
Decremental Single-Source Shortest Paths on Undirected

Graphs in Near-Linear Total Update Time
∗

Monika Henzinger
†

Sebastian Krinninger
‡

Danupon Nanongkai
§

Abstract

In the decremental single-source shortest paths (SSSP) problem we want to maintain the

distances between a given source node s and every other node in an n-nodem-edge graph G
undergoing edge deletions. While its static counterpart can be solved in near-linear time, this

decremental problem is much more challenging even in the undirected unweighted case. In

this case, the classic O(mn) total update time of Even and Shiloach [JACM 1981] has been

the fastest known algorithm for three decades. At the cost of a (1 + ϵ)-approximation factor,

the running time was recently improved to n2+o(1) by Bernstein and Roditty [SODA 2011]. In

this paper, we bring the running time down to near-linear: We give a (1 + ϵ)-approximation

algorithm withm1+o(1)
expected total update time, thus obtaining near-linear time. Moreover,

we obtainm1+o(1)
logW time for the weighted case, where the edge weights are integers from 1

toW . The only prior work on weighted graphs in o(mn) time is themn0.9+o(1)-time algorithm

by Henzinger et al. [STOC 2014, ICALP 2015] which works for directed graphs with quasi-

polynomial edge weights. The expected running time bound of our algorithm holds against an

oblivious adversary.

In contrast to the previous results which rely on maintaining a sparse emulator, our algo-

rithm relies on maintaining a so-called sparse (h, ϵ)-hop set introduced by Cohen [JACM 2000]

in the PRAM literature. An (h, ϵ)-hop set of a graph G = (V ,E) is a set F of weighted edges

such that the distance between any pair of nodes in G can be (1 + ϵ)-approximated by their

h-hop distance (given by a path containing at most h edges) on G ′ = (V ,E ∪ F). Our algorithm

can maintain an (no(1), ϵ)-hop set of near-linear size in near-linear time under edge deletions. It

is the �rst of its kind to the best of our knowledge. To maintain approximate distances using

this hop set, we extend the monotone Even-Shiloach tree of Henzinger et al. [SICOMP 2016]

and combine it with the bounded-hop SSSP technique of Bernstein [FOCS 2009, STOC 2016]

and Mądry [STOC 2010]. These two new tools might be of independent interest.

∗
Accepted to Journal of the ACM. A preliminary version of this paper was presented at the 55th IEEE Symposium on

Foundations of Computer Science (FOCS 2014).

†
University of Vienna, Faculty of Computer Science, Austria. Supported by the Austrian Science Fund (FWF): P23499-

N23. The research leading to these results has received funding from the European Research Council under the European

Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 340506 and from the European

Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 317532.

‡
University of Salzburg, Department of Computer Sciences, Austria. Supported by the University of Vienna (IK

I049-N). Work done in large part while at University of Vienna, Austria.

§
KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science (EECS), Sweden. Work

partially done while at ICERM, Brown University, USA, and Nanyang Technological University, Singapore 637371, and

while supported in part by the following research grants: Nanyang Technological University grant M58110000, Singapore

Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 2 grant MOE2010-T2-2-082, and Singapore MOE

AcRF Tier 1 grant MOE2012-T1-001-094.

1

ar
X

iv
:1

51
2.

08
14

8v
2

 [
cs

.D
S]

 1
7

A
ug

 2
01

8

Contents

1 Introduction 3

2 Preliminaries 5

3 Technical Overview 7

4 From Approximate SSSP to Approximate Balls 14
4.1 Relation to Exact Balls . 16

4.2 Properties of Approximate Balls . 17

5 From Approximate Balls to Approximate SSSP 20
5.1 Algorithm Description . 21

5.2 Running Time Analysis . 22

5.3 De�nitions of Values for Approximation Guarantee 23

5.4 Analysis of Approximation Guarantee . 26

6 Putting Everything Together 34
6.1 Approximate SSSP . 34

6.2 Approximate APSP . 40

7 Conclusion 42

References 43

2

1 Introduction

Dynamic graph algorithms refer to data structures on graphs that support update and query

operations. They are classi�ed according to the type of update operations they allow: decremental

algorithms allow only edge deletions, incremental algorithms allow only edge insertions, and fully

dynamic algorithms allow both insertions and deletions. In this paper, we consider decremental

algorithms for the single-source shortest paths (SSSP) problem on undirected graphs. The unweighted

case of this problem allows the following operations.

• Delete(u,v): delete the edge (u,v) from the graph, and

• Distance(v): return the distance distG (s,v) between node s and nodev in the current graphG .

The weighted case allows an additional operation Increase(u,v,∆) which increases the weight of

the edge (u,v) by ∆. We allow positive integer edge weights in the range from 1 toW , for some

parameterW . For any α ≥ 1, we say that an algorithm is an α-approximation algorithm if, for any

distance query Distance(x), it returns a distance estimate δ (s,x) such that distG (s,x) ≤ δ (s,x) ≤
α distG (s,x). There are two time complexity measures associated with this problem: query time

denoting the time needed to answer each distance query, and total update time denoting the time

needed to process all edge deletions. The running time will be measured in terms of n, the number

of nodes in the graph, andm, the number of edges before the �rst deletion. For the weighted case,

we additionally consider the dependence onW , the maximum edge weight. We use Õ-notation to

hide factors that are polylogarithmic in n. In this paper, we focus on algorithms with small (O(1) or

polylogn) query time, and the main goal is to minimize the total update time, which will simply be

referred to as time when the context is clear.

Related Work The static version of SSSP can be easily solved in Õ(m) time using, e.g., Dijkstra’s

algorithm. Moreover, due to the deep result of Thorup [Tho99], it can even be solved in linear

(O(m)) time in undirected graphs with positive integer edge weights. This implies that in our

setting we can naively solve decremental SSSP in O(m2) total update time by running the static

algorithm after every deletion. The �rst non-trivial decremental algorithm is due to Even and

Shiloach [ES81] from 1981 and takesO(mn) total update time in unweighted undirected graphs. This

algorithm will be referred to as ES-tree throughout this paper. It has many applications such as for

decremental strongly connected components [Rod13] and multicommodity �ow problems [Mąd10];

yet, the ES-tree has resisted many attempts of improving it for decades. Roditty and Zwick [RZ11]

explained this phenomenon by providing evidence that the ES-tree is optimal for maintaining exact

distances even on unweighted undirected graphs, unless there is a major breakthrough for Boolean

matrix multiplication and many other long-standing problems [VW10]. After the preliminary

version of our work appeared, Henzinger et al. [Hen
+
15] showed that, up to subpolynomial factors,

O(mn) is essentially the best possible total update time for maintaining exact distances under

the assumption that there is no “truly subcubic” algorithm for a problem called online Boolean

matrix-vector multiplication. Under the same assumption, they also showed that there is no fully

dynamic α-approximate SSSP algorithm such that α < 2 with amortized time O(mγ−δ) per update
and query timeO(m1−γ−δ) for any γ ∈ (0, 1) and δ > 0.

1
In incremental and decremental algorithms,

respectively, the same type of trade-o� holds between the worst-case update time and the query

time. It is thus natural to shift the focus to amortized decremental approximation algorithms; the

1
This conditional lower bound then holds for graphs withm ≤ min(n1/γ ,n1/(1−γ)) many edges.

3

amortization is usually done implicitly by only considering the total update time over a sequence

of up tom deletions.

The �rst improvement for unweighted undirected graphs was due to Bernstein and Roditty [BR11]

who presented a randomized (1+ϵ)-approximation algorithm with n2+O (1/
√
logn)

total update time.
2

This time bound is only slightly larger than quadratic and beats the O(mn) time of the ES-tree

unless the input graph is very sparse. After the preliminary version of our work appeared, Bern-

stein and Chechik, presented deterministic (1 + ϵ)-approximation algorithms for unweighted

undirected graphs with total update times Õ(n2) [BC16] and Õ(n1.25
√
m) = Õ(mn3/4) [BC17], re-

spectively. In weighted undirected graphs, an extension of the technique gives a total update time

of Õ(n2 logW) [Ber17].

For the case of directed graphs, Henzinger and King [HK95] observed that the ES-tree can be

easily adapted to unweighted directed graphs. King [Kin99] later extended the ES-tree to anO(mnW)-
time algorithm for weighted directed graphs. A rounding technique used in recent algorithms of

Bernstein [Ber09, Ber16] and Mądry [Mąd10], as well as earlier papers on approximate shortest

paths [KS97, Coh98, Zwi02], gives a (1 + ϵ)-approximate Õ(mn logW)-time algorithm for weighted

directed graphs. Very recently, we obtained a randomized (1 + ϵ)-approximation algorithm with

total update timemn0.9+o(1) for decremental approximate SSSP in weighted directed graphs [HKN14,

HKN15] ifW ≤ 2
log

c n
for some constant c . This gives the �rst o(mn)-time algorithm for the directed

case, as well as other important problems such as single-source reachability and strongly connected

components [RZ08, Lac13, Rod13, Che
+
16]. Also very recently, Abboud and Williams [AV14]

showed that “deamortizing” our algorithms in [HKN14] might not be possible: a combinatorial

algorithm with worst case update time and query time of O(n2−δ) (for any δ > 0) per deletion

implies a faster combinatorial algorithm for Boolean matrix multiplication and, for the more general

problem of maintaining the number of reachable nodes from a source under deletions (which our

algorithms in [HKN14] can do) a worst case update and query time of O(m1−δ) (for any δ > 0) will

falsify the strong exponential time hypothesis.

