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Abstract

Let P be a collection of, points in the plane, each moving along some straight lineaspeed.
We obtain an almost tight upper bound @fn>*¢), for anye > 0, on the maximum number of
discrete changes that the Delaunay triangulabidi{ P) of P experiences during this motion. Our
analysis is cast in a purely topological setting, where wig asasume that (i) any four points can be
co-circular at most three times, and (ii) no triple of poingn be collinear more than twice; these
assumptions hold for unit speed motions.
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1 Introduction

Delaunay triangulations. Let P be a finite set of points in the plane. DéD(P) andDT(P) denote the
Euclidean Voronoi diagram and Delaunay triangulationPofrespectively. The Delaunay triangulation
consists of all triangles spanned Bywhose circumcircles do not contain pointsfin their interior. A
pair of pointsp, g € P are connected by a Delaunay edge if and only if there is aecpaksing through
p andq that does not contain any point &fin its interior.

Delaunay triangulations and their duals, Voronoi diagraare among the most extensively and
longest studied constructs in computational geometnh witvide range of applications. Forsgatic
point setP, bothDT(P) andVD(P) have linear complexity and can be computed in opti®@t log n)
time. Seel[6l, 12, 14] for surveys and a textbook on thesetameg: The problem has also been studied
in the dynamicsetting, where one seeks to maint&fi'(P) andVD(P) under updates aP (insertion
and deletion of points); see, e.d.} [7].

The kinetic setting: Previous work. In many applications of Delaunay/Voronoi methods (e.g.sime
generation and kinetic collision detection) the pointstaf thput setP are moving continuously, so
these diagrams need to be efficiently updated during theomdEven though the motion of the points is
continuous, the combinatorial structure of the Voronoi Bataunay diagrams changes only at discrete
times when certain critical events occur. Interest in effitimaintenance of geometric structures under
simple motiofl of the underlying point set goes back at least to Atallah[4, 5

For the purpose of kinetic maintenance, Delaunay trianiguig are nice structures, because, as
mentioned above, they admit local certifications assotiaiith individual triangles (namely, that their
circumcircles beP-empty). This makes it simple to maintadil'(P) under point motion: an update is
necessary only when one of these empty circumcircle camditiails—this (typically) corresponds to co-
circularities of certain subsets of four points, where tevant circumcircle i€>-empty. Whenever such
an event, referred to adelaunay co-circularityin this paper, happens, a single edge flip easily restores
Delaunayhooﬁ In addition, the Delaunay triangulation changes when soiple bf points of P become
collinear on the boundary of the convex hull Bf see below for details. Hence, the performance of any
Voronoi- or Delaunay-based kinetic algorithm depends @nrttaximum possible number discrete
changes that is, Delaunay co-circularities and convex hull caénties, whichDT(P) experiences
during the motion of its points.

This paper studies the best-known formulation of the probia which each point o moves along
a straight line with unit speed; see [11] 14]. In this case(fineviously) best-known upper bound on the
number of discrete changesIil'(P) is O(n?). In the more general (and even more difficult) version
of the problem, each point ad? moves with so-called pseudo-algebraic motion of constaatiption
complexity. This implies (in particular) that any four ptsrare co-circular at mosttimes, and any triple
of points can are collinear at masttimes, for some constantss’ > 0. Given these (purely topological)
restrictions on the continuous motion Bf Fu and Lee[15], and Guibas et al. [16] established a roughly
cubic upper bound 0B (n%\s;2(n)), whereXy(n) is the (almost linear) maximum length of &n, s)-
Davenport-Schinzel sequenc¢el[25]. A substantial gapskistween these near-cubic upper bounds and
the best known quadratic lower bound|[25]. Closing this gap been in the computational geometry
lore for many years, and is considered as one of the major ppehiems in the field. It is listed as
Problem 2 in the TOPP project; sée[11]. A recent wark [23] Iy author provides an almost tight
bound ofO(n2+€), for anye > 0, for a more restricted version of the problem, in which anyrfpoints
can be co-circular at moswice

In view of the very slow progress on the above general propt&veral alternative structures were

IWhile there are several ways to define this notion, the sistpl@uld be to assume that each coordinate of each point
p = p(t)in Pis ais fixed-degree polynomial in

2\We assume that the motion of the points is generic, so thatare than four points can become co-circular at any given
time.



studied. For example, Chew![8] proved tHaD(P) undergoes a near-quadratic number of discrete
changes if it is defined with respect to a “polygonal” disefinction. More recent studies [3./19] show
how to maintain a (non-Delaunay) triangulation/@fso that it undergoes only a near-quadratic number
of changes. Agarwal et al.][2] show how to efficiently maintai so calledh-stable subgraph of the
EuclideanDT(P), which experiences only a near-quadratic number of charageswhose edges are
robust with respect to small changes in the underlying norm.

Our result. We study the problem in a purely topological setup, where ssime that (i) any four
points of P are co-circular at most three times during their (contirm)guotion, and (ii) any three points
of P can be collinear at most twice. For any point setvhose motion satisfies these two axioms, we
derive a nearly tight upper bound 6Xn?*<), for anys > 0, on the overall number of discrete changes
experienced bPT(P). As is well known (and briefly discussed in Appenfiik A), theseperties hold
for points that move along straight lines with a common (usiiteed, so our near-quadratic bound holds
in this case.

Proof ingredients. The majority of the discrete changeshi'(P) occur at moments when some four
pointsp, q,a,b € P are co-circular, and the corresponding circumdisc cosataim other points of.
We refer to these events Belaunay co-circularities Suppose that, a, ¢, b appear along their common
circumcircle in this order, sab and pg form the chords of the convex quadrilateral spanned by these
points. Right beforé,, one of the chords, sgy, is Delaunay and thus admitsfxempty disc whose
boundary containg andq. Right after timet,, the edgepq is replaced inDT(P) by ab, an operation
known as aredge-flip Informally, this happens because the Delaunayhoqg éé violated bya andb:
Any disc whose boundary contaipsandq contains at least one of the points. If pq does not re-enter
DT(P) after timet,, we can charge the event at timgto the edgeng, for a total ofO(n?) such events.
We thus assume that; is again Delaunay at some moment> .

One of the major observations used in our analysis is thabbtiee following always holds: either
the Delaunayhood qfq is interrupted duringto, t;) by at leastk? pairsu,v € P, or this edge can be
made Delaunay throughodt,, ¢;) by removal of at mos© (k) points of P. In the former case, each
violating pairu, v contributes durindty, t1) either a co-circularity op, ¢, u, v, or a collinearity in which
one of the points: or v crossespq. This fairly simple observation lies at the heart of our dfirag
strategy.

Combinatorial charging. Our goal is to derive a recurrence formula for the maximum lpemdV (n)
of such Delaunay co-circularities induced by any Bedf n points (whose motion satisfies the above
conditions). Notice that the number alf co-circularities, each defined by some four pointd*pfcan
be as large a®(n?). The challenge is thus to show that the vast majority of codtarity events are not
Delaunay (i.e., their corresponding circumdiscs are patext by additional points aP).

In Section 2 we study the set of all co-circularities thaiime some disappearing Delaunay edge
pq and some other pair of points &f \ {p, ¢}, and occur during the periody, t;) whenpgq is abse
from DT (P). A co-circularity is calledk-shallowif its circumdisc contains at mogt points of P. If
we find at least)(k?) suchk-shallow co-circulariti@, involving p, ¢, and another pair of points, we
can charge them for the disappearanceqfWe use the routine probabilistic argument of Clarkson and
Shor [9] to show that the number of Delaunay co-circulasititor which this simple charging works,
is O (k?N(n/k)). Informally, this term that such Delaunay co-circulastieontribute to the overall
recurrence formula (see, e.d.] [1] andl[21]), yields a meeadratic bound fofV(n). Similarly, if we
find a “shallow” collinearity ofp, ¢ and another point (one halfplane bounded by the line ofreedliity
contains at most points), we can charge the disappearancgqdb this collinearity. A combination of
the Clarkson-Shor technique with the known near-quadbaticyd on the number of topological changes

3In fact, the analysis in Sectifn 2 is more general, and appdi@ny intervalto, t;) with the property thapg is Delaunay
at one of its endpoints, ¢1.
“Each of them would become a Delaunay co-circularity afteraal of at mosk points of P.



in the convex hull of? (seel[25, Section 8.6.1]) yields an additional near-quadierm in the recurrence.

Probabilistic refinement. It thus remains to bound the number of the above Delaunayrcokarities,
for which p and ¢ participate in fewer shallow co-circularities and in no Igha collinearity during
(to, t1). In this case, we show, in what follows we refer to asRezl-Blue Theorerfor Theoreni 2.2),
that one can restore the Delaunayhoog@throughout(to, ¢;) by removal of some subset of at most
3k points of P. To bound the maximum number of such “non-chargeable” syeve incorporate them
into more structured topological configurations (or, mamecsely, processes), which are likely to show
up (in the style of the Clarkson-Shor argument) in a reducethiihay triangulatiodT(R), defined
over a random samplg C P of ©(n/k) points.

For example, suppose that the above co-circularity at timés thelast co-circularity ofp, ¢, a, b.
Then (at least) one of the poinisor b must hit the edgeq before it re-enter®T(P) at timet;. Clearly,
the point which crossesgyq, let it be a, must belong toA. Notice that the following two events occur
simultaneously, with probability2 (1/k3): (1) the random sampl& contains the crossing triple «, q,
and (2) none of the points of \ {a} belong toR. In such case, we say that the eggeundergoes a
Delaunay crossing by in therefinedtriangulationD T ( R), which takes place during a certain subinterval
I C [to, t1] (such that (i) hits pg during I, (ii) pg € DT(R) at the beginning and the end bfand (iii)
pq ¢ DT(R) in the interior ofI, but belongs t&T(R\{a}) throughoutl). A symmetric (time-reversed)
argument applies if we encounter tfist co-circularity ofp, ¢, a, b.

As argued in the predecessor paper [23], Delaunay crosamegsspecially nice objects due to their
strict structural properties. In particular, as shown'il]{2i) The edgega andag belong toDT(R)
throughout the above intervd| and (ii) Assuminga hits pg exactly once during, every other point
w € R\ {p,q,a} is involved during this interval in a co-circularity with q, a.

The roadmap. In Section[B we show that the number of Delaunay co-cirdigariis dominated by
the maximum possible number of Delaunay crossings. Ndtieg@teviously sketched argument (which
appears in[23]) works only for the first and the last Delauoagircularities of the quadruple.

To extend the above reduction to the remaining, “middle”dDaly co-circularities, we resort in Sec-
tion[3 to a fairly simple argument, expressing the maximurssfide number of such co-circularities in
terms of the numbers of extremal Delaunay co-circulariied Delaunay crossings that arise in smaller-
Size subsets aP.

In Sectior[#, we recall (or re-establish) several struttpraperties of Delaunay crossings, which
will be used throughout the rest of the analysis. Informailyr goal is to show that, for an average pair
(p,7), the pointr is involved in “few” crossings op-incident edges. To do so, we express the number of
Delaunay crossings in terms of the maximum number of cegaadruplesin P. Each such quadruple
o = (p,q,a,r) is composed of a pair of “consecutive” Delaunay crossings-afijacent edgegg and
pa, by the same point.

In Sectiorl b we apply the routine “charge-or-refine” strgtéga our Red-Blue Theorem) to analyze
the maximum number of the above quadruples. This is donevieralesteps. At each stage we first
try to dispose of as many quadruples as possible by chargicly @ them either to sufficiently many
“shallow” co-circularities (or collinearities), or to oré the several kinds of “terminal” triples, for which
we provide back in Sectidd 4 a direct quadratic bound on tiginber.

There are two main types of such terminal triplesg, a). In one of them, we have@ouble Delau-
nay crossing—the pointa crosseq twice during the interval . In the other the same triple performs
two distinct “single” Delaunay crossings, where, sagrosseq during one crossing, angcrosse®a
during the second one. In both cases the number of suchstigptenlyO(n?).

Each step of the analysis enforces additional constramti@surviving quadruples. There are two
main types of such constraints. The first is to enforce mofauay crossings involving sub-triples of
the points of the quadruple. The other is to enforce “alnisunayhood” of various pairs of points
in the quadruple, for progressively larger time intervay. this we mean that the corresponding edge



is Delaunay if we remove fron® a small subset of points. The ultimate goal is to enforce Gafitly
many Delaunay crossings, so that some triple of points gogsitwo distinct Delaunay crossings. As
mentioned above, this is the main type of the “terminal” agunfations, for which we have a quadratic
bound on their number.

Each step of the analysis yileds a recurrence formula thvatves “near-quadratic” terms (of the
kind mentioned earlier) plus terms involving further-coaged configurations, until we finally bottom
out (in Sectiori]7) by reaching the terminal triples ment@above. In each of the recurrences we make
use of the Clarkson-Shor probabilistic argumént [9], ineorih get rid of the small “obstruction” subset
of P that we need to remove; this is done by passing to a randomlsahp, the standard style of
[9]. The overall collection of recurrences solves to a mpaadratic bound, in a manner similar to many
earlier works involving such recurrences (see, €., [1121722] 24] and [25, Section 7.3.2]).

Unfortunately, the analysis is fairly involved and consist many steps. In addition to the afore-
mentioned type of quadruples (formed by pairs of Delaunagsings), we use two additional classes
of quadruples which are studied in Sectighs 6 [and 7, resctiNote that only the last kind of con-
figurations, referred to agrminal quadruplescan always be traced to some of the above “terminal”
triples.

We postpone the rest of this discussion until Sedtioh 4.Zreshve provide a more detailed sum-
mary of the three classes of quadruples, and of the connedbetween these classes, and the Delaunay
crossings.

Finally, we emphasize that the contribution of the paped, iteimain ideas, are delivered already in
Section$ 11 throughl 4.

Acknowledgements. | would like to thank my former Ph.D. advisor Micha Sharir vekeodedicated
support made this work possible. In particular, | would likehank him for the insightful discussions,
and, especially, for his invaluable help in the preparatind careful reading of this paper.

2 Geometric Preliminaries

Delaunay co-circularities. Let P be a collection of: points moving along pseudo-algebraic trajectories
in the plane, so that any four points are co-circular at ntloste times, and any three points can be
collinear at mostwice during the motion. In addition, we assume, without loss afagality, that the
trajectories of the points dP satisfy all the standard general position assumptionsAppendix[B for
more details.

. ° q °
a °
° °
b a
p p :
° b

Figure 1:Left: A Delaunay co-circularity ofi, b, p, ¢. An old Delaunay edggyq is replaced by the new edgé.
Right: A collinearity ofa, p, b right beforep ceases being a vertex on the boundary of the convex hull.

The Delaunay triangulatioDT(P) changes at discrete time mometjsvhen one of the following
two types of events occurs.

(i) Some four points:, b, p, ¢ of P become co-circular, so that the cicrumdiscpof, a, b is empty
i.e., does not contain any point &fin its interior. We refer to such events Bglaunay co-circularities
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See Figur¢]l (left). At each such co-circulari¥t'(P) undergoes ardge-flip where an old Delaunay
edgepq is replaced by the “opposite” edgé.

(i) Some three pointa, b, p of P become collinear on the boundary of the convex hulPoAssume
thatp lies betweer: andb. In this case, ifp moves into the interior of the hull then the trianglép
becomes a new Delaunay triangle, ang moves outside and becomes a new vertex, the old Delaunay
triangleabp shrinks to a segment and disappears. See Figure 1 (rigte)ndinber of such collinearities
on the convex hull boundary is known to be at most nearly qataxdrsee, e.g.[[25, Section 8.6.1] and
below.

In view of the above, it suffices to obtain a near-quadratianigdoon the number of Delaunay co-
circularities. Hence, the rest of this paper is devoted twipg the following main result:

Theorem 2.1. Let P be a collection of: points moving along pseudo-algebraic trajectories in thanp,
so that (i) any four points of are co-circular at most three times, and (ii) no triple of ptd can be
collinear more than twice. TheR admits at mosO(n?*<) Delaunay co-circularities, for any > 0.

In what follows, we useV(n) to denote the maximum possible number of Delaunay co-eiritiés
that can arise in a set afpoints whose motion satisfies the above assumptions.

Shallow co-circularities. We say that a co-circularity event, where four pointsidofbecome co-
circular, haslevel k if its corresponding circumdisc contains exacklypoints of P in its interior. In
particular, the Delaunay co-circularities have le@el The co-circularities having level at moktare
calledk-shallow

We can bound the maximum possible numbef:«thallow co-circularities (fok > 1) in terms of
the maximum number of Delaunay co-circularities in smadiee point sets using the following fairly
general argument of Clarkson and Shdr [9]. Consider a rarsiompleR of ©(n/k)(< n/2) points of
P and observe that arfrshallow co-circularity (with respect t&) becomes a Delaunay co-circularity
(with respect toR) with probability ©(1/k*). (For this to happen, the four points of the co-circularity
have to be chosen iR, and the at most points of P inside the circumdisc must not be chosen; sée [9]
for further details.) Hence, the overall numberkeghallow co-circularities i€ (k*N (n/k)).

Shallow collinearities. Similar notations apply to collinearities of triples of ptép, ¢, r. A collinear-
ity of p, ¢, r is calledk-shallowif the number of points oP to the left, or to the right, of the line through
p, q, 7 is at mostk. The above probabilistic argument of Clarkson and Shorigspin a similar manner,
that the number of such events, for> 1, is O(k*H(n/k)), whereH(m) denotes the maximum num-
ber of discrete changes of the convex hull ofrarpoint subset ofP. As shown, e.g., in [25, Section
8.6.1],H(m) = O(m?B(m)), wherej(-) is an extremely slowly growing functidhWe thus get that the
number ofk-shallow collinearities i€ (kn?p(n/k)) = O(kn?3(n)).

For every ordered paifp, ¢) of points of P, denote byL,, the line passing through and¢ and
oriented fromp to ¢. DefineL,, (resp.,L;q) to be the halfplane to the left (resp., right) bf,. Notice
that L,,, moves continuously withp and ¢ (since, by assumptiony and ¢ never coincide during the
motion). Note also thak,, and L, are oppositely oriented and thef, = L,, andL,, = L/, We also
orient the edgeq connectingy andg from p to ¢, so that the edges; andgp have opposite orientations.

Any three point, ¢, » span a circumdis&|p, ¢, r] which moves continuously with, ¢,  as long as
p, q,r are not collinear. See Figuré 2 (left). Wheny, » become collinear, say, whencrossesq from
L, to L}, the circumdisd|p, ¢, r] changes instantly from being all ﬁf;q toallof L. Similarly, when

pq’

r crossed.,, from L to L;q outsidepq, the circumdisc changes instantly fraiy, to L;q. Symmetric

+ —
changes occur whencrosses.,,, from L to L, .

®Specifically,8(n) = A+T2(”) wheres is the maximum number of collinearities of any fixed triplepaiints, and where
Ast2(n) is the maximum length ofrn, s + 2)-Davenport-Schinzel sequencesl[25].
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Figure 2:Left: The circumdiscB|p, ¢, r] of p,q andr moves continuously as long as these three points are not
collinear, and then flips over to the other side of the linedalfimearity after the collinearity. Right: A snapshot at
momentt. In the depicted configuration we hayg (t) < 0 < f;(¢).

The red-blue arrangement. As in [16,[23], we use the so called red-blue arrangementcibitéde the
analysis of co-circularities whose corresponding disashahe same two poinis ¢ € P. For the sake
of completeness, we provide below a formal definition of Hiimngement.

For a fixed ordered pap, ¢ € P, we call a pointa of P\ {p, ¢} red (with respect to the oriented
edgepgq) if a € L;q; otherwise it isblue

We define, for each € P\ {p, ¢}, a pair of partial functiong,", f,~ over the time axis as follows.
If r € L}, attimet thenf,~ (t) is undefined, andi," (t) is the signed distance of the centesf Bp, ¢, r]
from L,,; it is positive (resp., negative) i lies in L;q (resp., inL,,). A symmetric definition applies
whenr € L_ . Here toof, () is positive (resp., negative) if the center Bfp, ¢, ] lies in L;q (resp.,
in L,,). We refer tof, as thered functionof r (with respect tgg) and tof,~ as theblue functionof r.
Note that at all times whep, ¢, r are not collinear, exactly one ¢f", f,~ is defined. See Figufé 2 (right).
The common points of discontinuity ¢gf", f,~ occur at moments whencrosses.,,,. Specifically, ;"
tends to+oo beforer crosses.,,, from L, to L, outside the segmepy, and it tends to-oo whenr
does so withimpg; the behavior off,~ is fully symmetric.

Let £+ denote the lower envelope of the red functions, andletdenote the upper envelope of the
blue functions. The edge; is a Delaunay edge at timef and only if E~(¢) < E*(t). Any disc whose
bounding circle passes througlandq which is centered anywhere in the interyal—(¢), E* (t)) along
the perpendicular bisector pf (with the origin on this line lying at the midpoint @f) is empty at time
t, and thus serves as a witnesgtobeing Delaunay. Ipq is not Delaunay at time, there is a pair of a
red functionf," (¢) and a blue functiory, (¢) such thatf,"(¢) < f, (t). For example, we can takg"
(resp..f,") to be the function attaining’* (resp.,£~) at timet; see Figur&I3 (left). In such a case, we
say that the Delaunayhood pf is violated by the pair of points-, b € P that definef,t, f,”. Note that
in general there can be many pairsb) that violatepg (qQuadratically many in the worst case).

Hence, at any time when the edggjoins or leaveDT(P), via a Delaunay co-circularity involving
p, ¢, and two other points aP, we haveE~ (t) = E™(t). In this case the two other points,b, are such
that one of them, say, lies in L\, andb lies in L, , andE™* (t) = f"(t), B~ (t) = f, (t).

Let A = A,, denote the arrangement of tBe — 4 functions £, (¢), f, (¢), for r € P\ {p,q},
drawn in the parametrit, p)-plane, where is the time anch measures signed distance to the midpoint
of pq along the perpendicular bisectoraf. We label each vertex o4 as red-red, blue-blue, or red-blue,
according to the colors of the two functions meeting at thiéexe Note that our general position assump-
tions imply thatA is also in general position, so that no three functions gassigh a common vertex,
and no pair of functions are tangent to each other. As disduabove, the functions forming have
in general discontinuities, at the corresponding colliitiess. At the timety of each such collinearity,
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Figure 3: Left: A snapshot at fixed time. The red and blue envelopés™, E~ coincide with the functions
F., f, , respectively. The edggy is not a Delaunay edge because (¢) (the hollow center) is smaller than
E~(t) (the shaded center). Center and right: Red-red and redebkegcularities.

a red functionf," tends tooo or —oco on one side of, and is replaced on the other sidetgfby the
corresponding blue functiofi~ which tends to-oo or oo, respectively.

An intersection between two red functiorfig, fljr corresponds to a co-circularity event which in-
volves p, ¢, a and b, occurring when botlw and b lie in L;q. Similarly, an intersection of two blue
functionsf,, f,~ corresponds to a co-circularity event involvipgg, a, b where botha andb lie in L.
Also, an intersection of a red fuctiofy” and a blue functiory,” represents a co-circularity of ¢, a, b,
wherea € L;q andb € L,,. We label these co-circularities, as we labeled the vextided, as red-red,
blue-blue, and red-blue (all with respectig), depending on the respective colorsi@ndb. See Figure
[3 (center and right).

It is instructive to note that in any co-circularity of fouoipts of P there are exactly two pairs (the
opposite pairs in the co-circularity) with respect to whilsa co-circularity is red-blue, and four pairs (the
adjacent pairs) with respect to which the co-circularitynnochromatic”. When the co-circularity is
Delaunay, the two pairs for which the co-circularity is fglde are those that enter or leave the Delaunay
triangulationDT(P) (one pair enters and one leaves). The Delaunayhood of mainstfich the co-
circularity is monochromatic is not affected by the co-glesity, which appears in the corresponding
arrangement aslareakpointof either £+ (¢) or E~ (¢).

The following useful result ood,,;, which is one of the major tools in our analysis, was esthblis
in [23] by applying routine techniques for analyzing planerangements. For the sake of completeness,
we provide its proof in Appendix]C.

Theorem 2.2(Red-blue Theorem)Let P be a collection of: points moving in the plane as described
above. Suppose that an edggbelongs toDT(P) at (at least) one of the two momertsand¢;, for
to < t1. Letk > 12 be some sufficiently large constant.hen one of the following conditions holds:

() There is ak-shallow collinearity which takes place duriri¢p, ¢1), and involve®, ¢ and another
pointr.

(ii) There are€(k?) k-shallow red-red, red-blue, or blue-blue co-circulariigwith respect teq)
which occur during(to, ¢1).

(iif) There is a subsetd C P of at most3k points whose removal guarantees thatbelongs to
DT(P \ A) throughout(tg, t1).

Notice that we do not assume thatleavesDT(P) at any moment duringo, t1) (in that case, case
(iii) holds, with A = ()). Note also that, although we do not need this property,lteerem continues to
hold in the more general setting of pseudo-algebraic mstirtonstant description complexity.

®The constants is th@(-) and(-) notations do not depend d@n



3 From Delaunay Co-Circularities to Delaunay Crossings

Let P be a set of: points moving in the plane, so that any four points can beimdar at most three
times, and any triple of points can be collinear more thardwiFor the sake of brevity, we will often
take these topological restrictions for granted. As befdré:) denotes the maximum possible number
of Delaunay co-circularities that can arise in such afset

In this section we introduce the notion of a Delaunay cragsiwhich plays a central role both in
this paper and in its predecessor|[23], and express the ah@mmity N (n) in terms of the maximum
numbers of Delaunay crossings that can arise in smallepgatsving points.

Delaunay crossings.A Delaunay crossings a triple (pq,r, I = [to,t1]), wherep,q,r € P and[ is a
time interval, such that

1. pq leavesDT(P) at timety, and returns at timeé; (and pg does not belong t®T(P) during
(t(),tl)),

2. r crosses the segmepy at leastoncé during 7, and

3. pgis an edge oDT(P \ {r}) during I (i.e., removingr restores the Delaunayhood @f during
the entire time interval).

Figure 4: A Delaunay crossing ofig by r from L, to L;q. Several snapshots of the continuous motion of
Blp, ¢q,r] before and after crossegq are depicted (in the left and right figures, respectivelypliéW points
specify the positions of whenpg ¢ DT(P). The solid circle in the left (resp., right) figure is the Datay
co-circularity that destroys (resp., restores) the Dedghinod ofpq.

Note that each of the Delaunay co-circularities that dgstitbe Delaunayhood gfy at timet, and
restores it at time; must involver.

Note that we also allow Delaunay crossings, where the polmits pg at one (or both) of the times
to, t1. In this case, the crossed edggleaves the convex hull aP at timet, or enters it at time;, so
the overall number of such “degenerate” crossings doesqeeeelO(n?3(n)), and we may ignore them
in what follows.

Assumingn > 5, it is easy to see that the third condition is equivalent ®ftillowing condition,
expressed in terms of the red-blue arrangenépt associated wittpg: The pointr participates only
in red-blue co-circularites during the interva] and these are the only red-blue co-circularities that
occur duringlﬁ More specifically, note that is red during some portion af and is blue during the
complementary portion (both portions are not necessadhnected). During the former portion the
graph off;" coincides with the red lower enveloge" (otherwiseE* (¢t) < E~(¢) would hold sometime
during I even after removal of), so it can only meet the graphs of blue functions. Similatlying the

"And at most twice, by assumption.
8If n = 4, then, in order for (3) to hold, we also need that the remaipioint of P does not crosgq duringI.



latter portion f,~ coincides with the blue upper envelog&, so it can only meet the graphs of red
functions. When passing from the former portion to the tatfe¢ goes down to-oc, meeting all blue
functions below it, and then it is replaced iy, which goes down fromo. See Figurél4 for a schematic
illustration of this behavior.

Notice that no points, other than crosspg during I (any such crossing would clearly contradict the
third condition at the very moment when it occurs). Morepvetoes not crosg,,, outsidepq during I;
otherwisepg would belong taDT(P) whenr belongs toL,, \ pq.

Types of Delaunay co-circularities.We say that a co-circularity event at timginvolving a, b, p, ¢ has
index1, 2, or 3 if this is, respectively, the first, the second, or the thiodcarcularity involvinga, b, p, g.
A co-circularity isextremalif its index is1 or 3, and the co-circularities with indexare referred to as
middleco-circularities.

Let C(n) denote the maximum possible number of Delaunay crossirascén arise in a set of
moving pointsR?. To boundN (n) in terms ofC(n) (or, more precisely, in terms &f(m), for somem <
n), we first develop a recurrence which expresses the maximassitge numbeiVz(n) of extremal
Delaunay co-circularities i in terms ofC(n/k). (In [23], there were no middle co-circularities, so
the same argument worked fall Delaunay co-circularities.) We then express the maximussibte
numberN;,(n) of middle Delaunay co-circularities iR in terms ofC'(n/k) andNg(n/k). (Herek is
an arbitrary sufficiently large parameter.)

The number of extremal co-circularities. Consider a Delaunay co-circularity event at titget which
an edgepq of DT(P) is replaced by another edgé, because of an extremal red-blue co-circularity
(with respect tgoq, and, for that matter, also with respecti of level 0 (that is, a co-circularity that is
Delaunay). Without loss of generality, assume that thei#arity of p, ¢, a, b has index3 (the case of
index1 is handled fully symmetrically, by reversing the directiofithe time axis).

There are at mosD(n?) such events for which the vanishing edgenever reappears iDT(P),
so we focus on the Delaunay co-circularities (of indgxvhose corresponding edge rejoinsDT(P)
at some future momen{ > ¢,. (As reviewed in Sectionl Z)T(P) experiences then either a red-blue
Delaunay co-circularity with respect g, or a hull event, whepq is crossed by a point aP \ {p, ¢}.
In the latter caseyq is not strictly Delaunay at timg, and joinsDT(P) right after¢;.) Note that in this
case, at least one of the two other poiat$ involved in the co-circularity at timé, must crosgpq at
some time betweety andt;. Indeed, otherwisg, ¢, a andb would have to become co-circular again, in
order to “free”pq from its non-Delaunayhood, which is impossible since oucicoularity has indexs.
More generally, we have the following lemma:

Lemma 3.1. Assume that the Delaunayhoodgfis violated at timet (or rather right after it) by the
pointsa € L, andb € L;q. Furthermore, suppose that re-entersDT(P) at some future time, > ¢.
Then at least one of the followings occurs duriag ¢1]:

(1) The pointa crossesq from L, to L;q.

(2) The pointh crossegq from L to L.

(3) The four point, ¢, a, b are involved in a red-blue co-circularity.

Furthermore, the Delaunayhood pf is violated bya andb (so, in particular, the segmentg and
ab intersect) after time, and until the first time inty, ;] when at least one of the events in (1)—(3)
occurs.

Clearly, the third scenario is not possible if the co-ciecity at timety has index3. A symmetric
version of Lemma& 3]1 applies if the Delaunayhoog@fs violated rightbeforetime ¢y by a andb, and
this edge is Delaunay at @arlier timet; < ty.

Proof. Refer to Figurd 5. Clearly, the Delaunayhoodpgfremains violated by: andb after timet,
as long as: remains within the ca[p, ¢, b] N L,,, andb remains within the ca@[p, ¢, a] N L;q (as
depicted in the left figure).



Consider the first time* € (to, 1] when the above state of affairs ceases to hold. Notice tleat th
Delaunayhood ofq is violated bya andb (so, in particular,pqg is intersected by:b) throughout the
interval (to, t*). Assume without loss of generality thateaves the the cap|p, ¢,b] N L,,. If acrosses
pq, then the first scenario holds. Otherwigecan leave the above cap only through the boundary of
Blp, ¢, b] (as depicted in the right figure), so the third scenario accur O

p

Figure 5: Proof of Lemmd_3]1. Left: The setup right after timg Center and right: the point can leave
Blp,q,b] N L, (beforeb leaves the symmetric ca[p, ¢,a] N L} ) in two possible ways, corresponding to cases
(1) and (3) of the lemma.

Notice, however, that the points &f can define(n?) collinearities, so a naive charging of extremal
Delaunay co-circularities to collinearities of type (1)) in Lemmd 3.1l will not lead to a near-quadratic
upper bound. Before we get to this (major) issue in our aimglyge begin by laying down the infrastruc-
ture of our charging scheme, similar to the one used ih [23].

We fix some sufficiently large constant parameter- 12 and apply Theorern 2.2 to the edge
over the intervalty,¢;) of its absense fronbT(P). Assume first that one of the conditions (i) or (ii)
of the theorem holds, so we can charge the co-circularity, 9fa, and b either toQ(k?) k-shallow
co-circularities (each involving, g, and some two other points d@?), or to ak-shallow collinearity
(involving p, ¢, and some third point of). As argued in Sectionl 2, the overall numberke$hallow
co-circularities isO(k* N (n/k)). Eachk-shallow co-circularity is charged by onty(1) Delaunay co-
circularities in this mannétand it has to “pay” onlyO(1/k?) units every time it is charged. Similarly,
as already argued, the numberkeghallow collinearities i$)(kn?3(n)), and each such collinearity is
charged by at mosP (1) Delaunay co-circularities. Hence, there are at n@St> N (n/k) + kn?5(n))
Delaunay co-circularities for which one of the conditionsof (ii) holds.

Assume then that condition (iii) holds for our co-circutgri By assumption, there is a sdtof at
most3k points (necessarily including at least oneaodr b) whose removal ensures the Delaunayhood
of pq throughout(tg,t;). By Lemma 3L, at least one the two pointd, let it bea, crossegq during
(to,t1). As we will shortly show, in the reduced triangularDT(P \ AU {a}), the collinearity of
p,q anda can be turned into one or several Delaunay crossings.

We can now express the number of remaining Delaunay colaiittes of index3 in terms of the
maximum possible number of Delaunay crossings. Recallfthagach such co-circularity there is a set
A of at most3k points whose removal restores the Delaunayhoagelydhroughout(ty, ¢1]. In addition,
we assume that hits pq during (¢o, t1], and theru € A.

We sample at random (and without replacement) a suliset P of n/k points, and notice that
the following two events occur simultaneously with prolliapiat leastQ(1/k3): (1) the pointsp, ¢, a
belong toR, and (2) none of the points of \ {a} belong toR. Sincea crosse®q during [ty, 1], andpq
is Delaunay at time, and (right after) time;, the sampleR induces a Delaunay crossiligg, a, I), for
some time interval C [to,t1]. (If a crossegyq twice, we have either two separate Delaunay crossings,

®Indeed, there are at mosi(1) ways to guesp andq among the four points of the charged co-circularity, anch tte
charging co-circularity corresponds to the latest previdisappearance of; from DT(P).

10To simplify the ongoing discourse, we apply slight abuse athition, where we refer to certain non-Delaunay events as
occurringin a suitable triangulation. These events are closely reladde changes that the triangulation undergoes, even
though they themselves are not part of the Delaunay triatigal
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which occur at disjoint sub-intervals ¢fy, ¢1), or only one Delaunay crossing, during whicbrossegq
twice. This depends on whethgf manages to become Delaunaylifi'( R) in between these crossings.)
We charge the disappearancepgfirom DT (P) to this crossing (or to the first such crossing if there are
two) and note that the charging is unique (i.e., every Delgiorossing(pq, a, I) in DT(R) is charged
by at most one disappearangeof the respective edge; from DT (P), which islastsuch disappearance
of pq beforea hits pq in I). Hence, the number of Delaunay co-circularities of thigdkis bounded by
O(K*C(n/k)), whereC(n) denotes, as above, the maximum number of Delaunay crossitigsed by
any collectionP of n points whose motion satisfies the above assumptions.

If the Delaunay co-circularity op, ¢, a, b has indexl, we reverse the direction of the time axis and
argue as above for the edgginstead ofpg. We thus obtain the following recurrence for the maximum
possible numbeN (n) of extremal Delaunay co-circularities:

Ng(n) = O (K*C(n/k) + k*N(n/k) + kn*B(n)) . (1)

Remark. Our analysis will generate many recurrences of similar neatinformally, each recurrence

will have “quadratic” terms (such as the second and the tieinohs in [(1)), which, in themselves, lead
to a near-quadratic bound, and “non-quadratic” terms (sscthe first one if_{1)), which delegate the
charging to new quantities. These quantities will generaterrences of their own, of a similar nature,
and the process will bottom out, in Sectidn 7, with recuresnthat have only “quadratic” terms. Using
known techniques, such as [n[17] and][25, Section 7.3.2]wthole system of recurrences will yield a
near quadratic bound (for all the involved quantities).

The number of middle Delaunay co-circularities. We now develop a recurrence that expresses the
number of middle Delaunay co-circularities in terms(&fn/k), Ng(n/k), andN (n/k), for an appro-
priate constant parametgr

Consider such a middle co-circularity event at titpewhen an edgeq of DT(P) is replaced by an-
other edgexb. As in the previous case, there are at m@éb?) such events for which the vanishing edge
pq never reappears iDT(P), so we focus on middle Delaunay co-circularities whoseesponding
edgepq rejoinsDT(P) at some future moment > ;.

Once again, we fix a sufficiently large constd@nt> 12 and apply Theorerh 2.2 to the red-blue
arrangement giq over the intervalty, t1). Assume first that one of the Conditions (i) and (ii) is satidfi
or that one of the pointa, b hits pq during (o, t1]. Then the preceding analysis (used for extremal
Delaunay co-circularities) can be applied, essentialipaem, in this case too, and it implies that the
number of such middle co-circularities@(k*C(n/k) + k*N(n/k) + kn?B(n)).

Assuming that the above scenario does not occur, the fontgiq, a, b are involved in an addi-
tional red-blue co-circularity duringy, ¢1], which “frees” pq from its violation bya andb. Moreover,
there is a setl of at most3k points whose removal restores the Delaunayhoagey;dfroughout|ty, ¢1].
Lettg < t* < t; be the time of the additional (third) co-circularity pfq,a,b, and let B* be the
corresponding circumdisc @f ¢, a, b at timet*.

If B* contains at most4k points, we can charge the disappearange;®b the resulting 4k-shallow
extremal co-circularity. Clearly, any such co-circubardf index 3 is charged for at most one middle
Delaunay co-circularity. Moreover, the number lofk-shallow extremal co-circularities is bounded
by O (k*Ng(n/k)) using the standard probabilistic argument of Clarkson amor $]. Hence, this
scenario arises for at most (k*Ng(n/k)) middle Delaunay co-circularities.

Now assume thaB* contains at least4k points of P. Without loss of generality, assume that the
capBn L;q contains at leastk points of P. That is, the corresponding red function, #@y has level
at least7k in the red arrangement at tinte. Refer to Figurél6. Let be a red point whose respective
function f,* lies, at timet*, at red level betweefik and7k — 1. That is, the number of red points in
the circumdiscB|p, ¢, r] ranges fromBk to 7k — 1. Then the number of blue points B(p, ¢, r] is at
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most3k. Indeed, if there were more that blue points inB|p, ¢, r] then after removing4 this disc
would still contain at least one blue point and at least odep@nt (possiblyr itself), sopg could not
be Delaunay at time¢*. Sincef < fgr, this disc also containg (which is still a blue point on the
boundary ofB|p, ¢, b]), so the Delaunayhood ef; is violated at time* by r anda. Beforepq re-enters
DT(P) at timet;, one of the following must happen, according to Lenima 3.1hefir hitd] pq or
the pointsp, ¢, r, a are involved in a red-blue co-circularity (wheneavesB|p, ¢, ] and beforer hits
L,,). A fairly symmetric argument shows that eithehits pg, or p, ¢, 7, a are involved in a red-blue
co-circularity during(tg, t*) (whena entersB|p, ¢, r|). Note, however, thaiq is hit by at mosBk points
during (¢, t1], all of them inA. Thus, at leask such points- do not hitpg during (o, ¢1], so each of
them is involved in two co-circularities with, ¢, a during (o, t1]: one before*, and another afterwards.

Figure 6:Analysis of middle Delaunay co-circularities. The fourpisip, ¢, a, b are involved, durindto, ¢1], in
their third co-circularity, whose respective circumdi3t contains at leastk red points. At leask red pointsr,
whose red level ranges betwe®nand7k, do not hitpg during[to, t1].

Fix a pointr, as above, which does not crgsg Notice that at least one of the two promised co-
circularities ofp, ¢, r, a is extremal. If the above extremal co-circularity jofq, r, a, occuring at some
t** € (to,t1), is (11k)-shallow, we charge it for the disappearancepgf As before, this charging
is unique, and the number of charged co-circularitie® {* Nz (n/k)). Otherwise, the boundary of
Blp,q,r] is crossed during the intervéd*, t**) (or (¢t**,¢*)) by at leastk points, so the tripley, ¢,
defines2(k) (11k)-shallow co-circularities involving, ¢ during (to, t1).

Repeating the same argument for the (at leasppssible choices of, we obtainQ(k?) (11k)-
shallow co-circularities, each involving ¢ and some other pair of points and occurring durityg ¢1].
As in Case (ii) of Theorem 2.2, we charge these co-circidgariior the disappearance f.

We have thus established the following recurrence for thgimmam possible numbeN,;(n) of
middle Delaunay co-circularities for a set@imoving points:

Nu(n) = O (K*Ng(n/k) + k*N(n/k) + kn*B(n) + k*C(n/k)) . (2)

Informally, and as will be argued rigorously later on, thentination of [1) and{2) implies that the
maximum number of extremal Delaunay co-circularities ygstotically dominated by the maximum
number of Delaunay crossings (assuming it is at least qtiedra

4 The Number of Delaunay crossings

The remainder of the paper is devoted to deriving a recuereglation for the maximum numbér(n)

of Delaunay crossings induced by any $0f n moving points as above. In this section we establish
several basic properties of Delaunay crossings, and etitlie forthcoming stages of their analysis. The
eventual system of recurrences that we will derive will egsC'(n) in terms of the maximum number
of Delaunay co-circularities of smaller-size sets, plusearly quadratic additive term. Plugging that
relation into [1) will yield the near-quadratic bound df{n) that was asserted in Theorém]|2.1.

HRecall that, by assumption,does not hipg in the present case.
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4.1 Delaunay crossings: the key properties

Consider a Delaunay crossirigg, r, ). Recall thatp, ¢, can be collinear at most twice. Moreover,
both collinearities can (but do not have to) occur duringititerval I of the same Delaunay crossing of
pq by r. Clearly,r cannot hitL,,, outsidepq during I because, at such an “outer” collinearity, which
is Delaunay whem is removed, would also be Delaunay in the presence of

The Delaunay crossing gfg by r is calledsingle (resp.,doublg if r hits pq exactly once (resp.,
twice) during the corresponding intervabf pq’s absence fronDT(P).

The following lemma holds for both types of Delaunay crogsifsee Figurgl 7).

Lemma 4.1. If (pq,r,I = [to,t1]) is a Delaunay crossing then each of the edges ¢ belongs to
DT(P) throughout!.

Lemmal4.1, whose explicit proof appears in the predecesguer{23], is a direct corollary of the
following well-known result orstatic Delaunay triangulations:

Lemma 4.2. Let @ be a finite set of points iR2, and letr be a point not inQ. Letpg be an edge that is
Delaunay in@, but not in@Q U {r}. Then the triangulatiodDT(Q U {r}) includes the two edges- and
qr.

For the sake of completeness, we prove Lerimi 4.2 in Appéndix E

Figure 7:Lemmd4.l1. If(pq, r, I) is a Delaunay crossing, then eaclpefrq belongs tdDT(P) throughout!.

In the full version of the predecessor pageri [23], we obtaingper bound of)(n?) on the number
of double Delaunay crossings. Since the argument ffor [@R]sh(as is) also in the setting studied by
this paper, we have the following theorem.

Theorem 4.3. Any setP of n moving points, as above, induces at mot?) double Delaunay cross-
ings.

For the sake of completeness, we supply the complete asadysiouble Delaunay crossings in
AppendixD.

It therefore suffices to establish a suitable recurrencehfmaximum possible number of single
Delaunay crossings, and this is what is undertaken in thesthainder of the paper is devoted to the study
of the latter crossings. For the sake of brevity, we sha#érofefer to single Delaunay crossings simply
as Delaunay crossings, and Usén) to denote the maximum number of single Delaunay crossings.

We next establish several topological properties of (gnBlelaunay crossings.

Single Delaunay crossings: notational conventions.Recall from Sectioh]2 that every edge is
oriented fromp to ¢, and its corresponding ling,, splits the plane into the left halfplank, and the
right halfplaneL .

Without loss of generality, we assume in what follows thatt @ny single Delaunay crossifigg, r, [ =

[to, t1]), the pointr crossegq from L, to L} duringI. Recall that- cannot crosg.,, outsidepg during
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1, so this is theonly collinearity ofp, ¢, in I. If » crosse9q in the opposite direction, we denote this
crossing asqp, r, I = [to, t1]).

Note that every such Delaunay crossing, r, I) is uniquely determined by the respective ordered
triple (p, ¢, ), because there can be at most one collingdrityherer crosses the lind,,, within pq
from L, to L},.

For convenience of reference, we label each such cro$sing, I) asa clockwise(p, r)-crossing
and asa counterclockwiséq, r)-crossing with an obvious meaning of these labels.

The following lemma lies at the heart of our analysis.

Lemma 4.4. Let (pq,r, I = [to,t1]) be a single Delaunay crossing. Then, with the above coresiti
foranys € P\ {p,q,r} the pointsp, ¢, r, s define a red-blue co-circularity with respect pg, which
occurs during/ when the points either enters the caiB|p, ¢, ] N L;q, or leaves the opposite cap
Blp,q,r] N Ly,

Proof. The proof is an adaptation of similar arguments made eaBigdefinition,r crossegq at some
(unique) timety < t* < t; from L, to L;q. The discBlp, ¢, r] is P-empty att, and att; and moves
continuously throughouto, t*) and (t*,¢,]. Just before*, B[p,q,] is the entireL; , so every point
se PN L;q at timet* must have entere®|[p, ¢, r] during [to, t*), forming a co-circularity wittp, g, r

at the time it entered the diig. See Figuré18 (left). (As mentioned in Sectldn 2, this cotdadty of
p,q,r, s is red-blue with respect tpg, that is, the point entersB|p, ¢, r] throughdB|p, ¢, r] N L;q.) A
symmetric argument (in which we reverse the direction oftiime axis) shows that the same holds for
all the pointss € P thatlie in L, attimet*; see FigurélB (right). O

Figure 8:Left: Right beforer crossesq, the circumdisd3 = Blp, ¢, r] contains all points in® N L;;q. Right:
Right afterr crossegyq, B contains all pointsin° N L, .

Our local charging schemes “bottom out” when a carefullysemotriple of points defines two De-
launay crossings (again, possibly in a triangulation of semaller-size sample). Lemmal4.5 takes care
of this easy case.

Lemma 4.5. The number of triples of pointg,q,» € P for which there exist two time intervals
I, I, such that either (i) both(pg,r, I;) and (¢p,r, I2) are Delaunay crossings, (ii) bottpq,r, I1)
and(rq, p, Is) are Delaunay crossings, or (iii) bottpq, r, I ) and (pr, ¢, I2) are Delaunay crossings, is
at mostO(n?).

Notice that, if some triple of pointg, ¢, in P performs two distinct Delaunay crossings, both of
these crossings must necessarily be single Delaunay egss@therwise this triple would be collinear

f 1 hits pq twice, then the other crossing pf by r is from L}, back toL,,.

BIf ¢* = ¢, then there are no red points wherhits pg, so we consider only the second interval. The cas& of ¢, is
treated symmetrically. As noted in Sect[dn 2, in such casestossed edgey either leaves or joins the convex hull £fat
the time of the collinearity.
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at least three times). Hence, the statement of the lemma hofdIl generality. It is easy to check that
Lemma4.b covers all possible scenarios (up to a permutafipng, » and/or reversal of the time axis)
where some triple, ¢, r is involved two single Delaunay crossings (again, becaogénmee points of?
can be collinear more than twice).

Proof. We claim that every paip,q € P participates in at most one triple of each type. Indeed, fix
p,q € P and assume that there exist two points such that the tripleg, ¢, » andp, ¢, s are involved in
two (single) Delaunay crossings of the same prescribed ayge (i), (i), or (iii)). By Lemmal4.4, we
encounter at least one co-circularity mfq, r, s during each of the two Delaunay crossings induced by
p,q,r and the two induced by, ¢, s. If we show that these four co-circularities are distincg igach a
contradiction to the fact that any four points can be couténcat most three times.

If the aformentioned triples, ¢, » andp, ¢, s satisfy the first condition, the resulting four crossings of
pq happen during pairwise disjoint intervals of time. Henbe, fiour co-circularities are clearly distinct.

We now proceed to establish the distinctness in the secahtharthird cases. Assume next that both
(p,q,r)and(p, ¢, s) fall into Case (ii); Case (iii) is handled in a fully symmetrnanner. By assumption,
we have four pointg, ¢, r, s and four time interval$,, I», I3, I, such thatpq, r, I ), (rq, p, I2), (pq, s, I3),
and(sq, p, I,) are all Delaunay crossing$; andIs are clearly disjoint, and Lemnia 4.4 yields two co-
circularities ofp, ¢, r, s, one occuring during; and one during/s, both red-blue with respect tay.
Similarly, Lemmd_ 4.4 yields a co-circularity @f ¢, r, s during I, which is red-blue with respect ig-,
and a co-circularity of the same quadruple durihg which is red-blue with respect tgs. Clearly,
these two co-circularities are different, and are alscedgfit from the former two co-circularities, since
the vertex opposite tq is different in each of these co-circularities. This congsethe proof of the
lemma. O

The following lemma defines a natural order (@nr)-crossings of a given orientation (clockwise or
counterclockwise).

Lemma4.6. Let(pg,r, I) and(pa,r, J) be clockwisép, r)-crossings, and suppose thahits pq (during
I) before it hitspa (during J). Thenl begins (resp., ends) before the beginning (resp., end) Glearly,
the converse statements hold too. Similar statements bofghfrs of counterclockwisép, r)-crossings.
Proof. In the configuration considered in the main statement ofehema, crossegq from L, to L;q,
and it crossega from L, to L;a. We only prove the part of the lemma concerning the endinggiof
the crossings, because the proof about the starting tinfielyisymmetric (by reversing the direction of
the time axis). The statement clearly holdg é&nd.J are disjoint; the interesting situation is when they
partially overlap. Note that entersL;q only once during the Delaunay crossingpgfby », namely, right
after r hits pg. Indeed, by assumptiom, cannot exitL;q by crossingpq again during/, and it cannot
crossL,, \ pq because at that timey, which is Delaunay iDT(P \ {r}), would be Delaunay also in the
presence of, contrary to the definition of a Delaunay crossing. Hencenvay assume that still lies

in L;q when it hitspa during the Delaunay crossing of that edge. Indeed, otherthis crossing opq
would by then be over, so the claim would hold trivially, asetbabove. In particulaga lies clockwise
to pg at that time.

It suffices to prove that the co-circularity of ¢, r, a, which (by Lemmd_4]4) occurs during the
Delaunay crossing ofa by r, takes place when the crossing j@f by r is already finished (and, in
particular, after the co-circularity @f, ¢, r, « that occurs during the crossing jf).

Before the Delaunayhood gfa is restored, we have a co-circularipy ¢, v, a in which ¢ leaves
Blp,a,r] N L,,. (This is argued in the proof of Lemnia #.4: Right after thessiog, the poiny lies
in Blp,a,r] N L, asin Figuré B (left), and has to leave that disc before ibbexs empty; it cannot
crosspa during J, when this edge undergoes the Delaunay crossing.biotice that this is a red-blue
co-circularity with respect tpa, and a red-red co-circularity with respectig; see Figurél9 (right).
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o q

Figure 9: Proof of Lemmée4)6. Left: ifr remains inL;, after I and before it crossega, theng lies in
Blp,a,r] N L;a before that last collinearity. Right: The second co-ciatity of p, ¢, r, a which occurs when
q leavesBIp, a,r] N L, . This is a red-red co-circularity with respectyig, so the crossing giq is already over.

Since no red-red or blue-blue co-circularities occur dydrDelaunay crossing of an edge, the crossing
of pq is already over. O

Consecutive crossings. By Lemma[4.6, for any pair of points, r, all the clockwise(p, r)-crossings
can be linearly ordered by the starting times of their iragyor by the ending times of their intervals,
or by the times whenm hits the corresponding-edge, and all three orders are indentical. We say that
clockwise(p, r)-crossinggpq, r, I), (pa, r, J) areconsecutivéf they are consecutive in this order. More
generally, we say that these crossings /a@onsecutivef at mostk other clockwise(p, r)-crossings
separate them in this order.

Similar notions of consecutiveness andonsecutiveness apply to pairs of counterclockwise )-

crossingsqp,r, I), (ap,r, J).

4.2 The roadmap

In Sectior B we have established a pair of recurrerides (1fZ)ndhose combination allows to express
the maximum numbel (n) of Delaunay co-circularities in terms of the maximum numbégbelau-
nay crossing€’'(m) in smaller-size subsets, plus the maximum number of Delagogircularities in
smaller-size sets, plus a nearly quadratic additive teramthErmore, we have seen that there can be at
most quadratically many double Delaunay crossings, andrgtieally many of pairs of single Delaunay
crossings of the kinds considered in Lenimd 4.5.

It therefore suffices to obtain a suitable recurrence, oistegy of such recurrences, that express the
maximum possible numbé&r(n) of (single) Delaunay crossings only in terms of the maximwmhber
of Delaunay co-circularities in smaller-size sets, plugarly quadratic additive term. (In order for the
solution of such a recurrence to be near-quadratic, thectigsp coefficient of each recursive term of the
form N(n/k) must be roughly equal to?. See[[17],[[25, Section 7.3.2], and al§al[22, Section 4.6] fo
further details on solving such systems of recurrences.)

In the predecessor papeér [23], we used the following fainlgad charging strategy. For each single
Delaunay crossingpg, r, I) in P we first checked whether it (or its immediate neighbor) iseedremal
in the order implied by Lemmia_4.6. Notice thaty, r, I) appears (and thus can be extremal) in two
restricted families of crossings: that of the clockwiger)-crossings, and that of the counterclockwise
(g, r)-crossings. If this were the case, we could chaygger, I) to one of the edgegr andgr, for an
overall quadratic bound. Otherwise, we applied Thedretir? the arrangementst,, and A,,, and
tried to charggpg, r, I), within at least one of these two arrangements, either tatosh collinearity,
or to sufficiently many shallow co-circularities. Finalif,none of the previous chargings succeeded,
we chargedpq, r, I) to some triple (not necessarity g, ) which performed two Delaunay crossings in
some sub-sample d?, so our analysis bottomed out via (the weaker analogue o2 emma4.b.
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Unfortunately, the above direct approach no longer worldserpresent setting, where any four points
can be co-circular up to three times. Informally, its mairakm®ess stems from the fact that Delaunay
crossings involve triples of points, whereas our primaigotogical restriction refers to quadruples of
points of P. Thus, Delaunay crossings are not “rich” enough to capteeunderlying combinatorial
structure of the problem.

We therefore consider several additional types of topokdgionfigurations that involvguadruples
of moving points, obtained by combining two Delaunay cnogsiwith two common points, such as
(pq,r,I) and(pa,r,J). Recall that, for each Delaunay crossifg, r, ), its edgepq is almost Delau-
nay inl = [to,t1] (and fully Delaunay at the endpoints ¢;), and the other two edges andrq are fully
Delaunay in/ (by Lemmd_3.]l). The quadruples that we will shortly introglmeore formally, inherit all
these properties of their Delaunay crossings, but will feaxieh structure, due to additional interactions
between their edges and subtriples. These quadruples caevized as an extension of Delaunay cross-
ings, in the sense that their edges are forced to be eith@uba&y, or almost Delaunay, during various
intervals whose endpoints are defined “locally”, in termsha&f points and the edges of the configura-
tion at hand. Furthermore, initially, by construction, thants of each quadruple perform at least two
Delaunay crossings. The major goal of the analysis is tomls@nfigurations with progressively many
Delaunay crossings

We next review the three types of topological configuratithre arise in the course of our analysis,
and highlight the intimate relations between these type®nofigurations, and Delaunay crossings.

q

p

Figure 10: A (clockwise) regular quadruple = (p, ¢, a,r), which is composed of clockwisg@, r)-crossings
(pg,r,I) and(pa,r,J). Left and center: A possible motion of with the two co-circularities op, ¢, a, r that
occur duringl \ J andJ \ I, respectively. Right: The special crossingpafby ¢ which we enforce at the end of
the analysis of regular quadruples.

Regular quadruples. Four distinct point®, ¢, a,r € P form a clockwiseregular quadruple(or, sim-
ply, aquadruplg o = (p, ¢, a,r) in DT(P) if there exist clockwisép, r)-crossingspq, r, I), (pa,r, J)
that appear in this order in the sequence of clockwijse)-crossings; refer to Figufie 10. We say that
the quadruple isonsecutivéf (pq,r, I) and(pa,r, J) are consecutive.

Clearly, every clockwisép, rr)-crossing(pq, r, I) forms the first part of exactly one (clockwise) con-
secutive quadruple, unless it is the last sgeh-)-crossing (with respect to the order given by Lemma
[4.8). The overall number of these last crossings is cleanyded byO(n?). Hence, the maximum num-
ber C(n) of single Delaunay crossings is asymptotically dominatgdhle maximum possible number
U(n) of consecutive regular quadruples.

Leto = (p,q,a,r) be a consecutive regular quadruple as above. By Lemnha Qe pedf o is
Delaunay during the respective intervdland.J of its two (p, r)-crossings, whereas each of the edges
rq andra is (provably) Delaunay in only one of these two intervalsadidition, the edgesq andpa are
almost Delaunay during their respective Delaunay crossionyg:.

Regular quadruples are studied extensively in Se€lion Brevive gradually extend the correspond-
ing (almost-)Delaunayhood intervals of the respectiveesgg, rq, ra, pa andpq of each quadruple
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until most of them covefl, J] = conv(I U J), including the possible gap betweérand.J. This is
achieved by applying Theorelm 2.2 in the respective red-atuengements of these edges. Each such
application of Theorem 2.2 is done over a carefully chos&rial, which guarantees that any shallow
collinearity or co-circularity, that we encounter in thestitwo cases of the theorem, is charged by only
few quadruples.

In Section 5.1, we show (via Lemmbs 4.1 4.4) that the paihtach regular quadrupte =
(p,q,a,r) are co-circular exactly once in each of the intervals.J andJ \ I; see Figuré0 (left and
center). Specifically, the former co-circularity is redubdlwith respect to the edges andra, and the
latter co-circularity is red-blue with respectjie andrg. Notice that at least one of these co-circularities,
let it be the one i’ \ J, is extremal.

Arguing similarly to Sectio 3, we use the above co-cirdties of p, ¢, a, r (together with the ad-
ditional constraints on the Delaunayhoodaf, ra and pa) to enforce a pair of additional Delaunay
crossings which occur in smaller-size point sets (whichranelom samples aP, needed for the appli-
cation of the Clarkson-Shor argument [9]) and involve wasisub-triples op, ¢, a,». Thr analysis in
Sectior(b is fairly involved, due to the fact that neither ld above two co-circularities of has to be
Delaunay, or even shallow. If some sub-triplecoperforms two Delaunay crossings, we immediately
bottom out via Lemma4l5.

Unfortunately, there may still exist quadruplkesvhose four resulting Delaunay crossings (including
the two original(p, r)-crossings(pq, r, I) and (pa,r, J)) involve four distinct sub-triple®, ¢, a, r, SO
Lemma4.b cannot yet be applied. As our analysis shows, snathiiy remaining scenario, the edge
of o undergoes a Delaunay crossifig, q,Z) by ¢; see Figur€10 (right). We refer to this latter crossing
as aspecial crossingf pa by ¢, and pass the analysis of such crossings, each accompangeckgular
quadruple that induces it, to Sectidn 6.

Special quadruples. In Section 6 we analyze the number of special (countercl@swcrossings by
first arranging them int@pecial quadruples Informally, each special quadrupe = (a,p,w,q) is
composed of two specidt, q)-crossings(pa, ¢,Z) and (wa, ¢, J ) which are consecutive in the order
implied by Lemmd 4J6. See Figurel11.

Figure 11: A (counterclockwise) special quadruple = (a,p,w,q), is composed of two special crossings
(pa,q,T) and(wa, q, J), which respectively correspond to some (clockwise) regyleadruplesp, ¢, a,r) and
(w,q,a,u).

The treatment of (counterlockwise) special quadruplesiidyf symmetric to that of (clockwise)
regular quadruples, in the manner in which we extend theubelghood or almost-Delaunayhood of
their edges, and enforce additional (almost-)Delaunagsings on some of their sub-triples. However,
here we have a richer topological structure, because thepeoial crossingépa, ¢,Z) and(wa, q, J)
of each special quadrupjeare accompanied by two respective regular quadruples (p, ¢, a,r) and
o9 = (w, q, a,u) that induce them.

At the final stage of the analysis (and only there), we use Itlogeacorrespondence with the regular
qguadruples in order to charge the surviving special qudesup to especially convenient topological
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configurations, referred to asrminal quadruples

Terminal quadruples. Each terminal quadruple = r,w) is formed by an edgeq, and by a
pair of pointsr andw that crospq in opposnedlrectlonﬂﬁ see Figuré_12. In additiory must satisfy
several “local” restrictions on the Delaunayhood of itsiemas edges, and on the co-circularities and
collinearities among, ¢, r, w. The analysis of these configurations is delegated to Sddtiovhere we
directly bound their number in terms of simpler quantitiagroduced in Sectio 2, and thereby complete
the proof of Theorerh 211. (We again emphasize that the reces that bound the number of terminal
guadruples must have only “quadratic” terms.)

