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Fourier sparsity, spectral norm, and the Log-rank

conjecture

Hing Yin Tsang∗ Chung Hoi Wong† Ning Xie‡ Shengyu Zhang§

Abstract

We study Boolean functions with sparse Fourier coefficients or small spectral norm, and
their applications to the Log-rank Conjecture for XOR functions f(x⊕ y) — a fairly large class
of functions including well studied ones such as Equality and Hamming Distance. The rank
of the communication matrix Mf for such functions is exactly the Fourier sparsity of f . Let
d = deg2(f) be the F2-degree of f and D

CC(f ◦ ⊕) stand for the deterministic communication
complexity for f(x⊕ y). We show that

1. D
CC(f ◦ ⊕) = O(2d

2/2 logd−2 ‖f̂‖1). In particular, the Log-rank conjecture holds for XOR
functions with constant F2-degree.

2. D
CC(f ◦⊕) = O(d‖f̂‖1) = O(

√
rank(Mf ) log rank(Mf )). This improves the (trivial) linear

bound by nearly a quadratic factor.

We obtain our results through a degree-reduction protocol based on a variant of polynomial rank,
and actually conjecture that the communication cost of our protocol is at most logO(1)

rank(Mf).
The above bounds are obtained from different analysis for the number of parity queries required
to reduce f ’s F2-degree. Our bounds also hold for the parity decision tree complexity of f , a
measure that is no less than the communication complexity.

Along the way we also prove several structural results about Boolean functions with small
Fourier sparsity ‖f̂‖0 or spectral norm ‖f̂‖1, which could be of independent interest. For
functions f with constant F2-degree, we show that: 1) f can be written as the summation of
quasi-polynomially many indicator functions of subspaces with ±-signs, improving the previous
doubly exponential upper bound by Green and Sanders; 2) being sparse in Fourier domain is
polynomially equivalent to having a small parity decision tree complexity; and 3) f depends

only on polylog‖f̂‖1 linear functions of input variables. For functions f with small spectral

norm, we show that: 1) there is an affine subspace of co-dimension O(‖f̂‖1) on which f(x) is a

constant, and 2) there is a parity decision tree of depth O(‖f̂‖1 log ‖f̂‖0).
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1 Introduction

Fourier analysis of Boolean functions. Fourier analysis has been widely used in theoretical
computer science to study Boolean functions with applications in PCP, property testing, learning,
circuit complexity, coding theory, social choice theory and many more; see [O’D12] for a compre-
hensive survey. The Fourier coefficients of a Boolean function measure the function’s correlations
with parity functions; the distribution as well as various norms of Fourier spectrum have been found
to be related to many complexity measures of the function. However, another natural measure,
Fourier sparsity – i.e. the number of non-zero Fourier coefficients – has been much less studied.
It seems to be of fundamental interest to understand properties of functions that are Boolean in
the function domain and, at the same time, sparse in the Fourier domain. In particular, what
Boolean functions have sparse Fourier spectra? Being sparse in the Fourier domain should imply
that the function is simple, but in which aspects? Gopalan et al. [GOS+11] studied the problem of
testing Fourier sparsity and low-dimensionality and revealed several interesting structural results
for Boolean functions having or close to having sparse Fourier spectra. In a related setting, Green
and Sanders [GS08] showed that Boolean functions with a small spectral norm (i.e. the ℓ1-norm
of the Fourier spectrum) can be decomposed into a small number of signed indicator functions of
subspaces. However, the number of subspaces in their bound is doubly exponential in terms of the
function’s spectral norm, thus makes their result hard to apply in many computer science related
problems.

The Log-rank Conjecture in communication complexity. In a different vein, Fourier spar-
sity also naturally arises in the study of Log-rank Conjecture in communication complexity. Com-
munication complexity quantifies the minimum amount of communication needed for computation
on inputs distributed to different parties [Yao79, KN97]. In a standard scenario, two parties Alice
and Bob each hold an input x and y, respectively, and they desire to compute a function f on input
(x, y) by as little communication as possible. Apart from its own interest as a question about dis-
tributed computation, communication complexity has also found numerous applications in proving
lower bounds in complexity theory, as well as connections to linear algebra, graph theory, etc.

Of particular interest are lower bounds of communication complexity, and one of the most widely
used methods is based on the rank of the communication matrix Mf = [f(x, y)]x,y; see [LS09] for
an extensive survey on classical and quantum lower bounds proved by rank and its variations (such
as the approximate rank and its equivalence γ2-norm). Since it was shown 30 years ago [MS82] that
log rank(Mf ) is a lower bound of the deterministic communication complexity D

CC(f), the tightness
of the lower bound has long been an important open question. The Log-rank Conjecture, proposed
by Lovász and Saks [LS88], asserts that the lower bound is polynomially tight for all total Boolean
functions f – namely DCC(f) ≤ logc rank(Mf ) for some absolute constant c. As one of the most
important problems in communication complexity, the conjecture links communication complexity
– a combinatorially defined quantity, to matrix rank – a much better understood measure in linear
algebra. Should the conjecture hold, understanding the communication complexity is more or less
reduced to a usually much easier task of calculating matrix ranks. The conjecture is also known to
be equivalent to many other conjectures [LS88, Lov90, Val04, ASTS+03].

Despite its importance, Log-rank Conjecture is also notoriously hard to attack. Nisan and
Wigderson [NW95] showed that to prove the conjecture, it is sufficient to show a seemingly weaker
statement about the existence of a large monochromatic rectangle. In the same paper, they also
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exhibited an example f for which log rank(Mf ) = O(DCC(f)α) where α = log3 2 = 0.63..., later
improved by Kushilevitz to α = log6 3 = 0.61... (also in [NW95]). The best upper bound for
the D

CC(f) in terms of rank is DCC(f) ≤ (log 4
3)rank(Mf ) [KL96, Kot97]. Recently, assuming the

Polynomial Freiman-Ruzsa conjecture in additive combinatorics, Ben-Sasson, Lovett and Ron-Zewi
gave in [BSLRZ12] a better upper bound D(f) ≤ O(rank(Mf )/ log rank(Mf )).

Communication complexity of XOR functions. In view of the difficulty of the Log-rank
Conjecture in its full generality, Shi and Zhang [ZS10] initiated the study of communication com-
plexity of a special class of functions called XOR functions.

Definition 1. We say F (x, y) : {0, 1}n × {0, 1}n → {0, 1} is an XOR function if there exists an
f : {0, 1}n → {0, 1} such that for all x and y in {0, 1}n, F (x, y) = f(x⊕ y), where ⊕ is the bit-wise
XOR. Denote F by f ◦ ⊕.

XOR functions include important examples such as Equality and Hamming Distance, and the
communication complexity of XOR functions has recently drawn an increasing amount of attention
[ZS09, ZS10, LZ10, MO10, LLZ11, SW12, LZ13]. In general, the additional symmetry in the com-
munication matrix MF should make Log-rank Conjecture easier for XOR functions. In particular,
a very nice feature of XOR functions is that the rank of the communication matrix MF is exactly
the Fourier sparsity of f , the number of nonzero Fourier coefficients f .

Proposition 1 ([BC99]). For XOR functions F (x, y) = f(x⊕ y), it holds that rank(MF ) = ‖f̂‖0.

Therefore the Log-rank Conjecture for XOR functions is equivalent to the question that whether
every Fourier sparse1 function f admits an efficient communication protocol to compute f(x⊕ y),
or more specifically, whether DCC(f ◦ ⊕) ≤ logO(1) ‖f̂‖0 holds for every Boolean function f?

However, the Log-rank conjecture seems still very difficult to study even for this special class
of functions. The only previously known results are that the Log-rank Conjecture for XOR func-
tions holds for all symmetric functions [ZS09], monotone functions and linear threshold functions
(LTFs) [MO10], and AC0 functions; see Section 1.2 for more details. One nice approach proposed
in [ZS10] is to first design an efficient parity decision tree (PDT) for computing f , and then to sim-
ulate it by a communication protocol. Parity decision trees allow querying the parity of any subset
of input variables (instead of just one input variable as in usual decision trees). A communication
protocol can exchange two bits ℓ(x) and ℓ(y) (here ℓ(·) is an arbitrary linear function) to simulate
one query ℓ(x ⊕ y) in a PDT, thus DCC(f ◦ ⊕) is at most twice of D⊕(f), the parity decision tree
complexity of f . It is therefore sufficient to show that D⊕(f) ≤ logO(1) ‖f̂‖0 for all f to prove the
Log-rank Conjecture for XOR functions Parity decision tree complexity is an interesting complex-
ity on its own, with connections to learning [KM93] and other parity complexity measures such as
parity certificate complexity and parity block sensitivity [ZS10]. This approach is also appealing
for the purpose of understanding Boolean functions with sparse Fourier spectra. It is not hard to
see that small D⊕(f) implies Fourier sparsity; now if D⊕(f) ≤ logO(1) ‖f̂‖0 is true, then functions
with small Fourier sparsity also have short parity decision trees. Thus the elusive property of being
Fourier sparse is roughly equivalent to the combinatorial and computational property of having
small PDT.