Our Results Given the signi�cance of the decremental SSSP problem, it is important to under-

stand its time complexity.

In this paper, we obtain a near-linear time algorithm for decremental (1 + ϵ)-approximate

SSSP in weighted undirected graphs. Its total update time ism1+O (log5/4((logn)/ϵ)/log1/4 n)
logW and it

maintains an estimate of the distance between the source node and every other node, guaranteeing

constant worst-case query time. The algorithm is randomized and assumes an oblivious adversary

who �xes the sequence of updates in advance, an assumption that so far was also made for all

other results on approximate decremental SSSP utilizing randomization. The algorithm is always

correct and the bound on its total update time holds in expectation, which makes it a Las Vegas

algorithm. In both, the weighted and the unweighted setting, our algorithm signi�cantly improves

upon previous algorithms, leaving room for running time improvements only with respect to

subpolynomial factors, which so far has only been achieved in the very dense regime [BC16, Ber17].

As a consequence of our techniques we also obtain an algorithm for the all-pairs shortest

paths (APSP) problem. For every integer k ≥ 2 and every 0 < ϵ ≤ 1, we obtain a randomized

decremental ((2 + ϵ)k − 1)-approximate APSP algorithm with query time O(kk) and total update

time m1+1/k+O (log5/4((logn)/ϵ)/log1/4 n)
log

2W in expectation. We remark that for k = 2 and 1/ϵ =
2
To enhance readability we assume that ϵ is a constant when citing related work, thus omitting the dependence on ϵ

in the running times.

4

polylogn our result gives a (3 + ϵ)-approximation with constant query time and total update

timem1+1/2+o(1)
logW . For very sparse graphs withm = Θ(n), this is almost optimal in the sense

that it almost matches the static running time [TZ05] of O(m
√
n), providing stretch of 3 + ϵ

instead of 3 as in the static setting. Our result on approximate APSP has to be compared with

the following prior work. For weighted directed graphs Bernstein [Ber16] gave a randomized

decremental (1 + ϵ)-approximate APSP algorithm with constant query time and total update time

Õ(mn logW). For unweighted undirected graphs there are two previous results that improve upon

this update time at the cost of larger approximation error. First, for any integer k ≥ 2, Bernstein

and Roditty [BR11] gave a randomized decremental (2k − 1 + ϵ)-approximate APSP algorithm

with constant query time and total update timemn1/k+O (1/
√
logn))

. Second, for any integer k ≥ 2,

Abraham et al. [ACT14] gave a randomized decremental 2
O (ρk)

-approximate APSP algorithm for

unweighted undirected graphs with query time O(kρ) and total update time Õ(mn1/k), where

ρ = (1 + d(logn1−1/k)/log (m/n1−1/k)e).

Outline We give preliminaries on decremental approximate shortest path algorithms in Section 2

and provide a technical overview of our approach in Section 3. Our algorithm, presented in Sections 4

to 6, uses the following hierarchical approach: Given a decremental approximate SSSP algorithm for

distances up to Di with total update timem1+o(1)
, we can maintain so-called approximate balls for

distances up toDi with total timem1+o(1)
as well. And given a decremental algorithm for maintaining

approximate balls for distances up to Di with total update timem1+o(1)
we can use the approximate

balls to de�ne a hop set which allows us to maintain approximate shortest paths for distances up

to Di+1 = n
o(1)Di with total update timem1+o(1)

. This scheme is repeated until Di is large enough

to cover the full distance range. We have formulated the two parts of this scheme as reductions.

In Section 4 we give a decremental algorithm for maintaining approximate balls that internally

uses a decremental approximate SSSP algorithm. In Section 5 we give a decremental approximate

SSSP algorithm that internally uses a decremental algorithm for maintaining approximate balls.

In Section 6 we explain the hierarchical approach for putting these two parts together and obtain

the decremental (1 + ϵ)-approximate SSSP algorithm with a total update time of m1+o(1)
for the

full distance range. In addition to this result, the algorithm for maintaining approximate balls,

together with a suitable query algorithm, gives us a decremental approximate APSP algorithm. This

algorithm is also given in Section 6. Finally, we conclude the paper in Section 7.

2 Preliminaries

In this paper we want to maintain approximate shortest paths in an undirected graph G = (V ,E)
with positive integer edge weights in the range from 1 toW , for some parameterW . The graph

undergoes a sequence of updates, which might be edge deletions or edge weight increases. This is

called the decremental setting. We denote by V the set of nodes of G and by E the set of edges of G.

We denote by n the number of nodes of G and by m the number of edges of G before the �rst edge

deletion.

For every weighted undirected graphG , we denote the weight of an edge (u,v) inG bywG (u,v).
The distance distG (u,v) between a node u and a node v in G is the weight of the shortest path, i.e.,

the minimum-weight path, between u and v in G. If there is no path between u and v in G, we

set distG (x ,y) = ∞. For every set of nodes U ⊆ V we denote by E[U] the set of edges incident to

5

the nodes of U , i.e., E[U] = {(u,v) ∈ E | u ∈ U }.3 Furthermore, for every set of nodes U ⊆ V , we

denote by G |U the subgraph of G induced by the nodes inU , i.e., G |U contains all edges (u,v) such

that (u,v) is contained in E and u and v are both contained in U , or in short: G |U = (U ,E ∩U 2).
Similarly, for every set of edges F ⊆ V 2

and every set of nodes U ⊆ V we denote by F |U the subset

of F induced by U .

We say that a distance estimate δ (u,v) is an (α , β)-approximation of the true distance distG (u,v)
if distG (u,v) ≤ δ (u,v) ≤ α distG (u,v) + β , i.e., δ (u,v) never underestimates the true distance and

overestimates it with a multiplicative error of at most α and an additive error of at most β . If there

is no additive error, we simply say α-approximation instead of (α , 0)-approximation.

In our algorithms we will use graphs that do not only undergo edge deletions and edge weight

increases, but also edge insertions. For such a graph H , we denote by E(H) the number of edges

ever contained in H , i.e., the number of edges contained in H before any deletion or insertion

plus the number of inserted edges. We denote byW(H) the number of updates to the edges in H .

Similarly, for a set of edges F , we denote by E(F) the number of edges ever contained in F and by

W(F) the number of updates to the edges in F .

The central data structure in decremental algorithms for exact and approximate shortest paths

is the Even-Shiloach tree (short: ES-tree). This data structure maintains a shortest paths tree from a

root node up to a given depth D.

Lemma 2.1 ([ES81, HK95, Kin99]). There is a data structure called ES-tree that, given a weighted

directed graphG undergoing deletions and edge weight increases, a root node s , and a depth parameter

D, maintains, for every node v a value δ (v, s) such that δ (v, s) = distG (v, s) if distG (v, s) ≤ D and

δ (v, s) = ∞ if distG (v, s) > D. It has constant query time and a total update time of O(mD + n).

Note that Dinitz, as part of his max-�ow algorithm [Din70], earlier developed an algorithm with

similar guarantees for the decremental single-source single-sink shortest path problem [Din06].

Recent approaches for solving approximate decremental SSSP and APSP use special graphs

called emulators. An (α , β)-emulator H of a graph G is a graph containing the nodes of G such that

distG (u,v) ≤ distH (u,v) ≤ α distG (u,v) + β for all nodes u and v .
4

Maintaining exact distances

on H provides an (α , β)-approximation of distances in G. As good emulators are sparser than the

original graph this is usually more e�cient than maintaining exact distances on G. However, the

edges of H also have to be maintained while G undergoes updates. For unweighted, undirected

graphs undergoing edge deletions, the emulator of Thorup and Zwick (based on the second spanner

construction in [TZ06]), which provides a relatively good approximation, can be maintained quite

e�ciently [BR11]. However the de�nition of this emulator requires the occasional insertion of

edges into the emulator. Thus, it is not possible to run a purely decremental algorithm on top of it.

There have been approaches to design algorithms that mimic the behavior of the classic ES-

tree when run on an emulator that undergoes insertions. The �rst approach by Bernstein and

Roditty [BR11] extends the ES-tree to a fully dynamic algorithm and analyzes the additional work

incurred by the insertions. The second approach was introduced by us in [HKN16] and is called

monotone ES-tree. It basically ignores insertions of edges into H and never decreases the distance

estimate it maintains. However, this algorithm does not provide an (α , β)-approximation on any

arbitrary (α , β)-approximate emulator as it needs to exploit structural properties of the emulator to

guarantee the approximation. In [HKN16] we gave an analysis of the monotone ES-tree when run

3
Since G is an undirected graph, this de�nition is equivalent to E[U] = {(u,v) ∈ E | u ∈ U or v ∈ U }.

4
For the related notion of a spanner we additionally have to require that H is a subgraph of G.

6

on a speci�c (1 + ϵ, 2)-emulator and in the current paper we use a di�erent analysis for our new

algorithms. If we want to use the monotone ES-tree to maintain (α , β)-approximate distances up to

depth D we will set the maximum level in the monotone ES-tree to L = αD + β . The running time

of the monotone ES-tree as analyzed in [HKN16] is as follows.

