 we will use the corresponding extremal Delaunay co-circularity ofw, q, u, p of each
terminal quadruple̺ to enforce a Delaunay crossing ofpu by at least one of the remaining two points
w, q of ̺. Together with the Delaunay crossings in condition (D1), atleast one of the triplesp, u,w or
p, u, q will perform two (single) Delaunay crossings. Therefore, our analysis will again bottom up via
Lemma 4.5.

3-restricted left special quadruples–wrap up. Putting together the previously established bounds on
the maximum possible numbers of3-restricted left special quadruples that fall into cases (a), (b), (c),
(d1) and (d2) yields the following recurrence:

ΦL
3 (n) = O

(

h4TC(n/h) + h4TD(n/h) + ℓh2N(n/h) + kℓ2N(n/ℓ) + k2N(n/k) + ℓhn2β(n)
)

.
(11)

7 The number of terminal quadruples

In this section we obtain “quadratic” recurrences for the maximum numbersTA(n), TB(n), TC(n), and
TD(n), of terminal quadruples of the respective types A, B, C, and D, which arise at the last stage of the
analysis in Section 6. Each of these four quantities is expressed only in terms of the maximum number
of Delaunay co-circularities in smaller-size sets, plus a nearly quadratic additive term. In other words,
our analysis bottoms out. Combining these four new recurrences with the ones, obtained in Sections 3, 5,
and 6, we finally get a complete system of “quadratic” recurrences, whose solution isN(n) = O(n2+ε),
for anyε > 0. This completes the proof of Theorem 2.1.

7.1 Terminal quadruples of type A

In this section we finally express the maximum possible cardinality TA(n) of a family ΣA of terminal
quadruples of type A (where each quadruple inΣA is uniquely determined by each of its four sub-triples)
in terms of more elementary quanitities that were introduced in Section 2.
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To do so, we fix the underlying setP of n moving points, a familyΣA as above, and a terminal
quadruple̺ = (p, q, r, w) in ΣA. We emphasize that̺, as well as any other quadruple(p, q, r, w) ∈ ΣA,
is uniquely determined by each of its four sub-triples(p, q, r), (p, q, w), (p, r, w), (q, r, w).

Recall that the four points of̺ performfour Delaunay crossings, namely the crossing ofpq by r, the
crossing ofqp by w, the crossing ofrp by w, and the crossing ofwq by r. Here only the first crossing,
(pq, r, I = [t0, t1]), is defined with respect to the compelete point setP . Each of the remaining three
crossings of̺ occurs within a reduced point set, which is obtained by omitting fromP the fourth point
of ̺ (not directly involved in the crossing).

In this section, we shall enforce on the points of̺ an additionalfifth crossing, namely the crossing
of rw (or its reversely oriented copywr) by one ofp, q. As a result, at least one of the triplesp, r, w
or q, r, w will perform two Delaunay crossings (within an appropriately reduced triangulation). We thus
shall charge̺ to that triple and complete our analysis by invoking Lemma 4.5.

Topological setup. Refer to Figure 106. By condition (A1), the edgepq is crossed byr (during I =
[t0, t1], as part of the corresponding Delaunay crossing) andw (at some later timeλq > t1), in opposite
directions. Furthermore,pq re-entersDT(P ) at some later timeλpq afterλq, and it belongs toDT(P \
{r, w}) throughout[t0, λpq].

By condition (A2), the four pointsp, q, r andw are co-circular at some timesδ0 ∈ I, δ1 ∈ (t1, λpq]
andδ2 ∈ (δ1, λpq], where the two extremal co-circularities (at timesδ0 andδ2) are red-blue with respect
to pq, and the middle co-circularity (at timeδ1) is red-red with respect topq (and red-blue with respect
to pr).

As a matter of fact,δ2 arises as part of a single Delaunay ofqp byw, which occurs in the triangulation
DT({p, q, r, w}) within the interval(δ1, λpq]. Therefore, ifw lies at that moment inL−

pq (sor lies then
in L+

pq), the Delaunayhood ofrw is violated right afterδ2 by p andq, and otherwise the Delaunayhood
of pq is violated right afterδ2 by r andw.

Furthermore, the open capC+
pq = B[p, q, w]∩L+

pq contains no points ofP at timeδ1, which is easily
seen to imply the following property:

Claim 7.1. With the above assumptions, both edgespw andrw are Delaunay at timeδ1.

Proof. If the the opposite capC−
pq = B[p, q, w] ∩ L−

pq contains no points ofP at timeδ1, then this co-
circularity ofp, q, r, w is Delaunay, and we are done. Otherwise,pq is not Delaunay even inP \{w}, and
each of its violating pairs inP \ {w} must involver (becauseδ1 ∈ (t0, λpq)). Hence, applying Lemma
4.2 topq andr in P \ {w} shows that both edgespr andrq belong at that moment to the triangulation
DT(P \{w}). Furthermore, sincepr does not belong toDT(P ) (asC−

pq ⊆ B[p, q, r]∩L−
pr is not empty),

the claim now follows by another application of Lemma 4.2, this time topr andw.

By condition (A4), we have a timeξpw > λpq > λq so thatpw belongs toDT(P \{r, q}) throughout
the interval(δ1, ξpw), and it is Delaunay at timeξpw (in addition to its Delaunayhood at timeδ1).

Finally, by condition (A3), the edgerp undergoes inP \{q} a single Delaunay crossing(rp,w,T =
[τ0, τ1]), wherew entersL+

rp = L−
pr in the interval(δ1, λq). Hence, Lemma 4.1 implies thatpw be-

longsDT(P \ {q}) throughout the intervalT = [τ0, τ1], which clearly intersects(δ1, ξpw) ⊃ (δ1, λq).
Similarly, the edgewq undergoes inP \ {p} a Delaunay crossing byr.

In what follows, we consider a subfamilyΣA
rw of all terminal quadruples̺ ′ = (p′, q′, r, w) in ΣA

whose last two points are equal to, respectively,r andw. In particular,ΣA
rw includes the terminal quadru-

ple ̺ = (p, q, r, w) under consideration. Note that each̺′ = (p′, q′, r, w) ∈ ΣA
rw is accompanied by

a clockwise(r, w)-crossing(rp′, w,T ′) (which occurs within an appropriately reduced triangulation
DT(P \ {q′}).

To enforce a Delaunay crossing of byrw by p or q, we fix a pair of constantsk ≪ ℓ and distinguish
between three possible cases, treating each in turn.
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ξpwδ0

pw ∈ DT(P )

pq ∈ DT(P )

pq λq λpq

τ1

w hits rp
pw

I

τ0 T

t0 t1

δ1 C−
pq

p

r
w

q

w
δ1

C+
pq

Figure 106:A partial summary of the properties of a terminal quadruple̺ = (p, q, r, w) of type A. Left: Various
events occur in the depicted order (andδ2 occurs in(δ1, λpq]). Notice thatw hits rp in [τ0, τ1] ∩ (δ1, λq). Right:
The edgespw andrw are Delaunay at timeδ1, because the open capC+

pq contains then no points ofP .

Case (a)The crossing(rp,w,T = [τ0, τ1]) begins afterδ1 andΣA
rw contains at leastk terminal quadru-

ples ̺′ = (p′, q′, r, w) whose respective clockwise(r, w)-crossings(rp′, w,T ′) begin in [δ1, τ0), or
[τ0, τ1] ends beforeξpw andΣA

rw contains at leastk terminal quadruples̺′ = (p′, q′, r, w) whose respec-
tive clockwise(r, w)-crossings(rp′, w,T ′) end in(τ1, ξpw].

(rp′, w, T ′)

w hits rp

δ1 ξpw

τ1τ0

pw ∈ DT(P )

T

p′

p

rq

w

w

Figure 107:Case (a): The scenario where(rp, w, T = [τ0, τ1]) ends beforeξpw , and the familyΣA
rw contains at

leastk terminal quadruples̺′ = (p′, q′, r, w) whose respective(r, w)-crossings(rp′, w, T ′) end in(τ1, ξpw]. At
at leastk − 2 of these quadruples satisfyp′ 6= q andq′ 6= p, so their respective intervalsT ′ are entirely contained
in [τ0, ξpw].

Assume without loss of generality that the latter scenario occurs, so at leastk clockwise (r, w)-
crossings(rp′, w,T ′) end in(τ1, ξpw]; see Figure 107. Notice that each of them occurs within a smaller
triangulationDT(P \ {q′}) which is, in general, distinct from the ambient triangulation DT(P \ {q})
of (rp,w,T ). Fortunately, any terminal quadruple̺′ = (p′, q′, r, w) ∈ ΣA

rw is uniquely determined by
each of its respective pointsp′ andq′. Hence, at leastk− 2 of the above quadruples̺′ satisfyp′ 6= q and
q′ 6= p, in which case their respective(r, w)-crossings are compatible with(rp,w,T ) (through Lemma
5.5) and, therefore, occur entirely within[τ0, ξpw] = T ∪ (τ1, ξpw].

We sample a subset̂P of n/4 points and argue that, with some positive fixed probability,(rp,w,T )
becomes a(p,w,Θ(k))-chargeable Delaunay crossing withinDT(P̂ ). Namely, we notice that the fol-
lowing two events occur simultaneously with some fixed positive probability: (1)P̂ includes the three
pointsp, r, w, but notq, and (2)P̂ includesp′ but notq′ for at least some constant fraction of the above
quadruples̺ ′ = (p′, q′, r, w) ∈ ΣA

rw (whose respective(r, w)-crossings(rp′, w,T ′) end in(τ1, ξpw)).
In the case of success, condition (1) implies thatrp still undergoes a single Delaunay crossing byw in
P̂ , which occurs in some sub-interval ofT = [τ0, τ1] ⊂ [τ0, ξpw]. Similarly, condition (2) implies that at
leastΩ(k) clockwise(r, w)-crossings inR occur within[τ0, ξpw].

By Theorem 5.3, the overall number of such triples(p,w, r) in P̂ (and, thereby, inP ) cannot exceed
O
(

k2N(n/k) + kn2β(n)
)

. Clearly, this also bounds the overall number of the corresponding terminal
quadruples̺ = (p, q, r, w) in P . If (rp,w,T ) ends beforeξpw, andΣA

rw contains at leastk terminal
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quadruples̺ ′ whose respective(r, w)-crossings(rp′, w,T ′) end in(τ1, ξpw], we argue in a fully sym-
metrical manner, for the same upper bound on the number of such terminal quadruples̺.

We thus can assume, in what follows, that either the crossing(rp,w,T = [τ0, τ1]) ends afterξpw,
or the sub-familyΣA

rw contains at mostk other quadruples̺ ′ = (p, q, r, w) whose respective(r, w)-
crossings(rp′, w,T ′) end in(τ1, ξpw]. Similarly, we can assume that either[τ0, τ1]) begins beforeδ1,
or the sub-familyΣA

rw contains at mostk other quadruples̺ ′ = (p′, q′, r, w) whose respective(r, w)-
crossings(rp′, w,T ′) begin in[δ1, τ0).

Case (b)The familyΣA
rw contains no terminal quadruple̺′ = (p′, q′, w, r) 6= ̺ that satisfiesq′ 6= p, and

whose respective(r, w)-crossing(p′r, w,T ′) ends in[ξpw,∞).
Since case (a) has been ruled out (andΣA

rw contains at most one quadruple̺′ = (p′, q′, r, w) with
q′ = p), we conclude that there exist at mostk + 1 terminal quadruples̺ ′ ∈ ΣA

rw whose respective
(r, w)-crossings(p′r, w,T ′) end afterT = [τ0, τ1]. Hence, we charge(p, q, r, w) (via its respective
(r, w)-crossing(pr,w,T = [τ0, τ1])) to the edgerw and notice that any edge can be charged in this
manner by at mostk + 2 terminal quadruples.

To conclude, the above scenario is encountered for at mostO(kn2) terminal quadruples̺.

Case (c)None of the previous cases occurs. In particular, since case(b) has been ruled out, the family
ΣA
rw contains at least one quadruple̺′ = (p′, q′, r, w) 6= ̺, with q′ 6= p, and whose respective(r, w)-

crossing(rp′, w,T ′) ends in[ξpw,∞). (Clearly, we haveq′ 6= q, for otherwise̺ would coincide with
̺′.)

rw ∈ DT(P \ {q})

rw ∈ DT(P \ {q′})T
rw ∈ DT(P )

τ1τ0 ξpw

δ1 δrw
A A

Figure 108: Case (c): Extending the almost-Delaunayhood ofrw to [δ1, δrw]. Hereδrw is the first time in
[ξpw,∞) whenrw belongs to some reduced triangulationDT(P \ {q′}), for someq′ 6= p, q.

Applying Lemma 4.1 to the crossing(rp′, w,T ′) (in its ambient setP \ {q′}) implies, then, there is
a timeδrw ≥ ξpw which is the first such time when the edgerw belongs to some reduced triangulation
DT(P \ {q′}), whereq′ 6= p, q. In what follows, we useq′ to denote a fixed point inP \ {p, q, r, w}
whose removal restores the Delaunayhood at timeδrw; see Figure 108.

Note that we haveδrw > λpq > δ1. Since case (a) has been ruled out, the choice ofδrw guarantees
that, unlessδrw belongs toT = [τ0, τ1], there exist at mostk + 1 quadruples̺ ′ ∈ ΣA

rw whose respective
(r, w)-crossings(rp′, w,T ′) end in(τ1, δrw]. (In particular, by the choice ofδrw, there is at most one
quadruple̺′ = (p′, q′, r, w) whose respective(r, w)-crossing ends in(ξpw, δrw], and it must satisfy
q′ = p.)

Charging events inArw. We next invoke Theorem 2.2 in order to extend the almost-Delaunayhood
of rw, which already belongs toDT(P \ {q}) throughoutT = [τ0, τ1] (by Lemma 4.1), to the interval
[δ1, δrw], which clearly intersectsT .