Figure 12:A terminal quadruple = (p, ¢, , w). The points- andw crosspq in opposite directions. The points
of p are co-circular three times. The extremal two co-circtiksiare red-blue with respect g, and the middle
one is monochromatic with respectjig. The left figure depicts the first and second co-circulaijtand the right
figure depicts the second and third co-circularities.

Informally, the analysis of terminal quadruples managebditom out (in contrast to the one of
regular quadruples) because each terminal quadruple caittethree“well-behaved” co-circularities.
Specifically, the two extremal co-circularities are redebWith respect to the crossed edge(and thus
also with respect taw), and the middle one is mononochromatic with respegtgosee Figuré_12.
These patterns allow us to use these co-circularities tresthreeadditional Delaunay crossings among
»,q,r,w (in addition to the crossings @y by » andw). As a result, some sub-triple amopgy, r, w is
involved in two Delaunay crossings, so Lemimd 4.5 can alwayis\oked.

5 Regular Quadruples

5.1 Notation and topology

Definition. Four distinct point, ¢, a,r € P form aclockwise quadruple = (p, q,a,r) in DT(P)

if there exist clockwisg(p, r)-crossings(pg,r, I), (pa,r, J) that appear in this order in the sequence
of clockwise (p,r)-crossings. We say that the quadruplednsecutivef (pq,r, I) and(pa,q,J) are
consecutive. The definitions of @unterclockwise quadrupland of a consecutive counterclockwise
quadruple are similar.

Each quadrupler is equipped with the intervalg, = I = [to,t;] andJ, = J = [to,t3] during
which the corresponding edggeg andpa are absent frondT(P).

Recall that, by Theorei 4.3, any setiofmoving points admits at mog?(n?) double Delaunay
crossings. Clearly, every clockwise (resp., counterchas&) single(p, r)-crossing forms the first part
of exactly one clockwise (resp., counterclockwise) congee quadruple, unless it is the last suyghr)-
crossing (with respect to the order given by Lenima 4.6). Tezall number of these last crossings is
clearly bounded by)(n?). Therefore, using’ (n) to denote in maximum possible number of consecutive

¥The letterg), ¢, r, w designate the way in which a terminal quadruple is extraftted the 6-point configuration of the sur-
viving special quadruplg = (a,p, w, ¢) and its respective pair of regular quadruptes= (p, ¢, a,r) andos = (w, ¢, a,u).
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clockwise quadruples in a setwimoving points, we have the following obvious bound on the imann
numberC(n) of all Delaunay crossings:

C(n) < ¥(n) + O(n?).

The topology of quadruples. According to Lemma 4]4, the points of a clockwise quadruplare
involved in at least one co-circularity durirdg, and in at least one co-circularity duriofg. Specifically,
the former co-circularity is red-blue with respectzi@ (and monochromatic with respect pa), so it
occurs before the beginning df,, during I, \ J,. Similarly, the latter co-circularity is red-blue with
respect tga (and monochromatic with respecttg), so occurs after the end &f, during J, \ I,.

Notice that the pointg, ¢, r, a are involved in exactly one co-circularity during each o thtervals
I, J. Indeed, recall that the pointlies outside the dis&|p, ¢, r] right beforel,, begins and right aftef,
ends. MoreoverB|p, ¢, r] switches instantly fronL;q to L,,, only once during,,, soa hits the boundary
Blp, q,r] an odd number of times duriny. A symmetric behaviour takes place durifig, so the points
»,q,a,r are involved in exactly one co-circularity in each interval

Lemma 5.1. Leto = (p,q,a,r) be a clockwise quadruple with the associated Delaunay trgss
(pq,r, I, = [to,t1]) and (pa,r, J, = [t2,t3]) (Occuring in this order). Assume also that the pairitits

pq again afterl, and beforer hits pa (and entersL;a) during J,. Then (with the conventions assumed
above) the edgeyg is hit during (1, t3) by the pointa, which crossed.,, from Lij to L.,

Since the roles of anda in o are interchangable (by reversing the direction of the tixis)awe
also have a symmetric variant of the lemma, which appliesifs the edgea beforeJ,, but after it hits
pq during I,. Symmetric versions of the lemma and this subsequent alddfhe is a counterclockwise
quadruple.

Proof. Let ¢; denote the time i/, \ I, when the point, ¢, a,r are co-circular, and recall that this
co-circularity is red-blue with respect fm. Since any three points can be collinear at most twice, both
pointsr, a lie in L, whenr hits pa during J,, (this is because must lie in L, at that time, sa also

has to lie there when hits pa). Hence,q lies then inL;a. Right before this eveny lies in the cap
Blp,q,r] N L},. Arguing as in the proof of Lemnia 4.4, the poinenters the above cap at tinjg see
Figure[I3 (left). In addition, the pointleaves the ca(p, ¢, 7] N L,, atthe very same time; .

a

LS

Figure 13:lllustrating the proof of Lemmia®b.1. Left: # hits pq again before crossing:, thenq entersB[p, a, ]
during the second co-circularity of ¢, a, r (anda leaves the ca@[p, ¢,r] N L, ). Center: The case wheusglies
in the capB|p, ¢, r] ﬂL;q right afterr returns tol.,, . Right: The point: can enter the cap[p, ¢, r]N L., (without
leaving B[p, q, r]) only throughrg.

In particular, the preceding discussion implies that treosd collinearity ofp, ¢, » occurs at some
timet before(¢;. Sincer can crosd,, only twice, the motion of3[p, ¢, r] remains continuous after time
t (whenB|p, ¢, r] instantly flips fromZ,, to L;q). We distinguish between the following two cases.

(i) Assume first that: lies in L;q at timet, so it lies in the caB|p, ¢, 7] N L;q right afterwar(js; see
Figure 13 (center). The lemma clearly holds if the painémains inB|p, ¢, r| during the intervalz, (7).
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Indeed, in this case lies in L\, = L attimet, so it can enter the caB|[p, ¢, 7] N L;f, (without leaving
B|p, ¢,r]) only through the edgeg. See Figuré 13 (right). Furthermokecannot leave3[p, ¢, ] during
(t,¢1), because it would have to re-ent@fp, ¢, 7] before(; (recall that it leaves3[p, ¢, r] right aftery).
But then the points of would have been involved in at ledsur distinct co-circularities, one occuring
during I, and before time, the two co-circularities just considered, both occuringiny (7, (1), and
one at(; itself. This contradiction establishes the lemma in case (i

(i) Now suppose that lies in L,,, at timet. In this case, as in the proof of Lemmaldadlies in
Blp, q, 7] right beforet. Sincea lies outsideB|p, ¢, r] right after the end of,, (and since the motion of
Blp, q,r] is continuous between the two collinearitiesof, ), the pointa has to cross the boundary of
Blp, q,r] after I, and beforef. In addition, the point: must now ente3|p, ¢, 7] during (¢, 1), because
it lies outsideB|p, ¢, r] right aftert. Once again, we obtain four distinct co-circularitiespof, a,r, a
contradiction that shows that case (ii) is impossible, dnd tompletes the proof. O

Overview. In this section we analyze the maximum number of consecuataekwise quadruples. The
underlying intuition behind our (admittedly, faily invadd) analysis is the following. We analyze quadru-
ples of four point, ¢, a, r. The purpose of the analysis is to charge these quadrupsgetial restricted
configurations that are easier to analyze. Thedrein 2.2 slisrto charge some quadruples to shallow
co-circularities or collinearities, which forms the bakis various recurrences that the analysis will be
deriving. In addition, Theorein 4.3 and Lemmal4.5 yield a gaticibound for the number of quadruples
that can be charged to a double Delaunay crossing of sonme tfpheir points, or to two Delaunay
crossings of the same triple.

Our strategy is therefore to filter away quadruples that eechlarged by either of these tools, untill all
guadruples are exhausted. To do so, we keep enforcing odruplas to be involved with progressively
more Delaunay crossings. Each quadruple is associatedowitltriples, and our goal is to force at least
one triple of points to perform two Delaunay crossings, inclttase Theorefn 4.3 and Lemmal4.5 will
yield the desired quadratic bounds.

Right from the start, a quadrupte= (p, ¢, a, ) already has, by definition, two Delaunay crossings:
of pg by r, and ofpa by r. To enforce additional crossings, we need a careful (anahiad) analysis
of the “topological” changes of the four moving points @f where each event is either a collinearity
of three of the points (in which case the order typeaf, a, r changes), or a co-circularity of the four
points ofo (in which case the Delaunayhood of a pair of its edges “flips”)

The analysis of consecutive clockwise quadruples procthedsgh six stages, numberedi, ... 5.

At thei-th stage we consider a certain famiy of clockwise quadruples, which are defined with respect
to an underlying seP of n points moving as above iR2. (Initially, F, consists of all consecutive
quadruples in the original point sét. In subsequent stages, is a smaller sample from the original
point set, but we continue, for simplicity, to denote itA9 We assume that each quadruplén F;
satisfies certain topological conditions, which are foraed in terms of the four points oef, other
points of P (and, possibly, also nearby quadruplesFiy). Our goal is to bound the maximum possible
cardinality ¥;(n) of F;. This is achieved by developing a system of recurrence$, @garessingV; in
terms of¥, |, except for¥5, which is analyzed in Sectidd 6. The overall solution of gystem yields
the desired near-quadratic bound.

5.2 Stage 0: Charging events itd,,,

Leto = (p,q,a,r) be a consecutive clockwise quadruple, whose two Delaur@gsitrgs occur during
the intervalsl = I, = [to,t1] andJ = J, = [t2, t3]. By Lemmd4.llL, the edger is Delaunay during
each of the intervalg, .J, but it may leaveDT(P) during the possible gap betweémand.J.
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Charging events in4,,. We fix a constant: > 12 and apply Theore 2.2 inl,, over the interval
(t1,t3) (which covers the aforementioned gap betwéemd.J, if it exists).

First, assume that at least one of the Conditions (i), (ilfleéoreni 2.2 holds. In this case, we charge
o either to ak-shallow collinearity, or tof2(k?) k-shallow co-circularities, that occur i, during
(t1,t3). We claim that any:-shallow collinearity or co-circularity in4,, is charged in this manner by
at mostO(1) quadruples. Indeed, consider the momegnivhen the charged event occurs, and notice
that it involvesp andr (together with one or two additional points &Y. After guessingy andr (in
O(1) ways),o is the unique quadruplé, ¢, a, ) for which the intervalt,, ¢3], delimited by the ending
times of the two corresponding Delaunay crossing inteyvadsitainst® (by definition of consecutive
quadruples, the intervals,, t5] are pairwise openly disjoint, for andr fixed).

Using the standard bounds on the numbet-ghallow collinearities and co-circularities (estabéidh
in Sectiong? andl 3), in combination with the fact that eaciiczularity pays only9(1/k2) units when
it is charged, we get that the number of such quadruplésr which the red-blue arrangement of
satisfies one of the Conditions (i), (ii) of Theor€ml2.20i$k* N (n/k) + kn?3(n)).

Assume then that the red-blue arrangement-qtluring (1, t3)) satisfies Condition (iii) of Theorem
[2.2. That is, one can restore the Delaunayhoograduring (¢1, t3) by removing a sefd of at most3k
points of P (possibly includingg and/ora)[Xy We now consider a random subgetof ©(n/k) points
of P. By the standard probabilistic argument of Clarkson andr @iothe following two events occur
simultaneously with probability at lea®(1/k*): (1) p,q,a,r € R, and (2) none of the points of
A\ {a,q} belong toR.

Condition (1) guarantees that the smaller Behduces Delaunay crossingsg, r, Ir = [t t;]) and
(pa,r, Jrp = [th,t5]), such thatlr C I and.Jr C J. (The latter property follows because the intervals
of non-Delaunayhood gfg can only shrink as we pass to the triangulatiof'( R) of the reduced set
R.) In particular, both of these crossings are single Delgumnassings. Clearlypq, r, Ir) is followed
by (pa,r, Jr) in the order implied by Lemnmia4.6. In other words, the foump®p, ¢, a, r define within
DT(R) a clockwise quadrupler. Recall thapr is Delaunay during each of the intervdls/. Condition
(2) guarantees that belongs tdT(R\ {¢, a}) throughout the intervgt;, ¢3] which covers the possible
gap betweer and.J. In particular, this edge belongsi®I'( R\ {q¢, a}) throughout the extended interval
[Ir, Jr] = [t},t5] which consists of g, Jr, and the possible gap between them. See Figure 14 (left).
(As a matter of fact, the Delaunayhoodpofin R\ {q, a} extends (at least) to the bigger interjial, ¢3].)

to  [Ir,Jr] 13

Figure 14:Left: The edgepr of o belongs toaDT(R \ {q,a}) throughou{lr, Jg|, including the gap between
Ir andJg. Right: Any violating pair ofpr in R, such as the paiy, b, must involve eitheq or a.

To recap, we can charge to its more refined counterpastz, formed by the pair of crossings
(pq,r, Ig) and(pa,r, Jr), which shows up in the smaller triangulatidil'( R), with probability at least
O(1/kb).

Let 7 denote the family of all such “hereditary” quadruptes = (p, ¢, a,r), each of them corre-
sponding to some consecutive clockwise quadrupte (p,q,a,r) in P, as defined above. Notice that
the quadruples aF; are not necessarily consecutiveltnas the seR may induce additional Delaunay

SNote that, if the gap betweehand.J does not exist, thed = ().
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crossings that do not show upIil'(P). Below we introduce a weaker notion of consecutivenessghwvhi
holds for the quadruples ofz. In the definitions belowp stands for a generic set, which in general is
a proper subsample of the original input.

Definition. We say that a quadruple = (p, q,a,r) is Delaunayif the edgepr belongs toDT (P \
{g,a}) throughout the intervdll,, J,] = conv(l, U J,).

Definition. Let.F be a family of clockwise quadruples. We say tiis nonoverlappingf for any two
quadruplesr; = (p,q1,a1,7) andoy = (p, g2, ag, r), that share their first and last points, the clockwise
(p, r)-crossings corresponding tq ando are distinct, except for the possibility = g2 or as = ¢1,
and occur in non-interleaving order. That is, in the ordeplied by Lemmd4J6, the two crossings
(pq1,m, 1) and (pay,r, J1) of o1 appear either both before or both after the two crossipgs, r, I2)
and(pas, r, J2) of oo (again, with the possible coincidence of the second of or&igyle and the first
crossing crossing of the other).

We say that a Delaunay crossifyy, r, I) isin F if it is either the first or the second crossing for at
least one quadruple in F. (In total, it may show up in at most two quadruples.)

Notice that, as argued above, the “sampled” subfathjpjincludes only Delaunay quadruples. More-
over, Fr is nonoverlapping, as the Delaunay crossing&in(which are defined in terms a®) inherit
the order, implied by Lemn{a 4.6, of their ancestorg’ifthat is, inF).

In the rest of this section, the underlying famify is typically fixed at each stage of our analysis,
and is assumed to be nonoverlapping, and to consist only laiuDay quadruples. In particular, by the
“nonoverlapping” property, any ordered triplg, ¢, ) in P will define the first (resp., second) crossing
(pq,r, 1) (resp.,(pq,r, J,)) for at most one quadruple i#. In other words, the following condition
holds:

Proposition 5.2. Let F be a nonoverlapping family of clockwise quadruples. Themeguadruples =
(p,q,a,r) in F is uniquely determined by each of the ordered triles;, ) and (p, a, r) of its points,
which specify, respectively, the first crossipg, r, I) and the second crossiniga, r, J) associated with
g.

Let U(n) be the maximum number of consecutive quadruples that carefieed by a set of
points moving as above iR2. Let ¥((n) be the maximum cardinality of a nonoverlapping fam#yof
Delaunay quadruples, which is defined with respect to a sesath moving points. Then the quantities
U(n)and¥(n) are related by the recurrence

U(n) = O (k*Wo(n/k) + E*N(n/k) + kn*B(n)), (3)

wherek < n is an arbitrary parameter.

5.3 Stagel

To bound the above quantityy(n), we fix the underlying point sé® and the nonoverlapping family
of Delaunay quadruples. In addition, we fix a pair of consgtank /.

Leto = (p,q,a,r) be a Delaunay quadruple jA whose two Delaunay crossings occur during the
intervalsI = I, = [to,t1] andJ = J, = [t2,t3]. Recall that (by Lemmp_4.4) the points efare
involved in two co-circularities, one during\ J and one during/ \ I. (The former co-circularity is
red-blue with respect tpg, and the latter one is red-blue with respecp&o) Denote by, € I \ J and
¢1 € J\ I the times when these co-circularities occur. Clearly, asti@ne of these co-circularities of
P, q,a,r has to be extremal. Without loss of generality, supposettteato-circularity at time, is the
first co-circularity of the points of.
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Our analysis (at this stage) proceeds by distinguishingédxn several possible scenarios, and treat-
ing each of them separately. In all but the last case, we thia a bound in terms of quantities that
were already introduced. In the last case (case (e)), thedbaill also depend on the cardinality of a
more specialized subfamily of quadruples, which is definezt @an appropriate subsample Bf Such
families are called -refined and their analysis is passed on to the subsequent stages.

Case (a).The edgepr is hit during|ty, 3] by at least one of the points a. In fact, Lemma 4]l implies
that this additional collinearity must occur during the dap t,) (after I and before/), sol and.J are
disjoint in this case. See Figure]15 (left).

Assume, for instance, that is hit by ¢q. Sincec is a Delaunay quadruple, the edgebelongs to
DT(P) at each of the timeg), t3, and it belongs to the pruned triangulatib’'(P \ {a, ¢}) throughout
[to, t3]. It thus follows that the edger undergoes a Delaunay crossing pyvithin the triangulation
DT(P \ {a}). That is, the triplep, ¢, r defines two Delaunay crossings (of distinct order typeshiwit
this smaller triangulation. A routine combination of Lem@& with the probabilistic argument of
Clarkson and Shof[9] (in which we sample, say, half of theni)iyields an upper bound 6f(n?) on
the overall number of such triplesq, r in P (independently of the fourth poinf). Since each Delaunay
quadruple(p, ¢, a,r) in F is uniquely determined by the respective ordered tripley, r) (as its first
crossing), the same upper bound also holds for the overalbeu of such Delaunay quadruplesin

A similar counting argument applies;f- is hit by a during [to, t3]. Namely, we argue that the edge
pr undergoes a Delaunay crossingdwithin the triangulatiorDT(P \ {¢}), so the triplep, a, r defines
two Delaunay crossings within that reduced triangulateong the quadratic bound follows from Lemma
[4.3, as above. Hence we may assume, from now onpthiatnot hit byq or a during [tg, t3].

P
Figure 15:Left: Case (a). The edge- is hit by ¢ during (1, t2). Center: Case (b). At leastcounterclockwise

(g, r)-crossing(ug, r, I,,) end during(¢y, t3]. Right: Case (b) — the symmetric scenario. At Idasbunterclock-
wise (a, r)-crossinggua, r, I,,) begin duringto, t2).

Case (b). At least k counterclockwise(q, rr)-crossings(ug, r, I,,) end during(¢1, t3] (see Figuré 15
(center)), or at least counterclockwis€g(a, r)-crossings(ua, r, I,) start during|ty, t2) (see Figuré 15
(right)). To dispose of such quadrupleswe introduce an auxiliary counting scheme that we will use a
several stages of our analysis. We first need a few definitions

Chargeability. We say that an edge; is almost Delaunayluring an intervall = [t¢, t1] if there is a
set A of at mostc, points such thapq belong toDT(P \ A) throughoutZ. Herec, is some absolute
constaritd smaller thars.

We say that a Delaunay crossityy, r, I) = [to, t1] IS (p, r, k)-chargeableif there exists an interval
T = [ap, ] containing! such that the following two conditions hold: (1) the edgeis Delaunay
at timesagy anday, and almost Delaunay during the the restZofand (2) at leask counterclockwise

This condition is similar to Condition (iii) in TheoreM 2.8xcept that here, is a smallabsoluteconstant, whereas the
parametek in the theorem can be, and is indeed set to, a suitable lahge thaat grows as | 0.
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(g, r)-crossingguq, r, I,,) occur withinZ (i.e., we havel,, C 7 for each of these points). See Figure

[18.

Oé(l) T a1
|
—————— - R EEEREE TR e
(pg,r,I)
—————— e e B
(ug,r, I,)

Figure 16:The crossingpq,r, I) is (p, r, k)-chargeable with reference intervAl= [ag, 1]. At leastk coun-
terclockwise(q, r)-crossings(ug, r, I,,) occur withinZ. By Lemma 4.5, each of their respective intervg]sis
contained in exactly one of the intervals, a1, [ao, t1].

Similarly, we say that a Delaunay crossifgy, r, I) is (¢, r, k)-chargeableif the edgeqr is almost
Delaunay throughout the extended inter¥gland Delaunay at the endpoints@f, and at leask clock-
wise (p, r)-crossings(pu, r, I,,) occur withinZ.

Several remarks are in order.(fg, r, I') is a(p, r, k)-chargeable crossing then it need not bedhly
clockwise(p, r)-crossing to occur within the corresponding inter¥at [, «1]. Moreover, the other
such(p, r)-crossings(pz, r, I.,), that occur (if at all) withinZ, are not necessarilyp, r, k)-chargeable
(because this notion also depends on the other endpaihthe edgepz being crossed by). Note also
that, according to (a counterclockwise variant of) Lenin@ 4ach of the clockwiség, r)-crossings
(ug,r, I,) that contribute to thép, r, k)-chargeability of(pq,r, I) must satisfy eithef,, C [ag,t1] or
I, C [to, a1], because the intervalsand, are either disjoint or partially overlapping (but not neljte

Informally, the(p, r, k)-chargeability allows us to distribute the “weight” @fq, r, I') over theQ(k)
arrangements,.,,, which correspond to the above counterclockwige-)-crossinggug, r, I,,) (each of
these latter crossings is also a clockwiser)-crossing, and is denoted this way). In Secfibn 8 we use

this idea to establish the following theorem:

Theorem 5.3. Let £ > 12 be a sufficiently large constant. Then any $e&bf n points, moving as
above inR?, induces at mosO (k*N (n/k) + kn*B(n)) Delaunay crossing$pg,r, I) that are either
(p,r, k)-chargeable or(q, r, k)-chargeable.

We next return to the setup of the first subcase of Case (b3e&iis a Delaunay quadruple, the edge
pris almost Delaunay during the intenja, ¢3] (it suffices to remove to a to ensure Delaunayhood).
According to Lemma&_4]6, each of the, r)-crossings(uq, r, I,,) occurs entirely withinl U [t1,t3] =
[to, t3], thatis,I,, C [to,ts]. Indeed, by definition, each suéh ends before; and aftert;, the end off,
so it has to start aftey, where! starts. Thus(pg, r, I) is (p, r, k)-chargeable (witl = [¢q, t3]). Hence,
by Theoreni 513, the overall number of the corresponding el o is at most

O(K*N(n/k) + kn?B(n)).

A symmetric argument applies if at lealstcounterclockwisg a, r)-crossings(ua, r, I,,) begin in
[to, t2]. Indeed, arguing as in the preceding paragraph, each of fbekunay crossings has to occur
entirely within [to, t3] = [to, t2] U J, so(pa,r, J) is (p,r, k)-chargeable.

Hence, we may assume, from now on, that at mkasiunterclockwiséq, r)-crossings end if¢1, t3],
and that at most counterclockwisda, r)-crossings begin iftg, t2).

Case (c).Eitherrq is never Delaunay durinfds, oo), or ra is never Delaunay during—oo, tg]. In the
former case, by Lemnia 4.1, no counterclockwiger)-crossings can end ijt3, o), becauseq has to
be Delaunay throughout the interval of such a crossing.eSiase (b) is ruled outpg, r, I) is among the
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lastk + 1 counterclockwisgq, r)-crossings (with respect to the order implied by Lenima 4Ggarly,
this can happen for at mo§2(kn?) crossings(pq,r,I) (and their respective quadruples. A fully
symmetric argument appliessiti never shows up ibT(P) during (—oc, to], in which cas€pa, r, J) is
among the first 4+ 1 counterclockwis€a, r)-crossings.

Preparing for cases (d) and (e). In the remainder of our analysis we may therefore assumediidier
of the situations considered in cases (a)—(c) arisest, ) denote the first time ift;, oo) whenrg belongs
to DT(P). Namely, we have,, = t3 if r¢ is Delaunay also at timg&;, and otherwisé,, is the first time
afterts whenrq entersDT(P) (recall thatrq is Delaunay at time;); refer to the schematic Figuiel17
(left). Similarly, we lett,., denote the last time ifoo, tg] whenra belongs taDT(P); see Figuré 17

(right).

to I t1 "ty tra to  t* 1y J t3
----------------------- - E——
———————— 1—-j| ‘KM e R o T

(uq,r, 1) rq is not Delaunay rais nﬁg)elaunay (ua,r, 1)

Figure 17:Charging events ii,, andA,,. Left: ¢, is the first time in[t3, c0) whenrq belongs toDT(P).
Since case (b) is ruled outyg, r, I) is among the last + 1 counterclockwiséq, r)-crossings to end before any
eventin(ti,t,,). Right: ¢, is the last time in(—oo, t2] whenra belongs toDT(P). After outruling case (b),
(pa,r, J) is among the firsk + 1 counterclockwiséu, r)-crossings to begin after any event(in,, t2).

Before proceeding to the cases (d) and (e), we first apply fEn@@.2 inA,, over the interval
(t1,trq), and then apply it ind,, over (¢,,, t2), both times with the second constant paraméter

Consider the first application of Theordm12.2. If at least ohés Conditions (i), (ii) holds, we
charge the quadruple, via its first crossir@ (pq,r, I), either toQ2(£?) ¢-shallow co-circularities, or to
an/-shallow collinearity inA4,,. We claim that each of thegeshallow co-circularities or collinearities
that occurs at some momefite (¢4, t,,), is charged at mog? (k) times in this manner. Indeed, such an
event must involve the pointsandr of o (together with one or two additional points). To guess thiatpo
p, we use the fact that at mostcounterclockwise g, r)-crossings end aftef and beforets. Moreover,
assuming,, > t3 and recalling LemmRa 4.1, n@, r)-crossings can take place (let alone end) during
(t3,trq) (When the edgeq is not Delaunay). Thugiyg is among thé: + 1 edges whose counterclockwise
(g, r)-crossings (by-) are the latest to end befoté. Therefore, the overall number of quadruptesm
F for which such a charging applies is at most

O (k€N (n/t) + ktn®B(n)) .

Finally, if Condition (iii) of Theorem 2R holds, then the Ranayhood ofrq can be restored,
throughout the interval U [t1,t,,] = [to,t,] (recall thatrq is Delaunay duringl), by removing a
setA of at most3/ points of P (possibly includingy and/ora).

The second application of Theorém12.2.4p,, over (t,4,t2) is fully symmetric. If at least one of
Conditions (i), (i) is satisfied, we dispose @fby charging it, via its second crossitiga, r, .J), either
to Q(¢2) ¢-shallow co-circularities, or to afrshallow collinearity that occur id,, during that interval.
Arguing as above(pa, r, J) is among the firsk 4 1 counterclockwiséa, r)-crossings to begin after each
charged event, which also involvesandr. Hence, every collinearity or co-circularity is chargedretst
O(k) times, so, as above, this charging takes place for at M¢&t>N (n/¢) + k¢n?B(n)) quadruples

Recall that, according to PropositionBeis uniquely determined by the choice(@f, ¢, ), which specify its first crossing.
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o. For each of the remaining quadruples we have aBset at most3¢ points (possibly including
and/org) whose removal restores the Delaunayhoodathroughout(t,., ta] U J = [t,q, t3].

To recap, in each of remaining cases (d) and (e) we may as$iexistence of the two setsand
B that satisfy the above properties. See Figuie 18 (left) farmamary of what we assume now.

+
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Figure 18:Left: The situation when entering case (d). If we remavel B but retainp, ¢, a, r, then: (i) During
[to, t1], the edgewr andrq are Delaunay. (i) Durindto, t3], the edge®r andra are Delaunay. (iii) During
[to, 3], the edgepr is almost Delaunay. (iv) Durinflo, ¢,,], the edgeq is almost Delaunay (and will be Delaunay
if we removep anda). (v) During [t,q, t3], the edgera is almost Delaunay (and will be Delaunay if we remove
p andq). Right: The situation when entering case (e). The poicén IeaveL;;q during (1, t-4] only through the
edgepq. Similarly,r can entet.,, during[t.., 2) only through the edgga (and otherwise remains ib,,,,).

Case (d).The pointp hits the edge-¢ during (1, t,), or it hits the edgea during the symmetric interval
(tra,t2). Without loss of generality, we focus on the former scenamal handle the latter one in a fully
symmetric manner.

As is easy to check, the edge undergoes a Delaunay crossingzbyn DT ((P \ A) U {p}), with an
appropriate interval that contains the time of the actuagsing. Therefore, Lemnia 4.5, in combination
with the Clarkson-Shor argument [9], provides an upper bdafrO(/n?) on the number of such triples
p,q,r (and of the corresponding quadrupkeseach of which is uniquely determined by the choice of
(pq,r,I) as its first crossing).

Figure 19: The co-circularities at timeg € I\ J (left) and(; € J \ I (right). In the depicted scenario, no
additional collinearity o, ¢, r or p, a,  occurs between the times whenntersL;q andL;a.

Case (e).None of the preceding cases holds; this is the most involesé o Stage 1. See Figlrel 18
(left and right) for a schematic summary of the following jpedies that we assume now. Recall that
the points ofs are involved in co-circularities at timeg € I\ J and(; € J \ I (see Figuré_19),
and that at least one of these co-circularities has to berazir Without loss of generality, suppose, as
already assumed earlier, that the co-circularity at times thefirst co-circularity of the points of. In
addition, we continue to assume that there exists als#tcardinality at mos8¢, such that-¢ belongs

to DT (P \ A) throughout the intervdky, t,,). Similarly, we assume the existence of a Bedf at most
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3¢ points such thata belongs taDT (P \ B) throughout the intervalt,., t3]. Finally, since neither of
the preceding cases (a), (d) holdsan re-enter the halfplank,, during (¢1,¢,,] (after leaving it during
I = [to, t1]) only by crossingyq again; otherwise it remains ib/, throughout(ty, t,,4]. Similarly,  can
enterL,,, during [t,,t2) (before leaving it during/ = [t2, t3]) only throughpa; otherwise it remains in
Ly, throughout(t,, t2).

Figure 20: Case (e): proving thata is hit by q. Left: a lies in L,, whenr entersL;q, sor has to entel,
(throughpa) afterwards and beforé. The corresponding trajectory afduring ({o, t2) is depicted. Righta lies
in L} whenr entersL;} , so the Delaunayhood of: is violated, right beforg,, by p andq.

pq’
We next argL@ that the edge.a must be hit durindt,.,, t2) by the pointg. We distinguish between
two possible scenarios (see Figlré 20).

() If aliesinL,, = L, whenr entersL;q (during I), thenr has to enter.,,, before.J. As noted
above,r can enter.,,, only throughpa, as depicted in Figuie 20 (left). Therefore, according toitable
variant of Lemma35]1, in which the time is reversed and thetsai andq are interchanged, the poiaqt
enters the halfplané,, during [to, t2], throughra, as claimed.

(i) Now suppose that lies in L;q whenr enters this halfplane, so the first co-circularity (at time
(o) occurs whiler still lies in L. Hence, the Delaunayhood of is violated, right before tim€y, by
the pointsg € L., andp € L ; see Figur€20 (right). Since: is Delaunay at time,, and throughout
J = [t2, t3], and since the points ¢, a, r are never co-circular befodg, Lemmd3.1L implies that at least
one of the point®, ¢ has to hitra during the intervalt,,, (o), which is clearly contained ift,, t2).
(Specifically, we apply Lemma 3.1 so that the eggen the lemma isa, the pointsa, b in the lemma
areq, p, respectively, and the direction of the time axis is rev@és@&loreover, since case (d) does not
occur,p cannot hitra during the above interval. Hence, the other pajnhas to crossa during [t,4, (o),
from L to L.

If ¢ hits ra twice during|t,.,t2), then the tripleg, a, r defines either a double Delaunay crossing,
or two single crossings, which occur in the smaller triaagoh DT((P \ B) U {q}). Therefore, we
can use Theorem 4.3, or Lemimal4.5, in combination with thek€ta-Shor technigue, to show that the
overall number of such triples iR is at mostO(¢n?). Moreover, knowingy, a, r allows us to guesgin
at mostO(k) possible ways, aa,r, J) is one of the first 4+ 1 counterclockwis€a, r)-crossings to
begin after the above collinearity (or collinearities)qf:, » (this follows since we assume that case (b)
does not arise). Hence, this scenario happens for at@dst.?) quadruplesr € F.

Assume then thata is hit by g exactly once durindt,., t2). In this only remaining case, the edge
ra or, more precisely, its reversely oriented capyundergoes (withirlt,,,t2)) exactly one (single)
Delaunay crossing byin the smaller triangulatioDT((P\ B)U{q}). To handle these latter quadruples
o, we apply a similar analysis to the edge (keeping in mind that the co-circularity at tinge is not
necessarily extremal).

BHere the symmetry betwegranda breaks down, because the co-circularity@is extremal, but the one &t is not.
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Figure 21:Case (e): The proposed trajectoryydf r re-enterd., before crossinga. According to Lemmab5l1,
the pointa must hit the edgeq during (t1, t3) C (t1,trq].

If rq is hit by a during (¢1, ¢4, then the pointg, a, r define two sing Delaunay crossings in the
triangulationDT ([P \ (AU B)] U {q,a}). A routine combination of Lemnia4.5 with the probabilistic
arugment of Clarkson and Shor shows that the overall numoguiah triplesg, a, r is at mostO(/n?).
Moreover,(pq,r, I) is among the: + 1 last counterclockwiség, r)-crossings to end before the second
collinearity of ¢,a,r. Thus, one can guess based ong, a,r, in at mostO(k) possible ways. In
conclusion, the above scenario happens for at i00&¢n?) Delaunay quadruples oF.

To recap, the previous chargings account for

O (k€?N(n/t) + k*N(n/k) + kn*B(n))

Delaunay quadruplesin F. Hence, recalling that case (d) has been ruled out, we mayr&sgrom now
on, that none of the points a hits ¢ during the intervalt;, t,,] (which containgt;, ¢3]). In particular,
this implies thay lies in L,,, = L., at the moment when entersL,, during J (i.e., lies then inL} ).
Indeed, otherwise would have to first Ieavé;q after I, necessarily through the edge (because cases
(a) and (d) do not occur), which is now impossible accordmgemmdb.]L. See Figurel21.

Figure 22:Case (e). The last two co-circularitiesjofy, a, r that occur at timeg; € J\ I and(s € (1, trq] \ J.
The edge®a andrq intersect throughout, ¢2); that is, the order type qof, ¢, a, r does not change there.

Sinceg lies in L,,, whenr crossega (during J) from L, to L;a, the Delaunayhood ofq is violated
right after time¢, by the pointg € L, anda € L;fq, as depicted in Figuife 19 (right). (In other words,
¢1 must occurafter r entersL;a, whengq leaves the cai[p,a,r] N L,,.) Since neither op,a can
crossrq during the interval(y, 4] (which is clearly contained if¢y, t,,]), Lemmd3.1L implies that the
pointsp, ¢, a,r are involved during this interval in a third co-circularigt some time, > (i, and the
Delaunayhood ofq is violated byp anda throughout the interval(y, ¢2); see Figuré 22. As a matter of
fact, the discussion preceding Lemma 5.1 also implies¢thatcurs aftet/.

Recall that each of the remaining quadruptess accompanied by a pair of subseisB C P,

whose properties are detailed above. To facilitate theexpnt stages of our analysis, we augment

9Since any three points can be collinear at most twicean hitrg at most once.
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the above “obstruction setsA and B as follows. We add tA every pointu for which there exists a
counterclockwisé g, r)-crossing(ug, r, I,,) that ends inty, ¢,4). (In fact, Lemma 4]l implies that none

of these(q,r)-crossings end aftefr;.) This is done to ensure that in the sampled configuratioas th
we reach no such crossings take place. Similarly, we adB &very pointu for which there exists

a counterclockwiséa, r')-crossing(ua, r, I,,) that begins int,,,t2). (Again, Lemmd4ll implies that
none of theséa, r)-crossings begin beforg.) Since we assume that case (b) does not hold, the above
augmentation increases the cardinality of each of the4elsby at mostk < /.

Remark. We may assume thatis not among the (at mog) points lately added ta, and thaty is not
among the (at most) points lately added td@3. Indeed, if the edgea (or its reversely oriented copy
aq) undergoes a Delaunay crossing byhen the tripleg, a,r defines two Delaunay crossings within
DT((P\ A)U{a}). By Lemmd4.b, the overall number of such triples is at ndd&t:?). Furthermore,
each of these triples is shared by at mO$t:) quadruples that fall into case (e), so the above scenario
occurs for at mosO (k¢n?) quadruples ofF.

Probabilistic refinement. To proceed, we consider a subgebf [n/¢| points chosen at random from
P. We fix a Delaunay quadruple as above (i.e4 was not disposed of by the chargings of the previous
cases, or by the previous chargings of case (e)), and nbitefte following two events occur simulta-
neously, with probability at least(1/¢%): (1) R includes the four points af, and (2) none of the points
of (AU B) \ {p, q,a} (for the augmented set$, B) belong toR.

Consider the triangulatioDT(R) which is induced by a “successful” sampie(satisfying (1) and
(2)). Notice that the four points of still define a Delaunay quadruple, now with respectito We
continue to denote this new quadrupledy(Note, however, that the suitably re-defined intenlats I,
and.J = J, may shrink.)

Let Fr denote the family of all such “hereditary” Delaunay quadiesp in R (such that the sample
R is successful for their ancestorsf). Clearly, Fr is nonoverlapping.

Fix a quadrupler = (p, ¢, a,r) in Fr, whose two Delaunay crossings occur (withifi'( R)) during
the intervals! = [to,¢1], and.J = [to, 3], and whose first two co-circularities occur at tintgse 1 \ J
and(; € J\ I. As before, let,, denote the last time if+oo, ty] whenra belongs taDT(R), and let
tr, denote the first time ifts, co) whenrg belongs the same triangulati®il'(R). (Notice that, as we
replaceP by R, t,, either remains unchanged or moves ahead, towards (thetpeBymmetrically;,,
stays the same or moves back, towards (the igwiience, the extended intervdls,, t3] and[to, ¢,
can only shrink as we pass frobil'(P) to DT(R).) The preceding analysis implies that the following
conditions hold forr:

(R1) No counterclockwiséa, r)-crossings inFz begin duringt,., t2). Moreover, the edgea belongs
to DT(R \ {p, ¢}) throughout the intervdk,, t3]. See Figur€23 (left).

(R2) No counterclockwiséq, r)-crossings inFr end during(t,, t,,]. Moreover, the edgeq belongs
to DT(R \ {p, a}) throughout the intervdky, t,].

(R3) The setR \ {p} induces a Delaunay crossiriar, ¢, H), whose respective intervdl, = H is
contained in[t,q, t2]. In addition, we encounter a third co-circularity pfq, a,r at some time
(o € [t3,t,4), SO that the Delaunayhood of is violated byp € L,, anda € L}, throughout
(C1,¢2). See Figures 22 afd23 (right). Finally, none of the painscrosses-q during (2, t,4).

We say that a nonoverlapping famifyof Delaunay quadruples in a sets 1-refinedif its quadruples
satisfy the following modified three conditions, restatdthwespect toF and its underlying seP.

(Q1) No counterclockwiséa, r)-crossings inF begin during|t,., t2). Moreover, the edgea belongs
to DT(P \ {p, ¢}) throughout the intervdt,,, t3].
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Figure 23:Left: The edgeur is crossed by during[t,., t2). The intervalts, ¢,.,] contains the third co-circularity
(2. The edgesir andrg are almost Delaunay during, respectivety,, t2) U J = [trq,t3] andl U (t1,t,4] =
[0, trq). Right: A schematic description of the trajectoryrof

(Q2) No counterclockwiséq, r)-crossings inF end during(t;, t,,]. Moreover, the edgeq belongs to
DT(P \ {p,a}) throughout the intervdk, t,,].

(Q3) The setP \ {p} induces a Delaunay crossifi@r, ¢, H ), whose respective interval is contained
in [t,q, t2]. In addition, we encounter a third co-circularity @fg, a, r at some time € [ts, 4],
so that the Delaunayhood of is violated byp € L, anda € L,Jrq throughout({y, ¢2). Finally,
none of the points point, p crosses-q during (C2, t,q].

Let ¥4 (m) denote the maximum possible cardinality of a 1-refined familDelaunay quadruples,
that is defined over a set af, points moving inR? as above. The preceding discussion implies that
the maximum cardinality?(n) of any nonoverlapping family= of Delaunay quadruples in a setof
moving points satisfies the recurrence:

Wo(n) = O (£*W1(n/0) + kN (n/t) + k*N(n/k) + ktn?B(n)) ,
for any pair of parameters < £ < n.

Proposition 5.4. Let F be a 1-refined family of Delaunay quadruples. Then each quadrc =
(p,q,a,r) in Fis uniquely determined by the ordered triglez, r. (That is, there is no other quadruple
in F that shares its last three points with)

Proof. By Conditions (Q1) and (Q3);pa,r, J,) is the first counterclockwiséu, r)-crossing (inF) to
begin afterq hits ar during the corresponding interval = H.,. O

The subsequent chargings — Overview. To bound the above quantity;(n), we fix an underlying
set P of n moving points and a-refined family.F of nonoverlapping Delaunay quadruples. In addition,
we fix a quadrupler = (p, ¢, a,r) in F, whose Delaunay crossings occur during the interyats I, =
[to,t1] andJ = J, = [te,t3] (in this order). Recall that the poinisq,a,r are involved in three co-
circularities, at timegy € I\ J, (1 € J\ I, and(, > t3, and that the Delaunayhood of edggeis
violated during(¢i, ¢2) by the pointg anda. Furthermore, since the co-circularities at tinggsand(s
have the same order type, the Delaunayhoogha§ violated right after time, by the pointsy andr.

Informally, the remainder of this section (except for St&jds devoted to showing that the co-
circularity at time(, yields a Delaunay crossing @k by ¢. Similarly to the crossing ofir by ¢ in
Condition (Q3), this crossing occurs in an appropriateuced triangulation, and only i is not pre-
viously disposed of by one of the standard chargings (ushepiems$ 2]2 arld 5.3).
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The above implication is relatively easy to establislpdfundergoes only few Delaunay crossings
after (pa, r, J) and before time&,, when it is violated by; andr. Indeed, following the general strategy
demonstrated in Sectidm 3 (and at Stage 1), we consider possible scenarios.

If pa never re-enter®T(P) after time(,, then(pa,r, J) (and, therebyg) can be charged to the
edgepa, because it is then among the few last Delaunay crossindssoédige. Otherwise, we consider
the first timet,,, after¢, whenpa entersDT(P) and apply Theorein 2.2 id,,, over the intervalts, t,,).
Notice that, according to Lemnia B.4g is crossed during this interval (or, more precisely, duiiisg
proper subinterval(s, t,,]) by at least one of andq. (This follows because no further co-circularities
of p, ¢, a,r can occur aftets.)

If at least one of the Conditions (i), (ii) of TheorémR.2 hmlave dispose of by charging it within
A,q (and, again, via its second crossifg:, r, .JJ)) either to sufficiently many shallow co-circularities,
or to a shallow collinearity. As in the previous similar casiie charging of each event.iy,, is almost
unique, agpa,r, J) is among the few last Delaunay crossinggeto end before it.

Finally, if Condition (iii) of Theoren{ 2.2 holds, then we eng with a “small” subsetd of P (in-
cluding at least one of, ¢) whose removal restores the Delaunayhoogcthroughout]ts, ¢,,,]. Hence,
pa undergoes, within a suitably sampled triangulatiozfi( ?), a Delaunay crossing by one of the points
q,r. If pa is crossed by during [t3, t,,], then we can again dispose of such quadruplesing Lemma
[4.3. Otherwise, we say that the edgeundergoes withidDT(R) aspecial crossindy the pointg. By
our assumption, each special crossing is charged by onlatsumber of triple, a, » (and quadruples
o). In Section ® we derive a recurrence for the maximum passibimber of these special crossings,
which, combined with the recurrences derived in this sactmd in the preceding ones, yield the asserted
near-quadratic bound on the number of Delaunay co-cirtigiswr

Unfortunately, the above argument does not work if the edgef o undergoes “too many” Delau-
nay crossings duringts, ¢2). In this case, we cannot easily trace the events that occdyjnback to
(pa,r,J) (and too); that is, there are too many ways to gues#\t Stage 4 we use Theorems]2.2 and
to dispose of such quadruples. To facilitate the famiyplved analysis of that stage, we first extend
the almost-Delaunayhood ef: andrq from, respectively|t,, t3] and [to, t,4], to their superinterval
[tra, trq], Which covers)y, (1, (2 together with the aforementioned crossingioby ¢. These extensions
are performed at the auxiliary Stages 2 and 3, and they aledvanthe sampling argument of Clark-
son and Shor. (Hence, the instants andt,, are each time redefined with respect to the underlying,
progressively reduced subsetdf)

5.4 Stage 2: Charging events itd,,. (again)

Before extending the almost-Delaunayhood-@fndrg, as promised in the previous paragraph, we first
tackle the edger, and extend its almost-Delaunayhood. Handlilagandrq will be done in the next
Stage 3.

Let o = (p,q,a,r) be a quadruple in thé-refined family 7. Recall that the edger is almost
Delaunay durindl, J] = [to, t3] (and that it is in fact Delaunay if anda are removed). We extend the
almost-Delaunayhood g¢ir to a (potentially) larger intervdl,,., ¢,\.], which covergt,,, t.4]. To do so,
we fix a (new) pair of constants < .

Stage 2aFirst, we consider the intervél,,, t3], where, by assumption, the edgeis almost Delaunay.
Refer to Figuré 24 (left).

If at leastk clockwise (p, r)-crossings(pu,r, J,,) begin in (¢.4,t2), then the Delaunay crossing
(pa,r,J) is (a,r, k)-chargeable witl¥ = [t,q,t3]. Indeed, according to Lemnia #.6, each of the cor-
responding intervalg/,, has to be contained ift,,,t3] = [t.q,t2] U J (Since J, starts before,, the
starting time of(pa, ¢, J), it has to end befores). Hence, and according to Theoréml5.3, the overall
number of such crossingga, r, J) is at mostO (k*N (n/k) + kn?3(n)). Clearly, this also bounds the
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overall number of such quadruples Therefore, we can assume, from now on, that at rhasbckwise
(p,r)-crossings pu, r, I,,) begin during(t,q, t2).

t, to 1 t1 to J t3 to 1 t1 to J t3 t,«q
S -4 Fo -t V St
————— , R et B b t---f--»1
Cor  (pu,m, Ju) to (pu,r L) Gpr

Figure 24:Left: Extending the almost-Delaunayhoodffrom [to, t3] to (¢, to) (left) and(t3, (f,] (right).

If the edgepr is never Delaunay during—oo, t,4], then(pg, r, I) and(pa, r, J) are among the first
k+1 clockwise(p, r)-crossings, so there are orfly( kn?) such crossings (and quadruptes Otherwise,
let ¢, denote the last time if-oco, t,,,] whenpr belongs tdDT(P).

We now apply Theorern 2.2 i, over the interval((,,, t2), with the threshold’. Note thatpr is
Delaunay at timeg,,. andt, (in addition to its being Delaunay throughdut [¢,., 2)). If atleast one of
the Conditions (i), (i) of that theorem is satisfied, we gear (via (pa,r, J)) either toQ(¢2) ¢-shallow
co-circularities, or to afi-shallow collinearity. As in the previous such chargingyg ¢rucial observation
is that(pa, r, J) is among the first + 1 clockwise(p, r)-crossings to begin after each charged event in
A,r. Hence, any-shallow co-circularity or collinearity is charged, as abpby at mosO (k) quadruples
o. Clearly, the above charging succeeds for at nib&t(>N (n/¢) + kin*3(n)) quadruples in F.

Finally, if Condition (iii) of Theoreni_ 2.2 holds, we end upthvia setA of at most3/ points so that
pr belongs toDT (P \ A) throughout the intervgll,,,t3]. (Note thatA can include one, or both of the
pointsq, a.) For each(p, r)-crossing(pu, r, J,,) that begins int,,, ty) we add the respective pointto
the “obstruction set’d, whose cardinality then increases by at mest /. (Informally, as earlier, this
allows us to assume that, in the refined configuration, no §uet)-crossings occur.)

Stage 2b. We next consider the intervaty, t,,] where, by assumption, edge is almost Delaunay.
Refer to Figuré24 (right). The argument is fully symmetddhe one in Stage (2a), but we repeat it for
the sake of completeness.

If at leastk clockwise(p, r)-crossingspu, r, I,,) end in(t1, t,,), then the crossingpq, r, ) is clearly
(g,r, k)-chargeable wittZ = [to,t,,] , as each of the corresponding intervélsbegins aftert, (by
Lemmal4.6). As before, this scenario happens for at 08t> N (n/k) + kn?3(n)) quadrupless in
F. Hence, we may assume, from now on, that the above scenasondd happen far.

If pr is never Delaunay during,,, o), then the crossing®q, r, I) and(pa, r, J) are among the last
k + 1 clockwise(p, r)-crossings; as above, the number of these situatiofg/s?). Otherwise, let},
denote the first time after., whenpr is Delaunay.

We now apply Theorem 2.2 inl,, over the intervalt;, C;), with the threshold (noting thatpr
is Delaunay at timeg, and C;). If at least one of the Conditions (i), (ii) holds, we disposf o by
charging it either ta2(¢2) ¢-shallow co-circularities, or to afrshallow collinearity. As before, each
event inA,, is charged at mosP (k) times, as(pq, r, I) and(pa, r, J) are among the lagt + 1 clock-
wise (p, r)-crossings to end before this event. Hence, the overall eammbsuch quadruples is at most
O (k(*N(n/t) + ktn*B(n)).

Finally, if Condition (iii) of Theoreni 2.2 holds, we end uptivia setB of at most3/ points (possibly
including and/ora) so thatpr belongs toDT(P \ B) throughout|to,(,]. For each(p, r)-crossing
(pu,r, J,) that ends int, t,,) we add the respective pointto B, whose cardinality then increases by
at mostk < 4.

To recap, we may assume the existence of de#, each of size at most + k < 4¢, for which the
edgepr belongs tdT (P \ (AU B)) throughout the interval,,. = [(,,., (1], which coverst,q, t,4]. In
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addition,pr belongs taDT(P) at times,,. andg;.

Probabilistic refinement. Consider a subseR of [n/¢] points, chosen at random frof. Fix a
quadruples in F, and note that, with probability at lea@t1/¢*), (1) R contains the four points, ¢, a, r
of o, and (2) none of the points of U B \ {¢,a} belong toR.

Assuming that the samplg is successful for the chosemnthe four points, ¢, a, r define a Delaunay
qguadruple, now with respect #®. We continue to denote this new quadrupledbyAs is easy to check,
the family Fr of all such “hereditary” quadruples (such that the sampl& is successful for their
ancestors inF) is 1-refined with respect to the new point st Moreover, each quadruple iAr
satisfies the following new condition:

(Q4) The edgepr belongs toDT(R \ {¢,a}) throughout an interval,, = [(,,, (] which coverg]
[tra,trq], @and it belongs tdT(R) at times(,,, andg;. Moreover, no clockwisép, r)-crossings (inFg)
begin in(t,,,to) or end in(ts, t,q).

Definition. Let F be al-refined family of Delaunay quadruples. We say ttfais 2-refinedif its
guadruples also satisfy the above condition (Q4) with ressfmethe underlying point seP (instead of
R).

Without loss of generality, we can pgff, to be the last time ifi—oo, t,.,] whenpr belongs tdDT(R).
Similarly, we can pu(l‘,tn to be the first time irjt,;, c0) when the edger belongs tadDT(R).

Let U5(n) denote the maximum cardinality oRarefined familyF, which is defined over a sét of
n moving points. The preceding discussion implies the folhgarelation between the quantitids; (n)
andWy(n):

Wi(n) = O (('Ws(n/l) + k>N (n/C) + k>N (n/k) + kén*B(n)) . (4)

5.5 Stage3

To bound the above quantity,(n), we fix a2-refined familyF which is defined over a sét of n points
moving as above iiR?, and a Delaunay quadruplein F.

By assumption, the edges andra of o are almost Delaunay during the respective interialg, ]
and[t,q,t3]. The goal of this stage is to extend the almost-Delaunaytaidtiese two edges to the
interval ¢4, t,4]. For the purpose of our analysis, we fix new constarasd/ such that: < /.

tra tO I tl t2 J t3 trq tra to 1 tl t2 J t3 trq
------- : ot A A-pt
b ; -1 - I -kt
Cp_r (u%ra Iu) (ua,r, Ju) I—Jt’

Figure 25: Left: Extending the almost-Delaunayhoodaf from [to, t,,] tO [t,q,tr,]. Right: Extending the
almost-Delaunayhood ot from [t,.q, t3] tO [trq, trq]-

Charging events inA,,. Refer to Figurd 25 (left). If at least Delaunay counterclockwiséy, r)-
crossingsug, r, I,,) begin in(t,4,t), then the crossingpg, r, I') is again(p, r, k)-chargeable. Indeed,
according to Lemmla 4.6, each of these crossings occurswiithilarger interval(,,., to] U T = [(,,., t1],

20As in the previous step, the times, andt,., must be appropriately redefined with respect to theRsat hand, and the
interval [t,q, tq] may shrink. The same applies to the tinggs and (/...
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where, by property (Q4), the edge is assumed to be almost Delaunay. Moreopehelongs tdT(R)
attimes(,, andt,. Therefore, Theorein 5.3 provides an upper boun@ ¢&*N (n/k) + kn?$(n)) on
the overall number of such crossingsg, r, I) (and, hence, of their corresponding quadruptesas
implied by Propositiori 5]2). Thus, we can assume, from nowtbat the above scenario does not
happen forr. (Notice that the above application of Theoreni 5.3 has begpeped by the previous Stage
2, which has extended the almost-Delaunayhoogi-dfom [to, t3] to [¢,,., (;].)

We now apply Theoretin 2.2 i, over the intervalt,,, to), with the threshold (noting thatrg is
Delaunay at timé,, and recalling that Theorem 2.2 also holdsfis Delaunay at only one endpoint
of the interval under consideration). If one of the Conditidi), (ii) holds, we dispose of by charging
it (via (pq,r,I)) either toQ(¢?) ¢-shallow co-circularities or to a#-shallow collinearity. As in the
previous such chargings, each event4p, is charged at mosb (k) times, as(pg,r, I) is among the
k + 1 first counterclockwiséq, r)-crossings to begin after it. Hence, this charging is applie for at
mostO (k2N (n/l) + kén?B3(n)) quadrupless in F.

Finally, if Condition (iii) of Theoreni. 2.2 holds, we end upttvia setA of at most3/ points such that
the edge-q belongs taDT (P \ A) throughout the intervak, ., t1].

Charging events inA,.,. We now apply a symmetric analysis to the eagespelling it out for the sake
of completeness. Refer to Figure 25 (right).

If at leastk counterclockwise(a, r)-crossings(ua,r,.J,,) end during(ts,t,,) then the crossing
(pa,r,J)is (p,r, k)-chargeable, as each of the respective interfjals the contained irt,, g;] (when
the edgepr is almost Delaunay). By Theorein 5.3 (and sinegeis Delaunay at times, and C;),
the overall number of such crossingsa,r, J) (and of their corresponding quadruple} is at most
O (K*N(n/k) + kn*B(n)).

Otherwise, we apply Theorein 2.2 i,, over the intervalts, ¢,,) (noting thatra is Delaunay at
time t3). If one the Conditions (i), (ii) of that theorem holds, wesplbse oo by charging it (now via
(pa,r,.J)) either toQ)(¢?) ¢-shallow co-circularities, or to afrshallow collinearity. Once again, each
event inA,, is charged at mosD(k) times, as(pa,r, J) is among thek + 1 last counterclockwise
(a,r)-crossings to end before it.

Finally, if Condition (iii) of Theoreni 2R holds, we end uptivia setB of at most3/ points such that
the edgera belongs taDT (P \ B) throughout the intervdk,, t,].

To recap, we may assume, in what follows, that there exist4eB as above, each of cardinality at
most3/.

Probabilistic refinement. We consider a subsét of [n/¢] points chosen at random frof. We fix a
quadruples, not disposed of by the previous chargings, and notice keatdllowing two events occur
simultaneously, with probability at leag(1/¢4): (1) R contains the four pointg, ¢, a, r of o, and (2)
none of the points oft U B \ {q,a,r} belong toR.

Let Fr denote the family of all hereditary quadruplegsuch thatR is successful for their ancestors
in 7). As is easy to checkFp is 2-refined (in R). Moreover, the following new conditions hold for
every quadruple in F:

(Q5) The edgera belongs tadDT (R \ {p, ¢}) throughout the intervdk,,, t,,].
(Q6) The edgerq belongs tdDT(R \ {p, a}) throughout the intervat,,, t,,].

We say that a familyF of Delaunay quadruples Brefinedif (1) it is 2-refined, and (2) its quadru-
ples satisfy Conditions (Q5) and (Q6) with respect to theeulythg point set. Lets(n) denote the
maximum cardinality of &-refined family of Delaunay quadruples that is defined ovest@&: moving
points (that we keep denoting &5 replacingR in these conditions). The preceding discussion implies
the following relation between the quantiti&s (n) and¥s(n):
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Wy(n) = O (£*W3(n/l) + k>N (n/) + k*N(n/k) + kén*B(n)) . (5)

5.6 Stage4

To bound the above quantitys(n), we fix a3-refined familyF which is defined over an underlying set
P of n moving points. (That isF satisfies all the six condtions (Q1)—(Q6).) Propositicnigglies that
every quadruple = (p, ¢, a,r) in F is uniquely determined by the ordered trigtg a, ).

For the purpose of our analysis, we also fix three new corsskafith such thatl2 < £ < ¢ < h.

rq,ra are almost-Delaunay
J 13

-

I —t---»t

Cl C2 trq

Figure 26:The topological setup during the interyal,, ¢.,]. Left: The edge:r is hit at some time,. € [t,, t2]
by ¢. Center: we have,, <ty <t, <t5 <t2 < (1 < t3 < (2. Right: The motion ofB[q, a, r] is continuous
throughout(t,., ¢2] (the hollow circles represent the co-circularities at yeand(s).

Topological setup.We fix a quadrupler = (p, ¢, a,r) in F, whose two Delaunay crossings take place
during the intervald = [to, t1] andJ = [to, t3] (in this order). Refer to Figuife 26.

Since F is 1-refined, there exists a timg, < ty which is the last time befc@ to when the edge
ra belongs toDT(P), and a symmetric first time., > ¢3 whenrg belongs toDT(P). Moreover,
by Conditions (Q5) and (Q6), the edge belongs toDT(P \ {p,q}), and the edgeq belongs to
DT(P \ {p,a}), throughout the intervdt,, t,,].

Let us summarize what we know so far abeut By Condition (Q3), the pointg, ¢, a,r of o are
co-circular at timegy € I\ J, (1 € J\ I, and(y € (t3,t,4). Moreover, the Delaunayhood pf is
violated, throughout(y, ¢2), by the pointsg € L,,, andr € L;a. In particular,p lies throughout that
interval within the wedgéV,., = L/, N L., and inside the cap’,, = Blq,a,r] N L, ; see Figur&€ 26
(right). We emphasize that the order type of the quadriple, a, ) remains unchanged duririg;, ¢2),
and is exactly as depicted in this figure.

In addition, by the same Condition (Q3), the smallerB&fp} induces a (single) Delaunay crossing
(ar,q,H,), whose intervalH = H, = [t4,ts5] is contained int,,, t2); see Figur€ 26 (left and center).
In particular,q hits ar at some momef ¢, € H, and crosseg,,. from L, to L, . Sinceq lies in L],
attimes¢; > to and(s, no further collinearities of, a, » can occur durindt,, (2|. (Otherwise, the point
q would have to re-entek}, after previously crossing,, back toL_,., and then the triple, a, r would

ar?

2l rq is Delaunay at timeo then we puto = t,q.
Z2Recall from Sectiof 513 thatcan crossir either before or aftefy, depending on the location afwhenr crossegq. Our
analysis only relies on the fact thiat < {1 < (2, which follows becausé€, < t2 and¢; > to.
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be collinear three times, contrary to our assumptions.)e€ap, the dis®[q, a, 7] moves continuously
throughout the intervalt,, (2], which is obviously contained ift,q, t,4].

Figure 27:A quadruples’ = (p’, ¢, a, ') in Fy,. The edgew’ undergoes afu, g)-crossing(ar’, ¢, H,) within
the triangulatioDT (P \ {p'}).

Let 7, denote the subfamily of all quadruple$ = (p', ¢, a,r’) in F, whose middle pointg and
a are fixed and equal to those of (In particular,F,, containss.) For eactv’ = (p/,q,a,r’) in Fy,,
the appropriately pruned sét\ {p’} induces thea, q)-crossing(ar’, q, H,/); see Figur€ 27. In what
follows, we keepr and.F,, fixed and distinguish between several cases.

Case (a).The family 7, contains at least quadrupless’ whose respective crossingsr’, ¢, H,/) end
during (ts,t,,). Refer to Figuré 28. Recall that, according to Propositidh the pointp’ is uniquely
determined by the choicé.

e g

Figure 28:Case (a). Left: At least of the crossingsar’, q, H,-) end during(ts, t,,). Right: A successful
sampleP yields Delaunay crossindsr, g, HU) and(ar’, q, ﬁ(,/), which occur within[ty, t,¢].

Informally, we would like to dispose af using Theoreri 513, by showing that the counterclockwise
(r,q)-crossing(ar, q, H) is (r, ¢, ©(k))-chargeable (for the interval = [t4,1,,]). Unfortunately, the
(a, q)-crossinggar’, q, H,/) to be charged are defined with respect to (potentially)rdissetsP \ {p'},
and thus do not fit the definition of chargeability.