1Note that if the Fourier sparsity of f is large, say 2n
Ω(1)

, then Log-rank Conjecture is vacuously true for f , as
the communication complexity of any function is at most O(n).
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Back to the Log-rank conjecture, though upper bounds for D⊕(f) translate to efficient protocols
for D

CC(f ◦ ⊕), the task of designing efficient PDT algorithms itself does not seem to be an easy
task. To see this, let us examine the effect of parity queries. Each query “t · x =?” basically
generates two subfunctions through restriction, and its effect on the Fourier domain can be shown
to be f̂b(s) = f̂(s) + (−1)bf̂(s + t), where fb is the subfunction obtained from restricting f on
the half space {x : t · x = b}. Thus the process is like to fold the spectrum of f along the line t,
and we hope that the folding has many “collisions” in nonzero Fourier coefficients, namely many
s ∈ supp(f̂), with s + t ∈ supp(f̂) as well. In general, small D⊕(f) implies that many Fourier
coefficients2 are “well aligned” with respect to a subspace V with a small co-dimension, so that
querying basis of V ⊥ make those Fourier coefficients collide. But the question is—Where is the
subspace?

Note that D⊕(f) is invariant under change of input basis, thus one tempting way to upper
bound D⊕(f) is to first rotate input basis, and then (under the new basis) use the well-known
fact that the standard decision tree complexity D(f) is at most O(deg(f)4), where the deg(f) is
the (Fourier) degree (maxs:f̂(s)6=0 |s|) of f [BdW02]. Thus if deg(f) = logO(1) ‖f̂‖0, then D⊕(f) ≤
D(f) ≤ logO(1) ‖f̂‖0. However, one should also note that this approach cannot handle all the Fourier
sparse functions because, as shown in [ZS10], there exists a functions f such that D⊕(f) ≤ log2 n+4
but D(f) ≥ n/4, the latter holds even under an arbitrary basis change (i.e. minLD(Lf) ≥ n/4
where Lf(x) = f(Lx)).

1.1 Our approach, ideas, and results

Result 1: Main protocol and general conjecture. In previous studies of parity decision tree,
one needs to upper bound the number of queries for all possible execution paths. In this paper,
we show that it suffices to prove the existence of one short path! To put this into context, we need
the concept of polynomial rank. View a Boolean function f : {0, 1}n → {0, 1} as a polynomial in
F2[x1, ..., xn]. Call the degree of this polynomial the F2-degree, denoted as deg2(f). The polynomial
rank of f is the minimum number r s.t. f can be written as

f = ℓ1f1 + · · ·+ ℓrfr + f0, (1)

where each ℓi is a linear function in x and each fi is a function of F2-degree at most deg2(f)− 1.
Now we will describe a simple PDT algorithm: query all ℓi(x) and get answers ai, and we then face
a new function f ′ =

∑r
i=1 aifi + f0’s. Recurse on this function. Note that from f to f ′, the F2-

degree is reduced by at least 1, and one can also show that the Fourier sparsity of f ′ is also at most
that of f . Finally, it is known that d ≤ log ‖f̂‖0. Putting these nice properties together, we know
that as long as the polynomial rank of an arbitrary function f is upper bounded by logO(1) ‖f̂‖0,
so is D⊕(f).

Conjecture 2. For all f : {0, 1}n → {0, 1}, we have rank(f) = O(logc(‖f̂‖0)) for some c = O(1).

Theorem 3. If Conjecture 2 is true, then

1. All Boolean functions with small ‖f̂‖0 have small parity decision tree complexity as well:
D⊕(f) = O(logc+1(‖f̂‖0)).

2. The Log-rank Conjecture is true for all XOR functions: D
CC(f ◦ ⊕) = O(2 logc+1(‖f̂‖0)).

2Technically, we mean characters with the corresponding Fourier coefficients being nonzero.
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Result 2: low degree polynomials. Next we focus on upper bounding the polynomial rank,
starting from small degrees. For degree-2 polynomials, the classic theorem by Dickson implies that
rank(f) = O(log ‖f̂‖0). For degree-3 polynomials, Haramaty and Shpilka proved in [HS10] that
rank(f) = O(log2(1/‖f‖U3)) = O(log2(1/bias(f))). By a proper shift, we can make bias(f) ≥
1/

√
‖f̂‖0 and thus get rank(f) = O(log2 ‖f̂‖0). For degree-4 polynomials, however, the bound in

[HS10] is exponentially worse, and there were no results for higher degrees. A natural question
is: Can one prove the rank(f) = O(logO(1) ‖f̂‖0) for degree-4 polynomials? Further, if it is too
challenging to prove rank(f) ≤ logO(1) ‖f̂‖0 for general degree d (which is at most log ‖f̂‖0), can
one prove it for constant-degree polynomials (even if the power O(1) is a tower of 2’s of height d)?
In this paper, we show that this is indeed achievable. Actually, we can even replace the ℓ0-norm
by ℓ1-norm

3 of f̂ in the bound, and the dependence on d is “only” singly exponential.

Lemma 4. For all Boolean functions f with F2-degree d, we have rank(f) = O(2d
2/2 logd−2 ‖f̂‖1).

The lemma immediately implies the following two results.

Theorem 5. If f is a Boolean function of constant F2-degree, then D
CC(f◦⊕) ≤ logO(1) (rank(Mf◦⊕)).

Recursively expanding Eq.(1) and applying the bound on ranks in Lemma 4 gives that

Corollary 6. Every Boolean function f of F2-degree d depends only on O(2d
3/2 logd

2 ‖f̂‖1) linear
functions of input variables.

Another corollary is the following. Green and Sanders proved that any f : {0, 1}n → {0, 1} can

be written as f =
∑T

i=1±1Vi , where T = 22
O(‖f̂‖41) and each 1Vi is the indicator function of the

subspace Vi. For constant degree polynomials, we can improve their doubly-exponential bound to
quasi-polynomial.

Corollary 7. If f : {0, 1}n → {0, 1} has constant F2-degree, then f =
∑T

i=1±1Vi where T =

2log
O(1) ‖f̂‖1 and each 1Vi is the indicator function of the subspace Vi.

The proof of Lemma 4 follows the general approach laid out in the Main protocol, i.e., a
rank-based degree-reduction process, with several additional twists. First, to find a “good” affine
subspace restricted on which f becomes a lower degree polynomial, we recursively apply the deriva-
tives of f to guide our search. Second, even though our final goal is to reduce the degree of f , we
actually achieve this through reducing the spectral norm of f . This is done by studying the effect
of restriction on two non-Boolean functions. Last, in the induction step, we in fact need to prove a
stronger statement about a chain inequality involving rank, minimum parity 0-certificate complex-
ity C

0
⊕,min, minimum parity 1-certificate complexity C

1
⊕,min and parity decision tree complexity D⊕.

And the induction is used in a “cyclic” way: we upper bound min{C0
⊕,min,C

1
⊕,min} by induction on

max{C0
⊕,min,C

1
⊕,min}, which upper bounds rank. This can then be used to show that D⊕ is small,

which in turn upper bounds max{C0
⊕,min,C

1
⊕,min} to finish the inductive step.

3Strictly speaking, in view of the corner case of ‖f̂‖1 = 1, one should replace log(‖f̂‖1) by log(‖f̂‖1 +1). But like
in most previous papers, we omit the “+1” term for all ‖f̂‖1 in this paper for simplicity of notation.
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Result 3: functions with small spectral norms. While Theorem 5 handles the low-degree
case, the bound deteriorates exponentially with the F2-degree. Via a different approach, we are
able to upper bound rank(f) by the ℓ1-norm of f̂ .

Lemma 8. For all f : {0, 1}n → {0, 1}, we have rank(f) ≤ O(‖f̂‖1).

In fact we prove a slightly stronger result that there exists an affine subspace of codimension
at most O(‖f̂‖1) on which f is constant. In other words, if a Boolean function has small spectral
norm then it is constant on a large affine subspace.

The proof of the lemma uses a greedy algorithm that always makes the two largest Fourier
coefficients to collide (with the same sign). Exploiting the property that f is Boolean, one can show
that this greedy folding either significantly increases the largest Fourier coefficient, or decreases the
‖f̂‖1 by a constant.

The lemma immediately implies the following result for general (not necessarily XOR) functions.