Lemma 2.2. For every L ≥ 1, the total update time of a monotone ES-tree up to maximum level L on a

graphH undergoing edge deletions, edge insertions, and edge weight increases isO(E(H) · L +W(H)+
n).

3 Technical Overview

In the following we explain the main ideas of this paper, which lead to an algorithm for maintaining

a hop set of a graph undergoing edge deletions.

General Idea With the well-known algorithm of Even and Shiloach we can maintain a shortest

paths tree from a source node up to a given depth D under edge deletions in time O(mD). In

unweighted graphs, all simple paths have at most n − 1 edges and therefore we can set D = n to

maintain a full shortest paths tree. In weighted graphs with positive integer edge weights from 1

toW , all simple paths have weight at most (n − 1)W and therefore we can set D = nW to maintain

a full shortest paths tree. Using an established rounding technique [KS97, Coh98, Zwi02, Ber09,

Mąd10, Ber16, Nan14], one can use this algorithm to maintain (1 + ϵ)-approximate single-source

shortest paths up to h edges in time O(mh log (nW)/ϵ). By setting h = n, we can use this algorithm

to maintain a full approximate shortest paths tree, even in weighted graphs. This algorithm would

be very e�cient if the graph had a small hop diameter, i.e., if for any pair of nodes there were a

shortest path with a small number of edges. Our idea is to arti�cially construct such a graph.

To this end we will use a so-called hop set. An (h, ϵ)- hop set F of a graph G = (V ,E) is a set

of weighted edges F ⊆ V 2
, where the weight of each edge (u,v) ∈ F is at least distG (u,v), such

that in the graph H = (V ,E ∪ F) there exists, for every pair of nodes u and v , a path from u to v
of weight at most (1 + ϵ) distG (u,v) and with at most h hops. In this terminology, the number of

hops of a path is its number of edges. If we run the approximate SSSP algorithm on H , we obtain a

running time of O((m + |F |)h log (nW)/ϵ). In our algorithm we will obtain an (no(1), ϵ)-hop set of

sizem1+o(1)
and thus, given the hop set, the running time will be m1+o(1)

log (nW)/ϵ . It is however

not enough to simply construct the hop set at the beginning. We also need a dynamic algorithm for

maintaining the hop set under edge deletions in G . We will present an algorithm that performs this

task also in almost linear time over all deletions.

Roughly speaking, we achieve the following. Given a graph G = (V ,E) undergoing edge

deletions, we can maintain a restricted hop set F such that, for all pairs of nodes u and v , if the

shortest path π from u to v in G has h ≥ n1/q hops, then in the shortcut graph H = (V ,E ∪ F)
there is a path from u to v of weight at most (1+ ϵ) distG (u,v) and with at most dh/n1/qe logn hops.

Our high-level idea for maintaining an (unrestricted) (no(1), ϵ) hop set is the following hierarchical

approach. We start with H0 = G to maintain a hop set F1 of G, which reduces the number of hops

by a factor of logn/n1/q at the cost of a multiplicative error of 1 + ϵ . Given F1, we use the shortcut

graph H1 = (V ,E ∪ F1) to maintain a hop set F2 of G that reduces the number of hops by another

factor of logn/n1/q introducing another error of 1+ϵ . By repeating this process q times we arrive at

a hop set that guarantees, for all pairs of nodes u and v , a path of weight at most (1+ ϵ)q distG (u,v)
and with at most (logn)q hops. Figure 1 visualizes this hierarchical approach.

7

u v

(1 + ϵ)n1/q
logn hops

(1 + ϵ)n1/q
logn hops

(1 + ϵ)n1/q
logn hops

(1 + ϵ)2n2/q
log

2 n hops

n1/q n1/q n1/q

n2/q

Figure 1: Illustration of the hierarchical approach for maintaining the hop set reduction. Here

q = Θ(
√
logn) and u and v are nodes that are at distance n2/q from each other. First, we �nd a hop

set that shortcuts all subpaths of weight n1/q by paths of weight at most (1 + ϵ)n1/q and with at

most logn hops. Second, we use the shortcuts of the �rst hop set to �nd a hop set that shortcuts

the path from u to v of weight n2/q by a path of weight at most (1 + ϵ)2n2/q and with at most log
2 n

hops.

The notion of hop set was �rst introduced by Cohen [Coh00] in the PRAM literature and is

conceptually related to the notion of emulator. It is also related to the notion of shortest-path

diameter used in distributed computing (e.g., [Kha
+
12, Nan14]). To the best of our knowledge, the

only place that this hop set concept was used before in the dynamic algorithms literature (without

the name being mentioned) is Bernstein’s fully dynamic (2+ϵ)-approximate APSP algorithm [Ber09].

There, Bernstein shows that the clustering of Thorup and Zwick [TZ05] yields an (no(1), ϵ)-hop set

by connecting each node with all nodes in its cluster. In his fully dynamic algorithm, this clustering

is recomputed from scratch after every edge update. Conceptually, our hop set is a decremental

variant of Bernstein’s hop set based however on a slightly simpler clustering. After the preliminary

version of our work appeared, Elkin and Neiman [EN] and Huang and Pettie [HP17] proved that

the hop set based on the Thorup-Zwick clustering provides a close-to optimal trade-o� between

hop parameter and size [ABP17] for (1 + ϵ)-approximate distances.

Static Hop Set We �rst assume that G = (V ,E) is an unweighted undirected graph and for

simplicity we also assume that ϵ is a constant. We explain how to obtain a hop set of G using a

randomized construction of Thorup and Zwick [TZ06] based on the notion of balls of nodes. We

describe this construction and the hop-set analysis in the following.

Let 2 ≤ p ≤ logn be a parameter and consider a sequence of sets of nodes A0,A1, . . . ,Ap
obtained as follows. We set A0 = V and Ap = ∅ and for 1 ≤ i ≤ p− 1 we obtain the set Ai by picking

each node of V independently with probability 1/ni/p . The expected size of Ai is n1−i/p . For every

node u we de�ne the priority of u as the maximum i such that u ∈ Ai . For a node u of priority i we

de�ne

Ball(u) = {v ∈ V | distG (u,v) < distG (u,Ai+1)} (1)

8

where distG (u,Ai+1) = minv ∈Ai+1 distG (u,v). Note that distG (u,Ap) = ∞ and thus if u ∈ Ap−1,
then Ball(u) = V . For each node u of priority i the size of Ball(u) is n(i+1)/p in expectation by the

following argument: Order the nodes in non-decreasing distance from u. Each of these nodes

belongs to Ai+1 with probability 1/n(i+1)/p and therefore, in expectation, we need to see n(i+1)/p

nodes until one of them is contained in Ai+1. It follows that the expected size of all balls of priority i
is at most n1+1/p (the expected size of Ai times the expected size of Ball(u) for each node u of

priority i) and the expected size of all balls, i.e.,

∑
u ∈V |Ball(u)|, is at most pn1+1/p .

Let F be the set of edges F = {(u,v) ∈ V 2 | v ∈ Ball(u)} and give each edge (u,v) ∈ F the

weight wF (u,v) = distG (u,v). By the argument above, the expected size of F is at most pn1+1/p . An

argument of Thorup and Zwick [TZ06] shows that the weighted graph H = (V , F) has the following

property for every pair of nodes u and v and any 0 < ϵ ≤ 1 such that 1/ϵ is integer:
5

distG (u,v) ≤ distH (u,v) ≤ (1 + ϵ) distG (u,v) + 2
(
2 +

2

ϵ

)p−2
.

Note that the choice of ϵ gives a trade-o� in the error between the multiplicative part (1 + ϵ) and

the additive part 2(2 + 2/ϵ)p−2. In the literature, such a graph H is known as an emulator of G with

multiplicative error (1+ϵ) and additive error 2(2+ 2/ϵ)p−2.6 Roughly speaking, the strategy in their

proof is as follows. Letu ′ be the node followingu on the shortest path π fromu tov inG . If the edge

(u,u ′) is also contained in H , then we can shorten the distance to v by 1 without introducing any

approximation error (recall that we assume that G is unweighted). Otherwise, one can show that

there is a path π ′ with at most p edges in H from u to a nodev ′ closer tov than u such that the ratio

between the weight of π ′ and the distance from u to v ′ is at most (1 + ϵ), and, if v ′ = v , then the

weight of π ′ is at most 2(2 + 2/ϵ)p−2. The proof needs the following property of the balls: for every

node x of priority i and every node y, either y ∈ Ball(x) or there is some node z of priority j > i
such that distG (x , z) = distG (x ,Ai+1) ≤ distG (x ,y). We illustrate the proof strategy in Figure 2.