To free sufficiently many crossingsr’, ¢, H,/) from their violating pointgy’, we pass fromP to
a sampleP of [n/2] points chosen at random frofA. Notice though thaf,, can potentially include
quadruples’ = (p/, ¢, a,r’) with p’ = r, which cannot be freed without destroying and(ar, ¢, H).

Fortunately, by Propositidn 8.3, for any quadruple= (p, ¢, a,r) in F,, there is at most one other
quadruples = (p/, ¢, a,r’), also inFg,, with »’ = p. The pigeonhole principle then implies that at least
half of the quadruples = (p, ¢, a, ) in F, satisfy the following converse condition:

(PH) There is at most one quadrupté = (p’, ¢, a,r’) in Fy, with p’ = r.

In more detail, consider the (possibly partial) map F,, — F,,, SO thatA maps each quadruple
o= (p,q,a,r) € Fyqe to the unique quadruple(c) = (w,q, a,p) € F4, if it exists, and otherwise. is
undefined ab. Puty, = {0’ | A(0”) = o}|, for eacho € Fyq. Then} .,z 1o < M = [Fqal, so the

number of quadruples with 1, > 2 is at most)M /2. All the remaining quadruples satisfy (PH).
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Sinceq anda are arbitrary points oP, (PH) holds for at least half of all quadruplesjf hence we
may assume that it holds for the quadruplander consideration.

Let o’ be a quadruple itFy, \ {c} whose crossingar’, ¢, H' = H,/) ends in(ts, t,4). We further
assume that’ # r andr’ # p. Then we have the following relaxed version of Lenima 4.6,clvlian
be established by observing that its original proof hold® a@h the new setup. (An alternative proof of
Lemma5.b can be obtained through examining the two codeirities that are performed by, ¢, r, 7/,
according to Lemmds 4.1 ahd¥.4, during the internvals H and H' \ H, and then applying Lemma
[4.6 for the reduced sdt \ {p,p'}.)

Lemma 5.5. Let P be a set of points moving as aboveRA, and let(ar, ¢, H) and (ar’, q, H') be a
pair of clockwise(a, ¢)-crossings that occur in the respective reduced triangoret DT (P \ {p}) and
DT(P \ {p'}), for p,p’ € P23 Furthermore, assume that+ p’ andr’ # p. Then the statement of
Lemmd4.b holds fofar, ¢, H) and (ar’, q, H"). That is,q hits ar (during H) before it hitsar’ (during
H') if and only if H begins (resp., ends) before the beginning (resp., end) of

Clearly, the above restriction @i andr’ is now satisfied by at leagt— 2 > k/2 of the quadruples
o' = (p/,q,a,r") that are assumed to exist in the current case (a). SincdrteivalsH’ end in(ts, t,),
Lemmal5.b implies that, for each of therHi; starts aftert, and the poing hits ar’ (during H') after
timet,.

We now return to the sample and observe that the following two events occur simultaslpwith
at least some fixed constant probability:

(1) The sarTJpIeﬁAincludes the three pointg a, r, but notp. Hence,P induces a single Delaunay
crossing(ar, q, H = H,) of ar by gq.

(2) The sampleP includes the point’, but notp/, for at leastk/16 of the above quadruples
o' = (p/,q,a,r"). For each of thesé/16 quadruples, the sample yields a Delaunaya, ¢)-crossing
(CLT‘,, q, ﬁal) with gal C H,.

(To see (2), note that this property holds for any single quald with probability at least/4, so the
expected number of successful quadruples is at kg&stBy a variant of Markov’s bound, the probability
of having at leask /16 successful quadruples is at leagy'15.)

Suppose that the sampfeis indeed successful for. Recall that, for each quadrupiéin (2), ¢ hits
the respective edge”’ (during H,-) after it hitsar (during H,).

We now pass to the sampled triangulatbﬂ“(ﬁ). Lemmal4.6 implies, in combination with the
containmentl, C H,/, that all the Delaunay crossingsr’, ¢, H,) in (2) end afterfl and beforet,.,;
see Figur¢ 28 (right). Therefore, all of them must occur wvithe intervalH, U [t5,t,q] C [t4, trql,
where the edgeq is assumed to be almost Delauyln addition, the edgeq belongs toDT(P) at
bothtimest, andt,,, because” does not includg. Sinces’ and(ar’, ¢, H,+) can be chosen in at least
k/16 distinct ways, the crossingir, ¢, H) is (r, g, k/16)-chargeable (with respect 10).

By Theorem( 5B, the overall number of such triplesa, ) in P is O (k2N (n/k) + kn?8(n)).
Clearly, the same bound must hold for the overall number afiqupless that fall into case (a).

Preparing for cases (b), (c): Charging events i4,,. We can assume, from now on, that the fanily,
contains at most quadruples’ whose “almost Delaunay” crossingsr’, ¢, H,) end during(ts., t,,).
Before proceeding to the subsequent cases, we apply Th&#geim.A,, over the intervalts, t,,),
now with the second constaft Notice that the edgea belongs taDT(P \ {p}) at timet;, so we omit
p and apply the theorem with respect to that smaller triariguia
If at least one of the Conditions (i), (ii) of TheorédmR2.2 isisi@ged, we charge either to an¢ + 1)-
shallow collinearity, or td2(¢?) (¢ + 1)-shallow co-circularities. (Each of these eventé-ghallow with

ZWe do not require that andp’ be distinct.
%Notice that the times,,, t4 andts are defined with respect to the original point et
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respect toP \ {p}, and its depth can go up bywhenp is added back.) It remains to check that each
(¢ 4 1)-shallow event, which occurs i, at some time* € (ts,t,,), is charged by at mos?(k)
quadruplesr. Indeed,q anda are among the three or four points involved in the event. Wesgand

a (in O(1) possible ways) and consider all “almost Delaunay” crossioigthe form(ar’, ¢, H,/), each

of them associated with some (unique) “candidate” quaérapt= (p’', ¢, a, ') in Fy,. Since case (a) is
ruled out (and sincé" belongs tdts, t4)), (ar, ¢, H = H,;) is among the: last such “almost Delaunay”
crossings to end before timé&. Sincep is uniquely determined by the choice @fa andr, we can
guesss in O(k) possible ways. Hence, this scenario happens for at M¢&t>N (n/¢) + kin?B(n))
quadruples.

Now assume that Condition (iii) of Theordm .2 holds. The&gontains a subset of at most3/
points such that the edge belongs tdT(P\ (AU{p})) throughout the intervall U([ts, t,] = [t4, t,q].
In particular, the following property must hold:

At most3/ pointss € P\ {p} hit ga during the interval(t,, (2) (C (tyq,trq))-

Case (b). There exist at leagt points, distinct fronp, that enter the cag’,, = B[g,a,r] N L;, during
(t,,C2). We refer to Figuré_ 29 and letbe any of these points. By Condition (Q6)cannot hitrq
during the intervalt,, ¢z) (which is covered byt,,, t,,]). Note also thaC; is contained in the wedge
Wyar = Lj;a N L,,. Therefore, and since the wedge,,, is empty immediately after timg. (wheng, a
andr are collinear), the above poisthas to enteiV,,,, through one its raysi, ag, during(¢,, ¢2) and
before it enterg’; .

Furthermore, Condition (Q6) implies thatcan enter the cag’;, only through the boundary of
Blq, a,r], which results in a co-circularity af, a,r, s. (Recall also that enters each halfplanb;ja and
L., at most once, so it crosses the rayor ag outsidethe respective edge- or ag when enteringV,,,
as above. Indeed, otherwisavould be able to access, , after crossing one of these two edges, only
through the interior ofq.)

! !
I I
tra tr <2 th

s entersiWyq, s entersCy,

Figure 29:Case (b). At least pointss # p enter the cai’,, during (., ¢2) (p is not shown). Each of the firét
of these points causes &- 1)-shallow co-circularity withy, a, r. Each of them must first enter the weddg,,,
which is empty at time,., through one of the ray&,, a7 (outside the edges; andar), because none of them can
crossrq.

Assume that is among the first points to enteC;, during (t,,(2). Lett; denote the time of the
corresponding co-circularity af, a,r, s, which occurs when entersC,, . Sinceo satisfies Condition
(Q6) (andt} belongs tat.q, t,4)), the opposite cap'}, = Blq, a,] N L}, contains no points of \ {p}
attimet’. (Otherwise, the Delaunayhoodqaf would then be violated by and another point aP \ {p},
contrary to (Q6).) Therefore, and since the motion/f, a, r] is continuous durindt,, (2), the co-
circularity at timet? has to bg¢ — 1)-shallow inP \ {p}, and thug-shallow inP.

Note also that the crossirtgr, ¢, H) has to end beforg (thatis,t; < t¥). Indeed, the Delaunayhood
of ¢r is violated, right after time?*, by s anda, which is forbidden by Lemm{a4.1 during.

We distinguish between two possible subcases. In each of the dispose ot by charging it,
within one of the arrangementd, ., A,,, either toQ(¢?) (2¢)-shallow co-circularities, or to &2¢)-
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shallow collinearity.
Case (b1).At least half of the above pointscross the line.,.,, from L, to L., during(¢,,t*). Since

s liesin L, at timet?, s entersL,, exactly once durindt,,t*), and it does not return té, before
t¥; see the motion of the marked poinin Figure[29 (left). Moreover, by Condition (Q5), each ofshe
crossings occurs outside (i.e., within one of the outer rays df,.,).

To dispose ofr, we again fix one of the aforementioned poistand argue as in Sectidd 3. If
the halfplaneL_, contains at mos2/ points of P when s enters it, then we encounter(2/)-shallow
collinearity of a,r, s. Otherwise, the dis®|[a, r, s] contains at leas2¢ points right after the crossing,
so the three points, a, s are involved in at leagt (2¢)-shallow co-circularities before timé (when the
open discB|a, 1, s], equal toB]a, r, ¢| at that time, containé or fewer points ofP). After repeating the
above argument for each of the (at ledgt) possible choices of, we encounter i, (during (¢, (2))
either(¢?) (2¢)-shallow co-circularities, or &¢)-shallow collinearity. In both cases, we chargéo
these events.

We claim that eacl@2/)-shallow event, which occurs id,, at some time* € (t,, (2), is charged by
at mostO(1) quadruplesr. Indeed,;- anda are among the three or four points involved in every charged
event. Moreover, according to Condition (Q5) and the arqunrecase (e) of Stage %,is among the
last two points to hit the edge: before timet*. Hence, knowing* allows us to guess the three points
q,a,r (which uniquely determine) in at mostO(1) ways. In conclusion, the above scenario happens
for at mostO (¢?N(n/¢) + ¢n?B(n)) quadruplesr in F.

Case (b2).At least half of the above pointsremain inL_, throughout the respective intervdls, t7).
Each of these points must entéf,,,. (during (¢,,t})) through the ray emanating frogin directionag,
thereby crossind,, from L, to L;;a. (Recall that such a collinearity @f a,s can occur only once
during (¢, t%).)

Once again, we fix one of the above poisisnd lett; denote the time irft,, (2) whens entersiv,,
through the ray emanating fromin directionag. Arguing as in the previous case, we conclude that
the three pointg, a, s are involved (duringts, t%) C (., (2)) either in a(2¢)-shallow collinearity, or in
Q(¢?) (2¢)-shallow co-circularities. Below we prove that each of t2é)-shallow events, that occur in
Agq during (¢, (2), can be traced back tin at mostO (k) way Hence, it is charged at mosk(k)
times. We then repeat the same argument for each of the relpé@jf2 — 1 choices ofs, and use (as in
case (b1)) the standard bounds on the numbé®tshallow events of each type. As a result, we obtain
an upper bound af (k¢*N (n/¢) + kin?B(n)) of the number of such quadruples

To conclude, the overall number of quadrupbethat fall into Case (b) is at most

O (kN (n/t) + kén®B(n)) .

To complete the analysis of Case (b), we show that €2@hshallow event that occurs id,, during
(t,,C2) is charged as above by at m@stk) quadrupless that fall into case (b2). Let* be the time of
such an event. First, we guess the points, in O(1) possible ways, from among the three or four points
involved in the event. Recall that, in the charging schemeasg (b2), eact/)-shallow co-circularity
or collinearity that we charge i, is “obtained” via some point, which is also involved in this event
and entersL;a at some prior time,. We, therefore, guessamong the remaining one or two points that
participate in the event under consideration. To guessaiimaining points: andp of o, we examine all
“candidate” quadruples’ € F,, whose two “middle” points are shared with Recall that each of these
quadruples’ = (p', ¢, a,r’) is accompanied by an “almost Delaunay” crossing’, ¢, H,), wherer’
entersL,, at some time,» € H,. Also recall thav’ is uniquely determined by the choicesdf(as long
asq anda remain fixed).

It suffices to consider only quadruple$ = (p', q,a,r’), in F,,, with the following properties: (1)
s#p,r', (2)t < ts, and (3)s liesin L:{w during the second portion di - (aftert,/). This is because

Note the difference between the two subcases: Here we ooly kna, and then guessingis not immediate.
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each of these conditions holds fer = o (and fors) in the charging scheme of case (b2). For example,
(3) follows because we assume that case (b1l) does not oculisigcet; < t¥). The corresponding
pointsr’, which determine the above quadruptésare calleccandidatedfor r).

Figure 30:Top: Proposition 5161 is among the last + 3 candidates’ to enterL/, before timet; the various
critical events occur in the depicted order. Bottom: PrddPmpositior{ 5.5. The candidaté remains iniW,
throughoutt,-, t¥). If H,, ends aftet?, then the point remains inWq, (C W, ) throughout(t,, t%).

T Vs

Proposition 5.6. With the above assumptions, the poin$ among the last + 3 candidates’ to enter
the halfplaneLja beforet, (each candidate at the respective time.

Proof. Refer to Figuré_30. Assume to the contrary that the promwsitioes not hold (for ands #
»,q,a,r as above). Hence, we have at leasiandidates’ such that, < ¢, < ts andr’ ¢ {p,r}, and
such that the pointg’ of their respective quadruples = (p’, ¢, a, ") are distinct from-. (We continue
to assume that satisfies property (PH), introduced in case (a), so the lestéstrictions orp’ andr’
exclude from our consideration at most three candidetesith their quadruples’.)

To establish the proposition, we fix a candidatand its corresponding quadrupté= (p’, ¢, a, '),
as above, and argue that the respective intefiialends duringts, t,,). Repeating the same argument
for the remainingk — 1 possible choices of’ will imply that the quadrupler falls into case (a) and
thereby reach a contradiction.

Indeed, since, < t,», Lemm&5.b shows that the intervAl, ends afterd = [t4,t5]. (Asin case
(a), the lemma relies on the assumption that ' andr # p'.) It remains to check that,, ends before
trg-

If H, ends before}, then we are done (a$ < t,,). Hence, we may also assume that both times
t,» andt’ belong to the intervaH, (as depicted in Figufe B0 (top-right)). This, and the choite as a
candidate for, implies that~’ remains in the halfplanes;,, L{, throughout the intervalt,., t3) C H,.
Indeed,”’ cannot re-entel, during the second portion df,/, after enterinng[a at timet,, € H,.
(This is because, a, " perform only one collinearity during the crossitwg”’, ¢, H,).) Similarly, since
o’ satisfies property (3), the poistremains inL_", throughout(t,., t?) (sor’ remains inL,). We thus
conclude thas lies insideW,,,» = L}, N L, throughout the intervalt,, t}); see Figur&31 (bottom).

Also notice that, with the above assumptionsmust lie, throughout the longer interval,., t%) C
Hg, inside the wedg&/,,, = L, N L,,. Indeed;” entersiVy,, attimet,, € (t,,t5)(C (t,,¢2) N Hyr)
and cannot again cross the r@yduring H,,. Moreover, ifr’ leavesiW,,, (during (¢,+,t%)) through the
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other rayar, then the edges’ is hit by r, or the edgeur is hit by /. Clearly, the former crossing is
forbidden by Lemm&4]1 during the intervél,: (wherear’ experiences a Delaunay crossingg)yand
the latter one is ruled out by Condition (Q5). (As a matterauttf in the second casé must also cross
rq, thereby entering\qar, before it reachesa. This collinearity is also impossible by Condition (Q6).)

R = I R S
tra &bty pPUEE
r’entersq;l

7 IeavesC,;]

Figure 31:Proof of Proposition 516: The scenario whefdies within B[q, a, r] at timet. Left: »’ entersC;,

during (¢, t;) through the ar@q, a,r] N L, at some tim&’ (left). Right: »" must leaveC beforet,, (and
after H,/). Below: The pointsy, a,r, " are co-circular attime$ € H, \ H,/,{' € Hy \ H, and{” € (£, t,4].

The intervalH, ends beforg” (and, thus, before,.,).

To recap, we can assume th#t, endsafter ¥, and that the edges;, as, ar’ andar appear, at time
t%, in counterclockwise order around To show thatH, ends before,,, we distinguish between two
possible cases.

(1) If 7/ lies outsideB|q, a, s| = B|q, a,r] at timet*, then the Delaunayhood of the edg€ is violated,
at that very moment, by the points € LZZ«/ andr € L_, (as depicted in Figure_BO (left)). Since
p’ & {s,r}, the crossindar’, q, H,/) (occurring inDT (P \ {p'})) has to end befor&, which is contrary
to our assumptions.

(2) Now suppose that lies at timet* within B[q, a, r], as depicted in Figufe 81 (left). Sinceremains in
Wyar throughout(t,/, 3] (and since” lies outsideB|q, a, r] at timet,,, when it enter$V,,,), it can enter
Blg, a,r] (or, more precisely, its caf.) during (t,, ;) only through the circular ar€'lg, a,r] N L.
When that happens, we encounter a co-circularity,af r, 7’ at some timg’ € (¢,.,t%] C H,s, right
after which the Delaunayhood of is violated byr’ € L., anda € L},. Sincep # 7" andr # p/, this
co-circularity occurs aftetf = H,.

Applying Lemmd& 4.4 tqar, ¢, H) shows that another co-circularity @fa, r,r’ (red-blue with re-
spect toar and thus monochromatic with respectdd) must occur at some timg < ¢’ during the
symmetric intervali,, \ H,.. As is easy to che¢K, ¢ and¢’ are the only co-circularities af, a, r, 7’ to
occur duringH, and H,,/.

To complete our analysis, we apply Lemmal 3.1 for the edgevith the reference intervat’, ¢,,].
By Conditions (Q3) and (Q6), neither af ' can cross-q during the larger intervdk,, t,,]. Therefore,
we encounter a third co-circularity @f a, 7,7’ at some time” in (¢', ¢,4], which occurs when’ leaves
the capC;,. See Figuré 31 (right). Sinceand¢’ are the only co-circularities to occur duridg, U H,,

®Note, for instance, thdt, v, 7, q) is a counterclockwise quadruplelil’(P\ {p, p’}), so the argument preceding Lemma
B applies to it.
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the third co-circularity¢” must occumfter H, . (See Figur€ 31 (bottom).) HencH,- has to end before
trq also in this last case. O

Case (c). Assume that none of the previous cases or preliminary angsgapplies tor. In particular,
since the charging withitd,, following case (a) does not apply, at m@stpoints of P \ {p} crossqa
during (¢, ¢2). Furthermore, since case (b) does not occur, at hesints of P \ {p} enter the cap
Cry = Blg,a,r] N L, during the intervalt,, (2). See Figuré32 (left).

We again emphasize that, by condition (Q5), no poinPiy {p, ¢} can hit the edgea during the
interval [t,, t,4] (Which containgt,, ¢2]). Similarly, condition (Q6) implies that no point iR \ {p, a}

can hit the edgeq during that interval.

At most/ points At most3/ points

i
LN

< 4/ points crosga ipa & DT(P)E

tQE t

Woar a i :
! ] S R -
tr J Cl DT(P <2 tpa
Cr, +pa € DT(P) pa € DT(P)
r 4
a pa violated byg andr

Figure 32:Left: Case (c). At most points of P\ {p} enterC,, and at mos8/ points of P\ {p} crossga, during

(t;.¢2). Hence, at most/ points cros®a during ({1, ¢2). Right: a schematic summary of our setup in case (c).

We claim that at most/ points of P \ {p,a} can hit the edgea during the interval(ts, ¢2) (C
(¢1,¢2))- Indeed, fix any of these points Recall the edgea is contained during the intervé&dy, (») in
the regionBq, a, ] N W,,,; see FigureE 26 (right) andI32 (left). Hensdas to lie inB[q, a, 7] N Wyq,
when it hitspa, as well. Sincél,,, contains no points of at timet,, the points has to enter this
wedge during(t,, ¢2) through one of the raysr, ap. If s crossepa within L, then, in particular, it
has to enter the ca@,, during (¢, (2). Otherwise, ifs hits pa within Ljrq, then it must have previously
entered the trianglé\gar through the edgea. (By Conditions (Q5) and (Q6)% cannot crosses either
of the edgesa, rq during (¢,, (2).) We thus conclude that the overall number of point®ithat cross

pa during (¢3, 2) cannot exceed + 3¢ = 44.

Charging events in4,,. The above analysis implies, in particular, that the eggendergoes at most
4¢ Delaunay crossings withifts, (2). If the edgepa never re-enter®T(P) after time(s, then(pa, r, J)

is among the last/ + 1 Delaunay crossings ofa. Clearly, this scenario happens for at moxtn?)
quadruplesr.

Otherwise, let,, be the first time afte¢, whenpa re-enterdDT(P). Refer to the schematic Figure
[32 (right). Since the co-circularity at timg is thelast co-circularity of the points ofr, Lemma3.1
implies that the edgpa is hit during ((2,t,,] C (t3,%5.] Dy at least one of the remaining two points
andr.

We apply Theorerh 212 inl,,, over the intervalts, t,,), with the third constant parameter(noting
thatpa is Delaunay at both endpoints of that interval). If one of @@nditions (i), (ii) holds, we charge
o (via (pa,r,.J)) either to ank-shallow collinearity, or td2(h?) h-shallow co-circularities (where each
charged event occurs duriris, ¢,,) and involves anda, together with one or two additional points of
P). Any suchh-shallow event is charged by at mast/) quadruples. Indeed, the two pointsa can
be guessed in at moéi(1) possible ways out of the three or four points involved iniid &pa, r, J) is
among the last/ + 1 Delaunay crossings ¢k to end before the respective time of the event. Therefore,
the above charging accounts for at most¢h? N (n/h) + ¢hn?3(n)) quadrupless.
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pa € DT(P\ B)

ipa ¢ DT(P) r
|J, pa € DT(P) iq or r hits pa .
- - juehie e !
tr to t3 <2 tpa 9
pa violated byq andr —* pa € DT(P) >

Figure 33:Left: If Condition (iii) of TheorenT 2.2 holds, then we have @bsetB of at most3h points whose
removal restores the Delaunayhoodafthroughoutts, t,,,] = J U [t3, tpe]. Right: If ¢ hits pa during [ts, tpa],
then(P \ B) U {q} induces a Delaunay crossingaf by g.

Assume then that Condition (iii) of TheordmP.2 holds. Tlsafi contains a subse® of at most3h
points (possibly including one, or both of the poigts:) such that the edgea belongs toDT (P \ B)
throughout the intervall U [ts, tp0] = [t2, tpa]. See Figuré33 (left).

If pa is crossed by duringts, t,.], then the smaller s¢\ B) U {r} yields two Delaunay crossings
of pa by the same point. The routine combination of Lemnia 4.5 with the probabiistrgument of
Clarkson and Shor implies that the overall number of sughesip, a, 7 in P is at mosiO(hn?). Clearly,
this also bounds the overall number of such quadruples

Assume then thaia is hit by ¢, as depicted in Figufe B3 (right). If this happens twice nlyi(is, ¢, )
then the smaller s€t” \ B) U {q} induces either two single Delaunay crossings or one doublaubay
crossing, of the edgea by ¢. In each of these cases, we can show, as usual, that thelouerdier of
such triple, ¢, a in P is at mostO(hn?) by combining Lemm&4l5 or Theordm .3 with the probabilistic
argument of Clarkson and Shor. Furthermdge, , J) is among the last/ + 1 Delaunay crossings that
the edgepa undergoes before being hit lgy Hence, this scenario occurs for at me¥¢hn?) Delaunay
quadruplesr in F.

To recap, we may assume tlgits the edgea only once during'ts, ¢,,), so this edge undergoes a
single Delaunay crossing laywithin (P \ B) U {q}.

Probabilistic refinement. Consider a random sample of [n/h] points chosen at random from.
Notice that the following two conditions hold simultanelysvith probability at least2(1/k*): (1) the
four points ofo belong toR, and (2)R includes none of the points @ \ {q,r}.

If the sampleR is indeed successful, the four poinisg, a,r define a Delaunay quadruple with
respect toR. Let Fr be the resulting family of such hereditary Delaunay quasifn R. Clearly,
Fr is 3-refined (with respect to the underlying 9&). In addition, each quadruplein Fx satisfies the
following new condition:

(Q7) The edgepa belongs to the triangulatioDT(R \ {¢,r}) throughout the intervalts, t,,), where
tpq denotes the first time aftgs when the edgea re-entersDT(R). Moreover,pa is hit in (3, t,,] by

g, but not byr, and this occurs only once duririgs, t,,]. In particular, the point sek \ {r} induces a
single Delaunay crossinga, ¢, Z, ), whose interval, is contained ints, t,).

We say that a familyF of quadruples igl-refinedif (1) it is 3-refined, and (2) its quadruples satisfy
the above condition (Q7) with respect to the underlying pset P (i.e., with R replaced byP). For
each quadruple in such at-refined familyF, we refer to the corresponding crossiig, ¢, Z,) (which
figures in condition (Q7)) as thepecial crossingf pa by ¢ in F.

As in the previous conditions, when regardiR@s an underlying point set, some of the critical times
(e.g.,t,q) may shift. As is easy to check Condition (Q7), we have thiefahg analogue of Propositions
and 5.B, showing that the notion of a special crossingeisdefined:
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Proposition 5.7. Let F be a4-refined family of Delaunay quadruples. Then every qua@rupl=
(p,q,a,r) in Fis uniquely determined by its tripl, a, ¢). Hence, there is one-to-one correspondence
between Delaunay quadruplesBfand their special crossings, so it remains to bound the nurobie
latter.

Proof. We are to show that the fourth point, of ¢, is uniquely determined by the first three points
p,a,r. Indeed, by condition (Q7); thelast point of P to crosspa, from L, to L;q, beforeq performs

this same type of crossing. O

Let ¥4(m) denote the maximum cardinality of4refined family 7 of Delaunay quadruples that
is defined with respect to a set of moving points. The preceding discussion implies the foitawv
recurrence:

W3(n) = O (h*Ty(n/h) + Lh N (n/h) + k(*N(n/¢) + k*N(n/k) + thnB(n)) , (6)

for any triple of parameters2 < k < £ < h.

By the above Propositidn 3.7, there is one-to-one corredgrace between Delaunay quadruptes
(p,q,a,r) of ad-refined familyF, and their respective triple®, ¢, a), which yield the corresponding
special crossings, so it suffices to bound the number of ther leonfigurations. This is indeed done in
Section ®, whose analysis is formulated mainly in the terfnspecialcrossings. However, before we
proceed in that direction, one last refinement is in order.

5.7 Stage 5: Extending the almost-Delaunayhood of;

Let F be a4-refined family of Delaunay quadruples, which is defined @veetP of n moving points.
Let o = (p,q,a,r) be a Delaunay quadruple i, which satisfies all the seven conditions (Q1)—(Q7)
that were enforced in the course of the preceding four stages

Note that the edggq belongs taDT (P \ {r}) throughout the interval of its Delaunay crossing by
r. Furthermore, by condition (Q7), the edge undergoes irP \ {r} a Delaunay crossinta, q,Z, =
[Ao, A\1]). Hence, Lemma3l1 implies thag belongs taADT (P \ {r}) also duringZ,. We next extend the
almost-Delaunayhood gf; from I andZ, to the rest of7,Z,| = conv(l UZ,).

e PgEDT(P\{r}) #7770

pa violated N a
I' ; ; \
| | r

- |
—
to 1 |2 [_C By
qr violated pa hitby ¢ q N
by p anda
pa € DT(P\{q,7}) p

Figure 34:Left: The setup at the beginning of Stage 5. Note that the gd@pelongs tdDT(P \ {r}) throughout
each of the intervalg andZ,.. The Delaunayhood ofy is violated byp anda between the last two co-circularities
(1, ¢2. The edgea is hit by g at some timeJ,, € ({2, tpq), and its Delaunayhood is violated hyandr throughout
the interval((z, J,). Right: A possible motion of during(¢z, V).
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Setup. Refer to Figurd_34. By condition (Q3), the Delaunayhood-@fs violated byp € L, and
a € Lij between the last two co-circulariti€s € J and(y > t3 of p,q,a,r (both of them red-blue
with respect ta andrq). Right after time(s (whenrgq is freed from the above violation Qyanda),
the Delaunayhood gfa is violated byg € L, andr € L;a. By condition (Q7),pa re-entersDT(P)
at some time,,, > (> (which is the first such time aftek), and belongs t®T (P \ {r,¢}) throughout
(ts, Apa). Finally, pa is hit at some time irits, t,,,] by ¢ but not byr. Hence, applying Lemnia 3.1 from
time (o, we conclude thaj crossega from L, to L;a at some moment, € ({2, 5], with the property
that the Delaunayhood ¢k is violated byq € L, andr € L, throughout(¢z,?,). In particular, the
aforementioned special crossifz, ¢, Z) in P\ {r} occurs entirely duringts, t,,], and its intervalr,
contains the above tim&, wheng entersL;a. (However,Z,. need not necessarily contaja)

The preceding discussion implies that the intenals= [ty,t1] andZ,. = [A\g, \1] (Wherepq is
known to be almost Delaunay) are indeed disjoint. We alsohesipe that the edges andrq intersect
throughout((y, ’l9q) = (¢1,¢2) U (Co, ’l9q)

To enforce the almost-Delaunayhoodmaf in the resulting gagt;, Ag), we fix a pair of constants
12 < k <« ¢ and proceed in two steps.

Charging events inA,,. As a preparation, we first extend the almost-Delaunayhood.oRecall that,
by condition (Q6); ¢ belongs tadDT (P \ {p,a}) throughout the intervalt,,, t,,). Heret,, denotes the
first time afterts whenrq is Delaunay, and,, denotes the last time before (or afwhenra is Delaunay.
Note that(t,,, t,4) contains the respective timég ¢; and(, of the three co-circularities co-circularities
of p,q,a,r. Recall also that, occurs after the ending timg of J. Hence, the inequality,, > t3 is
strict, sorq is not Delaunay right before ting,.

We next extend the almost-Delaunayhood-gfto a potentially larger interva(t,,, J,) (where, as
above,J, denotes the time i@, whengq enters the halfplané;a throughpa). We can assume, with
no loss of generality, that., < 9,. (Otherwise, we are done.) Therefore, and sigce< ¢,,, the
Delaunayhood ofu is violated byg € L,, andr € L, throughout the intervelt,,, 9,) C (C2,7,).

We apply Theorenh 212 it4,, over the interval(¢,,,vJ,), and with the first constark. (This is
possible becausey is Delaunay at time,,.) In the first two cases of Theordm P.2, we chasgéria
(pq,r, 1)) either to ak-shallow collinearity, or td2(k?) k-shallow co-circularities. Below we argue that
any eventinA,,, is charged as above by at m@stl) quadrupless.

pa ,
tra I J C? trq 19 ‘l t
G L EEEEEEE B B
to t1 to t3 tpa
1
e ra Tra’ H' I J' T3 t

Figure 35:Propositiof 5.B: The subfamily,, contains at most quadruples’ = (p’, ¢, a’, ) whose respective
crossingsp'q,r,I') end in(t1,9,). To establish the proposition, we fix such a quadruplewith p’ # a and
a’ # p, and argue that the second crossip@’, r, J') of ¢’ ends after,,.

Note that the respective pointsandr of o can be chosen i®(1) possible ways from among
the three or four points involved in the event. Now conside subfamilyI’,,. of all quadruples
o' = (p',q,d’,r) € F whose second and fourth points are equaj &mdr, respectively. (In particular,
I’y includes the quadruple = (p, ¢, a, ) under consideration.) Notice that eache I';, is composed
of two clockwise(p’, r)-crossings(p'q, v, I' = [0, 71]), (p'd’,r,J' = [m2,73]), and comes with a coun-
terclockwise(r, q)-crossing(a’r, g, H' = |14, 75]) (Which occurs in the smaller sét\ {p'}, and before
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J' begins). Note also that the first crossifgg, r, I') of ¢’ is also a counterclockwisg, r)-crossing.

Propositior 5.8 below implies that the first crossipg, r, I) of o is among the last four sudl, r)-
crossings(p’q, r, I') to end before any event that occursAn, during (¢.4,7,). (See Figur¢35 for a
schematic illustration.)

Proposition 5.8. With the above notation, the family, contains at most quadrupless’ = (p', ¢, d’, )
whose respective first crossingsq, r, I' = [19, 71]) end in(tq,Yy).

Hence, anyk-shallow co-circularity ork-shallow collinearity is charged as above by at most)
quadruples of’,,, so the above charging accounts for at rr(ds(tlc2N(n/k) + knzﬂ(n)) quadruples
oeF.

We can assume, then, that Condition (iii) of Theofem 2.2 $icdd there is a set,, of at most3k
point whose removal restores the Delaunayhogthroughout(t,,, ¥,).

Proof of Proposition[5.8. Proposition$ 5]Z, 513 ald 5.7 imply that (i) there exist ast@ayuadruples
o = (p,q,d,r) € Ty with p” = a ora” = p, and (i) for any other choice of’ € T, \ {c}, all the
six pointsp, q,a, r, p’, a’ are distinct.

Consider all the quadruples quadruptése T, that fall into the second category, and whose first
crossings(p'q,r,I') end in(t,q, Y,). Leto’ be the unique quadruple of this kind whose respective first
crossing(p’q,r, I' = [19,71]) endsfirst. (That is, there is no other quadrupté = (p”,q,a”,r) € Ty,
that satisfies{p”,a”} N {p,a} = 0, and whose first crossin@”q,r,I") ends in(t,4, 71).) Refer to
Figure[35.

Let 7, denote the last time before (or at) the beginniggpf I’ when the edged’ is Delaunay.
Sinced’ is 4-refined, the respective intervals = [ry, 1], J' = [, 73], and H’, of ¢/, are all contained
in [74, 73]. Condition (Q6) oncs’ implies thatrq belongs toDT(P \ {p’,a’}) throughout[r,., 73].
Therefore, and since botl and.J’ end aftert,,, we get that(; < 7,,. (Otherwise, we would get
Trat < G2 < tyq < 11 < T3, SO the above intervat, ./, 73] would contain the times, right before which
the Delaunayhood ofq is violated byp anda).

By the choice ofs’, any quadruples” = (p”,q,r,a”) € T, whose respectivéq, r)-crossing
(p"q,r,I") ends in(t;q,71), must satisfyp” = a or a” = p. Furthermore, Condition (Q2) (on’)
implies that there exist no quadruple$ < T',, whose respectivég, r)-crossings(p”q, r, I”) end in
(11,73). It, therefore, suffices to show tha > ¥, (that is, that the second crossitgd’, r, J') of o’
ends aftey; entersL,,).

a a a

p p P

Figure 36:Proof of Propositiof 518. We assume, for a contradictioat, th < v,, so both crossing&:'r, ¢, H')
and(p’a’,r, J") occur within (¢2,¥,). Left: At the timer, € H' whengq hits ’r, the Delaunayhood gfa is
violated bya andr’. Center: Ifar’ andpa still intersect at the time i0’” whenr hitsp’a’, then the Delaunayhood
of pa is violated byp’ anda’ at some moment durin@z,v,) C (t3,tq). Right: The last scenario, whege
recovers from its previous violation hy andr through a co-circularity.

Indeed, assume for a contradiction that< J,. Then, recalling that,,, > (2, we conclude that
[7a/, T3] is contained in the intervdls, v,), where the Delaunayhood pi: is violated byg andr-.

47



By condition (Q1) ons’, its edgera’ belongs toDT(P \ {p’,q}) throughout[r,./, 73]. Hence, at
the timer, € H' C [r,., 73] Wheng entersL}, , the edgepa is intersected by/r = a’q U gr, so the
Delaunayhood ofa is violated then by anda’. See Figuré 36 (left). (Otherwise, the Delaunayhood of
ra’ would be violated by anda, which is impossible duringr,../, 73].)

If ra’ still intersectspa at the time inJ’ C (¢2, ;) whenr hits p’a’ during the second crossing of
o', then the same argument shows that Delaunayhoqd: @ violated then by’ andad’, contrary to
condition (Q7) ono. (See Figuré_36 (center).) Otherwise, there is a timérjn 75) when the edge
pa recovers from its previous violation byanda’. Notice that, by condition (Q7), none ofa’ can
hit pa during the above interval (which is contained(if3, v,) C (t3,tpq)). Applying Lemm& 3L for
{p,a,r,d'}, we get that the four poin{s a, r, «’ are involved durindr,., 3) in a red-blue co-circularity
with respect tga andra’ (as depicted in Figule 86 (right)), contrary to the almosteddinayhood ofa’
in (1,4, 73). This final contradiction completes the proof of Proposif8. ]

We thus can assume, in what follows, that there is a sulbsgof at most3k points whose removal
restores the Delaunayhoodaf throughout(t,,, 9,).

Charging events in4,,. We apply Theorerh 212 i4,,, over the intervalt;,,), which covers the
gap(t1, \g) betweenl andZ,.

In cases (i) and (ii) of Theorem 2.2, we chargsvithin A,,, either to ar/-shallow collinearity or to
Q(¢?) ¢-shallow co-circularities. We claim that any such eventjclitoccurs inA,,, during (t1,9,), is
charged in this manner by at ma@stk) quadruplesr = (p, ¢, a, ).

Indeed, the points andq of o can be guessed if(1) possible ways among the three or four points
involved in the event. Le@,,, denote the sub-family of all quadruple§= (p, ¢,d’,r’) € F whose first
two points are equal toandg, respectively. Note thad,,, includes the quadruple under consideration,
and that, for each’ € Q,,, its first crossing is of the fornpg, r’, I'). Propositio 5.9 (below) implies
that the first crossingpq, r, I) of o is among the lasik + 3 such crossings to end before ahghallow
event that we charge id,,,. Hence, the above charging applies to at n@@$t(>N (n/¢) + kfn?B(n))
quadruples.

Apq rliesin L, Apqr C L,
I I }_/
e o
to 2 Ao Ug A1 lpa

Figure 37:Extending the almost-Delaunayhoodgfto (1, \g). We apply Theorem 2.2 over the larger interval
(t1,7Y4). By Propositioi59, the famil@,,, contains at mosik + 2 quadruples’ = (p, ¢,a’, ") whose respective
first crossinggpg, ', I') end in(t1,Y,).

Finally, if Condition (jii) of Theoren{ 2R is satisfied, we émp with a subseti,,, of at most3/
points whose removal restores the Delaunayhoqa; dfiroughout(t;, ¥,). In this case, we can “freef
from the points of4,, \ {a, r} (thereby extending the almost-Delaunayhoo@fo (1, \g) C (t1,7,))
through the standard probabilistic argument.

Proposition 5.9. The familyQ,,, contains at mosik + 2 quadrupless’ = (p, ¢, d’, ") whose respective
crossings(pg, ', I') end in(t1,Y,).

Proof. Sincep andg are fixed, Propositioris 5.2 ahd b.7 imply that afye Q,,, is uniquely determined
by each of its respective point$, ’. Hence, we have at most twd = (p,q,d’,7’") € Q,, that satisfy
a' = rorr’ = a, and, for any other quadruple @,,, none of its respective points andr’ is equal to
aorr.
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Fix o’ = (p,q,d’,7") € Q,, whose respective first crossitigq,r’,I’) ends in(t;,9,), and with
the property thafa,r} N {a’,7'} # (. To establish the proposition, it suffices to show that, foy a
sucho’, at least one of its points’, ' belongs to the set,, (obtained at the end of the preceding step)
of cardinality is at mos8k. Indeed, we have at mo8t quadrupless’ with o’ € A,,, and at mos8k
quadrupless’ with ' € A,,, and eaclv’ € Q,, is uniquely determined by each of its respective points
a’ andr’.

We, therefore, proceed to establishing the latter propeMgtice that the intervald and I’ are
disjoint, so we have’ C (t1,7,). Note also that lies in L}, right after timet;, and also at the later
time ¥, wheng hits pa (thereby freeinga from its previous violation by € L, andr € L;a). Hence,

r has to remain irL,}, throughout(t,9,) (or, else, it would cross,,, three times during U (t1,7,));
see Figuré 37. We thus conclude that, at the mome#t whenr’ hits pq, r’ enters the trianglé\pqgr
(whose order type remains fixed throughoétt ¥,)).

Claim 5.10. Lett’ be the time in’’ when the above point € P\ P, enters/Apqr through the interior
of pg. Thenr’ must leave\pgr during (¢/,9,).

Proof. Assume for a contradiction that remains inApgr throughout(¢’,9,). Recall thatpa is inter-
sected by-q throughout(tz, ¥4) C (C1,¢2) U (¢2, %), Withg € L, andr € L},. Observe that there is a
time in [t3,9,) wheny' lies within Apgr N L. Indeed, this property clearly holdsiffentersL }, in the
interval (t3,9,), wherepgq is contained in’,,,; see Figur@ 38 (center). Assume then tHanters/Apqr
beforet; (i.e.,t3 € (',9,)). However, in this case’ has to lie at timé3 within Apgr N L, as depicted
in Figure[38 (left). (Otherwise; would lie at that moment in the caB[p, a,r] N L;a D Apgr N L;a,
which is known to beP-empty throughout the second portion.bf= [ts, t3].)

To see a contradiction, notice thapqgr lies at timed,, entirely within the closure Qf_/;,'a; see Figure
[38 (right). Therefore;’ too has to entek,}, during(ts, 9,). However;’ cannot crosg.,,, during(ts, v,)
through one of its rays outsige and while remaining inside the trianglepqr (because the segmenis
andrg intersect there), and condition (Q7) erimplies thatr’ cannot hitpa during (¢3,9,) C [t3, tpal-
This contradiction completes the proof of Cldim 3.10. O

Consider the first time irit’, 9,) whenr’ leavesApgr, through one of the edges:, pq, rq. (Here,
as beforet’ denotes the time wher! hits pq during the first Delaunay crossinggq,r’,I') of ¢/ =
(p,q,d’,r").) Recall that’ cannot crosgr during (¢1,t3), becauser is a Delaunay quadruple (that is,
pr belongs taDT (P \ {g¢,a}) throughout[Z, J] = [to, t3]). Furthermorey’ cannot crosgr in (t3,v,)
either: otherwise’ would first have to enteL;a through the relative interior gfa, contrary to condition
(Q7) ono. We, thereby, conclude that can leave/\pqr during (¢',49,) C (¢1,9,) only through one of
the remaining edgeg- andpg.

P

Figure 38: Proof of Claim[5.ID. Left: Ifr" entersApqr during [t3,7,), this can happen only withitd, .

Center: Ift’ < t3 thens' lies in Apgr N L, attimets (because the rest dfpgr lies inside theP-empty cap

Blp,a,r] N L;a). Right: In both cases; must exitApgr before timed,, (at whichApgr passes entirely tﬁ;a).
If " exits Apgr during (t',9,) C (t1,9,) through the relative interiorg, then, by condition (Q2),

this can occur only in the smaller interv@l.,, 9,) (and only ifd, > t,,). Hence, in this case belongs
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to A,4, and we are done.

Assume, then, that’ leaves/Apqr through the edgeq, as depicted in Figure_89. Consider the
second Delaunay crossiriga’, ', J') of o’ = (p,q,d’,r"). Recall thatl’ begins aftet; and before the
beginning of.J’, so (pa’, ', J') occurs too after the end df. Sinceo’ € Q,, is 4-refined, the point
' remainsL;}, aftert’ and until the end off’ (or, else,”” would crossL,, three times). Therefore]’
ends before’ exits Apgr throughpg (and, in particular, beforé,). To conclude, the second crossing
(pa’,r',J") of o’ occurs entirely within(t;,,). To complete our analysis, we distinguish between the
following two sub-cases:

If o’ lies in L;f, at the time in.J’ when+' hits pa’, thenrq is intersected at that moment by the
Delaunay edge’a’; see Figuré_39 (left). Hence, Delaunayhoodrgfis violated at some moment in
J' C (t1,94) by " anda’. Furthermore, condition (Q2) animplies that the above violation is possible
only during(t,4,9,), SO at least one af’, " must belong to4,,.

Figure 39:Proof of Proposition 519. The secolgl 7)-crossing(pa’, r’, J') of o’ ends before’ hits pq again.
The two possible scenarios are depicted.

Assume, then, that’ lies in L, when+' hits pa’ during J'. Hence, both points’, ' lie at that
time inside the trianglé\pqr; see Figur€39 (right). Arguing as before, we conclude ¢hltaves/Apgr
befored, through one of the edgeg andpg. However, condition (Q7) oa’ implies thata’ cannot leave
Apgqr through the edggq: otherwiseq would enter the halfplané;a twice (once during the respective
special crossing af’, and another time through one of the outer ray&.0f\ pa). Therefore, in this case
a’ can leave\pqr befored, only through the relative interior afg. Arguing as before, we conclude that
a’ again belongs tol, . O

To recap, the previous chargings withity, and.A,, altogether account for at moS{(k¢?N (n/¢) +
k2N (n/k)+kén?B(n)) quadruples in out-refined familyF. Each surviving quadruple = (p, ¢, a, )
in 7 comes with a subset,,, of at most3/ points so thapgq is Delaunay inP \ A,, throughout the gap
(t1,X0) C (t1,9,) between the respective intervdl&ndZ, of o.

Probabilistic refinement. We apply the probabilistic argument of Clarkson and Shoroi® more
time.

We say that a familyF of Delaunay quadruples Erefinedor, simply, refinedif it is 4-refined with
respect to the underlying point sBf and each quadruplein F satisfies the following new condition:

(Q8) The edgepq belongs tdT (P \ {a,r}) throughout the respective intenvidl 1,.] = [to, \1]. (Here,
as above/ = [to, 1] is the interval of the firs{p, r)-crossings o, andZ, = Ao, A1] is the interval of
the special crossing oz by ¢.)
That is, we require that the famil§ is nonoverlapping, and that its quadruples are Delaunay and
satisfy all theS conditions (Q1) — (Q8).

Let ¥5(n) denote the maximum cardinality of a refined family of Delaunaadruples, that can be
defined over an underlying set efmoving points.
The routine sampling argument of Clarkson and Shbor [9] I¢adse following recurrence:
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Wy(n) < O (*W5(n/l) + k>N (n/l) + k*N(n/k) + kn*B(n)) .

As argued in the previous section, there is one-to-one gporeence between (1) quadruples-
(p,q,a,r) in a refined family 7, (2) their respective triple$p, q,a), and (3) the special crossings
(pa,q,Z,) performed by these triples.

As reviewed in the beginning of this section, the analysi¥ gfm) is delegated to Sectidd 6, which
primarily deals with the third type of configurations.

6 Special Crossings and Special Quadruples

In the preceding section we have established a sequencewfarces implying that the maximum
numberW¥(n) of consecutive quadruples (and, hence, the maximum nudvidey of Delaunay co-
circularities) in a setP of n moving points is (asymptotically) dominated by the maximpassible
cardinality U'5(m) of arefinedfamily F of Delaunay quadruples that is defined over of a centaigize
subsampleR C P.

To bound the above quantitys(n), for anyn > 0, we fix a setP, and a refined familyF of
(clockwise) Delaunay quadruples that is defined averThat is,.F is nonoverlapping, and each of its
quadruplesr = (p, q, a,r) satisfies the eight conditions (Q1) — (Q8) (stated in terms @fa, r, F and
P).

In particular, every triple of points of = (p, ¢, a,r) € F yield a Delaunay crossing, which some-
times occurs within aeducedtriangulation obtained by omitting fror® the remaining fourth point of
o. Indeed, recall that, as any clockwise quadruple, is formed by a pair of clockwjse')-crossings
(pq,r,I) and(pa,r, J). The two additional crossings.r, ¢, H) and (pa, ¢, Z,) have been enforced at
Stages 1 and 4 of Sectih 5, as parts of the respective comglitQ3) and (Q7), and they occur within
the respective appropriatefgducedtriangulationsDT(P \ {p}) andDT(P \ {r}).

Recall also that, according to Propositidns] $.2] 5.3, [ailll @&ach quadruple in F is uniquely
determined byeachof the four ordered tripleép, ¢, ), (p, a,7), (a,r,q), and(p, a, q), which realize its
four Delaunay crossings. (That is, in each triple the thimthpperforms a clockwise Delaunay crossing
of the edge connecting the first two points.)

To bound the cardinality of, we focus, for each quadrupte = (p, ¢, a,r) in F, on the last type
of crossing(pa, q,Z,), realized by its first three points ¢, a, and referred to as the special crossing of
pa by q. We emphasize thdpa, ¢, Z,) is also a regular Delaunay crossing which occurs in the small
triangulationDT(P \ {r}). For convenience of notation, we refertas theouter pointof (pa, ¢, Z;).

We further label each special crossify, ¢,Z,) as aclockwise (special)p, ¢)-crossing and as
a counterclockwise (specialy, ¢)-crossing Notice that Lemma_ 416 need not hold fgpecial (p, q)-
crossings of the same type (that is, either clockwise or walockwise), because these are defined
with respect to reduced point sets, each omitting the réispecuter pointr. As a matter of fact, the
respective outer points of any two su@h ¢)-crossings are always distinct, because, as noted above,
their ancestor quadruples jA are uniquely determined by the respective triglesy, 7). Hence, any
two (p, ¢) crossings (of the same type) are always defined with respatistinct point sets. Instead,
we use Lemmabl5, which imposes certain restrictions on lthesa-Delaunay crossings that can be
compared by it. For example, two counterclockwise spéeia})-crossingspa, ¢,Z,) and(wa, q,Z,,),
with respective outer pointsandu, become incompatible if and onlyif= w or p = w.

We first perform a preliminary pruning step that will ensureparticular, that Lemmpa35.5 indeed
applies to any pair of surviving counterclockwise spe¢ialg)-crossings. This will be done by con-
sidering all possible pairs dfistinct such(a, ¢)-crossings(pa, ¢,Z,) and (wa, q,Z, ), and by omitting
from F their corresponding quadruples= (p, q,a,r) ando’ = (w, q, a, ) if they share one or more
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additional points, apart fromp anda. A similar pruning step will ensure that any two clockwisesial
(p, q)-crossingypa, ¢, Z,.) and(pw, q, Z,,) share only the paitp, q).

The crucial observation is that the overall number of quplésithat we omit froni, at both steps,
does not exceed(n?). Indeed, assume, for instance, that a g, ¢, Z,,) and (wa, ¢, Z,)) of counter-
clockwise speciala, g)-crossings share an additional, third point (again, apanmf; anda). Recalling
that each quadruple in F is uniquely determined by any ordered sub-triple of its [miwe conclude
thatp £ w andr # u. That is, we have = w or p = u. Assume, with no loss of generality, that= w.
Recall that each ordered sub-tripledror in ¢’ performs a Delaunay crossing (perphaps within a suit-
ably reduced triangulation). We therefore get frerthe crossindar, ¢, H), within P\ {p}, and we get
from o’ the crossinqwa, ¢,Z,,) = (ra, q,Z,), within P\ {u}. We thus obtain twalistince Delaunay
crossings which are performed by temetriple (a, » = w, ¢) and within the same reduced triangulation
DT(P\{p,u}). Hence, aroutine combination of Lemmal4.5 with the prolistiilargument of Clarkson
and Shor implies that the underlying point g&tontains at most(n?) such triples(a, ¢, 7). Clearly,
this also bounds the overall number of such quadruples(p, ¢, a,r) ande’ = (w = r, q, a,u) that we
omit. A symmetric analysis is peformed for paifs:, ¢, Z,.) and(pw, ¢, Z,,) of clockwise(p, ¢)-crossings
that have a third point in common, and their respective quadso = (p, ¢, a,r) ando’ = (p, g, w, u).

To conclude, we can assume, from now on, that any pair whinhkists of any two counterclockwise
special(a, ¢)-crossings, or of any two special clockwigg, ¢)-crossings, involves six distinct points
(including the two outer points) and, therefore, satisfies ¢onditions of Lemma3.5. Therefore, all
the remaining counterclockwise specfal ¢)-crossings, withu, g-fixed, can be linearly ordered by the
starting times of their intervals, or by the ending timestadit intervals, or by the times whenhits
the corresponding-edge, and all three orders are identical. Furthermore,nhalb.% imposes a similar
order on the remaining clockwise spedigal ¢)-crossings, witlp, ¢ fixed.

Special quadruples. We say that two counterclockwise spedial ¢)-crossings areonsecutivéf they
are consecutive with respect to the natural order inducddcebymd5.b. That is, no other counterclock-
wise speciala, ¢)-crossings appear in this order between them.

Four pointsa, p, w, ¢ form aspecial quadrupley = (a, p, w, q) if we encounter two (distinct) coun-
terclockwise specidla, ¢)-crossingspa, ¢, Z,) and(wa, q, 7, ), with the respective outer pointandu,
that occur in this order (that ig,crosseea beforewa); these crossings need not be consecutive. Refer
to Figure[4D. We then usB, to denote the set which consists of the four points, w, ¢ of x, and of
the two outer points andw.

Remark. Our notation requires some understanding from the readbeenaver we talk about a special
quadruplex = (a,p,w, q), we also need to specify the two outer pointandu. We generally do so,
but do not consider them as an integral part of the quadrbpleguse, until Stage 4, they do not play any
role in the topological changes that the quadruple undstgblewever, the outer points will “return to
life” in Stage 4, and then their presence will lead to so catéeminal quadruplesvhich we will use to
finish up the analysis. See also the overview below.

Fix a special quadruplg = (a, p, w, ¢), as above. Lemnmia4.4 impl@hat the four points, p, w, ¢
are involved in at least one co-circularity durifig, and in at least one co-circularity durigg,. Specif-
ically, the former co-circularity is red-blue with respeoctthe edge®a andqw, so it must occur before
the beginning of7,, duringZ, \ 7,. (See Figur€40 (center).) Similarly, the latter co-ciecity is red-
blue with respect to the edges: andpg, so it must occur after the end ®f, during.7,, \ Z,.. (See Figure
[4Q (right).) Furthermore, the same argument as in Seciiisows that the points af are involved in

¥Indeed, recall that, in our notatiopcrossesu (during H) from L, to L;,., and it crosses the reversely oriented copy
of ar (duringZ,) from L}, = L., to L.

Zsince the crossings of are defined with respect to reduced points gets{r} and P \ {u}, this implication critically
relies on the assumption that « andw # r.

52



Ao Ju A3

Figure 40:The special quadruple = (a, p, w, q). The respective intervals. and.7, of the two special crossings
associated withy are either disjoint, or partially overlapping (left). Theipts of xy are co-circular at times
& €I\ Ju (center)and; € 7, \ Z, (right).

exactly oneco-circularity during each of the intervals and.7,, and we denote the respective times of
these co-circularities & < Z, \ J, and&; € J, \ Z,..

It is also instructive to note that the triangulatibf’ (P \ {r, u}) contains an ordinary counterclock-
wise quadruplda, p, w, q), with the associated Delaunay crossirigs, ¢,Z) and(wa, q, 7 ), such that
7 CZI.andJ C J,. This immediately implies that the statement of Lenima 5rlrtmre precisely, of
its counterclockwise variant) must hold also for the cotoltekwisespecialquadruples.

Consecutive special quadruples.We say that the special quadruple = (a,p,w,q), as above, is
consecutivef its counterclockwise(a, ¢)-crossings(pa, q,Z,) and (wa, q, J,) are consecutive in the
previously established order (implied by Lemmal 5.5). Is tase,y = (a,p, w, q) is uniquely deter-
mined by each of its crossindga, ¢,Z,), (wa, q, J,,). This, combined with Propositiofs 5[2, 5.3 and
[B.7, implies thaty is uniquely determined by every (ordered) triple of poiritattare chosen from the
samequadruple(p, g, a,r) or (w, q, a,u); see Figur€41. That is, the following statement holds (ith
above assumptions):

Proposition 6.1. Let x = (a,p,w,q) be a consecutive special quadruple, and (gt,¢,Z,) and
(wa, q, J,,) be the special crossings associated withwith respective outer pointsand u. Theny is
uniquely determined by each of the following eight triplgs:q, a), (p, q,7), (p,a,r), (a,r,q), (w,q, a),
(w,q,u), (w,a,u), and(a,u, q).

Figure 41:A consecutive counterclockwise special quadrupte (a, p, w, q), composed of two special crossings
(pa, q,Z,) and(wa, q, J..), with respective outer pointsandw. The special crossings gfcorrespond to regular
Delaunay quadruplg®, q, a, r) and(w, ¢, a, u) in F.

Let ®(n) denote the maximum number of consecutive special quadriipée can be induced by a
set ofn moving points and a refined familiy of Delaunay quadruples. The preceding discussion implies
the following relation between the maximum possible numsloéispecial crossings (identified with their
respectiveordinary quadruples inF) and consecutivepecialquadruples:

U5(n) = ®(n) + O(n?).

53



Overview. The analysis of special consecutive (counterclockwise&daquples proceeds through five
stages, numberedd 1, ... , 4.

At thei-th stage we consider a certain subclass of consecutivat@alockwise) special quadruples,
defined with respect to a refined family, which is constructed over the underlying $&bf n moving
points. We assume that each quadruple (a, p, w, ¢) under consideration satisfies certain topological
conditions, which are formulated in terms of the extendedg(including the outer points andw of
the two special crossings associated wi)h 7, and P. At each new stage we enforce one, or several
new conditions, so our special quadruples become progedgsionstrained.

The first four stages= 0, ..., 3 are almost identical to the corresponding stages desanteiction
[B. Informally, we put the outer pointsandu aside and then gradually enforce upon our quadrupkbe
counterclockwise variants of the six conditions (Q1)—(Q@hich arise in the similar stages of Section
B. As noted above, this requires some caution, as the comdsp speciala, ¢)-crossings(pa, q,Z;)
and(wa, q, J,,) are defined in terms of the (distinct) reduced point gets{r} andP \ {u}.

At each of these four stages, we first invoke Theoremd 2.Padd®.3, and Lemnia4.5, in order to
dispose of all special quadruples that fail to satisfy thelmenforced conditions, even after removal of
a small-size subset d?. The surviving quadruples are passed on to the next stage aaf appropriate
probabilistic refinement.

At the last Stage 4 we follow the same strategy and first apggaence of preparatory chargings,
similar to those described in Sectionl5.6. To handle the ingaquadruplesy (that are not disposed
of by these chargings) we re-introduce the correspondirigr quointsr, v of their special crossings
(pa,q,Z,) and (wa, q, J,) to our analysis. This allows us to charge such quadruplés especially
convenient topological configurations, referred taeaminal quadruples

Informally, each terminal quadruple is formed by an edgg,esa pgq, and by a pair of points that
crosse in oppositedirections (i.e., one of them crossefrom L, to L;q, and the other crossesrom
L;q to L,,). The analysis of these configurations is delegated to @€@ti where we directly bound
their number in terms of simpler quantities, introduced act®n[2 (and thereby complete the proof
of Theorem 2.11). To do so, we show that, for “most” terminahdpuples (if their number is at least
superquadratic), some three of their four points perform Belaunay crossings, again allowing us to
use Lemma4ls, to obtain a quadratic bound on their number.

The emergence of terminal quadruples can be attributedetdalfowing interplay between spe-
cial quadruples and their outer points. Fix a consecutiaeirfterclockwise) special quadruple =
(a,p,w,q), as above. Recall that the four pointsyofare co-circular at some timeés < Z, \ J, and
& € Ju\ Ju- Assume, with no loss of generality, that the co-circujadt time &, is the first co-
circularity of a, p, w, ¢, and has index. (A similar assumption was made for ordinary quadruples in
Sectiorib.) At Stage 1 we enforce upon such special quadryesuitable counterclockwise variant of
condition (Q3), according to which the edge undergoes a Delaunay crossingpywhere it crosses
wq from ngq to L,,,). Recall, however, that the underlying family includes the ordinary quadruple
(w, q,a,u), so the reversely-oriented copy; of gw undergoes a Delaunay crossing by the outer point
(which then crosses.,, from L, to L} ). This makegw, ¢, u, p) an obvious candidate for a terminal
guadruple thak can charge. A symmetric behaviour occurs if the co-cirtiylat time¢; has index3.

6.1 Stage 0: Charging events i4,,

Fix a consecutive special quadrupte= (a, p, w, q), whose two specidla, ¢)-crossingspa, ¢, Z,) and
(wa, q, Jy,), with respective outer points andw, correspond to quadruplésg, ¢, a,r) and (w, ¢, a, u)

in the underlying refined family7. See Figuré_41. Recall that, according to Proposifioh §.1is
uniquely determined by each of the ordered triplesa, ¢), (w, a,q), which perform its two special
(a,q)-crossings(pa, q,Z, = [Ao, \1] and (wa, q, J, = [X2,A3]). Our goal is to extend the almost-
Delaunayhood ofa to the possible gap\;, \2] betweerZ, and.7,. To do so, we fix a suitable constant
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k and apply Theorer 2.2 i, over the interval\;, \3), which covers the aforementioned gap (if it
exists). Notice that the edge is not necessarily Delaunay (IDT'(P)) at times\; and A3, S0 we apply
this theorem with respect to the smaller 8et{r} (where, by LemmaZ4lI)T (P \ {r}) clearly contains
ga attime);.