Theorem 9. For all f : {0, 1}m×{0, 1}n → {0, 1}, we have D
CC(f) ≤ 2D⊕(f) = O(deg2(f) ·‖f̂‖1).

In [Gro97], Grolmusz gave a public-coin randomized protocol with communication cost O(‖f̂‖21).
The above theorem gives a deterministic protocol, and the bound is better for functions f with
deg2(f) = o(‖f̂‖1).

Another implication of Lemma 8 is that the communication complexity of f ◦ ⊕ is at most the
square root of the matrix rank.

Theorem 10. For all f : {0, 1}n → {0, 1},

D
CC(f ◦ ⊕) = O(deg2(f) · ‖f̂‖1) = O

(√
rank(Mf◦⊕) log rank(Mf◦⊕)

)
.

The upper bound of rank/ log rank in [BSLRZ12] improves the trivial linear bound by a log
factor for all Boolean functions, assuming the Polynomial Freiman-Ruzsa conjecture. In compari-
son, our bound of

√
rank log rank is only for XOR functions, but it improves the linear bound by

a polynomial factor, and it is unconditional.
It is also interesting to note that, for any fixed Boolean function f , at least one of the above two

theorems gives a desirable result: either ‖f̂‖1 ≥ logk ‖f̂‖0 where k is a big constant, then Theorem
9 improves Grolmusz’s bound almost quadratically (since deg2(f) ≤ log ‖f̂‖0); or ‖f̂‖1 ≤ logk ‖f̂‖0,
then Theorem 10 confirms the Log-rank conjecture for f ◦ ⊕!

Result 4: functions with a light Fourier tail. Our last result deals with Boolean functions
whose Fourier spectrum has a light tail. We call a function f : {0, 1}n → {+1,−1} µ-close to
s-sparse in ℓ2 if

∑
i>s f̂(si)

2 ≤ µ2, where |f̂(s1)| ≥ ... ≥ |f̂(sN )|. We say two functions f, g :
{0, 1}n → {+1,−1} are ǫ-close if Prx[f(x) 6= g(x)] ≤ ǫ.

Theorem 11. If f : {0, 1}n → {+1,−1} is µ-close to s-sparse in ℓ2, where µ ≤ logO(1) ‖f̂‖0√
‖f̂‖0

and

s ≤ logO(1) ‖f̂‖0, then D⊕(f) ≤ logO(1) ‖f̂‖0.

The proof of this theorem uses Chang’s lemma about large Fourier coefficients of low-density
functions, and a “rounding” lemma from [GOS+11].
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1.2 Related work

The Log-rank Conjecture for XOR functions was shown to be true for symmetric functions [ZS09],
linear threshold functions (LTFs), monotone functions [MO10], and AC0 functions [KS13]. These
results fall into two categories. The first one, including symmetric functions and LTFs, is that
the rank of the communication matrix (i.e. the Fourier sparsity) is so large, that the Log-rank
conjecture trivially holds. The second one, including monotone functions and AC0 functions, is
that even the Fourier degree is small, thus the standard decision tree complexity D(f) is already
upper bounded by the poly-logarithmic of the matrix rank. But as we mentioned, there are functions
that have small Fourier sparsity and high Fourier degree (even after basis rotation), which form the
hardcore cases of the problem. Our study makes crucial use the fact that parity queries are more
powerful than single input-variable queries, and our results reveal structural properties of Fourier
spectra.

In [HS10], Haramaty and Shpilka proved that rank(f) = O(log2(1/‖f‖U3)) = O(log2(1/bias(f)))
for degree-3 polynomials. For degree-4 polynomials, however, the bound gets exponentially worse,
and there were no results for higher degrees. In comparison, our Lemma 4 gives a polylog upper
bound for rank(f) of all constant degree functions f , but the polylog is in ‖f̂‖1 rather than in
bias(f) or Gower’s norm ([Gow98, Gow01, AKK+05]).

Though Boolean functions with a sparse Fourier spectrum seem to be a very interesting class
of functions to study, not many properties are known. It is shown in [GOS+11] that the Fourier
coefficients of a Fourier sparse function have large “granularity” and functions that are very close
to Fourier sparse can be transformed into one through a “rounding off” procedure. Furthermore,
they proved that one can use 2 log ‖f̂‖0 random linear functions to partition the character space so
that, with high probability, each bucket contains at most one nonzero Fourier coefficient. This does
not help our problem since what we need is exactly the opposite: to group Fourier coefficients into
buckets so that a small number of foldings would make many of them to collide (and thus reducing
the Fourier sparsity quickly).

Let A = supp(f̂) be the support of f ’s Fourier spectrum. One way of designing the parity query
is to look for a “heavy hitter” t of set A+A, i.e. t with many s1, s2 ∈ A and s1 + s2 = t. If such t
exists, then querying the linear function 〈t, x〉 reduces the Fourier sparsity a lot. One natural way
to show the existence of a heavy hitter is by proving that |A + A| is small. Turning this around,
one may hope to show that if it is large, then the function is not Fourier sparse or has some special
properties to be used. The size of |A+A| has been extensively studied in additive combinatorics,
but it seems that all related studies are concerned with the low-end case, in which |A+ A| ≤ k|A|
for very small (usually constant) k. Thus those results do not apply to our question.

There are actually two variants of polynomial rank. One is what we mentioned earlier and used
in this work, and the other, which is actually much better studied, is the minimum r s.t. f can be
expressed as a function F of r lower degree polynomials f1, ..., fr. A nice result for this definition
of rank is that large bias implies low polynomial rank [GT09, KL08]: the rank is a function of the
bias and degree only, but not of the input size n. This is, however, insufficient for us because a
Fourier sparse function may have very small bias. Furthermore, the dependence of the rank on the
degree is a very rapidly growing function (faster than a tower of 2’s of height d), while our protocol
has “only” single exponential dependence of d.
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The work of [SV13]. After completing this work independently, the very recent work [SV13]
came to our attention, which studies PDT complexity of functions with small spectral norm. The
authors show C⊕,min(f) ≤ O(‖f̂‖21) and D⊕(f) = O(‖f̂‖21 log ‖f̂‖0). In comparison, our Lemma 30
and Theorem 10 are at least quadratically better. The paper [SV13] also studies the size of PDT

and shows that ⊕-size(f) ≤ nO(‖f̂‖21), and considers approximation of Boolean functions, which is
not studied in this paper.

2 Preliminaries and notation

All the logarithms in this paper are base 2. For two n-bit vectors s, t ∈ {0, 1}n, define their inner
product as s · t = 〈s, t〉 = ∑n

i=1 siti mod 2 and for simplicity we write s+ t for s ⊕ t. Throughout
the paper, logarithm is base 2. We often use f to denote a real function defined on {0, 1}n. In most
occurrences f is a Boolean function, whose range can be represented by either {0, 1} or {+1,−1},
and we will specify whenever needed. For f : {0, 1}n → {0, 1}, we define f± = 1 − 2f to convert
the range to {+1,−1}. For each b ∈ range(f), the b-density of f is ρb = |f−1(b)|/2n.

Each Boolean function f : {0, 1}n → {0, 1} can be viewed as a polynomial over F2, and we use
deg2(f) to denote the F2-degree of f . For a Boolean function f : {0, 1}n → {0, 1} and a direction
vector t ∈ {0, 1}n − {0n}, its derivative ∆tf is defined by ∆tf(x) = f(x) + f(x+ t). It is easy to
check that deg2(∆tf) < deg2(f) for any non-constant f and any t.

Complexity measures. A parity decision tree (PDT) for a function f : {0, 1}n → {0, 1} is a
tree with each internal node associated with a linear function ℓ(x), and each leaf associated with
an answer a ∈ {0, 1}. When we use a parity decision tree to compute a function f , we start from
the root and follow a path down to a leaf. At each internal node, we query the associated linear
function, and follow the branch according to the answer to the query. When reaching a leaf, we
output the associated answer. The parity decision tree computes f if on any input x, we always
get the output equal to f(x). The deterministic parity decision tree complexity of f , denoted by
D⊕(f), is the least number of queries needed on a worst-case input by a PDT that computes f .

For a Boolean function f and an input x, the parity certificate complexity of f on x is

C⊕(f, x) = min{co-dim(H) : x ∈ H,H is an affine subspace, on which f is constant}.

The parity certificate complexity C⊕(f) of f is maxx C⊕(f, x). Since for each x and each parity
decision tree T , the leaf that x belongs to corresponds to an affine subspace of co-dimension equal to
the length of the path from it to the root, we have that C⊕(f) ≤ D⊕(f) [ZS10]. We can also study
the minimum parity certificate complexities C

b
⊕,min(f) = minx:f(x)=b C⊕(f, x) and C⊕,min(f) =

minx C⊕(f, x).
Denote by D

CC(F ) the deterministic communication complexity of F . One way of designing
communication protocols is to simulate a decision tree algorithm, and the following is an adapted
variant of a well known relation between deterministic communication complexity and decision tree
complexity to the setting of XOR functions and parity decision trees.