Observe that the same strategy can be used for the following hop-reduction argument: Given

any integer ∆ ≤ n, let u ′ be the node that is at distance ∆ from u on the shortest path from u to v
in G. If the edge (u,u ′) is contained in H , then we can shorten the distance to v by ∆ without

introducing any approximation error. Otherwise, one can show that there is a path π ′ with at most

p edges in H from u to a node v ′ closer to v than u such that the ratio between the weight of π ′

and the distance from u to v ′ is at most (1 + ϵ), and, if v ′ = v , then the weight of π ′ is at most

2(2 + 2/ϵ)p−2 · ∆. Every time we repeat this argument the distance to v is shortened by at least ∆.

Therefore there is a path from u to v in H with at most pddistG (u,v)/∆e edges that has weight at

most (1+ ϵ) distG (u,v)+ 2(2+ 2/ϵ)p−2 ·∆. Bernstein [Ber09] observed that in this type of argument

the latter statement would also be true if we had removed all edges from F of weight more than

(1 + 2/ϵ)(2 + 2/ϵ)p−2, which is the maximum weight of the edge to v ′ in the proof strategy above

outlined in Figure 2. We will need this fact in the dynamic algorithm as it allows us to limit the

depth of the balls.

By a suitable choice of p = Θ(
√
logn) (as a function of n and ϵ) we can guarantee that

2(2 + 2/ϵ)p−2 ≤ ϵn1/p and n1/p = no(1). Now de�ne q = p and ∆k = nk/q for each 0 ≤ k ≤ q − 2.

5
The requirement that 1/ϵ must be integer is not needed in the paper of Thorup and Zwick; we have added it here to

simplify the exposition.

6
In their paper, Thorup and Zwick [TZ06] actually de�ne a graph H ′ whose set of edges is the union of the shortest

paths trees from every node u to all nodes in its ball. This graph has the same approximation error and the same size as

H ; since H ′ is a subgraph of G it is called a spanner of G.

9

u0

u1

u2

v0 v1 v2 v

decreasing distance to v

i
n

c
r
e
a
s
i
n

g
p

r
i
o

r
i
t
y

Figure 2: Illustration of the approximation argument for p = 3 priorities. The dotted line is the

shortest path π from u0 to v in G. The thick, blue edges are the edges of F used to shorten the

distance to v . The dashed, blue edges are not contained in F and imply the existence of edges to

nearby nodes of increasing priority. Starting fromu0, a node of priority 0, we letv0 be the node on π
such that distG (u0,v0) = r0 := 1, i.e., the neighbor of u0 on π . If the edge (u0,v0) is not contained

in F , then F contains an edge (u0,u1) to a node u1 of priority at least 1 such that distG (u0,u1) ≤ r0.
Let v1 be the node on π such that distG (u1,v1) = r1 := 1 + 2/ϵ . If the edge (u1,v1) is not contained

in F , then F contains an edge (u1,u2) to a node u2 of priority at least 2 such that distG (u1,u2) ≤ r1.
Let v2 be the node on π such that distG (u2,v2) = r2 := (1 + 2/ϵ)(2 + 2/ϵ). Since 2 is the highest

priority, u2 contains the edge (u2,v2). Note that the weight of these three edges from F is at most

r0 + r1 + r2 and distG (u0,v2) ≥ r2 − (r0 + r1). Since r2 = (1 + 2/ϵ)(r0 + r1), the ratio between these

two quantities is (1 + ϵ).

Then we have, for every 0 ≤ k ≤ q − 2 and all pairs of nodes u and v

distG (u,v) ≤ distH (u,v) ≤ (1 + ϵ) distG (u,v) + 2
(
2 +

2

ϵ

)p−2
· ∆k

≤ (1 + ϵ) distG (u,v) + ϵn1/p · ∆k

= (1 + ϵ) distG (u,v) + ϵ∆k+1 .

Thus, if ∆k+1 ≤ distG (u,v) ≤ ∆k+2, then there is a path from u to v in H of weight at most

(1 + ϵ) distG (u,v) + ϵ∆k+1 ≤ (1 + ϵ) distG (u,v) + ϵ distG (u,v) = (1 + 2ϵ) distG (u,v)

and with at most pddistG (u,v)/∆k e ≤ (p + 1)∆k+2/∆k = (p + 1)n2/q = no(1) edges. On the other

hand, if distG (u,v) ≤ ∆1 = n
1/q

, then, as each edge of G has weight at least 1, there is a path from

u to v of weight distG (u,v) with at most n1/p = no(1) edges. It follows that F is an (no(1), 2ϵ)-hop set

of size O(pn1+1/p) = n1+o(1). Using the parameter ϵ ′ = ϵ/2 instead of ϵ , we obtain an (no(1), ϵ)-hop

set of size n1+o(1).

E�cient Construction So far we have ignored the running time for computing the balls and

thus constructing F , even in the static setting. Thorup and Zwick [TZ06] have remarked that a

naive algorithm for computing the balls takes time O(mn). We can reduce this running time by

sampling edges instead of nodes.

10

We modify the process for obtaining the sequence of sets A0,A1, . . . ,Ap as follows. We set

A0 = V and Ap = ∅ and for 1 ≤ i ≤ p − 1 we obtain the set Ai by picking each edge of E
independently with probability 1/mi/p

and adding both endpoints of each sampled edge to Ai . The

priority of a node u is the maximum i such that u ∈ Ai . We de�ne, for every node u of priority i ,
Ball(u) just like in Equation (1), but using the new de�nition of Ai . Note that the expected size of

Ai is O(m1−i/p) for every 1 ≤ i ≤ p − 1.

The balls can now be computed as follows. First, following Thorup and Zwick [TZ05], we

compute, for each 1 ≤ i ≤ p − 1, distG (u,Ai) = minv ∈Ai distG (u,v) for every node u by adding an

arti�cial source node si that is connected to every node inAi by an edge of weight 0. Using Dijkstra’s

algorithm, this takes time O(p(m + n logn)). Second, we compute for every node u of priority i a

shortest paths tree up to depth distG (u,Ai+1) − 1 to obtain all nodes contained in Ball(u). Using an

implementation of Dijkstra’s algorithm that only puts nodes into its queue upon their �rst visit this

takes time O(|E[Ball(u)]| logn) where E[Ball(u)] = {(x ,y) ∈ E | x ∈ Ball(u) or y ∈ Ball(u)} is the

set of edges incident to Ball(u). Using the same ordering argument as before, our random sampling

process for the edges guarantees that the expected size of E[Ball(u)] ism(i+1)/p . For 0 ≤ i ≤ p − 1
the expected size of Ai is O(m1−i/p) and thus these Dijkstra computations take time O(m1+1/p

logn)
for all nodes of priority i . By choosing p = Θ(

√
logn) as described above we have m1/p =mo(1)

and

thus the balls can be computed in timem1+o(1)
.

We de�ne F as the set of edges F = {(u,v) ∈ V 2 | v ∈ Ball(u)} and give each edge (u,v) ∈ F the

weight wF (u,v) = distG (u,v). The distance-preserving and hop-reducing properties of F still hold

as stated above and its expected size is O(pm1+1/p). Note that F is not necessarily a sparsi�cation

of G anymore (as the bound on its size is even more thanm). For our purposes the sparsi�cation

aspect is not relevant, we only need the hop reduction. Thus in the static setting, we can compute

an (mo(1), ϵ)-hop set (which is also an (ϵ,no(1))-hop set) of expected size m1+o(1)
in expected time

m1+o(1)
.

Maintaining Balls Under Edge Deletions As the graph G undergoes deletions the hop set has

to be updated as well. Unfortunately, we do not know how to maintain the balls e�ciently. However

we can maintain for all nodes u the approximate ball

Ball(u,D) = {v ∈ V | log distG (u,v) < blog distG (u,Ai+1)c and distG (u,v) ≤ D}

(where i is the priority of u) in time O(pm1+1/pD logD). Note that Ball(u,D) di�ers from the de�ni-

tion ofBall(u) in the following ways. First, we use the inequality log distG (u,v) < blog distG (u,Ai+1)c
instead of the inequality distG (u,v) < distG (u,Ai+1). This relaxed inequality alone increases the

additive error in the hop-reduction argument from 2(2 + 2/ϵ)p−2∆ to 4(3 + 4/ϵ)p−2∆ since before,

a node v of higher priority than a given node u could be found directly at the boundary of the

ball of u, whereas now v could be twice as far away. The increase in the additive error can easily

be compensated by reducing the number of priorities p by a constant factor. Second, we limit

the balls to a certain depth D. By using a small value of D we will only obtain a restricted hop

set that provides su�cient hop reduction for nodes that are relatively close to each other. We

will show later that this is enough for our purposes. Despite these modi�cations we clearly have

Ball(u,D) ⊆ Ball(u) and therefore all size bounds still apply.

In the �rst part of the algorithm for maintaining the balls, we maintain distG (u,Ai) up to

threshold D for every 1 ≤ i ≤ p − 1 and every node u. We do this by adding an arti�cial source

node si that has an edge of weight 0 to every node in Ai and maintain an ES-tree up to depth D
from si . This step takes time O(pmD).