If at least one of the Conditions (i) or (ii) of Theordm 2.2 d®l| we can chargg either to ak-
shallow collinearity, or tcﬂ(k:Q) k-shallow co-circularities, which are encountered in thduced red-

blue arrangemenzlg’;), defined ovet” \ {r}, during(\;, \3). (Each of these events (& + 1)-shallow
inin A,, when defined over the entire skt) It suffices to check that eacl + 1)-shallow collinearity

or co-circularity, that occurs in the larger arrangemdpj at some time* € (\;, A3), is charged by at
mostO(1) special quadrupleg. Indeed, the pointg anda of x can be guessed in at mast1) ways
among the three or four points involved in the shallow eventrthermore, no counterclockwise special
(a, q)-crossings(p’a, q, Z,+) end in(\y, A\3), so(pa, ¢, Z,) is the last suctia, q)-crossing to end before
time t*. This gives us the third point, and Proposition 611 then completes the proof of the claim. T
conclude, the Clarkson-Shor probabilistic argument iggpthat the above scenario happens for at most

O (K*N(n/k) + kn®B(n))

special quadruplesg.

Now suppose that Condition (iii) of Theordm P.2 is satisfi@dhen there is a subset of at most
3k points (not including-) such that the edgg: belongs taDT(P \ (A U {r})) throughout the interval
.U [)\1, /\3] = [)\0, )\3]

To proceed, we consider a random suli3etf [n/k| points of P. Let Fr denote the induced family
of surviving (regular) Delaunay quadruples. Namely, afag quadruples in F yields a counterpart
in Fr if and only if R includes the four points af. As is easy to checkFr, is also refined with respect
to its underlying sefz. Furthermore, it can be viewed as a subseFpbecause each of its quadruples
has a (unique) ancestor jA. Therefore, Fr yields no new Delaunay crossings, whose counterparts did
not arise already in the context &f.

Note that the following two events occur simultaneouslyhvwtobability at leasf2(1/k%): (1) R
includes the six points aP,, and (2) none of the points of \ P, belongs taR.

Assume that the sampleis indeed successful (for the chosen special quadrdpl&hen the family
Fr still contains the quadruple®, ¢, a, r) and(w, ¢, a, u). Hence, Fr, still yields the special crossings
of pa andwa by ¢ (with the same outer points and ). We continue to denote these crossings by
(pa, q,Z,) and(wa, q, J,,) but observe that the corresponding inten@ls= [\, \1] and 7, = [A2, As3]
may shrink in the process. (See Section 5.2 for more detailberefore, R and Fx also yield the
(counterclockwise) special quadrugle p, w, ¢), which we continue to denote by. Furthermorey is
again consecutive with respect Bband Fr (because the underlying famil§f; induces no new special
crossings, which did not arise in the contextf. Moreover, since?’ contains none of the poinisu,
the edgeja now belongs tdT(R \ {r,u, p, w}) throughout the extended intenvdl,, 7,,] = [Ao, As];
see Figur€42.

Definition. Let P be a (finite) set of moving points, and |&tbe a refined family constructed over
We say that a consecutive special quadrupte (a, p, w, q), formed by counterclockwise special, q)-
crossinggpa, q,Z, = [Ao, A\1]) and(wa, ¢, J,, = [A2, As]) (both of them inF) is Delaunay(again, with
respect toP and.F), if its edgeaq belongs toDT(P \ {p,w,r,u}) throughout the extended interval
[IT7 ju] = [)\07 )\3]

Let &y(m) denote the maximum number of consecutive Delaunay spegalrgples that can be
induced by a refined family= defined overn moving points. The preceding discussion implies the
following recurrence.

®(n) < O (K°®o(n/k) + k*N(n/k) + kn*B(n)) , 7)
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ga € DT(P\ {r}) ga € DT(P\ {u})

R e
yoovoow
pT(R) ~TE —t

ga € DT(R\ {r,u,p,w})

Figure 42:After replacing the underlying sét by its subsamplé, the edgeya belongs taDT(R\ {r,u, p, w})
throughou{Z,., 7,,] = conv(Z,. U J,,), including the gap betweeh). and.7,,. (The interval<Z,. and.7,, may shrink
in the process.)

for any constant parametér> 12.

6.2 Stagel

To bound the above quanti(n), we fix an underlying seP of n moving points, a refined family

F, and a consecutive Delaunay special quadruple: (a,p,w,q), obtained from the corresponding
special crossingépa, q, Z, = [\, A\1]) and(wa, q, 7, = [A2, A3]); r andu are the corresponding outer
points. See Figule 41. By definition, the edgebelongs tdT(P \ {p, w, r,u}) throughout the interval

[Ao, As].

As in Section’b, we fix constant®2 < k& < ¢ and distinguish between five possible scenarios,
where the roles of the edges andwqg are mostly symmetric. In all but the last case, we will be @ble
bound the number of (the relevant) Delaunay special quéskup terms of quantities that were already
introduced in Sectionl2. In the last case (case (e)), ourdatithalso depend on the number of special
guadruples of a more restricted type, which are defined avepgaropriate subsample &fof P. Such
quadruples will be called-restricted and their analysis will be passed on to the subsequentsstage

Case (a).The edgeja is hit during[Ag, A3] by at least one of the poings w. Clearly, this collinearity
can happen only during the gap betwéerand. 7, (if it exists).

If qa is hit by p then the triplep, a, ¢ defines two distinct (single) Delaunay crossings within the
smaller triangulatioDT (P \ {w,r,u}). (Here we exploit the fact that the crossed edgeas almost
Delaunay throughout\g, A3].) According to Lemma4]5, combined with the Clarkson-Shgument,
where we use a sample of sizg¢2, the overall number of such triplés, ¢, a) (and, hence, of such special
quadruplesy = (a,p, w, ¢), each of them uniquely determined by its correspondindet(ip, ¢, a)) is at
mostO(n?).

If ga is hit by w then we similarly argue that the triplev, a, ¢) defines two distinct Delaunay cross-
ings within DT(P \ {p,r,u}), so the number of such special quadruple¢each of them uniquely
determined by the corresponding trigle, ¢, a)) is at mostO(n?) too.

Case (b).At leastk clockwise specialp, ¢)-crossinggpa’, ¢, Z,») end in(A1, As], or at leask clockwise
special(w, ¢)-crossinggwa’, q, 7, ) begin in[Ag, A2); each of these crossings comes with its respective
outer pointr’ or u'.

Without loss of genarality, we consider only the former stém and handle the latter one in a fully
symmetric manner. Recall that a spedial q)-crossing(pa’, ¢,Z,+) is uniquely determined by each
of the triples(p, d’, q) and(p, ¢, ). Hence, at most one of these special crossingsehagual tow.
Moreover, the preliminary pruning (applied to clockwisesial (p, ¢)-crossings) guarantees that none
of them can have’ = aora’ = r.

We apply Theorerfi 513, in combination with the standard aentrof Clarkson and Shor, in order
to dispose of such special quadrupbes To do so, we consider a random sub&ebf [n/4] points
of P and notice that the following two conditions hold simultansly with probability2(1): (1) R
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(pa,q,Zv) : (wa,q, Ju)
——————————— t——fr et

Figure 43:Case (b): at least clockwise specialp, ¢)-crossinggpa’, q, Z,») end in(A1, A3].

includes the pointg, ¢ anda, but none of-, v, and (2) for at least a constant fraction of the above special
(p, q)-crossingspd’, ¢, Z,), the setR includes the point’ but notr’.

Specifically, (1) holds with some constant probability elos(1/4)3(3/4)%. Concerning (2), assume
without loss of generality that the number of relevant args(pq’, ¢, Z,) is exactlyk (so at least—1 of
them satisfya’ # u). Then, conditioning on the success of (1), the expectedbeumf these crossings
that satisfy the property in (2) is very close (b — 1)(3/16), or larger. Hence, Markov's inequality
implies that, with an appropriate choice of parametersptbbability of (2), conditioned on the success
of (1), is also some fixed constant. Hence, the probabilit both (1) and (2) hold is als@(1), as
claimed.

If the sampleR is successful (for the giver), then it clearly yields an (ordinary) Delaunay crossing
(pa, q,T), whose respective intervdlis contained ifAg, A\1| (asR C P\ {r,u}). It remains to check
that this crossing iga, ¢, ©(k))-chargeable, with respect to the interad, \s].

To see the latter property, note that each of the above $fecig-crossingspa’, ¢, Z,), for which
the sampleR includesa’ but not+’, yields the Delaunay crossinga’,¢,Z’) in R, with Z' C Z,.
Therefore, Lemma_ 4.6 implies th&ba’, ¢, Z') occurs within[\g, A\1] U Z,» C [A\g, A3]. Moreover,aq
belongs tadDT(R) at times\, and A3 (in addition to its almost-Delaunayhood dI'( R), with only two
pointsp, w removed, during)\g, As)).

Theoreni 5.8 implies, then, that the overall number of supkes (p, ¢,a) in R is only

O (K*N(n/k) + kn*B(n)) .

Clearly, this also bounds the overall number of Delaunagigpguadruplesy falling into case (b).

To conclude, we can assume, from now on, that case (b) doescoat. That is, fewer thah
clockwise specialp, ¢)-crossings end iriA;, A3], and fewer thark clockwise specialw, ¢)-crossings
begin in the symmetric intervéhg, \,).

Case (c).No clockwise specialp, ¢)-crossings(pa’, ¢, Z,), with ' & {w, u}, end during[\s, co), or
no clockwise specialw, q)-crossingswda’, ¢, J./), with «’ & {p, r}, begin during(—oco, \g].

Without loss of generality, we consider only the first sulecaad handle the other one in a fully
symmetric manner. Note that the preliminary pruning (caretiwith the fact thatpa, ¢, Z,) is uniquely
determined by the triplép, ¢, 7)) guarantees that no clockwise spedialq)-crossing(pa’, ¢, Z,.) can
haver’ in {r,a}.

Since case (b) does not occupa, ¢, Z,) is among thée: + 3 last clockwise specidlp, ¢)-crossings
(in the standard order provided by Lemmal 5.5). Indeed, at mssch special crossindga’, ¢, Z,+) end
in (A1, A3}, and at most two of them can end affey, namely those whose outer point is eitheor w
(recalling that this outer point, together withg, uniquely determines the crossing). Therefore, we can
charge(pa, ¢, Z,) and to the edgenq, so this situation happens for at méstkn?) special quadruples

X-
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)\o(pa e ))\1 )\pq (pa/’ q, Ir’)

——————————— - —- -t

' pgE DT(P\ {r'})

wq € DT(P\ {u})

Figure 44: Assuming (c) does not hold, we pit, to be the first time ifAs, o) whenpg belongs to some
reduced triangulatioDT(P \ {r'}), for ' ¢ P,. Similarly, we put\,,, to be the last time iti—oco, A\g] whenwg
belongs to some reduced triangulatio® (P \ {u'}), foru’ & P, .

Preparing for cases (d) and (e). For the remainder of this stage, we assume that none of tiee (as
(b) or (c) occurs. In particular, there is a spe¢jalq)-crossing(pa’, ¢, Z,/), whose outer point’ satisfies
r" ¢ {w,u}, that ends afteks. (Refer to Figur€44.) Therefore, and according to Lerhmiap4. belongs
toDT(P\{r'}) either at time\s or at some later time. Moreovet, does not belong t®, because, after
the preliminary pruning, there remain no clockwise spegia)-crossingspa’, ¢, Z,/) with ' € {a,r}.
Let \,, be the first time inA3, c0) when pg belongs to some triangulationT(P \ {r'}), for some
r’" ¢ P,. More precisely, we puk,, = A3 if pg belongs to such a triangulation at timg, and otherwise
we set),, to be the first time afteks whenpg entersDT (P \ {r'}) (for somer’ ¢ P,).

A symmetric argument (adapted for clockwise spegialq)-crossings) shows that there is a special
(w, q)-crossing(wd’, q, J, ), with an outer point’ ¢ {a,r}, that begins before, (sowg € DT(P \
{u'}) at some time before or aj). We define\,,, to be the last time if—oco, o] when the edgevq
belongs to some triangulatiddT (P \ {u'}), for someu’ ¢ P,. In what follows, we use’ andu’ to
denote a fixdeh pair of points, outside?,, whose removal restores the Delaunayhooggfndwg at
respective times,,, and\,,4, and for which\,,, is smallest and.,,, is largest.

Before proceeding to the cases (d) and (e), we first apply renel@.2 in.A,, over the interval
(A1, Apq), and then apply it ind,,, over the symmetric intervel\,, A2), both times with the second
constant > k.

Consider the first application of Theoréml2.2. It is perfodmeéth respect to theeducedtriangu-
lation DT(P \ {r,r'}), which containgpg at time \,,. If (at least) one of the first two conditions of
Theoreni 2P holds, we charge via (pa, ¢, Z,.), either toQ2(¢2) (¢ + 2)-shallow co-circularities, or to an
(¢4 2)-shallow collinearity. (Each of these eventg-shallow with respect t&\ {r,’}.) As before, the
crucial observation is that each co-circularity or colirigy, which occurs at some timeé € (A1, Apg),
is charged in the above manner by at mOs$t:) special quadrupleg. Indeed, the pointp andq of x
can be chosen i(1) ways among the three or four points involved in the eventtHeumore, recall
that x is uniquely determined by the triple, p, ¢), so it suffices to guess(for the chosem, ¢ andt*).

Since case (b) has been ruled out, at miostockwise specialp, q)-crossings(pa’, ¢, Z,) end in
(A1,A3). Moreover, assuming,, > A3, no such crossing can end (i3, \,,] unless its respective
outer pointr’ belongs to{w,u} (which happens for at most two special ¢)-crossings). Therefore,
(pa,q,Z,) is among the last + 3 clockwise specialp, ¢)-crossings to end before tinté.

To conclude, the above charging accounts for at mibgt(? N (n/¢) + kén?3(n)) special quadru-
plesy.

Finally, if Condition (iii) of Theorenl 2.2 holds, then the Ranayhood ofq can be restored through-
out the interval\;, \,,] by removing a subset of at most3/ + 2 points of P (includingr andr’); see
Figure[45.

The second application of TheorémI2.24n,, is fully symmetric, and it is done with respect to the
setP\ {u, v’} in the interval(\,,4, A2). If at least one of the Conditions (i), (ii) is satisfied, weplse of

2Notice that we do not claim that the choiceand’ is unique.
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Awg

Figure 45:Extending the almost-Delaunayhood;ef andwg, in preparation for cases (d) and (e), respectively,
fromZ, = [Ao, M| 10 [Ao, Apg], @and from7, = [z, A3 t0 [Awyq, A3).

x by charging it (via(wa, ¢, J,,)) to (¢ 4 2)-shallow collinearities and co-circularities that ocaut4,,,
during (Awq, A2). (Since case (b) has been ruled duig, ¢, 7,,) is among the firsk 4 3 special counter-
clockwise(w, q)-crossings to begin after each charged event. Hence, egHiryearity or co-circularity
is charged at mosP (k) times.) As before, this accounts for at mstk(2N (n/{) + kin?3(n)) special
quadruplesy.

For each of the remaining special quadruples we have B sdtat most3¢ + 2 points (includingu
andu’) whose removal restores the Delaunayhood@throughout{\,,4, A2]; see Figuré45 again.

To recap, in each of the remaining cases (d) and (e), we maynasthe existence of the first time
Apg > A3 Wwhenpg belongs to some reduced triangulatioi’ (P \ {r'}), and of the symmetric last time
Awg < Ao whenwg belongs to a similarly reduced triangulatior’ (P \ {u'}), whereu’ andr’ are fixed
points outsideP,. In addition, there exist setd (including » andr’) and B (including v and«’), both
of cardinality at mosB¢ + 2, whose removal restores the Delaunayhoog@andwq throughout the
respective interval$h;, \,,] and[\,4, A2] (and, therefore, extends the almost-Delaunayhood of these
edges to the respective larger intenvilg, Ay = I U [A1, Apg] @nd[Ayg, A3] = [Awg, A2) U Jo,).

Case (d). The pointa hits the edgepg during [A1, Ay,], or it hits the edgevg during the symmetric
interval [Ayq, Az).

In the former scenario, the triple, p, ¢) defines two Delaunay crossings witfidil'((P\ A) U {p}),
and, in the latter, the symmetric triple, w, ¢) defines two Delaunay crossings witdil'((P \ B) U
{w}). In both cases, we can use Lemmad 4.5, in combination withah®bng argument of Clarkson
and Shor, to show that the overall number of the relevanesim P is at mostO(/n?). As in case (a),
this also bounds the overall number of such special quagsypt= (a, p, w, q).

Case (e).None of the previous cases (a)—(d) occurs, and none of thienprary charging arguments
apply toy.

In particular, since cases (a) and (d) have been ruled dlerehe poing either remains irL;a after
the end\; of Z, and until crossingva (during 7,,), or else it re-enterd,, during that period, through
the relative interior opa. Similarly, ¢ must remain inL,, after crossinga (during Z,.) and until the
beginning\; of 7, unless it crossesa (from L to L,,,) during that period.

In addition, we assume the existence of the sktsnd B, as above, whose removal restores the
Delaunayhood opg andwq throughout the respective intervals,,, Az] and[Ag, Ay, ).

Recall that, according to Lemria#.4, the four points¢afre co-circular at time&, € Z,. \ 7, and
& € Ju\Z, (see, e.g., Figuille 40). Clearly, at least one of these codaiities is extremal. We therefore
distinguish between two subcases (whose treatment refadinsymmetric untill the beginning of Stage
4).

Case (el): The co-circularity at time&; has index3. In this case, we say that is aright special
quadruple We claim that in this case the edgeis hit during(A1, A,,] by the pointw, which crosses it
from L;q to L;q. To show this, we distinguish between two sub-scenarios.
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(i) If pliesin L, whenq enters the opposite halfplarg’,, (during 7,,), then the Delaunayhood of;

is violated, right after time;, by w € L;q anda € L,,. See Figuré 46 (left). Hencey is hit by at
least one of these two points durifg, \,q] € (A2, A\,q], @s prescribed in cases (i) and (i) of Lemma
[3.7 (case (iii) thereof cannot arise singehas index3). Since case (d) has been ruled autannot hit
pg during (Ao, \,q]. Hence,pg must be hit byw, which then crosses it frorﬂ;q to L,, (this crossing
direction is also prescribed by the lemma).

Figure 46:Case (el)%; is the last co-circularity of., p, w, g. Arguing that the edgep is crossed byw during
(A1, A\pgl. Left: A possible motion of if p € L., wheng crossesva (during.7,,). Right: A possible motion of
(afterZ,) if ¢ re-enterd.,, throughpa.

(ii) If pliesin L}, wheng enters this halfplane, thepnmust re-enter.,,, afterZ, and before it reaches
L} .. Hence, the co-circularity at tintg is as depicted in Figufe 6 (right); that s, it occurs wita L.,
andq € L,,. Since none of the preceding cases (a), (d) hajdsan re-enter,,, during this interval
only through the edgpa. Therefore, the counterclockwise variant of Lenimd 5.1 g&eth for special
quadruples, as described in the introduction to this seriioplies that in this case too crossegyq
from L/, to L, during (A1, As] € (A1, Apg]; see Figur&46 (right). (As a matter of fact, this collingari
must occur during\q, &1).)

To conclude, in both sub-scenarios the eggeundergoes a Delaunay crossing tywithin the
smaller triangulatiorDT((P \ A) U {w}), and the respective interval = [\4, \5] of that crossing is
contained iMA;, Ay,]. (We again emphasize thatincludes both points, ' # w, so the edgeq belongs
to DT((P \ A) U{w}) throughoutZ, = [Ag, A] and at time\,,,.)

If w hits pg twiceduring (A1, A4, thenpg undergoes withiDT((P \ A) U{w}) either two (single)
Delaunay crossings, or a double Delaunay crossing, by time gmintw. We thus charge to the
respective triple(p, ¢, w) and use Theorem 4.3 or Lemral4.5, in combination with the giiibtic
argument of Clarkson and Shor, to show that the overall narobsuch triples(p, ¢, w) is at most
O(¢n?). Since case (b) does not occa, ¢, Z, = [Xo, A1]) is among the last + 3 special clockwise
(p, q)-crossings to end before the above crossingsgdly w. (Namely, at mosk such(p, ¢)-crossings
end during(\;, As], and at most two of them can end(iks, A, ], if A3 # \,,; see the analysis preceding
case (e) for more details.) In particular, any trifleq, w) is shared by at moét+ 3 charging quadruples
x. Hence, the above additional collinearities 0f;, w are encountered for at most(k¢n?) special
quadruples.

A similar argument applies if the edgeq is hit by p durin@ [Awg> A2). In this case, the triple
(p, q,w) performs two distinct single Delaunay crossings withinttiengulationDT((P \ (AU B)) U
{w,p}) (namely, the crossing afp by w, and the crossing afiq by p). The same boun@®(k¢n?) holds
in this case too.

We thus assume, from now on, thatits pg exactly once duringA;, \,,], and thap does not cross
wgq during the symmetric interval,,,, A2). In particular, this implies thag lies in L, when it enters

3incep # u, the pointp cannot crossug during 7., = [A2, A3, aswq belongs taDT(P \ {u}) during that interval.
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L;a during Z... Indeed, otherwisg would have to cros€.,,, (thereby leavingL, ) between the times
when it enters the halfplane{sja and L}, (both times during the respective special crossings). €5inc
neither of the cases (a), (d) holdscan cross.,,,, for the first time, only withinwa. However, in this
latter case the counterclockwise variant Lenimé 5.1 woulglyirthat p hits wq during [A,,q, A2) (which
has been ruled in the previous paragraph).

pq € DT(P\ {r'})
A, w crossegp

wgq € DT(P\ {u'}) [ & A2 & A3

A\ B, p does not crosgw
wq

Figure 47:Case (el). Left: A possible motion gfbefore and during,.. The Delaunayhood afyq is violated,
right before¢y, by p anda. The points ofy are involved, at some tim&_; € [A,q,&o) in another co-circularity
(of index1). The order type of remains fixed throughou¢_1, &]. Right: A schematic summary of what we
eventually assume at the end of case (el).

We may therefore assume thatlies in L;a = L;;l whengq crossewa (duringZ,). See Figuré 47
(left). Arguing as in the previous similar situations, waclude that the Delaunayhood®f is violated,
right beforegy, by p € L, anda € Lf,. (Thatis,w enters the caB[p,q,a] N L}, at ime&.) By
Lemmal3.1 (applied with respect T (P \ {u,u’})), and since none of the pointsp is allowed to
crosswg during [A,q, A2], the four pointsp, ¢, a, w must be co-circular at some tinge; € [Ayq, &0),
right before which the Delaunayhood p# is violated byq € L,, andw € L;a. (We must have
Awg < €21 < & < A2 < &1.) Moreover,wg is intersected bya throughout¢_+, &]. (In other words,
the order type of, p, w, ¢ remains fixed there.)

A schematic summary of what we assume in case (el) (by thefatsdamalysis) is given in Figure
47 (right).

Case (e2): The co-circularity at time¢&, has index 1. In this case, we say that is aleft special
qguadruple We apply a fully symmetric topological analysis (in whicle switch the roles ofg andwg,
and reverse the direction of the time axis).

Figure 48: Case (e2)¥ is thefirst co-circularity ofa, p,w, ¢. Arguing thatp hits qw in [A,q, A2). Left: A
possible motion of if w lies in L;;a = L;ra wheng hits pa (duringZ,.). Right: A possible motion o if ¢ hitswa
also before7, (and after its hitga in Z,.).

Briefly, we use one of the Lemmas B.1orl5.1 to show thabssesug, from L; to L, during the
interval [A,,q, A2]. Asin case (el), we distinguish between two possible ses)arow depending on the
location ofw wheng crossea (duringZ,.).
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() If wlies |nL ., Wheng crossea duringZ, then the Delaunayhood afq is violated, right before
o, byp € Ly, anda € Lj;q Hence, the promised crossing follows from tiree-reversedzariant of
Lemmd3.1 (and because case (d) has been ruled out); see[E&(left).

We again emphasize that, in this subscenario of case (&2grtissing ofvg by p occurs after,,,
andbefore. (Note that Figuré48 (left) depicts a possible trajectdry m the standard time direction.
In the time-reversed application of Lemial3.1, the pgintovesbackwards sop crossesvg from L,
to LJr In the standard time direction, the crossing is frbml to L, , as asserted.)

(i) If wliesinL,, = L,, (i.e.,qgandp liein L},) whenq crossea, thenq will have to enterl,,,
before the begmnlng aff, (and only through the interior aba, as cases (a) and (d) have been ruled
out). Therefore, the asserted crossinguagf by p now follows from a suitable (counterclockwise and
time-reversed) variant of Lemrhab.1; see Fidure 48 (right).

(Again, Figure[48 (right) depicts a possible trajectoryuofn the standard time direction. In the
time-reversed application of Lemmal.1, the roleg ahdw in the statement of the lemma are switched,
andp crossesuq in the opposite direction, from,,, to LJr

If p hits wq twice during[A,q, A2), or if w hits pg durlng (A1, Apgl, then we can dispose af using
Theoreni 4B or Lemnfa4.5. Namely, we then argue that the{iipky, ¢) is involved withinDT((P \
(BUA))U{q,w}) either in two distinct single Delaunay crossings, or in onglile Delaunay crossing.
Hence, the overall number of such triplesfnis at mostO(¢n?). Furthermore, any triplép, w, q) is
shared by at most + 3 special quadrupleg (hamely, such special quadruples= (a, p, w, ¢) whose
second crossing8va, ¢, J,,) are among the firgt + 3 clockwise specialw, ¢)-crossings to begin after
p crossegw from L, to LJr ), see case (el) for a fully symmetric argument.

wq?

a pg € DT(P\ {r'})
A, w does not cros
(pa,q,Z) l ......... paraes
----------------- 5-—---!5-'3\----->t
Ao o A ; 152 |Apg

&

____________________ I H
wq € DT(P\ {u'}) l/\z A3
1 S (wa,q, Ju)

A B, p crossegw
wq

Figure 49: Case (e2). Left: A possible motion gfduring 7., and afterwards. The Delaunayhoodmf is
violated, right after¢;, by a andw. The points ofy are involved, at some tim& € (&1, \pq] in another co-
circularity (of index3). The order type ofy remains fixed throughoy¢;, £;]. Right: A schematic summary of
what we eventually assume at the end of case (e2).

To conclude, we may assume thaditits wq only once during,,4, A2) (crossing it fromLJr to L),
and thatw does not crosgg during (A1, A,¢]. Lemmé&3.1 then implies that the pointsyoére co -circular
at some times € (A1, \,], and thaipg is intersected by.w throughout(¢;, &2]; see Figuré 49 (left). A
schematic summary of what we assume by the end of case (e2¢isig Figure 4D (right).

Probabilistic refinement. For each clockwise speciap, q)-crossing (pa’, q,Z,.) that ends during
(A1, A\pq) We add the corresponding poigtto the obstruction set of pq. S|m|larly, for each clockwise
special(w, q)-crossing(wd’, ¢, J,+) that begins during\,,,, A2) we add the point’ to the obstruction
set B of wq. As in Sectior[ b, this is done in order to dispose of the cpording specialp, ¢)- and
(w, g)-crossings. Since we add at mdst- 2 elements to each set, and siricex ¢, each of the sets
A, B still contains at most/ points of P.

Consider a subset of [n/¢] points chosen at random frof. Let Fr denote the refined family
induced byF over R. Notice that the following two conditions hold simultanstuwith probability at
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least(2(1/¢5): (1) The 6 points of”, belong toR, and (2)R includes none of the points ¢flU B)\ P,.

Assume that the above samgtds indeed successful for the choser- (a, p, w, ¢). Then the points
of P, still yield a Delaunay consecutive special quadruple (efsahme topological type, which can be
either right or left) with respect t&® and 7. We continue to denote this new quadrupleyasut note
that the respective intervals and.7, of the special crossing®a, ¢,Z,) and(wa, q, J,,) may shrink as
we pass fronDT(P) to DT (R). We next review the additional properties gainedyoy DT (R).

First, recall that the old time,,, (defined after case (c) in terms 8% was accompanied by a point
" ¢ P,, whose removal restored the Delaunayhoogpht that time. Since’ is among the omitted
points of A, we can redefine,,, as the first time if\3, co) whenpg belongs taDT(R). Similarly, we
redefine\,,, as the last time i—oo, A\g] whenwg belongs toDT(R). (In both cases, we refer to the
new values of\, and\3.) By what has just been noted, the new value\gf (resp., of\,,,) decreases
(resp., increases) from its old value.

Second, the following three conditions hold with respecktand Fr, and with the new values of
A0s A1, A2, A3, Apg @andA,,, (see Figuré€H0 for a schematic summary):

(S1) The edgepq belongs toDT(R \ {a,r, w,u}) throughout the interval\y, \,,]. Furthermore, no
clockwise specialp, ¢)-crossinggpd’, ¢, Z,») end during( A1, \,,) (except perhaps for the special cross-
ings of pu andpw by q).

(S2) The edgewq belongs toDT(R \ {p,a,r, u}) throughout the interval\,,,, A3]. Furthermore, no
clockwise specialw, ¢)-crossings(wa’, ¢, Z,/) begin during(A.,4, A2) (except perhaps for the special
crossings ofvr andwp by g).

(S3a)lf x is aright quadruple, then the sét\ {a,r, u} induces a Delaunay crossiligp, w, ) which
occurs within(A1, A,]. Furthermoreyw hits pg only once during A1, A,,], SO this is a single Delaunay
crossing. Moreover, the points gfare co-circular at some time.; € [A,q,&0), and the edgew is
violated bya € L}, andp € L, throughout the intervalé_;,&,). Finally, p does not crosgw in
P‘wrp Az].

(S3b)If x is aleft quadruple, then the sét \ {a,r, u} induces a Delaunay crossirigw, p, ), which
occurs within[A,,4, A2). Furthermorep hits wq only once during,,4, A2), so this is a single Delaunay
crossing. Moreover, the points qf are co-circular at some tim& € (&1, \,,], and the edgeyq is
violated bya € L, andw € L;q throughout the interva{(;, &;). Finally, w does not crosgp in
[A1; Apgl-

Definition. Assume that we are given a sEtof moving points, and a refined familff. Let xy =
(a,p,w,q) be a consecutive Delaunay special quadruple that is defiitbdr@spect taF and P. We
say thaty is 1-restrictedif it satisfies the above three conditions (S1), (S2), an&)$8 (S3b), where
the reference setB and Fy are replaced by’ and F, respectively. (We also implicitly require that the
values)\,, and,,,, mentioned in conditions (S1) and (S2), actually exist.)

Let ®;(m) denote the maximum number dfrestricted special quadruples that can be defined over

a set ofn moving points (and a refined family of regular Delaunay quabhs). Then the following
recurrence holds:

Do(n) < O (5@ (n/l) + k>N (n/l) + k*N(n/k) + ktn?B(n)) .

Proposition 6.2. With the above assumptions, any ordered triplgy, w) can be shared by at most three
1-restricted special quadruples = (a, p, w, q) of each topological type (i.e., right or left).

Proof. Let x = (a,p,w, q) be al-restricted right special quadruple. By Conditions (S2) é83a),
(pa, q,Z,) is among the3 last special counterclockwis@, ¢)-crossings to end before entersL;q
(during ). Hence,a is determined, up to three possible values, by the choidg.af, w). A fully
symmetric argument appliesyfis a left special quadruple. O
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€ DT(R
pq almost Delaunayjj] ®

I(pa, q7IT) I.......l ..................
"""""" | =1l F--q5- -t
ooy (apwH) P
__________ I:______i____ (wavqlaju)l __ _______»t
wq € PT(R) £, £ Ao ég1| )‘\3
T

wq'p does not crosgw
wq almost Delaunay

pq almost Delaunaypg € DT(R)
w does not crosgp
(pa,q,Z) srsrnsnng paeens

A3
(wa, ¢, Ju)
wq almost Delaunay

Figure 50:A schematic summary of the propertiesyovithin DT (R). The edgeyq is Delaunay at time,,,,, and
it is almost Delaunay (with the omission of ondyr, u) throughout g, A\,,]. The edgewq is Delaunay at time
Awg, @and it is almost Delaunay (with the same omission) througfa,,, As]. Top: If x is a right quadruple, then
gp undergoes the crossirigp, w, H) within (A1, A,4], and we encounter an additional co-circularityuop, w, g
at some tim&_; € [\, &o). Bottom: If x is a left quadruple, theqw undergoes the crossirigw, p, ) within
[Awqs A2), and the additional co-circularity occurs at some tgne (&1, A, (below).

The subsequent stages — Overview. Fix a refined familyF, defined with respect to an underlying set
P of n. moving points. Lety = (a, p, w, q) be al-refined Delaunay quadruple, consistent wittand 7
and induced by special crossings:, ¢, Z,) and(wa, ¢, J,,). The correspondence between special cross-
ings and their ordinary quadruples fimplies that the edgesg andwqg undergo Delaunay crossings
by the respective outer pointsandu; see Figur€41. Furthermorefis a right special quadruple, then
condition (S3a) implies thaiq or, more precisely, its reversely oriented capy undergoes a Delaunay
crossing (in the reduced triangulati®il' (P \ {a, r, u})) by w, so the points: andw crosspq in opposite
directions Similarly, if x is a left special quadruple, then the edggundergoes two oppositely oriented
Delaunay crossings, hyandp (the latter occuring withiDT (P \ {a,r,u}), as above).

Our general strategy is to chargeto one of the above configurationg, ¢, r,w) or (w, q,u,p)
(depending on the right or left nature gJ, which will be referred to aserminal quadruples Notice
that each of those configurations involves one of the outertpo andu, in addition to some three
regular points ofy. Nevertheless, several preparatory restrictions neeeé &nforced upon our special
quadruples before actually charging them to terminal qualds. Informally, this is done to further
restrict the arising terminal quadruples and, conseqyédotfacilitate their eventual treatment at Stage 4
and in Sectiof]7.

At the subsequent Stages 2 and 3, we do not distinguish beti@ieand right special quadruples
x = (a,p,w,q). The topological restrictions enforced during these stawe special quadruples are
fairly analogous to the ones enforced on ordinary quadsuglging the parallel stages in Sectidn 5.
Namely, for eachy as above we extend the almost-Delaunayhood of its threesedgeg, andwq from,
respectively,[ Ao, A3], [Ao, Apgl, @and[A,q, A3] to larger intervals, which covei,,, Ap,]. The intimate
correspondence between special crossings and ordinadyuples is largely ignored throughout these
technical stages, and the outer poinendwu do not play any meaningful role.
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At the last Stage 4, we finally distinguish between left agghtrispecial quadruples. In both cases,
we exploit the interplay between our quadruples and thepeetive outer points andw, which re-enter
the analysis and finally give rise to terminal quadrupless ii&ted above, for each of the two types, only
one outer point is used.) This analysis is preceded by dgweparatory charging arguments, analogous
to the ones described in Section]5.6.

6.3 Stage 2

Lety = (a,p,w, q) be al-restricted (Delaunay) special quadruple. Our next goa extend the almost
Delaunayhood ofia from [Ag, A3] = [Z;, 7.,] to some larger intervak,,,, £..], which coverg,g, Apql.
As in the parallel Section 5.4, we proceed in two steps, éifterg the constant parameterg < k£ < /.

Stage (2a).First, we consider the intervah,,,, A3] where, by assumptionyq is almost Delaunay. (It
is in fact Delaunay inP \ {u} throughout7, = [A2, \3] and at time\,,,.) Refer to Figuré 51 (left).
If at leastk special counterclockwisgr, g)-crossings(w’a, ¢, J,/) (in F) begin during[A,4, A2), then
we can bound the overall number of such special quadruplda the already routine combination of
Theoreni 5.8 with random sampling.

Note, as a preparation, that the preliminary pruning (dlesdrin at beginning of this section) ensures
that each of the above special ¢)-crossinggw’a, q, J,/), whereu' is its respective outer point, satisfies
{w', v} N P, = 0. Therefore, LemmBR&.5 implies thathits each of the respective edge$: (during
J.) before it hitswa (during 7,,).

ga € DT(P\ {u'}) ga € DT(P\ {r'})
)\-wq Ao v )1\1 )I\z Tu )|\3 Ao . N A2 Iju A3 )tpq /
-pEE - — >t --} —— si-r-p-et
-l =-- ] EEEEEEEE P ot 2 FR P S — i - - -
e Ze) L B8 Lr) . N
qa A B “

Figure 51:Extending the almost-Delaunayhoodgaffrom [\, A3] to [£,,, Ao (left) and to[A3, £/, ] (right).

qa’

To set the stage for an application of Theofen 5.3, we considandom subseP c P of [n/2]
points, and argue that, with some fixed positive probability:, ¢, 7,,) becomes &w, ¢, ©(k))-chargeable
Delaunay crossing i (with a potentially shrunk intervaf,), with the reference interval,,,, A3] (the
proof of this property is identical to that given in Secti@8 and6.2). Briefly, this follows becauge
satisfies the following two conditions with probabilify(1): (1) P includesa, w, ¢ but notu, and (2)
for at least a constant fraction of the above spegia)-crossingsw’a, q, J./), P includesw’ but not
u'. The former condition guarantees thatyields a Delaunay crossin@ua, ¢, J ), for some interval
J C J., and thatga belongs toDT(P) at times),,, and \3. The latter condition implies tha (k)
(ordinary) counterclockwiséa, ¢)-crossings occur withif\,,q, A2) U J C [Ayg, A3).

Theorem 5.8 now implies that the overall number of the aboydes (w, ¢, a) in P is at most
O (k*N(n/k) + kn*B(n)). By Propositior{ 61, this yields the same bound on the maximumber
of the special quadrupleg that fall into the present scenario. Assume, then, that &t lolockwise
special(a, ¢)-crossinggw’a, ¢, J,/) begin duringi\,,4, A2).

If no clockwise speciala, ¢)-crossings begin if—oo, A,], then (wa, ¢, J,) is among the first
k + 1 such speciala, q)-crossings(w’a, ¢, J./), SO it can be charged to the pdit, q). (After the
preliminary pruning, there remain no counterclockwisec&d€a, ¢)-crossings(w’a, q, J,/) with u" €
P,. Furthermore, Lemm@ 4.1 implies that no other sqehy)-crossings, withu' ¢ P,, can begin
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in .05 Awg)-) Therefore, and because of Proposition] 6.1, this happenatfmostO(kn?) special
quadruplesy.

Assume next that some clockwise spe¢ialg)-crossing(w’a, ¢, J,/) begins in(—oco, Ayq|. There-
fore, using Lemma 4l1, there is a last tig]g in (—oo, A,] when the edgga belongs to some reduced
triangulationDT(P\ {u'}), foru’ ¢ P,. In what follows, we use/ to denote such a (fixed) point whose
removal restores the Delaunayhoodjafat (the last possible) timg,.

To proceed, we apply Theordm P.2 iy, over the interval(§,, \2). We do this for the above,
reduced triangulatioDT(P \ {«'}), and with the second constahtlf at least one of the Conditions (i),
(ii) of that theorem holds, we charge(via (wa, q, 7,,)) either to an(¢ + 1)-shallow collinearity or to
Q(¢%) (¢ + 1)-shallow co-circularities. (Each of these eventé-ghallow inDT(P \ {«'}).) The choice
of £, implies that no specidl, ¢)-crossing(w'a, ¢, 7./ ) begins in[¢_,, Awq), and therefore, arguing as
above, it guarantees that any eventp, is charged by at mog? (k) quadruples. Hence, this charging
accounts for at mosd (k2N (n/¢) + k¢n?3(n)) quadruplesy.

Finally, if Condition (iii) of Theoreni Z.2 holds, then thessa setA of at most3/+1 points (including
u') whose removal restores the Delaunayhoogaothroughoutl¢_; , A3].

Stage (2b).We similarly use Theorein 3.3 to extend the almost-Delauoagtof ga from Z,. = [Ag, ]

to the interval(\;, \,,] where, by assumption, the edgegis almost Delaunay. (Itis Delaunay i\ {r}
throughoutZ, = [Ao, \1] and at time\,,,.) The argument is fully symmetric to the one in Stage (2af), bu
we briefly repeat it for the sake of completeness.

Refer to Figuré 51 (right). If at leagt special(a, ¢)-crossings(p’a, ¢,Z,) end in(A;, A,,] then we
again use Theorem 5.3 to show that the number of such speeidhaples is at mos? (k>N (n/k) + kn?5(n)).
In short, we argue that a random subselof2]| points yields &p, ¢, ©(k))-chargeable Delaunay cross-
ing of pa by ¢, with probability©(1).) Hence, we can assume that at mospecial(a, ¢)-crossings, as
above, end during\;, Ap].

If no clockwise speciala, ¢)-crossings begin if\,,, o), then(wa, g, J,,) is among the last + 1
such speciala, ¢)-crossings(p’a, q,Z,+), so it can be charged to the pair, ¢). Clearly, that scenario
occurs for at mosD(kn?) special quadruples.

Otherwise, we choose the first timfga in [Apg, 00) When the edgea belongs to some reduced
triangulationDT(P \ {r'}), with 7 ¢ P,. In what follows, we use’ to denote such a (fixed) point
whose removal restores the Delaunayhoogacét timeg(ja. We then apply Theorem 2.2 A, over the
interval (A1, £, ). This is done with respect to the point get, {r'}, and with the constarit

If at least one of the Conditions (i), (ii) is satisfied, wemtise ofy by charging it (via(pa, ¢, Z,.)) to
(¢+1)-shallow events i4,,, and argue, as above, that each event is charged by atiostjuadruples.
Hence, the above charging accounts for at nibék(*N (n/¢) + kin*3(n)) special quadruples.

Finally, if none of the preceding scenarios occur, we end ifip &vsubse3 of at most3/ 4 1 points
(including ') whose removal restores the Delaunayhoodthroughout A, 5;1].

Probabilistic refinement. We say that a special quadruple= (a, p,w, q) is 2-restrictedif (1) it is
1-restricted with respect to the underlying g&tnd refined familyF, and (2) it satisfies the following
new condition:

(S4) The edgega belongs toDT(P \ {p,w,u,r}) throughout the interval,,, ;Ql], where¢,, (resp.,
5;1';1) denotes the last time if+-0o, A4 (resp., first time irfA,,, c0)) when the edgeg is Delaunay (and

where we assume that the timgg, 5;; exist).

Let ®5(m) denote the maximum number frestricted special quadruples that can be defined over
a set ofm moving points (and a refined family). The preceding analysis, combined with the standard
sampling argument of Clarkson and Shor, leads to the fofigwecurrence:

®(n) = O ((5@o(n/l) + k(*N(n/l) + k>N (n/k) + ktn*B(n)) . (8)
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6.4 Stage 3

To bound the above quanti,(n), we fix a setP of n moving points, and a refined familf. In
addition, we fix a2-restricted special quadruple = (a, p, w, q) (with outer pointsr andu), which is
defined with respect t& and F.

Recall that the edggq is Delaunay at time\,,, and that it is almost Delaunay durifg, Ap,]
(it is Delaunay with the omission af,w, andu). Similarly, wq is Delaunay at time\,,,, and it
is almost Delaunay during\,,4, A3] (it is Delaunay with the omission af, p,r,«). Our goal in this
stage is (i) to extend the almost-Delaunayhooggfo a (possibly) larger intervdk,,, \,,|, for some
$pg < Equ < Auwg, @nd (i) to extend the almost-Delaunayhooduef to an interval[ Ay, {w), for some
§wg = g0 = Apg-

Our analysis consists of two symmetric arguments, simdathe ones used in Sectibn 6.2 (cases
(b) and (c)). Both arguments use Theolflend 5.3 (in combinatiim the almost-Delaunayhood gf: in
(€40 €4])) @nd refer to the same pair of constant parameiters & < /.

Extending the almost-Delaunayhood ofpq. Refer to Figurd 52 (left). If at least special(p, q)-
crossings(pa’, ¢, Z,) begin during[¢_,, Ao), then we can invoke Theorem b.3 to show that the number
of such special quadruplasis at mostO (k*N (n/k) + kn?3(n)).

Specifically, recall that the edge is Delaunay at timeg,,, ;; and that it is almost Delaunay (with
only four potentially obstructing poinis w, u,r) during [, &1.] D [€,4, Ao) UZ, = [£,,, M1]. Hence,
a random subseP c P of [n/2] points would makepa, ¢, Z,), with some fixed positive probability,
an(a, q, ©(k))-chargeable crossing iR with (€45 A1) @s a reference interval (whegg, and\; are still

defined with respect t&, andZ, is possibly shrunk in?).

pq € DT(P\ {7"%) N wq € DT(P\ {u'})
\ S 2T h % o N G TN N T Nk )
H HE I
S O S A N — ot O TN N Y O
1] L(pa/, q,Z) Apg A\ . 1)j__t ........ §;q>t
pq € DT(P\ A) e (wa',q, Ju)” g e DT(P\ B)

Figure 52: Left: Extending the almost-Delaunayhoodaf from [Ag, Apq] 10 [€pq. Apg]. Right: Extending the
almost-Delaunayhood afig from [Ayq, As] tO [Awg, Ewgl-

Assume then that at most clockwise specialp, g)-crossings begin duringt,,, Ao). If no such
(p, q)-crossings(pa’, ¢, Z,+), with ' & P,, begin before\, then(pa,¢,Z,) is among the firsk + 3
clockwise specialp, q)-crossings (including such crossings whose respectiver qaint’ belongs to
PX) Clearly, the overall number of such quadrupieis at mostO (kn?).

We may therefore assume that the previous sub-scenariondb@scur. In particular, there exists
&pq Which is the last time ir{—oo, ] whenpq belongs to some reduced triangulatibi' (P \ {r'}),
for ' ¢ Py. In what follows, we use”’ to denote such a fixed point, whose removal restores the
Delaunayhood opq at (the latest possible) tingg,,.

To proceed, we apply Theorem P.2 iy, over the interval({,,, \o). We do so with the second
constant’, and with respect to the reduced point et {r'}.

If at least one of the Conditions (i), (ii) of Theordm 2.2 hgldve charge (via (pa, q,Z,)) either to
Q(¢?) (¢ + 1)-shallow co-circularities, or to aff + 1)-shallow collinearity. As above, the choice &f,
guarantees thdpa, ¢, Z,.) is among the firsk + 3 special(p, ¢)-crossings to begin after any event that

#1Recall from Sectiof 612 that at most two such crossings haeeP,.
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we charge withinA,,,, so any event is charged as above by at m#t) quadruplesy. Hence, the above
charging is applicable for at moét (k¢*N (n /() + kin*3(n)) special quadruples.

Finally, if Condition (iii) of Theoren{ 2P is satisfied, we\®a setA of at most3/ + 1 points
(includingr’, and perhaps some afw, r, u) whose removal restores the Delaunayhoogqahroughout
[£pq> Mo]. We further add to our conflict set every pointa’ whose respectivép, ¢)-crossing(pa’, ¢, Z,)
begins in[¢,,, Ao). (This is done to ensure that thege ¢)-crossings do not arise in the following Stage
4. Note that at most such crossingépa’, ¢, Z,+) begin in[€,,, £4a), and each of them satisfiese P,.)
Since there are at most+ 2 crossings of this kind, and sinée< ¢, the cardinality of the augmented
setA does not exceedl.

Extending tha almost-Delaunayhood ofwg. The argument is fully symmetric to the one that was
used forpq, but we briefly repeat it for the sake of completeness.

Refer to Figuré 52 (right). If at leadt special(w, q)-crossings(wa’, ¢, J,) end during(As, €],
we consider a random subset[ef/2] points and argue as before tHata, ¢, 7,,) becomes, with some
fixed positive probability, afa, ¢, ©(k))-chargeable special crossing (now wita, g;lg] as the reference
interval). Therefore, Theoren 5.3 implies that the numkesuzh special quadrupleg is at most
O (K*N(n/k) + kn*B(n)).

Assume then that at mostclockwise specialw, ¢)-crossings(wa’, ¢, J.s) end during(As, &/, ].
Furthermore, we may assume that there exists which is the first time idg;l, o) when the edgevq
belongs to some triangulatidnT (P \ {u'}), for v’ & {a,r,w,u}. (Otherwise,(wa,q, J,) would be
among the lask + 3 clockwise specialw, q)-crossings, which can happen for at moXtn?) special
quadruples of the kind considered here.) In what followsys&.’ to denote a fixed point whose removal
restores the Delaunayhoodof at timeg,,,.

To proceed, we apply Theordm R.2.4,, over the interval A3, &,,), with the second parametér
and respect to the point sBt\ {u'}.

If at least one of the Conditions (i), (ii) of Theordm 2.2 hmldve dispose of by charging it (via
(wa, ¢, Jy)) to (¢ + 1)-shallow events in4,,,. The choice of,,, guarantees that each collinearity or
co-circularity is charged in this manner by at mogtk) quadruplesy. Hence, the above charging is
applicable for at mosD (k¢(*N(n/l) + kin*3(n)) special quadruples.

Finally, if Condition (iii) of Theorenl 2. is satisfied, weanp with a subseB of at most3/ + 1
points (includingu’ and perhaps some af p, r, u) whose removal restores the Delaunayhoodvgf
throughout the intervdls, &,,4]. We add taB every pointa’ whose respective crossitiga’, ¢, 7,/ ) ends
in ()\3,5321]. (As before, this is done to ensure that théseq)-crossings do not arise in the following
Stage 4.) As above, the cardinality of the augmentedsgbes not exceed?.

Probabilistic refinement. We say that a special quadruples 3-restrictedif (1) it is 2-restricted, and
(2) it satisfies the following additional conditions:

(S5) The edgepq belongs taDT(P \ {a,w,u,r}) throughout the intervdk,,, \,,], where¢,, denotes

the last time in(—oo, {,,] when the edgeq is Delaunay (and we assume the existence of such a time
&pg)- In addition, at most two specidp, ¢)-crossings(pa’, ¢, Z,») begin during[{,,, Ao) (namely, the
possible crossings ghv andpu by q).

(S6) The edgewq belongs taDT(P \ {a, p, u,r}) throughout the intervgl\,,q, £.4], Whereg,,, denotes
the first time in[@;, oo) when the edgevq is Delaunay (and we assume the existence of such a time

£wg)- In addition, at most two specidly, ¢)-crossings(wa’, ¢, J,/) end during(As, &) (namely, the
possible crossings afp andwr by g).

Let ®%(m) (resp.,®%(m)) denote the maximum number Bfrestricted right (resp., left) special
qguadruples that can be defined over a setnofmoving points (and a fixed refined famil§). The
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preceding analysis, in combination with the routine sangplrgument of Clarkson and Shor, implies
the following recurrence:

Dy(n) = O (5@F(n/l) + 5@ (n/l) + k2N (n/l) + k*N(n/k) + ktn?B(n)) (9)

6.5 Stage 4. The number of right quadruples

To bound the maximum possible numbef'(n) of 3-restricted right special quadruples, we fix the
underlying setP of n moving points, and a refined family.

Topological setup. According to Propositiof 612, ar+restricted quadruple = (a, p,w, ¢q) shares
its triple (p, ¢, w) with at most two other such quadruples. (In other words, ftices to bound the
overall number of the corresponding triples ¢, w).) We strengthen the above property, by considering,
without loss of generality, at moste3-restricted right quadruple for each trigle, ¢, w). Therefore, in
what follows every special quadruple= (a, p, w, ¢) under consideration will be uniquely determined
by its triple (p, ¢, w).

To proceed, we fix &-restricted right special quadruple= (a, p, w, q), with respect taP and F,
whose two speciala, ¢)-crossings take place during the intervals= [A\g, A\1] and 7, = [A2, A3] (in
this order), where- andu are the respective outer points. Recall that the originedttar” family 7
includes the quadruples, = (p, ¢, a,r) andoy = (w, ¢, a, u).

Refer to Figur€ 53. Sinceis 3-restricted, there exist a timg,, < Ao which is the last time befdj%

Ao When the edgevq belongs toDT(P), and a symmetric first time,,; > A3 whenpg belongs to
DT(P). By Condition (S4), there exist the first tirﬁg; in [Apg, 00), and the last timé_,, in (—o00, Ay,
when the edgga is Delaunay, so that this edge is almost-Delaunay duringrteeval [¢_,, 5;;] (with
only p,w, u,r as the possible obstructing points). Moreover, by Cona#i(55) and (S6), there exist
the first time&,,, € [5;1, o0), and the symmetric last timg,, € (—oo,,,] when the respective edges
wq andpq are Delaunay. Moreovetyg andpg are almost Delaunay during, respectivel,,,, {.,,] and
[£pq> A\pg) (€ach with four obstructing points, as specified in theselitioms).

q

Figure 53:The topologt76ical setup during the interal 1, ;) C [Awq, Apq). Left: The edgeyp is hit at some
time A\, € [A1, A\yq] DY w, so it undergoes a Delaunay crossiag, w, H = [\, As]) within DT(P \ {a,r, u}).
Right: We have\,,, < (-1 < & < M < Aj < A5 < &uq. Bottom: The motion ofB|p, ¢, w] is continuous

throughouf¢_1, \,) (the hollow circles represent the co-circularities at rie; andé).

2f wq is Delaunay at time\p then we puth,,, = Xo.
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Let us summarize what we know so far about the motion,@f w, g. By Condition (S3a), these
points are co-circular at times.; € [Ayg, M), &0 € Z, \ Ju, and&; € J,, \ Z,. Moreover, the
Delaunayhood ofug is violated, throughouté_i,¢&p), by the pointsa € Lj;q andp € L, (so, in
particular, neither of these points cross@gduring this period). Hencey lies throughout that interval
within the wedgéV,,., = L,}, N L,,, and inside the cap’,,, = B[p, ¢, w] N L,,,.We emphasize that the
order type of the quadruplg, p, w, a) remains unchanged duririg_1, &).

In addition, by the same Condition (S3a), the smallerRét{a,r,u} yields a (single) Delaunay
crossing(gp, w, Hy ), whose intervat{ = H, = [A4, A5] is contained inAi, \,,]. In particular,w hits
pq at some momeiid A\, € H, whenw crossesl,, from L, to L. Sincew lies in L} at times¢_;
and¢p, no further collinearities op, w, ¢ can occur duringé_;, A;). (Otherwise, the point would
have to re-enteL;q before),, and then the triple, ¢, w would be collinear three times, contrary to our
assumptions.) To conclude, the diBgp, ¢, w] moves continuously throughout the interyal, \,),
which is obviously contained ifg,q, Apg] N [AMwgs Ewg) = [Mwgs Apgl-

Overview. We fix three constant parametekst, h, such thatl2 < k <« ¢ < h, and distinguish
between four possible cases. The first two cases (a)—(baahe $imilar to the cases (a)—(b) that we
encountered in Sectidn 5.6 when handling ordinary quadsygnd case (c) is very similar to the pre-
ceding case (b). In case (a) we bound the number of right alpgeadruplesy, that fall into it, using
Theoren{ 5.B. In each of the subsequent cases (b) and (c), wageao bound the number of special
quadruples, that fall into that case, by charging them within the areangntsA,,,,, A, and.A,,,. (The
crucial difference between the two setups is that the exdremcircularity among, and&; now occurs
during thesecondcrossing(wa, ¢, J,,), SO the topological analysis of Sectionl5.6 must be perfdrine
a “time-reversed” manner.)

In the final, most involved, case (d), we re-introduce attlastouter point-. (The other outer point
u is not used in the analysis of right special quadruples.) ddreespondence betweépa, ¢,Z,) and
its ancestor quadruple = (p, ¢, a,r) in F implies that the points andw cross the same edgg in
opposite directions. Hencg, can be charged to the resulting so-caltetminal quadruple(p, ¢, r, w).
In Sectiorl Y we express the number of these terminal quagiripkerms of more elementary quantities,
that were introduced in Sectiéh 2. This, combined with alfgr@nd mostly symmetric, although con-
siderably simplified) analysis Gfrestrictedleft special quadruples, finally produces a complete system
of recurrences whose solution¥n?*<), for anye > 0.

In what follows, we consider the familgfw of all 3-restricted right special quadruples of the form

X' = (d’,p,w,q"), which share their middle pair with. We may assume that eagh= (d’,p,w,¢’) €

fw is uniquely determined by the choicegf(as the only “free” point in the triplép, ¢’, w)). Note that
the setP,, of eachy’ includes, in addition to the four points, p, w, ¢’ of x’, the respective outer points
r" andv’ of its special crossing&a’, ¢', Z,+) and(wd’, ¢', J.+). Furthermore, each of these quadruples
X € g;}w is accompanied by a counterclockwige w)-crossing(¢'p, w, H,» = H’), which occurs
within the smaller triangulatioDT (P \ {a’, 7, u’}). See Figur&34. We use, to denote the time ifi{’
when the respective point of \’ enters the halfplané;w (or, equivalently, whenw crosses;’p from
Ly, =1Ly, toL;).

Notice that Lemm&Z5l5 readily generalizes to the abvev)-crossings. Namely, a pair of such
crossingggp, w, H, ) and(q'p, w, H,-), which occur within the respective triangulatiadd' (P\{a, r, u})
andDT(P \ {d’,7",u'}), arecompatible provided thaty # a,r,u andq # d’,r’, 4/, in the sense that
the orders in which the intervatq, and?#,. begin or end are both consistent with the time staraps
and/\q/.

*Recall from Sectiofi 612 that can cross;p either before or aftegz, depending on the location gfwheng crossesua.
Our analysis only relies on the fact thaf > &0 > £_1.
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Figure 54:Each right special quadruplg¢ = (¢, p,w,q’) € gfw (with respective outer points andu’) comes
with a counterclockwisép, w)-crossing(¢’p, w, H, ), which occurs withiDT(P \ {a’, 7', u'}).

To proceed, we distinguish between four possible cases.

Case (a). For at leastk of the above quadruples’ = (d/,p,w,q') € Gl their respectivgp, w)-
crossings(¢'p, w, H') either begin inA,q, A4], or end in[As, &,q]. Refer to Figuré 85. Recall that, by
condition (S6), the edgew is Delaunay at each of the times,, and¢,,,, and that it is almost Delaunay
during the entire interval\,,q, &uwq)-

To bound the number of such quadruplgsve wish to argue that the crossig, w, H) is (¢, w, ©(k))-
chargeable, for the reference interyal,,, £.,,]. Unfortunately (and we have already encountered this
technical issue before, e.g., in Section] 5.6), the cros&jpgw, H) occurs within the reduced triangu-
lation DT(P \ {a,r,u}), whereas each of the above crossifig®,w,H’) occurs within a possibly
different (and also reduced) triangulatio' (P \ {a’, 7/, u'}).

As in the previous similar situations (including the matrgh'scenario (@) in Sectidn %.6), we can
free sufficiently many crossingg’p, w, H') from their “violators” «’, " andw’ by passing to a smaller
triangulationDT(P), which is induced by a random subsetc P of [n/4] points. Note though that
gﬁw can potentially include many quadruplgswith ¢ € {a’,7’, 4}, which cannot be freed without
destroying(gp, w, H).

Fortunately, for any special quadruple= (a,p,w, q) € g;}w (with outer points- andw) the family
gﬁw includes at most three other quadrupies= (da’, p,w,q’) whose respective poinig are equal
to one ofa,r or u. The pigeonhole principle then implies that at lease quarterof all quadruples
X = (a,p,w,q) in GFf, satisfy the following condition:

(PHR1) There exist at most three quadruplg'se gﬁw withq € {da’, 7", u'}.
(See Section 516 for the short proof of a similar claim, wite matching condition (PH).)

Sincep andw are arbitrary points of?, (PHR1) holds for at least a quarter of ailestricted right
special quadruples under consideration; hence we may asthahit holds for the special quadruple
athand. Therefore, at ledst- 6 > k/2 of the relevant quadrupleg = (¢, p,w,q’) € QR \ {x} (with
respective outer points and«’, and with(¢'p, w, H') starting in[\,,4, A4] or ending |n[>\5, Ewql) satisfy
() g & {d,r",u'}, and (i) ¢’ & {a,r,u}.

A suitable extension of Lemnia.5 then implies that at |é#8tof the above crossingg’'p, w, H')
fully occur within [\, &we). Returning to the sampled triangulati@‘ir(]f’), it is easy to check that the
following two conditions hold simultaneously with some filkerobability (see Stage 1 of this section for
a similar argument): (1) the sétincludesp, ¢ andw, but none ofs, r, u, and (2) for at leasb (k) of the
above quadrupleg’ (with 7, starting in[A,q, A1) or ending in(As, &,)), the sample” includes their
respective pointg’, but none ofx’, ', u’.

In the case of succesB, yields a(q,w,O(k))-chargeable (ordinary) Delaunay crossing;piby w,
for the reference interval,,4, &wq]. TO See this, recall thatq is Delaunay at both times,,, and¢,,,, and
that it is almost Delaunay iMwg, &wq) (itis Delaunay with the omission af p, , ). Then, according to
condition (1), the sampl& yields some single Delaunay crossiyg, w, H ), whose respective interval
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Figure 55:Case (a): At least counterclockwisép, w)-crossinggq'p, w, H,-) either begin i\, \4) or end
in (A5, &wq] (0ne such crossing of the former type is depicted). Therh some fixed and positive probability, the
sampleP yields a Delaunay crossingp, w, 7:[X) that is(q, w, ©(k))-chargeable with respect {84, {uq]-

7:[X is contained ir#,, (as depicted in Figufe55). Similarly, according to comtit{2), P yields at least
© (k) counterclockwise Delaungy, w)-crossings that occur withif\,g, £uq]-
To conclude, Theoref 3.3 implies that the overall numberuchsriples(p, ¢, w) in P does not
exceed
O (K*N(n/k) + kn*B(n)),

which immediately also bounds the overall number of theesponding-restricted quadrupleg.