Fact 12. D
CC(f ◦ ⊕) ≤ 2D⊕(f).
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Fourier analysis

For any real function f : {0, 1}n → R, the Fourier coefficients are defined by f̂(s) = 2−n
∑

x f(x)χs(x),

where χs(x) = (−1)s·x. The function f can be written as f =
∑

s f̂(s)χs. The ℓp-norm of f̂ for

any p > 0, denoted by ‖f̂‖p, is defined as (
∑

s |f̂(s)|p)1/p. The Fourier sparsity of f , denoted by

‖f̂‖0, is the number of nonzero Fourier coefficients of f . The following is a simple consequence of
Cauchy-Schwarz inequality

‖f̂‖1 ≤
√
‖f̂‖0. (2)

Note that ‖f̂‖1 can be much smaller than ‖f̂‖0. For instance, the AND function has ‖f̂‖1 ≤ 3

but ‖f̂‖0 = 2n. The Fourier coefficients of f : {0, 1}n → {0, 1} and f± are related by f̂±(s) =
δs,0n − 2f̂(s), where δx,y is the Kronecker delta function. Therefore we have

2‖f̂‖1 − 1 ≤ ‖f̂±‖1 ≤ 2‖f̂‖1 + 1, and ‖f̂‖0 − 1 ≤ ‖f̂±‖0 ≤ ‖f̂‖0 + 1. (3)

For any function f : {0, 1}n → R, Parseval’s Indentity says that
∑

s f̂
2
s = Ex[f(x)

2]. When

the range of f is {0, 1}, then
∑

s f̂
2
s = Ex[f(x)]. We sometimes use f̂ to denote the vector of

{f̂(s) : s ∈ {0, 1}n}.

Proposition 13 (Convolution). For two functions f, g : {0, 1}n → R, the Fourier spectrum of fg

is given by the following formula: f̂ g(s) =
∑

t f̂(t)ĝ(s+ t).

Using this proposition, one can characterize the Fourier coefficients of Boolean functions as
follows.

Proposition 14. A function f : {0, 1}n → R has range {+1,−1} if and only if

∑

t∈{0,1}n

f̂2(t) = 1, and
∑

t∈{0,1}n

f̂(t)f̂(s+ t) = 0, ∀s ∈ {0, 1}n − 0n.

Another fact easily follows from the convolution formula is the following.

Lemma 15. Let f, g : {0, 1}n → R, then ‖f̂ g‖0 ≤ ‖f̂‖0‖ĝ‖0 and ‖f̂ g‖1 ≤ ‖f̂‖1‖ĝ‖1.

Linear maps and restrictions. Sometimes we need to rotate the input space: For an invertible
linear map L on {0, 1}n, define Lf by Lf(x) = f(Lx). It is not hard to see that deg2(Lf) = deg2(f),

and that L̂f(s) = f̂((LT )−1s). Thus

‖L̂f‖1 = ‖f̂‖1 and ‖L̂f‖0 = ‖f̂‖0. (4)

For a function f : {0, 1}n → R, define two subfunctions f0 and f1, both on {0, 1}n−1: fb(x2, . . . , xn) =
f(b, x2, . . . , xn). It is easy to see that for any s ∈ {0, 1}n−1, f̂b(s) = f̂(0s) + (−1)bf̂(1s), thus

‖f̂b‖0 ≤ ‖f̂‖0 and ‖f̂b‖1 ≤ ‖f̂‖1. (5)

The concept of subfunctions can be generalized to general directions. Suppose f : {0, 1}n → R

and S ⊆ {0, 1}n is a subset of the domain. Then the restriction of f on S, denoted by f |S is the
function from S to R defined naturally by f |S(x) = f(x), ∀x ∈ S. In this paper, we are concerned
with restrictions on affine subspaces.
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Lemma 16. Suppose f : {0, 1}n → R and H = a + V is an affine subspace, then one can define

the spectrum f̂ |H of the restricted function f |H such that

1. If co-dim(H) = 1, then f̂ |H is the collection of f̂(s) + (−1)bf̂(s + t) for all unordered pair
(s, s+ t), where t is the unique non-zero vector orthogonal to V , and b = 0 if a ∈ V and b = 1
otherwise. Sometimes we refer to such restriction as a folding over t.

2. ‖f̂ |H‖p ≤ ‖f̂‖p, for any p ∈ [0, 1].

3. If range(f) = {+1,−1}, then the following three statements are equivalent: 1) f |H(x) =

cχs(x) for some s ∈ {0, 1}n and c ∈ {+1,−1}, 2) ‖f̂ |H‖0 = 1, and 3) ‖f̂ |H‖1 = 1.

See Appendix A for a proof. In the proof, we use a rotation R as an isomorphism from H
(which may not be an group under addition any more) to the additive group of {0, 1}n−1 (when

co-dim(H) = 1). Though the rotation is not unique, the resulting Fourier vector f̂ |H is the same

up to a linear invertible transform, thus the norm ‖f̂ |H‖p does not depend on the rotation. In
addition, the F2-degree of the subfunction f |H does not depend on the rotation R, thus we will just
define deg2(f |H) to be the deg2(fb) where fb is the newly defined subfunctions.

Using the above lemma, it is not hard to prove by induction the following fact, which says that
short PDT gives Fourier sparsity.

Proposition 17. For all f : {0, 1}n → {0, 1}, ‖f̂‖0 ≤ 4D⊕(f).

The following theorem [BC99] says that the F2-degree can be bounded from above by logarithm
of Fourier sparsity.

Fact 18 ([BC99]). For all f : {0, 1}n → {0, 1}, it holds that deg2(f) ≤ log ‖f̂‖0.

3 Polynomial rank and the Main PDT algorithm

The following notion of polynomial rank has been studied in [Dic58] for degree-2 polynomials and
in [HS10] for degree-3 polynomials.4

Definition 2. The polynomial rank of a function f ∈ F2[x1, . . . , xn], denoted rank(f), is the
minimum integer r s.t. f can be expressed as

f = ℓ1f1 + . . .+ ℓrfr + f0,

where deg2(ℓi) = 1 for all 1 ≤ i ≤ r and deg2(fi) < deg2(f) for all 0 ≤ i ≤ r. Sometimes we
emphasize the degree by writing the polynomial rank as rankd(f) with d = deg2(f).

Recall that a parity certificate is an affine subspace H restricted on which f is a constant.
The parity certificate complexity is the largest co-dimension of such H. The next lemma says
that the polynomial rank is quite small compared to the parity certificate complexity, even if we
merely require f to have a lower F2-degree (rather than be constant) on the affine subspace; and
in addition, even if we take the minimum co-dimension over all such H.

4Degree-4 polynomials was also studied in [HS10], but the rank is slightly different there as they allow some
summands to be product of two quadratic polynomials.
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Lemma 19. For all non-constant f : {0, 1}n → {0, 1}, the following properties hold.

1. There is a subspace V of co-dimension r = rank(f) s.t. when restricted to each of the 2r

affine subspaces a+ V , f has F2-degree at most deg2(f)− 1.

2. For all affine subspaces H with co-dim(H) < rank(f), deg2(f |H) = deg2(f).

Proof. Fix a non-constant function f : {0, 1}n → {0, 1}.

1. Suppose f = ℓ1f1 + . . . + ℓrfr + f0, where r = rank(f). Let V = {x : ℓi(x) = 0,∀i ∈ [r]}.
Then the conclusion holds by the definition of polynomial rank.

2. SupposeH = a+V where V is a subspace. Let d = deg2(f), r = rank(f) and k = co-dim(V ).
Let s be the smallest integer s.t.

f(x) = ℓ1(x)f1(ℓ2(x), · · · , ℓn(x))+ . . .+ℓs(x)fs(ℓs+1(x), ..., ℓn(x))+f0(ℓs+1(x), ..., ℓn(x)) (6)

for some linear functions ℓ1(x), . . . , ℓk(x) s.t. when viewed as vectors, span{ℓ1, ..., ℓk} = V ⊥,
and some functions fi whose F2-degree are all strictly smaller than d. By the definition of
the polynomial rank, we have that r ≤ s. Since we assumed that k < r, it holds that k < s.
Consider the function

f ′(ℓk+2, . . . , ℓn) = ℓk+1fk+1(ℓk+2, . . . , ℓn) + · · ·+ ℓsfs(ℓs+1, . . . , ℓn) + f0(ℓs+1, . . . , ℓn).