11

Now, for every node u of priority i we maintain Ball(u,D) as follows. We maintain an ES-tree

up to depth

min

(
2
blog distG (u,Ai+1)c − 1,D

)
and every time 2

blog distG (u,Ai+1)c
increases, we restart the ES-tree. Naively, we incur a cost ofO(mD)

for each instance of the ES-tree. However we can easily implement the ES-tree in such a way that it

never processes edges that are not contained in E[Ball(u,D)].7 Thus, the cost of each instance of the

ES-tree is O(|E[Ball(u,D)]|D). Remember that Ball(u,D) ⊆ Ball(u) and that E[Ball(u)] is at most

m(i+1)/p in expectation. As 2
blog distG (u,Ai+1)c

can increase at most logD times until it exceeds D, we

initialize at most logD ES-trees for the node u. Therefore the total time needed for maintaining

Ball(u,D) is O(m(i+1)/pD logD) in expectation. As there are at most O(m1−i/p) nodes of priority i
in expectation, the total time needed for maintaining all approximate balls is O(pm1+1/pD logD) in

expectation.

Decremental Approximate SSSP Let us �rst sketch an algorithm for maintaining shortest paths

from a source node s with a running time of m1+1/2+o(1)
for which we use p = Θ(

√
logn) priorities.

We set ∆ = b
√
nc, p such that (2 + 4/ϵ)(3 + 4/ϵ)p−2 ≤ ϵn1/p and n1/p = no(1), and D = dϵn1/pe. We

maintain single-source shortest paths up to depth D from s using the ES-tree, which takes time

O(mD) = mn1/2+o(1). To maintain approximate shortest paths to nodes that are at distance more

than D from s we use the following approach. We maintain Ball(u,D) for every node u, as sketched

above, which takes time O(pm1+1/pD logD) =m1+1/2+o(1)
in expectation. At any time, we set the

hop set to be the set of edges F = {(u,v) ∈ V 2 | v ∈ Ball(u,D)} and give each edge (u,v) ∈ F the

weight wF (u,v) = distG (u,v). By our arguments above, the weighted graph H = (V , F) has the

following property: for every pair of nodes u and v such that distG (u,v) ≥ D (where D ≥ n1/p∆)

there is a path π ′ in H of weight at most (1 + ϵ) distG (u,v) + ϵn1/p∆ ≤ (1 + 2ϵ) distG (u,v) and with

at most pddistG (u,v)/∆e edges.

To maintain approximate shortest paths for nodes at distance more than D from s we will now

use the hop reduction in combination with the following rounding technique. We set φ = ϵ∆/(p+1)
and let H ′ be the graph resulting from rounding up every edge weight in H to the next multiple

of φ. By using H ′ instead of H we incur an error of φ for every edge on the approximate shortest

path π ′. Thus in H ′, π ′ has weight at most

(1 + 2ϵ) distG (u,v) + dp distG (u,v)/∆e · φ = (1 + 2ϵ) distG (u,v) + ϵ distG (u,v)
≤ (1 + 3ϵ) distG (u,v) .

The e�ciency now comes from the observation that we can run the algorithm on the graph H ′′

in which every edge weight in H ′ is scaled down by a factor of 1/φ. The graph H ′′ has integer

weights and the weights of all paths in H ′ and H ′′ di�er exactly by the factor 1/φ. Thus, instead of

maintaining a shortest paths tree up to depth n in H we only need to maintain a shortest paths tree

in H ′′ up to depth n/φ = p
√
n/ϵ . In this way we obtain a (1 + 3ϵ)-approximation for all nodes such

that distG (u,v) ≥ D.

7
If we prefer to use the ES-tree as a “black box” we can, in a preprocessing step, �nd the initial set Ball(u,D) and

only build an ES-tree for this ball. All other nodes will never be contained in Ball(u,D) anymore as long as the value of

2
blog distG (u,Ai+1)c

remains unchanged and therefore we can remove them. This can be done in timeO(|E[Ball(u,D)]| logn)
by using an implementation of Dijkstra’s algorithm that only puts nodes into its queue upon their �rst visit.

12

However, we cannot simply use the ES-tree on H ′′ because as edges are deleted from G, nodes

might join the approximate balls and therefore edges might be inserted into F and thus into H ′′.
This means that a dynamic shortest paths algorithm running on H ′′ would not be situated in a

purely decremental setting. However the insertions have a “nice” structure. We can deal with

them by using a previously developed technique, called monotone ES-tree [HKN16]. The main idea

of the monotone ES-tree is to ignore the level decreases made possible by inserting edges. The

hop-set proof still goes through, even though we are not arguing about the current distance in H ′′

anymore, but the level of a node u in the monotone ES-tree. Maintaining the monotone ES-tree for

distances up to D in H ′′ takes timeO(E(H ′′)D) where E(H ′′) is the number of edges ever contained

in H ′′ (including edges that are inserted over time) and D = O(n1/2+1/p) as explained above. Each

insertion of an edge into F corresponds to a node joining Ball(u,D) for some node u. For a �xed

node u of priority i there are at most logD possibilities for nodes to join Ball(u,D) (namely each

time blog distG (u,Ai+1)c increases) and every time at mostm(i+1)/p nodes will join in expectation.

It follows that E(H) is m1+o(1)
in expectation and the running time of this step is m1+1/2+o(1)

in

expectation.

The almost linear-time algorithm is just slightly more complicated. Here we use p = Θ(
√
logn)

priorities and a hierarchy of q =
√
p hop reductions. We further set ∆k = n

k/q
for each 0 ≤ k ≤ q−2.

In the algorithm we will maintain, for each 0 ≤ k ≤ q − 2 a hop set Fk such that for every pair of

nodes u and v with ∆k+1 ≤ distG (u,v) ≤ ∆k+2 there is a path from u to v in Hk = (V , Fk) of weight

at most (1 + 2ϵ) distG (u,v) and with at most p distG (u,v)/∆k ≤ pn2/q hops. To achieve this we use

the following hierarchical approach. Given the hop set Fk we can maintain approximate shortest

paths up to depth ∆k+2 in time m1+o(1)
and given a data structure for maintaining approximate

shortest paths up to depth ∆k we can maintain approximate balls and thus the hop set Fk+1 in time

m1+o(1)
. The hierarchy “starts” with using the ES-tree as an algorithm for maintaining an (exact)

shortest paths tree up to depth n2/q . Thus, running e�cient monotone ES-trees on top of the hop

sets and maintaining the hop sets (using e�cient monotone ES-trees) go hand in hand.

There are two obstacles in implementing this hierarchical approach when we want to maintain

the approximate balls in each of the q layers of the hierarchy. First, in our algorithm for maintaining

the approximate balls sketched above we have used the ES-tree as an exact decremental SSSP

algorithm. In the hierarchical approach we have to replace the ES-tree with the monotone ES-tree

which only provides approximate distance estimates. This will lead to approximation errors that

increase with the number of layers. Second, by the arguments above the number of edges in Fk
is O(m1+1/p) for each 0 ≤ k ≤ q − 2. In the algorithm for maintaining the approximate balls for

the next layer, this bound however is not good enough because we run a separate instance of the

monotone ES-tree for each node u. We deal with this issue by running the monotone ES-tree in the

subgraph of G induced by the nodes initially contained in Ball(u). For a node u of priority i this

subgraph contains mi =m
(i+1)/p

edges in expectation and we can recursively run our algorithm

on this smaller graph. By this process we incur a factor of m1/p
in the running time each time

we increase the depth of the recursion. This results in a total update time of m1+O (q/p)
which is

m1+O (1/q) =m1+o(1)
since q =

√
p.

Extension to Weighted Graphs The hop set construction described above only works for

unweighted graphs. However, the main property that we needed was distG (u,v) ≤ n for any pair

of nodes u and v . Using the rounding technique mentioned above, we can construct for each

0 ≤ i ≤ blognW c a graph Gi such that for all pairs of nodes u and v with 2
i ≤ distG (u,v) ≤ 2

i+1

13

we have distGi (u,v) ≤ 4n/ϵ and the shortest path in Gi can be turned into a (1 + ϵ)-approximate

shortest path in G by scaling up the edge weights. We now run O(log (nW)) instances of our

algorithm, one for each graph Gi , and maintain the hop set and approximate SSSP for each of them.

We only need to re�ne the analysis of the hop-set property in the following way. Remember

that in the analysis we considered the shortest path π from u to v and de�ned the node u ′ that is at

distance ∆ from u on π . If the hop set contained the edge (u,u ′) we could reduce the distance to v
by ∆. In weighted graphs (even after the scaling), we cannot guarantee there is a node at distance

exactly ∆ from u on π . Therefore we de�ne u ′ as the furthest node that is at distance at most ∆
from u on π . Furthermore we de�ne u ′′ as the neighbor of u ′ on π , i.e., u ′′ is at distance at least ∆
from u. Now if the hop set contains the edge (u,u ′) we �rst use the edge (u,u ′) from the hop set,

and then the edge (u ′,u ′′) from the original graph to reduce the distance to v by at least ∆ with

only 2 hops. Note that for unweighted graphs it was su�cient to only use the edges of the hop set.

For weighted graphs we really have to add the edges of the hop set to the original graph in our

algorithm.

4 From Approximate SSSP to Approximate Balls

In the following we show how to maintain the approximate balls of every node if we already have an

algorithm for maintaining approximate shortest paths. In our reduction we will use the algorithm

for maintaining approximate shortest paths as a “black box”, requiring only very few properties.