Preparing for cases (b) and (c): Charging events ind,,,. We may assume, from now on, that there
exist at most special quadrupleg’ € g;}w whose respectivép, w)-crossings¢'p, w, H') either begin
iN [Awg, Ada], or end in[As, &gl

Before proceeding to the following cases, we apply Thedreghir2.4,,, in order to extend the
almost-Delaunayhood @fw from H = [A4, A5 t0 [Ny, &uwgl. Notice that),,q, £uq) \ H consists of two,
possibly empty, interval§\,,;, A1) and (s, &), @and we consider each of them separately. Note also
that the edgew belongs duringd to the reduced triangulatiod T (P \ {a, r, u}) (but not necessarily to
DT(P)), so Theoremh 212 must be applied with respect to this smedier

Consider, for instance, the interv@,,,, \4). We apply Theorerh 212 withitd,,,, over (Ayq, A1),
with our second parametérand with respect to the reduced $et {a, r, u}, noting thatpw belongs to
DT(P \ {a,r,u}) at the end of this interval.

If at least one of the Conditions (i), (ii) holds, we chargevithin A,,,, via (¢gp, w, H), either to an
(¢ + 3)-shallow collinearity, or ta2(¢2) (¢ + 3)-shallow co-circularities irP. (Each of these events /s
shallow with respect to the reduced #&t {a, r, u}.) Notice that the pointg andw are involved in each
of these events, and since case (a) has been ruled out, at wtbst (p, w)-crossings¢'p, w, H') of this
kind begin after the respective timé of any charged event and befdig, w, H). Thatis, (¢p, w, H)
is among the firsk + 1 such(p, w)-crossings to begin aftet. Hence, any(¢ + 3)-shallow collinearity
or co-circularity is charged in the above manner by at mugt) special quadrupleg. To conclude, the
above scenario occurs for at mes{ k(>N (n/¢) + k¢n?B(n)) quadruplesy.

Otherwise, if Condition (iii) holds, one can restore the&glayhood opw throughout/\,,,, A4] by
removing at moss/ + 3 points of P (including a, r, u).

A fully symmetric argument can be used to extend the almattdhayhood opw to the symmetric
interval (A5, A\,,q]. At the end, we have either disposedotthrough conditions (i), (ii) of Theorem
[2.2 or ended up with a set,,, of at most6/ + 3 points (includinga, r, u) whose removal restores the
Delaunayhood opw throughout[\,, &.,]. Hence, we may assume, in what follows, that the above set
Ap, EXists.

Case (b).There exist a total of at leaépoints of P, distinct froma, r, u, such that each of them appears
in the capC,,, = Blp, q,w] N L, at some time during the interved 1, \,). (Note that some of these

points may belong to4,,,.) Recall that\, denotes the time it whenw entersL,,,, throughpg, and
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Figure 56: Case (b). A total of at leagtpointss # a,r,u appear in the ca@,,, during ({1, A,). Each of
them must leave the caf,,, (through the boundary aB|p, ¢, w]) and then leave the wedd€,,., (through one
of the rayspg, pwv, outside the respective edgegsandpw) before time),. Left: The geometric scenario. Right:
A symbolic summary of the corresponding events.

that no additional collinearities @f, ¢, w can occur duringé_1, A;), so the motion of3[p, ¢, w] is fully
continuous there.

Refer to Figuré 56. Let € P\ {a,r,u} be one of the points that visit_,, during ({1, A,). Since
the above cap’,,, is fully contained in the wedg#/,,,,, = L;q N L,,, during that intervals must leave
Wypw before time), (whenW,,,, shrinks to the single rayg = pw) through one of the raysw, pqg.
We also note that, by condition (S6) (and singe,\;) C [Awg:&wql), wg € DT(P \ {a,p,r, u})
throughout(§-1, Ay), S0 s, which has to leav€’,, before it leavedV,,,,, can do so only through the
boundary ofB[p, ¢, w]. This results in a co-circularity g, ¢, w, s, and is easily seen to imply that
leaveslV,,,, by crossing one of the raysv or pg outsidethe respective edgew or pq.

In what follows, we assume thatis among the last points to leaveC,,, during ({-1, A;). Lett;
denote the time of the corresponding co-circularity of, w, s, which occurs when leavesC,, through
the boundary ofB[p, ¢, w|. Sincey satisfies condition (S6), the opposite c@@ = Blp,q,w] N ij
contains no points aP \ {a,r, u} at timet?. (Otherwise, the Delaunayhood ®f; would be violated, at
time %, by s and any of these points.) Therefore, the co-circularityraét? has to be¢ — 1)-shallow
in P\ {a,r,u}, and thug¢ + 2)-shallow inP.

Note also that the co-circularity at tint¢ is red-blue with respect to the edge, which is violated
right before it byp ands. Lemma4.1l, together with the choice ©f# a,p,r, u, imply that this co-
circularity cannot occur during the crossifgp, w, H, = [A4, As]) (which occurs inP \ {a,r,u}), SO
t: < A\4. (However, condition (S6) does not rule out the violationuaf by p ands during the larger
interval [\, &wq) \ H, because the Delaunayhoodwef is assumed to hold there only under the omission
of a, r,u, and ofp.)

To proceed, we distinguish between two possible subcasesch of them we manage to dispose of
x by charging it, within one of the arrangements,, A, either toQ2(¢?) (2¢)-shallow co-circularities,
or to a(2¢)-shallow collinearity.

Case (b1).At least half of the above pointscross the linel,,, from L;q to L, during (t;, A;). (This
also includes points that possibly crosg,,, outside the rayg, after leavingiV,,,, through the other
ray pw.) By Condition (S5) (and sincg?, A\;) C (-1, Ay) C [£pq, A\pql), €ach of these crossings occurs
outsidepg, within one of the corresponding outer raysigf,.

For eachs we argue, exactly as in Sectibn 5.6, that the pojntg s are involved duringt%, \;) C
(-1, Aq) either in a(2¢)-shallow collinearity, or inQ2(¢) (2¢)-shallow co-circularities. That is, as
approached.,,, the discB|p, ¢, s] “swallows” the entire halfpland.} . If the disc, which contains at
most/ + 2 points at the beginning of the process, “swallows” at |¢ast2 points in this process, then
each of the first — 2 resulting co-circularities aré/)-shallow (in P). Otherwise, the collinearity of
q,p, s is (2¢)-shallow.

Sinces can be chosen in at lea3t /) different ways, the points andq are involved duringé_1, A;)
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either in€(¢?) (2¢)-shallow co-circularities, or in &¢)-shallow collinearity. In both cases, we charge
x to these events.

Note that eact{2¢)-shallow event, which occurs id,,, at some timg* € ({_1, \;), can be traced
back to(gp, w,H) (and, by Propositioh 612, also tg) in at mostO(1) possible ways because is
among the first four points to hit the edge after timet*, according to condition (S5). Hence, the above
scenario happens for at mast/>N (n/¢) + ¢n?B(n)) special quadruples.

Case (b2).At least half of the above points= a, r, u remain inL;q throughout the respective intervals
(ti,Aq). Each of these points must leaVE,,,, = L, N L,,, also during(t, \,), through the ray
emanating fromw in directionpw, thereby crossind.,,,, from L, to L;w. (Recall thats can cross.,,,
from L;w to L,,, at most once, because the triplav, s can be collinear at most twice.)

We again fix one of these points and use\, to denote the corresponding time i, \,) whens
leavesiV,,,, through the ray emanating from in directionpw. As in the previous case, we conclude
that either the collinearity o, w, s at time\; is (2¢)-shallow, or the pointg, w, s are involved inQ(¢)
(2¢)-shallow co-circularities during the preceding inter¢dl \). As in Sectio 5.6, the main challenge
is to argue that each of the abo{#&)-shallow events, which occur id,,, during (¢}, As] € (§-1, Aq),
can be traced back tpin at mostO (k) way

To show this, let* € ({_1, \;) be the time of &2¢)-shallow collinearity or co-circularity that occurs
in A,,. First, we guess the poingsandw of x in O(1) possible ways among the three or four points
involved in the event. We next recall that, in the chargingesoe of case (b2), ea¢h/)-shallow co-
circularity or collinearity that we charge i, is obtained via some point which is also involved in
the event, that leaves,,, at the respective timg;. We therefore guessamong the remaining one or
two points involved in the event. To guess the remainingtgaeimndg of x, we examine all “candidate”
special quadrupleg’ € gfw whose two middle point$p, w) are shared withy. Recall that each of
these quadruples is accompanied by (ihev)-crossing(¢'p, w, H' = H,), whereq’ entersL;w at the
respective time\, € 7. Recall also that’ is uniquely determined by the choice gf(as long ag and
w remain fixed).

Clearly, with s fixed, it suffices to consider only special quadrupiés= (a’,p,w,q’) in g;?w with
the following properties: (1} # o/,7’,«’, wherer’ andu’ are the outer points of’, (2) A, > A, and
(3) s lies in L, during the first portion of,, (before),). This is because each of these conditions
holds fory ands in the charging scheme of case (b2). For example, (3) folleecause case (bl) does
not occur fors (and since? < \y4).

If a special quadruple’ = (a/,p,w,q') € gﬁw satisfies the above three conditions (1)—(3), we say
that the respective point (which uniquely determineg’) is acandidate(for beingq).

Propositior 6.B below guarantees that eg2h-shallow event, which occurs id,,, at some time
t* € (§-1,q), is charged by at mogt + 7 quadruples iny’ € gﬁw, because the corresponding points
¢ of these quadruples are among the first 7 candidates to leave ,, after time),. Repeating the
same argument for each of thié¢) possible choice of shows that at mos? (k(>N (n/¢) + kin?B(n))
special quadruples can fall into case (b2).

Proposition 6.3. With the above assumptions, the pajris among the first: + 6 candidates;’ to leave
the halfplaneL,,,, after A;.

Proof. The fairly technical proof of this proposition is symmetticthe one of Proposition 3.6, so we
only briefly review it.

Assume to the contrary that the proposition does not holdx(fands # a,r, u as above). Hence,
we have at least candidateg’ such that\; < A\, < A\, andq’ & {a,r, u}, and such that the first points
a’, and the outer points’ and«’, of their quadruples = (¢, p,w,q’) are all distinct fromq. (We
continue to assume thgtsatisfies property (PHR1), introduced in case (a), so thewasrestrictions

%As in Sectio 5B, the multiplicity of the chargings is thejonalifference between case (b1) and the present case (b2).
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Figure 57:Propositiori 6.8. Lefty is among the firsk: + 7 candidateg’ to leaveL,,, after time),. The figure
depicts a point’ lying outsideB[p, ¢, w] at the timet} whens leaves the cag’,,,. Right: The various critical
events occur in the depicted order. Note thatoccurs either beforey, or in (the first part, preceding,, of)
H =My, As].

q¢ # {q,a,r} andq # {da’,7’,u'} (the latter using (PHR1)) exclude from our consideratiomast six
candidateg’ # ¢ together with their quadrupleg.)

To establish the proposition, we fix a candidgtend its corresponding quadruplé= (a’, p, w, ¢’)
(with outer points”’ andw’), as above, and argue that the respective intégyabegins during A4, A1).
See Figuré 37 (right). Repeating the same argument for thainingk — 1 possible choices af will
imply that the quadruplg falls into case (a) and we would thereby reach a contradictio

Indeed, since\y < A, (andq’ # a,r,u andq # o',7’,u’), a suitable variant of Lemnia 5.5 shows
that the interval{,. begins beforé{, = [A\4, A5]. It thus remains to check that,, begins after\,,,.

If H, begins aftet}, then we are done (&5 > \,,,). Hence, we may also assume that both tinjes
and\, belong to the interval,,,. (More preciselyt; belongs to the first part ¢/, before),; this is
the situation considered in Figure]57 (right).) This, aneldbbove conditions (2)—(3) (which hold fgf
because/’ is a candidate point), imply that remains in the halfplanes,,,, L, throughout the interval
(%, Ay). Therefores lies insidelV,/,,, = L;;q, N L, throughout the intervalt;, \s).

In addition, the standard propertiesyofind y’ as3-restricted special quadruples imply thamust
lie, throughout the longer intervat}, \;/) € H,v N (-1, )y), inside the wedgéV,,, = L, N L,,.
(Otherwise either the poinig, p andw would be collinear more than once durii),/, or the edge;’p
would be hit byg, or the edgeyp would be hit byg’. The first two cases are impossible by the definition
of (¢'p, w, H,), and the last one is ruled out by condition (S5).)

To recap, we may assume tifdt, beginsbeforet}, and that the edges;, pq’, ps, andpw appear,
at timety, in this clockwise order aroungl To show thatH,, begins after\,,,, we distinguish between
two possible cases.

(1) If ¢’ lies outsideB|[p, w, s] = Blp, ¢, w| at timet? (as depicted in Figuie 57 (left)), then the Delau-
nayhood ofp¢’ is violated, at that very moment, yandg. Hence, the crossing@/p, w, H,-) (occurring
inDT(P\ {d,r",u'})) has to begin aftef, contrary to our assumptions.

Figure 58: Proof of Propositiofi 613: Left: The scenario whefdies within B[p, ¢, w| at time¢*. Right: The
candidate; must have entered_,,,, throughB|p, ¢, w], after\,,, (and before?’, H = H, andH,).

qu?
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(2) If ¢ lies at timet* within B[p, ¢, w] (as depicted in Figure 58 (left)), then the interplay betwee
the (p, w)-crossings(gp, w, H,) and (¢'p, w, H,) yields three co-circularities of the pointsw, ¢, ¢'.
Namely, the last two co-circularities occur duritg, \ H, and, \ H,-. The first co-circularity occurs
wheng’ entersC,,, after time\,,;, whenwgq is fully Delaunay, and before, when the Delaunayhood
of wq is violated byq’' € Cyw andp € Blp,q,w] N Lj[w. (Briefly, this follows since, by conditions (S2)
and (S5), none gb, ¢’ can crossug in the interval[\,,4, A;]; see the proof of Propositién 6.3 for a fully
symmetric argument.) As is easy to check, the pgints, ¢ andq’ are co-circular only once during each
of the intervalst{,. and?{,, so their first co-circularity occurs befof¢, ; see Figur€ 38 (right). Hence,
to allow room for the first co-circularity to occuk,. has to begin aftek,,, also in this case. As noted
above, this completes the proof of the proposition. O

Case (c).A total of at least pointss € P\ A,,, appear in the ca@’;,, = Blp, ¢, w]N L}, at some time
during ({—1, \,). HereA,,, continues to denote the subset of at mist 3 points, includinga, r and
u, whose removal restores the Delaunayhoogwthroughout the interval\,,q, {.,4). (Recall that4,,,
was obtained by applying Theorém2.2.4,,, after ruling out case (a).)

Figure 59:Case (c). A total of at leagtpointss € P\ A,,, appear in the cap’/,, during ({1, \;). Each of
them must leave the cmljw (through the boundary dB[p, ¢, w]) and then exit the wedgé,,., (through one of
the raysgp, g, outside the respective edgesandwg) before time,,.

Clearly, C,, is contained in the wedg®#/,, = L, N L,,, which shrinks at time\, to the ray
gp = qw. Hence, each of these poinishas to leaveC ), and W, (in this order) before time\,.
Furthermores can IeaveC]jw only through the boundary a@B[p, ¢, w], at a co-circularity ob, ¢, w, s.
(Otherwises would have to hipw and, therefore, belong td,,,.) In addition,s can leavelV,,,,, only
through one of the rayg andqw (outside the respective segmeunts qw). See Figuré §9.

As in the previous case (b), we restrict our attention to&ls&/Isuch points; of P\ A4,,, to IeaveC;w
during (-1, A;), and use? to denote the time of the respective co-circularity. Clgahe opposite cap
Cpw = Blp, ¢, w| N Ly, contains then no points @t \ 4,,,. Indeed, otherwise the Delaunayhoodpaf
would be violated by and any one of these points (contrary to our assumptiorpthat DT(P \ Ap.,)
throughouti\,,q, &wql O (§-1,A¢)). Hence, the resulting co-circularity pfg, w, s at timet? is (7¢+2)-
shallow in P, because, at the time of co-circularity, the circumdigp, ¢, w] = Blp, s, w] can contain
in its interior at most thé/ + 3 points ofA,,, and at most — 1 points of P \ A,,,.

Case (c1)If at least half of the above pointscross the lind.,,, (from L;q to L,,,) during their respective
intervals(t:, \,), then we argue exactly as in subcase (b1). Namely, we fix otieese pointss and
notice that the pointg, ¢, s are involved, durindt}, \,), either in an(8¢)-shallow common collinearity,
or in Q(¢) (8¢)-shallow co-circularities, occuring within the whole det That is, ass approached.,,,
the discB|p, ¢, s] “swallows” the entire halfplané,;q. If the disc, which contains at most + 2 points
at the beginning of the process, “swallows” at least2 points in this process, then each of the first2
resulting co-circularities are/)-shallow (inP). Otherwise, the collinearity aof, p, s is (8¢)-shallow.
We thus repeat the above argument for each of the (at leé&spossible choices of and chargey
within A, (via (gp, w, H)) either toQ2(¢?) (8¢)-shallow co-circularities, or to afs¢)-shallow collinear-
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ity. As in case (b1), eact8/)-shallow collinearity or co-circularity occurs duririg_1, A,), and involves
p andg, so it is charged by at mo$?(1) special quadrupleg (becausex is uniquely determined by
(p, q,w) andw is among the first four points to hiky after the respective timg& of the event, because
of condition (S5)).

Case (c2).We may assume, then, that at least half of the above peieavelV,,,, through the rayw
(outside the segmentv). For each of these points a symmetric variant of the argument in case (c1)
implies that the pointg, w, s are involved duringt}, \,) either in an(8¢)-shallow collinearity, or in
Q2(¢) (8¢)-shallow co-circularities. As before, we repeat the abagement for the (at least)'2 eligible
choices ofs and chargey, within A,,,, either toQ(¢?) (8¢)-shallow co-circularities or to af8/)-shallow
collinearity.

We claim that each of the resultir{§¢)-shallow events, which occur id,,, during (-1, ), can
be traced back tg in at mostO(1) possible ways. Indeed, fix any of the above events, whichredou
Ayq at some time* € (-1, \,;). We first guessv andg in O(1) possible ways among the three or four
points involved in the event. To guess the pairftvhich would then uniquely determifea, ¢, 7,,) and
thereby alsay), we consider all specidtv, ¢)-crossinggwd’, ¢, 7,+) (in F) and recall that, according to
conditions (S2) and (S6), at mast 1) such crossings can begin duripg,,, A2) or end duringAs, &)
Notice also that the intervah,,,, wq], Which covergé_q, A,), is the union of Ay, A2), Ju = [A2, A3],
and(As, &ugl-

To guess: (based ort*, ¢ andw), we distinguish between two possible situations.

(i) If t* belongs to(A3, A;) C (A3, &wg) then(wa, ¢, J, = [A2, A3]) is among the last three special
clockwise(w, ¢)-crossings to end beforé, because satisfies condition (S6). See Figlirg 60 (left).

)\2 ju /\3
R — 7 B A
T 1 T LI r=-- ,\w §71 by w
)\wq 5_1 t Aq gwq ! (walaqaju’) ! § !

Figure 60: Case (c2): Guessing based ont*, w andq. Left: If t* € (A3, )\,), then(wa, ¢, Ju = [A2, A3])
is among the last three special clockwige, ¢)-crossings to end befor&. Right: If t* € (£_1, 3], then
(wa, g, J,) is among the firsO(1) special clockwisgw, ¢)-crossings to end after. Any other such(w, q)-
crossing(wa’, q, Jo) (With w" # p), that ends int*, A\3) C (£-1, A3), must begin afte€_; (and, therefore, in
[/\wqa /\2))-

(i) If ¢* belongs to the intervdl_;, As], which is contained i\, A2) U J,,, then we resort to a more
subtle argument, in which we show thata, ¢, 7,, = [A\2, A3]) is among the firs©) (1) special clockwise
(w, q)-crossings to end aftet. See Figuré 80 (right).

Our goal is to bound the number of special clockw(geq)-crossings that end ift*, A3). Note that
the preliminary pruning (peformed before the definition pésial quadruples) guarantees that each of
these crossing&wd’, q, J,) satisfiesa’ # u andu’ # a, and therefore begins beforg, = [\2, As] (by
Lemma5.5). Furthermore, note that we have= p for at most one of these crossingsd’, ¢, 7./),
because each of them is uniquely determined by the respeciple w, ¢, v’. We claim that each of
the remainingw, ¢)-crossings(wd’, ¢, J,/) under consideration (satisfying alab # p) must begin in
(€-1,A2) € [Awg, A2). This, together with condition (S2), implies that their ragnisO(1) too.

To see this final claim, note that if(av, ¢)-crossing(wad’, ¢, 7, ), as above, begins befoge, then
its respective interval7,, contains the tim¢_; (because it ends aftet > £_;), right after which the
Delaunayhood ofvq is violated byp anda. This, however, is impossible because, by Lerimb#dglis
Delaunay throughout, in P\ {«'}, andu’ # p, a.

To recap, in each of the cases (c1) and (c2) we chamjéeher to2(¢2) (8¢)-shallow co-circularities,
or to an(8¢)-shallow collinearity, which occur in one of the arrangetses,,, A,,, during the interval
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(-1, Aq). Furthermore, eac{8/)-shallow event is charged by at mas{1) special quadruples. Hence,
at mostO (2N (n/!) + ¢n*B3(n)) special quadruples fall into case (c).

Case (d).Assume that none of the preceding cases occurs. In parfitiuse is a subset,,,, of at most
6¢ + 3 points (includinga, » andu) whose removal restores the Delaunayhooghrofthroughout the
interval [\, §uwq]- Furthermore, a total of fewer thdrpoints of P\ {a, r, u} ever appear in the caf,,
during (£-1, ),), and a total of fewer thafipoints of P \ A,,, points ever appear in the caj;,, during
that interval

In this last remaining scenario, we finally consider therpitey between the special quadruple
under consideration and the ordinary Delaunay quadrapte (p, ¢, a,r) in F, which corresponds to
the first special(a, ¢)-crossing(pa, ¢, Z,.) of x. At the end of this section, we shall chargeto the
terminal quadruple = (p, ¢, r, w), which is composed of the edge, and of the two points andw
that crosq in opposite directions. (The outer poimtof the second specidk, ¢)-crossing(wa, g, J.,)
is not used for right quadruples; it will be used in the mostlynmetric analysis of left quadruples, given
in Sectior{ 6.6.)

Before chargingy to the above terminal quadrupie we enforce a Delaunay crossing of one of the
edgespr, gr by the pointw. In addition, we shall have to enforce two more crossingfopaed by the
points of o in order to ensure that at least two of the resulfiivg crossings are performed by the same
sub-triple of p (so as to allow us to apply our cornerstone Lenima 4.5 andhierbtain a quadratic
bound on the number of such quadruples).

To facilitate the forthcoming analysis, we first establiskiesal auxiliary claims.

Lemma 6.4. With the above assumptions, a total of at m@&&t+ 1 points of P appear in the cap
Cyl, = Blp,q,w] N L}, during (§_1, \g).

Proof. Refer to Figurd @1. Recall that the motion Bfp, ¢, w] is continuous throughout¢_1, A;).
Notice that the above cai, = B|p, ¢, w]NL;}, (which containsv on its boundary) is empty right before
time \,, when the edgeq is crossed bys. Hence, any point that appears in this cap duririg-1, \;)

has to leave it beforg,. Furthermore, condition (S5) (together with the inclusién;, \;) C [£pq, Apq))
implies thats cannot escapé';;] through the edgeyq, unless it is equal to one af, r,u. Therefore,
any such point # a,r,u has to IeaveCIj; through one of the circular arcs bounding the earlier caps
C'q‘w,C;w, so it must first appear in one of the capg, or C;w. Since cases (b) and (c) have been
ruled out, and since, r,u belong to the se#,,,, the overall number of such points cannot exceed
(—=1)+(L—-1)+(60+3)=8(+1. O

We next consider the ordinary quadruple= (p, q, a, ) in F, which corresponds to the first special
crossing(pa, q,Z,) of x. Refer to Figuré 62. We continue to denote the two Delaunagsings of
o by (pg,r, I = [to,t1]) and (pa,r,J = [te,t3]). Recall that the points of are co-circular at times
CelI\J ¢ e J\Iand(, > ts3. By condition (Q3) orv, the last two co-circularities af (at times
(1 and(») have the same order type, and the Delaunayhood, @ violated byp € L, anda € Ljrq
throughout the interval(;, () (see Figuré@2 (left)). Therefore, the Delaunayhoogaak violated right
after time(s by r andgq.

Remark:Note thato and xy have “opposite” topological behaviour, in the sense thatatiditional co-

circularity of o (outsidel and.J) occurs at time&-, after the respective second intervabf o, whereas the
corresponding additional co-circularity gf(outsideZ, and.7,,) occurs at timé&_1, before the respective
first intervalZ of y.

%Note the built-in asymmetry betweem andpw in the analysis: The former is almost Delaunay in the intefVag, Ewql
(and Delaunay at both endpoints,q, £..4]), Whereas the latter becomes Delaunay there only afteetheval ofA,., (which
includesa, p, r, u).
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Figure 61:Lemmd®6.4: Atotal of at most/+ 1 pointss of P appear in the cap;, = B[p, ¢, w|N L}, (consisting
of all the shaded portions) during—1, A;). All of them must IeaveS’p*q before),. None of these points can

IeaveCj;q throughpg, unless it is one of, r, .

pa € DT(P\ {q,7})

Figure 62:The (regular) clockwise quadrupte= (p, q, a,) of (pa, q,Z.) is composed of twdgp, r)-crossings
(pg,r, I = [to,t1]), (pa,r,J = [ta,t3]). The pointsp, ¢, a,r are co-circular attime& € I'\ J,¢{; € J\ I, and
(2 > t3 (left). The last two co-circularities have the same ordpetyand the Delaunayhood©f is violated byp

anda throughout((1, ¢2) (right).

By condition (Q7), the edgea re-entersDT(P) at some timef,, > (2 > tp. Furthermorepa
belongs toDT(P \ {r,q}) throughout the intervalts, t,,] = J U [t3,tpq], Which coversJ (including
¢1 € J\I)and(,. Moreover, we recall that (using the Delaunayhoogét timets, and the extremality
of ¢y, via Lemme31l)g crossega from L., to L}, during (t3,1,,]. As argued in Section 5.6, this
yields the Delaunay crossin@a, ¢, Z. = [Ao, A1]) in P\ {r} as the unique special crossingafwith
I C (tg,tpa].

To conclude, the second crossif@, r, J = [t2, t3]) of o and the first crossinpa, ¢, Z, = [Ao, A1])
of x occur during disjoint intervals and in this ordgr.

Finally, by condition (Q8), the edge; belongs taADT(P \ {r,a}) throughout the intervdky, \1] =
[I,Z,](= conv(I UZ,)). Therefore, the almost-Delaunayhoodpgfextends fronié,,, A,,] to the poten-
tially larger intervallty, Apq] (@ssuming,, > to, that is,/ = [ty,t1] is not contained ifg,q, Apql)-

The following claim is crucial for understanding the interpbetweers andy.

Lemma 6.5. With the above assumptions, we hayes (£_1,&).

Figure 63:Lemmd®6.b claims tha € (£-1,&).

*Note that, even though hits pa after ¢2, during the above special crossing, it is not known whethetast co-circularity
¢2 of o occurs inZ, or beforehand, irfts, Ao].
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Proof. The inequality(; < & follows because; occurs during the second crossify, r, J) of o,
whereast, occurs during the first special crossifg, ¢, Z,.) of x (which begins after/). See Figuré 83
(left) and Figuré 613.

To establish the inequality; > £ 1, let us assume for a contradiction thgt < £ _1; see Figure
[64. Sinces = (p,q,a,r) belongs to the refined familf (and, therefore, satisfies condition (Q3)), its
point ¢ remains inB|p, a,r| N L, afterr entersL,, during.J = [t2, 3] and until time¢; € J (when
q leaves the caf[p, a,r] N L,,). Also note that, with the above assumption that &1, the pointg
cannot leavel,, during (¢1,£-1). Indeed,q lies in L, at both endpoints of that interval, because the
quadruplesr and x satisfy the respective conditions (Q3) and (S3a), and itezdar the halfplanéjga
only once (which occurs during. and after¢_).

q a
w
°
to J t3 /\OI’" A tpa r
B e
G &1 & Ag P

Figure 64: Proof of Lemmd 6. 1K, < &, (left) thenw has to enteB[p,q,a] N L;,, which is empty at

time (; (center), before leaving it at timg_; (right). By Condition (Q7)w can enterB[p, q,a] N L;a during
((1,€-1) C (t2,1pe) only through the boundary d8[p, g, al.

The above reasoning implies that the motion3ip, ¢, a| is continuous throughout;,¢—1). Fur-
thermorew lies outside the caB|p, ¢, a] N L}, attime(y, for otherwise the Delaunayhood i would
be violated by; andw (which cannot happen during the intervglwherepa belongs taDT (P \ {r}));
see Figuré 84 (center). By condition (S3a)Jeaves the caiB(p,q,a] N L}, at time&_;. Therefore,
w must have previously entered that cap, in the intefgal¢_;). Note that, sincé_; < )\, the latter
interval is contained i1, t,,), Wheret,, denotes the first time aft€; and¢, whenpa again belongs
to DT(P).

Sinceo satisfies condition (Q7)w cannot entetB[p,q,a] N Ly}, during (¢1,&-1) € (t2,A1) C
(t2,tpq) through the edgpa. Furthermorew cannot ente3[p, g, a] N L;a during that interval through
the boundary oB3[p, ¢, a], as that would cause a forbidden fourth co-circularity of, a, w; see Figure
(right). Hence, we have reached a contradiction, andl#i@ ¢ollows. O

By Lemmal4.1, none of the co-circulariti€s, £, can occur during/, so we have/ C (£_1,&).
This, combined with the properties (S1)-(S3a)oimplies that(¢,, <)é—1 < ta < {1 < t3 < Ag <
€0 < A1 < Ag(< Apg)- See Figuré 85 (left).

Sinceo satisfies condition (Q3); cannot return ta_,, (after leaving it duringl) before time¢,
(whenr leaves the ca@[p, ¢,a] N L}},), for otherwise the triple, ¢, would be collinear at least three
times.

Furthermore, ifr re-entersl,,, throughpq during the subsequent intervdh , \,,], then the edgeq
undergoes two Delaunay crossings /bithin the triangulationDT (P \ {a,u,w}). Indeed, Lemma
implies that(¢;, Apq) is contained iNE_1, Apy] C [£pg, Apgl, @nd the edgeq belongs toDT (P \
{a,r,u,w}) throughout the latter interval by condition (S5) (in addfitito its being Delaunay at the
endpointsé,, and )\,,). By Lemmal4}b and Propositidnb.2, this happens for at rast’) special
quadruplesy.

To conclude, ignoring the favourable quadruples just amrsd, we may assume that the above
scenario does not occur, saloes not crosgq in the interval(t;, \,,]. (However,r can still return to
L, during(t1, A,,], Or, more precisely, duringlz, \,], by crossing one of the outer rays bf,, outside
pq.) See Figuré 85 (right).
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Figure 65: Left: The setup implied by Lemma8.5. We hagg, < {&-1 < (1 < & < Ay < Apg, and

J C (§-1,&0)- The pointr remains inL,, throughout(t;,¢1). Right: If » were to hitpg also in (¢, Apq),
thenpq would undergo two Delaunay crossings bwithin DT(P \ {a,w,u}). Hence, we can assume that no
such collinearity occurs.

The three co-circularities of p, ¢,r,w. We now argue that the four poinis ¢, r,w are involved in
exactly three co-circularities, and characterize the org®es of these co-circularities. First, recall that
one such co-circularity occurs at some tifges I, according to Lemmia4.4. Since this co-circularity is
induced by the crossing @f; by r, it is red-blue with respect tpq and torw. Moreover, as will follow
from the subsequent analysis, this is the first co-circiylarf this quadruple; see Figurel66.

q

b

Figure 66:The co-circularity ofp, ¢, r, w occurring at some timé&, € I. It is red-blue with respect to the edges
pq andruw.

To obtain the second co-circularity pfq, r, w, we recall that (as reviewed at the beginning of this
section, and depicted in Figure] 53 (bottom)) the Delaunasgitudwq is violated byp Ly, anda € Lj;q
throughout the intervals_;, &), and the order type of, ¢, w remains fixed (i.ew lies in L;q) throughout
the larger intervalé_1, \,).

By Lemmé&6.b, the intervd 1, &) contains(;, soa lies at that time in the cap',, C C;QZ (after it
entersC,,, attime¢_,, and before escaping it at tingg). Since the pointg, ¢, a, r are involved at time
(1 inared-red co-circularity with respect tg (as prescribed by condition (Q3) @), botha andr lie
at time¢; within the capC}, = Bp, ¢, w] N L,; see Figur&g7 (left).

Sincew remains inL;q throughout the longer intervdt_;, \;), the four pointsp, ¢, r,w are in-
volved, during(¢1, Aq), in a co-circularity, which occurs whenleaves the above caB[p, ¢, w] N L},
(Otherwiser would have to escap8|p, ¢, w| N L;q through the interior opq before this cap shrinks
to pg at time \,, which cannot happen durin@:, A\,] C (t1, Ap) by condition (Q8).) Clearly, this co-
circularity is red-red with respect to the edgg and occurs aftef and betweer; € J \ I and),. We
denote by, the time of thdirst such co-circularity event ifc;, \,), at whichr leavesB|p, ¢, w] N L;q.
(As will soon turn out, this is the second co-circularitypofy, r, w.)

Remark.We again emphasize thét € ({1, ;) C (-1, ), and that- remains in the ca@[p, ¢, w] N
L;q throughout the intervdl;, §;). (However, the order between and¢, is not known, and is imma-
terial for our analysis.)

We next claim that the points, ¢, 7, w are involved in a third co-circularity, red-blue with respe
to pg, at some timej, € (1, Ap,]. Notice that the desired co-circularity cannot be obtaibgaimply
applying Lemma_4]4 to the crossirigp, w, H), because it is defined only with respect to the reduced
point setP \ {a,r, u}.
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Figure 67:0btaining the second co-circularidy of p, ¢, , w. The co-circularity o, g, a, r at time(; is red-red
with respect tgrg, and belongs to the intervgd 1, &), during whicha lies in C, (C C;;I). Hencey lies at that

time within the capCf, = Blp, ¢, w] N L}, s0d1 necessarily occurs if(1, \,), whenr escapes the above cap

C, (without crossingg). This is also a red-red co-circularity with respecpto

Instead, we consider the four-point triangulatio’ ({p, ¢, r,w}), and observe that the edge
undergoes there a Delaunay crossingdywhich takes place during some sub-interval&f, A, that
contains), (the time of the actual collinearity of the three pointsdéed pq is Delaunay in{p, ¢, r, w}
attimesd; < A\, and\,, > A, > d1, and it is Delaunay ifp, ¢, '} throughout(d; , A,,] (because- is
assumed not to crogg in the even larger intervak,, A, )).

Furthermore, the above crossingd'({p, ¢, 7, w}) must be single. Indeed, sineelies inC,,, C
L, throughout the interval¢_1, &) which contains(y, it has to remain inl} throughout[¢i, A, D
[01, 4] (or, else,w would crossL,,, three times). Furthermorey does not crospq again in(Ay, Ap,l
(by condition (S3b)). We hence apply Lemmal4.4 to this sieghssing, which gives us the desired third
co-circularity (see Figurle 68).

Figure 68:The third co-circularity of, ¢, 7, w occurs at some timé, € (41, \,,], and is red-blue with respect
to the edge®q andrw. This co-circularity is part of a Delaunay crossinggaf by w, which occurs within the
four-point triangulatioDT ({p, ¢, 7, w}), during some subinterval ¢61, \,,| that contains\,.

To conclude, the four points ¢, r, w are involved in three co-circularities, which occur at tgvig <
I = [to,t1], 61 € (C1,Ag)(C (€21, 7g)), @anddy € (61, A\pq). The two extremal co-circularities (which
occur at time9, andd,) are red-blue with respect to the edgesandwr, and thus monochromatic with
respect tr, qr, pw, qw. The middle co-circularity (at timé&,) is red-red with respect tp)q

We are now ready to establish the following important consege of LemmBa6l4.

Lemma 6.6. With the above assumptions, at m&&t1 clockwise (Delaunay(p, r)-crossingspq’, , I')
in 7, and at mos8¢ + 1 counterclockwise (Delaunayy, r)-crossings(p’q,r, I’) in F, can end in the
interval (t1,01).

Recall that an (ordinary) Delaunay crossing isArif it is either the first or the second crossings of
some Delaunay quadruple iA. In Section[b we have already enforced comparable resmit{via

3"This alternation in the order type is crucial of the forthénganalysis.
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conditions (Q2) and (Q4)), which imply that no clockwigg r)-crossings(pq’,r, I') in F, and no
counterclockwisgq, r)-crossings(p’q, r, I') in F, end after timet; and before time,, > t3(> (1),
which is first such time afte¢; when the edgeq belongs toDT(P). See Figuré 89. (In addition,
conditions (Q2) and (Q3) imply that; belongs tdT (P \ {a, p}) throughout(t,, ¢,,], and neither nor

p can hitrq in that interval.) Unfortunately, the order 6f, andd, is not known, so condition (Q4) does
not immediately imply the above property.

It trq
B B s S S
to ta (1 t3 0 Ag

Figure 69:Preparing for the proof of Lemnia®.6. By conditions (Q2) a@d); no clockwisep, r)-crossings,
and no counterclockwisgy, r)-crossings inF end in the shaded interval betwegnandt,, > t3(> (1), where
t.q 1S the first such time aftef; whenrg belongs tdT(P). Unfortunately, the order of; andt,, is not known.

Proof of Lemm&6]6We first consider clockwisép, r)-crossings. Letpq’,r, I') be such a Delaunay
crossing that ends ift1, d1). Note that the poing’ has to be distinct from (for, otherwise,(pq’,r, I')
would co-incide with(pa,r, J)), and that the pointg, ¢, ¢, form an (ordinary, not necessarily con-
secutive quadruple) clockwise quadruple. Recall alsostmatnains inL;q after entering that halfplane
during I = [to, 1] and until timed; (whenr escape&’, = B[p,q,w] N L;},). In particular,q lies in
L,. =L, whenr entersL;q, (during I'). Hence, the points, ¢, r, ¢’ are involved in a co-circularity at
some timel’ € I’ \ I, right after which the Delaunayhood of is violated byp andq’. See Figur€ 740
(left).

Figure 70: Proof of Lemmd6l6. Left(pq’,r,I') is a clockwise(p, r)-crossing that end§;, ;). The points
p,q,r,p’ are co-circular at some timg € I’ \ I. If ¢’ occurs in(¢1, 1), thenp' lies in G}, = Blp,q,w] N L},
at that moment. Right(p’q,r, I’) is a counterclockwiséq, r)-crossing that occurs withif;, é;]. The points
p,p,q,r are co-circular at some timg € I’ \ I, when both- andp’ lie insideC’p*q.

We first argue that’ cannot occur beforé;. Indeed, otherwise, applying Lemmal3.1 for the edge
rq, from time ', would imply that at least one of the following events mustuwcbetweer(’ andt,,
(which is the first time afte¢; whenrq belongsDT(P)): (1) ¢’ hits rq, (2) p hits rq, or (3) the four
pointsp, g, ¢’, r are involved in an additional co-circularity of the sameesrtype.

However, cases (1), (2) are impossible by conditions (Q2) @B8) ono (using that(; < t,4).
Moreover, the co-circularity in (3) can occur only after #ved of bothl andI’ (because, q, ¢’ andr
form a regular clockwise quadruple; see Secfion 4.1), irctvitase(pq’, r, I') has to end before,,,
contrary to condition (Q4) on. Hence (' must occur aftec;.

We may thus assume thét belongs to the interval(y, 6;) which, by Lemmd®&l5, is contained in
(€-1,A¢), s0 bothg’ and+ lie at time¢” within the capC,}, = B[p, ¢, w] N L;},. According to Lemma
[6.4, the overall number of such pointsis at most’/ + 1.

The treatment of counterclockwige, r)-crossings (also iF) is similar (but somewhat simpler).
Indeed, let(p’q, r, I') be such a crossing. Condition (Q2) implies that it cannotieride interval(,, (1]
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(because; belongs toJ \ I C (t1,\rq)). Furthermore, Lemma4.1 implies that any counterclockwis
(q,r)-crossing(p’q, r, I') that ends afte¢; has to begin also aftey. (Otherwise, its respective interval
I’ would contain the time&; of a red-blue co-circularity with respecttq, contrary to the Delaunayhood
of rq during I’.) We consider the co-circularity @f, p’, ¢, 7, which must occur at some ting¢ € I’ \
and notice, as in the previous case, that boeindp’ lie at that moment in the ca@jgl; see Figuré 70
(right). Therefore, the overall number of such poiptsloes not exceegl + 1. O

Cases (d1) and (d2): Overview. To proceed, we distinguish between two possible subcasssbtase
(d1), we assume that the middle co-circularity, which osaifrtimed,, is red-blue with respect to the
edgespr andwq (see Figuré A1 (left)), and then use it to enforce (via Lerhmii the following two
additional crossings: (i) a Delaunay crossingpofby at least one the points, ¢, and (ii) a Delaunay
crossing ofwq by at least one of the poings ». (For the second crossing, it will suffice to argue that
wq is hit by one of the pointg,  in the interval[A,q, A\pg] C [Auwg: {wq).) However, this can easily be
established by applying Lemrha B.14@ backwardsfrom the second co-circularity; € [Ayq, Apq] Of

P, q, T, wW.)

Figure 71:Left: Case (d1). The co-circularity at timk is red-blue with respect to the edgesandwgq. Right
afterwards, the Delaunayhood pf is violated byg andw. Right: Case (d2). The co-circularity at tindg is
red-blue with respect to the edgesandpw. Right afterwards, the Delaunayhoodrgfis violated byp andw.

Therefore, the pointg, ¢, r,w (or, more precisely, their sub-triples) will perform foustinct De-
launay crossings—the two new crossings just promised anthib “old” ones, ofpg by r and byw. If
a pair of these crossings is performed by saenetriple, we will use Lemma 4]5 to bound the overall
number of such special quadruphesOtherwise we will charge to the (probabilistically refined) termi-
nal quadrupleo = (p, ¢, r, w), whose four possible sub-triples are involvedonr Delaunay crossings,
namely, the crossings oty by » andw, the crossing opr by w, and the crossing abq by r.

In Section[¥ we will use the third co-circulariyy to enforce, for each terminal quadrupte=
(p,q,r,w) of the above kind, an additional, fifth crossing (namely, @ssing ofrw by p or ¢). As a
result, some sub-triple qf, ¢, r,w will be involved in two Delaunay crossings, which will allows to
obtain a “quadratic” recurrence for the number of such quglé; via Lemma4ls.

In subcase (d2), we assume the co-circularity at timéo be red-blue with respect to the edges
rq andpw (see Figuré_741 (right)), and then use it to enforce a Delawnagsing ofrq by at least one
of p andw. If rq is crossed by, we can dispose of via Lemmd4.b. Otherwise, we chargeo the
(probabilistically refined) terminal quadrupte= (p, ¢, r, w) (whose points are known, so far, to perform
only threecrossings).

In Section[¥ we will enforce, for each terminal quadruple= (p, ¢, r, w) of the latter typewo
additional crossings, namely, a crossingafby one ofr, ¢, and a crossing afw by one ofp, ¢. Hence,
once again we will be able to use Lemimal 4.5 to handle suchniaimuadruples too.

Case (d1).The co-circularity at time; is red-blue with respect to the edge whose Delaunayhood is
violated right afterwards by andw (see Figuré 741 (left)).

Note that the above violation gfr does not hold either right before, or right after tilhg More
precisely, it does not hold for that side &f whenw andr lie in the same side of,,, in which case the
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segmentgq andrw do not even intersect; see Figlre 68.

Therefore, and sincé, is theonly red-red co-circularity op, g, r, w with respect taopq, applying
Lemma[3.1 over the intervagh, \;), within the triangulationDT({p, ¢, r, w}), shows thatpr is hit
during (41, A\,) by at least one of or w. See Figuré& 12 (top).

A very similar argument shows that the edge is hit by one ofp or r afterr entersL;q (during I)
and befored;. Indeed, letv,, denote the time i whenr hits pg. Note that the edgeq is violated
right befored; by p andr, and that the above violation did not hold at timg,. Therefore, another
application of Lemm&3l1 iDT({p, q,r,w}), from timed; backwards, shows that the edge is hit
during (v, 91) by at least one of the two pointsor r. See Figuré&72 (bottom).

Figure 72:Lemmd6.Y. Top: Possible trajectoriesofleft) orr (right) during(d1, A, ), which realize the crossing
of pr by the respective point. Bottom: Possible trajectories oluring (v,, 41 ), which realize the crossing afg
by r (left) or by p (right).

To conclude, we have established the following claim.

Lemma 6.7. With the above notation, the following two properties holadase (d1):

(i) The edgewq is hitin (v,q, 61) by at least one of the poinis . Namely, either crosseswvg from
Ly, to qu, or p crosseswq in the reverse direction. Moreover, the Delaunayhoodvgfis violated by
p andr after the last such crossing and until.

(if) The edgepr is hitin (61, A\,) by at least one of the points, . Namely, eithew crossegr from
L;T to L, or g crosser in the reverse direction. Moreover, the Delaunayhoogrofs violated byw
andq after §; and until the first such crossing.

Case (d1) — the crossing ofvg by p or r. We next turn the crossing in Lemrha k.7 (i) into a Delaunay
crossing ofwg by r. Recall thatd; belongs to the interval\,q, {wq). Therefore, and sinceyq is
Delaunay at time\,,, (and at time¢,,), the crossing in Lemm@_8.7 (i) has to occur in the interval
[Awg, 01); see Figur€73. Therefore, and sinceis Delaunay inDT (P \ {a,p, r, u}) during [Awq, &wql

(by condition (S6)),wq undergoes within that latter interval a Delaunay crossing lor » within a
suitably reduced triangulatioDT (P \ {a,r,u}) or DT(P \ {a,p, u}).

If wgq is hit by p during [\, 61], then the point®, ¢, w define two Delaunay crossings within the

reduced triangulatio®T (P \ {r,a,u}). A routine combination of Lemnia4.5 with the Clarkson-Shor
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wq € DT(P\ {a,p,r,u})

Figure 73:Case (d1)—obtaining a crossing®f by at least one of, r. The edgevq is Delaunay at timeg,,,
and¢,,,. Since the Delaunayhood afy is violated byp andr right before timej, € [Ayq, &wq), it is hit by one of
these points during,,q, d1).

probabilistic argument implies that the overall numberwatstriples(p, ¢, w) in P is O(n?). By Propo-
sition[6.2, this also bounds the overall number of such speciadruplesy.

We may therefore assume thad is hit during[\,,, 61) by the pointr, in which case the smaller set
P\ {a,p,u} induces a Delaunay crossing ©f; by . Note that each such triplg, w, ) is shared by
at mostO(1) special quadrupleg as above. Indeed, by Lemimalricannot hitwg during the crossing
(wa, ¢, J,,) (which is defined with respect t8 \ {u}). If r hitswg in [A,4, A2) then, by condition (S2),
(wa, q,J,,) is among the first three clockwise specfal, ¢)-crossings to begin after that collinearity.
Otherwise, ifr hits wgq in (A3, &), then condition (S6) similarly implies thétva, ¢, 7,,) is among the
last three sucliw, ¢)-crossings to end before this collinearity. We thus haveldished the following
claim:

Lemma 6.8. With the above assumptions, for any given triplew, ) there remain at most si3-
restricted special quadruplegs = (a/,p’,w’,¢’), with respective outer points’ and «/, that satisfy
(¢, w',r') = (g w, 7).

In other words, any tripléq, w, r) is shared by at mostx special quadruples that have survived the
previous chargings (after falling into case (i)). Hences $#ipecial quadruplg under consideration is
almost-uniquely determined by the choice(@fw, r).

In what follows, we therefore assume that the edgaindergoes (within a suitably reduced triangu-
lation DT (P \ {a, p,u})) a Delaunay crossing hy, and thaty andg are almost uniquely determined by
this additional crossing triplég, w, ).

Case (d1)-the crossing ofr by ¢ or w. We next turn the crossing in Lemrhab.7 (i) into a Delaunay
crossing ofpr by w. If pr does not re-enteDT(P) after timed; then, by Lemma 6l6(pq,r, I) is
among theD(¢) last (regular)(p, r)-crossings (becauge- is Delaunay during each of these crossings).
By Propositiori 6.1, this can happen for at mO$tn?) special quadrupleg. Therefore, we may assume
thatpr re-enterd T (P) afterd;.

~pr € DT(P)

. A pr ! pr hit by ¢ orw
D)
to t G 6 &

Figure 74:Case (d1)-enforcing a crossingof by one of the pointg, w. The edgepr is Delaunay throughout
I = [to,t:] and at time,,,. > 41, which is the first such time afté; whenpr re-enter®T(P). The Delaunayhood
of pris violated byg andw right afterd; € (t1,&,,], S0 itis hit by one of these points durild, &,.|.

Let &, denote the first time ify;, co) when the edger is again Delaunay (itP); see Figuré_74.
Clearly, the time whempr is hit by one ofq, w (as prescribed by Lemnia 6.7 (ii)) belongs to the interval
(01, &pr], which is contained ¢, &,r] € (t1,&,r]. To turn this crossing into a Delaunay crossing, we
apply Theoremh 212 iod,,, over the intervalt;, &, ), with the third constant >> ¢.
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If at least one of the Conditions (i), (ii) of TheorémR.2 t®ldve can chargg, within A,,, either to
anh-shallow collinearity or td2(h?) h-shallow co-circularities. Lemnia.6 ensures that éashallow
event, that occurs i, at some time* € (¢1,&,,), is charged in this manner by at ma@st¢) special
guadruples. Indeed, the corresponding pairdsidr are involved in the event, so we can guess them in
O(1) possible ways, antbg, r, I) is among the last/ + 2 clockwise(p, )-crossings to end before time
t*. Therefore, the above charging accounts for at mio&th?N (n/h) + ¢hn?B(n)) special quadruples
X-

We may assume, then, that Condition (iii) of Theofen 2.2 fiolthat is, there is a subsdt,, of at
most3h points (perhaps including some @fa, © andw) whose removal restores the Delaunayhood of
pr throughout the intervdky, &,,].

If pr is crossed duringdy, §,-| by ¢ (from L, to L;T), then the triplep, ¢, r performs two Delaunay
crossings within the triangulatioT((P \ A,,) U {¢}). A routine combination of Lemnia4.5 with the
probabilistic argument of Clarkson and Shor implies tRatontains at mos (hn?) triplesp, ¢, r of this
kind. By Propositio 6]1, this also bounds the overall nundfesuch special quadruples

To conclude, we are left with the case where the epgés crossed duringd, ] by w (from
L;T to L,.). Hence, the reversely oriented copy of pr undergoes within the smaller triangulation
DT((P\ Apr)U{w}) a Delaunay crossing-p, w, T = [0, 71]), whereT C [t1,y,,] (the crossing must
begin aftert;, sincepr is Delaunay during, by Lemmd4.11).

Lemma 6.9. With the above assumptions, for any given trigter, w) there remain at most/ + 2
3-restricted special quadrupleg = (d/,p’,w’, ¢’), with respective outer points and«/, that fall into
case (d1) and satisfip’, 7', w') = (p,r, w).

Proof. By Proposition 6.11, eacly as above is uniquely determined byg, r, I) which, according to
Lemmd®6.6, is among the la&t + 2 clockwise(p, rr)-crossings to end before hits pr (as prescribed by
Lemmd&.7). O

If the above Delaunay crossing of by w, which occurs within the reduced triangulationl'((P \
A,) U {w}), is a double Delaunay crossing, then we can charge this crossing. A standard com-
bination of Lemma 45 with the probabilistic argument of i@&pn and Shor implies that the overall
number of such triplegp, r,w) in P is only O(hn?), so the overall number of such special quadru-
plesy does not exceed(¢hn?). Therefore, we may assume, in what follows, that the abovssang
(rp,w,T = [10,71]) IS asingleDelaunay crossing.

To facilitate the subsequent steps of the analysis, we anigtine above conflict set,,, as follows.
For each clockwisép, rr)-crossing(pq’, -, I') (in F) that ends duringt; , 1) we add the respective point
¢’ to A,,. Informally, this is done to get rid of thege, r)-crossings(pq’, r, I') (see below for details).
Since there are only at mast + 1 such points;’ (and since < h), the overall cardinality ofd,,,., after
the augmentation, is at mash + 8¢ + 1 < 4h.

To conclude, in case (d1), after disposingdf N (¢h>N (n/h) + ¢hn?(n)) special quadruples, we
may assume that the four points @f= (p, ¢, r, w) perform at least four Delaunay crossings, namely,
(pq,r,I), (gp,w, H), the crossing ofvg by r (which occurs inP \ {a, p, u} and within[A,,q, &uel), @and
the lately enforced single Delaunay crossing, w, 7 = |19, 71]) (Which occurs in(P \ A,,) U {w}).

Case (d1) — convergingln Sectior Z.1L, we will exploit the third co-circularity pf ¢, r, w, which occurs
attimeds € (01, A,q| and is red-blue with respect pg andrw, to enforce the crossing ofv by at least
one ofp andq. As a result, one of the triplg®, r, w) of (¢, r,w) will perform two Delaunay crossings
in an appropriately refined triangulation, and our analysgis bottom out into a quadratic bound via
Lemmd4.b.

To obtain the above crossing ofv, we will first apply Theoreni 2]2 in the red-blue arrangement
of this edge, so as to extend the (almost-)Delaunayhoodvaitef rw from 7 = [y, 71| (Whererp
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undergoes an almost-Delaunay crossingu)yto a larger interval that will contain bot#y, and a time
whenrw is hit by p or ¢q. At the end of the analysis, we will manage either to chargeqhadruple
(p,q,r,w) within A,.,, (in cases (i) and (ii) of Theorein 2.2), or else to extract thsidd Delaunay
crossing ofrw.

The above use of Theordm 2.2 will be prepared by applying fEmei&.3 for the clockwisér, w)-
crossing(rp, w,T = [19,71]), SO as to ensure that each eventlin, be charged by only few other such
terminal quadruple®’ = (p/, ¢, r,w), via the respectivér, w)-crossings(rp’,w,7’). That is, if we
encounter too mangr, w)-crossings(rp’, w, 7') that can charge such an event, the crossingw, 7))
will become(p, w)-chargeable, and can thus be accounted for by Thelorém 2.2.

In order for the crossingrp, w, T') to be(p, w)-chargeable, we need an appropriate tgngafterd,
when the edgew is Delaunay (or, at least, almost Delaunay, with none of tigraction points equal to
r,p, w). In addition, the edggw must be almost Delaunay throughout the entire interval e/fieorem
is applied. We next proceed to accomplish all these stap®re detail.

)\w pw € DT(P \ pr) gwq

|
| |
E1 G 6 N qu(

pw € DT(P\ {d,r,u'})

Figure 75:In the preparation for cases (b) and (c), we have extenddddtainayhood ofw from H = [y, A5]
(where it belongs t®T (P \ {a, r, u})) to the larger interval\,q, &wq]. We next extend the almost-Delaunayhood
of pw beyond¢,,q, until some timet,,,, whenpw belongs to some reduced triangulatioi (P \ {a’, ', v’}) (for

a,r' u & {q,r}).

Charging even more events inA4,,,. Our first step is to extend the almost-Delaunayhooghaf Refer
to Figure[7b. Recall that, in preparation for cases (b) apdwe have already extended the almost-
Delaunayhood opw from H = H, = [A\4, As] (Wheregp is crossed byw) to the interval[\,,q, wql,
which covers? = [A4, As], (-1, ¢) and A,,. (In particular, [Ayq, {uwg) CONtaINSs; € (¢1,Ag) C
(€-1,Aq) andda € (1, Apg).) This has been achieved at the cost of removing a certaisesub,,,
which consists of at mos¥ + 3 points, includinga, , u. Unfortunately, the above obstruction s&f,,
containsr (and perhaps als@), so removing4,,, in its entirety would destroy the Delaunay crossing
(rp,w,T) (instead of facilitating it$p, w)-chargeability in a smaller triangulation).

We next obtain a timg,,, > &,,, Whenpw belongs to some reduced triangulatioi' (P\{a', ', u’}),
ford’, 7", ¢ {q,r}, and extend the almost-Delaunayhoogaffrom A5 beyonds,,,, until &,,,.

To do so, we return to the familgfw of 3-restricted right special quadruplgs = (d/, p, w, ¢’) that
share their middle points, w with . (In particular,gfw includesy.)

Recall that each special quadruptec gﬁw is accompanied by @, w)-crossing(¢’p, w, H'), which
is defined with respect to the corresponding Bet {a’, ', v'}. Without loss of generality, we assume
that all quadruples i@fw fall into case (d1), and that none of them have been disposby the pre-
vious chargings withind,,. (In addition, we continue to assume that the special queeing under
consideration satisfies condition (PHR1).)

By Lemmal[6.9, any triplgp,r’,w) can be shared by at mo8t + 2 special quadrupleg’ =
(d,p,w,q) € gﬁw under consideration (each with its respective outer poihnd«’). Therefore,
the pigeonhole principle implies that at least some fixedtioa of all 3-restricted quadrupleg =
(a,p,w,q) € gﬁw under consideration (again, with respective outer poiraisdu) satisfy the following
condition:

(PHR2) At mostO(¢) other 3-restricted quadrupleg’ = (d/,p,w,q’) € gﬁ (each with its respective

w
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outer pointsr’ andw’) can satisfyr € {a’, 7, u'}.

(Briefly, this can be shown by considering timailti-function : gﬁw — gﬁw mapping each special
quadruplex = (a,p,w,q), with respective outer pointsandu, to at most(8¢ + 2) x 3 = O(¢) other
quadruplesy’ = (d/, p, w,q’), whose respective outer pointsare chosen from, r, u. Hence, average
“in-degree” of each quadruple € gfw, which is exactly the number of quadruplgsso that at least
one of their respective pointg, r’, v’ is equal to the first outer pointof x, is alsoO(¢).)

Therefore, we can assume, in what follows, that the abovditton holds fory at hand. Combining
thifd with (PHR1) shows that all but at mast+ O(¢) = O(¢) special quadrupleg’ = (¢/,p,w,¢') €
gﬁw, with respective outer points andv’, have{q,r} N{a’,7’,4'} = (). Recall also that, since case (a)
has been ruled ou@fw contains at most quadruples,’ whose respectivép, w)-crossingsq'p, w, H,)
end in(\s, &uq. See Figuré76.

Figure 76:The familygfw contains at mosD(¢) quadruples’ with non-empty intersectiof’, r’, v’} N {q, r},
and at mosk quadrupleg’ whose respectivep, w)-crossings end if\s, £u,q]. If gfw contains no special quadru-
plesx’ that satisfy{a’, 7", u'} N {¢,r} = 0, and whose respectiv, w)-crossings¢'p, w, H,+) end afteré,,,,
then(gp, w, H) is among the lasD(¢) such(p, w)-crossings.

Assume first thagfw contains no special quadruplgs= (a, p, w, ¢') (with respective outer points
r’ andv’) that satisfy{a’, 7', u'} N {¢,r} = 0, and whose respectig, w)-crossings¢'p, w, H,+) end
after&,,. Thereforegﬁw contains at most + O(¢) = O(¢) such quadrupleg’ whose(p, w)-crossings
(¢'p,w, H,+) end after the ending tim&; of % = #, (including the at mosk such quadruples whose
(p, w)-crossingsy’ end in(As, &g, and the at mosD (¢) such quadrupleg’ with non-empty intersection
{d’,7",u'} N {q,r}). Hence, we can chargg via its respectivép, w)-crossing(gp, w, H, = #), to the
edgepw, so the above scenario occurs for at mostn?) special quadrupleg under consideration.

Assume, then, that, for some¢ ¢ gﬁw, with {¢q,r} N {d’, 7', u'} = 0, its respectivé p, w)-crossing
(¢'p,w,H,) ends aftel,,,. By Lemma 4.l pw belongs toDT(P \ {a’,r’,u'}) throughout#, . In
particular, we can choose a tinig, € [£.q, 00), Which is the first such time when the edge belongs
to some reduced triangulatiddT (P \ {d’, ', u’}), whered', ', v' € P\ {r,q}. In what follows, we use
a’,r" andu’ to denote the above three poinfsr’, v/, whose removal restores the Delaunayhoogof
attime&y,,.

The preceding discussion implies that at mo$t) of the above(p, w)-crossings(¢'p, w, H,/) can
end in(&.q, §pw] (@nd that, for each of those crossings, its respective wtigin set{a’, r’, v’} intersects
{q,r}). Therefore, and since case (a) has been ruled out, atimes?(¢) = O(¢) of the abovegp, w)-
crossings can end if\s, ).

We are finally ready to apply TheordmR.2.it),,, over the interval s, &,.,) (see Figuré 7). This
is done with the third constarit > ¢ and with respect to the smaller set\ {d/,7’,u}. If at least
one of the first two conditions of Theordm .2 holds, we chaygeithin A, either to an(h + 3)-
shallow collinearity, or ta2(h?) (h + 3)-shallow co-circularities (as in the previous chargingese
events areh-shallow in P \ {d/,r',w'}, and (h + 3)-shallow in P). Clearly, each(h + 3)-shallow
event inA,,, is charged as above by at m@st/) special quadrupleg, becausgqp, w, H,-) is among
the lastO(¢) such (p, w)-crossings to end before the event. Hence, the above chaagitounts for

%As a matter of fact, our previous inability to enforce (PHR@)s the only reason why the present analysigjn, had not
been applied right after handling case (a), in a more geerakxt.

89



O (¢h*N(n/h) + thn*B3(n)) special quadrupleg.

)\lwq M Hy | A ,.