Since k < s, there is at least one term other than the last f0(ls+1, . . . , ln). Now that s is
minimized, the function f ′ has F2-degree equal to d, because otherwise f ′ can be written as
just one deg-(d−1) function, thus the number of terms in Eq.(6) can be reduced. Furthermore,
we claim that f restricted on the affine subspace V +a has F2-degree equal to d as well. Indeed,
the first k terms in Eq.(6) give ℓ1f1(ℓ2, ..., ℓn)+ . . .+ ℓkfk(ℓk+1, ..., ℓn), which has F2-degree at
most d− 1 after ℓ1, ..., ℓk take specific values given by a. Thus it cannot cancel any degree-d
monomial in f ′. So f on V + a has F2-degree d.

Lemma 19, though seemingly simple, is of fundamental importance to our problem as well as
PDT algorithm designing in general. Note that the second part of Lemma 19 says that, if there exists
an affine subspace V + a of co-dimension k and a vector a ∈ V ⊥ such that deg2(f |V+a) < deg2(f),
then rank(f) ≤ k. Therefore Lemma 19 reduces the challenging task of lowering the degree of
f |V+a for all a to lowering it for just one a.

In the next two sections, what we are going to use is the following corollary of it.

Corollary 20. For all non-constant f : {0, 1}n → {0, 1}, we have rank(f) ≤ C⊕,min(f).

Proof. This immediately follows from the second item of Lemma 19, because C⊕,min(f) requires
deg2(f |H) = 0, strictly smaller than deg2(f) for non-constant f .
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3.1 Main PDT algorithm

Now we describe the main algorithm for computing function f , by reducing the F2-degree of f .

Main PDT Algorithm
Input: An PDT oracle for x
Output: f(x).

1. while deg2(f) ≥ 1 do

(a) Take a fixed decomposition f = ℓ1f1 + · · ·+ ℓrfr + f0, where r = rankd(f) with
d = deg2(f).

(b) for i = 1 to r

(c) Query ℓi(x) and get answer ai.

(d) Update the function
f := a1f1 + · · ·+ arfr + f0

To analyze the query complexity of this algorithm, we need to bound rank(f). We conjecture
that the following is true for all Fourier sparse Boolean functions.

Conjecture 21. For all Boolean functions f : {0, 1}n → {0, 1}, rank(f) = O(logc(‖f̂‖0)) for some
c = O(1).

Call a complexity measure M(f) downward non-increasing if M(f ′) ≤ M(f) for any f and any
subfunction f ′ of f . As mentioned earlier (Lemma 16), M(f) = ‖f̂‖0 and M(f) = ‖f̂‖1 are all
downward non-increasing complexity measures.

Theorem 22. The Main PDT algorithm computes f(x) correctly. If rank(f) ≤ M(f) for some
downward non-increasing complexity measure M , then D⊕(f) ≤ deg2(f)M(f) and D

CC(f ◦ ⊕) ≤
2 log ‖f̂‖0 ·M(f). In particular, if Conjecture 21 is true, then the Log-rank conjecture holds for all
XOR functions.

Proof. The correctness is obvious. For the query cost, there are at most deg2(f) rounds since each
round reduces the F2-degree by at least one. To avoid confusion, denote the original function by f
and the function in the iteration t by f (t). Note that f (t) is obtained from f by a sequence of linear
restrictions, it is a subfunction of f . Each iteration t takes rank(f) queries. If rank(f) ≤ M(f), then
in particular rank(f (t)) ≤ M(f) since M is a downward non-increasing complexity measure. Taking
all iterations together, the total number of queries is at most deg2(f)M(f). The communication
complexity D

CC(f ◦ ⊕) ≤ 2 log ‖f̂‖0 · M(f) follows from the standard simulation result (Fact 12)
and the degree bound (Fact 18).

If Conjecture 21 is true, then the measure M(f) is replaced by logc(‖f̂‖0), and thus the above
bound becomes D

CC(f ◦ ⊕) ≤ 2 logc+1(‖f̂‖0). Namely the Log-rank conjecture holds for all XOR
functions.

The Main PDT algorithm, though simple, crucially uses the fact that restrictions do not increase
the Fourier sparsity and uses the F2-degree as a progress measure to govern the efficiency. Since
deg2(f) ≤ log(‖f̂‖0), the algorithms finishes in a small number of rounds.

This algorithm also gives a unified way to construct parity decision tree, reducing the task of
designing PDT algorithms to showing that the polynomial rank is small. Indeed, the results in the
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next two sections are obtained by bounding rank, where sometimes Theorem 22 will be applied
with the complexity measure ‖f̂‖1.

Note that if the conjecture D⊕(f) ≤ logc ‖f̂‖0 is true, then the Main PDT algorithm always
gives the optimal query cost up to a polynomial of power c+ 1.

4 Functions with low F2-degree

In this section, we mainly show that the Log-rank conjecture holds for XOR functions with constant
F2-degree. We will actually prove

C⊕,min(f) = O(2d
2/2 logd−2 ‖f̂‖1),

which is stronger than Lemma 4. Theorem 5 then follows from the PDT algorithm and the sim-
ulation protocol for PDT (Theorem 22). Corollary 6 is also easily proven by an induction on
F2-degree.

The case for degree 1 (linear functions) is trivial and the case for degree 2 (quadratic polyno-
mials) is also simple due to the following Dickson’s theorem.

Theorem 23 ([Dic58]). Let A ∈ {0, 1}n×n be a symmetric matrix whose diagonal entries are all
0, and define a polynomial f(x) = xTQx+ ℓ(x) + ǫ, where Q is the upper triangle part of A. Then
rank(f) is equal to the rank of matrix A over F2.

Note that Dickson’s theorem says that, up to an affine (invertible) linear map, the Fourier
spectrum of a degree 2 polynomial is identical to a bent function on k variables f(x) = x1x2+ · · ·+
xk−1xk, where k = rank(A). Note that C⊕,min(f) ≤ k/2 because we can simply fix x1 = x3 = . . . =
xk−1 = 0 and get a 0-constant function. It is also easily seen that this bent function has spectral
norm 2k/2, it follows that rank(f) ≤ C⊕,min(f) = O(log ‖f̂‖1).

4.1 Cubic polynomials

We prove Theorem 5 for the special case of cubic polynomials first. This is because degree 3 is
the first non-trivial case and we use this result in our final induction proof of Theorem 5; more
importantly, the proof applies some ideas from [HS10] which inspire our proof for the general
constant degree case.

In [HS10], it was shown that for polynomials with F2-degree 3, rank(f) = O(log2(1/bias(f))).

By shifting the Fourier spectrum appropriately, we can make bias(f) ≥ 1/

√
‖f̂‖0 and thus get

rank(f) = O(log2 ‖f̂‖0). Next, we show that actually the bound can be improved to rank(f) =
O(log ‖f̂‖0). This will also be used for the general degree case.

We need a lemma that relates the rank of a cubic polynomial and the ranks of its derivatives.
We call a function linear if its F2-degree is at most 1, and quadratic if its F2-degree is at most 2.
The following statement is slightly more general than Lemma 3.7 in [HS10], but the same proof
goes through.

Lemma 24 ([HS10]). Let M be a collection of quadratic functions satisfying that rank2(f) ≤ r for
all f ∈ M ∪ 2M (where 2M = {f1 + f2 : f1, f2 ∈ M}), then there is a subspace V of co-dimension
at most 4r s.t. f |V is a linear function for all f ∈ M .

12



Now we can prove the cubic polynomial case of Theorem 5.

Proposition 25. For all function f : {0, 1}n → {0, 1} with F2-degree 3, it holds that rank(f) =
O(log ‖f̂‖1) and thus D⊕(f) = O(log ‖f̂‖1).

Proof. Note that ∆tf has F2-degree at most 2 for all t, and that in general ∆tf +∆sf = ∆t+sf +
∆t∆sf . Let M be the collection of {∆tf : t ∈ {0, 1}n}, then M satisfies the condition of Lemma
24. Furthermore, each ∆tf ∈ M has

rank(∆tf) = log ‖∆̂tf‖1 + 1 ≤ 2 log ‖f̂‖1 + 1,

where the last inequality is because of Lemma 15. Let r = 2 log ‖f̂‖1 + 1. Now by Lemma 24,
we know that 4r restrictions can make all ∆tf in M to become linear functions. Therefore there
is a subspace of co-dimension at most 4r restricted on which ∆tf are linear functions, for all
t ∈ {0, 1}n. This means that f |V has degree at most 2. It follows that rank(f) ≤ 4r. The
upper bound on D⊕(f) now follows by observing that D⊕(f) ≤ rank(f) + D⊕(f

′), where f ′ is a
subfunction of f with F2-degree 2. Recall that for subfunctions we have ‖f̂ ′‖1 ≤ ‖f̂‖1, and hence
D⊕(f

′) = O(log ‖f̂‖1 + 1) = O(log ‖f̂‖1).