Note that[δ1, δrw] \ T is composed of two disjoint (and possibly empty) sub-intervals [δ1, τ0) and
(τ1, δrw]. We apply Theorem 2.2 separately over each of these sub-intervals (and only if they are non-
empty). In both cases, we use the second threshold parameterℓ ≫ k.

The first application of Theorem 2.2 inArw, over(δ1, τ0), can be done with respect to the complete
point setP (using the Delaunayhood ofrw at timeδ1, given in Claim 7.1). It is necessary only ifδ1 < τ0.
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If at least one of the conditions (i), (ii) of that theorem is satisfied, we charge̺ within Arw, via
(rp,w,T ), either to anℓ-shallow collinearity, or toΩ(ℓ2) ℓ-shallow co-circularities during(δ1, τ0). Since
case (a) has been ruled out,(rp,w,T ) is among the firstk + 1 such(r, w)-crossings to begin after any
event that we charge. Hence, the above charging accounts forat mostO(kℓ2N(n/ℓ) + kℓn2β(n))
quadruples̺ ∈ ΣA. Otherwise, we end up with a subset of at most3ℓ points (perhaps includingp or q,
or both) whose removal restores the Delaunayhood ofrw throughout[δ1, τ0].

The similar second application of Theorem 2.2 (over(τ1, δrw)) is done with respect to the reduced
point setP \ {q′} (whereq′ denotes the point whose removal restores the Delaunayhood of rw at time
δrw). It is necessary only ifτ1 < δrw.

If at least one of the conditions (i), (ii) of that theorem holds, we charge̺ (via (rp,w,T )) within Arw

either to an(ℓ+1)-shallow collinearity, or toΩ(ℓ2) (ℓ+1)-shallow co-circularities (which areℓ-shallow
with respect toP \ {q′}). By the choice ofδrw, (rp,w,T ) is among the lastk + 2 such(r, w)-crossings
to end after the event, so any(ℓ + 1)-shallow event inArw is charged by at mostO(k) quadruples̺ .
Otherwise, we end up with a subset of at most3ℓ+ 1 points (incldingq′, and perhaps also some ofp, q)
whose removal restores the Delaunayhood ofrw throughout[τ1, δrw].

To conclude, we may assume that there is a subsetArw of at most6ℓ+1 points (includingq′) whose
removal restores the Delaunayhood ofrw throughout[δ1, δrw]. To obtain the crossing ofrw by p or
q (which would occur in, respectively,DT((P \ Arw) ∪ {p}) or DT((P \ Arw) ∪ {q})), it suffices to
show thatrw is hit by one of these two points during the interval[δ1, δrw]. Notice that the latter interval
containsδ2 ∈ (δ1, λpq) ⊂ (δ1, ξpw]. See Figure 109. To do so, we distinguish between two possible
sub-scenarios, depending on the precise order type of the co-circularity (at time)δ2, which is red-blue
with respect topq andrw.

rw ∈ DT(P )

δ2

rw ∈ DT(P \ {q′})

δ1 δrw

rw ∈ DT(P \A)

Figure 109:Case (c): The edgerw belongs toDT(P \ A) throughout the interval[δ1, δrw], which contains the
last co-circularityδ2 of p, q, r, w. In addition,rw belongs toDT(P ) andDT(P \ {q′}) at timesδ1 andδrw,
respectively.

If r lies inL−
pq whenw entersL−

pq (throughpq), then the Delaunayhood ofrw is violated rightafterδ2
by p ∈ L−

rw andq ∈ L+
rw, as depicted in Figure 110 (left). Sinceδ2 is thelast co-circularity ofp, q, r, w,

Lemma 3.1 implies thatrw is hit during(δ2, δrw] by at least one ofp, q (becauseq′ 6= p, q, r, w), so we
are done.

Assume, then, thatr lies in L+
pq whenw entersL−

pq, so the Delaunayhood ofrw is violated right
beforeδ2 by p ∈ L+

rw andq ∈ L−
rw, as depicted in Figure 110 (right). Notice that this violation does not

hold at timeδ1. Hence, we can obtain the desired crossing ofrw in (δ1, δ2) by applying the time-reversed
variant of Lemma 3.1 (fromδ2). The crucial observation is thatδ1, δ2 have different order types, which
rules out the last case in Lemma 3.1.

If rw is hit during(δ1, δrw] by the pointp, then the triplep, r, w performs two Delaunay crosings
within the triangulationDT((P \ Arw) ∪ {p}), namely,(rp,w,T ) and the just established crossing of
wr by p. Otherwise, ifrw is hit during(δ1, δrw] by q, the other tripleq, r, w performs two Delaunay
crossings within the triangulationDT((P \A)∪{q}), namely, the crossing ofwq by r (as prescribed by
condition (A3)) and the just established crossing ofrw by q.

In both cases, a standard combination of Lemma 4.5 with the probabilistic argument of Clarkson and
Shor implies that the overall number of the corresponding triples(p, r, w) or (q, r, w) in P cannot exceed
O(ℓn2). Since the quadruple̺ at hand is uniquely determined by each of its four sub-triples, this also
bounds the overall number of such quadruples inΣA.
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Figure 110:Case (c): Left: A possible motion ofw if it lies at time δ2 in the halfplaneL−

pq (so r lies then in
L+
pq). The Delaunayhood ofrw is violated right after this event byp andq, so at least one of them must crossrw

during(δ2, δrw). Right: A possible motion ofw if it lies at time δ2 in the halfplaneL−

pq (so r lies then inL+
pq).

The Delaunayhood ofrw is violated right after this event byp andq, so at least one of them must crossrw during
(δ1, δ2).

To conclude, we have established the following bound on the maximum possible cardinality ofΣA:

TA(n) = O
(

kℓ2N(n/ℓ) + k2N(n/k) + kℓn2β(n)
)

. (12)

Notice that we have expressed the maximum possible number ofterminal quadruples of type A in
terms of more elementary quantities which were introduced in Section 2.

7.2 Terminal quadruples of type B

In this section we at last express the maximum possible cardinality TB(n) of a family ΣB of terminal
quadruples of type B (where each quadruple(p, q, r, w) ∈ ΣB is uniquely determined by each of the
respective sub-triples(p, q, r), (p, q, w) and(q, r, w)) in terms of more elementary quanitities that were
introduced in Section 2. To do so, we fix the underlying setP of n moving points, a familyΣB as above,
and a terminal quadruple̺= (p, q, r, w) of type B inΣB.

Recall that the four points of̺ perform (at least) three Delaunay crossings, namely the crossing of
pq by r, the crossing ofqp by w, and the crossing ofqr by w. Here only the first crossing, namely,
(pq, r, I = [t0, t1]), is defined with respect to the compelete point setP . Each of the remaining three
crossings of̺ occurs within a reduced point set, which is obtained fromP by removing the fourth point
of ̺ (not directly involved in the crossing).

In the course of this section, we will enforce on the points of̺ two additional crossings, namely the
crossing ofpw by one ofq, r, and, finally, the crossing ofrw by one ofp, q. As a result, at least one of
the triples(p, q, w), (p, r, w) or (q, r, w) will perform two Delaunay crossings (within an appropriately
reduced triangulation). We will thus charge̺ to that triple and bottom out by invoking Lemma 4.5.

Topological setup. Refer to Figure 111. By condition (B1), the edgepq is crossed byr (during I =
[t0, t1], as part of the corresponding Delaunay crossing) andw (at some later timeλq > t1), in opposite
directions. Furthermore,pq re-entersDT(P ) at some later timeλpq ≥ λq, and it belongs toDT(P \
{r, w}) throughout[t0, λpq].

By condition (B2), the four points ofp, q, r andw are co-circular at some three timesδ0 ∈ I,
δ1 ∈ (t1, λpq] andδ2 ∈ (δ1, λpq], where the two extremal co-circularities (at timesδ0 andδ2) are red-
blue with respect topq, and the middle co-circularity (at timeδ1) is red-red with respect topq (and
red-blue with respect torq). Clearly,r remains inL+

pq throughout(t1, δ1) after entering this halfplane
duringI (for otherwiser would have to crossLpq three times).

As a matter of fact, the last co-circularity at timeδ2 arises as part of a single Delaunay ofqp by w,
which occurs in the triangulationDT({p, q, r, w}) within the interval(δ1, λpq]. Therefore, ifw lies at
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that moment inL−
pq (sor lies then inL+

pq), the Delaunayhood ofrw is violated right afterδ2 by p andq,
and otherwise the Delaunayhood ofpq is violated right afterδ2 by r andw.

Furthermore, the open capC+
pq = B[p, q, w]∩L+

pq contains no points ofP at timeδ1. Using Lemma
4.2, we obtain the following property:

Claim 7.2. With the above assumptions, both edgeswq andrw belong toDT(P ) at timeδ1. Further-
more, the edgepw belongs then toDT(P \ {r}).

Proof. The first part of the claim is fully symmetric to Claim 7.1, andcan be established using a fully
symmetric argument (switching the roles ofp andq). We thus proceed to proving the Delaunayhood of
pw in P \ {w}. Indeed, if the opposite capC−

pq = B[p, q, w] ∩ L−
pq contains no points ofP at timeδ1,

then this co-circularity ofp, q, r, w is Delaunay, and we are done. Otherwise,pq is not Delaunay even
in P \ {r}, and each of its violating pairs inP \ {r} must involvew (becauseδ1 ∈ (t0, λpq)). Hence,
Lemma 4.2 implies thatpw belongs at that moment to the triangulationDT(P \ {r}).

By condition (B4), we have a timeξwq > λpq > λq so thatwq belongs toDT(P \{p, r}) throughout
the interval[δ1, ξwq], and it is Delaunay at timeξwq (in addition to its Delaunayhood at timeδ1).

Finally, by condition (B3), the edgeqr undergoes inP \ {p} a single Delaunay crossing(qr, w,T =
[τ0, τ1]), wherew entersL+

qr = L−
rq in the interval(δ1, λq). Hence, Lemma 4.1 implies thatwq belongs

DT(P \ {p}) throughout the intervalT = [τ0, τ1], which clearly intersects[δ1, ξwq] ⊃ [δ1, λq].

υpq

λpq
ξwq

wq ∈ DT(P )
t0

w hits qr

τ1

I

τ0 T

t1

δ1δ0

pq ∈ DT(P )

pq λq

wq

C+
pq

p

q

C−
pq

r

w

wδ1

Figure 111:A partial summary of the properties of a terminal quadruple̺ = (p, q, r, w) of type B. Left: Various
events occur in the depicted order (andδ2 occurs in(δ1, λpq ]). υpq is the time inI at whichr hitspq. Notice thatw
hitsqr in [τ0, τ1]∩(δ1, λq). Right: The edgeswq andrw are Delaunay at timeδ1, andpw belongs toDT(P \{r}),
because the open capC+

pq contains then no points ofP .

Overview. Clearly, the motion ofp, q, r andw still obeys Proposition 6.11. In particular, usingυpq to
denote the time45 in I whenr entersL+

pq throughpq, the edgepw is hit in (υpq, δ1) by at least one of the
pointsq, r. Namely,q crossespw fromL+

pw toL−
pw, orr crossespw in the reverse direction. Our analysis

proceeds in two steps. At the first step, we refine this collinearity into a full-fledged Delaunay crossing of
pw. If pw (or, more precisely, its reversely oriented copywp) is crossed byq, then our analysis bottoms
out through Lemma 4.5. Ifpw is crossed byr, we proceed to the second step, at which we enforce a
Delaunay crossing ofrw by at least one ofp, q. At this step, our analysis is fully symmetric to the one
that was used in Section 7.1 to enforce the same type of crossing.

Part 1: Enforcing the crossing of pw by q or r. We consider the subfamilyΣB
pw of all terminal

quadruples̺ ′ = (p, q′, r′, w) ∈ ΣB of type B whose first and last points are equal to, respectively, p
andw. (By the definition ofΣB , each̺′ ∈ ΣB

pw is uniquely determined by its respective pointq′.) In
particular,ΣB

pw includes the quadruple̺under consideration.

45Note that the order ofδ0 andυpr is unknown, and it is determined by the location ofw at timeυpq.
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For each̺ ′ ∈ ΣB
pw we useδ′1 to denote the respective time whenp, q′, r′, w are involved in a red-red

co-circularity with respect topq′, as prescribed by Condition (B2). We emphasize that, by condition
(B2), the open capC+

pq′ = B[p, q′, w] ∩ L+
pq contains no points ofP at timeδ′1, so the edgepw belongs

at that moment to the triangulationDT(P \ {r′}).
Let υpw denote the time whenpw is hit by r or q, as prescribed in Proposition 6.11. Namely, we

assume thatυpw < δ1, and that the Delaunayhood ofpw is violated byr ∈ L−
pw andq ∈ L+

pw throughout
the interval(υpw, δ1).

Proposition 7.3. With the above notation, there exist no terminal quadruples̺′ ∈ ΣB
pw whose respective

second co-circularitiesδ′1 occur in(υpw, δ1).

Proof. Assume for a contradiction that there is a terminal quadruple ̺′ = (p, q′, r′, w) whose respective
time δ′1 belongs to(υpw, δ1), where the Delaunayhood ofpw is violated byq ∈ L−

pw andr ∈ L+
pw. Note

thatq 6= q′. By Claim 7.2,pw belongs toDT(P \ {r′}) at timeδ′1. Therefore, and since bothr andr′

lie then inL+
pw, we obtainr = r′. (Otherwise, the Delaunayhood ofpw would be violated at timeδ′1 by

the pointsr andq, none of them equal tor′.) In other words,̺ and̺′ differ only in their second points.
Hence,q lies at timeδ′1 within the discB[p, q′, r] = B[p, q′, w].