————— —tt---td-}------>t
O]

pw € DT(P\ {a,r,u}) werrereeans pw

pr pw € DT(P\ {a',r",u'})

Figure 77: Extending the almost-Delaunayhoodab to [As, &pw]. &pw is the first time in[¢,,,, co) whenpw
belongs to some reduced triangulatib’ (P \ {a’,r’,u'}), for {a’, 7,4’} N {q,r} = 0. We apply Theorem
[2.2 within A,,,, over the interval\s, &,.,), noting that(gp, w, /) is among the las®(¢) such(p, w)-crossings
(¢'p,w, H,) to end before any charged event.

We can therefore assume that Condition (iii) of Theotenh 22l Hence, there is a subsé;w
of at most3h + 3 points (including the above three points+’, v’ € P\ {p,q,r, w}), whose removal
restores the Delaunayhoodjaf) throughout(\s, £,.,). Thereforepw belongs taDT (P \ (A, U Ayy))
throughout the entire intervah,,q, £pw] = [Awgs Swgl U (X5, &pu] (WhereA,,, denotes the set of at most
6¢ + 3 points, includingz, r, u, whose removal restores the Delaunayhooghothroughout\,,;, &wql)-

Case (d1)-Wrap up.We again emphasize that the times of the various eventssdisdiso far appear in
the order

qu < )‘wq <§—1 < Cl <(51 < )\q < )‘pq <§wq <§pw7

thatdy € (01, \yq), and thatw crosses-p from L, to L}, in the interval(dy, \,), as part of a single
Delaunay crossingrp, w, T = [0, 71]) (Which occurs i P \ A,,) U {w}). Refer to Figuré 78.

70 T 1
wqwhltsrp\”prUAng .
o A e I T S
€pq §-1 o1 >‘q§ )‘quwq
SR IR SN A S
to dot1 %1 A M

Figure 78:Case (d1): A (partial) summary of what we assume at the endeo&ihalysis. Left: Various events
occur in the depicted order (aud lies in (41, Apq]). Right: A possible motion ofv afterr entersL;q (duringI).

By the definition of4,,, andflpw (of total cardinality6/ + 3+ 3h+ 3 = O(h)), the edgew belongs
to DT(P \ (A, U A,,)) throughout the intervald:, &pu] € [Awg, Epwl- Furthermorepw belongs at
time £,,,, to the triangulatioDT(P \ {d’,r’,u'}), whered’, v, u' € Ay, \ {q, 7}

Recall also that, sincg belongs to both intervalgy, A1] = conv(I UZ,) and(£-1,&0) C [Epgs Apgl,
the combination of conditions (Q8) and (S6) (on, respektiveandy) implies that the edggq belongs
to DT (P \ {a,w,r,u}) throughout the intervdky, A\,q] C [to, M| U [€pg, Apgl-

Finally, we continue to assume that the edge undergoes a Delaunay crossing byvithin P \
{a,p,u}. (The precise interval of this crossing is immaterial for future analysis.)

In what follows, we used,/, to denote the set of all points éf that appear in the caf,/, at some

time in (-1, \). By Lemmd 6.4, the cardinality ot does not exceegl + 1.

Case (d1) — charging terminal quadruples.To proceed, we draw a random samplef [n/h] points
of P. Notice that the following two events occur simultaneouslth probability at leasf2(1/h*): (1)
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The four points, ¢, w, r belong toR, and (2)R includes none of the points of
(A U Apw U Ay U Ay U{a,u}) \ {p, g, 7, w}.

Suppose that the sample is indeed successful for thierestricted right special quadruple =
(a,p,w, q) at hand, with respective two outer point@ndu. Then we can chargg to the quadruple
o = (p,q,r, w), which satisfies the following conditions with respect te fampler (see Figuré 106 in
Sectior 7.1l for a schematic summary, withreplaced byP).

(Al) The edgepq undergoes (irk) a Delaunay crossingg, r, I = [to,t1]) and is crossed by, from
L;q to L, , at some later time,, > ¢;. In addition,pq is again Delaunay at some timg,, which is
the first such time aftet,, and it belongs t®T (P \ {r, w}) throughout(t;, \,,). Hence, its reversely
oriented copy;p undergoes iR \ {r} (and entirely within(t;, A,,]) a Delaunay crossing by.

(A2) The pointsp, g, w,r are co-circular at timegy € I, §; € [t1,A\y], andday € (1, A4, and the
following properties hold:

(i) The co-circularity at time), is red-blue with respect tog.

(ii) The co-circularity at timej, is red-red with respect tpg and red-blue with respect to the edge
whose Delaunayhood is violated right after tidieby ¢ andw. Furthermore, the open ca@,j;] =
Blp,q,w] N L;q contains no points of at timed .

(iii) The co-circularity at time, is again red-blue with respect tg. It arises during a single Delaunay
crossing ofgp by w, which occurs iDT ({p, ¢, r, w}) during some sub-interval @b, \,].

(A3) The setR \ {¢} induces a (single) Delaunay crossitg,w, 7 = [r,11]), wherew crossesp
from L, to L}, during (01, A ).

Similarly, the sef? \ {p} induces a Delaunay crossingwof by r, wherer crossesvq befored;, and
from L,,, to L\, .

(A4) There exists a timg,,, > \,, so that (i) the edgew is Delaunay (inR) at time¢,,,, and (ii) pw
belongs tadDT (R \ {g¢,r}) throughout the intervgb, &,.,].

In SectionZ.]L we show thatw is Delaunay also at timé&;. In addition, Lemm& 411 implies that
pw belongs tdT(R \ {¢}) throughout the intervel” = [y, 1], which obviously intersect®, {,,,](D

[517 )‘Q])'

Notice that any such quadrupte= (p, ¢, r,w) in R is charged as above by at most Gheestricted
right special quadruplg = (a,p, w,q) in F (with outer points- andu), because the latter quadruple is
uniquely determined by each of the triplgs ¢, ) and(p, ¢, w).

We say that a quadruple= (p, ¢, r, w) is terminal of type Af it satisfies the above four conditions
(A1)—(A4) with respect to the underlying sé&. (In Section[¥, we shall again uge to denote the
underlying point set of our terminal quadruples. See Fifi@ in that section for a partial summary of
the properties of terminal quadruples of type A.)

Let E;‘% denote the resulting family of terminal quadruples- (p, ¢, r, w) (of type A) in R that are
charged bys-restricted right special quadruplesfhthrough the above probabilistic argument.

Lemma 6.10. With the above assumptions, each terminal quadrupte (p, ¢, 7, w) in Eg is uniquely
determined by each of its sub-triplé¢s, ¢, ), (p, ¢, w), (p,r,w). Furthermore, any triplgq, r,w) is
shared by at most six terminal quadrupleﬂﬁ.

Proof. Clearly, the second part of the lemma is directly implied leyrimd 6.B, so it suffices to establish
the first part of it.

By condition (Al),w is the first point ofP to hit the edgepq after its Delaunay crossinggq, r, I =
[to, t1]) by r. Hence,o = (p,q,r, w) is uniquely determined by the choice pfq andr. A similar
agrument implies that = (p, ¢, 7, w) is uniquely determined by the triple, ¢, w).
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To see thap is uniquely determined bgp, r, w), let us assume for a contradiction triag contains
another such quadruplé = (p, ¢, 7, w) (of type A and withg’ # ¢). Furthermore, assume with no loss
of generality that the respectiyg, r)-crossing(pq’, r, I') of ¢’ ends afted = [ty,t1]. Note though that
I’ must end beforev entersL,,. throughpr (as prescribed by condition (A3)). However, in that case
I’ would end in(t1, 1), sog’ would have been included in the respective 4gt of o, and, therefore,
omitte®d from R, contrary to the choice of € 4. O

To simplify the presentation, in what follows we only coreich subfamily>4 = 4 of terminal
quadruples of type A whose members= (p,q,r,w) areuniquely determinedby each one of their
respective four sub-triple®, ¢, 7), (p, ¢, w), (p, r,w), and(q, r,w). This stronger uniqueness condition
can be enforced by prunnir@fg (without affecting its asymptotic cardinality), so thaty feach triple
(¢q,r,w), we keep inzg only one terminal quadrupl@, ¢, r, w), if such quadruples exist at all mg.

Let 74 (m) denote the maximum cardinality of a famify* of terminal quadruples of type A (with
the above uniqueness property) that can be defined over fvaghoving points. The preceding analysis
implies that the overall number of special quadruples thlatrfto Case (d1) is at most

O (h*T*(n/h) + ¢h®N(n/h) + thn*B(n)) .

Case (d2). The co-circularity at time, is red-blue with respect to the edge, whose Delaunayhood
is violated right after that by andw. We continue to assume thatdoes not crosgg again during
(1, Apg]-

As in case (d1), we use,, to denote the time id = [to,?;] whenr enters the halfplané;q. We
have the following lemma, whose proof is fully symmetric hat of Lemmag.l7.

Lemma 6.11. With the above notation, the following two properties hald¢ase (d2):

(i) The edgepw is hit in (v,4, d1) by at least one of the pointsr. Namely, either crossegpw from
L,,to L;w, or q crossepw in the reverse direction. Moreover, the Delaunayhooghofis violated by
g andr after the last such crossing and until.

(if) The edgerq is hitin (01, \,) by at least one of the poinis w. Namely, eithetw crosses-q from
Ljrq to L,,, or p crossesq in the reverse direction. Moreover, the Delaunayhoodqis violated byw
andq after §; and until the first such crossing.

Refer to Figuré_79. To prove part (i) of Lemima 6.11, we note, tight before timej;, the Delau-
nayhood ofpw is violated byq € L, andr € L;w, and that this violation does not hold either right
before, or right after the time,, whenr crossegg. Hence, to obtain the desired crossingpaf, we
can apply the time reversed variant Lemimd 3.1 for the triatigmn DT({p, ¢, 7, w}), over the interval
(Upgs 01).

To prove part (ii) of Lemma6.11, we apply (the regular varief) Lemma3.1 inDT({p, ¢, r, w})
over the intervaldy, A,), noting that the violation ofq by p € L, andw € L, which holds right after
time d1, no longer exists either right before, or right after, tmaei\, whenw hits pq.

Case (d2) — enforcing the crossing afq by p or w. Our argument is fully symmetric to the one used in
case (d1) to enforce a Delaunay crossingroby ¢ or w.

Recall that, according to Lemmia 6.6, at m8ét+ 1 counterclockwisgq, r)-crossings can end in
the interval(t1, do). If rq never re-enter®T(P) after timedy, then(pq,r, I) is among the las¥/ + 2
counterclockwise Delaundy;, r)-crossings inF (with respect to the standard order implied by Lemma
[4.8). Clearly, this scenario happens for at mo$tn?) special quadrupleg, because each of them is

uniquely determined by the respective trigle ¢, ) (according to Propositidn 6.1). Therefore, we may

*Clearly, we havey’ # w (i.e., there is no crossingw, r, I')), because can enter the halfplang,, only once, and it is

already assumed to cross the libg,, from L, to L}, andoutsidepw (as prescribed by Lemnia®.7 (ii)).
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Figure 79:Lemmd6.1ll. Top: Possible trajectoryofduring (v,,, 41), which realize the crossing @fw by r
(left) or ¢ (right). Bottom: Possible trajectories of(left) andr (right) during(wv,,, d1), which realize the crossing
of rq by the respective point.

assume, in what follows, that; re-entersDT(P) at some future timg,, > §; (which is thefirst such

time whenrq is Delaunay); see Figute 80. By Lemfa 6.11 (i),is hit during (61, &4 C (t1,&4] DY

p or w. Furthermore, Lemn{a 8.6 (combined with Lemimd 4.1) impliamast8/ + 1 counterclockwise
(Delaunay)(q, )-crossings inF can end duringt, &4].

- rq € DT(P)-...

. A rq 1 rq hit by p or w
D)
to t (oo &rq

Figure 80: Case (d2)-enforcing a crossing «af by at least one of the poins w. The edgerq is Delaunay
throughoutl = [to, ¢1] and at time,., > 41, which is the first such time aftés whenrq re-enter®T(P). The
Delaunayhood ofq is violated byg andw right afterd, € (t1,&,4], S0 it is hit by one of these points during

(51 ’ 57‘q] .

To enforce the desired crossingaf, we apply Theorer 212 inl,, over the intervalt,, &), with
the third threshold > /.

If one of the Conditions (i), (ii) holds, we charge(via (pq, r, I)) either to ank-shallow collinear-
ity or to Q(h?) h-shallow co-circularities. Clearly, each of thelseshallow events is charged at most
O(¢) times in the above manner, becauge, r, I) is among the lask/ + 2 counterclockwiseq, r)-
crossings (inF) to end before the time of the event. Hence, the above clpagonounts for at most
O(th® N (n/h) + thn?B(n)) special quadruples.

Assume, then, that Condition (iii) of Theordm12.2 holds, s vave a subsed,, of at most3h
points (possibly including or w, or both) whose removal restores the Delaunayhood; dhroughout
the entire intervalty, 4] = 1 U [t1,&,4]. To facilitate the subsequent analysis, we augment thd get
as follows. For each crossing’q,r, I’) (in ) that ends in the interval, d;) we add the respective
pointp’ to A,,.

If rq is hit during(d1, &) by p, then the triplg(p, ¢, ) is involved in two Delaunay crossings, which
occur within the smaller triangulatidd T ((P\ 4,4)U{p}). According to LemmAa4l5, the overall number
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of such triples inP does not excee®(hn?). By Propositioi 6.1, this also bounds the overall number of
the respective special quadruples

To conclude, we may assume, in what follows, thats hit during (61, &-4] C (t1,&,4) by w (Which
crosses it froni;jrq to L,,). Therefore, the reversely oriented capyof rq undergoes, within the reduced
triangulationDT((P \ A,q) U{w}), a Delaunay crossingyr, w, 7T = [ro, 71]).

Notice that(pq, r, I) is among the last/ + 2 (¢, r)-crossings inF to end beforav crosses g from

Lfrq to L,,, which implies the following symmetric analogue of Lemim&:6.

Lemma 6.12. Any triple (¢,r,w) is shared by at mos¥/ + 2 3-restricted special quadruplegs =
(a, p,w, q) (with respective outer pointsandu) of the above kind.

If the above crossingqr,w, T = [r9, 71]) is a double Delaunay crossing, we apply Lenima 4.5 (in
combination with the Clarkson-Shor argument) to estakdishupper bound of(hn?) on the overall
number of such triplegg, r,w) in P, which immediately yields an upper bound ©{¢hn?) on the
number of special quadruplesof this kind. Hence, we may assume, in what follows, that theve
crossing ofgr by w in DT((P \ A,,) U {w}) is asingleDelaunay crossing.

We again emphasize thaf,, < 61 < A\; < A\pg < &wg anddy € (41, Apq, and thatw hits gr (during
T = [10,71]) inthe interval(d;, \,). Furthermore, by condition (S@)q belongs tdT(P\ {a, p,r,u})
throughout{\q, &uwq] C (01,&wg) (@nd is Delaunay at times,,, and¢,,,). See Figuré g1.
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Figure 81:Case (d2): A (partial) summary of what we assume at the endeo&ihalysis. Left: Various events
occur in the depicted order (aig lies in (41, A,,]). Right: A possible motion ofv afterr entersL !, (duringr).

Case (d2) — charging terminal quadruples.As in case (d1), Ietél;q denote the set of at mo8t + 1
points that show up in the cal}, = B[p, ¢, w] N L}, at some time iné_1, \,) (see Lemmas®l4).

To proceed, we draw a random samplefobf [n/h] points of P. Notice that the following two
events occur simultaneously with probability at le@$t /4*): (1) The four pointg, ¢, w, r belong to
R, and (2)R includes none of the points of

(Apw U Arg U Aj, U {a,u}) \ {p, ¢, 7, w}

Suppose that the sampleis indeed successful for tigerestricted right speciat = (a, p, w, q) at
hand (with respective two outer point&ndw). Then we can charge to the quadruple = (p, ¢, 7, w),
which satisfies the following conditions with respect to saenpleR:

(B1) The edgepq undergoes a Delaunay crossiag, v, I = [to,t1]) and is crossed by, from L;q to
L,,, at some later time,, > ¢;. In addition,pq is again Delaunay at some timg, which is the first
such time after,, and it belongs tdT(R \ {r,w}) throughout(t;, A,,). Hence, its reversely oriented
copy gp undergoes i \ {r} (and entirely within(t;, \,,]) a Delaunay crossing by. Finally, » does

not crosgpq in (t1, Apql-

(B2) The pointsp, ¢, w, r are co-circular at timeg, € I, 6; € [t1,\], andda € (d1, 7,4, and the
following properties hold:
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(i) The co-circularity at time), is red-blue with respect tog.

(ii) The co-circularity at timed; is red-red with respect tpg and red-blue with respect to the edge
rq, whose Delaunayhood is violated right after tidieby p andw. (In particular, this implies that
remains inL;q throughout(t1, d1), after entering this halfplane during) Furthermore, the open cap
Cy, = Blp,q,w] N L}, contains no points of at timeJ; .

(iii) The co-circularity at time), is again red-blue with respect tg. It arises during a single Delaunay
crossing ofgp by w, which occurs iDT ({p, ¢, r, w}) during some sub-interval @b, \,].

(B3) The setR \ {p} induces a (single) Delaunay crossitg:, w, 7 = [1,71]), wherew crossesq,

from L, to L, during (01, A).

(B4) There exists a timg,,, > \,, so that (i) the edgew is Delaunay at timé,,,, and (ii) the edgegw
andpw belong to, respectivelf)T(R \ {p,r}) andDT(R \ {¢.r}) throughout the intervab, &;.,].

Notice that any such quadrupte= (p,q,r,w) in R is charged as above by at most dheestricted
right special quadruplg = (a,p,w,q) in F (with respective outer points andu), because the latter
quadruple is uniquely determined by each of the trigfes, ») and(p, ¢, w).

We say that a quadruple= (p, ¢, r, w) is terminal of type Hf it satisfies the above four conditions
with respect to the underlying sé&t (In Sectiorl ¥, we shall again ugeto denote the underlying set of
our terminal quadruples.)

Let & denote the resulting family of terminal quadruples= (p, ¢, r, w) (of type B) in R that are
charged bys-restricted right special quadruplesfhthrough the above probabilistic argument.

Lemma 6.13. With the above assumptions, each terminal quadrupte (p, ¢, r, w) in Eg is uniquely
determined by each of its sub-triplés q, ), (p, ¢, w), (g, r, w).

Proof. By condition (B1),w is the first point of P to hit the edgepq after its Delaunay crossing
(pq,r, I = [to,t1]) by r. Hence,o = (p,q,r,w) is uniquely determined by the choice pfq andr.
A similar agrument implies that = (p, ¢, 7, w) is uniquely determined by the triple, ¢, w).

To see thap is uniquely determined big, r, w), let us assume for a contradiction tI’E@ contains
another such quadruple = (p', ¢, 7, w) (of type B and withp’ # p). Furthermore, assume with no loss
of generality that the respective counterclockwiger)-crossing(p’q, r, I') of ¢’ ends afted = [to, t1].
Note though that’ must end before entersL,,. throughpr (as prescribed by condition (A3)). However,
in that cased’ would end in(¢1, d1), sog¢’ would be included in the respective s&t, of o, and, thereby,
omittedd from R, contrary to the choice af in ¥B. O

Let T2 (m) denote the maximum cardinality of any famHyf of terminal quadruples of type B (with
the uniqueness property stated in Lenimal6.13) that can beedediver a seP of m moving points. The
preceding discussion implies that the number of specialmgydes that fall into case (d2) is at most

O (h*T®(n/h) + th>N(n/h) + thn*B(n)) .

We delegate the analysis of terminal quadruples of type Bti@{7.2. Note that the points of each
such terminal quadruple = (p, ¢, 7, w) perform at least three Delaunay crossings (namely, thesiogs
of pq by r andw, and the crossing afr by w). Hence, it suffices to enforce two more crossings in order
to ensure that some sub-triple @be involved intwo distinct Delaunay crossings.

As in the case of terminal quadruples of type A, we shall k@ co-circularity at timey,, which
is red-blue with respect tow, in order to enforce a Delaunay crossing of that edge by at taee of the
two pointsp, ¢. In addition, we shall enfore a Delaunay crossingafby at least one of, ¢ (during
which pw will be hit by r or ¢, as suggested by Lemrma @.11 (i) and depicted in Figdre 79 (top

“Clearly, we havey’ # w (i.e., there is no crossingug,r, I')), because is already assumed to cross the libg,, from
Ly, to L, outsidepw (as prescribed by Lemnla®]11 (ii)).
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3-restricted right special quadruples—wrap up. Putting together the previously established bounds on
the maximum possible numbers ®festricted right special quadruples that fall into casgs (b), (¢),
(d1) and (d2) yields the following recurrence:

®fi(n) =

O (*T4(n/h) + W*TE(n/h) + (RN (n/h) + k(2N (n/l) + k*N(n/k) + thn*B(n)) . (10)

Discussion. Notice that the roles op and ¢ in subcases (d1) and (d2) are largely symmetric, which
enables us to enforce a Delaunay crossing of the respediijepe or rq by at least one of the remaining
two points ofp, ¢, 7, w. In both scenarios, we first apply Theorem]| 2.2 (with threstots> ¢) in order
to extend the (almost-)Delaunayhoodofor ¢r from I = [ty,t1] (wherepq undergoes the Delaunay
crossing byr) to a larger interval. Lemma 8.6 implies that each event, dhiaes within the respective
red-blue arrangement,, or A,, during the gap interval, can be traced backtvia (pg, r, I)) in only
O(¢) possible ways.

The main difference between the two subcases stems froniticon(S6), according to whichwg
is almost-Delaunay in the intervéih,,q, &), and isfully Delaunayat the endpoints\,,q, . Since
the latter interval containg;, in subcase (d1) the corresponding Lenima 6.7 (i) imnmegiatields a
Delaunay crossing abqg by (at least) one of the poings r.

In subcase (d2), however, we only know that belongs throughout\,,, £, to Some reduced
triangulationDT(P \ A,,), whereA,,, is a subset of cardinality at most + 3 which includesa, r, u,
and perhaps alsg. That is, we are not necessarily able to restore the Deldawaly of pw at times
Awq @ndé&,,, without removing some of, ¢, and thereby destroying = (p, ¢, r,w). In fact, it is not
even known whether the collinearity mentioned in Lenimal@ijldccurs in[A,q, {uwq) OF beforeh,,,. In
Sectiorl 7.2 we use conditions (B1)—(B4) obtained aboventoree the long-awaited crossing @f) by
qgorr.

6.6 Stage 4: The number of left special quadruples

To bound the maximum possible numb&§ (n) of 3-restricted right special quadruples, we fix the
underlying setP of n moving points, and a refined family.

Topological setup.According to Proposition 612, ar¢restricted left special quadruple= (a, p, w, q)
shares its triplép, ¢, w) with at most two other such quadruples. (In other words,fitcs to bound the
overall number of the corresponding triples ¢, w).) We strengthen the above property, by considering
at mostone3-restricted left quadruple for each triple, ¢, w). Therefore, in what follows every special
quadrupley = (a, p, w, q) under our consideration will be uniquely determined byrigdé (p, ¢, w).

To proceed, we fix &-restricted left special quadruple = (a, p, w, q), with respect toP and F,
whose two speciala, g)-crossings take place during the intervals= [A\g, \1] and 7, = [A2, A3] (in
this order), where- andu are the respective outer points. Recall that the originedjttar” family 7
includes the quadruples, = (p, ¢,a,r) andos = (w, q, a, u).

By assumption,y satisfies the six conditions (S1)—(S2), (S3b), and (S4)-(8& emphasize that
all these conditions, except for (S3b), are commoali®-restricted special quadruples, including the
right special quadruples studied in Secfiod 6.5. Moreawes, can switch the rolesandw by reversing
the direction of the time axis, so our condition (S3b) of gecial quadruples is fully symmetric to
condition (S3a) on right special quadruples (which has lsssumed throughout the analysis Section
[6.3). See below for details.

Refer to Figurd_82. As reviewed in the preceding Sedtioh $hé 3-restrictedness of implies
that there exist times.,; < Ao, {pg < Awgy Apg = Az and&,q > Ay, Whose properties have been
summarized in the beginning of that section. In particylaris Delaunay at times,,, and&,,, andwg
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is Delaunay at the symmetric timas,, and&,,,. Furthermorepq andwq are almost Delaunay during,
respectively],q, Apg] and[Ayg, Suwgl-

I gsisits .q

Figure 82:The topological setup during the inteni@, &2) C [£q, Ewgl. Left: The edgeyw is hit at some time
Ag € [Mwg, A2) by p, so it undergoes a Delaunay crossig®, p, H = [\, As]) within DT(P \ {a,r, u}). Right:
We haves,, < A < Ay < A5 < & < & < \pq. Bottom: The motion oB[p, ¢, w] is continuous throughout
(Mg, &2] (the hollow circles represent the co-circularities at Srfieandfs).

Let us summarize what we know so far about the motiom,of w, ¢ if x = (a,p,w,q) is a3-
restricted left special quadruple. By Condition (S3b)sthpoints are co-circular at timés € Z,. \ J,
and¢; € 7, \Z,, and¢, € (X3, A,q]. Moreover, the Delaunayhood pf is violated, throughouté, &2),
by the pointsa € L,, andw € L;q. In particular, a lies throughout that interval within the wedge
Wpwq = L3, N L, and inside the cap’,, = B[p, ¢, w] N L,,.We emphasize that the order type of the
quadruple(q, p, w, a) remains unchanged duririg; , &2).

In addition, by the same Condition (S3b), the smallerBet{a,r,u} yields a (single) Delaunay
crossing(qw, p, Hy ), whose interval{ = #H, = [A\4, As] is contained in\,,q, A2). Specifically,w hits
pq at some momefii \, € #H, whenp crossesL,,, from Lj;q to L,,,. Sincep liesin L, at times
& and¢,, no further collinearities op, w, ¢ can occur during\,, &2). (Otherwise, the poinp would
have to re-enteLL before¢,, and then the triple, ¢, w would be collinear three times, contrary to
our assumptions.) To conclude, the dBfp, ¢, w] moves continuously throughout the interyal,, &],
which is obviously contained ifg,q, Apg] N [Awgs Ewg) = [Awgs Apgl-

Overview. We fix three constant parametekst, h, such thatl2 < k <« ¢ < h, and distinguish
between four possible cases. The first three cases (a)e(@)lgrsymmetric to the cases (a)—(c) that we
encountered in Sectidn .5 when handling right quadruglsreover, the first two cases (a) and (b) are
very similar to the the corresponding cases (a) and (b) in@€6.6.)

In the final, most involved, case (d), we re-introduce at thst outer pointu. (The other outer
point r is not used in the analysis of left special quadruples.) Tdreespondence betweéwa, ¢, 7,,)
and its ancestor quadrupte, = (w,q,a,u) in F implies that we have a single Delaunay crossing
(wq,u, I = [to,t1]) (which is the first among the twav, u)-crossings o). Since the points andp

“IRecall from Sectiofi 612 that can crossyw either before or afte¢,, depending on the location af wheng crossea.
Our analysis only relies on the fact thaf < & < &o.
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cross the same edge, in opposite directionsy can again be charged to the resulting terminal quadruple
(w, q,u, p).

After ruling out cases (a)—(c), we may assume, in the lastieimg case (d), that a total of at most
8¢ + 1 points of P appear in the cap',,, = B[p, ¢, w] N L,,, during (A,, §2). (Notice that this condition
is fully symmetric to the one in Lemnia.4.)

As in Sectior 6.6, we use the interplay betwees: (a, p,w, q) andos = (w, ¢, a,u) to enforce as
many Delaunay crossings as possible ameng, u, p before charging, to this terminal quadruple. Our
analysis is largely simplifi by the property that the intervdl = [t, ¢1] of the first crossing of is
entirely contained in the above inten@al,, £»); see below for details.

We establish symmetric variants of Lemnhad 6.7[and|6.11. INamve argue that (i) the edgeu is
hit in (A4, t0) by at least one op, g, or else (ii) the edgeq is hit in (), %o) by at least one oj),r
In the first case (denoted as (d1)), we also show dhlaits gp in (), %0). In the second case (denoted
as (d2)) we similarly show that also hitspw in ()4, ). In both scenarios, we invoke Theoréml2.2
to amplify the above two additional collinearities intolffledged Delaunay crossings. Therefore, by
the time we chargeg to the terminal quadruple, its various sub-triples among, ¢, u, p perform four
Delaunay crossings (where some of these crossings occppimariately reduced subsets Bj.

In Section ¥ we express the number of such terminal quadsupleich arise in the analysis of left
special quadruples, in terms of more elementary quantities were introduced in Sectiéh 2. To do so,
we enforce an additional, fifth crossing amomgg, u, p (namely, the crossing qgfu by w or ¢). As a
result, some sub-triple among, ¢, u, p is involved in two Delaunay crossings, so our analysis bagto
out via Lemma4l.

In what follows, we consider the familgﬁw of all 3-restricted left special quadruples of the form
X' = (d',p,w,q"), which share their middle pair with. We may assume that eagh= (a/, p, w,q’) €
gﬁw is uniquely determined by the choiceg@f(as the only “free” point in the triplép, ¢’, w)). Note that
the setP,, of eachy’ includes, in addition to the four poinig, p, w, ¢’ of X/, the respective outer points
r’ andu’ of its special crossing&d’, ¢, Z,») and(wd’, ¢', J,/). Furthermore, each of these quadruples
X € gﬁw is accompanied by a counterclockwige, p)-crossing(¢'w, p, H,» = H'), which occurs
within the smaller triangulatioDT (P \ {a’, 7', v’}). See Figure83. We use, to denote the time ift’
when the respective point of x’ enters the halfplané;’, (or, equivalently, whem crosses;'w from

+ 7 +
Ll =L, t0L},).

Figure 83:Each left special quadruple = (a’,p,w,q’) € Gﬁw (with respective outer points andu’) comes
with a counterclockwiséw, p)-crossing(q’w, p, 1, ), which occurs withirDT(P \ {a’, 7', u'}).

Notice that Lemm&Z5l5 readily generalizes to the ab@wvgp)-crossings. Namely, a pair of such
crossinggqw, p, H,) and(q'w, p, ), which occur within the respective triangulatiddd’ (P\{a, r, u})
andDT(P \ {d,7',u'}), arecompatible provided thaty # a,r,u andq # o', 7', in the sense that

*2In contrast, in thelmostsymmetric case of right special quadruples we did not knowthér the first crossintpg, =, I)
of o1 = (p,q,a,r) atall overlapg&_1, A\q).
“These collinearities are fairly symmetric to the crossiofysr andrq that we enforced in Sectidn 6.5.
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the orders in which the intervatq, and?#,. begin or end are both consistent with the time starps
and/\q/.

Clearly, for any special quadruple = (a,p,w,q) € ggw (with outer pointsr and«) the family
gﬁw includes at most three other quadrupis= (¢, p,w,q’) whose respective pointg are equal
to one ofa,r or u. The pigeonhole principle then implies that at lease quarterof all quadruples
x = (a,p,w,q) in ggw satisfy the following condition:

(PHL1) There exist at most three quadruplgse G, with g € {a’,r",u'}.

Sincep andw are arbitrary points of?, (PHL1) holds for at least a quarter of 8Hrestricted left
special quadruples under consideration; hence we may asthanit holds for the special quadrup{e
at hand. Therefore, for all btquadruplesy’ = (d’,p,w,¢’) € ggw \ {x} (with respective outer points

" andu’) their respectivw, p)-crossings(¢'w, p, H,) are compatible witi{qw, p, 1) via a suitable
extension of Lemm@aB5.5.

With the above preparations, we can now proceed with our @askysis.

Case (a). For at leastt of the above quadrupleg’ = (d/,p,w,q’) € gjw, their respectivgw, p)-
crossings(¢'w, p, H') either begin in¢,,, A1), or end in(As5, \,,]. Refer to Figur¢ 84. Recall that, by
condition (S5), the edgey is Delaunay at each of the timgg, and \,,;, and that it is almost Delaunay
during the entire intervak,,, A,q].

To bound the number of such quadrupjethat fall into case (a), we pass to a random sub-sarfiple
of n/4 points inP, and argue that, with some fixed positive probability, tr@ssmg(qw, p, H) becomes
(q,p, ©(k))-chargeable there, for the reference inteffgg}, \,,]. Therefore, Theorein 5.3 implies that
the overall number of such triplég, ¢, w) in P does not exceed

O (K*N(n/k) + kn*B(n))

which also bounds the overall number of the correspondingstricted left special quadruplgs

Apg Hy z, )\qux A5 €pq
- “"_!_—._9_|'“, """" i
| [ R :
P i i .:
P :
Vol v T
- ey - - —t
)\q, ’HX

Figure 84:Case (a): At least counterclockwis€w, p)-crossingsq’w, p, H,) either begin in&,,, A1) or end
in (A5, Apq] (0Nne such crossing of the former type is depicted). Therh s6me fixed and positive probability, the
sampleP yields a Delaunay crossingw, p, ’le) that is(q, p, ©(k))-chargeable with respect {64, Apql-

Preparing for cases (b) and (c): Charging events ind,,,. We may assume, from now on, that there
exist at mosk special quadrupleg’ € ggw whose respectivéw, p)-crossingsq'w, p, H') either begin
in [&pg, Aa), Or end in(As, Ayq.

Before proceeding to the following cases, we apply Thedrebhir? 4,,, in order to extend the
almost-Delaunayhood gfw from H = [A\4, As] 10 [£,4, Apg]. We emphasize thag,,, \,,] \ H consists
of two intervals|¢,q, A1) and (X5, Ap,] (Where the former interval can be empty), which we consider
separately. Note also that the edge belongs during to the reduced triangulationT (P \ {a,r, u})
(but not necessarily tBT(P)), so Theorenl 212 must be applied, for each of these two @igrwith
respect taP \ {a,r, u}.
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In each of these applications, in cases (i) and (ii) we chardeia its respectivgw, p)-crossing
(qw, p,H)) to (¢ + 3)-shallow collinearities and co-circularities that occatthe full red-blue arrange-
ment.A,,. Since case (a) has been ruled out, the charging is almagtieynand accounts for at most
O (k(*N(n/l) + ktn*B(n)) left special quadruples.

At the end, we have either disposedothrough (conditions (i), (ii) of) Theorein 2.2 or ended up
with a set4,,, of at most6/ + 3 points whose removal restores the Delaunayhooghothroughout
[€pg> Apql- Namely, A, is composed ofi, r,u, and of the two sets of at mo8t points each, which
are obtained by separately applying Theofem 2.2, withip, over the intervalg¢,,, A1) and(As, Ay ).
Hence, we may assume, in what follows, that the abovelsgtexists.

Wpwe €MptY
As th
-t
€pq Aq/ \\52 Apq
s entersiWypw s entersC,,

Figure 85:Case (b). At least pointss # a,r, u visit the capC, during (), &2). Each of them must enter the
wedgeW,,,, (through one of the raygp, wg, outside the respective edges andwq) after time\, and then
enter the cai®’,, (through the boundary @8 [p, g, w]).

Case (b).A total of at least points of P, distinct froma, 7, u, appear in the cap’,, = Blp,q, w] N L,
at some time during the intervah,, £&»). (Note that some of these pointsnay belong ta4,,,.) Recall
that \, denotes the time iff. whenp entersL,, , throughwg, and that no additional collinearities of
P, ¢, w can occur during,, £2), so the motion of3[p, ¢, w] is fully continuous in that interval.

Refer to Figuré 85. Let € P\ {a,r,u} be one of the points that visit,, during (\,,{2). Since
the above cag,, is fully contained there in the wedd&,,, = L, N L,,,, s must entedV,,,, after
time \, (whenW,,,, co-incides with the single rayp = wg) through one of the raysp, wg. We also
note that, by condition (S5) (and sintk,, {2) C [£,q, Apg)), the edgepg is Delaunay inP \ {a, w, r, u}
throughout();, £2), so s, which has to ente€', before it entersV,,,, can do so only through the
boundary ofB[p, ¢, w]. This results in a co-circularity a5, ¢, w, s, and is easily seen to imply that
entersi¥,,,,4 by crossing one of the raysp or wg outsidethe respective edgesp or wq.

In what follows, we assume thatis among the last points to leaveC,, during (\;,&2). Lett]
denote the time of the corresponding co-circularity.of, w, s, which occurs when leavesC, through
the boundary of3[p, ¢, w]. Sincex satisfies condition (S5), the opposite a@p, = B(p, ¢, w] N L},
contains no points aP\ {a, r, u} at timet*. (Otherwise, the Delaunayhood©f would be violated by
and any of these points.) Therefore, the co-circularityna¢t’ has to be/ —1)-shallow inP\ {a, r,u},
and thus(¢ + 2)-shallow inP.

Note also that the co-circularity at tint¢ is red-blue with respect to the edge, which is violated
right before it byw ands. Lemmal[4.1l, together with the choice ©f# a,r,u, imply that this co-
circularity cannot occur during the crossifgw, p, H, = [\, As]) (which occurs inP \ {a,r,u}), so
t: > Xs.

As in the symmetric case (b) of Sectionl6.5, we distinguistwben two possible subcases. In each
of them we manage to dispose pfy charging it, within one of the arrangements,, A,.,, either to
Q(¢?) (2¢)-shallow co-circularities, or to &¢)-shallow collinearity.

Case (b1).At least half of the above pointscross the linel,,q, from L.} to L, , during (), t%). (This

wq?

also includes points that possibly crosg.,,, outside the rayog, before enteringV,,,,, through the other
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ray wp.) By Condition (S6) (and sinc\,, t5) C (A, &2) € [Awg: {wql), €ach of these crossings occurs
outsidewq, within one of the outer rays df,,,.

For eachs we argue, exactly as in Sectibnb.6, that the points, s are involved during \,, t%) C
(Ag, &2) either in a(2¢)-shallow collinearity, or irf2(¢) (2¢)-shallow co-circularities. That s, right after
entersL,,, attime), (outsidewq), the discB[w, ¢, s] “swallows” the entire halfplané.},. (In addition,

s must remain i, until time ¢3, for otherwise the points), ¢, s would be collinear more than twice.)
If this disc, which contains at mogt+ 2 points at the end of the process, contains at I2agtoints
at time )\, then each of the lagt— 2 resulting co-circularities ar&¢)-shallow (inP). Otherwise, the
collinearity ofg, p, s is (2¢)-shallow.

Sinces can be chosen in at lea3t/) different ways, the points andq are involved during Ay, &2)
either inQ)(¢?) (2¢)-shallow co-circularities, or in &¢)-shallow collinearity. In both cases, we charge
x to these events.

Note that eact{2¢)-shallow event, which occurs id,, at some time* € (), &2), can be traced
back to(qw, p, H) (and, by Propositioh 612, also {9 in at mostO(1) possible ways becaugds among
the last four points to hit the edgeq before timet*, according to condition (S6). Hence, the above
scenario happens for at mast/2N (n/¢) + (n?p(n)) special quadruples.

. ¢ entersLf,  sentersL
q entersL *
e )

T

—t -t

i
§pq )\4 H )‘5 52 )\pq

Figure 86:Propositio 6.T4. Lefty is among the last + 7 candidateg’ to enterL , before time\,. Right: The
various critical events occur in the depicted order. Nog&t Xy may occur in (the second part df) = [A\4, As5].

Case (b2).At least half of the above points# a,r,u remaininL,,, throughout the respective intervals
(Ag,t%). Each of these points must entéf,,,,, also during()\,,t%), through the ray emanating from
p in directionwp, thereby crossingd.;,, from L,,, to ngp. (See Figuré_86 (left). Recall that such a
collinearity can occur at most once, because the tfiple, s can be collinear at most twice.)

We again fix one of these points and use\, to denote the corresponding time(ih,, t;) whens
entersWW,,,, through the ray emanating from in directionpw. As in the previous case, we conclude
that either the collinearity gf, w, s at timet, is (2¢)-shallow, or the pointg, w, s are involved inQ2(¢)
(2¢)-shallow co-circularities during the preceding intergal, ¢¥). As in the matching scenarios (b2) in
Sectiong 516 and 8.5, the main challenge is to argue thatafatle above(2/)-shallow events, which
occur inAy,, during (As, ti] C (Ag,&2), can be traced back tpin at mostO (k) ways.

To show this, let* € ()\;, &2) be the time of g§2¢)-shallow collinearity or co-circularity that occurs
in A,,. First, we guess the poingsandw of x in O(1) possible ways among the three or four points
involved in the event. We next recall that, in the charginigesoe of case (b2), ea¢h/)-shallow co-
circularity or collinearity or collinearity that we charge A, is obtained via some poit, which is
also involved in the event, that enteligp at the respective timg,. We, therefore, guessamong the
remaining one or two points involved in the event at titheTo guess the remaining poinisandgq of x,
we examine all “candidate” special quadrupjgsc ggw whose two “middle” pointgp, w) are shared
with x. Recall that each of these quadruples is accompanied ythe-crossing(¢'w, p, H' = H,/),
whereq’ entersLj;p at the respective timg, € H'. Recall also thag’ is uniquely determined by the
choice of¢’ (as long ag andw remain fixed).
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Clearly, it suffices to consider only special quadruplés= (¢, p,w,¢’) in gpr with the following
properties: (1) # o’,r’,u/, wherer’ andv’ are the outer points of’, (2) A, < As, and (3)s lies in
L, o during the second portion 6{,. (after A\,/). This is because each of these conditions holdsfor
ands in the charging scheme of case (b2). For example, (3) follmeemuse case (b1) does not occur for
s (andty > As).

If a special quadruple’ = (a’,p,w,q') € G, satisfies the above three conditions (1)—(3), we say
that the respective point (which uniquely determineg’) is a candidate (fog).

The following symmetric variant of Propositign 6.3 guarsed that eact2/)-shallow event, which
occurs inA,,, at some fixed time* € (\;,&2), is charged by at most + 7 quadruples iny € g,fw,
because its pointgis among the last + 7 similar candidateg’ to enterLL, before time\,. See Figure
[88.

Proposition 6.14. With the above assumptions, the paijris among the last + 7 candidates;’ to enter
the halfplaneL;,, before,.

We omit the fairly technical proof of Propositibn 6114, matithat it is fully symmetric to the proof
of Propositior 6.8, and very similar to the proof of Propiosif5.6.

Repeating the same charging argument for each dtlig possible choice of shows that at most
O (k(*N(n/t) + ktn*B(n)) special quadruples can fall into case (b2).

Case (c).A total of at least pointss € P\ A, appear in the cap',,, = B[p, ¢,w]N L, at some time
during (A4, &2). HereA,,, continues to denote the subset of at nist- 3 points, includinga, » andw,
whose removal restores the Delaunayhooghothroughout the intervgk,,,, A,,]. (Recall that4,,,, was
obtained by applying Theorelm 2.2 i, after ruling out case (a).)

Figure 87:Case (c). A total of at leagtpointss € P\ A, enter in the ca’,,, during(\,,&2). Each of them
must enter the wedg#/,,,,, (through one of the raygp, i, outside the respective edgegandwg), and only
then capC,,, (through the boundary dB[p, g, w]).

" wg which shrinks at time\, to the ray
gp = qw. Hence, each of these pointshas to enteiV,,,,, andC,,, (in this order) before time\,.
Furthermores can leaveC,},, only through the boundary dB[p, ¢, w], at a co-circularity of, ¢, w, s.
(Otherwises would have to hippw and, therefore, belong td,,,,.) In addition,s can leavelV,,,,, only
through one of the rayg andqw (outside the respective segmeunts qw). See Figuré 87.

As in the previous case (b), we may assume that eaghder consideration is among the fifst
such points ofP” \ A, to enterC,,, during (A, &2), and uset; to denote the time of the respective
co-circularity. Clearly, the opposite cal),, = B(p, ¢, w] N L, contains then no points df \ A,,.
Indeed, otherwise the Delaunayhoodpaf would be violated by and any one of these points (contrary
to our assumption thagiw € DT(P \ A,,) throughout[§,,, A\yq] D (g, &2)). Hence, the resulting
co-circularity ofp, ¢, w, s at timet? is (7¢ + 2)-shallow in P, because, at the time of co-circularity, the
circumdiscB|p, ¢, w] = B[p, s, w] can contain in its interior at mos¥ + 3 points of A,,, and at most
¢ — 1 points of P \ A,

Clearly, C,,, is contained in the wedg®,q,, = L\, N L,
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Case (cl). If at least half of the above points cross the lineL,,, (from L;q to L,,,) during their
respective interval§h,, t}), then we argue exactly as in subcase (bl).

Namely, we fix one of the these pointsind notice that, right afterentersL,,, outsidewg, the disc
Blw, g, s] contains the entire halfplank,,,. Therefore, the points, ¢, s are involved, during A, ),
either in an(8¢)-shallow common collinearity (which occurs wheentersL,, ), or inQ(¢) (8¢)-shallow
co-circularities.

We repeat the above argument for each of&f possible choices of and chargey within A,,,
(via (qw,p,H)) to the above8/)-shallow events. As in case (bl), ea@t)-shallow collinearity or
co-circularity occurs during,, &2), and involvesw andg, so it is charged by at mos2(1) special
quadruplesy (becausey is uniquely determined b{p, ¢, w) andp is among the last four points to hit
wq before the respective timé of the event).

Case (c2). We may assume, then, that at least half of the above psiststeriV,,,,, through the ray
gp. For each of these points the tripleq, p, s are involved during\,, t}) either in an(8¢)-shallow
collinearity, or inQ2(¢) (8¢)-shallow co-circularities. As before, we repeat the abageiment for the
¢/2 eligible choices of and chargey, within A,,, either toQ(¢?) (8¢)-shallow co-circularities or to an
(8¢)-shallow collinearity.

We claim that each of the resulting/)-shallow events, which occur in,, during (\,,&2), can
be traced back tg in at mostO(1) possible ways. Indeed, fix any of the above events, at sorme tim
t* € (Ag, &2). We first gues® andg in O(1) possible ways among the three or four points involved in
the event.

To guess the poini (which would immediately determin@a, ¢,Z,) and thereby alsg), we con-
sider all specialp, ¢)-crossings(pa’, ¢, Z,+) (in F) and recall that, according to conditions (S1) and
(S5), at mosO(1) such crossings can begin durifg,, A\o) or end during(A;, A,,]. Notice also that
the interval[\,q, &), Which covers(\,, &2), is contained in the union d€,,, \o), Z, = [Xo, A1}, and
(A1; Apgl-

To guess: (based ont*, ¢ andp), we distinguish between two possible situations. As legfour
analysis is fully symmetric to that given in case (c2) of 88d6.3, so we only briefly review it.

(i) If t* belongs to(A;, Ao) C [£pg, Ao) then (pa, q,Z, = [Xo, A\1]) is among the lasO(1) special
clockwise(p, ¢)-crossings to begin after, because satisfies condition (S5). See Figlrée 88 (left).

)\OI’" A1
ML -

|
! )
I ! N pq Aq t & Aog

1 —t
Epg Ag t* 13 Apg (pa', q,Z,1)

Figure 88:Case (c2): Guessingbased ort*, p andg. Left: If t* € (A, Ao), then(pa, ¢, Z, = [Ao, A\1]) is among
the firstO(1) special clockwisép, ¢)-crossings to begin aftet. Right: If t* € [\, &), then(pa, ¢, Z,.) is among
the lastO(1) special clockwisép, ¢)-crossings to begin before (or &t).

(i) If ¢* belongs to the intervdl\y, &], which is contained irZ, U (A1, \,4], then we resort to a more
subtle argument (which is fully symmetic to the one given ase (c1) of Sectioh_6.5) to show that
(pa, q,Z,) is among the lasD(1) special clockwisep, ¢)-crossings to begin beforé. See Figur¢ 88
(right).

To recap, in each of the cases (c1) and (c2) we chi@a (pa, ¢, Z,)) either toQ(¢2) (8¢)-shallow
co-circularities, or to ar{8/)-shallow collinearity, which occur in one of the arrangemsed,,;, A,
during the interval(\,, {&2). Furthermore, eacfB/)-shallow event is charged by at mas{1) special
quadruples. Hence, at mast(¢(2N (n/¢) + (n?3(n)) special quadrupleg fall into case (c).

Case (d). Assume that none of the preceding cases occurs. In parfitb&re is a subsed,,,, of at
most6/ 4+ 3 points (includinga, » andu) whose removal restores the Delaunayhooghrofthroughout

103



the interval§,,, \y]. Furthermore, a total of fewer tha@rpoints of P \ {a,r,u} appear in the cap’,,
during (A4, §2), and a total of fewer thaf points of P\ A, points appear in the ca@,,, during that
interval.

The above assumptions imply the following symmetric var@inLemmal6.4, whose proof is also
fully symmetric to its predecessor (see Figure 89 (left)).

Lemma 6.15. With the above assumptions, a total of at m&&t+ 1 points of P appear in the cap
Cuq = Clp, g, w] N Ly, during (Ag, &2).

wq € DT(P\ {a,u})

: O‘[ t1t2 J t3

S L £ S I m— -
;L-phitSqw E T E
N oo
Aq A2 &1 A3 &

Figure 89:Left: Lemm&6.1b. A total of at most + 1 pointss of P appear in the ca@’,,, = Blp, ¢, w] N Ly,
(consisting of all the shaded portions) duriog,, §2). All of these points must enter,, after \,, and none
of them can ente€,,, throughwg, unless it is one o&, r,u. Right: The regular quadrupte, of (wa, g, J.)
is composed of twdw, u)-crossingywq, u, I), (wa,u, J), which end before the beginning time of 7,,. By
condition (Q8), the edgeq belongs tdDT (P \ {a,u}) throughoufty, As], implying that\, < to.

With the above preparations, we can finally describe theptdag between the special quadruple
under consideration and the ordinary Delaunay quadraple- (w, q,a,u) in F, which corresponds
to the secondspecial(a, ¢)-crossing(wa, ¢, J, = [A2, Ag]) of x. At the end of this section, we shall
chargey to the terminal quadruple = (w, ¢, u, p), which is composed of the edge;, and of the two
pointsu andp that crosgq in opposite directions. As in the case of right special qualdrs, we first try
to enforce as many Delaunay crossings as possible among:, p, before chargingy to this terminal
quadruple.

Recall that the quadruple, = (w, q, a, u) belongs to the refined famil§, so it satisfies the eight
properties (Q1)-(Q8). (Refer to Figurel89 (right).) Spesilly, o5 is composed of two clockwiseo, u)-
crossings(wq, u, I = [to,t1]) and (wa,u,J = [ta2,t3]), wherel ends before the eng of J, and.J
ends before the beginning, of 7,. (In particular, 7, is disjoint from both of/,.J.) Sinceos, satisfies
condition (Q8), the edgeq belongs tdT (P \ {a, u}) throughout the intervdll, 7,,] = conv(IUJ,) =
[to, A3]. Therefore (and sinck, < A2 < A3), the pointp can crossvq (at time),, and froij;q to L)
only before the beginning, of I, and the entire crossingw, p, H = [A4, As5]) occurs inP \ {a,r, u}
beforeI. We thus obtain the following important property ®festricted left special quadruples (see

Figure[90 (left)f*4

Proposition 6.16. With the above assumptions, the first Delaunay crosging u, [ = [tg, t1]) occurs
entirely within(A;, \2) C (Mg, &1) C (Mg, &2). In particular, p crosseswq at time A, (from L. to L)
beforeu does so in the opposite direction (duridgfrom L,,,, to Lj;q).

Recall thatp remains inL.,, throughout the interval),, &2), which containg; see Figur€ 90 (left).
Note that the open cap[w, ¢, u] N L,,, contains no points of at timet, (when the Delaunay crossing
of wq by u begins). Hencey lies at that moment within the cag,,, = Blp, ¢, w] N L,,; see Figur¢ 90

(right). SinceC,,, is empty right after time\,, the pointu has to enteC’, in the interval(\,, to).

“Though it is not necessary for our analysis, Proposifiordthilds forall 1-restricted left special quadruples =
(a, p,w, q), with respective outer pointsandu.
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_ wq € DT(P\ {a,p, T,u}) u d
J I
B I e
)\wq q tO tl 2 gwq
pEL;q I w

Figure 90: Left: Proposition 6.16: The intervdl = [tg,t1] (wherewq undergoes a crossing hy) is fully
contained in the intervdl\,, &2), during whichp lies in L, .. Right: The cap”,,, is empty right after time\,, so
u must enteC',, before the beginning, of 7. Unlessu crossegyw in (Awg,t0) D (Ag,to), u mustenteC', ata
blue-blue co-circularity ofv, ¢, u, p with respect tavq, at some tim&; € (Ay, t1).

Assume first thats hits wq during (A, o). (In particular, this includes the scenario wherenters
Cq during (Mg, to) through the relative interior abg.) Recall thatwg is Delaunay inP \ {a, p,r, u}
throughout{Aq, to] C [Awg, Ewg] (in addition to its Delaunayhood iff at times),,, andt,). Hence, in
the reduced seP \ {a, p,r}, the edgevq or, more, precisely, its reversely oriented cajpy, undergoes
a Delaunay crossing by during some sub-interval dh,,,to). Therefore, together with the crossing
(wq, u, I, the triplew, ¢, u performs two single Delaunay crossingsin {a, p, r}. Combining Lemma
[4.3 with the probabilistic argument of Clarkson and Shor,oké&ain that the number of such triples
¢, w,u in P cannot exceed(n?). By Propositior 6.1, the same quadratic bound must alsofoolithe
overall number of such left special quadrupjes

Case (d): The three co-circularities ofw, ¢, u,p. Assume, then, that does not crossig in [Ayq, to).

In particular, w enters Bp, ¢, w] in (A, to) through the boundary oB[p,q,w], at a blue-blue co-
circularity of w, ¢, u, p with respect towq (as depicted in Figure 91 (right)). We claim that this is the
second co-circularity ofv, ¢, u, p, denoting its time by .

Indeed, by Lemma 414, another co-circularityofq, u, p occurs at some timé, € I = [tg, 1]
(wherewq undergoes a single Delaunay crossingu)yand is red-blue with respect tog. Refer to
Figure[91 (left). Furthermore, sineedoes not hitvg during [A,q, 61) C [Awg. to) (@ndwg belongs to
DT ({w, q,u,p}) at times\,,, andd;), the edgeyw undergoes a Delaunay crossingzbin the triangu-
lation of {w, ¢, u, p} too. This crossing occurs during some sub-intervglhqf;, 41) so, by Lemma 4l4,
w, ¢, u, p are involved in another co-circularity at some tidiec [\.q, 91); See Figurédl (center).

wq € DT(P\ {a,p,r,u})

) 5
8 DR N T e
wq")\q tO tl FQ gwq
F pe L;}q 1

Figure 91: Left: The red-blue co-circularity ofv, ¢, u, p with respect towgq, which must occur at some time
d2 € I. Center: The pointa, ¢, u, p are involved at some tim& € [\,q, d1) in their first co-circularity, which is
also red-blue with respect tog. Right: A schematic summary of the motion®f ¢, u, p (assuming that: does
not crosswg during(Ay, to)).

To conclude, the four points, ¢, u, p are co-circular at time&y € [A\,q,to), 61 € (do,t0), andd, €

I = [to,t1]. (See Figur€ 91 (right) for a schematic summary.) Here theextremal co-circularities,
which occur at timeg, anddy, are red-blue with respect to the edges, and the middlercatarity at

105



time d,, is blue-blue with respect teq (and occurs when enters the cag’,). We emphasize that
remains inC,,, throughout(ds, to).

Furthermore, the order type of the third co-circularity t{ate o € I) is completely determined by
Propositiori 6.16 and the fact thatlies in L, throughout(),, {2). Hence, this co-circularity occurs
during the second portion df(i.e., afteru entersngq), whenp leaves the caw, g, u] N L,

Notice that the cap®3[w, ¢,u] N L,,, andC,,, coincide at timed, € I C (), &2). Therefore,
Lemmd6.1b, together witkP-emptiness ofB[w, ¢, u] N Lj;q during the second portion df, imply that
the co-circularity at times is (8¢ + 1)-shallow.

Recall thatwq, u, I) is a clockwisgw, ¢)-crossing, and a counterclockwi&g u)-crossing. Lemma
yields the following symmetric analogue of Lemmal 6.6tf{véomewhat simpler proof, due to
Propositior 6.16).

Lemma 6.17. With the above assumptions, at m8ét+ 1 clockwise(w, u)-crossings(wq’, u, I'), and
at most8/¢ + 1 counterclockwiséq, u)-crossings(w’q, u, I'), can begin in the intervaldy, to).

Proof. Let (wq',u, ") be a clockwisgw, u)-crossing that begins i, ty). By Lemma 4.4, the four
pointsw, ¢, u, ¢’ are co-circular at some momegite I'\ I C (41, to), and this co-circularity is red-blue
with respect to the edgesq’, uq, and monochromatic with respectdg. Furthermore, sincg remains
in Cy,, throughout(d1,%9) C (A, §2), the above co-circularity is, in fact, blue-blue with resp® wq
(see Figuré 92). Hence, both pointsq’ lie at time ¢’ inside the cap’,,,. Lemmal6.1b now implies
that the overall number of such poinfs(and, therefore, of their respectiye, u)-crossing wq’, u, I"))
cannot exceed/ + 1.

Figure 92:Lemmd&.1V: Proving that at most+ 1 clockwise(w, u)-crossinggwq’, u, I') beginin(dy, to). For
each of these crossings, the four points;, u, ¢’ are involved in a blue-blue co-circularity with respect4g at
some timel € I"\ I C (d1,t0), SO their respective points enterC,,, during (g, §2).

A fully symmetric argument shows that at mégt+ 1 counterclockwiséq, u)-crossingw’q, u, I')
can begin in the intervdby, to), because their respective pointSmust appear i, at some moment
during (61,%0) C (Mg, &2). O

To proceed, we distinguish between two possible casestddpit Figurd 9B.

Case (d1).The co-circularity at timé; is red-blue with respect to the edge. whose Delaunayhood is
violated right beforey, by p € L, andq € L}, (see Figur€ 93 (left)).

Note that the above violation efu does not hold at time,,, when the segmenjs; andwwu do not
even intersect. Therefore, and singeis the only blue-blue co-circularity ofv, ¢, u, p with respect to
wq, applying (the time-reversed variant of) Lemfnal 3.10@' ({w, ¢, u, p}) over the interval(\,, §1)
shows thatuw is hit in that interval by at least one pfor ¢ (see Figuré 94).

A very similar argument shows that the edgg whose Delaunayhood is violated right after time
byu € L,, andw € L;q, is hit by afterd; and beforeu entersLj;q (during ). Indeed, let,,, denote
the time in/ whenwu hitswg. Note that the above violation @f; does not hold at time,,,. Therefore,
another application of Lemnia3.1 T ({p, ¢, w, u}) shows that the edgey is hit during (91, vy,) by
at least one of the two points or u. Recall, however, that C (), &2) (by Propositiori 6.16). Hence,
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Figure 93:Left: Case (d1). The co-circularity at timde is red-blue with respect to the edges andpq. Right
before timed; , the Delaunayhood afw is violated byp andg. Right: Case (d2). The co-circularity at tinig is
red-blue with respect to the edgeg andwp. Right before time);, the Delaunayhood aiq is violated byp and
w.

both timesd; € (A, t0) andwv,, € I = [to,t;] belong to the interval),, &2) (during whichp lies in
L), ruling out the crossing opg by w in (d1,vw,). Hence, it must be the case thatis by u, as
depicted in Figuré 94.

Figure 94:The two possible trajectories afaccording to Lemm@a8.7. The edge is hitin (¢,, d1) by p (left)
or ¢ (right). In both scenarios; hits the edgeyq afterd; and before the time,,, € I whenwu hits wg.

To conclude, we have established the following lemma.

Lemma 6.18. With the above notation, the following two claims hold inecésl):

(i) The edgepq is hitin (61, vwg) by u, which crossegq from L, to L;q.

(if) The edgeww is hitin (A, 1) by at least one of the points q. Namely, eithep crossesvu from
L}, to Ly, or g crosseswu in the reverse direction. Moreover, the Delaunayhoodafis violated by

p andq right after the last such crossing and uniil.

Case (d1) —the crossing g by u. Refer to Figur@95. Recall that boiy andd; belong to the interval
(Mg, &2) C (&g, A\pg) Where, by condition (S5)yq belongs toDT (P \ {a,w,r,u}) (in addition to its
Delaunayhood iP at timesg,,;, Ap)-

By Lemmal6.1B (i),pq is hit by w in (Ag, 1) C [£pg, Apg)- Therefore, and sincgg is Delaunay
at times¢,, and \,,, this edge (or its reversely oriented cogy) undergoes a Delaunay crossing by
within a suitably reduced triangulatiddT (P \ {a,w,r}).

Case (d1)—enforcing the crossing afyu by p or ¢. If the edgewq is never Delaunay i before time
1 then, by Lemma 6.1 7wgq, u, I) is among the firsO(¢) clockwise (w, u)-crossings (becauseu is

Delaunay during each of these crossings). Proposifidm@pliés that this can occur for at mast/n?)

special quadrupleg. Therefore, we may assume thai has appeared iIDT(P) also beforej; .

Let&,,, denote the last time ifr-oc, §1) when the edgeyu belongs tdT(P); see Figuré 96. Notice
that the time whemu is hit by one ofp, ¢, as prescribed by Lemrha 6118 (ii), must belong to the interva
[€wu, 01), Which is contained in&,.,to). To enforce the desired Delaunay crossinguaf, we apply
Theoreni 2.2 in4,,, over the interval&,,,, to), with the third constank > /.
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pq € DT(P\ {a,w,r,u})

1 |
E0a A to Vwgt1 &2 A
e ku hits;q J "
pq € DT(P)

Figure 95:Case (d1)—obtaining a Delaunay crossing@by u. The edgeyq is Delaunay at time§,, and\,,,
and almost Delaunay i(€,,, Apq). Sincew hits pg in (01, vwq) C (§pq, Apq), Pg Undergoes a Delaunay crossing
bywin P\ {a,w,r}.