We can view the balls as a distance oracle with exponentially increasing stretch. Similar to

other distance oracles, we assign integer values called priorities to the nodes and ensure that the

balls have the following structural property: for every pair of nodes u and v , either v is in the ball

of u, or there is some node v ′ close to u that has higher priority than u. In the �rst case, we have

found an estimate of the distance between u and v as the approximate shortest path algorithm is

used to maintain an estimate of the distance between u and all nodes in its ball. In the second case,

we repeat the process for the nodes v ′ and u, incurring the ‘detour’ of going from u to v ′ �rst. As

the number of priorities is limited, this strategy succeeds eventually. In our analysis, we explicitly

bound the distance between u and v ′ (and thus the weight of the ‘detour’) by a function s(x , l),
where x is the distance between u and v and l is the di�erence in priorities between u and v ′. In

Section 6 it will become clear why our bound on s(x , l) is good enough for our purposes of using

the balls as a hop set and as a distance oracle, respectively. In addition to this structural property,

we need to bound the total size of the balls to obtain useful applications. This bound can be ensured

by an appropriate randomized assignment of priorities, with some complications arising from the

fact that the black box decremental SSSP algorithm does not provide exact distances. This also

helps for bounding the total update time for dynamically maintaining the balls. Formally, we prove

the following statement in this section.

Proposition 4.1. Assume there is a decremental approximate SSSP algorithm ApproxSSSP with the

following properties, using �xed values α ≥ 1, β ≥ 0, and D ≥ 1: Given a weighted graph G = (V ,E)
undergoing edge deletions and edge weight increases with n nodes and initiallym edges, and a �xed

source node s ∈ V , ApproxSSSP maintains, in total update time T (m,n), for every node v ∈ V a

distance estimate δ (s,v) such that:

A1 δ (s,v) ≥ distG (s,v)

A2 If distG (s,v) ≤ D, then δ (s,v) ≤ α distG (s,v) + β .

14

A3 After every update in G , ApproxSSSP returns, for every node v such that δ (s,v) has changed, v
together with the new value of δ (s,v).

Then there is a decremental algorithm ApproxBalls for maintaining approximate balls with the

following properties: Given a weighted graph G = (V ,E) undergoing edge deletions and edge weight
increases with n nodes and initiallym edges, and parameters k ≥ 2 and 0 < ϵ ≤ 1, it assigns to every

node u ∈ V a number from 0 to k − 1, called the priority of u, and maintains for every node u ∈ V a

set of nodes B(u) and a distance estimate δ (u,v) for every node v ∈ B(u) such that:

B1 For every node u and every node v ∈ B(u) we have distG (u,v) ≤ δ (u,v) ≤ α distG (u,v) + β .

B2 For all x ≥ 0, set s(x , 0) = x , and for all x ≥ 0 and l ≥ 1, set

s(x , l) = a(a + 1)l−1x + ((a + 1)l − 1)b/a ,

where a = (1 + ϵ)α and b = (1 + ϵ)β . Then for every 0 ≤ i ≤ k − 1, every node u of priority i ,
and every node v such that s(distG (u,v),k − 1 − i) ≤ D, either (1) v ∈ B(u) or (2) there is some

node v ′ of priority j > i such that u ∈ B(v ′) and distG (u,v ′) ≤ s(distG (u,v), j − i).

B3 In expectation,

∑
u ∈V B(u) = O(km1+1/k

logD/ϵ), where B(u) denotes the number of nodes ever

contained in B(u) over the sequence of updates to G.

B4 The total update time of ApproxBalls is

t(m,n,k, ϵ) = O
((
km1+1/k +

∑
0≤i≤k−1

m

mi/k ·T (mi ,ni)
)
· logn logD

ϵ
+ k ·T (m,n)

)
in expectation, where, for each 0 ≤ i ≤ k − 1,mi = O(m(i+1)/k) and ni = O(m(i+1)/k).

B5 After every update in G, ApproxBalls returns all pairs of nodes u and v such that v joins B(u),
v leaves B(u), or ˆδ (u,v) changes.

Note that by our de�nition of s(x , l) we have s(x , 1) = ax + b for all x ≥ 0 and s(x , l + 1) =
(a + 1)s(x , l) + b for all x ≥ 0 and l ≥ 1.

Our algorithm for maintaining the approximate balls B(u) for every node u ∈ V is as follows:

1. At the initialization we set F0 = E and Fk = ∅ and for 1 ≤ i ≤ k − 1, a set of edges Fi is

obtained from sampling each edge of E independently with probability 1/mi/k
. For every

0 ≤ i ≤ k − 1 we set Ai = {v ∈ V | ∃(v,w) ∈ Fi } and for every nodev ∈ V , we set the priority

of u to be the maximum i such that v ∈ Ai .

2. For each 1 ≤ i ≤ k − 1 we run an instance of ApproxSSSP from an arti�cial source node si
that has an edge of weight 0 to every node in Ai . We denote by δ (u,Ai) the distance estimate

provided by ApproxSSSP and set δ (u,Ak) = ∞ for every node u ∈ V .

3. For every 0 ≤ i ≤ k − 1 and every node u ∈ V of priority i , we maintain the value

r (u) = min

(
(1 + ϵ) blog1+ϵ δ (u,Ai+1)c − β

α
,D + 1

)
and at the initialization and each time r (u) increases we do the following:

15

(a) Compute the set of nodes R(u) = {v ∈ V | distG (u,v) < r (u)}.
(b) Run an instance of ApproxSSSP from u in G |R(u), the subgraph of G induced by R(u).

Let δ (u,v) denote the estimate of the distance between u and v in G |R(u) maintained

by ApproxSSSP.

(c) Maintain B(u) = {v ∈ V | δ (u,v) ≤ αD + β}: every time δ (u,v) changes for some

node v we check whether the inequality δ (u,v) ≤ αD + β still holds, and if not we

remove v from B(u).

Note that ApproxBalls has Property B5, i.e., it returns changes in the approximate balls and

the distance estimates, which is possible because ApproxSSSP has Property A3.

4.1 Relation to Exact Balls

In the following we compare the approximate balls maintained by our algorithm to the exact balls,

as used by Thorup and Zwick [TZ06]. We show how the main properties of exact balls translate to

approximate balls. We use the following de�nition of the (exact) ball of a node u of priority i:

Ball(u) = {v ∈ V | distG (u,v) < distG (u,Ai+1)} .

The balls have the following simple property: If v < Ball(u), then there is a node v ′ of priority j > i
such that distG (u,v ′) ≤ distG (u,v). We show that a relaxed version of this statement also holds for

the approximate balls.

Lemma 4.2. Let 0 ≤ i ≤ k−1, letu be a node of priority i , and letv be a node such that distG (u,v) ≤ D.
If v < B(u), then there is a node v ′ of priority j > i such that distG (u,v ′) ≤ a distG (u,v) + b, where
a = (1 + ϵ)α and b = (1 + ϵ)β .
Proof. We show the following: If distG (u,Ai+1) > a distG (u,v) + b, then v ∈ B(u). The claim then

follows from contraposition: Ifv < B(u), then distG (u,Ai+1) ≤ a distG (u,v)+b and thus there exists

some node v ′ ∈ Ai+1 (of priority j ≥ i + 1) such that distG (u,v ′) ≤ a distG (u,v) + b.

Assume that distG (u,Ai+1) ≥ a distG (u,v)+b. Since δ (u,Ai+1) ≥ distG (u,Ai+1), by Property A1
we have

δ (u,Ai+1) ≥ distG (u,Ai+1) > a distG (u,v) + b = (1 + ϵ)(α distG (u,v) + β)

which is equivalent to

distG (u,v) <
δ (u,Ai+1)

1+ϵ − β
α

.

Since

(1 + ϵ) blog1+ϵ δ (u,Ai+1)c ≥ (1 + ϵ)log1+ϵ δ (u,Ai+1)−1 = δ (u,Ai+1)
1 + ϵ

it follows that

distG (u,v) <
(1 + ϵ) blog1+ϵ δ (u,Ai+1)c − β

α
Since we have assumed that distG (u,v) ≤ D, we get distG (u,v) < r (u) by the de�nition of r (u). The

latter inequality also holds for all nodes on a shortest path π from u to v in G, and, as distances

in G are non-decreasing, this in particular is true at the last point in time where r (u) has changed.

Therefore, all nodes of π are contained in R(u), which implies that distG |R(u)(u,v) = distG (u,v) ≤ D.

Thus, by Property A2, it follows that δ (u,v) ≤ α distG |R(u)(u,v) + β ≤ αD + β , i.e., v ∈ B(u), as

desired. �

16

We now show that the approximate balls are contained in the exact balls. The exact balls are

useful in our analysis because we can easily bound their size.

Lemma 4.3. At any time B(u) ⊆ Ball(u) for every node u.