4.2 Constant-degree polynomials

Now we will bound the rank(f) and use the Main PDT algorithm to bound the PDT complexity.

Lemma 26. For all non-constant function f : {0, 1}n → {0, 1} of F2-degree d, we have

rank(f) ≤ C⊕,min(f) ≤ D⊕(f) ≤ O(2d
2/2(logd−2 ‖f̂‖1 + 1)).

Proof. We will prove by induction on degree d that

rank(f) ≤ C⊕,min(f) ≤ max
b∈{0,1}

C
b
⊕,min(f) ≤ D⊕(f) ≤ Bd

(
‖f̂±‖1

)
,

where Bd(m) < 2d
2/2 logd−2 m are a class of bounded non-decreasing (with respect to both d and

argument m) functions to be determined later. The conclusion then follows from Eq.(3). The case
of d = 1 is trivial, the case d = 2 is easily handled by Theorem 23, and the case d = 3 is given by
Proposition 25.

Now suppose that the bound holds for all polynomials of F2-degree at most d− 1, and consider
a function f of degree d ≥ 4. We will first prove a bound for C⊕,min(f), which also implies a bound
on rank(f) from above by Corollary 20.

First, it is not hard to see that there exists a direction t ∈ {0, 1}n − {0n} such that ∆tf is
non-constant (unless f is a linear function, in which case the conclusion trivially holds anyway).
Fix such a t. Since deg2(∆tf) ≤ d− 1, by induction hypothesis, it holds that

C
b
⊕,min(∆tf) ≤ Bd−1(‖ ̂(∆tf)±‖1).

Define ft(x) = f(x+ t), then by Lemma 15, we have

‖ ̂(∆tf)±‖1 = ‖ ̂f± · f±
t ‖1 ≤ ‖f̂±‖1‖f̂±

t ‖1 = ‖f̂±‖21,
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which implies that

C
b
⊕,min(∆tf) ≤ Bd−1(‖f̂±‖21).

Since ∆tf is non-constant, Cb
⊕,min(∆tf) ∈ [1, n] for both b = 0 and b = 1. For each b, by the

definition of Cb
⊕,min(∆tf), there exists an affine subspace Hb with co-dim(Hb) ≤ Bd−1(‖f̂±‖21) such

that (∆tf)|Hb
= b, which is equivalent to f(x) + f(x+ t) = b for all x ∈ Hb.

Define

g0(x) =
1

2

(
f±(x) +R f±(x+ t)

)
, g1(x) =

1

2

(
f±(x)−R f±(x+ t)

)
,

where the plus +R and minus −R are over R. (To avoid potential confusions, in the rest of the
proof, we will also use this notation for addition/subtraction of two functions over R.)

These two functions have some nice properties. First, it is easy to see from the definition of g0
and g1 that f± = g0 +R g1. Second, note that g0 and g1 are not Boolean functions any more; they
take values in {−1, 0,+1}. However, a simple but crucial fact is that they take very special values
on the affine subspace Hb: one always takes value 0, and the other always takes value in {+1,−1}.
Actually, it is not hard to verify that

gb|Hb
= f±|Hb

and g1−b|Hb
= 0.

Third, in the Fourier domain, note that

f̂±
t (s) = Ex[f

±(x+ t)χs(x)] = Ex[f
±(x+ t)χs(x+ t)χs(t)] = f̂±(s)χs(t),

and thus

ĝb(s) =
1

2

(
f̂±(s) +R (−1)bf̂±

t (s)
)
=

1

2

(
f̂±(s) +R (−1)bχs(t)f̂±(s)

)
.

Therefore, we have

ĝ0(s) =

{
f̂±(s) s ∈ t⊥

0 s ∈ t⊥
, and ĝ1(s) =

{
0 s ∈ t⊥

f̂±(s) s ∈ t⊥
,

where t⊥ = {s ∈ {0, 1}n : 〈s, t〉 = 0}. Namely ĝ0 and ĝ1 each takes the Fourier spectrum f± on one
of the two hyperplanes defined by the vector t.

This further implies that

‖f̂±‖1 = ‖ĝ0‖1 + ‖ĝ1‖1.

Thus, either ‖ĝ0‖1 or ‖ĝ1‖1 is at most half of ‖f̂±‖1. Suppose that ‖ĝb‖1 ≤ 1
2‖f̂±‖1. We claim that

restricting f± to Hb reduces its spectral norm a lot. Indeed, since f±|Hb
= gb|Hb

, we have

‖f̂±|Hb
‖1 = ‖ĝb|Hb

‖1 ≤ ‖ĝb‖1 ≤
1

2
‖f̂‖1,

where the first inequality is because of Lemma 16. To summarize, we have just shown that we can

reduce the spectral norm by at least half using at most Bd−1(‖f̂±‖21) linear restrictions.
Now we recursively repeat the above process on the subfunction f±|Hb

until finally we find an

affine subspace H s.t. ‖f̂±|H‖ ≤ 1, at which moment the subfunction is either a constant or linear
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function, thus at most one more folding would give a constant function. In total it takes at most

Bd−1(‖f̂±‖21) log ‖f̂±‖1 + 1 linear restrictions to get a constant function, which implies that

C⊕,min(f) ≤ Bd−1(‖f̂±‖21) log ‖f̂±‖1 + 1.

Next we will show that actually the maxb∈{0,1} C
b
⊕,min(f) is not much larger either:

max
b∈{0,1}

C
b
⊕,min(f) ≤ Bd−1(‖f̂±‖21) log ‖f̂±‖1 +Bd−1

(
‖f̂±‖1

)
+ 1. (7)

(We need to show this because in the induction step, we picked one gb with smaller spectral norm
and used the induction hypothesis to upper bound C

b
⊕,min(∆tf) for a particular b, which could be

maxb∈{0,1} C
b
⊕,min(∆tf).) Note that by the Main PDT algorithm, we know that

D⊕(f) ≤ rank(f) + D⊕(f
′),

for a subfunction f ′ of f with deg2(f
′) < deg2(f). Now by Corollary 20, we can use C⊕,min(f) to

upper bound rank(f). For the second part, since deg2(f
′) < deg2(f) and ‖(̂f ′)±‖1 ≤ ‖f̂±‖1, we

can apply the induction hypothesis on f ′ to upper bound D⊕(f
′). What we get here is

D⊕(f) ≤ Bd−1

(
‖f̂±‖21

)
log ‖f̂±‖1 + 1 +Bd−1

(
‖f̂±‖1

)
. (8)

Eq.(7) thus follows from the simple bound C
b
⊕,min(f) ≤ C⊕(f) ≤ D⊕(f). Now define the right-hand

side of Eq.(8) to be Bd

(
‖f̂±‖1

)
, and solve the recursive relation

Bd(m) = Bd−1(m
2) logm+Bd−1(m) + 1, B3(m) = O(logm+ 1),

we get
Bd(m) = (1 + o(1))2(d−2)(d−3)/2 logd−2m,

as desired.

Note that in the above proof, it seems that we lose something by using C⊕,min to upper bound
rank. However, it is crucial to consider the affine subspace Hb on which ∆tf becomes a constant
(instead of, say, a lower F2-degree polynomial), because otherwise gb on Hb is not equal to f
(actually not even Boolean), and thus we cannot recursively apply the procedure on f |Hb

. In
addition, if ∆tf is not constant on Hb, then we cannot guarantee the decrease of the spectral norm
due to restriction on Hb.

We have just showed that low degree polynomials have very small C⊕,min value in terms of the
spectral norm. We actually conjecture that the bound can be improved to the following.

Conjecture 27. There is some absolute constant c s.t. for any non-constant f : {0, 1}n → {0, 1},
C⊕,min(f) = O(logc ‖f̂‖1).

It has the consequence as follows.

Proposition 28. If Conjecture 27 is true, then for any f : {0, 1}n → {0, 1}, rank(f) = O(logc ‖f̂‖1)
and D⊕(f) = O(deg2(f) log

c ‖f̂‖1).
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In fact, we are not aware of any counterexample for Conjecture 27 even for c = 1; see the last
section for more discussions on this.

Lemma 26 also implies the following Corollary, from which Corollary 7 immediately follows.

Corollary 29. If f : {0, 1}n → {0, 1} has F2-degree d, then f =
∑T

i=1±1Vi, where T = 22
d2/2 logd−2 ‖f̂‖1

and each 1Vi is the indicator function of the subspace Vi.

Proof. By Lemma 26, we know that the depth of the optimal PDT is at most 2d
2/2 logd−2 ‖f̂‖1,

and thus the size of the PDT is at most T . So the function can be written as the sum of at most T
indicator functions 1H of affine subspaces. Then as argued in [GS08], each such indicator 1H can
be written as 1V1 − 1V2 for two subspaces V1 and V2. The conclusion thus follows.