Sinceq cannot lie at timeδ′1 inside the capC+
pw = B[p, q′, w] ∩ L+

pq′ , it has to lie inside the com-

plementary capC−
pq = B[p, q′, w] ∩ L−

pq′ , which coincides withB[p, q′, r] ∩ L−
pq′. In other words, the

Delaunayhood of bothpq′ andpw is violated at timeδ′1 by q ∈ L−
pq′ andr ∈ L+

pq′ . See Figure 112.

q

r

p

q′ w

C−

pq′

Figure 112:Proof of Proposition 7.3. We assume that̺′ = (p, q′, r, w) is a terminal quadruple inΣB
pw, whose

second co-circularity occurs at timeδ′1 ∈ (υpw, δ1). The pointq must lie at timeδ′1 in the capC−

pq = B[p, q′, w] ∩

L−

pq′ , which coincides withB[p, q′, r] ∩ L−

pq′ .

Recall thatδ′1 occurs after the end of the respective(p, r)-crossing(pq′, r, I ′ = [t′0, t
′
1]) of ̺′ (which

is prescribed by condition (B1)). Since the discB[p, q′, r] contains no points ofP right after timet′1 (and
the motion ofB[p, q′, r] is continuous throughout(t′1, δ

′
1)), the pointq must enter the capB[p, q′, r]∩L−

pq′

in (t′1, δ
′
1). Furthermore, conditions (B1) and (B2) imply thatq cannot hitpq′ in (t′1, δ

′
1), soq can enter

B[p, q′, r] ∩ L−
pq′ only through the boundary ofB[p, q′, r], at a common co-circularity ofp, q, q′, r. See

Figure 113 (left). In what follows, we useδ′ to denote the time of (the last) such co-circularity in(t′1, δ
′
1),

noting thatq remains inB[p, q′, r] ∩ L−
pq′ throughout(δ′, δ′1).

We claim thatδ′ occurs afterI = [t0, t1]; see Figure 113 (right). Indeed, sinceq lies in L−
pr(⊃

B[p, q′, r]∩L−
pq′) throughout(δ′, δ′1), and sinceδ′1 > υpw > υpq, we obtain thatυpq < δ′ (for, otherwise,

υpq would belong to(δ′, δ′1)). Furthermore, by Lemma 4.1,δ′ cannot occur duringI = [t0, t1], because
it is (the time of) a red-blue co-circularity with respect torq. Therefore, we haveδ′ > t1.

To conclude,q entersB[p, q′, r] ∩ L−
pq′ at a common co-circularity ofp, q, q′, r, and only after the

ends ofI andI ′. According to Lemma 4.4, the pointsp, q, q′, r are involved in at least two previous
co-circularities in the intervalsI \I ′ andI ′ \I. Hence, the co-circularity at timeδ′ has index3. Note that
the Delaunayhood ofpq′ is violated byq ∈ L−

pq′ andr ∈ L+
pq′ throughout the interval(δ′, δ′1). Moreover,

since̺′ satisfies condition (B1), the edgepq′ re-entersDT(P ) at some timeλpq′ > δ′1. Sinceδ′1 is the
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B[p, q′, r] ∩ L−

pq′

r

p

q′

q

δ′

υpw

t1t0 I

pq hit by r
υpq

r ∈ L+
pq

δ1

pw hit by q or r

δ′1δ′

Figure 113: Proof of Proposition 7.3. Left:q must enterB[p, q′, r] ∩ L−

pq′ at some timeδ′ ∈ (t′1, δ
′

1). The
Delaunayhood ofpq′ is violated byq andr throughout(δ′, δ′1). Right: Arguing thatδ′ occurs afterI. Various
events occur in the depicted order. The co-circularity at timeδ′ occurs afterI, so it is the third co-circularity of
p, q, r, q′.

last co-circularity ofp, q′, r, w, Lemma 3.1 implies that the edgepq′ is hit during(δ′1, λpq′ ] by at least
one of the pointsq, r, contrary to Condition (B1) on̺ ′. This last contradiction completes the proof of
Proposition 7.3.

Note that the subfamilyΣB
pw can contain at most one quadruple̺′ = (p, q′, r′, w) with q′ = r.

Applying the pigeonhole principle (as this was done in Section 5.6) we get that at least half of all terminal
quadruples̺ = (p, q, r, w) ∈ ΣB

pw satisfy the following condition:

(PHT) There is at most one quadruple̺′ = (p, q′, r′, w) ∈ ΣB
pw that satisfiesr′ = q.

With no loss of generality, we can assume, in what follows, that (PHT) holds for the terminal quadru-
ple̺ = (p, q, r, w) under consideration. To proceed, we distinguish between two possible cases.

Case (1a).The edgepw is hit at timeυpw by q, which crossespw from L+
pw to L−

pw.
Assume first that there exist no terminal quadruples̺′ = (p, q′, r′, w) in ΣB

pw, with r′ 6= q, and
whose respective second co-circularitiesδ′1 occur beforeυpw. In this scenario, Proposition 7.3 together
with condition (PHT) imply thatδ1 is among the first two such second co-circularitiesδ′1 of terminal
quadruples̺ ′ ∈ ΣB

pw, so we can charge̺ (via δ1) to the edgepw. Clearly, this can happen forO(n2)

terminal quadruples̺ ∈ ΣB
pw.

δ−pw
pw ∈ DT(P \ {r})pw hit by q

υpw δ1

pw ∈ DT(P \Apw)

pw ∈ DT(P \ {r′})

Figure 114:Case (1a):pw is hit by q at timeυpw. We chooseδ−pw as the last time beforeυpw whenpw belongs
to a reduced triangulationDT(P \ {r′}), for somer′ 6= q, and apply Theorem 2.2 over(δ−pw, δ1).

To conclude, we may assume in what follows that the above scenario does not occur. Recall that, for
each̺′ ∈ ΣB

pw, the edgepw belongs toDT(P \ {r′}) at the respective timeδ′1. Hence, there is a time
δ−pw < υpw which is the last such time whenpw belongs to some reduced triangulationDT(P \ {r′}),
for r′ 6= p, q, w.

We apply Theorem 2.2 forpw in the interval(δ−pw, δ1), with the first threshold parameterk. This is
done with respect to the reduced setP \ {r, r′} (to ensure the Delaunayhood ofpw at timesδ−pw andδ1).
Refer to Figure 114.

In cases (i), (ii) of Theorem 2.2, we encounter in the appropriately reduced red-blue arrangement

A
(r,r′)
pw of pw (defined with respect toP \ {r, r′}) either ak-shallow collinearity orΩ(k2) k-shallow

123



co-circularities, and charge̺to these events, which are(k + 2)-shallow with respect to the original set
P . Notice that each(k + 2)-shallow event in the full arrangementApw is charged in this manner by at
mostO(1) terminal quadruples̺ ∈ ΣB

pw, whose respective second co-circularitiesδ1 are among the first
two such co-circularities to occur inApw after the time of the event. Hence, the above charging accounts
for at mostO(k2N(n/k) + kn2β(n)) terminal quadruples̺ ∈ ΣB.

Assume, then, that condition (iii) of Theorem 2.2 is satisfied. That is, there is a subsetApw of at
most3k + 2 points (includingr andr′) whose removal restores the Delaunayhood ofpw in [δ−pw, δ1].
Moreover, sinceq 6= r, r′, the edgepw belongs toDT((P \ Apw) ∪ {q}) at both timesδ−pw andδ+pw.
Therefore, the triplep, q, w performs two (single) Delaunay crossings in the reduced set(P \Apw)∪{q},
namely, the crossing ofqp byw, and the crossing ofwp by q. A rountine combination of Lemma 4.5 with
the probabilistic argument of Clarkson and Shor shows that the overall number of such triples(p, q, w)
(and, therefore, of their corresponding terminal quadruples̺ ∈ ΣB) is at mostO(kn2).

In conclusion, we have shown that at mostO
(

k2N(n/k) + kn2β(n)
)

terminal quadruples fall into
case (1a).

Case (1b).The edgepw is hit at timeυpw by the pointr, which crossespw from L−
pw toL+

pw.
Notice that, by Proposition 7.3, each terminal quadruple̺ = (p, q, r, w) falling into case (1a) is

uniquely determined by the choice of(p, r, w), because the second co-circularityδ1 of ̺ is the first co-
circularity of this kind (over all̺ ′ = (p, q′, r, w) ∈ ΣB) to occur after theuniquetime whenr enters the
halfplaneL+

pw throughpw.
If there exists no terminal quadruple̺′ = (p, q′, r′, w) ∈ ΣB

pw whose respective second co-circularity
δ′1 occurs beforeυpw, Proposition 7.3 implies thatδ1 is the first such co-circularity, so̺can be charged
to the edgepw. Clearly, this accounts for at mostO(n2) terminal quadruples̺.

For each of the remaining quadruples̺ ∈ ΣB
pw (that fall into case (1b)),ΣB

pw contains another
quadruple̺ ′ = (p, q′, r′, w), necessarily withr′ 6= r, so that the edgepw is Delaunay inP \ {r′} at
the timeδ′1 < υpw of the respective second co-circularity of̺′. In particular, we can choose a time
δ−pw < υpw which is the last such time whenpw belongs to a reduced triangulationDT(P \ {r′}), for
somer′ 6= p,w, r.

Similarly, if there exists no quadruple̺′ = (p, q′, r′, w) ∈ ΣB
pw whose respective second co-

circularity δ′1 occurs afterδ1, we can charge̺ (via its respective time stampδ1) to pw. Otherwise, there
is a timeδ+pw which is the first such time whenpw belongs to a reduced triangulationDT(P \ {r′′}), for
somer′′ 6= p,w, r.

υpwδ−pw
pw ∈ DT(P \ {r′})

δ1

pw ∈ DT(P \ {r′′})

δ+pw

pw ∈ DT(P \Apw)

pw hit by r

Figure 115:Case (1b):pw is hit by r at timeυpw. We chooseδ−pw as the last time beforeυpw whenpw belongs
to a reduced triangulationDT(P \ {r′}), for somer′ 6= r, and apply Theorem 2.2 over(δ−pw, δ1). In addition, we
chooseδ+pw as the first time afterδ1 whenpw belongs to a reduced triangulationDT(P \ {r′′}), for somer′′ 6= r,
and apply Theorem 2.2 over(δ1, δ+pw).

For each of the remaining quadruples̺ ∈ ΣB (that fall into case (1b)) there exist timesδ−pw < υpw <
δ1 andδ+pw > δ1 as above, with respective obstruction pointsr′, r′′ 6∈ {p,w, r}; refer to Figure 115. We
can now apply Theorem 2.2 for the edgepw, over the interval(δ−pw, δ

+
pw) (containingδ1). This is done

with the thresholdk, and with respect to the reduced point setP \ {r′, r′′}.
In cases (i) and (ii) of Theorem 2.2, we charge̺ within Apw (via δ1) either to a(k + 2)-shallow

collinearity, or toΩ(k2) (k + 2)-shallow co-circularities. Note that each(k + 2)-shallow event, that
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occurs inApw during(δ+pw, δ
+
pw), is charged by at at mostO(1) terminal quadruples inΣB

pw (that fall into
case (1b)), because the second co-circularityδ1 of ̺ is either the last such co-circularity to occur before
the timet∗ of the event, or the first such co-circularity to occur aftert∗. Therefore, the above charging
accounts for at mostO(k2N(n/k) + kn2β(n)) terminal quadruples.

Now assume that Condition (iii) of Theorem 2.2 holds. That is, we have a subsetApw of at most
3k + 2 points (includingr′ andr′′) whose removal restores the almost Delaunayhood ofpw throughout
the interval[δ−pw, δ

+
pw]. Moreover, sincer 6= r′, r′′, the edgepw belongs toDT((P \ Apw) ∪ {r}) at

both timesδ−pw andδ+pw. Therefore, the edgepw undergoes a Delaunay crossing byr within the reduced
triangulationDT((P \ Apw) ∪ {r}).

Part 2: Enforcing a Delaunay crossing ofrw. To conclude, we may assume, from now on, that each
terminal quadruple̺ = (p, q, r, w) ∈ ΣB under consideration is uniquely determined by each of its four
sub-triples(p, q, r), (p, q, w), (p, r, w) and(q, r, w). Moreover, each of these triples defines a Delaunay
crossing (in an appropriately reduced subset ofP ).

We now exploit the last co-circularity ofp, q, r, w (at time δ2 ∈ [δ1, λpq]) to enforce a fifth such
crossing, namely the Delaunay crossing ofrw by one ofp, q. Here our argument is symmetric to the one
that was used in Section 7.1. (Namely, we now switch the rolesof p andq). In the case of success, at
least one of the triples(p, r, w), (q, r, w) performs two (single) Delaunay crossings, so Lemma 4.5 can
be invoked. Otherwise, we dispose of̺ either through Theorem 5.3, or by charging it withinArw.

Before proceeding with our case analysis, we emphasize thatwq is Delaunay at timesδ1 andξwq >
λpq(> δ2), and that the single Delaunay crossing(qr, w,T = [τ0, τ1]) is defined with respect to a smaller
point setP \ {p}. In addition, both[δ1, λwq] and[τ0, τ1] contain the time whenw crossesrq fromL+

rq to
L−
rq.

We keep̺ = (p, q, r, w) ∈ ΣB fixed and consider a subfamilyΣB
rw of all such terminal quadruples

̺′ = (p′, q′, r, w) ∈ ΣB whose last two points are equal to, respectively, tor andw. (In particular,ΣB
rw

includes the terminal quadruple̺= (p, q, r, w) at hand.) As in the symmetric setup of Section 7.1, we
distinguish between three possible scenarios (a)–(c), ruling them out one by one.

Case (a)The crossing(qr, w,T = [τ0, τ1]) begins afterδ1 andΣB
rw contains at leastk terminal quadru-

ples̺′ = (p′, q′, r, w) whose respective counterclockwise(r, w)-crossings(q′r, w,T ′) begin in[δ1, τ0),
or [τ0, τ1] ends beforeξwq andΣB

rw contains at leastk terminal quadruples̺ ′ = (p′, q′, r, w) whose
respective counterlclockwise(r, w)-crossings(q′r, w,T ′) end in(τ1, ξwq].