~~wu € DT(P)
[Luu ¢ DT(F) I
wu ) tO tl

wu hit by p org

Figure 96: Case (d1)-enforcing a crossingwfi by at least one of the poinis q. The edgewu is Delaunay
throughoutl = [ty, 1] and at timet,,,, < 01 (which is the last such time befodg). The Delaunayhood afu is
violated byp andgq right befored; € (.., to], SO the promised crossing p§, by at least one of, ¢, must occur
in [gwua 51)

If at least one of the Conditions (i), (ii) holds, we can chexg within A, either to anh-shallow
collinearity or toQ2(h?) h-shallow co-circularities. Lemn{a 8.6 ensures that eacihallow event, that
occurs in Ay, at some time* € (&,4,t0), iS charged in this manner by at mast/) left special
quadruples. Indeed, the corresponding pointandw are involved in the event, so we can guess them
in O(1) possible ways, antwq, u,I) is among the firs8¢ + 2 clockwise (w, u)-crossings to begin
after timet*. Therefore, the above charging accounts for at mbgth?N (n/h) + hn*3(n)) special
quadruplesy.

We may assume, then, that Condition (i) of Theofen 2.2 siolchat is, there is a subsdt,, of at
most3h points (perhaps including some pfq, a, andr) whose removal restores the Delaunayhood of
wu throughout the intervdk,,,,, to].

If wu is crossed during€,., o) by ¢ (from L, to L), then, together witliwq, u, I), the triple
w, q, u performs two Delaunay crossings(iff \ A,,) U {q}. A routine combination of Lemnia 4.5 with
the probabilistic argument of Clarkson and Shor implies fA@ontains at mosO (hn?) triplesw, ¢, u
of this kind. By Propositiofi 611, this also bounds the oueramber of such left special quadruples

To conclude, we may assume that the edge (or its reversely oriented copyw) undergoes a
Delaunay crossing by in the smaller setP \ A,,,) U{p}. In addition, we have shown that the edge
(or its reversely oriented copyp) undergoes a Delaunay crossingdin P \ {a,r, w}. (Note that one,
or both of these crossings can be a double Delaunay cragsiigrefore, together with the crossings
(wq,u, I') and(qw, p, H), each of the four possible sub-tripleswefq, u, p performs a Delaunay crossing
within a suitably refined triangulation.

Finally, recall that the four points), ¢, u, p are involved at some timé&, € I C (), &2) in their
third (and last) co-circularity, which is red-blue with pest to the edgesq and pu. Moreover, this
co-circularity is(8¢+ 1)-shallow in P (because of Lemnia 6.115), and the Delaunayhoagh@$ violated
right after itbyqg € L, andp € L;u. Let A, be the set of at most + 1 points that lie at tim@, within
the circumdisc ofv, g, u, p.

Case (d1): Charging terminal quadruples. We consider a subsét of [n/h] points chosen at random
from P. Notice that the following two events occur simultaneouslith probability at leasf2(1/h%):
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(1) R contains the four points, ¢, u, p, and (2) none of the points ¢, U As, U{a,r})\ {w, ¢, u,p}
belong toR.

In the case of success, we changéo the quadruple = (w, ¢, u, p), which satisfies the following
two conditions with respect t& (see Figur¢ 97):

(C1) The edgepq (or gp) undergoes a Delaunay crossingdyn R \ {w}. Similarly, the edgevu (or
uw) undergoes a Delaunay crossingbin R \ {q}.
(C2) The four points ofp are involved in a Delaunay co-circularity, right after wiithe Delaunayhood
of pu is violated byg € L, andw € L;u. Furthermore, this is the last co-circularity of ¢, u, p.

Note thaty is uniquely determined by.

Definition. Let P be a finite set of moving points iR%. We say that a quadruple= (w, ¢, u,p) in P is
terminal of type df it satisfies the above conditions (C1) and (C2), withieplaced byP.

Figure 97: A possible trajectory of. if o = (w, g, u,p) is a terminal quadruple of type C. The pointswére
involved in an extremal (last) Delaunay co-circularitght after which the Delaunayhood pf: is violated by
q€ Ly, andw e L},

Let 7¢(m) denote the maximum possible number of terminal quadruglegoe C that can arise in
an underlying set ofn moving points. Then the overall number of 3-restricted $gfecial quadruples
that fall into case (d1) is at most

O (K*T%(n/h) + (h*N(n/h) + thn?B(n)) .

In Section_Z.B we will use the corresponding extremal Dedguro-circularity ofw, ¢, u, p of each
terminal quadruple to enforce a Delaunay crossing of by at least one of the remaining two points
w, q of p. Together with the Delaunay crossings in condition (C1l)east one of the tripleg, u, w or
p,u, ¢ Will perform two (single) Delaunay crossings. Thereforar analysis will again bottom up via

Lemmd4b.

Remark. Notice that in condition (C1) we omit the crossin@sg, u, I) and(qw, p, H) which gave rise
to the terminal quadruple = (w, ¢, u, p), after having used them to enforce the crossings of w and

p,u,q.

Case (d2). The co-circularity at time is red-blue with respect to the edge whose Delaunayhood
is violated right beforé, by p € L, andw € qu (see Figuré 93 (right)).

Usingv,,, as before to denote the unique timelia= [to, t1] whenu hits wg, we have the following
symmetric variant of Lemmia 6.118, which can be establishedvtisching the roles ofv andq in the
argument that implied Lemnia 6]18.

Lemma 6.19. With the above notation, the following two properties haid¢ase (d2):

(i) The edgewp is hitin (41, vw,) by u, which crossesp from L, to L .

(if) The edgeugq is hitin (A;, 61) by at least one of the poinis w. Namely, eithep crossesug from
L}, 0 L,,, orw crossesuq in the reverse direction. Moreover, the Delaunayhoodgis violated byp

andw right after the last such crossing and until.
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Figure 98:The two possible trajectories afaccording to Lemma6.19. The edgeis hit in (¢, 61) by p (left)
orw (right). In both scenarios; hits the edgeuvp afterd; and before the time,,, € I whenu hitswyg.

We next amplify the collinearities in Lemnia 6119 into fulkdiged Delaunay crossings. We again
emphasize thatwg, u, I) is a clockwise(w, u)-crossing, and a counterclockwige, ¢)-crossing, so the
role of uq in the present case (d2) is fully symmetric to the rolewaf in case (d1). In particular, the
crossing ofuq (or of its reversed copyu) by p or w will be enforced using essentially the same argument
as was used in case (d1) to enforce the Delaunay crossiag bf/ p or q.

In contrast, the properties @k (in case (d1)) andvp (in case (d2)) areot symmetric. Indeed,
the edgepg (which was crossed by in case (d1)) is almost Delaunay throughout the intefygl A,,]
(which covers(\;,&2) O (61, vwg), Wherewp is hit by u or ¢), and Delaunay at both timeg,, A,q-
However, the edgesp (which is crossed by in the present case (d2)) becomes Delaunayjin A,
only after removal of a subset,,, of at most6/ + 3 points (includingu), which is not enough to obtain
a Delaunay crossing afip by .

Case (d2): Enforcing a Delaunay crossing ofvp by u. We emphasize that the third co-circularity of
w,q,u,pis (8¢ + 1)-shallow and occurs at some timig during the second portion df, starting right
after the unique time,,, in I whenu hits wq. Recall also thaf begins afte; and is contained in the
nested intervalg\,, £&2) and (&4, Apq) (Where the Delaunayhood pfv can be restored by removing the
above setd,,,, of at most6/ + 3 points).

pw € DT(P\ Apy)

f“1+1|—l|r—l—||l+
Epw Epg Ag 01 K to Vwgds 1 & Ay

pw € DT(P\ {d',7",u'}) u hits pw

Figure 99:Case (d2)—enforcing the crossingwp by u. The edgepw is Delaunay inP \ A,,, throughout the
interval [£,,, A\pq], Which contains); andI (inclduingv,,, anddz). We first obtain a time,,, < &,, whenpw
belongs to some reduced triangulatidi (P \ {a’, 7', «’}), so that none of the obstruction poiatsr’, v’ is equal
to u. Note thatu hits pw in the interval(&,.,, d2).

Notice that the Delaunayhood ptv at timeds can be enforced by removing the subgigf of at
most8¢ + 1 points that lie at time), in the interior of the circumdisc ob, ¢, u, p. SinceA;, does not
includew, its removal does not destroy the crossing triple, .

We first obtain a time,,,, < &,, when the edgew belongs to some reduced triangulatidi’' (P \
{d’,r',u'}), for somed’,r", v € P\ {w,p,u}. In particular, (&,.,,02) contains the above time in
(1, vwq) Whenu crosseswp from L., to L, We then use Theorel 2.2 to extend the almost-
Delaunayhood opw to [{,u,&pg), SO as to cover the entirg,,,, \py]. As a result,wp will undergo
a Delaunay crossing by during some sub-interval d§,,,, d2] (and in an appropriately reduced subset
of P).

To obtain the above timg,,, < &,q, We return to the subfamilg’, of all 3-restricted left special
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quadruplesy’ = (d/,p,w,q’") (each coming with respective outer pointsand«’) whose two middle
points are equal tp andw, respectively. Recall that each quadrupl@ﬁ;b is uniquely determined by its
respective poing’. In addition, we can assume that all quadruple@lfi;g fall into case (d2) of the present
analysis (because the remaining quadruple@lﬁp are handled using previous charging arguments). In
particular,gﬁw contains the quadruple = (a, p, w, ¢) under consideration.

Our analysis relies on the following uniqueness property:

Lemma 6.20. With the above assumptions, the fantj)& contains at most/ + 1 other 3-restricted left
special quadruples’ = (d/, p, w, ¢'), with respective outer points and«/, that fall into case (d2) and
satisfyu’ = u.

In other words, any triplev, p, v can be shared by at madt + 2 3-restricted left special quadruples
x under consideration.

Proof. Notice that, for each terminal quadrupi¢ = (d¢/,p,w,q’) € gﬁw under consideration, with
respective outer points andu’ = wu, the four pointsw, u, p, ¢’ are involved in their third co-circularity
at some time, during the respective regular crossing.ef by . Right after timey,, the Delaunayhood
of pu is violated byq’ € L., andw € L,. Clearly, the lemma will follow if we show that, is among
the first8¢ + 2 such times), to occur aften crossesvp from L, to L}, (as prescribed in Lemnia 6119
(). (See Figuré100.)

u hitspw
e I

] | | | | >
I | I

| I o
A o1 0 to P2t &
u € Bp.q, w]

Figure 100:Proof of Lemmd6.20. We fix a quadrupi¢ = (a’,p,w,q’) € G}, whose second outer point
equal tou, so that the third co-circularity ab, p, u, ¢" occurs at some timé, afteru crosseswp (from L, to
L},) and befored,. We claim thaty’ lies at timedy in the capC,,,. The two hollow circles in the left figure
represent the location afwhen it hitswp, and at timejy, > 05 (whenu leavesB|p, ¢, w]).

To establish the last claim, lef = (a/,p,w,q’") be a3-restricted left quadruple, with respective
outer points’ andu’ = u, and such that the corresponding third co-circularitywofs, p, ¢ occurs at
some timey, afterw entersL; , throughwp and befores,. We claim thaty’ lies at timed, within the
capC,, = Blp,q,w] N L, (as depicted in Figurie 100 (left)), so, by Lemima .15, theallzaumber
of such points;’ (and, therefore, also of their respective quadruglésannot exceed? + 1.

Indeed, recall that the motion d8[p, ¢, w] is continuous in the interval\,, &2), which contains
01 € (N, to) anddy € I = [to,t1]. Therefore, and sincé, is (the time of) the last co-circularity of
w, q,u, p, the pointu must remain inB[p, w, q] after timed;, whenw enters that disk, and until the
time 02, whenu leavesB|p, ¢, w]. Therefore, both: andq’ lie in Blp, ¢, w] N L}, at imed,, when we
encounter a red-red co-circularity pfw, u, ¢’ with respect tawp. It hence suffices to show that lies
in L, attimeds.

Assume for a contradiction that lies at timed), in the opposite cap?qu = Blp,q,w| N ngq. This
readily implies that the four edgesp, wq, wq’, andwu, appear aroundv in this clockwise order at
time d,; see Figuré 101 (left). In particular, the poimttoo lies at timed, in C,f, sod; belongs to
the second portion of (which starts at timey,,;, whenu hits wq); see Figur€ 101 (right). Notice that
the Delaunayhood ofvg is violated in(vy,g,d2) by p € Ly, andu € L7 , sop must lie in the cap

wq?
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Blw, q,u] N L, at timed, € (vy4,d2). However, since the co-circularity af, u,p, ¢ at timed, is
blue-blue with respect tau, the above caB(w, ¢, u] N L., must then contain also the poigt In
particular,q’ lies at timed,, within the diskB[w, ¢, u], contrary to theP-emptiness of3[w, ¢, u] N L;q
during the second portion df

whitspw wuliesin L7

/ v
] ] |A)| (?2 ] | >
| [ | NG —
Ay 01 to Uug) 02 01 &2

¢ € Blw,q,u] N L],

Figure 101:If ¢ lies at timed, in the opposite cap’,;, , then this co-circularity occurs during the second portion

(vwg, t1] of I. In this hypothetic case lies at timed, within the diskB|w, ¢, u], contrary to theP-emptiness of
Blw, g,u] N Ly, during (vug, t1].

To conclude, the above contradiction implies tidtes at timed), in the capB|p, ¢, w] NL,,- Hence,
Lemmal6.1b implies the overall number of such poifitsannot exceed? + 1. Therefore, the family
gpr contains at most/ + 1 3-restricted left special quadruplgs = (d’, p, w, ¢'), with respective outer
pointsr’ andu’ = w, that fall into case (d2), and whose respective third coutéritiesd,, occur afteru
crosseswp from L., to L, and befored,. In other wordsg, is among the firs§/ +- 2 such timesy, to
occur afteru crossesvp as above. O

Lemmd6.2D implies, through the standard pigeonhole argtrtieat at least some constant positive
fraction of all 3-restricted left special quadruples= (a,p, w, ¢) under consideration (with respective
outer points- andu) satisfy the following condition:

(PHL2) There exist at mosD(¢) quadruplesy’ € ggw, with respective outer points and«’, so that
we{d,r u'}.

We may assume, with no loss of generality, that (PHL2) habds funder consideration. With these
preparations, we can proceed to the main argument,jn Recall that each such quadruple e gﬁw
is uniquely determined by the respective pajhtand is accompanied by a counterclockwise p)-
crossing(q'w, p, H,+) which occurs in the reduced triangulatioyl' (P \ {a’, ", u'}).

., Spw Epa Aa As A
A X A LS A R I
——————————————— {------» H = Hy
H = H,y
qlw7p7H)(’) pwEDT(P\{a',rﬂu'})

Figure 102:Left: If there exists no quadruplg’ (with respective outer points andw’) in ngw that satisfies
a’,r’' v # u, and whose respectiiev, p)-crossing(q¢'w, p, H,) begins beforé,,, thengjw contains a total of
at mostO(¢) quadruples¢’ whose respectivéw, p)-crossings¢'w, p, H,-) begin before the starting time, of
H = H,. Right: Otherwise, there is a timg,., < &,, which is the last such time whgnv belongs to some
reduced triangulatioPT (P \ {a/, ', u'}), fora’, ', u' # u.

Refer to Figur@ 102. Assume first that there is no quadrypte(d’, p, w,¢’') € Qﬁw (with respective
outer points’ andw’) such that/, r’, u" # u, and whose respectivev, p)-crossing(q¢'w, p, H,) begins
before¢,,. (See Figuré_102 (left).) Since case (a) has been ruled@ﬂtpontains at most special
quadruples whose respecti{e, p)-crossings begin if,,, A\1). Thus,Gﬁw contains a total of at most
O(k + ) quadruples whose respectiye, p)-crossing(¢'w, p, H,+) begin before the starting, of
H = H, (including the at mos®(¢) such(w, p)-crossings that begin befotg, and have one of their
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respective obstruction points, »’, v’ equal tou). We chargey to the edgepw, noting that the above
scenario can occur for at moSt¢n?) 3-restricted left special quadruples under consideration.

We thus can assume, in what follows, that there is at leasgaadrupley’ = (a, p,w,q’), with
respective outer points’ and «/, that satisfies/’,r’, v’ # wu, and whose respectivav, p)-crossing
(qw,p,H")in P\ {d,r',u'} begins before (or atj,,. (See Figur&I02 (right).) In particular, Lemma
4.1 implies that there is a time before (or &f), when pw belongs to some reduced triangulation
DT(P \ {d,r",u'}), for some three points’, ', « distinct fromu. We choose,,, as thelast such
time in (0o, &pq)-

Notice that the above choice ¢f,, guarantees that there exist at mos¥) quadruplesy’ € gﬁw
whose respectivéw, p)-crossings begin ifi,,,, A1). In what follows, we will used’, ', «’ to denote
some three fixed points whose removal restores the Delaandydfpw at timeg&,,,,.

We next apply Theore 2.2 in,,, over the interval(¢,,,, \+). This is done with respect to the
reduced seP \ {a/,r’,u'} (which ensures the Delaunayhoodyeé at the endpoing,,,), and with the
third constant, > ¢.

In cases (i), (i) of Theorem 2.2 we chargewithin the reduced arrangement,,, either toQ2(h?)
h-shallow co-circularities, or to ah-shallow collinearity. Notice that each of the charged ¢ves
(h+ 3)-shallow with respect to the original sBf and is charged by at most(¢) left special quadruples
x- (The latter holds because the respectivep)-crossing(quw, p, H = [A4, A5]) Of x is among the first
O(¢) such(p, w)-crossings to begin after the time of the event.) Therefineabove charging accounts
for at mostO (¢h?N(n/h) + ¢hn?B(n)) special quadruples.

whitspw  pw € DT(P\ As,)

Figure 103:In case (iii) of Theorer2]2 we end up with a suhdgt, of at most3h+ 3 points (includings’, 7/, u’)
whose removal restores the Delaunayhoogwfthroughouté,,.,, A4]. In addition,pw is Delaunay inP \ A,
throughoutthe intervadk,,,, \,,] (which containg{ = [\4, X5, 02, and the time befor&, whenu crossesuvp from
L,,t0 L), anditis Delaunay iP\ A;, attimed,. Hence, if we omit th€(h) points Of( Ay UA,,UAs, )\ {u},
the edgeawp (or pw) undergoes a Delaunay crossingy

Finally, in case (iii) of Theorer 2.2 we end up with a sub&p& of at most3h + 3 points (including
the three pointg’, r’, v’ which were put aside) whose removal restores the Delaualybigpw through-
out [£,., \4]; See Figur&I03. In particulgsw is Delaunay inP \ (A,,, U A,,,) throughout the interval
€pg> Apg) = [Epws A1) U [€pgs Apgl, Which containsd, and the above time i1, vyg) C (61, 62) when
u crosseswp from L, to Lj;p. Furthermore, recall that the co-circularity pfq, w, v at timed, is a
Delaunay co-circularity irP\ As,, whereAs, C P is a subset of cardinality at ma$t+ 1. In particular,
pw is Delaunay inP\ A, attimed,. Hence, in the even more reduced @t (As, U Ay, UA,,,))U{u},
the edgewp (or its reversely oriented copyw) undergoes a Delaunay crossingdyuring some sub-
interval of [,,,, 92). (Specifically, the Delaunayhood of at times¢,,, andd, is guaranteed by removal
ofa’,r',u' € Ay, \ {u} andAs, € P\ {p,q,w,u}.)

Case (d2): enforcing the crossing ofu by p or w. If the edgeugq is never Delaunay i before timejy,
Lemmda 6.1l implies thatwg, u, I) is among the firsO(¢) counterclockwisg g, u)-crossings (because
uq is Delaunay during each of these crossings). Propoditifinn@plies that this can occur for at most
O(¢n?) special quadrupleg. Therefore, we may assume thatappears ifDT(P) also before; .

Let &,, denote the last time beforg when the edgeq belongs taDT(P); see Figur¢_104. Notice
that the time wheng is hit by one ofp, w, as prescribed by Lemrha 6118 (ii), must belong to the interva
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uq 01t t1

ug hit by p or w

Figure 104:Case (d2)-enforcing a Delaunay crossingyafoy at least one of the poings w. The edgeju is
Delaunay throughout = [t¢,¢:] and at time,,, < §; (which is the last such time befobg). The Delaunayhood
of ug is violated byp andw right befored, € (£.q,%0), SO itis hitin[&,,, d1) by at least one of, w.

[Eug- 01), Which is contained i, ,to). To enforce the desired Delaunay crossingyof we apply
Theoreni 2.R in4,, over the interval,., to), with the third constank > /.

If at least one of the Conditions (i), (ii) holds, we can cleaxg within A,,,, either to am:-shallow
collinearity or toQ2(h?) h-shallow co-circularities. Lemn{a 8.6 ensures that eaaihallow event, that
occurs inA4,, at some time* € (&,,,to), is charged in this manner by at m@st¢) left special quadru-
ples. Indeed, the corresponding pointandgq are involved in the event, so we can guess theif (ih)
possible ways, an@wq, u, I) is among the firs8¢ + 2 (regular) counterclockwiség, u)-crossings to
begin after time*. Therefore, and sincg is uniquely determined b{wq, u, I) (see Proposition 6.1),
the above charging accounts for at most¢h? N (n/h) + ¢hn?3(n)) special quadruples.

We may assume, then, that Condition (iii) of Theofeni 2.2 fiolthat is, there is a subsdt,, of at
most3h points (perhaps including some pfq, a, andr) whose removal restores the Delaunayhood of
ug throughout the intervak,,q, to].

If ug is crossed duringt.q, to) by w (from L, to L} ), then the triplew, ¢, u performs two Delaunay
crossings inP \ Ayg) U {w}. A routine combination of Lemnfa4.5 with the probabilistigament of
Clarkson and Shor implies th#t contains at most (hn?) triples w, ¢, u of this kind. By Proposition
[6.7, this also bounds the overall number of such left spegiatiruplesy.

Case (d2): Converging. To recap, after excludin@ (EhQN(n/h) + Ehn25(n)) special quadruplesg,
we may assume that the edgeis hitin (£,4,%0) by p, so it (or its reversely oriented cogy,) undergoes
a Delaunay crossing hyin the smaller setP \ A,,) U {p}.

In addition, the four pointsuv, ¢, u,p are involved at some timé&, € I in their third (and last)
co-circularity, which is red-blue with respect to the edgesand pu. Moreover, this co-circularity is
(8¢+1)-shallow inP, and the Delaunayhood op is violated right after it by; € L, andp € Lj,. As
before, we usels, to denote the set of at mo3t + 1 points that lie at timé, within the circumdisc of
W, q, U, P.

Finally, there exist setd,,,, andA,,, that contain at mosD(¢+h) = O(h) points in total, so thaiyp
(or its reversely oriented copyw) undergoes a Delaunay crossingibin (P\ (A4s, Upruflpw)) U{u}.
(Note that one, or both of these crossings can be a doubleiisglacrossing.)

Case (d2): Charging terminal quadruples. We consider a subsé& of [n/h] points chosen at random
from P. Notice that the following two events occur simultaneousligh probability at leasf)(1/h*): (1)
R contains the four points), ¢, u, p, and (2) none of the points 0fi,,, U A, U lew UAs,) \{w,q,u,p}
belong toR.

In the case of success, we chargéo the quadruple = (w, ¢, u, p), which satisfies the following
two conditions with respect t& (noting thaty is uniquely determined by); see Figuré 105:

(D1) The edgewp (or wp) undergoes a Delaunay crossingdyn R \ {¢}. Similarly, the edgeyu (or
ug) undergoes a Delaunay crossingibin R \ {¢}.
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(D2) The four points of are involved in a Delaunay co-circularity, right after winiihe Delaunayhood
of pu is violated byg € L, andw € L;u. Furthermore, this is the last co-circularity of ¢, u, p.

Definition. Let P be a finite set of moving points iR%. We say that a quadruple= (w, ¢, u,p) in P is
terminal of type Dif it satisfies the above conditions (D1) and (D2), wkireplaced byP.

Figure 105:A possible trajectory of. if ¢ = (w, ¢, u, p) is a terminal quadruple of type D. The pointsg@ére
involved in an extremal (last) Delaunay co-circularitght after which the Delaunayhood pf: is violated by
q€ Ly, andw € L},.

Let TP (m) denote the maximum possible number of terminal quadruglegoe D that can arise in
an underlying set ofn moving points. Then the overall number of 3-restricted $gi¢cial quadruples
that fall into case (d1) is at most

O (W*TP(n/h) + Lh*N (n/h) + thn*B(n)) .

In Section_Z.B we will use the corresponding extremal Dedguro-circularity ofw, ¢, u, p of each
terminal quadruple to enforce a Delaunay crossing pf by at least one of the remaining two points
w, q of . Together with the Delaunay crossings in condition (D1)east one of the triples, u, w or
p,u,q Will perform two (single) Delaunay crossings. Thereforar analysis will again bottom up via
Lemmd4.b.

3-restricted left special quadruples—wrap up. Putting together the previously established bounds on
the maximum possible numbers ®frestricted left special quadruples that fall into casgs (@, (c),
(d1) and (d2) yields the following recurrence:

oL (n) = O (K*T(n/h) + h*TP (n/h) + ¢h*N(n/h) + k(>N (n/) + k>N (n/k) + thn*B(n)) .
(11)

7 The number of terminal quadruples

In this section we obtain “quadratic” recurrences for theximaim numbers™ (n), T2 (n), T (n), and
TP (n), of terminal quadruples of the respective types A, B, C, and/fiich arise at the last stage of the
analysis in Section]6. Each of these four quantities is esga@ only in terms of the maximum number
of Delaunay co-circularities in smaller-size sets, plusarly quadratic additive term. In other words,
our analysis bottoms out. Combining these four new recaagwith the ones, obtained in Sectibhis|3, 5,
and®, we finally get a complete system of “quadratic” requres, whose solution & (n) = O(n?*¢),

for anye > 0. This completes the proof of Theorém]2.1.

7.1 Terminal quadruples of type A

In this section we finally express the maximum possible cality 74 (n) of a family 4 of terminal
quadruples of type A (where each quadrupl&ihis uniquely determined by each of its four sub-triples)
in terms of more elementary quanitities that were introduoeSectior P.
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To do so, we fix the underlying sét of n moving points, a family=* as above, and a terminal
quadrupleo = (p, ¢, 7, w) in ¥ 4. We emphasize that, as well as any other quadrudlg, ¢, , w) € ©4,
is uniquely determined by each of its four sub-triplesq, ), (p, ¢, w), (p, 7, w), (g, 7, w).

Recall that the four points af performfour Delaunay crossings, namely the crossinggby r, the
crossing ofgp by w, the crossing ofp by w, and the crossing abq by ». Here only the first crossing,
(pq,r, I = [to,t1]), is defined with respect to the compelete point BetEach of the remaining three
crossings ob occurs within a reduced point set, which is obtained by angittrom P the fourth point
of o (not directly involved in the crossing).

In this section, we shall enforce on the pointspadn additionalfifth crossing, namely the crossing
of rw (or its reversely oriented copyr) by one ofp, q. As a result, at least one of the triplgsr, w
or ¢, r, w will perform two Delaunay crossings (within an appropriateeduced triangulation). We thus
shall chargep to that triple and complete our analysis by invoking Lenint 4.

Topological setup. Refer to Figuré_1306. By condition (Al), the edgeis crossed by (during =
[to, t1], as part of the corresponding Delaunay crossing)artdt some later time,;, > ¢;), in opposite
directions. Furthermoreyg re-entersDT(P) at some later time,, after \,, and it belongs t®T (P \
{r,w}) throughout[ty, Ap,].

By condition (A2), the four pointg, ¢, » andw are co-circular at some timeég € I, 61 € (t1, Apq)
anddy € (91, \pq], Where the two extremal co-circularities (at timgsandd,) are red-blue with respect
to pq, and the middle co-circularity (at tim®) is red-red with respect tog (and red-blue with respect
to pr).

As a matter of facty, arises as part of a single Delaunay;pfby w, which occurs in the triangulation
DT({p, q,r,w}) within the interval(é, \,]. Therefore, ifw lies at that moment i, (sor lies then
in L;q), the Delaunayhood ofw is violated right aftew, by p andq, and otherwise the Delaunayhood
of pq is violated right aftep, by r andw.

Furthermore, the open c@;’; = Blp,q,w]N L;q contains no points aP at timedy, which is easily
seen to imply the following property:

Claim 7.1. With the above assumptions, both edgesandrw are Delaunay at time;.

Proof. If the the opposite cap’,, = B[p, ¢, w] N L,, contains no points of at timeJ;, then this co-
circularity ofp, ¢, r, w is Delaunay, and we are done. Otherwjsgis not Delaunay even if?\ {w}, and
each of its violating pairs i \ {w} must involver (because); € (o, \py)). Hence, applying Lemma
4.2 topq andr in P\ {w} shows that both edges andrq belong at that moment to the triangulation
DT(P\{w}). Furthermore, sincgr does not belong t T (P) (asC,, € Blp,q,r]N L, is not empty),
the claim now follows by another application of Lemmal 4.2 time topr andw. O

By condition (A4), we have atimg,,, > A, > A, so thatpw belongs tdT(P\ {r, ¢}) throughout
the interval(d,, ,,,), and it is Delaunay at timg,,, (in addition to its Delaunayhood at tinde).

Finally, by condition (A3), the edgep undergoes irP \ {¢} a single Delaunay crossirgp, w, T =
[70,71]), wherew entersL;}, = L, in the interval(d;, \;). Hence, Lemm&4l1 implies thatw be-
longsDT(P \ {¢q}) throughout the intervel” = [, 71|, which clearly intersect§d;, &) O (61, Aq)-
Similarly, the edgevq undergoes i \ {p} a Delaunay crossing hy.

In what follows, we consider a subfamily?  of all terminal quadruples’ = (', ¢, 7, w) in ©4
whose last two points are equal to, respectivelndw. In particular,¥4 includes the terminal quadru-
ple ¢ = (p,q,r,w) under consideration. Note that each= (p',¢,r,w) € £4 is accompanied by
a clockwise(r, w)-crossing(rp’,w, T') (which occurs within an appropriately reduced triangofati
DT(P\ {¢'}).

To enforce a Delaunay crossing of by by p or ¢, we fix a pair of constant® < ¢ and distinguish
between three possible cases, treating each in turn.
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______ whitsrp 1"
\‘“ pw pw € DT(P)
) _tIO _ZI— tll l ------- -i ------- ; ------- I --:-:-:I
IR L T T
¥pq € DT(P)

Figure 106:A partial summary of the properties of a terminal quadrupte (p, ¢, 7, w) of type A. Left: Various
events occur in the depicted order (aldoccurs in(d1, Ap,]). Notice thatw hitsrp in [ro, 1] N (01, Ay). Right:
The edge®w andrw are Delaunay at timé&,, because the open cé?gz contains then no points a@?.

Case (a)The crossingrp, w, T = [r9,71]) begins aftes; and~4, contains at least terminal quadru-

w
ples¢ = (p,¢',r,w) whose respective clockwisg, w)-crossings(rp’,w,7T") begin in[d1, 1), or
[10, 71| ends beforé,,, andx2 contains at least terminal quadrupleg’ = (p’, ¢, 7, w) whose respec-

w

tive clockwise(r, w)-crossinggrp’, w, 7') end in(71, {pu .-

ow

whitsrp” 7 YT T

g (Tpl7 w7 T’
51 ‘ I | '! gpw
“pw € DT(P)™

Figure 107:Case (a): The scenario whefie, w, T = [, 71]) ends beforg,,,, and the familyS2  contains at

Tw
leastk terminal quadrupleg’ = (p/, ¢, r,w) whose respectivér, w)-crossinggrp’, w, T") end in (71, {pu]. At
at leastk — 2 of these quadruples satisfy # ¢ andq’ # p, so their respective intervalg’ are entirely contained

in [To,gpw].

Assume without loss of generality that the latter scenadoucs, so at least clockwise (r, w)-
crossingsrp’, w, 7") end in(71, &,w]; see Figuré1Q7. Notice that each of them occurs within alsmal
triangulationDT(P \ {¢’'}) which is, in general, distinct from the ambient triangwatDT(P \ {q})
of (rp,w, T). Fortunately, any terminal quadrupté = (p',¢’,r,w) € ¥4 is uniquely determined by
each of its respective points andq’. Hence, at least — 2 of the above quadruples satisfyp’ # ¢ and
q' # p, in which case their respectie, w)-crossings are compatible withp, w, 7') (through Lemma
[5.8) and, therefore, occur entirely withiny, §,,] = 7 U (71, {pu)-

We sample a subsét of n/4 points and argue that, with some positive fixed probability, w, 7)
becomes dp, w, O(k))-chargeable Delaunay crossing witHl'(P). Namely, we notice that the fol-
lowing two events occur simultaneously with some fixed pessiprobability: (1) £ includes the three
pointsp, r, w, but notg, and (2)]5 includesp’ but notq’ for at least some constant fraction of the above
quadruplesy’ = (p',¢',r,w) € X4 (whose respectivér, w)-crossings(rp’,w, T') end in (71, &pu))-

In the case of success, condition (1) implies thastill undergoes a single Delaunay crossinguyn
P, which occurs in some sub-interval ®f = [, 71] C [70, &pw). Similarly, condition (2) implies that at
least(k) clockwise(r, w)-crossings ink occur within [y, £, ].

By Theoreni 5B, the overall number of such triplgsw, ) in P (and, thereby, ifP) cannot exceed
O (k*N(n/k) + kn*B(n)). Clearly, this also bounds the overall number of the coording terminal

quadrupleso = (p,q,r,w) in P. If (rp,w, T) ends before,,,, and>2, contains at least terminal
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quadruplesy’ whose respectivér, w)-crossings(rp’, w, T') end in (71, &), we argue in a fully sym-
metrical manner, for the same upper bound on the number bfteaminal quadruples.

We thus can assume, in what follows, that either the crosgipgw, 7 = [19, 71]) ends aftei,,,,
or the sub-family~#  contains at mosk other quadruple®’ = (p, ¢, 7, w) whose respectivér, w)-
crossings(rp’,w, T') end in(71,&,,]. Similarly, we can assume that eithep, 71]) begins beforej;,
or the sub-familyx2 contains at most other quadruple®’ = (¢, ¢’,r,w) whose respectivér, w)-
crossinggrp’, w, T') begin in[dy, 7).

Case (b)The family X} contains no terminal quadrupié = (p', ¢',w, ) # o that satisfieg’ # p, and
whose respectivér, w)-crossing(p'r, w, T') ends in[¢,,,, o).

Since case (a) has been ruled out (&Y, contains at most one quadruple= (p', ¢, r,w) with
¢ = p), we conclude that there exist at mdst- 1 terminal quadruple®’ € X/} whose respective
(r,w)-crossings(p’r,w, T') end afterT = [y, 71]. Hence, we chargép, ¢,r,w) (via its respective
(r,w)-crossing(pr,w, T = [19,71])) to the edgerw and notice that any edge can be charged in this
manner by at most + 2 terminal quadruples.

To conclude, the above scenario is encountered for at @@si?) terminal quadruples.

Case (c)None of the previous cases occurs. In particular, since @@dsas been ruled out, the family
¥4 contains at least one quadruple= (p',¢,r,w) # o, with ¢/ # p, and whose respective, w)-
crossing(rp’, w, T') ends in[¢,,,, o). (Clearly, we have;’ # ¢, for otherwisep would coincide with

o))
rw € DT(P \ m el €pu
rw € D@ T‘ rw EDT(P\ {q})
01 | e Orw
A A

Figure 108: Case (c): Extending the almost-Delaunayhood-®fto [y, d,.,]. Hered,,, is the first time in
[£pw, 00) Whenrw belongs to some reduced triangulatidi' (P \ {¢'}), for someg’ # p, q.

Applying Lemmd 4.1 to the crossin@p’, w, T') (in its ambient seP \ {¢’'}) implies, then, there is
atimed,, > &, Which is the first such time when the edge belongs to some reduced triangulation
DT(P \ {¢'}), whereq’ # p,q. In what follows, we use’ to denote a fixed point i \ {p,q,r,w}
whose removal restores the Delaunayhood at time see Figuré 108.

Note that we havé,,, > \,, > ¢;. Since case (a) has been ruled out, the choidg phuarantees
that, unless,., belongs ta7” = [, 71, there exist at most + 1 quadruples’ € 4 whose respective
(r,w)-crossings(rp’, w, T') end in(1y,d,,]. (In particular, by the choice af,.,, there is at most one
quadruple’ = (p/,¢',r,w) whose respectivér, w)-crossing ends irf&,,,, d,,,], and it must satisfy
q =p.)

Charging events inA,,. We next invoke Theoreiin 2.2 in order to extend the almostDelghood
of rw, which already belongs DT (P \ {¢}) throughoutT = [y, 1] (by Lemmd4.1), to the interval
[01, 0], Which clearly intersect§.

Note that[d1, d,.,] \ 7 is composed of two disjoint (and possibly empty) sub-iraés\o,, 79) and
(71, 0] We apply Theorerh 2.2 separately over each of these sutvafggand only if they are non-
empty). In both cases, we use the second threshold parafneté.

The first application of Theorem 2.2 iA,..,, over(d;, 1), can be done with respect to the complete
point setP (using the Delaunayhood ofv at timed, given in Claini Z.1). Itis necessary onlyif < 7.
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If at least one of the conditions (i), (ii) of that theorem &tisfied, we charge within A,.,,, via
(rp,w, T), either to arf-shallow collinearity, or t&2(¢2) ¢-shallow co-circularities during; , 7). Since
case (a) has been ruled o(tp, w, T') is among the firsk + 1 such(r, w)-crossings to begin after any
event that we charge. Hence, the above charging accountst foostO(k(2N (n/f) + kin?B(n))
quadruplep € ¥4. Otherwise, we end up with a subset of at mifspoints (perhaps including or g,
or both) whose removal restores the Delaunayhoagathroughoutdy, 7).

The similar second application of Theor€éml2.2 (o{ar, 4,,)) is done with respect to the reduced
point setP \ {¢'} (whereq’ denotes the point whose removal restores the DelaunayHoad at time
0rp)- ILiS necessary only if; < d,,.

If at least one of the conditions (i), (ii) of that theoremdimlwe charge (via (rp, w, T)) within A,.,
either to an¢ + 1)-shallow collinearity, or td2(¢?) (¢4 1)-shallow co-circularities (which areshallow
with respect taP \ {¢’}). By the choice ob,,, (rp,w, T) is among the last + 2 such(r, w)-crossings
to end after the event, so ay + 1)-shallow event inA4,.,, is charged by at mosb (k) quadrupleso.
Otherwise, we end up with a subset of at mdst- 1 points (incldingg’, and perhaps also someafg)
whose removal restores the Delaunayhoodwthroughout[ry, ,,].

To conclude, we may assume that there is a suthsgiof at most6/ + 1 points (includingg’) whose
removal restores the Delaunayhoodraf throughout[éy, d,,,]. To obtain the crossing ofw by p or
¢ (which would occur in, respectiveN)T((P \ A,.,) U {p}) or DT((P \ A,) U {q})), it suffices to
show thatrw is hit by one of these two points during the inter\@l, 6,,,]. Notice that the latter interval
containsdy € (01, A\pg) C (01,&pw]. See Figur¢_109. To do so, we distinguish between two pe@ssibl
sub-scenarios, depending on the precise order type of tHog@darity (at time)d,, which is red-blue
with respect tgg andrw.

rw € DT(P) rw € DT(P\ {¢'})
01 0o (Isrw i

Figure 109:Case (c): The edgew belongs taDT(P \ A) throughout the intervdby, d,,,], which contains the
last co-circularityds of p, g, r,w. In addition,rw belongs toDT(P) andDT(P \ {¢'}) at timesd; and d,,,
respectively.

If r liesin L,,, whenw entersL,,, (throughpg), then the Delaunayhood ofv is violated rightafter i,
byp e L., andg € L}, as depicted in Figuie 1110 (left). Sinégis thelast co-circularity ofp, ¢, r, w,
Lemmd 3.1 implies thatw is hit during (42, §,,] by at least one ap, g (because’ # p, ¢, r, w), SO we
are done.

Assume, then, that lies in L;q whenw entersL;q, so the Delaunayhood ofw is violated right
befored, by p € L}, andq € L., as depicted in Figufe 110 (right). Notice that this viaatdoes not
hold at timed;. Hence, we can obtain the desired crossingwofn (41, d2) by applying the time-reversed
variant of Lemma3]1 (from,). The crucial observation is that, d, have different order types, which
rules out the last case in Leminal3.1.

If rw is hit during (01, §,,] by the pointp, then the triplep, r, w performs two Delaunay crosings
within the triangulatiorDT((P \ A,,) U {p}), namely,(rp,w, T) and the just established crossing of
wr by p. Otherwise, ifrw is hit during (1, d,+,] by ¢, the other tripleg, r, w performs two Delaunay
crossings within the triangulation T ((P \ A) U {q}), namely, the crossing afq by r (as prescribed by
condition (A3)) and the just established crossingofby q.

In both cases, a standard combination of Lerhmh 4.5 with thiegilistic argument of Clarkson and
Shor implies that the overall number of the correspondiipdets (p, r, w) or (¢, 7, w) in P cannot exceed
O(¢n?). Since the quadruple at hand is uniquely determined by each of its four sub-tsipteis also

bounds the overall number of such quadrupleX+h
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Figure 110:Case (c): Left: A possible motion af if it lies at time d, in the halfplanel, (sor lies then in
L;;q). The Delaunayhood ofw is violated right after this event yandg, so at least one of them must cross
during (2, 8, ). Right: A possible motion ofv if it lies at time d, in the halfplanel, (sor lies then inL;q .
The Delaunayhood ofw is violated right after this event hyandg, so at least one of them must cress during

(01,02).

To conclude, we have established the following bound on taeimum possible cardinality at4:
T4(n) = O (k>N (n/t) + k>N (n/k) + kfn*B(n)) . (12)

Notice that we have expressed the maximum possible numierrafnal quadruples of type A in
terms of more elementary quantities which were introducesldactior 2.

7.2 Terminal quadruples of type B

In this section we at last express the maximum possible raliti 77 (n) of a family 2 of terminal
quadruples of type B (where each quadrufgleq, r, w) € %P is uniquely determined by each of the
respective sub-triple§, ¢, 7), (p, ¢, w) and(q,r, w)) in terms of more elementary quanitities that were
introduced in Section] 2. To do so, we fix the underlyingBetf » moving points, a family=” as above,
and a terminal quadruple= (p, ¢, r, w) of type B inX5.

Recall that the four points of perform (at least) three Delaunay crossings, namely thesorg of
pq by r, the crossing ofjp by w, and the crossing afr by w. Here only the first crossing, namely,
(pg,r, I = [to,t1]), is defined with respect to the compelete point BetEach of the remaining three
crossings ob occurs within a reduced point set, which is obtained fiBrny removing the fourth point
of o (not directly involved in the crossing).

In the course of this section, we will enforce on the pointg tf/o additional crossings, namely the
crossing ofpw by one ofg, r, and, finally, the crossing ofw by one ofp, q. As a result, at least one of
the triples(p, ¢, w), (p,r,w) or (g, r, w) will perform two Delaunay crossings (within an approprigate
reduced triangulation). We will thus chargeo that triple and bottom out by invoking Lemrmal4.5.

Topological setup. Refer to Figuré_111. By condition (B1), the edggis crossed by (during =
[to, 1], as part of the corresponding Delaunay crossing)artdt some later time,; > ¢;), in opposite
directions. Furthermoreyq re-entersDT(P) at some later time\,, > \,, and it belongs tdT (P \
{r,w}) throughout[t, Ap,].

By condition (B2), the four points op, ¢, andw are co-circular at some three timés € I,
31 € (t1, Apg) @Ndda € (91, Apq], Where the two extremal co-circularities (at timgsandd,) are red-
blue with respect tgpq, and the middle co-circularity (at tim&) is red-red with respect tpq (and
red-blue with respect toaq). Clearly,r remains inL;q throughout(t,, 0 ) after entering this halfplane
during I (for otherwiser would have to cross,,, three times).

As a matter of fact, the last co-circularity at timgarises as part of a single Delaunaygpfby w,
which occurs in the triangulatioD T ({p, ¢, 7, w}) within the interval(d,, \,,]. Therefore, ifw lies at
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that moment in_,,, (sor lies then inL;q), the Delaunayhood ofw is violated right afted, by p andg,
and otherwise the Delaunayhoodpgfis violated right afted, by » andw.

Furthermore, the open ca{g;t] = Blp,q,w]N L;q contains no points of at timed;. Using Lemma
[4.2, we obtain the following property:

Claim 7.2. With the above assumptions, both edgesandrw belong toDT(P) at timed;. Further-
more, the edgew belongs then tdT (P \ {r}).

Proof. The first part of the claim is fully symmetric to Claim 7.1, acah be established using a fully
symmetric argument (switching the rolespoéndq). We thus proceed to proving the Delaunayhood of
pw in P\ {w}. Indeed, if the opposite cap,, = B[p, ¢, w| N L, contains no points of at timed,
then this co-circularity op, ¢, r,w is Delaunay, and we are done. Otherwisgjs not Delaunay even
in P\ {r}, and each of its violating pairs iff \ {r} must involvew (because); € (¢, \,q)). Hence,
Lemmd&4.2 implies thaiw belongs at that moment to the triangulatibf’ (P \ {r}). O

By condition (B4), we have a timg,, > \,; > A, so thatwgq belongs tdT (P \ {p, r}) throughout
the interval[d,, £,,4), @and it is Delaunay at timg,,, (in addition to its Delaunayhood at tinde).

Finally, by condition (B3), the edge- undergoes i \ {p} a single Delaunay crossingr, w, 7T =
[70,71]), wherew entersL/. = L, in the interval(d, \,). Hence, LemmB4l1 implies thaty belongs
DT(P \ {p}) throughout the intervel” = [y, 71], which clearly intersect®, £,,4] D [01, Aq]-

T n
B e
ol TV B
R T T T W
\pquT(P)

Figure 111:A partial summary of the properties of a terminal quadrupte (p, q, r, w) of type B. Left: Various
events occur in the depicted order (@adccurs in(d1, Apq]). vy is the time inl at whichr hits pg. Notice thatw
hitsgr in [1o, 711N (61, A¢). Right: The edgesig andrw are Delaunay at timé, andpw belongs tdT(P\ {r}),
because the open czip‘fq contains then no points d@f.

Overview. Clearly, the motion op, ¢, andw still obeys Proposition 6.11. In particular, using, to
denote the tint&l in 7 whenr entersL;q throughpg, the edgepw is hit in (v,4, 61) by at least one of the
pointsq, ». Namely,q crosse®w from L;w to L, orr crossepw in the reverse direction. Our analysis
proceeds in two steps. At the first step, we refine this cdliieinto a full-fledged Delaunay crossing of
pw. If pw (or, more precisely, its reversely oriented capy) is crossed by, then our analysis bottoms
out through Lemm&4l5. Ipw is crossed by, we proceed to the second step, at which we enforce a
Delaunay crossing afw by at least one op, g. At this step, our analysis is fully symmetric to the one

that was used in Sectién 7.1 to enforce the same type of nmpssi

Part 1: Enforcing the crossing of pw by ¢ or ». We consider the subfamilEfw of all terminal

quadrupleso’ = (p,q¢’,',w) € X of type B whose first and last points are equal to, respegtiyel
andw. (By the definition of©?, eachy’ € Efw is uniquely determined by its respective paif) In
particular,Ef2 includes the quadruple under consideration.

w

“SNote that the order afy anduv,,,. is unknown, and it is determined by the location.oft timew,,.
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For eacho’ € Efw we used] to denote the respective time whery’, 7', w are involved in a red-red
co-circularity with respect teq’, as prescribed by Condition (B2). We emphasize that, by itond
(B2), the open cap]}jjl, = Blp,¢,w] N L;q contains no points of at timed}, so the edgew belongs
at that moment to the triangulatiddT (P \ {r'}).

Let v,,, denote the time whepw is hit by r or ¢, as prescribed in Proposition 6111. Namely, we
assume that,,, < 41, and that the Delaunayhood p# is violated byr € L, andq € L;w throughout
the interval(vyy,, d1).

Proposition 7.3. With the above notation, there exist no terminal quadruples Efw whose respective
second co-circularitieg] occur in (vp, 7).

Proof. Assume for a contradiction that there is a terminal quaérupt (p, ¢, ', w) whose respective
time 6] belongs to(v,.,, d1), where the Delaunayhood pfv is violated byg € L, andr € L}, . Note
thatg # ¢'. By Claim[7.2,pw belongs taDT (P \ {r'}) at timed}. Therefore, and since bothandr’
lie then inL;w, we obtainr = 7. (Otherwise, the Delaunayhood @i would be violated at timé’ by
the pointsr andg, none of them equal td.) In other wordsy and’ differ only in their second points.
Hence q lies at timed] within the discB[p,q¢’,r| = Blp, ¢, w].

Sinceq cannot lie at timey inside the cag’,), = Blp,q',w] N L;q,, it has to lie inside the com-
plementary ca,, = Blp, ¢, w] N L which coincides withB|p, ¢, 7] N L. In other words, the

Delaunayhood of botpq’ andpw is violated at time)} by ¢ € L, andr € L;q,. See Figureé112.

Figure 112:Proof of Propositiol 713. We assume that= (p, ¢, r, w) is a terminal quadruple iEfw, whose
second co-circularity occurs at tind¢ € (vy.,, 61). The pointg must lie at times] in the capC,,, = Blp,¢’,w] N
L,» Which coincides withB[p, ¢', 7N L.

Recall that] occurs after the end of the respectiyer)-crossing(pq’, v, I' = [t;, t;]) of o’ (which
is prescribed by condition (B1)). Since the diBfp, ¢, r] contains no points aP right after timet) (and
the motion ofBp, ¢/, r| is continuous throughodt’, ¢ )), the pointy must enter the cap|p, ¢/, rJNL,.,
in (), d}). Furthermore, conditions (B1) and (B2) imply thatannot hitpq’ in (¢}, }), soq can enter
Blp,¢',r] N L, only through the boundary d8[p, q',r], at a common co-circularity qf, ¢,¢',r. See
Figure[1I3B (left). In what follows, we usé to denote the time of (the last) such co-circularityh &),
noting thatg remains inB[p, ¢’,r] N L throughout(d’, 67).

We claim thatd’ occurs after] = [to,t1]; see Figuré¢ 113 (right). Indeed, singdies in L, (D
Blp,q',r]NL,,,) throughout(¢’, 51), and sinCey; > vpy, > vpe, We obtain that,, < §' (for, otherwise,
Upq Would belong to(d’, 67)). Furthermore, by Lemnia 4.2/ cannot occur durind = [to, t;], because
it is (the time of) a red-blue co-circularity with respectrip Therefore, we havé > ¢;.

To concludeg entersBlp,q¢’,7] N L_, at a common co-circularity gb, ¢, ¢’,r, and only after the
ends ofl andI’. According to Lemm&é the poinis ¢, ¢/, r are involved in at least two previous
co-circularities in the interval\ I’ andI’\ I. Hence, the co-circularity at tim# has index3. Note that
the Delaunayhood qfq’ is violated byg € L, andr e L;q, throughout the intervaly’, ¢} ). Moreover,
since(’ satisfies condition (B1), the edge’ re-entersDT(P) at some time\,, > 0;. Sinced] is the
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) Upq Upw ...
pq hit by r re L;‘
pw hit by g orr

Figure 113:Proof of Propositio 713. Lefty must enterB[p,¢’,r] N L, at some timey’ € (t},07). The
Delaunayhood of¢’ is violated byg andr throughout(¢’, §7). Right: Arguing thaty’ occurs after. Various
events occur in the depicted order. The co-circularityraeth’ occurs after, so it is the third co-circularity of

P,q,7,q .

last co-circularity ofp, ¢, r,w, Lemma 3.1 implies that the edge’ is hit during (67, \,,/] by at least
one of the points, r, contrary to Condition (B1) on’. This last contradiction completes the proof of
Propositior_7.B. O

Note that the subfamil;Efw can contain at most one quadruple = (p,¢’,r’,w) with ¢ = r.
Applying the pigeonhole principle (as this was done in 2etH.6) we get that at least half of all terminal
quadruples = (p,q,r,w) € Ef satisfy the following condition:

w
(PHT) There is at most one quadrupté = (p,¢’,r’,w) € X that satisfies’ = q.

With no loss of generality, we can assume, in what followat (RHT) holds for the terminal quadru-
ple o = (p, ¢, 7, w) under consideration. To proceed, we distinguish betweerptgsible cases.

Case (1a).The edgepw is hit at timew,,, by ¢, which crossegw from L;w toL,,.

Assume first that there exist no terminal quadruples= (p,q’,r’,w) in Efw, with 7' # ¢, and
whose respective second co-circulariti¢soccur beforev,,,. In this scenario, Propositidn T.3 together
with condition (PHT) imply that); is among the first two such second co-circulariti¢sof terminal
quadruplesy’ € X2, so we can charge (via 6,) to the edgepw. Clearly, this can happen fa(n?)

terminal quadrupleg < wa.

pw € DT(P\ Apy)

G N

pw € DT(P\ {r'}) pwhitbyq  pw e DT(P\ {r})

Figure 114:Case (1a)pw is hit by ¢ at timew,,,. We chooseé,,, as the last time before,,, whenpw belongs
to a reduced triangulation T (P \ {r'}), for somer’ # ¢, and apply Theorem 2.2 ovéi,,, 91 ).

To conclude, we may assume in what follows that the aboveasicedoes not occur. Recall that, for
eachy’ € X, the edgepw belongs toDT(P \ {r'}) at the respective tim&. Hence, there is a time

dpuw < Upw Which is the last such time whenv belongs to some reduced triangulatib' (P \ {r'}),

for v’ # p,q,w.

We apply Theoreri 212 fgrw in the interval(d,,,, 1), with the first threshold parametér This is
done with respect to the reduced #&% {r,'} (to ensure the Delaunayhood;ab at timesd,,,, andd, ).
Refer to Figuré 114.

In cases (i), (ii) of Theorerh 2.2, we encounter in the appadgly reduced red-blue arrangement

AL of puw (defined with respect t@ \ {r,+'}) either ak-shallow collinearity or2(k?) k-shallow
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co-circularities, and chargeto these events, which afé + 2)-shallow with respect to the original set
P. Notice that eactik + 2)-shallow event in the full arrangemeut,,, is charged in this manner by at
mostO(1) terminal quadrupleg € Efw, whose respective second co-circularidggre among the first
two such co-circularities to occur id,,, after the time of the event. Hence, the above charging a¢soun
for at mostO (k2N (n/k) + kn?B(n)) terminal quadrupleg € ¥5.

Assume, then, that condition (iii) of Theordm12.2 is sat@fi@hat is, there is a subsett,,, of at
most3k + 2 points (includingr andr’) whose removal restores the Delaunayhoogrofin [Op» 01]-
Moreover, since; # r,r/, the edgepw belongs toDT((P \ A,.) U {¢}) at both timesy,,, and 4.
Therefore, the triple, ¢, w performs two (single) Delaunay crossings in the reduce@3gt4,,,, ) U {q},
namely, the crossing @i by w, and the crossing afip by q. A rountine combination of Lemnia 4.5 with
the probabilistic argument of Clarkson and Shor shows tiebterall number of such triplég, ¢, w)
(and, therefore, of their corresponding terminal quadrsiplc %) is at mostO (kn?).

In conclusion, we have shown that at mes{k? N (n/k) + kn?3(n)) terminal quadruples fall into

case (1a).

Case (1b).The edgew is hit at timew,,, by the pointr, which crossegw from L, to LJr

Notice that, by Proposition 7.3, each terminal quadruple: (p, q,r, w) fallmg |nto case (la) is
uniquely determined by the choice @f, r, w), because the second co-circulartyof g is the first co-
circularity of this kind (over alb’ = (p, ¢’,r,w) € ¥?) to occur after theiniquetime whenr enters the
halfplaneL!,, throughpw.

If there exists no terminal quadrupte= (p, ¢, 7", w) € EB whose respective second co-circularity
d} occurs before,,, Propositiorl 7.3 implies thal; is the flrst such co-circularity, socan be charged
to the edgeyw. Clearly, this accounts for at moSt(n?) terminal quadruples.

For each of the remalnlng quadruplgse EB (that fall into case (lb))}jB contains another
quadruple’ = (p, ¢, ', w), necessarily with”’ ;é r, so that the edgpw is Delaunay inP \ {r'} at
the timed] < vy, of the respective second co-circularity gf In particular, we can choose a time
dpw < Upw Which is the last such time whenv belongs to a reduced triangulati®il' (P \ {r'}), for
somer’ # p,w,r.

Similarly, if there exists no quadruplg = (p,¢,r",w) € wa whose respective second co-
circularity 0} occurs afted;, we can charge (via its respective time stamfy) to pw. Otherwise, there
is a timed,},, which is the first such time whemw belongs to a reduced triangulatiox’ (P \ {r"}), for
somer” ;é P, W, T.

pw € DT(P \ Apw)

DT(P Sy Upw o o
pw € (P\{r'}) pw hit by r pw € DT(P\ {r"})

Figure 115:Case (1b)pw is hit by at timewv,,,. We choosé,,, as the last time beforqepw whenpw belongs
to a reduced triangulationT (P \ {r'}), for somer’ # r, and apply Theorefn 2.2 ovés,,, 01). In addition, we
choose’,f,, as the first time afted; whenpw belongs to a reduced triangulatiy' (P \ {r”}), for somer” # r,
and apply Theoref 2.2 ovédy, d,5,,).

For each of the remaining quadruples X7 (that fall into case (1b)) there exist tim&s, < vpw <
6, anddf,, > d; as above, with respective obstruction poirlts” ¢ {p, w,r}; refer to Figuré 1T5. We
can now apply Theorein 2.2 for the edge, over the intervald,,,, pw) (containingd,). This is done
with the thresholdk, and with respect to the reduced point g€t {r’, r"}.

In cases (i) and (i) of Theorein 2.2, we chargevithin A, (via 6,) either to a(k + 2)-shallow
collinearity, or toQ(k?) (k + 2)-shallow co-circularities. Note that each + 2)-shallow event, that
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occurs inA,,, during (d,f,,,d,%,,), is charged by at at moél(1) terminal quadruples iEfw (that fall into
case (1b)), because the second co-circulakitgf o is either the last such co-circularity to occur before
the timet™ of the event, or the first such co-circularity to occur atter Therefore, the above charging
accounts for at mosd (k%N (n/k) + kn?B(n)) terminal quadruples.

Now assume that Condition (jii) of Theordm P.2 holds. Thatie have a subset,,, of at most
3k + 2 points (including’ andr”) whose removal restores the almost Delaunayhoqeathroughout
the interval(d,,,,, d,5,,]. Moreover, since- # r',r", the edgepw belongs toDT((P \ Ap,) U {r}) at
both times,,,, andégw. Therefore, the edgew undergoes a Delaunay crossingsowithin the reduced

triangulationDT (P \ Apy) U {r}).

Part 2: Enforcing a Delaunay crossing ofrw. To conclude, we may assume, from now on, that each
terminal quadruple = (p, ¢, r,w) € ¥ under consideration is uniquely determined by each of its fo
sub-triples(p, q,7), (p, ¢, w), (p,r,w) and(q, r, w). Moreover, each of these triples defines a Delaunay
crossing (in an appropriately reduced subse®pf

We now exploit the last co-circularity qf, ¢, 7, w (at timedy € [01, Ayq]) to enforce a fifth such
crossing, namely the Delaunay crossing-afby one ofp, g. Here our argument is symmetric to the one
that was used in Sectién ¥.1. (Namely, we now switch the ral@sandq). In the case of success, at
least one of the triple§p, r, w), (¢, 7, w) performs two (single) Delaunay crossings, so Leriméa 4.5 can
be invoked. Otherwise, we disposeméither through Theorem 5.3, or by charging it witbdp,,.

Before proceeding with our case analysis, we emphasizedha Delaunay at times; and&,,, >
Apg(> d2), and that the single Delaunay crossiigg, w, 7 = [r0, 71]) is defined with respect to a smaller
point setP \ {p}. In addition, bothd;, A,,q] and[r, 71] contain the time whem crosses-q from L}/, to
Ly,

We keepo = (p,q,r,w) € ¥8 fixed and consider a subfamily?, of all such terminal quadruples
o = (p,q,r,w) € ¥ whose last two points are equal to, respectively; &mdw. (In particular,x2,
includes the terminal quadrupte= (p, ¢, r,w) at hand.) As in the symmetric setup of Secfiod 7.1, we
distinguish between three possible scenarios (a)—(é¢hgtthem out one by one.