5 Functions with a small spectral norm

We prove Lemma 30 in this section, which directly implies Lemma 8, Theorem 9 and Theorem 10.

Lemma 30. For all Boolean function f : {0, 1}n → {+1,−1}, we have C⊕,min(f) ≤ O(‖f̂‖1).

Proof. Suppose that the nonzero Fourier coefficients are {f̂(α) : α ∈ A}, where A = supp(f̂).
Denote by a1, a2, ..., as the sequence of |f̂(α)| in the decreasing order, and the corresponding char-
acters are χα1 , ..., χαs in that order (thus |f̂(αi)| = ai and s = ‖f̂‖0 is the Fourier sparsity of f).
For simplicity, we assume s ≥ 4, as doing so can only add at most a constant to our bound on
C⊕,min(f).

Consider the following greedy folding process: fold along β = α1 + α2 and select a proper half-
space, namely impose a linear restriction χβ(x) = b for some b ∈ {0, 1}, s.t. the subfunction has its
largest Fourier coefficient being a1+a2 (in absolute value). This is achievable according to Lemma
16.

We first show that at most O(‖f̂‖1) greedy foldings can boost a1, the largest Fourier coefficient
in absolute value, to at least 1/2. By Parseval’s Identity, we have

1− a21 =
∑

i≥2

a2i ≤ a2
∑

i≥2

ai = a2(‖f̂‖1 − a1).

So when a1 ≤ 1/2, the greedy folding increases the largest coefficient by

a2 ≥
1− a21

‖f̂‖1 − a1
>

3

4‖f̂‖1
.

Hence the largest coefficients would be larger than 1/2 in O(‖f̂‖1) steps. (After one folding, the
function becomes a subfunction of the previous one, but due to Lemma 16, the ℓ1 norm of its
Fourier spectrum only decreases. So we can safely use ‖f̂‖1 as a universal upper bound for this
sequence of subfunctions.)

Next we show that greedy folding decreases the Fourier ℓ1-norm by at least 2a1 = 2maxs |f̂(s)|.
Define

P+(β) = {(s, t) : s+ t = β, f̂(s) · f̂(t) > 0} and P−(β) = {(s, t) : s+ t = β, f̂(s) · f̂(t) < 0},
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where all pairs (s, t) are unordered; same for the rest of the proof. By comparing the old and new
Fourier spectra, we can easily see that the drop of Fourier ℓ1-norm is precisely

2 ·
∑

(αi,αj)∈P−(β)

min{|f̂(αi)|, |f̂ (αj)|}.

Note that the folding is chosen such that the largest two Fourier coefficients have the same sign, so
(α1, α2) ∈ P+(β). Next we will use the property that f is a Boolean function. By Proposition 14,∑

αi+αj=β f̂(αi)f̂(αj) = 0, thus
∑

(αi,αj)∈P+(β) aiaj =
∑

(αi,αj)∈P−(β) aiaj. Now we have

a1a2 ≤
∑

(i,j)∈P+(β)

aiaj =
∑

(i,j)∈P−(β)

aiaj ≤ a3
∑

(i,j)∈P−(β)

min{ai, aj}.

Therefore, the decrease of the Fourier ℓ1-norm is at least 2a1a2
a3

≥ 2a1. Thus once a1 > 1/2, then

each greedy folding decreases the Fourier ℓ1-norm by at least 1. So it takes at most ‖f̂‖1 further
steps to make the Fourier ℓ1-norm to be at most 1, in which case at most one more folding makes
the function constant.

Lemma 30 implies that rank(f) ≤ O(‖f̂‖1) (Lemma 8) by Corollary 20 (that rank(f) ≤
C⊕,min(f)).

Note that our Main PDT algorithm can be simply simulated by a protocol in which Alice and
Bob send ℓi(x) and ℓi(y), respectively. Thus, similar to Fact 12, we have D

CC(f) ≤ 2D⊕(f) for
f : {0, 1}n × {0, 1}m → {0, 1}. Theorem 9 basically follows from this lemma and the fact that
subfunctions have smaller spectral norm (Lemma 16).

Lemma 30 also implies Theorem 10, which asserts upper bounds on the deterministic commu-
nication complexity of f ◦ ⊕ as

D
CC(f ◦ ⊕) = O(deg2(f) · ‖f̂‖1) = O

(√
rank(Mf◦⊕) log rank(Mf◦⊕)

)
.

To see this, first recall Theorem 22, which states that DCC(f ◦ ⊕) ≤ 2 log ‖f̂‖0 ·M(f) where M(f)
is a downward non-increasing complexity measure. By Lemma 8, we can take M to be ‖f̂‖1. Now
combining these with Fact 18 (that deg2(f) ≤ log ‖f̂‖0), and the inequality that ‖f̂‖1 ≤

√
‖f̂‖0

yields Theorem 10.

6 Functions with a light Fourier tail

First we will show that functions with low density can be computed efficiently by PDT. We will
need a result by Chang [Cha02]. The following version is taken from a simplified proof in [IMR12].
Recall that for a function f : {0, 1}n → {0, 1}, its density is ρ1(f) = |f−1(1)|/2n.

Lemma 31 ([Cha02, IMR12]). For all f : {0, 1}n → {0, 1} and any ǫ > 0, the set {s : |f̂(s)| ≥ ǫ}
spans a subspace of dimension less than d = 2

(ρ1(f)
ǫ

)2
ln(1/ρ1(f)).

Another fact that we will need is the granularity of Boolean functions, first studied in [GOS+11].

Definition 3. The (Fourier) granularity of a function f : {0, 1}n → {+1,−1}, denoted gran(f),
is the minimum integer k s.t. all nonzero Fourier coefficients are integer multiples of 2−k.
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The following theorem relates granularity and sparsity.

Lemma 32 ([GOS+11]). Any Boolean function f : {0, 1}n → {+1,−1} with ‖f̂‖0 ≥ 2, has
gran(f) ≤ ⌊log2 ‖f̂‖0⌋ − 1.

Now we can show the lemma for low-density functions.

Lemma 33. For all f : {0, 1}n → {0, 1} with ρ1(f) =
polylog(‖f̂‖0)

‖f̂‖0
, D⊕(f) ≤ logO(1)

(
‖f̂‖0

)
. Thus

the Log-rank Conjecture is true for f ◦ ⊕.

For completeness, we give a self-contained proof (without resorting to [IMR12]) of this lemma
using Beckner-Bonami inequality in Appendix B with a slightly worse parameter.

Proof. Suppose that ρ1(f) = logc ‖f̂‖0/‖f̂‖0. By Lemma 32, the minimum Fourier coefficient (in
absolute value) is at least 2/‖f̂‖0. Take ǫ as this value, and apply Lemma 31, we know that all
nonzero Fourier coefficients are in a subspace of dimension

O((ρ1(f)‖f̂‖0)2 ln(1/ρ1(f))) = O(log2c+1 ‖f̂‖0).

This implies that there exists an invertible linear transformation L such that all the non-zero Fourier
coefficients of f ◦ L lie in a subspace of dimension d = O(log2c+1 ‖f̂‖0). By choosing the basis
appropriately, we may assume, without loss of generality, that the subspace is just {0, 1}d × 0n−d.
Thus a decision tree algorithm for f ◦L can simply query these bits. Therefore, D⊕(f) ≤ D(f ◦L) ≤
logO(1)

(
‖f̂‖0

)
.

The last lemma we need is the following result by Gopalan et al. [GOS+11]. Recall that a
function f : {0, 1}n → {+1,−1} is µ-close to s-sparse in ℓ2 if

∑
i>s f̂(si)

2 ≤ µ2, where |f̂(s1)| ≥
... ≥ |f̂(sN )|. We say two functions f, g : {0, 1}n → {+1,−1} are ǫ-close if Prx[f(x) 6= g(x)] ≤ ǫ.

Lemma 34 ([GOS+11]). If f : {0, 1}n → {+1,−1} is µ-close to s-sparse in ℓ2, where µ ≤ 1
20s2

,
then f is µ2/2-close to a Boolean function g : {0, 1}n → {+1,−1} of Fourier sparsity s.

Putting these results together, we can prove Theorem 11.

Theorem 11 (Restated). If f : {0, 1}n → {+1,−1} is µ-close to s-sparse in ℓ2, where µ ≤
logO(1) ‖f̂‖0√

‖f̂‖0
and s ≤ logO(1) ‖f̂‖0, then D⊕(f) ≤ logO(1) ‖f̂‖0.