Proof. Let R(u) = {v ∈ V | distG (u,v) < r (u)} denote the set of nodes at distance of at most r (u)
from u at the last time r (u) has increased. Note that B(u) is a set of nodes of the graph G |R(u) and

therefore B(u) ⊆ R(u). It remains to show that R(u) ⊆ Ball(u).
Let v ∈ R(u) and let i be the priority of u. If i = k − 1, then the claim is trivially true because

Ball(u) contains all nodes that are connected to u in G. Consider thus the case 0 ≤ i < k − 1. In

the case 0 ≤ i < k − 1 remember that If distG (u,Ai+1) ≥ r (u), we trivially have distG (u,v) < r (u) ≤
distG (u,Ai+1). If on the other hand distG (u,Ai+1) < r (u), then in particular distG (u,Ai+1) ≤ D by

the de�nition of r (u) and by Property A2 we have δ (u,Ai+1) ≤ α distG (u,Ai+1) + β . It follows that

distG (u,v) < r (u) ≤ (1 + ϵ)
blog

1+ϵ δ (u,Ai+1)c − β
α

≤ (1 + ϵ)
log

1+ϵ δ (u,Ai+1) − β
α

=
δ (u,Ai+1) − β

α
≤ distG (u,Ai+1) .

In both cases we get distG (u,v) < distG (u,Ai+1) and as this is the de�ning property of Ball(u) we

have v ∈ Ball(u). �

Lemma 4.4. At any time, for every 0 ≤ i ≤ k − 1 and every node u of priority i , we have |Ball(u)| =
O(m(i+1)/k) and |E[Ball(u)]| = O(m(i+1)/k) in expectation over all random choices in sampling the set

Fi+1.

Proof. The claim is trivially true if Ball(u) = {u} and we thus assume that Ball(u) ⊃ {u} in the

following. It further su�ces to prove that |E[Ball(u)]| = O(m(i+1)/k) as |Ball(u)| ≤ 2|E[Ball(u)]|
and, as the claim immediately holds for i = k − 1, we only need to consider the case i < k − 1. For

every edge e = (v,w) ∈ E we de�ne distG (u, e) = min(distG (u,v), distG (u,w)). Order the edges of

the graph according distance from u under to this de�nition of distG (u, e) for each edge e , where

ties are broken in an arbitrary but �xed order. Let e = (u,v) be the �rst edge of Fi+1 in this order

and let E ′ ⊆ Fi be the set of edges that are strictly smaller than e in this order. As each edge of the

graph is contained in Fi+1 with probability 1/m(i+1)/k independently, we have |E ′ | ≤ m(i+1)/k in

expectation.

Assume without loss of generality that distG (u,v) ≤ distG (u,w), i.e., distG (u, e) = distG (u,v).
Let v ′ ∈ Ball(u) and let e ′ = (v ′,w ′) be some edge incident to v ′; such an edge must exist because

Ball(u) ⊃ {u}. Since the node v is contained in Ai+1 we have

distG (u, e ′) ≤ distG (u,v ′) < distG (u,Ai+1) ≤ distG (u,v) = distG (u, e)

which implies e ′ ∈ E ′. It follows that E[Ball(u)] ⊆ E ′ and thus |E[Ball(u)]| ≤ |E ′ | ≤ m(i+1)/k in

expectation, as desired. �

4.2 Properties of Approximate Balls

We now show that the approximate balls and the corresponding distance estimates have Properties

B1–B4. We �rst show that the distance estimates for nodes in the approximate balls have the

desired approximation guarantee, although they have been computed in subgraphs of G.

17

Lemma 4.5 (Property B1). For every pair of nodes u and v such that v ∈ B(u) we have distG (u,v) ≤
δ (u,v) ≤ α distG (u,v) + β .

Proof. By Property A1 we have δ (u,v) ≥ distG |R(u)(u,v) and since G |R(u) is a subgraph of G we

have distG |R(u)(u,v) ≥ distG (u,v). Therefore the inequality δ (u,v) ≥ distG (u,v) follows.

Since v ∈ B(u) we have δ (u,v) ≤ αD + β . If distG (u,v) ≥ D, then trivially δ (u,v) ≤ αD + β ≤
α distG (u,v)+β . If distG (u,v) < D, then there is a path π fromu tov inG of weight at most D. This

path was also contained in previous versions ofG , possibly with smaller weight. In particular, π was

also contained in the version of G at the last point in time for which the set R(u) was recomputed.

Since v ∈ B(u) ⊆ R(u) we therefore also have v ′ ∈ R(u) for every node v ′ on π . It follows that π
is contained in G |R(u) and thus distG |R(u)(u,v) = distG (u,v) ≤ D. By Property A2 we then have

δ (u,v) ≤ α distG |R(u)(u,v) + β = α distG (u,v) + β . �

We show now that the approximate balls have a certain structural property that either allows

us to shortcut the path between two nodes or helps us in �nding a nearby node of higher priority.

Lemma 4.6 (Property B2). For all x ≥ 0, set s(x , 0) = x , and for all x ≥ 0 and l ≥ 1, set

s(x , l) = a(a + 1)l−1x + ((a + 1)l − 1)b/a ,

where a = (1 + ϵ)α and b = (1 + ϵ)β . Then for every 0 ≤ i ≤ k − 1, every node u of priority i , and
every node v such that s(distG (u,v),k − 1 − i) ≤ D, either (1) v ∈ B(u) or (2) there is some node v ′ of
priority j > i such that u ∈ B(v ′) and distG (u,v ′) ≤ s(distG (u,v), j − i).

Proof. As noted above, by our de�nition of s(x , l) we have s(x , 1) = ax + b for all x ≥ 0 and

s(x , l + 1) = (a + 1)s(x , l) + b for all x ≥ 0 and l ≥ 1. Note that since s(·, ·) is non-decreasing in its

second argument we have, for all 0 ≤ l ≤ k − 1 − i , s(distG (u,v), l) ≤ s(distG (u,v),k − 1 − i) ≤ D.

If v ∈ B(u), then we are done. Otherwise, by Lemma 4.2, there is some node v1 of priority

j1 ≥ i + 1 such that

distG (v1,u) ≤ a distG (u,v) + b = s(distG (u,v), 1) ≤ D .

Thus, if u ∈ B(v1), then we are done. Otherwise, by Lemma 4.2, there is some node v2 of priority

j2 ≥ j1 + 1 ≥ i + 2 such that

distG (v2,v1) ≤ a distG (v1,u) + b .

By the triangle inequality we have

distG (v2,u) ≤ distG (v2,v1) + distG (v1,u)
≤ a distG (v1,u) + b + distG (v1,u)
= (a + 1) distG (v1,u) + b
≤ (a + 1)s(distG (u,v), 1) + b
= s(distG (u,v), 2) ≤ D .

We now repeat this argument to obtain nodesv1,v2, . . .vl of priorities j1, j2, . . . , jl such that jl ≥ i +l
and

distG (vl ,u) ≤ s(distG (u,v), l) ≤ D

18

until u ∈ B(vl). This happens eventually since Ak = ∅ and thus for any node vl of priority k − 1
such that distG (vl ,u) ≤ s(distG (u,v), l) ≤ D the following reasoning applies: Since δ (vl ,Ak) = ∞,

we always have r (vl) = D + 1 and thus distG (vl ,u) < r (vl). The latter inequality also holds for

all nodes on a shortest path π from u to v in G, and, as distances in G are non-decreasing, this

in particular is true at the last point in time where r (vl) has changed. Therefore, all nodes of π
are contained in R(vl), which implies that distG |R(vl)(vl ,u) = distG (vl ,u). Thus, by Property A2, it

follows that δ (vl ,u) ≤ α distG |R(vl)(vl ,u) + β ≤ αD + β , i.e., u ∈ B(vl), as desired. �

Next, we bound the size of the system of approximate balls we maintain. Here we use the

fact that we can easily bound the size of the exact ball Ball(u) for every node u and that by our

de�nitions we ensure that the approximate balls are subsets of the exact balls.

Lemma 4.7 (Size of Approximate Balls (Property B3)). In expectation, we have

∑
u ∈V B(u) =

O(km1+1/k
logD/ϵ), where B(u) denotes the number of nodes ever contained in B(u) over the sequence

of updates to G.

Proof. We �rst bound B(u), the number of nodes ever contained in the approximate ball B(u), of

some node u. Let i denote the priority of u. Remember that nodes are joining B(u) only when r (u)
increases and that

r (u) = min

(
(1 + ϵ) blog1+ϵ δ (u,Ai+1)c − β

α
,D + 1

)
.

Thus, r (u) can only increase if blog
1+ϵ δ (u,Ai+1)c increases and the left term in the minimum is at

most D + 1. Since 1+ ϵ ≥ 1 it follows that r (u) increases onlyO(log
1+ϵ D) = O(logD/ϵ) times, once

it has non-negative value. As B(u) ⊆ Ball(u) by Lemma 4.3, after every increase of r (u) only nodes

contained in Ball(u) can join B(u). By Lemma 4.4 the size of Ball(u) is O(m(i+1)/k) in expectation

over all random choices in sampling the set Fi+1. Thus, the number of nodes ever contained in B(u)
is B(u) = O(m(i+1)/k logD/ϵ) in expectation.