(q′r, w, T ′)

w hits qr

wq ∈ DT(P )

ξwq

τ1τ0 T

δ1 w

p

q
r

w

q′

Figure 116:Case (a): The scenario where(qr, w, T = [τ0, τ1]) ends beforeξwq, and the familyΣB
rw contains at

leastk terminal quadruples̺′ = (p′, q′, r, w) whose respective(r, w)-crossings(q′r, w, T ′) end in(τ1, ξwq]. At at
leastk − 2 of these quadruples satisfyp′ 6= q andq′ 6= p, so their respective intervalsT ′ are entirely contained in
[τ0, ξwq].

Assume without loss of generality that the latter scenario occurs, so at leastk counterclockwise
(r, w)-crossings(q′r, w,T ′) end in(τ1, ξwq]; see Figure 116. Notice that each of them occurs within a
smaller triangulationDT(P \ {p′}) which, in general, is distinct from the ambient triangulationDT(P \
{p}) of (qr, w,T ). Fortunately, any terminal quadruple̺′ = (p′, q′, r, w) ∈ ΣB

rw is uniquely determined
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by each of its respective pointsp′ andq′. Hence, at leastk−2 of the above quadruples̺′ satisfyp′ 6= q and
q′ 6= p, in which case their respective(r, w)-crossings are compatible with(qr, w,T ) through Lemma
5.5, and, therefore, occur entirely within[τ0, ξwq] = T ∪ (τ1, ξwq].

We sample a subset̂P of n/4 points and argue that, with some positive fixed probability,(qr, w,T )
becomes a(q, w,Θ(k))-chargeable Delaunay crossing withinDT(P̂ ). Namely, we notice that the fol-
lowing two events occur simultaneously with some fixed positive probability: (1)P̂ includes the three
pointsq, r, w, but notp, and (2)P̂ includesq′ but notp′ for at least some constant fraction of the above
quadruples̺ ′ = (p′, q′, r, w) ∈ ΣB

rw (whose respective(r, w)-crossings(q′r, w,T ′) end in(τ1, ξwq]). In
the case of success, condition (1) implies thatqr still undergoes a single Delaunay crossing byw in P̂ ,
which occurs in some sub-interval ofT = [τ0, τ1] ⊂ [τ0, ξwq]. Similarly, condition (2) implies that at
leastΩ(k) counterclockwise(r, w)-crossings inR occur within[τ0, ξwq].

By Theorem 5.3, the overall number of such triples(q, r, w) in P̂ (and, thereby, inP ) cannot ex-
ceedO

(

k2N(n/k) + kn2β(n)
)

, which also bounds the overall number of the corresponding terminal
quadruples̺ = (p, q, r, w) in P .

We thus can assume, in what follows, that either the crossing(qr, w,T = [τ0, τ1]) ends afterξpw,
or the sub-familyΣA

rw contains at mostk other quadruples̺ ′ = (p, q, r, w) whose respective(r, w)-
crossings(q′r, w,T ′) end in(τ1, ξwq]. Similarly, we can assume that either[τ0, τ1]) begins beforeδ1,
or the sub-familyΣB

rw contains at mostk other quadruples̺ ′ = (p′, q′, r, w) whose respective(r, w)-
crossings(q′r, w,T ′) begin in[δ1, τ0).

Case (b)The familyΣB
rw contains no terminal quadruple̺′ = (p′, q′, w, r) 6= ̺ that satisfiesp′ 6= q, and

whose respective(r, w)-crossing(rq′, w,T ′) ends in[ξwq,∞).
Since case (a) has been ruled out (andΣB

rw contains at most one quadruple̺′ = (p′, q′, r, w) with
q′ = p), we conclude that there exist at mostk + 1 terminal quadruples̺ ′ ∈ ΣB

rw whose respective
(r, w)-crossings(rq′, w,T ′) end afterT = [τ0, τ1]. Hence, we charge(p, q, r, w) (via its respective
(r, w)-crossing(pr,w,T = [τ0, τ1])) to the edgerw and notice that any edge can be charged in this
manner by at mostk + 2 terminal quadruples.

To conclude, the above scenario happens for at mostO(kn2) terminal quadruples̺.

Case (c)None of the previous cases occurs. In particular, since case(b) has been ruled out, the family
ΣB
rw contains at least one quadruple̺′ = (p′, q′, r, w) 6= ̺, with p′ 6= q, and whose respective(r, w)-

crossing(q′r, w,T ′) ends in[λwq,∞). (Clearly, we havep′ 6= p, for otherwise̺ would coincide with
̺′.)

rw ∈ DT(P \ {p′})rw ∈ DT(P )

ξwqrw ∈ DT(P \ {p′}) τ1τ0

δ1 δrw
A A

T

Figure 117: Case (c): Extending the almost-Delaunayhood ofrw to [δ1, δrw]. Hereδrw is the first time in
[ξwq,∞) whenrw belongs to some reduced triangulationDT(P \ {p′}), for somep′ 6= p, q.

Lemma 4.1 implies, then, there is a timeδrw ≥ ξwq which is the first such time when the edgerw
belongs to some reduced triangulationDT(P \ {p′}), for p′ 6= p, q. In what follows, we usep′ to denote
a fixed point inP \ {p, q, r, w} whose removal restores the Delaunayhood at timeδrw; see Figure 117.

Note that we haveδrw > ξwq > λpq > δ1. Since case (a) has been ruled out, the choice ofδrw
guarantees that, unlessδrw belongs toT = [τ0, τ1], there exist at mostk+1 quadruples̺ ′ ∈ ΣB

rw whose
respective(r, w)-crossings(q′p,w,T ′) end in(τ1, δrw].
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Charging events inArw. We are now ready to invoke Theorem 2.2 in order to extend the almost-
Delaunayhood ofrw, which already belongs toDT(P \ {p}) throughoutT = [τ0, τ1] (by Lemma 4.1),
to the interval[δ1, δrw], which clearly intersectsT .

Note that[δ1, δrw] \ T is composed of two disjoint (and possibly empty) sub-intervals [δ1, τ0) and
(τ1, δrw]. We apply Theorem 2.2 separately over each of these sub-intervals (and only if they are non-
empty). In both cases, we use the second threshold parameterℓ ≫ k.

The first application of Theorem 2.2, over(δ1, τ0), is done with respect to the complete point setP
(using the Delaunayhood ofrw at timeδ1). It is necessary only ifδ1 < τ0.

If at least one of the conditions (i), (ii) of that theorem is satisfied, we charge̺ within Arw, via
(rp,w,T ), either to anℓ-shallow collinearity, or toΩ(ℓ2) ℓ-shallow co-circularities during(δ1, τ0). Since
case (a) has been ruled out,(qr, w,T ) is among the firstk + 1 such(r, w)-crossings to begin after any
event that we charge. Hence, the above charging accounts forat mostO(kℓ2N(n/ℓ) + kℓn2β(n))
quadruples̺ ∈ ΣB. Otherwise, we end up with a subset of at most3ℓ points (perhaps includingp or q,
or both) whose removal restores the Delaunayhood ofrw throughout[δ1, τ0].

The similar second application of Theorem 2.2 (over(τ1, δrw)) is done with respect to the reduced
point setP \ {p′} (wherep′ denotes the point inP \ {p, q} whose removal restores the Delaunayhood of
rw at timeδrw). It is necessary only ifτ1 < δrw.

If at least one of the conditions (i), (ii) of that theorem holds, we charge̺ (via (rp,w,T )) within Arw

either to an(ℓ+1)-shallow collinearity, or toΩ(ℓ2) (ℓ+1)-shallow co-circularities (which areℓ-shallow
with respect toP \ {p′}). By the choice ofδrw, (qr, w,T ) is among the lastk + 2 such(r, w)-crossings
to end after the event, so any(ℓ + 1)-shallow event inArw is charged by at mostO(k) quadruples̺ .
Otherwise, we end up with a subset of at most3ℓ+ 1 points (incldingp′, and perhaps also some ofp, q)
whose removal restores the Delaunayhood ofrw throughout[τ1, δrw].

To conclude, we have a subsetArw of at most6ℓ+ 1 points,includingp′, and perhaps also some of
p, q, whose removal restores the Delaunayhood ofrw throughout[δ1, δrw]. To obtain the crossing ofrw
by p or q (which would occur in, respectively,DT((P \Arw)∪{p}) orDT((P \Arw)∪{q})), it suffices
to show thatrw is hit by one of these two points during the interval[δ1, δrw]. Notice that this interval
containsδ2 ∈ (δ1, λpq] ⊂ (δ1, ξwq]. See Figure 118. To do so, we distinguish between two possible
sub-scenarios, depending on the precise order type ofδ2, which is red-blue with respect topq andrw.

rw ∈ DT(P \ {p′})

δ2

rw ∈ DT(P )

δ1 δrw

rw ∈ DT(P \A)

Figure 118:Case (c): The edgerw belongs toDT(P \ A) throughout the interval[δ1, δrw], which contains the
last co-circularityδ2 of p, q, r, w. In addition,rw belongs toDT(P ) andDT(P \ {p′}) at timesδ1 andδrw,
respectively.

If the Delaunayhood ofrw is violated rightafter δ2 by p ∈ L−
rw andq ∈ L+

rw, then, sinceδ2 is the
last co-circularity ofp, q, r, w, Lemma 3.1 implies thatrw is hit during(δ2, δrw] by at least one ofp, q
(becausep′ 6= p, q, r, w), so we are done. (See Figure 110 (left).)

Assume, then, that the Delaunayhood ofrw is violated rightbeforeδ1 by p andq. Notice that this
violation does not hold at timeδ1. Hence, we can obtain the desired crossing ofrw in (δ1, δ2) by applying
the time-reversed variant of Lemma 3.1 (for the point setP = {p, q, r, w}, backwards fromδ2). The
crucial observation is thatδ1 andδ2 have different order types, which rules out the last case in Lemma
3.1. (See Figure 110 (right).)

If rw is hit during(δ1, δrw] by the pointp, then, together with the crossing ofpw by r (enforced in
Part 1 by omittingApw \ {r}, where the subsetApw was obtained by applying Theorem 2.2 inApw), the
triplep, r, w now performs two Delaunay crosings within the triangulationDT((P \ (Arw ∪Apw)) ∪ {p, r}).

127



Otherwise, ifrw is hit during (δ1, δrw] by q, the other tripleq, r, w performs two Delaunay crossings
within the triangulationDT((P \ (Arw ∪ {p})) ∪ {q}), namely, the crossing ofqr by w (prescribed by
condition (B3)), and the just obtained crossing ofrw by q.

In both cases, a standard combination of Lemma 4.5 with the probabilistic argument of Clarkson
and Shor implies that the overall number of the corresponding triples(p, r, w) or (q, r, w) in P cannot
exceedO(ℓn2). Since the quadruple̺ = (p, q, r, w) at hand is uniquely determined by each of its four
sub-triples, this also bounds the overall number of such quadruples inΣB.

To conclude, we have established the following bound on the maximum possible cardinality ofΣB :

TB(n) = O
(

kℓ2N(n/ℓ) + k2N(n/k) + kℓn2β(n)
)

. (13)

That is, we have expressed the maximum possible number of terminal quadruples of type B in terms
of more elementary quantities which were introduced in Section 2. Informally, here the system of our
recurrences bottoms out, in the sense that no new quantitiesappear in the righ-hand side.

7.3 Terminal quadruples of types C and D

We next establish near-quadratic recurrences for the maximum possible numbersTC(n) andTD(n) of
terminal quadruples of types C and D, respectively, that canarise in an underlying setP of n moving
points. See Section 6.6 for precise definitions of these two types of configurations.

Let ̺ = (w, q, u, p) be a terminal quadruple of type C or D. Notice that each of the (unordered)
triplesu, p, w andu, p, q is involved in a Delaunay crossing (see Figure 119).

p

w

qu

u

u

u

p

q

w

u

u

u

u

Figure 119:Possible trajectories ofu in a terminal quadruple̺ = (w, q, u, p) of type C or D (resp., left and
right). In both types, each of the unordered triplesp, u, q andp, u, w is involved in a Delaunay crossing.

Specifically, if̺ is of type C, we have a Delaunay crossing ofwu (or uw) by p in P \ {q}, and a
Delaunay crossing ofwq (or of qw) by u in P \ {p}. Similarly, if ̺ is of type D, we have a Delaunay
crossing ofqu (or of uq) by p in P \ {p}. and a Delaunay crossing ofwp (or of pw) by u in P \ {q}.

In both types, the four points of̺ are involved in a Delaunay co-circularity, right after which the
Delaunayhood ofpu is violated byw ∈ L−

pu andq ∈ L+
pu, and this is the last co-circularity ofw, q, u, p.

We will use the above co-circularity to enforce a Delaunay crossing ofup by at least one ofw, q. As
a result, one of the triplesu, p, w andu, p, q will perform two single Delaunay crossings in a suitably
refined subset ofP , so our analysis will bottom out via Lemma 4.5.

The desired crossing ofup can be enforced using exactly the same analysis as was used inSection
3 to express the maximum possible numberNE(n) of extremal Delaunay co-circularities inP in terms
of the maximum possible numberC(n/k) of Delaunay crossings that can arise in a subset (ofP ) of
cardinalityn/k. Nevertheless, we briefly review the argument of Section 3 for the sake of completeness.