Proof. Since f is µ-close to s-sparse, and 20s2µ = logO(1) ‖f̂‖0√
‖f̂‖0

< 1 for sufficiently large ‖f̂‖0, therefore
by Lemma 34, f is µ2/2-close to a Boolean function g of Fourier sparsity s. We will compute f by

computing g and fg. By the setting of parameter µ, it holds that µ2/2 ≤ logO(1) ‖f̂‖0
‖f̂‖0

, and hence

ρ−1(fg) ≤ logO(1) ‖f̂‖0
‖f̂‖0

. Note that ρ−1 in the {+1,−1}-range representation is just the same as ρ1 in

the {0, 1}-range representation. Applying Lemma 15, we have ‖f̂ g‖0 ≤ ‖f̂‖0‖ĝ‖0 ≤ ‖f̂‖0 · s. Now
by Lemma 33, we see that the Boolean function fg can be computed using logO(1) ‖f̂‖0 queries.
To compute g itself, we can just use the trivial upper bound of D⊕(f) ≤ ‖ĝ‖0 = s = logO(1) ‖f̂‖0.
Thus

D⊕(f) ≤ D⊕(g) + D⊕(fg) ≤ logO(1) ‖f̂‖0,
as desired.
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7 Concluding remarks

The major open question is to prove Conjecture 2, rank(f) = O(logc(‖f̂‖0)), or even the stronger
Conjecture 27, C⊕,min(f) = O(logc ‖f̂‖1 + 1). In general, the gap between ‖f̂‖0 and ‖f̂‖1 can be

huge. For instance, the AND function of n variables have ‖f̂‖0 = 2n and ‖f̂‖1 = O(1). Thus
one may think that Conjecture 27 is probably too strong to hold. However, note that the AND
function has a large F2-degree, and Fourier sparse functions always have F2-degree smaller than
log ‖f̂‖0. We actually do not know any counterexample for Conjecture 27 even for c = 1. Indeed,
we can show that Conjecture 27 actually holds for several classes of functions, where for symmetric
functions we use a result from [AFH12].

Proposition 35. Conjecture 27 is true with c = 1 for affine subspace indicators 1H , degree-d bent
functions x1...xd + · · ·+ xn−d+1...xn and all symmetric functions.

Note that if C⊕,min(f) = O(log ‖f̂‖1) is true, then we not only have DCC(f◦⊕) = O(log2 rank(Mf◦⊕)),

but also further improve Green-Sander’s result to T = ‖f̂‖d1; see Proposition 28 and Corollary 29.

In the upper bound in Lemma 26, the 2d
2/2 factor comes from the fact that ‖∆̂tf‖1 ≤ ‖f̂‖21.

As we have the freedom of picking any t, is it possible that, for any Boolean function f , one can
always find a t such that the Fourier sparsity of its derivative ‖∆̂tf‖1 is much smaller than the
trivial upper bound ‖f̂‖21?
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A Restriction of functions on affine subspace: Proof of Lemma 16

Proof. (of Lemma 16) We will show the conclusion for affine subspaces of co-dimension 1, and the
second and third conclusion for the general H follows by repeatedly applying the result. When
co-dim(H) = 1, namely co-dim(V ) = 1, there is a unique non-zero vector t ∈ {0, 1}n orthogonal
to all vectors in V . Take a basis r1, ..., rn−1 of V , and further take a vector rn ∈ V . Define an
n × n matrix R = [r1, ..., rn], then Rf(y) = f(Ry) = f(y1r

1 + · · · + ynr
n). Define two functions

f0, f1 : {0, 1}n−1 → R by fb(y) = Rf(yb), namely

f0(y1...yn−1) = f(y1r
1+ · · ·+yn−1r

n−1) and f1(y1...yn−1) = f(y1r
1+ · · ·+yn−1r

n−1+rn). (9)

Since fb is defined on {0, 1}n, its Fourier spectrum can be defined as before, and we will use it
as the Fourier spectrum of f |H . Now we will prove that this choice of definition satisfies the
three conditions. Note that though the choice of r1, ..., rn is not unique, but the vector of Fourier
coefficients are the same up to a permutation, and in particular, its ℓp-norm does not depend on
the choice of R.

1. Let us first compute the Fourier coefficients of the function Rf : {0, 1}n → R. It is not hard
to see that for any s ∈ {0, 1}n−1, we have

R̂f(s0) =
1

2
(f̂0(s) + f̂1(s)) and R̂f(s1) =

1

2
(f̂0(s)− f̂1(s)).

This implies that

f̂0(s) = f̂((RT )−1(s0)) + f̂((RT )−1(s1)) and f̂1(s) = f̂((RT )−1(s0)) − f̂((RT )−1(s1)),

where we used the fact that R̂f(s) = f̂((RT )−1s) for any invertible linear transformation R.
So in either subfunction, the pair of Fourier coefficients of f that collide are

{(f̂((RT )−1(s0)), f̂ ((RT )−1(s1))) : s ∈ {0, 1}n−1}.

To see the relation of these two characters, suppose that the rows of L = R−1 are l1, ..., ln,
then by LR = I, we know that 〈ln, r1〉 = ... = 〈ln, rn−1〉 = 0. Since there is only one nonzero
vector, t, orthogonal to all r1, ..., rn−1, therefore ln = t, and thus (RT )−1(s0)+(RT )−1(s1) = t.
So the pairs are just those (s, s+ t).

2. Since the Fourier spectrum of fb is formed by pairing up (using plus or minus) the Fourier
spectrum of f , by the standard fact that |a|p + |b|p ≥ |a+ b|p for any p ∈ [0, 1], we know that
‖f̂b‖p ≤ ‖f̂‖p.
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3. First, for Boolean function fb : {0, 1}n−1 → {+1,−1}, we know that fb(y) = ±χs(y) ⇔
‖f̂b‖0 = 1 by definition of ℓ0-norm. Since 1 = ‖f̂b‖2 ≤ ‖f̂b‖1 ≤ ‖f̂b‖0 by Parseval’s Identity, it
is easily seen that ‖f̂b‖1 = 1 is equivalent to that there is only one nonzero Fourier coefficient.

The conclusion now follows by noting that fb is a linear function if and only if f |H(x) =
R−1fb(x) = fb(R

−1x) is a linear function.

B A proof of Lemma 33

For any 0 < η ≤ 1 we can define a linear operator Tη : C
{0,1}n → C

{0,1}n such that, for any

f : {0, 1}n → C with Fourier expansion f(x) =
∑

t∈{0,1}n f̂(t)χt(x), Tη(f) is a complex-valued
function over the Boolean cube such that for every x ∈ {0, 1}n,

Tη(f)(x) =
∑

t∈{0,1}n

f̂(t)η|t|χt(x).

The following remarkable theorem [Bon70, Bec75] shows that Tη is a norm-1 operator from

L1+η2({0, 1}n) to L2({0, 1}n).
Theorem 36 (Bonami-Beckner Theorem). Let f : {0, 1}n → C be a function defined over the
Boolean cube. Then for every 0 < η ≤ 1,

‖Tηf‖2 ≤ ‖f‖1+η2 .

Lemma 37. Let f : {0, 1}n → {0, 1} be a Boolean function with Fourier sparsity s and density
ρ1(f) = O(polylogs)/s. Then there exists an invertible linear map L : {0, 1}n → {0, 1}n such that
all the non-zero Fourier coefficients of Lf lie in a subspace of dimension d = O(polylogs).

Proof. Let Λ ⊂ {0, 1}n be the set of vectors in {0, 1}n at which the Fourier coefficients of f are
non-zero. Suppose d = dim(Span(Λ)). Let ξ1, . . . ξd be a set of d linearly independent vectors in
Λ. Let L : {0, 1}n → {0, 1}n be an invertible linear map. If we define a new Boolean function
f ′ : {0, 1}n → {0, 1} such that f ′ := Lf , then it can be readily verified that f̂ ′(α) = f̂((L−1)Tα) for
every α ∈ {0, 1}n. Therefore by choosing L appropriately and replacing f with f ′ we may assume
that ξ1, . . . , ξd are the standard basis e1, . . . , ed. Recall that for every α ∈ Λ, |f̂ ′(α)| ≥ 1/s, then
for any 0 < η ≤ 1, we have

d(
η

s
)2 ≤

d∑

i=1

|ηf̂ ′(ei)|2 =
d∑

i=1

η2|f̂ ′(ei)|2

≤
∑

t∈Λ

η2|t||f̂ ′(t)|2

=
∑

t∈Λ

|T̂ηf ′(t)|2

≤
∑

t

|T̂ηf ′(t)|2 = ‖Tηf
′‖22 (Parseval’s Identity)

≤ ‖f ′‖21+η2 (Theorem 36)

= ρ1(f
′)

2
1+η2 ,
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where in the last step we make use of the fact that f ′ is a Boolean function. Now taking η =
√

loglogs
log s

gives d ≤ O(polylogs).
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