Case (a)The crossingqr, w, T = [r9, 71]) begins afte; and©Z, contains at least terminal quadru-
pleso’ = (p', ¢, r,w) whose respective counterclockwige w)-crossings¢'r, w, 7') begin in[d1, 79),
or [r9, 1] ends before,,, and 5, contains at least terminal quadruples’ = (p',¢’,r, w) whose
respective counterlclockwise, w)-crossingsq’'r, w, 7') end in(71, &)

whitsqgr™ 7 YT T q

: (q/r7 w? I7I-l
51 ‘.‘ E I I Agwq
Twq € DT(P)""

Figure 116:Case (a): The scenario whele, w, 7 = [r, 71]) ends beforg,,,, and the family=Z, contains at
leastk terminal quadruples’ = (p’, ¢’, 7, w) whose respectiver, w)-crossingsgq’'r, w, 7') end in(11, {u4). Atat
leastk — 2 of these quadruples satisfyy # ¢ andq’ # p, so their respective intervalg’ are entirely contained in
[7_07 gwq]-

Assume without loss of generality that the latter scenadoucs, so at least counterclockwise
(r,w)-crossings(¢'r, w, T') end in (71, &y,); See Figuré116. Notice that each of them occurs within a
smaller triangulatiodT (P \ {p'}) which, in general, is distinct from the ambient triangwatDT (P \

{p}) of (¢r,w, T). Fortunately, any terminal quadrupte= (p', ¢, r, w) € X5, is uniquely determined

w
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by each of its respective pointsandq’. Hence, at least—2 of the above quadruples satisfyp’ # ¢ and
q' # p, in which case their respectie, w)-crossings are compatible witlyr, w, 7') through Lemma
5.8, and, therefore, occur entirely withjify, £,q] = 7 U (71, uwql-

We sample a subsét of n/4 points and argue that, with some positive fixed probabiligy, w, 7)
becomes dg, w, ©(k))-chargeable Delaunay crossing witdiil'(P). Namely, we notice that the fol-
lowing two events occur simultaneously with some fixed pessiprobability: (1) P includes the three
pointsgq, r, w, but notp, and (2)]5 includesq’ but notp’ for at least some constant fraction of the above
quadruples’ = (p/, ¢, r,w) € B8, (whose respectivér, w)-crossings(q'r, w, T') end in(71, £uq))- In
the case of success, condition (1) implies tpastill undergoes a single Delaunay crossinguin P,
which occurs in some sub-interval @f = 79, 71] C [70,&wq]. Similarly, condition (2) implies that at
least2(k) counterclockwisdr, w)-crossings ink occur within[ry, £,,].

By Theoren{5.B, the overall number of such triplgsr, w) in P (and, thereby, inP) cannot ex-
ceedO (k*N(n/k) + kn?B(n)), which also bounds the overall number of the correspondinginal
quadruples = (p, q,r,w) in P.

We thus can assume, in what follows, that either the crosgingv, 7 = [r9, 71]) ends aftet,,,,
or the sub-family>4 ~contains at mosk other quadruple®’ = (p, ¢, r,w) whose respectivér, w)-
crossings(q'r, w, T') end in(11,&,,]. Similarly, we can assume that eithep, 71]) begins beforey;,
or the sub-family>Z, contains at most other quadruple®’ = (¢, ¢/, r,w) whose respectivér, w)-
crossingsq’r, w, T') begin in[d1, 79).

Case (b)The family>2, contains no terminal quadrupié = (p’, ¢’,w, ) # o that satisfiep’ # ¢, and
whose respectivér, w)-crossing(rq’, w, 7') ends in[&,q, 00).

Since case (a) has been ruled out (3¢} contains at most one quadrupie= (p’, ¢/, r, w) with
¢" = p), we conclude that there exist at mdst- 1 terminal quadrupleg’ € ~Z whose respective
(r,w)-crossings(rq’,w, T') end afterT = [ry,71]. Hence, we chargép, q,r, w) (via its respective
(r,w)-crossing(pr,w, T = [r9,71])) to the edgerw and notice that any edge can be charged in this
manner by at most + 2 terminal quadruples.

To conclude, the above scenario happens for at 6kh?) terminal quadruples.

Case (c)None of the previous cases occurs. In particular, since (gdeas been ruled out, the family
»B  contains at least one quadruple= (p', ¢, r,w) # o, with p’ # ¢, and whose respective, w)-

w

crossing(q'r, w, T') ends in[A,q, o). (Clearly, we have/’ # p, for otherwisep would coincide with

0'.)
rw € DT(P \ m T Gug
rw € D\T(\p) T‘ rw € DT(PA ()
sl ] 5
A A

Figure 117: Case (c): Extending the almost-Delaunayhood-®fto [41,d,,]. Hered,,, is the first time in
[6wq, 00) Wwhenrw belongs to some reduced triangulatid® (P \ {p'}), for somep’ # p, q.

Lemma[4.l implies, then, there is a tifig, > &, Which is the first such time when the edge
belongs to some reduced triangulatiofi’' (P \ {p'}), for p’ # p, ¢. In what follows, we use’ to denote
a fixed point inP \ {p, ¢, 7,w} whose removal restores the Delaunayhood at fime see Figur€ 117.

Note that we havé,,, > &, > \pg > 61. Since case (a) has been ruled out, the choicg.of
guarantees that, unless, belongs tol” = [y, 1], there exist at most + 1 quadrupleg’ € $2, whose
respectivgr, w)-crossingsq'p, w, 7') end in(7y, 6,]-
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Charging events in A,,. We are now ready to invoke Theordm12.2 in order to extend tmest
Delaunayhood of-w, which already belongs DT (P \ {p}) throughout7 = [y, 71] (by Lemmd4.1),
to the interval[d1, d,,], which clearly intersect§ .

Note that[éy, d,.,] \ T is composed of two disjoint (and possibly empty) sub-iraés\o,, 7o) and
(11, 0] We apply Theorerh 2.2 separately over each of these sutvafggand only if they are non-
empty). In both cases, we use the second threshold parafneté.

The first application of Theorem 2.2, oviY;, ), is done with respect to the complete point Bet
(using the Delaunayhood oiv at timed,). It is necessary only if; < 7.

If at least one of the conditions (i), (ii) of that theorem &tisfied, we charge within A,.,,, via
(rp,w, T), either to arf-shallow collinearity, or t&2(¢2) ¢-shallow co-circularities during; , 7). Since
case (a) has been ruled oy, w, 7") is among the firskt 4+ 1 such(r, w)-crossings to begin after any
event that we charge. Hence, the above charging account foostO(k(2N (n/f) + kén?B(n))
quadruplep € 2. Otherwise, we end up with a subset of at nifspoints (perhaps including or ¢,
or both) whose removal restores the Delaunayhoa¢athroughout]d, 7o].

The similar second application of Theorém]2.2 (o{ar, d,,)) is done with respect to the reduced
point setP \ {p’} (wherep’ denotes the point i# \ {p, ¢} whose removal restores the Delaunayhood of
rw at timed,.,,). It is necessary only if; < d,,.

If at least one of the conditions (i), (ii) of that theoremdimlwe charge (via (rp, w, T)) within A,
either to an(¢ + 1)-shallow collinearity, or td2(¢?) (¢4 1)-shallow co-circularities (which areshallow
with respect taP \ {p'}). By the choice of,.,, (¢r, w, T) is among the last + 2 such(r, w)-crossings
to end after the event, so afy + 1)-shallow event inA4,.,, is charged by at mosb (k) quadrupleso.
Otherwise, we end up with a subset of at ni¥%st- 1 points (incldingp’, and perhaps also somemafy)
whose removal restores the Delaunayhoodwthroughout[r;, ,,].

To conclude, we have a substét,, of at most6/ + 1 points,includingp’, and perhaps also some of
p, q, whose removal restores the Delaunayhooewothroughout/dy, d,.,]. To obtain the crossing ofw
by p or ¢ (which would occur in, respectivelPT((P\ A,,) U{p}) or DT((P\ A,y) U{q})), it suffices
to show that-w is hit by one of these two points during the intery@l, 5,,,]. Notice that this interval
containsds € (81, Apg] C (91, &wq)- See Figuré 118. To do so, we distinguish between two peassibl
sub-scenarios, depending on the precise order type @fhich is red-blue with respect @ andrw.

rw e DT(P) rw € D;T(P\ {r'})

Figure 118:Case (c): The edgew belongs taDT(P \ A) throughout the intervdby, d,,,], which contains the
last co-circularityds of p, ¢, r,w. In addition,rw belongs toDT(P) andDT(P \ {p'}) at timesd; and,,,
respectively.

If the Delaunayhood ofw is violated rightafter 4, by p € L,,, andq € L}, then, since); is the
last co-circularity ofp, ¢, 7, w, Lemm&3.1 implies thatw is hit during(d, d,.,] by at least one op, ¢
(because’ # p, q,r, w), so we are done. (See Figlre 110 (left).)

Assume, then, that the Delaunayhoodraf is violated rightbefored; by p andq. Notice that this
violation does not hold at tim@ . Hence, we can obtain the desired crossinguom (41, d2) by applying
the time-reversed variant of Lemrhal3.1 (for the pointBet {p,q,r, w}, backwards froms,). The
crucial observation is thal, andd, have different order types, which rules out the last caseeimina
[B1. (See Figure 110 (right).)

If rw is hit during (41, 6+, by the pointp, then, together with the crossing pf by r (enforced in
Part 1 by omitting4,,,, \ {r}, where the subset,,, was obtained by applying Theorém12.24,,), the
triple p, r, w now performs two Delaunay crosings within the trianguiaiil’ ((P \ (A, U Apw)) U {p,7}).
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Otherwise, ifrw is hit during (41, 6, by ¢, the other tripleg, r, w performs two Delaunay crossings
within the triangulatiorDT((P \ (A, U {p})) U {q}), namely, the crossing afr by w (prescribed by
condition (B3)), and the just obtained crossing-afby q.

In both cases, a standard combination of Lenimé 4.5 with thbatilistic argument of Clarkson
and Shor implies that the overall number of the correspanttiples (p, , w) or (¢,r,w) in P cannot
exceedO(¢n?). Since the quadruple = (p, ¢,r,w) at hand is uniquely determined by each of its four
sub-triples, this also bounds the overall number of sucliqures in>X5.

To conclude, we have established the following bound on theimum possible cardinality &87:

T8(n) = O (k0*N(n/l) + kK*N(n/k) + kin*B(n)) . (13)

That is, we have expressed the maximum possible numbemoiftgrquadruples of type B in terms
of more elementary quantities which were introduced ini8e&@. Informally, here the system of our
recurrences bottoms out, in the sense that no new quarajijesar in the righ-hand side.

7.3 Terminal quadruples of types C and D

We next establish near-quadratic recurrences for the manipossible numberg® (n) and7” (n) of
terminal quadruples of types C and D, respectively, thataréae in an underlying sa? of n moving
points. See Sectidn 6.6 for precise definitions of these ywes of configurations.

Let o = (w,q,u,p) be a terminal quadruple of type C or D. Notice that each of threidered)
triplesu, p, w andu, p, ¢ is involved in a Delaunay crossing (see Figurel119).

Figure 119:Possible trajectories af in a terminal quadruple = (w, ¢, u,p) of type C or D (resp., left and
right). In both types, each of the unordered trigtes, ¢ andp, u, w is involved in a Delaunay crossing.

Specifically, if o is of type C, we have a Delaunay crossinguaf (or uw) by p in P\ {¢}, and a
Delaunay crossing afq (or of qw) by w in P\ {p}. Similarly, if ¢ is of type D, we have a Delaunay
crossing ofgu (or of ug) by p in P\ {p}. and a Delaunay crossing @f (or of pw) by w in P\ {¢}.

In both types, the four points qf are involved in a Delaunay co-circularity, right after whithe
Delaunayhood opu is violated byw € L, andq € L;u, and this is the last co-circularity af, ¢, u, p.
We will use the above co-circularity to enforce a Delaunayssing ofup by at least one ofv, q. As
a result, one of the triples, p, w andw, p, ¢ will perform two single Delaunay crossings in a suitably
refined subset of, so our analysis will bottom out via Lemrha#4.5.

The desired crossing afp can be enforced using exactly the same analysis as was uSedtion
[3 to express the maximum possible numbés(n) of extremal Delaunay co-circularities i in terms
of the maximum possible numbér(n/k) of Delaunay crossings that can arise in a subsetjobf
cardinalityn/k. Nevertheless, we briefly review the argument of Se¢florr 3hfe sake of completeness.

Let ¢y denote the time of the above extremal Delaunay co-ciraylafi w, ¢, u, p. If the edgepu
never re-enter®T(P) (leaving DT (P) at timet,), then we can charge to this last disappearance of
pu from DT(P), which occurs for at mosD(n?) terminal quadrupleg under consideration. Otherwise,
let ¢; be the first time aftet, whenup re-enterdDT(P). By Lemmd3dlpu is hit in (o, 1] by at least
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one ofw, g. Namely, eitherg crossesup from L, to L;u, or w crossesu in the opposite direction.
Furthermore, this is the second and last collinearity.af, v or p,w, v (and, therefore, thenly such
collinearity of this order type to occur ito, ¢1]).

In both cases, we invoke TheorémI2.2 to amplify the abovergecollinearity ofp, u, q or p, u, w
into an additional Delaunay crossing. Specifically, we fioastant thresholé > 12 and apply Theorem
2.2 in A, over the intervalto, t;).

In cases (i) and (i) of Theoref 2.2, we can charge= (w, ¢, p, u) within A, either Q(k?) k-
shallow co-circularities, or &-shallow collinearity. Furthermore, each shallow evertdhiarged at most
O(1) times, because it involvesandu, andt is the last disappearance@f from DT (P). Hence, the
overall number of such terminal quadruples does not ex¢efief N (n/k) + kn?3(n)).

Finally, in case (iii) of Theorerh 212, we end up with a subdedf at most3k points so thapu
belongs taDT(P \ A) throughoutty,t;]. Thus, eithepu undergoes a single Delaunay crossing;by
(P\ A)U{q}, orits reversed copyp undergoes a single Delaunay crossingdwn (P \ A) U {w}.

Therefore, we can chargeo the corresponding triple ¢, v or p, w, u© which performs two Delaunay
crossings in a suitable subset®f Lemmd4.b together with the Clarkson-Shor argument intpdy the
overall number of such triples if? cannot exceed (kn?). Furthermore, each of them can be charged
at most once, becausgis the last time whepu disappears frondT(P) before being hit as above lgy
or w.

To conclude, we have established the following recurrerioeshe above quantitie§(n) and
TP (n):

T%n) = O (kK*N(n/k) + knB(n)) (14)

and

TP (n) = O (K*N(n/k) + kn*B(n)) . (15)

8 Proof of Theorem[5.3

Let (pg,r,I = [to,t1]) be a(p,r, k)-chargeable Delaunay crossing, andZdet [to,t3] be the corre-
sponding interval which certifies the, r, k)-chargeability of(pq,r, I'). In particular, at least counter-
clockwise(q, r)-crossings(ug, r, I,,) occur withinZ (in the sense that, C 7). In additon, the edggr
belongs toDT(P) whenZ begins or ends, and there is a subdgtC P of ¢ = O(1) points whose
removal restores the DelaunayhoodpefthroughoutZ.

By Lemmd4.6, each of the aboye, r)-crossinggug, r, I,,) occurs within one of the intervals™ =
(to,t3] or I~ = [ta,t1). In particular, we have, C (to,ts] if and only if r entersL;, after entering
L} : see Figuré120. Without loss of generality, we assume thatat[% /2] of these crossings occur

pq’
within (¢o, t3]. Again, Lemma 4J6 implies that each such crossing must etidn(it, ¢3).

(pq,r,T) =t
———————————— — bt
(uq7T7Iu)

Figure 120:The setup in the proof of Theordm b.3. The crossing r, I = [to, t1]) is (p, r, k)-chargeable, for
T = [ta,t3]. We fix a counterclockwisgg, r)-crossing(ug, r, I,,), which ends inty, t3] (so I, C (to,t3]). The
(g, r)-crossinggpq, r, I) and(ug, r, I,,) form a counterclockwise quadruple, p, u, r).
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Overview. To establish Theoref 5.3, we distribute the “weight”(pf;, r, I) over the above(k)
(g, r)-crossinggug, r, I,,) or, more precisely, over their respective arrangements (Recall that each
counterclockwiseq, r)-crossing(ug, r, I,,) is also a clockwisdw, r)-crossing.) In what follows, we
fix one of the first[k/2] counterclockwisgq, r)-crossings that ends after time (and beforets), and
assume that its respective potntloes not belong taly. Our charging strategy is to make each such
pay©(1/k) units of charge tdpq, r, I), so that(pq, r, I') receives a total of at leastunit. The charging
will be performed in one of two possible ways (depending enstiucture of4,,,- and on the motion of
D, q,u, andr).

We shall first try to chargéug, r, I,,) (rather than(pq,r, I)) to events withinA4,, using the stan-
dard techniques of Sectidn 5 (involving Lemfal4.5 and Thed2e?). In case of succesgq,r, I,,)
will be declared aneavyfor (pq,r, I) and will pay©(1/k) units of charge tdpgq,r, I). As we will
show, the overall number of such crossirigs, r, I,,), that will be declared as heavy fat least oneof
their neighboring(q, 7)-crossings, does not exce€dk?N (n/k) + kn?3(n)). Moreover, any crossing
(ugq, r, I,,) will be charged (as heavy) by at mdgt/2| neighboring(q, r)-crossingspg, r, I), due to the
[k/2]-proximity of the crossings$pq, r, I) and(uq, r, I,,), and will pay©(1/k) units of charge to each.
Therefore, at mosD (k2N (n/k) + kn?$(n)) units of charge will be transferred in this fashion.

If the above strategy fails, we shall resort to a more subfle bf charging. In that case, we shall
charge(pq, r, I') (again withinA4,,,) to © (k) (4k)-shallow co-circularities that involve,  andp (together
with some fourth point, not necessarijy, and each of these co-circularities will p&(1/k2) units of
charge to(pq, r, I). Moreover, we shall argue that eaghk)-shallow co-circularity can be charged in
this latter manner by at mog?(1) crossings(pg,r,I). Hence, at mosO (kN (n/k)) units will be
transferred in the second scheme. The theorem then follmas these two charging schemes.

Before proceeding with the above general strategy, we fixsala crossingug, r, I,,) and establish
several essential properties of it.

Figure 121: Proof of Propositioli_8]1. Assuming # w, the four pointsw, v, r,p are involved in a red-blue
co-circularity during the crossin@uw, r, J...,). Since the Delaunayhood pf is then violated byw andu, andu
is chosen outsidd, the setdy must containw.

Proposition 8.1. With the above assumptions, and wthy, , I,,) fixed, at most, + 1 clockwise(u, r)-
crossings(uw, r, Jy,,) occur within[to, t3].

Proof. Fix a clockwise(u, r)-crossing(uw, r, Jy., ), such thatw # p and.J,,, C [to, t3]. Refer to Figure
121.

By Lemma[4.4, the points, u, r, p are involved during/,,, in a co-circularity which is red-blue
with respect to the edgesv andpr. Hence, the Delaunayhood pf is violated byu andw either right
before or right after this co-circularity. Sind#&),t3] C Z, the setd, must include at least one of the
pointsu, w. Since, by assumption; ¢ Ay, we must havev € Ay, so there can be at mosg such
crossings. Adding the possible crossing, r, J,,;,) yields the asserted bound. O

Notice that the seP induces a counterclockwise quadruple= (g, p, u, ) whose respective inter-
val [, I,] is contained irto, t3]. The following proposition is stated in full generality aagplies taall
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counterclockwise quadruples (i.e., not necessarily ttes dimat arise in the course of the present proof of
Theorenl 5.B). It can be viewed simply as an extension of Leffa

Proposition 8.2. Let o, = (q,p,u,r) be a counterclockwise quadruple, with associated crossing
(pq,r,I) and (ug,r, I,). Suppose that the edge is hit by the pointp, and that this happens in the
interval afterr entersL;;, and before- entersL;,. Thenpr is also hit, during that same interval, by the
point w.

Remarks. (1) Clearly, a symmetric statement holds-if is hit by . Namely, in that case the edge
is hit by the pointp. As a matter of fact, the proof of Propositibn18.2 impliestttre two scenarios
coincide: The edgey is hit by p between the times whencrosse®q andugq if and only if rq is hit there
by u too.

(2) The reader might be tempted to use Lenima 4.5 in order tacdthe number of such crossings
(ug,r, I,), whose respective counterclockwise quadruplgs= (q,p,u,r) satisfy the conditions of
Propositio 8.2 (as was done, e.g., for clockwise Delaunagaiples in case (a) of Sectionl5.3). How-
ever, since we do not assume the edgéo be almost-Delaunay durind, I,,], the argument of Section
does not immediately apply to such instances.

Proof. Refer to Figurd_122. Notice that, according to Lenima 4.tan hitrqg (as prescribed in the
proposition) only during the gap between the intendandI,, of the two(q, r)-crossings ob,, (a gap
that we therefore assume to exist).

Blp, q, ] is empty +
+ ) r entersL
rentersL;, N w a
L N s - r
f 1 J LU
to ¢ th 1
phitsrg uleavesBlp, ¢, 7] N L, Blp,q,7] N Ly,

Figure 122:Proof of Propositiofi 8]2. Left: The summary of events that asumed to occur durind, 7,,].
Right: The point. leaves the ca@[p, q,r] N L, attime( € I, \ I = I,,.

Since the pointg, ¢, r can be collinear at most twice, the halfplabgq containsp whenr enters it
during I,,. Therefore, and according to Leminal4.4, the four points u, r are involved at some time
¢t e I, \ I = I, in a co-circularity, occurring before crossesuq; see Figur€ 122 (right). Right after
this co-circularity the Delaunayhood af; is violated byr € L, andp € qu. Note that at that very
moment the point: leaves the cag[p, ¢,7] N L,,.. Note also that, according to Lemimal4.4, the points
p,q,u,r are also involved in an earlier co-circularity which occatsome timelg € I \ I, = I (and
beforep hits rq, which occurs betweehand/,). We distinguish between the following two scenarios.
(i) If w liesin L, whenp hits rq (andr re-entersl,, ), thenu lies within the capB[p, ¢,7] N L, right
after this collinearity, as depicted in Figure 123 (topleRight after this event and befotg, u must
move from this cap to the disjoint cdp[p, ¢, 7] N L, (which it exits at time(}’) eithefq throughpr (and
throughrq) or through the boundary @8[p, ¢, r]. See Figur&123 (top-right). However, in the latter case
wwould first have to leave its present cap throadBip, ¢, r], so the point®, ¢, u, » would be co-circular
at least twice during(§, ¢j*), contradicting the assumption that any four points areicaar at most
three times. Hencey can enteB[p, ¢, 7] N L, only throughpr andrg, as claimed in the proposition.

(i) If w liesin L;q whenp hits rq, thenu lies within the discB|p, ¢, r| right before this event; see Figure
123 (bottom-left). By the definition of Delaunay crossing® discB|p, ¢, ] contains no points of’

“®Here we implicitly rely on the fact that the motion &p, ¢, r] is continuous after the second collinearityof;, .
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Blp,q,r| N L,,

Figure 123:Proof of Propositioi 8]2. Top: If; lies in L,, whenp hits rq (top-left), thenu can exit the cap
Blp,q,r] N L, only after crossingr (top-right). Bottom: The hypothetic scenario wherées in L;;q whenp
hitsrq. Right beforep hitsrq, the discB|p, ¢, r] containsu, which must have entered it afte{bottom-left). Right
after that collinearityy lies outsideB|p, ¢, r], so it will have to re-enteB|p, ¢, r] before(}* (bottom-right).

right after the end of,, as depicted in Figude_IP3 (bottom-right). HenaegntersB|p, ¢,r] at the end
of I and beforep hits rq. We also note that lies outsideB|p, ¢, r| right after the second collinearity of
p,q,T, SOu must enteB[p, ¢, r] (through its boundary) afterwards and befgfe(in order to exit it after
). Similar to the preceding scenario, we obtain four imgalssco-circularities op, ¢, u, , showing
that the present scenario cannot occur. O

Back to the proof of Theorem[5.3. With these preparations, we are finally ready to establistofdm
5.3. Recall that we have fixed a counterclockwiger)-crossing(uq,r, I,,) that ends in(¢4,¢3], and
which is among the firstk /2] such(q, r)-crossings to end aftef. Recall also that: does not belong to
the setA (of sizecy, appearing in the definition of thg, r, k)-chargeability of(pg, r, I)), and that the
(g, r)-crossings(pg, r, I) and (ug,r, I,,) form a (not necessarily consecutive) counterclockwige-)-
quadruples,, = (¢, p,u, ).

We first claim that- cannot cros®q again between the times when it enters the halfplei@gsand
qu (during the two respective Delaunay crossings). Indedugratise a counterclockwise variant of
Lemmal5.1 would imply that the edge- is hit by « during the intervall, I,]. As the latter interval
is contained into, t3], this is a clear contradiction to the assumed choice ofitside Ay. Similarly, p
cannot hitrq between the times whenenters the halfplanes, , L., for otherwise we would invoke
Propositior 8.2 to show that- is again hit byu during[I, I,,] C [to, t3], and reach the same contradiction
as above.

If the edgepr is hit during [t1, t3] by ¢ (which is the only remaining way in which, ¢, can be
collinear again), then the séP \ Ay) U {¢q} induces a Delaunay crossing @f by r, and a Delaunay
crossing ofpr by ¢g. A routine combination of Lemma 4.5 with the probabilistigament of Clarkson
and Shor shows that this scenario happens for at m@st) Delaunay crossing&g, 7, I).

It therefore suffices to focus on the scenarios whetmes not re-entef., after I and before it
entersLj[q (throughug, during I,,). As noted in Section 51 (see also the proof of Propositié), &he
four pointsg, p, u, r are involved in co-circularities at some timgse I\ I, and{}* € I,,\ I; see Figure
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[124. Moreover, these are the only co-circularitiep.af, u, r to occur duringl and1,,.

Figure 124:The two co-circularities of, p, u, r which occur at timesy € I\ I,, (left) and(}* € I,, \ I (right).

Consider the latter co-circularity, occurring at some tigtie= I, \ I, which is red-blue with respect
to the edgegr, ug. Sincer does not return td.,, p lies in L,,, whenr hits uq during I,,. (See Figure
(right).) Arguing as in Sectidn 4.1 (see, e.g., the padfLemmas$ 44 anld 4.6), we can conclude
that the Delaunayhood ¢f- is violated right after time&* by the points: andgq.

We first argue that the above co-circularity at tigfecannot be théast co-circularity ofg, p, u, r.
Indeed, otherwise Lemna3.1 (combined with the assumphiaiy does not hipr during|t;, t3]) would
imply that the edger is hit by v during the interval ¢}, t3). However, in that case would belong to
Ay, contrary to the choice af.

To conclude, we can assume, from now on, that the co-ciitulat time ¢}* is the middle co-
circularity of the pointsy, p, u, . Hence, the preceding co-circularity, which occurs at t{fes I \ I,
must be thdirst co-circularity of these four points.

To proceed, we distinguish between several topologicalates, treating each in turn. In each of
them,(pq, r, I') receive(1/k) units of charge (via alone, as reviewed in the beginning of this section).
Recall that, with(pqg, r, I) fixed, v and(ug, r, I,,) can be chosen i®(k) possible ways. Hence, with an
appropriate choice of the constants of proportionalitghe@, r, k)-chargeable crossinggq, r, I) will
eventually receive at least one unit of charge.

Case (a). The edgeru is never Delaunay during—oo, to]. In this case, we classify the crossing
(uq,r, I,,) asheavy(for (pq,r, I)), and we make it pa@(1/k) units of charge tdpq, r, I).

Notice that(ug, r, I,,) is one of the first, + 2 clockwise(u, r)-crossings (according to the standard
order provided by Lemnia4.6). Indeed, by Lenima 4.1, no sum$sargs begin before tintg, when the
edgeru is not even Delaunay. In addition, by Proposition 8.1, attmgs- 1 clockwise(u, r)-crossings
can begin aftet, and before the beginning 6f.q, r, I,,), as each of them has to occur within the interval
[to, t3]. In conclusion, the overall number of such crossitgsg r, I,,), that are classified as heavy for at
least one of their neighboring, »)-crossingspq, r, I) (upon falling into case (a)), is at mast(n?).

I, :ru € DT(P\ A) t3
|

T T e -
ru & DT(P)
0
————————— —--- R
try to t \T’U/ S DT(P)

Figure 125:Preparing for cases (b), (c), and (d): We pick the last timén (—oco, to] whenru is Delaunay and
apply Theoreri 212 over the intervhl, (containingcy).

Preparing for cases (b), (c) and (d)In each of the subsequent three cases, we assumeithppeared
in DT (P) also before (or at)y. Lett,, be the last time if{—oo, ty] whenru belongs toDT(P), and
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let 1,,, denote the subsequent interval that lasts ftgynto the beginning of,,. Note that/,., contains
I'\ I,,, and therefore includes the tingg of the first co-circularity of, ¢, u, r. Refer to Figuré 125.

As a preparation, we apply Theorém]2.24n,, over I,., (with the same constant parametgrand
keeping in mind thatu is Delaunay at both endpoints @f,), and then proceed depending on the
outcome.

Case (b).If one of the Conditions (i), (i) of Theorefn 2.2 is satisfiee(, .A,,, contains eithef)(k?) k-
shallow co-circularities or &-shallow collinearity, all of them occurring ify.,,), the crossinguq, r, I,,)
is again classified as heavy farg, , I), and pay®(1/k) units of charge to it.

We claim that the overall number of such crossirigs, r, I,,), that are classified as heavy for at
least one of their neighbofgq, r, I) (within the present case (b)), is at mo3tk2 N (n/k) + kn2B(k)).
To show this, we keep the crossifgy, r, I) fixed and chargéug, r, I,,) within A, either toQ(k?) k-
shallow co-circularities, or to &-shallow collinearity, which are assumed to occur durirgrigspective
interval 1,.,,.

We emphasize that the first endpoipj of 7., might depend on the choice @fq, r, I) from among
those crossings that expect to rece® /k) units from(ug, r, I,,). Furthermore, an event i, might
be charged by the sanfeq, r, I,,) in the context of severdb, r, k)-chargeable crossindgg, r, ) that
charge(uq, r, I,) (for various values op). Nevertheless, for each choice of an eventlin, and each
clockwise(u, rr)-crossing(ug, r, I,,), all such episodes cause only one charging of this evefiidy:, I).

We next show that each event i, is charged in the above manner by at mOgt) crossings
(ug,r, I,). Indeed, let* be the time of &-shallow event that we charge withi,.,,. Clearly, one can
guess the points andr of (ug,r, I,,) in at mostO(1) ways, as they are involved in the event. Thus, it
suffices to guess the third poipof (ug,r, I,,) (armed only with the knowledge of, » andw), which is
done as follows.

Let ¢ be a potential third point, and l€bq, r, I) be any (p, r, k)-chargeable crossing that receives
©(1/k) units of charge from the corresponding crossing, r, I,,) (after the latter crossing is classified
as heavy for(pg, r, I), by the rule of case (b)). By Lemma#.1, no clockwiser)-crossing(ug, r, I,,)
can begin during the respective intenda), N (—oo,tg] (Whenru is not even Delaunay). Moreover,
Propositior 8.1l implies that at mast+ 1 such(u, r)-crossings begin in the interval that lasts frégrio
the beginning of,, (which is contained itto, t3]). Hence,(uq, r, I,,) is among the first, + 2 clockwise
(u,r)-crossings to begin after, so knowingt*, r, andu enables us to gue$sq, r, I,,) in at mostO(1)
ways (irrespective of the choice pfand(pq, r, I)).

The number of-shallow co-circularities in4,.,,, over allr, u, is at mostO(k*N (n/k)). Similarly,
the number of-shallow collinearities i$)(kn?3(n)). Each such event is charged by oN1) (u,r)-
crossingqug, r, I,,) (which are declared as heavy in case (b), for at least oneeiof(th , k)-chargeable
neighbors(pg,r, I)). Furthermore, each such crossifgy, r, I,) charges eithef2(k?) k-shallow co-
circularities, or ak-shallow collinearity. All these considerations imply tlthe number of charging
crossinggugq, 7, I,) of this kind isO(k?> N (n/k) + kn?B(n)), as claimed.

Recall that, in the rest of the analysis, each of tHese)-crossings will pay9(1/k) units of charge
to O(k) “neighboring” crossingépg, r, I ), so these latter crossings will recieve in tatk? N (n/k) +
kn?3(n)) units of charge in this manner.

Preparing for cases (c) and (d).Now suppose that Condition (iii) of Theordm .2 holds. Tlsathe
Delaunayhood of-u can be restored througholfit, by removing a subsed of cardinality at mosBk.
To handle this more difficult scenario, we first establishftil®wing proposition.

Proposition 8.3. With the above assumptions, the edgds hit during /., by at least one of the points
p,q.

Proof. The proof proceeds (essentially) along the same lines aasie () of Section 5.3. (The main
difference is that the quadrupde, under consideration isounterclockwisg
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We first get rid of the instances whererossed.,, between the times when it enters the halfplanes
Ly, andL;, (in the respective intervalsandl,). Note that ifru is hit there byq then we are done (as
it can happen only during the gap betwedeand,,, which is obviously covered by¥.,,).

If rq is hit by u, then a symmetric version of Proposition]8.2 (see Remarko{lbwing the propo-
sition), in which we switch the roles gfandwu and reverse the direction of the time axis, implies fhat
hits ug between the times wherenters the halfplanes;;, and L}, (during the respective intervalsand
1,,). In particular, this latter collinearity af, r, p occurs aftet, > t,.,, and beforel,,, and, therefore, also
during I,.,. (As previously noted, this scenario is not only symmeithte one assumed in Proposition
[8.2, but, in fact, coincides with it.)

Finally, if  hits ug, then a counterclockwise and time-reversed variant of Laf®m similarly
implies thatrw is hit during I, by p; see Figuré 126 (left). (As in the previous case, this cednity
occurs durind/, I, between the times whenenters the halfplanes, andL;.)

Figure 126:Proof of Proposition 813: Arguing that is hit, during/,.,, by at least one g or ¢. Left: The edge
rq is hit by u between the times whencrosse®q andug. Hence, the asserted crossinguefby p follows from
Propositiod 8.2. Center and right: The pointemains inL,,, after enteringL;q and till the beginning of,. The
Delaunayhood ofu is violated, right beforé}, by p andg, so the asserted collinearity follows from Lemimal 3.1.

Let us then assume thatremains inL,,, between the times when it enters the halfplangsand
qu. In particular,u lies in L;q whenr enters this halfplane, so the Delaunayhood-ois violated, right
before time({, by the pointg andg, as depicted in Figurie_IP6 (center and right). By (a timesrsa
version of) Lemm@&-3]1, and since the co-circularity at tities thefirst co-circularity ofq, p, u, r, the
edgeru is hit during/,.,,, and before{, by at least one of the points ¢q. Hence, the proposition holds
also in this last remaining scenario. O

Case (c).If ru is hit by ¢ during I, then the tripleg, u, r defines two single Delaunay crossings within
the triangulatiorDT((P\ A)U{q}). In this case, the crossingg, r, I,,) is again declared as a heavy and
paysO(1/k) units of charge tdpg,r, I). A combination of Lemm&4]5 with the standard probabilistic
argument of Clarkson and Shor yields an upper bour@(@f?) on the overall number of such crossings
(uq,r, I,), that are declared as heavy for at least one choi¢gqf-, I) (upon falling into case (c)).

Case (d). We can, therefore, assume that is hit during I,,, by p, so the reduced séP \ A) U {p}
induces at least one Delaunay crossing-@fy p. In this case, we say that the crossing, r, I,,) is
light for (pq, r, I'), and distinguish between the following two subcases.

Case (d1).If at least one of the collinearities af r, p that occur durind,., is (4k)-shallow, we directly
charge(pg, r, I) to it. In other words, in this cas@yq, r, I) receivesl unit of charge via: alone, and it
does not have to charge any other neighbo(ing:)-crossings.

We next argue that eaqidk)-shallow collinearity, which occurs at some tintfe is charged in the
above manner by at mo8(1) (p, r, k)-chargeable crossing®q,r,I). Indeed, the pointg andr of
(pq,r,I) can be guessed i@(1) possible ways from among the three points involved in thegdth
collinearity, and their choice immediately determines tihied point « (which figures in the charging
scenario of case (d1)). The guessing;pivhich is the last unknown point dpg, r, I), is done exactly
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as in case (b), and it requires only the knowledge*of- andu. (As before, we use the property that
(ug,r, I,) is among the firsty + 2 such clockwisewu, r)-crossings to begin aftét.) To conclude, the
above charging accounts for at me#tkn?3(n)) crossingspg,, I).

are(4k)-deep.

We first argue that,.,, contains at least (4k)-shallow co-circularities, each occurring within the
previously defined interval,.,, and involvingp, u, » and some fourth point oP. Indeed, the open disc
Blu,r, p] contains no points oP \ A when the above crossing ofi by p begins, within the reduced
triangulationDT ((P\ A)U{p}). (If v undergoes more than one crossinglwithin DT ((P\ A)U{p}),
we consider the first such crossing.) Since the correspgnmbiiinearity ofu, r, p is not (4k)-shallow
(and the cardinality ofd is at most3k), the discB[u, r, p] “swallows” at least: points of P \ A before
ru is hit by p, which can enteB]u, r, p] only through its boundary. Since at the beginning of the gssc
Blu,r, p] contains only (at mosik) points of A, the firstk points thatB|u, r, p] “swallows” form with
u,r andp k co-circularities, all of which aré4k)-shallow.

Each of the abovéik)-shallow co-circularities pay®(1/k?) units of charge tdpq, r, I). Therefore,
(pg, r, I) still receives at leagd(1/k) units of charge vigug, r, I,,). To complete our analysis, we argue,
almost exactly as in the previous case (d1), that éd&h-shallow co-circularity, which occurs at some
fixed timet*, is charged in this manner by at ma@gt1) crossingspg, r, I). Indeed, the pointg,  and
u can be chosen in at moék(1) possible ways from among the four points that are co-circaldme
t*. Moreover, the knowledge af, » andu enables us to guess the last unknown pgiof (pg,r, I) in
at mostey + 2 possible ways, as was done in cases (b) and (d1).

To conclude, in case (d2) the crossifig, r, I) receives a tota®(1/k) units of charge fron® (k)
(4k)-shallow co-circularities withimd,.,, (each involvingp, r andu), where each co-circularity is charged
by at mostO(1) crossings.

Wrap up. To finish the proof of Theorerm 8.3, it remains to check thattladl (p, r, k)-chargeable
crossinggpg, r, I) (over all possibley, » € P) receive a total of at mo€? (k>N (n/k) + kn?8(n)) units
of charge from neighboring heawy, r)-crossings(uq, r, I,,) and from(4k)-shallow collinearities and
co-circularities in appropriate arrangemets,.

Indeed, the overall number of crossings, r, I,,) that are classified as heavy (upon falling into one
of the cases (a)—(c)), for at least one of their neighlépgsr, I), is at mostO (k2N (n/k) + kn%3(n)).
Moreover, a heavy crossinag, r, I,,) pays©(1/k) units of charge tdpg, r, I) only if these crossings
are[k/2]-consecutive (afq, r)-crossings), so it pays at masi1) units of charge in total.

Furthermore, we have shown that gay:)-shallow co-circularity or collinearity is charged, thigiu
the mechanism of case (d), y(1) crossings(pq,r,I). Namely, in case (d1) eachik)-shallow
collinearity paysl unit of charge to each of th@(1) possible charging crossingq,r, I), so the to-
tal charge paid by these collinearities(@$kn?3(n)). In contrast, in case (d2) ea¢hk)-shallow co-
circularity pays each time onig(1/k2) units of charge, so the total charge paid by these co-ciitiela
isO (k%k:‘lN(n/k)) = O (k*N(n/k)).

Finally, each(p, r, k)-chargeable crossingq, r, I) chargeg k/2] neighboring(q, r)-crossinggug, r, I,,).
Except for case (d1), whergq, r, I) receives via(ug,r, I,,) one unit of charge (from &k)-shallow
collinearity of u,r andp), (pq,r,I) recieves each tim&(1/k) units of charge, either directly from
(uq,r, I,,) (when that last crossing is heavy), or from certgih)-shallow events within the correspond-
ing arrangement,.,, (when(ug, r, I,) is light). In either case(pq, r, I) receives one at least one unit of
charge, and the proof of Theorém]5.3 is now complete.

Remark. It is instructive to compare the arguments used in casesn)d) of the above analysis.
Notice that both of them proceed by charging events thatraocd,.,, during Z,.,,.
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In case (b), each-shallow event under consideration is only known to invohandu (but not neces-
sarily p or g). This information appears to be sufficient for guessirand(uq, r, I,,), but not necessarily
p and(pq,r,I). Hence, we cannot directly charggg, r, I) to such events i4,,, so the charging is
performed indirectly, via the crossiriggq, r, I,,), which is then classified as heavy fgrg, r, I). (Note,
though, that the same crossifwy, r, I,,) can be heavy fof2(k) neighboring(q, r)-crossingspq, r, I).
This is compensated by the fact theand (ugq, r, I,,) can be chosen i (k) possible ways.)

In case (d), thé4k)-shallow events under consideration are more restricteldrarlve threefixed
pointsu,r, p. As in case (b), the knowledge r, and the time*, of each event, enables us to gugss
and(ug,r, I,,) in O(1) possible ways. However, since the painis now also involved in the event, we
can now guess it too i@ (1) possible ways. This enables direct charging of such eventsdyr, I).
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A On Co-circularities and Collinearities of Points Moving at Unit Speeds

Lemma A.1. Let P be a finite collection of points in the plane, each moving glsome straight line
at unit speed. Then (i) any four points Bfcan be co-circular at most three times, and (ii) no triple of
points can be collinear more than twice.

Proof. To see (i), we note that each co-circularity of a quadryple= (x;(t),y;(t)) | 1 < i < 4} (in
P) occurs at a time¢ when the following determinant is equal to zero (see, €18./13]):

1 1 1 1
e £al1) eat) £t
DB =| (1) us(1) valt)
Y

af(t) +yi(t) 23(t) +y3(t) a3(t) +y3(t) 2R(t) +yi(t)
Since eaclp; is moving along some line iR?, its respective locatiofw;(t), y;(t)) can be represented
as(x; + u;t, y; + vit), where(z;, y;) is the location ofy; at the timet = 0. Furthermore, since eagh
is moving at unit speed, we obtair + v? = 1.

138



Substitutingz;(t) = z; + u;t andy;(t) = y; + vt into the previous expression fdp(t), and
cancelling the equal terma? + v?)t? = ¢? in the bottom row of the determinant, we can replace the
equationD(t) = 0 with its cubic equivalent, with at mostree solutions

To see (i), we note that each collinearity of a trigle (¢),| 1 < < 3} occurs at a time when the
following determinant is equal to zero:

1 1 1
F(t)=| z1(t) x2(t) as(t) ‘
yi(t)  y2(t)  ys(t)
Substitutingz; (t) = x; + u;t andy;(t) = y; + vit, for 1 < i < 3, we get that the equatiafi(t) = 0
is quadratic (for any choice of; andv;), with at mosttwo solutions O

B The General Position Assumption

In our analysis we assume that no five points can become colaiirduring the motion, no four points
can become collinear, no two points can coincide, and no txeats of either a co-circularity of four
points or of collinearity of three points can occur simuétaasly. In addition, we assume that in every
co-circularity event involving some four pointsb, p, ¢ € P, each of the points, say, crosses the cir-
cumcircle of the other three poinisp, ¢; that is, it lies outside the circle right before the everd arside
right afterwards, or vice versa. Similarly, we assume thatiery collinearity event involving some triple
of points of P, each of the points crosses the line through the remainingtints. Degeneracies in the
point trajectories of the above kinds can be handled, batbrihmically and combinatorially, by any of
the standard symbolic perturbation techniques, such adadion of simplicity [13]; for combinatorial
purposes, a sufficiently small generic perturbation of tlaionms will get rid of any such degeneracy,
without decreasing the number of topological changes inlitgram.

C Proof of Theorem[2.2

In this section we establish Theorédm]2.2. Without loss ofegality, we assume that the edge is
Delaunay at time. (If pq is Delaunay at time; then we can argue in a fully symmetrical fashion.)

Consider the portion of the red-blue arrangement assaocveith pq within the time intervalty, ¢1).
As above, refer to the parametric plane in which this arravegd is represented as theplane, where
is the time axis ang measures signed distances frég). We define theed (resp. blue) levelof a point
x = (t, p) in this parametri®? as the number of red (resp., blue) functions that lie bel@sy(r, above)
x (in the p-direction). See Figurle 1R7. It is easily checked that thellef a co-circularity event at time
t, with circumcenter at distangefrom L,,, is the sum of the red and the blue levelgoh).

We distinguish between the following (possibly overlagpinases:

(a) p andq participate in a&-shallow collinearity with a third point at some moment during. That is,
Condition (i) is satisfied. (Note that here we do not care et crossegyq or L, \ pq.)

Suppose that this does not happen. That is, each time whentarpo P changes its color from red
to blue or vice versa, the number of points on each side,pfs larger thark. Hence, either the number
of points on each side df,, is always larger thak (during (¢9,t1)), or the sets of red and blue points
remain fixed throughout, ¢1) (no crossing takes place), and the size of one of them is at/mdsore
concretely, either one of the sets contains fewer thaoints at the start of, and then no crossing can
ever occur during, or both sets contain at ledspoints at the start of, and this property is maintained
during I, by assumption. In the latter case Condition (iii) triyaliolds, since removal of all points in
PN L, orin PN L, guarantees thaiq is a hull edge throughout, 1), and thus belongs to the
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Figure 127:Left: The pointz = (¢, p) lies below three blue functions and above two red functisodts blue and
red levels arg and2, respectively. Right: The circumdisc centered at (sigmastancep from L,, and touching
p andq at timet contains the three corresponding blue points and two red$oi

Delaunay triangulation. Hence, we may assume that the nuaflved points, and the number of blue
points, are always both larger tharuring (¢, t1).

Blp,q,u]

Figure 128:Left: Case (b). The dis®* contains at leasit /3] = 5 red points, and at lea$t:/3] blue points.
If  lies at red level at mogt: /3], it belongs toD*. Hence, the circumdisB|p, ¢, | contains at leastk /3] blue
points, so the blue level of! is at least[k/3]. Right: Case (c). The setup right after tirtfewvhenu crosses
L4 \ pg. Blp, g, u] contains at least red points and no blue points.

(b) At some moment, < t* < t; there is a disd>* that touche® andq, and contains at least: /3]
red points and at least: /3| blue points. In particular, for each of thé&/3| shallowest red functions
f;F at timet*, its respective red point belongs toD*. and similarly for the[k/3] shallowest blue
functions. See Figure_1PR8 (left). Before we use the exigtesfcD* we first conduct the following
structural analysis.

Let f,© be a red function which is defined at timg and whose red level is then at mast/6 .
(Recall that, at time, the blue level of any red function issincepq belongs toDT(P).) We claim
that eitherf," is defined and continuous throughdug, ¢1) and its red level is always at mogt/3], or
r participates in at least: /6| red-red and/or red-blue co-circularities, all of which &kg¢3]-shallow.

Indeed, the circumdis®|p, ¢, r| contains at mostk /6] red points (and no blue points) at timg
and it moves continuously as long agemains inL;q. By the time at which either (the graph of)"
reaches red levélk/3] or r hits L,,, this disc “swallows” either at least: /6] red points (either in the
former case or in the latter case whermrossesL,, \ pq) or at least[k/6] blue points (in the latter
case when crosse%q). (Recall that, by assumption, the number of red points hachtumber of blue
points is always larger thanduring /.) We thus obtain at lea$t: /6] [k/3]-shallow red-red or red-blue
co-circularities involvingp, ¢, r, and a fourth (red or blue) point.

To recap, if at leastk/12| red functions, which at time, are among thgk/6] shallowest red

140



functions, reach red level at legddt/3] + 1, or have a discontinuity at = —oo or +oc (at a crossing of
Ly, by the corresponding point), then we encouri?ék?) co-circularities (involvingr andg) which are
k-shallow, so Condition (ii) holds.

Hence, we may assume that at lefist12] red functionsf," that are among thék /6] shallowest
red functions at timey, are defined througholt, t1), and their red level always remains at mpst3].
Fix any such red functiorf,". Clearly, the red point that definesf,” belongs toD* at timet*, and the
circumdiscB|p, ¢,r| contains at leasfk/3] blue points. See Figufe” 128 (left). This implies that the
blue level of f;" reacheqd%/3] so (since the blue level wakat timet,) r participates in at leagt: /6|
[k/3]-shallow co-circularities duringty, t*). Repeating this argument for each of the remairjibgl2]
such red functions, we conclude that Condition (ii) is agsitisfied.

(c) Suppose that neither of the two cases (a), (b) holds.Agfresp.,Ap) be the subset of all points
whose red (resp., blue) functiorf§ (resp.,f,) appear at red (resp., blue) level at mpst3] at some
moment duringto, t1).

Since the situation in (b) does not occur, we can restore #i@bayhood ofq, throughout the entire
interval (to, t1), by removing all points iMd U Ap. To see this, suppose thag is not Delaunay (in
DT(P\ (ArUAp))) at some tim&, < t* < ¢;. This is witnessed by a digo* whose boundary passes
throughp and¢ and which contains a red point¢ Ar and a blue poinb ¢ Ap. Since the red level
of f,F is greater tharjk/3] at time¢*, D* must also contain thék /3] red points corresponding to the
[k/3] shallowest red functions at tinté, and, symmetrically, also thig:/3] blue points corresponding
to the[k/3] shallowest blue functions at tim&. But then the disd* satisfies the conditions of Case
(b), contrary to assumption.

Let A%, (resp.,A%) be the set of: points whose red (resp., blue) functions are shallowestnatt.

It remains to consider the case where at ldagbints« in Ap U Ap belong to neither ofd%,, A%, for
otherwise Condition (iii) is trivially satisfied, with a reswed set of size at most. Fix such a point
u and consider the first tim& € (o, t1) when its red functionf,” has red level at mogtt/3], or its
blue functionf,, has blue level at mogtt/3]. Without loss of generality, suppose that at titfie¢he
red functionf," has red level at most:/3]. We claim thatu does not crosgq during (o, t*]. Indeed,

if there were such a crossing frofy,, to L;q then the blue functiory,” would tend tooco right before
the crossing, and its blue level would then(even before™, contrary to the choice aof. Similarly,

if the crossing were fronL;q to L, then the red level of,” would be0 just before the crossing, again
contradicting the choice df.

First, assume that does not crosg.,,, during (o, t*), so the graph of," is continuous during this
time interval. Hence, the motion of the circumdiBgp, ¢, u] is also continuous. Since ¢ A%, at
time ¢y the circumdiscB|p, ¢, u] contains at least red points and no blue points. At tim&, B(p, q, u]
contains| /3] red points and fewer thafk /3] blue points (otherwise Case (b) would occur). Hence,
we encounter at least:/3| k-shallow co-circularities duringt,t*), each involvingp, ¢,u and some
other point ofP.

Now, suppose: crossesL,, \ pq during (to,t*), and consider the last timé when this happens.
We can use exactly the same argument as in the “continuoss”lma now starting fromf. Indeed,f,"
is continuous duringt’, t*] and, right after’, the circumdiscB|p, ¢, ] contains (all the red points and
thus) at leask red points, and no blue points. See Fidurel128 (right).

Repeating this argument for all such pointss Ag U Ap \ (A% U A%), we getQ(k?) k-shallow
co-circularities which occur durin@, ¢;) and involvep andq. Hence, Condition (i) is again satisfied.
O
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D The number of double Delaunay crossings

In this subsection we show that any $2of n points moving as above iR? admits at mos© (n?) double
Delaunay crossings. Since double Delaunay crossings apgossible if no ordered triple of points can
be collinear more than once (i.e., if for apyg, » the third pointr can hit the segmenity at most once),
we may assume throughout this subsection that no tripleioftsm P can be collinear more than twice.

Without loss of generality, we only bound the number of suchlde Delaunay crossindgq, r, I)
whose point- crosses throughg from L, to L;q during the first collinearity op, ¢, » (and then returns
back toL,, during the second collinearity). Indeed, if the crossipg, r, I) does not satisfy the above
condition then they are satisfied loyp, , ). Our goal is to show that (on average) a poiraf P is
involved in only few Delaunay crossings of edges that sha@esame endpoint

The following theorem provides certain structural projesrof two double crossings that share the

same crossing point and one endpoinip] of the crossed edges.

Figure 129:The trace ofr according to Theorefn D.1. The four pointsy, a, r are involved duringl in two
co-circularities, which are red-blue with respect to thgesghq andra.

Theorem D.1. Let(pg,r, I) and(pa,r, J) be two double Delaunay crossingsyeédges (that is, edges
incident top) pq, pa by the same point. Assume that the first collinearity of ¢, » occurs before the
first collinearity ofp, a, r. Then the following properties hold (with the conventiossuaned above):

(i) alies in L}, at both times when hits pq.

(i) g liesin L, at both times when hits pa.

(iii) The pointsp, ¢, a, r are involved during \ .J in two co-circularities, both of them red-blue with
respect tgpg and occurring when € L, anda € L;q.

(iv) One of the two co-circularities in (iii) occurs beforbd beginning of/; right before it the
Delaunayhood ofa is violated byp andq. A symmetric such co-circularity occurs after the end/of
right after it the Delaunayhood ofu is again violated by andq. In particular, J C I.

The schematic description of the motionsofluring 7, according to the above theorem, is depicted
in Figure[132 (right). Clearly, a suitable variant of Thenif®.] exists also for similar pairs of double
crossings of incoming-edgesyp, ap that are orientetbwardsp (again, by the same poinj.

Proof. We first establish Part (ii) of the theorem. The crucial obs#on is that the first collinearity
of p,a,r occurs whenr lies in L;q (i.e., during the interval between the two collinearitiéspog, ).
Indeed, otherwise the poiatmust lie in L;;, = L. at both collinearities op, a,r, andq must lie in
L;a at both collinearities op, a, r. We shall prove that, in this hypothetical setup, the pointg a, r
are involved in two co-circularities durinjwhich are red-blue with respect tg, and in a symmetric
pair of co-circularities during/, both of them red-blue with respect pa. That will clearly contradict
the assumption that any four points can be co-circular at those times.

Indeed, in the above situation the pointies in the capBlp,q,r] N L;q shortly before the first
collinearity ofp, ¢, r, and shortly after their second collinearity. Sing@, ¢, | contains no points at the
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beginning of/, the pointa must have entered this cap before the first collinearity,qf ». Moreover,

a can enter this cap only through the boundanBdp, ¢, r|, for otherwise it would hipg during 7, and

no point of P \ {p, ¢,r} can hitpg during its Delaunay crossing by This argument gives us the first
of the promised two red-blue co-circularities that;, a, r define with respect tpg. The second such
co-circularity is symmetric to the first one, and occurs whéeaves the ca@|p, ¢, r] N L;q (and after

r returns toL, throughpg). See Figuré 130 (left). The other pair of co-circularitiesth red-blue with
respect topa, is obtained by applying a fully symmetric argument to thp &ip, a, ] N L;a and the
point . See Figuré 130 (center). (For example, we can switch thes milg and a by reversing the
direction of the time axis.) Finally, all four co-circuléigs are distinct, because the same co-circularity
cannot be red-blue with respect to two edgespa with a common endpoint.

Figure 130:Proof of Theorerh D]1. Left and center: The hypothetical eeiserer first hitspa within L, after

rq’
twice hitting pg. The pointsp, ¢, a, r are involved in a pair of co-circularities durinlg and in a symmetric pair

of co-circularities during/. Right: The hypothetical traces ofif it entersL;;q beforer (and before the second
collinearity ofp, a, r occurs).

Hence, we can assume, from now on, that the first time whiits pa occurs when both points lie
in L} . To complete the proof of Part (ii), it suffices to show tha fhointsa andr still remain in L},
during the second collinearity of the triplea,r. Indeed, otherwise must lie inL,, whenr hits pq
for the second time, because, untill it crosgasagain,a lies in L, which coincides withL;q at the
second crossing qfg by r. See Figur€ 130 (right). That is, must crossL,,, from L;q to L,, while
r still remains inL;q, and beforer hits the edge®q, pa for the second time. In particular, the above
collinearity ofp, g, a must occur during N J. Clearly, the pointz can potentially crosg.,, in three
ways. If a crossesL,,, within pq, this contradicts the definition af as the interval of the Delaunay
crossing ofpg by r. If a hits L, \ pg within the ray emanating fror then (at that very moment) hits
pa, which contradicts the definition of. Finally, a cannot hitL,, \ pq within the outer ray emanating
from p before an additional (and forbidden) collinearityjot:, r takes place. This establishes part (ii),
and the analysis given above immediately implies part (9. tw

Part (i) follows immediately from Part (ii), becausdies in L]‘; during both collinearities of, q, r.

Parts (i) and (iv) follow from Parts (i) and (ii). Indeedkcall that the open disB|p, ¢, r| contains no
points of P at the beginning of. Right beforer hits pq for the first time, the right cag[p, ¢, ] N L}, of
this disc containg. Clearly,a first enters this cap through the corresponding portiof®fp, ¢, 7]. This
determines the first red-blue co-circularity with respegidg, right before which the Delaunayhood-of
is violated byp andq. The symmetric such co-circularity occurs durihgzhen the point: leaves the cap
Blp,q,r]N L;q, after the second collinearity of ¢, ». Clearly, the Delaunayhood of; is violated right
after that co-circularity by andq. By Lemmd4.1, neither of these co-circularities can oceuing) ./,
becausea remains Delaunay throughout Hence, the former one occurs, according to the previously
established Parts (i) and (i), befoye and the latter one occurs aftér This establishes parts (iii) and
(iv), and completes the proof. O
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Theorem D.2. Let P be a set of, points, whose motion iR? respects the following conventions: (i)
any four points can be co-circular at most three times, amdn@ three points can be collinear more
than twice. Ther admits at mosO(n?) double Delaunay crossings.

Proof. We fix a pair of point, » in P. Our strategy is to show that, for an average such pair, ibete
most a constant number of double Delaunay crossingsediges by. Indeed, letpqy, 7, I1), (pqa, 7, I2),
..., (pak,r, I,) be the complete list of such double Delaunay crossingseafges by, and assume that
r hits the edgepqi, pgs, . . . , g, for the first time, in this same order. By TheoremID.1, thpeetive
intervals of the above double crossings form a nested sequem I, O ... D ;.

Figure 131:Proof of Theorerh DJ2. Left: If the double crossifgq;,r, I’) ends before the end df_, then the
second co-circularity of;, p, p’, r occurs duringl;_;. Right: If the double crossin@’q;,r, I’) ends aftetl;_,
then the second co-circularity pfg;_1, g;, » occurs during/’.

Clearly, the first crossindpq,r, I;) can be uniquely charged to the pairr. Now assume that
kE > 1. We show that each of the additional double Delaunay crgssipy;,,I;), for 2 < j < k,
can be uniquely charged to the corresponding @air. Specifically, we show that no double Delaunay
crossing of incomingy;-edgesy’q; (that is, p-edges that are oriented towangs by r, can end after;.

In other words(pq;, r, I;) is the “last” such double crossing.

Indeed, fix2 < j < k as above. We first show that no double crossing of the fmm-,r, r)
can end during the interval which lasts from the end;ahnd to the end of ;_;. Indeed, suppose to the
contrary that such a situation occurs, and apply a suitabianm of Theorerh D]1 to the double Delaunay
crossings of;-edgesp’q; andpg; by r. By Part (iv) of that theoremi; is contained inl’, and the four
pointsg;,p,p’, r are involved in a red-blue co-circularity with respeciptg; during the second portion
of I\ I;. See Figuré131 (left). Right after that co-circularitye thelaunayhood gfr is violated byg;
andp’. If I" ends before the end &f_,, the above co-circularity must occur durifg | (asl;— D I;),
which contradicts Lemna4.1 (applied to the crossinggf | by r).

It remains to show that no double Delaunay crossisig;, r, I’), as above, can end after the end of
I;_1. Indeed, by Part (iv) of Theorem D.1 (now applied to the deubrbssings of the-edgespg;_;
and ofpg;, by r), the pointsp, ¢;_1, g;,r are involved in a co-circularity during the second portidn o
I;_1\ I;. Right after this co-circularity, the Delaunayhoody¢f is violated byp andg;_,. If the interval
I’ (which containg/;) ends after the end df_;, the aforementioned co-circularity must occur durifig
see Figur@ 131 (right). However, this is another contramticio Lemma 4.1l (now applied to the crossing
of p’q; by r, which takes place during/).

We have shown that every double Delaunay crossing can beelgigharged to an (ordered) pair of
points of P, so their number i®)(n?), as asserted. O
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E Proof of Lemmal4.2

Assume with no loss of generality thaties in L, . Clearly, it is sufficient to establish only the Delau-
nayhood of the edgey; the Delaunayhood gifr follows in a fully symmetrical manner.

The crucial observation is that the c&p, ¢, r] N L,, hasQ-empty interior (or, elsepg would be
Delaunay also i) U {r}). That s, in terms of the static red-blue arrangemenigothe corresponding
blue functionf," of r coincides with the blue upper envelope .

Assume for a contradiction thag is not Delaunay irQ U {r}. We now consider the static red-blue
arrangement ofq. Letz € Q N L, be the point whose functiofi,” (all functions in this argument
are from the red-blue arrangementrg) coincides with the red lower enveloge™ (again, with respect
to rg). In particular, we havef,t < ff (as is easily checkedy € L, whenr € L, ). Clearly,

x cannot be equal tp, for then the discB|p, ¢, r] would have@-empty interior. Indeed, we argued
that B[p, ¢,7] N L, is Q-empty, and a similar argument shows th#p, ¢, ] N Lij would also have to
be empty ifz andp coincide, from which the emptiness of the whole interiotdafs. It follows that
pq is Delaunay inQ U {r}, contradicting the definition of a Delaunay crossing. Sepife[132 (left).
Moreover,z cannot lie inL,,_, for it would then have to lie ilB[p, ¢, 7] N L, (because’," < f,7), which

is impossible since this portion @p, ¢, ] is Q-empty. Thusp € L.

Figure 132:Left: Proof of Lemm&4.]2.

Sincerq is not Delaunay, the dis® = B|g,r,x] contains another poinj € @ N L4, which is
easily seento lie i, and inL_,. We can move3 so that its boundary continues to touclandgq and
its portion within L, expands, until its boundary touchgsq andz, and its interior containg. This

implies thatpg does not belong tdT(Q), which contradicts the definition of a Delaunay crossing.
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