Let t0 denote the time of the above extremal Delaunay co-circularity of w, q, u, p. If the edgepu
never re-entersDT(P ) (leavingDT(P ) at timet0), then we can charge̺ to this last disappearance of
pu fromDT(P ), which occurs for at mostO(n2) terminal quadruples̺ under consideration. Otherwise,
let t1 be the first time aftert0 whenup re-entersDT(P ). By Lemma 3.1,pu is hit in (t0, t1] by at least
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one ofw, q. Namely, eitherq crossesup from L−
pu to L+

pu, or w crossespu in the opposite direction.
Furthermore, this is the second and last collinearity ofp, q, u or p,w, u (and, therefore, theonly such
collinearity of this order type to occur in(t0, t1]).

In both cases, we invoke Theorem 2.2 to amplify the above second collinearity ofp, u, q or p, u,w
into an additional Delaunay crossing. Specifically, we fix a constant thresholdk > 12 and apply Theorem
2.2 inApu over the interval(t0, t1).

In cases (i) and (ii) of Theorem 2.2, we can charge̺ = (w, q, p, u) within Apu eitherΩ(k2) k-
shallow co-circularities, or ak-shallow collinearity. Furthermore, each shallow event ischarged at most
O(1) times, because it involvesp andu, andt0 is the last disappearance ofpu from DT(P ). Hence, the
overall number of such terminal quadruples does not exceedO

(

k2N(n/k) + kn2β(n)
)

.
Finally, in case (iii) of Theorem 2.2, we end up with a subsetA of at most3k points so thatpu

belongs toDT(P \A) throughout[t0, t1]. Thus, eitherpu undergoes a single Delaunay crossing byq in
(P \A) ∪ {q}, or its reversed copyup undergoes a single Delaunay crossing byw in (P \A) ∪ {w}.

Therefore, we can charge̺to the corresponding triplep, q, u orp,w, u which performs two Delaunay
crossings in a suitable subset ofP . Lemma 4.5 together with the Clarkson-Shor argument imply that the
overall number of such triples inP cannot exceedO(kn2). Furthermore, each of them can be charged
at most once, becauset0 is the last time whenpu disappears fromDT(P ) before being hit as above byq
orw.

To conclude, we have established the following recurrencesfor the above quantitiesTC(n) and
TD(n):

TC(n) = O
(

k2N(n/k) + kn2β(n)
)

(14)

and

TD(n) = O
(

k2N(n/k) + kn2β(n)
)

. (15)

8 Proof of Theorem 5.3

Let (pq, r, I = [t0, t1]) be a(p, r, k)-chargeable Delaunay crossing, and letI = [t2, t3] be the corre-
sponding interval which certifies the(p, r, k)-chargeability of(pq, r, I). In particular, at leastk counter-
clockwise(q, r)-crossings(uq, r, Iu) occur withinI (in the sense thatIu ⊆ I). In additon, the edgepr
belongs toDT(P ) whenI begins or ends, and there is a subsetA0 ⊂ P of c0 = O(1) points whose
removal restores the Delaunayhood ofpr throughoutI.

By Lemma 4.6, each of the above(q, r)-crossings(uq, r, Iu) occurs within one of the intervalsI+ =
(t0, t3] or I− = [t2, t1). In particular, we haveIu ⊆ (t0, t3] if and only if r entersL+

uq after entering
L+
pq; see Figure 120. Without loss of generality, we assume that at least⌈k/2⌉ of these crossings occur

within (t0, t3]. Again, Lemma 4.6 implies that each such crossing must end within (t0, t3].

I

(uq, r, Iu)

(pq, r, I)
t

t

t3t2
t0 t1

Figure 120:The setup in the proof of Theorem 5.3. The crossing(pq, r, I = [t0, t1]) is (p, r, k)-chargeable, for
I = [t2, t3]. We fix a counterclockwise(q, r)-crossing(uq, r, Iu), which ends in(t1, t3] (soIu ⊆ (t0, t3]). The
(q, r)-crossings(pq, r, I) and(uq, r, Iu) form a counterclockwise quadruple(q, p, u, r).
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Overview. To establish Theorem 5.3, we distribute the “weight” of(pq, r, I) over the aboveΩ(k)
(q, r)-crossings(uq, r, Iu) or, more precisely, over their respective arrangementsAur. (Recall that each
counterclockwise(q, r)-crossing(uq, r, Iu) is also a clockwise(u, r)-crossing.) In what follows, we
fix one of the first⌈k/2⌉ counterclockwise(q, r)-crossings that ends after timet1 (and beforet3), and
assume that its respective pointu does not belong toA0. Our charging strategy is to make each suchu
payΘ(1/k) units of charge to(pq, r, I), so that(pq, r, I) receives a total of at least1 unit. The charging
will be performed in one of two possible ways (depending on the structure ofAur and on the motion of
p, q, u, andr).

We shall first try to charge(uq, r, Iu) (rather than(pq, r, I)) to events withinAur using the stan-
dard techniques of Section 5 (involving Lemma 4.5 and Theorem 2.2). In case of success,(uq, r, Iu)
will be declared asheavyfor (pq, r, I) and will payΘ(1/k) units of charge to(pq, r, I). As we will
show, the overall number of such crossings(uq, r, Iu), that will be declared as heavy forat least oneof
their neighboring(q, r)-crossings, does not exceedO(k2N(n/k) + kn2β(n)). Moreover, any crossing
(uq, r, Iu) will be charged (as heavy) by at most⌈k/2⌉ neighboring(q, r)-crossings(pq, r, I), due to the
⌈k/2⌉-proximity of the crossings(pq, r, I) and(uq, r, Iu), and will payΘ(1/k) units of charge to each.
Therefore, at mostO(k2N(n/k) + kn2β(n)) units of charge will be transferred in this fashion.

If the above strategy fails, we shall resort to a more subtle type of charging. In that case, we shall
charge(pq, r, I) (again withinAur) toΘ(k) (4k)-shallow co-circularities that involveu, r andp (together
with some fourth point, not necessarilyq), and each of these co-circularities will payΘ(1/k2) units of
charge to(pq, r, I). Moreover, we shall argue that each(4k)-shallow co-circularity can be charged in
this latter manner by at mostO(1) crossings(pq, r, I). Hence, at mostO(k2N(n/k)) units will be
transferred in the second scheme. The theorem then follows from these two charging schemes.

Before proceeding with the above general strategy, we fix onesuch crossing(uq, r, Iu) and establish
several essential properties of it.

u

p

q

w r

Iu
It2 t3

t

t

(uw, r, Juw)
t0 t1

I

Figure 121: Proof of Proposition 8.1. Assumingp 6= w, the four pointsw, u, r, p are involved in a red-blue
co-circularity during the crossing(uw, r, Juw). Since the Delaunayhood ofpr is then violated byw andu, andu
is chosen outsideA0, the setA0 must containw.

Proposition 8.1. With the above assumptions, and with(uq, r, Iu) fixed, at mostc0+1 clockwise(u, r)-
crossings(uw, r, Juw) occur within[t0, t3].

Proof. Fix a clockwise(u, r)-crossing(uw, r, Juw), such thatw 6= p andJuw ⊂ [t0, t3]. Refer to Figure
121.

By Lemma 4.4, the pointsw, u, r, p are involved duringJuw in a co-circularity which is red-blue
with respect to the edgesuw andpr. Hence, the Delaunayhood ofpr is violated byu andw either right
before or right after this co-circularity. Since[t0, t3] ⊆ I, the setA0 must include at least one of the
pointsu,w. Since, by assumption,u 6∈ A0, we must havew ∈ A0, so there can be at mostc0 such
crossings. Adding the possible crossing(up, r, Jup) yields the asserted bound.

Notice that the setP induces a counterclockwise quadrupleσu = (q, p, u, r) whose respective inter-
val [I, Iu] is contained in[t0, t3]. The following proposition is stated in full generality andapplies toall
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counterclockwise quadruples (i.e., not necessarily the ones that arise in the course of the present proof of
Theorem 5.3). It can be viewed simply as an extension of Lemma5.1.

Proposition 8.2. Let σu = (q, p, u, r) be a counterclockwise quadruple, with associated crossings
(pq, r, I) and (uq, r, Iu). Suppose that the edgerq is hit by the pointp, and that this happens in the
interval afterr entersL+

pq and beforer entersL+
uq. Thenpr is also hit, during that same interval, by the

pointu.

Remarks. (1) Clearly, a symmetric statement holds ifrq is hit by u. Namely, in that case the edgeru
is hit by the pointp. As a matter of fact, the proof of Proposition 8.2 implies that the two scenarios
coincide: The edgerq is hit byp between the times whenr crossespq anduq if and only if rq is hit there
by u too.

(2) The reader might be tempted to use Lemma 4.5 in order to bound the number of such crossings
(uq, r, Iu), whose respective counterclockwise quadruplesσu = (q, p, u, r) satisfy the conditions of
Proposition 8.2 (as was done, e.g., for clockwise Delaunay quadruples in case (a) of Section 5.3). How-
ever, since we do not assume the edgerq to be almost-Delaunay during[I, Iu], the argument of Section
5.3 does not immediately apply to such instances.

Proof. Refer to Figure 122. Notice that, according to Lemma 4.1,p can hit rq (as prescribed in the
proposition) only during the gap between the intervalsI andIu of the two(q, r)-crossings ofσu (a gap
that we therefore assume to exist).

B[p, q, r] is empty

t0 t1

I

ζu1

Iu
r entersL+

uq

ζu0

r entersL+
pq

t

p hitsrq u leavesB[p, q, r] ∩ L−

pr

B[p, q, r]

p

q

r

B[p, q, r] ∩ L−

pr

u

Figure 122:Proof of Proposition 8.2. Left: The summary of events that are assumed to occur during[I, Iu].
Right: The pointu leaves the capB[p, q, r] ∩ L−

pr at timeζu1 ∈ Iu \ I = Iu.

Since the pointsp, q, r can be collinear at most twice, the halfplaneL+
uq containsp whenr enters it

during Iu. Therefore, and according to Lemma 4.4, the four pointsp, q, u, r are involved at some time
ζu1 ∈ Iu \ I = Iu in a co-circularity, occurring beforer crossesuq; see Figure 122 (right). Right after
this co-circularity the Delaunayhood ofuq is violated byr ∈ L−

uq andp ∈ L+
uq. Note that at that very

moment the pointu leaves the capB[p, q, r] ∩ L−
pr. Note also that, according to Lemma 4.4, the points

p, q, u, r are also involved in an earlier co-circularity which occursat some timeζu0 ∈ I \ Iu = I (and
beforep hits rq, which occurs betweenI andIu). We distinguish between the following two scenarios.
(i) If u lies inL−

pq whenp hits rq (andr re-entersL−
pq), thenu lies within the capB[p, q, r] ∩ L−

rq right
after this collinearity, as depicted in Figure 123 (top-left). Right after this event and beforeζu1 , u must
move from this cap to the disjoint capB[p, q, r]∩L−

pr (which it exits at timeζu1 ) either46 throughpr (and
throughrq) or through the boundary ofB[p, q, r]. See Figure 123 (top-right). However, in the latter case
u would first have to leave its present cap through∂B[p, q, r], so the pointsp, q, u, r would be co-circular
at least twice during(ζu0 , ζ

u
1 ), contradicting the assumption that any four points are co-circular at most

three times. Hence,u can enterB[p, q, r] ∩ L−
pr only throughpr andrq, as claimed in the proposition.

(ii) If u lies inL+
pq whenp hits rq, thenu lies within the discB[p, q, r] right before this event; see Figure

123 (bottom-left). By the definition of Delaunay crossings,the discB[p, q, r] contains no points ofP

46Here we implicitly rely on the fact that the motion ofB[p, q, r] is continuous after the second collinearity ofp, q, r.
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Figure 123:Proof of Proposition 8.2. Top: Ifu lies in L−

pq whenp hits rq (top-left), thenu can exit the cap
B[p, q, r] ∩ L−

pr only after crossingpr (top-right). Bottom: The hypothetic scenario whereu lies inL+
pq whenp

hitsrq. Right beforep hitsrq, the discB[p, q, r] containsu, which must have entered it afterI (bottom-left). Right
after that collinearity,u lies outsideB[p, q, r], so it will have to re-enterB[p, q, r] beforeζu1 (bottom-right).

right after the end ofI, as depicted in Figure 123 (bottom-right). Hence,u entersB[p, q, r] at the end
of I and beforep hits rq. We also note thatu lies outsideB[p, q, r] right after the second collinearity of
p, q, r, sou must enterB[p, q, r] (through its boundary) afterwards and beforeζu1 (in order to exit it after
ζu1 ). Similar to the preceding scenario, we obtain four impossible co-circularities ofp, q, u, r, showing
that the present scenario cannot occur.

Back to the proof of Theorem 5.3. With these preparations, we are finally ready to establish Theorem
5.3. Recall that we have fixed a counterclockwise(q, r)-crossing(uq, r, Iu) that ends in(t1, t3], and
which is among the first⌈k/2⌉ such(q, r)-crossings to end aftert1. Recall also thatu does not belong to
the setA0 (of sizec0, appearing in the definition of the(p, r, k)-chargeability of(pq, r, I)), and that the
(q, r)-crossings(pq, r, I) and(uq, r, Iu) form a (not necessarily consecutive) counterclockwise(q, r)-
quadrupleσu = (q, p, u, r).

We first claim thatr cannot crosspq again between the times when it enters the halfplanesL+
pq and

L+
uq (during the two respective Delaunay crossings). Indeed, otherwise a counterclockwise variant of

Lemma 5.1 would imply that the edgepr is hit by u during the interval[I, Iu]. As the latter interval
is contained in[t0, t3], this is a clear contradiction to the assumed choice ofu outsideA0. Similarly, p
cannot hitrq between the times whenr enters the halfplanesL+

pq, L
+
uq, for otherwise we would invoke

Proposition 8.2 to show thatpr is again hit byu during[I, Iu] ⊆ [t0, t3], and reach the same contradiction
as above.

If the edgepr is hit during [t1, t3] by q (which is the only remaining way in whichp, q, r can be
collinear again), then the set(P \ A0) ∪ {q} induces a Delaunay crossing ofpq by r, and a Delaunay
crossing ofpr by q. A routine combination of Lemma 4.5 with the probabilistic argument of Clarkson
and Shor shows that this scenario happens for at mostO(n2) Delaunay crossings(pq, r, I).

It therefore suffices to focus on the scenarios wherer does not re-enterL−
pq after I and before it

entersL+
uq (throughuq, duringIu). As noted in Section 5.1 (see also the proof of Proposition 8.2), the

four pointsq, p, u, r are involved in co-circularities at some timesζu0 ∈ I \Iu andζu1 ∈ Iu \I; see Figure

132



124. Moreover, these are the only co-circularities ofp, q, u, r to occur duringI andIu.

r

p

q

u

r

p

q

u

Figure 124:The two co-circularities ofq, p, u, r which occur at timesζu0 ∈ I \ Iu (left) andζu1 ∈ Iu \ I (right).

Consider the latter co-circularity, occurring at some timeζu1 ∈ Iu \ I, which is red-blue with respect
to the edgespr, uq. Sincer does not return toL−

pq, p lies inL−
uq whenr hitsuq duringIu. (See Figure

124 (right).) Arguing as in Section 4.1 (see, e.g., the proofs of Lemmas 4.4 and 4.6), we can conclude
that the Delaunayhood ofpr is violated right after timeζu1 by the pointsu andq.

We first argue that the above co-circularity at timeζu1 cannot be thelast co-circularity ofq, p, u, r.
Indeed, otherwise Lemma 3.1 (combined with the assumption thatq does not hitpr during[t1, t3]) would
imply that the edgepr is hit by u during the interval(ζu1 , t3). However, in that caseu would belong to
A0, contrary to the choice ofu.

To conclude, we can assume, from now on, that the co-circularity at time ζu1 is the middle co-
circularity of the pointsq, p, u, r. Hence, the preceding co-circularity, which occurs at timeζu0 ∈ I \ Iu,
must be thefirst co-circularity of these four points.

To proceed, we distinguish between several topological scenarios, treating each in turn. In each of
them,(pq, r, I) receivesΘ(1/k) units of charge (viau alone, as reviewed in the beginning of this section).
Recall that, with(pq, r, I) fixed,u and(uq, r, Iu) can be chosen inΘ(k) possible ways. Hence, with an
appropriate choice of the constants of proportionality, each (p, r, k)-chargeable crossing(pq, r, I) will
eventually receive at least one unit of charge.

Case (a). The edgeru is never Delaunay during(−∞, t0]. In this case, we classify the crossing
(uq, r, Iu) asheavy(for (pq, r, I)), and we make it payΘ(1/k) units of charge to(pq, r, I).

Notice that(uq, r, Iu) is one of the firstc0 + 2 clockwise(u, r)-crossings (according to the standard
order provided by Lemma 4.6). Indeed, by Lemma 4.1, no such crossings begin before timet0, when the
edgeru is not even Delaunay. In addition, by Proposition 8.1, at most c0 + 1 clockwise(u, r)-crossings
can begin aftert0 and before the beginning of(uq, r, Iu), as each of them has to occur within the interval
[t0, t3]. In conclusion, the overall number of such crossings(uq, r, Iu), that are classified as heavy for at
least one of their neighboring(q, r)-crossings(pq, r, I) (upon falling into case (a)), is at mostO(n2).

tru

ru 6∈ DT(P )

I

ru ∈ DT(P )

Iru : ru ∈ DT(P \ A)
Iu

t3

t0

t

t
ζu0

t1

Figure 125:Preparing for cases (b), (c), and (d): We pick the last timetru in (−∞, t0] whenru is Delaunay and
apply Theorem 2.2 over the intervalIru (containingζu0 ).

Preparing for cases (b), (c) and (d).In each of the subsequent three cases, we assume thatru appeared
in DT(P ) also before (or at)t0. Let tru be the last time in(−∞, t0] whenru belongs toDT(P ), and
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let Iru denote the subsequent interval that lasts fromtru to the beginning ofIu. Note thatIru contains
I \ Iu, and therefore includes the timeζu0 of the first co-circularity ofp, q, u, r. Refer to Figure 125.

As a preparation, we apply Theorem 2.2 inAru overIru (with the same constant parameterk, and
keeping in mind thatru is Delaunay at both endpoints ofIru), and then proceed depending on the
outcome.

Case (b).If one of the Conditions (i), (ii) of Theorem 2.2 is satisfied (i.e.,Aru contains eitherΩ(k2) k-
shallow co-circularities or ak-shallow collinearity, all of them occurring inIru), the crossing(uq, r, Iu)
is again classified as heavy for(pq, r, I), and paysΘ(1/k) units of charge to it.

We claim that the overall number of such crossings(uq, r, Iu), that are classified as heavy for at
least one of their neighbors(pq, r, I) (within the present case (b)), is at mostO(k2N(n/k) + kn2β(k)).
To show this, we keep the crossing(pq, r, I) fixed and charge(uq, r, Iu) within Aru either toΩ(k2) k-
shallow co-circularities, or to ak-shallow collinearity, which are assumed to occur during the respective
intervalIru.

We emphasize that the first endpointtru of Iru might depend on the choice of(pq, r, I) from among
those crossings that expect to receiveΘ(1/k) units from(uq, r, Iu). Furthermore, an event inAru might
be charged by the same(uq, r, Iu) in the context of several(p, r, k)-chargeable crossings(pq, r, I) that
charge(uq, r, Iu) (for various values ofp). Nevertheless, for each choice of an event inAru and each
clockwise(u, r)-crossing(uq, r, Iu), all such episodes cause only one charging of this event by(uq, r, I).

We next show that each event inAru is charged in the above manner by at mostO(1) crossings
(uq, r, Iu). Indeed, lett∗ be the time of ak-shallow event that we charge withinAru. Clearly, one can
guess the pointsu andr of (uq, r, Iu) in at mostO(1) ways, as they are involved in the event. Thus, it
suffices to guess the third pointq of (uq, r, Iu) (armed only with the knowledge oft∗, r andu), which is
done as follows.

Let q be a potential third point, and let(pq, r, I) be any (p, r, k)-chargeable crossing that receives
Θ(1/k) units of charge from the corresponding crossing(uq, r, Iu) (after the latter crossing is classified
as heavy for(pq, r, I), by the rule of case (b)). By Lemma 4.1, no clockwise(u, r)-crossing(uq, r, Iu)
can begin during the respective intervalIru ∩ (−∞, t0] (when ru is not even Delaunay). Moreover,
Proposition 8.1 implies that at mostc0+1 such(u, r)-crossings begin in the interval that lasts fromt0 to
the beginning ofIu (which is contained in[t0, t3]). Hence,(uq, r, Iu) is among the firstc0+2 clockwise
(u, r)-crossings to begin aftert∗, so knowingt∗, r, andu enables us to guess(uq, r, Iu) in at mostO(1)
ways (irrespective of the choice ofp and(pq, r, I)).

The number ofk-shallow co-circularities inAru, over allr, u, is at mostO(k4N(n/k)). Similarly,
the number ofk-shallow collinearities isO(kn2β(n)). Each such event is charged by onlyO(1) (u, r)-
crossings(uq, r, Iu) (which are declared as heavy in case (b), for at least one of their (p, r, k)-chargeable
neighbors(pq, r, I)). Furthermore, each such crossing(uq, r, Iu) charges eitherΩ(k2) k-shallow co-
circularities, or ak-shallow collinearity. All these considerations imply that the number of charging
crossings(uq, r, Iu) of this kind isO(k2N(n/k) + kn2β(n)), as claimed.

Recall that, in the rest of the analysis, each of these(u, r)-crossings will payΘ(1/k) units of charge
toO(k) “neighboring” crossings(pq, r, I), so these latter crossings will recieve in totalO(k2N(n/k) +
kn2β(n)) units of charge in this manner.

Preparing for cases (c) and (d).Now suppose that Condition (iii) of Theorem 2.2 holds. That is, the
Delaunayhood ofru can be restored throughoutIru by removing a subsetA of cardinality at most3k.
To handle this more difficult scenario, we first establish thefollowing proposition.

Proposition 8.3. With the above assumptions, the edgeru is hit duringIru by at least one of the points
p, q.

Proof. The proof proceeds (essentially) along the same lines as in case (e) of Section 5.3. (The main
difference is that the quadrupleσu under consideration iscounterclockwise.)
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We first get rid of the instances wherer crossesLuq between the times when it enters the halfplanes
L+
pq andL+

uq (in the respective intervalsI andIu). Note that ifru is hit there byq then we are done (as
it can happen only during the gap betweenI andIu, which is obviously covered byIru).

If rq is hit byu, then a symmetric version of Proposition 8.2 (see Remark (1)following the propo-
sition), in which we switch the roles ofp andu and reverse the direction of the time axis, implies thatp
hitsuq between the times whenr enters the halfplanesL+

pq andL+
uq (during the respective intervalsI and

Iu). In particular, this latter collinearity ofu, r, p occurs aftert0 > tru and beforeIu, and, therefore, also
duringIru. (As previously noted, this scenario is not only symmetric to the one assumed in Proposition
8.2, but, in fact, coincides with it.)

Finally, if r hits uq, then a counterclockwise and time-reversed variant of Lemma 5.1 similarly
implies thatru is hit duringIru by p; see Figure 126 (left). (As in the previous case, this collinearity
occurs during[I, Iu], between the times whenr enters the halfplanesL+

pq andL+
uq.)

u

q

r

r
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r

r

u
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q

r

r
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r
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Figure 126:Proof of Proposition 8.3: Arguing thatru is hit, duringIru, by at least one ofp or q. Left: The edge
rq is hit byu between the times whenr crossespq anduq. Hence, the asserted crossing ofur by p follows from
Proposition 8.2. Center and right: The pointr remains inL−

uq after enteringL+
pq and till the beginning ofIu. The

Delaunayhood ofru is violated, right beforeζu0 , by p andq, so the asserted collinearity follows from Lemma 3.1.

Let us then assume thatr remains inL−
uq between the times when it enters the halfplanesL+

pq and
L+
uq. In particular,u lies inL+

pq whenr enters this halfplane, so the Delaunayhood ofru is violated, right
before timeζu0 , by the pointsp andq, as depicted in Figure 126 (center and right). By (a time-reversal
version of) Lemma 3.1, and since the co-circularity at timeζu0 is thefirst co-circularity ofq, p, u, r, the
edgeru is hit duringIru, and beforeζu0 , by at least one of the pointsp, q. Hence, the proposition holds
also in this last remaining scenario.

Case (c).If ru is hit by q duringIru then the tripleq, u, r defines two single Delaunay crossings within
the triangulationDT((P \A)∪{q}). In this case, the crossing(uq, r, Iu) is again declared as a heavy and
paysΘ(1/k) units of charge to(pq, r, I). A combination of Lemma 4.5 with the standard probabilistic
argument of Clarkson and Shor yields an upper bound ofO(kn2) on the overall number of such crossings
(uq, r, Iu), that are declared as heavy for at least one choice of(pq, r, I) (upon falling into case (c)).

Case (d). We can, therefore, assume thatru is hit duringIru by p, so the reduced set(P \ A) ∪ {p}
induces at least one Delaunay crossing ofru by p. In this case, we say that the crossing(uq, r, Iu) is
light for (pq, r, I), and distinguish between the following two subcases.

Case (d1).If at least one of the collinearities ofu, r, p that occur duringIru is (4k)-shallow, we directly
charge(pq, r, I) to it. In other words, in this case(pq, r, I) receives1 unit of charge viau alone, and it
does not have to charge any other neighboring(q, r)-crossings.

We next argue that each(4k)-shallow collinearity, which occurs at some timet∗, is charged in the
above manner by at mostO(1) (p, r, k)-chargeable crossings(pq, r, I). Indeed, the pointsp andr of
(pq, r, I) can be guessed inO(1) possible ways from among the three points involved in the charged
collinearity, and their choice immediately determines thethird point u (which figures in the charging
scenario of case (d1)). The guessing ofq, which is the last unknown point of(pq, r, I), is done exactly
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as in case (b), and it requires only the knowledge oft∗, r andu. (As before, we use the property that
(uq, r, Iu) is among the firstc0 + 2 such clockwise(u, r)-crossings to begin aftert∗.) To conclude, the
above charging accounts for at mostO(kn2β(n)) crossings(pq, r, I).

Case (d2).It thus remains to handle the scenario where all collinearities ofu, p, r that occur duringIru
are(4k)-deep.

We first argue thatAru contains at leastk (4k)-shallow co-circularities, each occurring within the
previously defined intervalIru and involvingp, u, r and some fourth point ofP . Indeed, the open disc
B[u, r, p] contains no points ofP \ A when the above crossing ofru by p begins, within the reduced
triangulationDT((P \A)∪{p}). (If ru undergoes more than one crossing byp within DT((P \A)∪{p}),
we consider the first such crossing.) Since the corresponding collinearity ofu, r, p is not (4k)-shallow
(and the cardinality ofA is at most3k), the discB[u, r, p] “swallows” at leastk points ofP \ A before
ru is hit byp, which can enterB[u, r, p] only through its boundary. Since at the beginning of the process
B[u, r, p] contains only (at most3k) points ofA, the firstk points thatB[u, r, p] “swallows” form with
u, r andp k co-circularities, all of which are(4k)-shallow.

Each of the above(4k)-shallow co-circularities paysΘ(1/k2) units of charge to(pq, r, I). Therefore,
(pq, r, I) still receives at leastΘ(1/k) units of charge via(uq, r, Iu). To complete our analysis, we argue,
almost exactly as in the previous case (d1), that each(4k)-shallow co-circularity, which occurs at some
fixed timet∗, is charged in this manner by at mostO(1) crossings(pq, r, I). Indeed, the pointsp, r and
u can be chosen in at mostO(1) possible ways from among the four points that are co-circular at time
t∗. Moreover, the knowledge oft∗, r andu enables us to guess the last unknown pointq of (pq, r, I) in
at mostc0 + 2 possible ways, as was done in cases (b) and (d1).

To conclude, in case (d2) the crossing(pq, r, I) receives a totalΘ(1/k) units of charge fromΘ(k)
(4k)-shallow co-circularities withinAru (each involvingp, r andu), where each co-circularity is charged
by at mostO(1) crossings.

Wrap up. To finish the proof of Theorem 5.3, it remains to check that allthe (p, r, k)-chargeable
crossings(pq, r, I) (over all possiblep, r ∈ P ) receive a total of at mostO(k2N(n/k)+ kn2β(n)) units
of charge from neighboring heavy(q, r)-crossings(uq, r, Iu) and from(4k)-shallow collinearities and
co-circularities in appropriate arrangementsAru.

Indeed, the overall number of crossings(uq, r, Iu) that are classified as heavy (upon falling into one
of the cases (a)–(c)), for at least one of their neighbors(pq, r, I), is at mostO(k2N(n/k) + kn2β(n)).
Moreover, a heavy crossing(uq, r, Iu) paysΘ(1/k) units of charge to(pq, r, I) only if these crossings
are⌈k/2⌉-consecutive (as(q, r)-crossings), so it pays at mostO(1) units of charge in total.

Furthermore, we have shown that any(4k)-shallow co-circularity or collinearity is charged, through
the mechanism of case (d), byO(1) crossings(pq, r, I). Namely, in case (d1) each(4k)-shallow
collinearity pays1 unit of charge to each of theO(1) possible charging crossing(pq, r, I), so the to-
tal charge paid by these collinearities isO(kn2β(n)). In contrast, in case (d2) each(4k)-shallow co-
circularity pays each time onlyΘ(1/k2) units of charge, so the total charge paid by these co-circularities
isO

(

1
k2
k4N(n/k)

)

= O
(

k2N(n/k)
)

.
Finally, each(p, r, k)-chargeable crossing(pq, r, I) charges⌈k/2⌉ neighboring(q, r)-crossings(uq, r, Iu).

Except for case (d1), where(pq, r, I) receives via(uq, r, Iu) one unit of charge (from a(4k)-shallow
collinearity of u, r and p), (pq, r, I) recieves each timeΘ(1/k) units of charge, either directly from
(uq, r, Iu) (when that last crossing is heavy), or from certain(4k)-shallow events within the correspond-
ing arrangementAru (when(uq, r, Iu) is light). In either case,(pq, r, I) receives one at least one unit of
charge, and the proof of Theorem 5.3 is now complete.�

Remark. It is instructive to compare the arguments used in cases (b) and (d) of the above analysis.
Notice that both of them proceed by charging events that occur in Aru duringIru.
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In case (b), eachk-shallow event under consideration is only known to involver andu (but not neces-
sarilyp or q). This information appears to be sufficient for guessingq and(uq, r, Iu), but not necessarily
p and(pq, r, I). Hence, we cannot directly charge(pq, r, I) to such events inAru, so the charging is
performed indirectly, via the crossing(uq, r, Iu), which is then classified as heavy for(pq, r, I). (Note,
though, that the same crossing(uq, r, Iu) can be heavy forΩ(k) neighboring(q, r)-crossings(pq, r, I).
This is compensated by the fact thatu and(uq, r, Iu) can be chosen inΘ(k) possible ways.)

In case (d), the(4k)-shallow events under consideration are more restricted and involve threefixed
pointsu, r, p. As in case (b), the knowledgeu, r, and the timet∗, of each event, enables us to guessq
and(uq, r, Iu) in O(1) possible ways. However, since the pointp is now also involved in the event, we
can now guess it too inO(1) possible ways. This enables direct charging of such events by (pq, r, I).
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A On Co-circularities and Collinearities of Points Moving at Unit Speeds

Lemma A.1. Let P be a finite collection of points in the plane, each moving along some straight line
at unit speed. Then (i) any four points ofP can be co-circular at most three times, and (ii) no triple of
points can be collinear more than twice.

Proof. To see (i), we note that each co-circularity of a quadruple{pi = (xi(t), yi(t)) | 1 ≤ i ≤ 4} (in
P ) occurs at a timet when the following determinant is equal to zero (see, e.g., [12, 13]):

D(t) =

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
x1(t) x2(t) x3(t) x4(t)
y1(t) y2(t) y3(t) y4(t)

x2
1(t) + y21(t) x2

2(t) + y22(t) x2
3(t) + y23(t) x2

4(t) + y24(t)

∣

∣

∣

∣

∣

∣

∣

Since eachpi is moving along some line inR2, its respective location(xi(t), yi(t)) can be represented
as(xi + uit, yi + vit), where(xi, yi) is the location ofpi at the timet = 0. Furthermore, since eachpi
is moving at unit speed, we obtainu2i + v2i = 1.
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Substitutingxi(t) = xi + uit and yi(t) = yi + vit into the previous expression forD(t), and
cancelling the equal terms(u2i + v2i )t

2 = t2 in the bottom row of the determinant, we can replace the
equationD(t) = 0 with its cubic equivalent, with at mostthree solutions.

To see (ii), we note that each collinearity of a triple{pi(t), | 1 ≤ i ≤ 3} occurs at a timet when the
following determinant is equal to zero:

F (t) =

∣

∣

∣

∣

∣

1 1 1
x1(t) x2(t) x3(t)
y1(t) y2(t) y3(t)

∣

∣

∣

∣

∣

Substitutingxi(t) = xi + uit andyi(t) = yi + vit, for 1 ≤ i ≤ 3, we get that the equationF (t) = 0
is quadratic (for any choice ofui andvi), with at mosttwo solutions.

B The General Position Assumption

In our analysis we assume that no five points can become co-circular during the motion, no four points
can become collinear, no two points can coincide, and no two events of either a co-circularity of four
points or of collinearity of three points can occur simultaneously. In addition, we assume that in every
co-circularity event involving some four pointsa, b, p, q ∈ P , each of the points, saya, crosses the cir-
cumcircle of the other three pointsb, p, q; that is, it lies outside the circle right before the event and inside
right afterwards, or vice versa. Similarly, we assume that in every collinearity event involving some triple
of points ofP , each of the points crosses the line through the remaining two points. Degeneracies in the
point trajectories of the above kinds can be handled, both algorithmically and combinatorially, by any of
the standard symbolic perturbation techniques, such as simulation of simplicity [13]; for combinatorial
purposes, a sufficiently small generic perturbation of the motions will get rid of any such degeneracy,
without decreasing the number of topological changes in thediagram.

C Proof of Theorem 2.2

In this section we establish Theorem 2.2. Without loss of generality, we assume that the edgepq is
Delaunay at timet0. (If pq is Delaunay at timet1 then we can argue in a fully symmetrical fashion.)

Consider the portion of the red-blue arrangement associated with pq within the time interval(t0, t1).
As above, refer to the parametric plane in which this arrangement is represented as thetρ-plane, wheret
is the time axis andρ measures signed distances fromLpq. We define thered (resp.,blue) levelof a point
x = (t, ρ) in this parametricR2 as the number of red (resp., blue) functions that lie below (resp., above)
x (in theρ-direction). See Figure 127. It is easily checked that the level of a co-circularity event at time
t, with circumcenter at distanceρ from Lpq, is the sum of the red and the blue levels of(t, ρ).

We distinguish between the following (possibly overlapping) cases:

(a) p andq participate in ak-shallow collinearity with a third pointr at some moment duringI. That is,
Condition (i) is satisfied. (Note that here we do not care whetherr crossespq orLpq \ pq.)

Suppose that this does not happen. That is, each time when a point r ∈ P changes its color from red
to blue or vice versa, the number of points on each side ofLpq is larger thank. Hence, either the number
of points on each side ofLpq is always larger thank (during (t0, t1)), or the sets of red and blue points
remain fixed throughout(t0, t1) (no crossing takes place), and the size of one of them is at most k. More
concretely, either one of the sets contains fewer thank points at the start ofI, and then no crossing can
ever occur duringI, or both sets contain at leastk points at the start ofI, and this property is maintained
during I, by assumption. In the latter case Condition (iii) trivially holds, since removal of all points in
P ∩ L+

pq or in P ∩ L−
pq guarantees thatpq is a hull edge throughout(t0, t1), and thus belongs to the
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Figure 127:Left: The pointx = (t, ρ) lies below three blue functions and above two red functions,so its blue and
red levels are3 and2, respectively. Right: The circumdisc centered at (signed)distanceρ fromLpq and touching
p andq at timet contains the three corresponding blue points and two red points.

Delaunay triangulation. Hence, we may assume that the number of red points, and the number of blue
points, are always both larger thank during(t0, t1).

r
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p

D∗

u

B[p, q, u]

q

p

Figure 128:Left: Case (b). The discD∗ contains at least⌈k/3⌉ = 5 red points, and at least⌈k/3⌉ blue points.
If r lies at red level at most⌈k/3⌉, it belongs toD∗. Hence, the circumdiscB[p, q, r] contains at least⌈k/3⌉ blue
points, so the blue level off+

r is at least⌈k/3⌉. Right: Case (c). The setup right after timet′ whenu crosses
Lpq \ pq. B[p, q, u] contains at leastk red points and no blue points.

(b) At some momentt0 ≤ t∗ ≤ t1 there is a discD∗ that touchesp andq, and contains at least⌈k/3⌉
red points and at least⌈k/3⌉ blue points. In particular, for each of the⌈k/3⌉ shallowest red functions
f+
r at time t∗, its respective red pointr belongs toD∗. and similarly for the⌈k/3⌉ shallowest blue

functions. See Figure 128 (left). Before we use the existence of D∗ we first conduct the following
structural analysis.

Let f+
r be a red function which is defined at timet0, and whose red level is then at most⌊k/6⌋.

(Recall that, at timet0, the blue level of any red function is0 sincepq belongs toDT(P ).) We claim
that eitherf+

r is defined and continuous throughout(t0, t1) and its red level is always at most⌈k/3⌉, or
r participates in at least⌈k/6⌉ red-red and/or red-blue co-circularities, all of which are⌈k/3⌉-shallow.

Indeed, the circumdiscB[p, q, r] contains at most⌊k/6⌋ red points (and no blue points) at timet0,
and it moves continuously as long asr remains inL+

pq. By the time at which either (the graph of)f+
r

reaches red level⌈k/3⌉ or r hitsLpq, this disc “swallows” either at least⌈k/6⌉ red points (either in the
former case or in the latter case whenr crossesLpq \ pq) or at least⌈k/6⌉ blue points (in the latter
case whenr crossespq). (Recall that, by assumption, the number of red points and the number of blue
points is always larger thank duringI.) We thus obtain at least⌈k/6⌉ ⌈k/3⌉-shallow red-red or red-blue
co-circularities involvingp, q, r, and a fourth (red or blue) point.

To recap, if at least⌊k/12⌋ red functions, which at timet0 are among the⌈k/6⌉ shallowest red
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functions, reach red level at least⌈k/3⌉+ 1, or have a discontinuity atρ = −∞ or+∞ (at a crossing of
Lpq by the corresponding point), then we encounterΩ(k2) co-circularities (involvingp andq) which are
k-shallow, so Condition (ii) holds.

Hence, we may assume that at least⌈k/12⌉ red functionsf+
r that are among the⌈k/6⌉ shallowest

red functions at timet0, are defined throughout(t0, t1), and their red level always remains at most⌈k/3⌉.
Fix any such red functionf+

r . Clearly, the red pointr that definesf+
r belongs toD∗ at timet∗, and the

circumdiscB[p, q, r] contains at least⌈k/3⌉ blue points. See Figure 128 (left). This implies that the
blue level off+

r reaches⌈k/3⌉ so (since the blue level was0 at timet0) r participates in at least⌊k/6⌋
⌈k/3⌉-shallow co-circularities during(t0, t∗). Repeating this argument for each of the remaining⌈k/12⌉
such red functions, we conclude that Condition (ii) is againsatisfied.

(c) Suppose that neither of the two cases (a), (b) holds. LetAR (resp.,AB) be the subset of all pointsu
whose red (resp., blue) functionsf+

u (resp.,f−
u ) appear at red (resp., blue) level at most⌈k/3⌉ at some

moment during(t0, t1).
Since the situation in (b) does not occur, we can restore the Delaunayhood ofpq, throughout the entire

interval (t0, t1), by removing all points inAR ∪ AB . To see this, suppose thatpq is not Delaunay (in
DT(P \ (AR ∪AB))) at some timet0 < t∗ < t1. This is witnessed by a discD∗ whose boundary passes
throughp andq and which contains a red pointr 6∈ AR and a blue pointb 6∈ AB . Since the red level
of f+

r is greater than⌈k/3⌉ at timet∗, D∗ must also contain the⌈k/3⌉ red points corresponding to the
⌈k/3⌉ shallowest red functions at timet∗, and, symmetrically, also the⌈k/3⌉ blue points corresponding
to the⌈k/3⌉ shallowest blue functions at timet∗. But then the discD∗ satisfies the conditions of Case
(b), contrary to assumption.

Let Ao
R (resp.,Ao

B) be the set ofk points whose red (resp., blue) functions are shallowest at time t0.
It remains to consider the case where at leastk pointsu in AR ∪ AB belong to neither ofAo

R, A
o
B , for

otherwise Condition (iii) is trivially satisfied, with a removed set of size at most3k. Fix such a point
u and consider the first timet∗ ∈ (t0, t1) when its red functionf+

u has red level at most⌈k/3⌉, or its
blue functionf−

u has blue level at most⌈k/3⌉. Without loss of generality, suppose that at timet∗ the
red functionf+

u has red level at most⌈k/3⌉. We claim thatu does not crosspq during (t0, t∗]. Indeed,
if there were such a crossing fromL−

pq to L+
pq then the blue functionf−

u would tend to∞ right before
the crossing, and its blue level would then be0 even beforet∗, contrary to the choice oft∗. Similarly,
if the crossing were fromL+

pq to L−
pq then the red level off+

u would be0 just before the crossing, again
contradicting the choice oft∗.

First, assume thatu does not crossLpq during (t0, t∗), so the graph off+
u is continuous during this

time interval. Hence, the motion of the circumdiscB[p, q, u] is also continuous. Sinceu 6∈ Ao
R, at

time t0 the circumdiscB[p, q, u] contains at leastk red points and no blue points. At timet∗, B[p, q, u]
contains⌈k/3⌉ red points and fewer than⌈k/3⌉ blue points (otherwise Case (b) would occur). Hence,
we encounter at least⌊k/3⌋ k-shallow co-circularities during(t0, t∗), each involvingp, q, u and some
other point ofP .

Now, supposeu crossesLpq \ pq during (t0, t
∗), and consider the last timet′ when this happens.

We can use exactly the same argument as in the “continuous” case but now starting fromt′. Indeed,f+
u

is continuous during(t′, t∗] and, right aftert′, the circumdiscB[p, q, u] contains (all the red points and
thus) at leastk red points, and no blue points. See Figure 128 (right).

Repeating this argument for all such pointsu ∈ AR ∪ AB \ (Ao
R ∪ Ao

B), we getΩ(k2) k-shallow
co-circularities which occur during(t0, t1) and involvep andq. Hence, Condition (ii) is again satisfied.
�
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D The number of double Delaunay crossings

In this subsection we show that any setP of n points moving as above inR2 admits at mostO(n2) double
Delaunay crossings. Since double Delaunay crossings are not possible if no ordered triple of points can
be collinear more than once (i.e., if for anyp, q, r the third pointr can hit the segmentpq at most once),
we may assume throughout this subsection that no triple of points inP can be collinear more than twice.

Without loss of generality, we only bound the number of such double Delaunay crossings(pq, r, I)
whose pointr crosses throughpq from L−

pq toL+
pq during the first collinearity ofp, q, r (and then returns

back toL−
pq during the second collinearity). Indeed, if the crossing(pq, r, I) does not satisfy the above

condition then they are satisfied by(qp, r, I). Our goal is to show that (on average) a pointr of P is
involved in only few Delaunay crossings of edges that share the same endpointp.

The following theorem provides certain structural properties of two double crossings that share the
same crossing point (r) and one endpoint (p) of the crossed edges.

a

r

q

p

Figure 129:The trace ofr according to Theorem D.1. The four pointsp, q, a, r are involved duringI in two
co-circularities, which are red-blue with respect to the edgespq andra.

Theorem D.1. Let (pq, r, I) and(pa, r, J) be two double Delaunay crossings ofp-edges (that is, edges
incident top) pq, pa by the same pointr. Assume that the first collinearity ofp, q, r occurs before the
first collinearity ofp, a, r. Then the following properties hold (with the conventions assumed above):

(i) a lies inL+
pq at both times whenr hits pq.

(ii) q lies inL−
pa at both times whenr hitspa.

(iii) The pointsp, q, a, r are involved duringI \ J in two co-circularities, both of them red-blue with
respect topq and occurring whenr ∈ L−

pq anda ∈ L+
pq.

(iv) One of the two co-circularities in (iii) occurs before the beginning ofJ ; right before it the
Delaunayhood ofra is violated byp and q. A symmetric such co-circularity occurs after the end ofJ ;
right after it the Delaunayhood ofra is again violated byp andq. In particular, J ⊂ I.

The schematic description of the motion ofr during I, according to the above theorem, is depicted
in Figure 132 (right). Clearly, a suitable variant of Theorem D.1 exists also for similar pairs of double
crossings of incomingp-edgesqp, ap that are orientedtowardsp (again, by the same pointr).

Proof. We first establish Part (ii) of the theorem. The crucial observation is that the first collinearity
of p, a, r occurs whenr lies in L+

pq (i.e., during the interval between the two collinearities of p, q, r).
Indeed, otherwise the pointa must lie inL+

pq = L+
pr at both collinearities ofp, a, r, andq must lie in

L+
pa at both collinearities ofp, a, r. We shall prove that, in this hypothetical setup, the pointsp, q, a, r

are involved in two co-circularities duringI which are red-blue with respect topq, and in a symmetric
pair of co-circularities duringJ , both of them red-blue with respect topa. That will clearly contradict
the assumption that any four points can be co-circular at most three times.

Indeed, in the above situation the pointa lies in the capB[p, q, r] ∩ L+
pq shortly before the first

collinearity ofp, q, r, and shortly after their second collinearity. SinceB[p, q, r] contains no points at the
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beginning ofI, the pointa must have entered this cap before the first collinearity ofp, q, r. Moreover,
a can enter this cap only through the boundary ofB[p, q, r], for otherwise it would hitpq duringI, and
no point ofP \ {p, q, r} can hitpq during its Delaunay crossing byr. This argument gives us the first
of the promised two red-blue co-circularities thatp, q, a, r define with respect topq. The second such
co-circularity is symmetric to the first one, and occurs whena leaves the capB[p, q, r] ∩ L+

pq (and after
r returns toL−

pq throughpq). See Figure 130 (left). The other pair of co-circularities, both red-blue with
respect topa, is obtained by applying a fully symmetric argument to the cap B[p, a, r] ∩ L+

pa and the
point r. See Figure 130 (center). (For example, we can switch the roles ofq anda by reversing the
direction of the time axis.) Finally, all four co-circularities are distinct, because the same co-circularity
cannot be red-blue with respect to two edgespq, pa with a common endpoint.

a

r

p

q

q

r

p

a

rp

q

a

Figure 130:Proof of Theorem D.1. Left and center: The hypothetical casewherer first hitspa within L−

pq, after
twice hittingpq. The pointsp, q, a, r are involved in a pair of co-circularities duringI, and in a symmetric pair
of co-circularities duringJ . Right: The hypothetical traces ofa if it entersL+

pq beforer (and before the second
collinearity ofp, a, r occurs).

Hence, we can assume, from now on, that the first time whenr hits pa occurs when both points lie
in L+

pq. To complete the proof of Part (ii), it suffices to show that the pointsa andr still remain inL+
pq

during the second collinearity of the triplep, a, r. Indeed, otherwisea must lie inL−
pq whenr hits pq

for the second time, because, untill it crossespa again,a lies in L−
pr which coincides withL−

pq at the
second crossing ofpq by r. See Figure 130 (right). That is,a must crossLpq from L+

pq to L−
pq while

r still remains inL+
pq, and beforer hits the edgespq, pa for the second time. In particular, the above

collinearity of p, q, a must occur duringI ∩ J . Clearly, the pointa can potentially crossLpq in three
ways. If a crossesLpq within pq, this contradicts the definition ofI as the interval of the Delaunay
crossing ofpq by r. If a hitsLpq \ pq within the ray emanating fromq then (at that very moment)q hits
pa, which contradicts the definition ofJ . Finally, a cannot hitLpq \ pq within the outer ray emanating
from p before an additional (and forbidden) collinearity ofp, a, r takes place. This establishes part (ii),
and the analysis given above immediately implies part (i) two.

Part (i) follows immediately from Part (ii), becausea lies inL+
pr during both collinearities ofp, q, r.

Parts (iii) and (iv) follow from Parts (i) and (ii). Indeed, recall that the open discB[p, q, r] contains no
points ofP at the beginning ofI. Right beforer hitspq for the first time, the right capB[p, q, r]∩L+

pq of
this disc containsa. Clearly,a first enters this cap through the corresponding portion of∂B[p, q, r]. This
determines the first red-blue co-circularity with respect to pq, right before which the Delaunayhood ofra
is violated byp andq. The symmetric such co-circularity occurs duringI when the pointa leaves the cap
B[p, q, r]∩L+

pq, after the second collinearity ofp, q, r. Clearly, the Delaunayhood ofra is violated right
after that co-circularity byp andq. By Lemma 4.1, neither of these co-circularities can occur during J ,
becausera remains Delaunay throughoutJ . Hence, the former one occurs, according to the previously
established Parts (i) and (ii), beforeJ , and the latter one occurs afterJ . This establishes parts (iii) and
(iv), and completes the proof.
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Theorem D.2. Let P be a set ofn points, whose motion inR2 respects the following conventions: (i)
any four points can be co-circular at most three times, and (ii) no three points can be collinear more
than twice. ThenP admits at mostO(n2) double Delaunay crossings.

Proof. We fix a pair of pointsp, r in P . Our strategy is to show that, for an average such pair, thereis at
most a constant number of double Delaunay crossings ofp-edges byr. Indeed, let(pq1, r, I1), (pq2, r, I2),
. . . , (pqk, r, Ik) be the complete list of such double Delaunay crossings ofp-edges byr, and assume that
r hits the edgespq1, pq2, . . . , pqk , for the first time, in this same order. By Theorem D.1, the respective
intervals of the above double crossings form a nested sequenceI1 ⊃ I2 ⊃ . . . ⊃ Ik.

qj
p

p′

r qj−1 qj−1

p

p′

r

qj

Figure 131:Proof of Theorem D.2. Left: If the double crossing(p′qj , r, I ′) ends before the end ofIj−1 then the
second co-circularity ofqj , p, p′, r occurs duringIj−1. Right: If the double crossing(p′qj , r, I ′) ends afterIj−1

then the second co-circularity ofp, qj−1, qj , r occurs duringI ′.

Clearly, the first crossing(pq1, r, I1) can be uniquely charged to the pairp, r. Now assume that
k > 1. We show that each of the additional double Delaunay crossings (pqj, r, Ij), for 2 ≤ j ≤ k,
can be uniquely charged to the corresponding pairqj, r. Specifically, we show that no double Delaunay
crossing of incomingqj-edgesp′qj (that is,p-edges that are oriented towardsp), by r, can end afterIj.
In other words,(pqj, r, Ij) is the “last” such double crossing.

Indeed, fix2 ≤ j ≤ k as above. We first show that no double crossing of the form(p′qj, r, I
′)

can end during the interval which lasts from the end ofIj and to the end ofIj−1. Indeed, suppose to the
contrary that such a situation occurs, and apply a suitable variant of Theorem D.1 to the double Delaunay
crossings ofqj-edgesp′qj andpqj by r. By Part (iv) of that theorem,Ij is contained inI ′, and the four
pointsqj, p, p′, r are involved in a red-blue co-circularity with respect top′qj during the second portion
of I ′ \ Ij. See Figure 131 (left). Right after that co-circularity, the Delaunayhood ofpr is violated byqj
andp′. If I ′ ends before the end ofIj−1, the above co-circularity must occur duringIj−1 (asIj−1 ⊃ Ij),
which contradicts Lemma 4.1 (applied to the crossing ofpqj−1 by r).

It remains to show that no double Delaunay crossing(p′qj, r, I
′), as above, can end after the end of

Ij−1. Indeed, by Part (iv) of Theorem D.1 (now applied to the double crossings of thep-edgespqj−1

and ofpqj, by r), the pointsp, qj−1, qj , r are involved in a co-circularity during the second portion of
Ij−1\Ij . Right after this co-circularity, the Delaunayhood ofqjr is violated byp andqj−1. If the interval
I ′ (which containsIj) ends after the end ofIj−1, the aforementioned co-circularity must occur duringI ′;
see Figure 131 (right). However, this is another contradiction to Lemma 4.1 (now applied to the crossing
of p′qj by r, which takes place duringI ′).

We have shown that every double Delaunay crossing can be uniquely charged to an (ordered) pair of
points ofP , so their number isO(n2), as asserted.
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E Proof of Lemma 4.2

Assume with no loss of generality thatr lies inL−
pq. Clearly, it is sufficient to establish only the Delau-

nayhood of the edgerq; the Delaunayhood ofpr follows in a fully symmetrical manner.
The crucial observation is that the capB[p, q, r] ∩ L−

pq hasQ-empty interior (or, else,pq would be
Delaunay also inQ ∪ {r}). That is, in terms of the static red-blue arrangement ofpq, the corresponding
blue functionf+

r of r coincides with the blue upper envelopeE−.
Assume for a contradiction thatrq is not Delaunay inQ ∪ {r}. We now consider the static red-blue

arrangement ofrq. Let x ∈ Q ∩ L+
rq be the point whose functionf+

x (all functions in this argument
are from the red-blue arrangement ofrq) coincides with the red lower envelopeE+ (again, with respect
to rq). In particular, we havef+

x ≤ f+
p (as is easily checked,p ∈ L+

rq, whenr ∈ L−
pq). Clearly,

x cannot be equal top, for then the discB[p, q, r] would haveQ-empty interior. Indeed, we argued
thatB[p, q, r] ∩ L−

pq is Q-empty, and a similar argument shows thatB[p, q, r] ∩ L+
rq would also have to

be empty ifx andp coincide, from which the emptiness of the whole interior follows. It follows that
pq is Delaunay inQ ∪ {r}, contradicting the definition of a Delaunay crossing. See Figure 132 (left).
Moreover,x cannot lie inL−

pq, for it would then have to lie inB[p, q, r]∩L−
pq (becausef+

x < f+
p ), which

is impossible since this portion ofB[p, q, r] is Q-empty. Thus,p ∈ L−
xq.

x

p

q

r

y

Figure 132:Left: Proof of Lemma 4.2.

Sincerq is not Delaunay, the discB = B[q, r, x] contains another pointy ∈ Q ∩ L−
rq, which is

easily seen to lie inL−
pq and inL−

xq. We can moveB so that its boundary continues to touchx andq and
its portion withinL−

xq expands, until its boundary touchesp, q andx, and its interior containsy. This
implies thatpq does not belong toDT(Q), which contradicts the definition of a Delaunay crossing.�
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