As the number of nodes of priority i is O(m/mi/k) in expectation over all random choices in

sampling the set Fi , the number of nodes ever contained in the approximate balls is

∑
u ∈V B(u) =

O(km1+1/k
logD/ϵ) in expectation. Here we use that Fi and Fi+1 are sampled independently. �

Finally, we analyze the running time of our algorithm for maintaining the approximate balls.

Since we use the data structure ApproxSSSP as a black box, the running time of our algorithm

depends on the running time of ApproxSSSP.

Lemma 4.8 (Running Time (Property B4)). The total time needed for maintaining the sets B(u) for
all nodes u ∈ V is

O

((
km1+1/k +

∑
0≤i≤k−1

m

mi/k ·T (mi ,ni)
)
· logn logD

ϵ
+ k ·T (m,n)

)
in expectation, where, for each 0 ≤ i ≤ k − 1,mi = O(m(i+1)/k) and ni = O(m(i+1)/k).

Proof. The initialization in Step 1 of the algorithm, where we determine the sets A0, . . . ,Ak takes

time O(km + n). In Step 2, we run for each 1 ≤ i ≤ k − 1 an instance of ApproxSSSP with

depth D. This takes time kT (m,n). Step 3, where we maintain for every 0 ≤ i ≤ k − 1 and every

node u of priority i the approximate ball and corresponding distance estimates, can be analyzed

as follows. Remember that every time r (u) increases we �rst compute R(u), the set of nodes that

19

are at distance of at most r (u) from u. Using an implementation of Dijkstra’s algorithm that only

puts nodes into its queue upon their �rst visit, this takes time O(|E[R(u)]| logn), where E[R(u)]
is the set of edges incident to R(u). By Lemma 4.3 we have R(u) ⊆ Ball(u) and by Lemma 4.4 we

have |Ball(u)| = O(m(i+1)/k) and |E[Ball(u)]| = O(m(i+1)/k) in expectation over all random choices

in sampling the set Fi+1. Thus, computing R(u) takes time O(m(i+1)/k logn) in expectation. We then

maintain an instance of ApproxSSSP up to depth D on G |R(u), the subgraph of G induced by R(u).
Note that G |R(u) has at most mi = O(m(i+1)/k) edges and ni = O(m(i+1)/k) nodes in expectation

and therefore this takes time T (mi ,ni) in expectation. As r (u) increases O(logD/ϵ) times and the

number of nodes of priority i is at most O(m/mi/k) in expectation over all random choices in

sampling the set Fi , Step 3 takes time

O

(∑
0≤i≤k−1

(
T (mi ,ni) +m(i+1)/k logn

)
· m

mi/k
logD

ϵ

)
in expectation. Now the claimed total running time claimed for all three steps follows. �

5 From Approximate Balls to Approximate SSSP

In the following we show how to maintain an approximate shortest paths tree if we already have an

algorithm for maintaining approximate balls. Our main tool in this reduction is a hop set that we

de�ne from the approximate balls. We will add the “shortcut” edges of the hop set to the graph and

scale down the edge weights, maintaining the approximate shortest paths with a monotone ES-tree.

The main challenge in this approach is bounding the approximation guarantee of the hop set.

While this encompasses a proof of the approximation guarantee of the static variant of the hop set,

such a “static” proof is not su�cient in the decremental setting; the monotone ES-tree needs to

exploit the additional structure of the approximate balls that de�ne the hop set. In particular, the

following structural property is useful here: for every pair of nodes u and v , either v is in the ball

of u, or there is some node v ′ close to u that has higher priority than u. If the distance between

u and v ′ is measured by some function s(x , l), where x is the distance between u and v ′ and l is

the di�erence in priorities between v ′ and u, then we can give an upper bound on the value of

s(x , l) such that our approximation guarantee proof still goes through. Concerning the running

time, there mainly are two factors that a�ect the running time of the monotone ES-tree. The �rst

factor is the size of the hop set, more precisely the total number of edges ever contained in the

hop set over all updates to the input graph. This number is bounded by the by the total size of

the (approximate) balls, more precisely by the total number of nodes ever contained in the balls.

The second factor is the the maximum depth considered in the tree. The maximum depth can be

kept relatively small by rounding and scaling down all edge weights. This give some additional

approximation error to account for, but by the right choice of parameters we can balance both costs

at a moderate level. Formally, we prove the following statement in this section.

Proposition 5.1. Assume there is a decremental algorithmApproxBalls for maintaining approximate

balls with the following properties, using �xed values a ≥ α ≥ 1, b ≥ β ≥ 0, and D̂ ≥ 1. Given a

weighted graph G = (V ,E) undergoing edge deletions and edge weight increases with n nodes and

initiallym edges, and a parameter k ≥ 2, it assigns to every node u ∈ V a number from 0 to k − 1,
called the priority of u, and maintains, in total update time t(m,n,k), for every node u ∈ V a set of

nodes B(u) and, for every node v ∈ B(u), a distance estimate
ˆδ (u,v) such that:

20

B1 For every node u and every node v ∈ B(u) we have distG (u,v) ≤ ˆδ (u,v) ≤ α distG (u,v) + β .

B2 There is a non-decreasing function s(·, ·) such that, for all x ≥ 0, s(x , 0) ≤ x and s(x , 1) ≤ ax +b
for some a ≥ α and b ≥ β and, for all l ≥ 1,

s(x , l + 1) ≤ (α + 1 + ϵ)(αas(x , l) + αb + β) + β .

guaranteeing the following: For every 0 ≤ i ≤ k − 1, every node u of priority i and every node v
such that s(distG (u,v),k − 1 − i) ≤ D̂, either (1) v ∈ B(u) or (2) there exists some node v ′ ∈ V
of priority j > i such that u ∈ B(v ′) and distG (u,v ′) ≤ s(distG (u,v ′), j − i).

B3 After every update in G, ApproxBalls returns all pairs of nodes u and v such that v joins B(u),
v leaves B(u), or ˆδ (u,v) changes.

Then there is an approximate SSSP data structure ApproxSSSP with the following properties: Given

a weighted graph G undergoing edge deletions and edge weight increases with n nodes and initiallym
edges, a �xed source node s , and parameters p, ∆, D, and ϵ such that

2 ≤ p ≤
√
logn√

log

(
4a3
ϵ

) ,
∆ ≥ b, n1/p∆ ≤ D̂, D ≥ ∆ and 0 < ϵ ≤ 1, it maintains a distance estimate δ (s,v) for every nodev ∈ V
such that:

A1 δ (s,v) ≥ distG (s,v)

A2 If distG (s,v) ≤ D, then δ (s,v) ≤ (α + 2ϵ) distG (s,v) + ϵn1/p∆

A3 The total update time of ApproxSSSP is

T (m,n,∆,D, ϵ) = t(m,n,p) +O
(
p

(
αD/∆ + n1/p

) (
m +

∑
u ∈V
B(u)

)
/ϵ + n

)
where B(u) denotes the number of nodes ever contained in B(u) over the sequence of updates to
G.

A4 After every update inG , ApproxSSSP returns each node v such that δ (s,v) has changed together
with the new value of δ (s,v).

We assume without loss of generality that the distance estimate maintained by ApproxBalls is

non-decreasing. If ApproxBalls ever reports a decrease we can ignore it because then Property B1
will still hold as distances in G are non-decreasing under edge deletions and edge weight increases.

5.1 Algorithm Description

The algorithm ApproxSSSP maintains the set of edges F = {(u,v) ∈ V 2 | v ∈ B(u)} such that, for

every node u and every node v ∈ B(u), the edge (u,v) has weight wF (u,v) = min(ˆδ (u,v), ˆδ (v,u))
if also u ∈ B(v) and wF (u,v) = ˆδ (u,v) otherwise. We update F every time in the algorithm

ApproxBalls a node joins or leaves an approximate ball or if the distance estimate
ˆδ (u,v) increases

21

for some pair of nodes u and v . By Property B3 this information is returned by ApproxBalls after

every update in G. Thus the set of edges F undergoes insertions, deletions, and weight increases.

In the following we will de�ne a shortcut graph H ′′ with scaled-down edge weights and our

algorithm ApproxSSSP will simply run a monotone ES-tree [HKN16] from s in H ′′. The monotone

ES-tree has property A1, which is apparent from the pseudocode provided in Algorithm 1. We

denote the weight of an edge (u,v) in G by wG (u,v) and de�ne H as a graph that has the same

nodes asG and contains all edges ofG and F that have weight at most D +n1/p∆. We set the weight

of every edge (u,v) in H to wH (u,v) = min(wG (u,v),wF (u,v)). We set

φ =
ϵ∆

p + 1

and de�ne H ′ as the graph that has the same nodes and edges as H and in which every edge (u,v)
has weight

wH ′(u,v) =
⌈
wH (u,v)

φ

⌉
· φ ,

i.e., we round every edge weight to the next multiple of φ. Furthermore, we de�ne H ′′ as the graph

that has the same nodes and edges as H ′ and in which every edge (u,v) has weight

wH ′′(u,v) =
wH ′(u,v)

φ
=

⌈
wH (u,v)

φ

⌉
,

i.e., we scale down every edge weight by a factor of 1/φ. We maintain a monotone ES-tree with

maximum level

L = (α + 2ϵ)D/φ + (p + 1)n1/p

from s and denote the level of a node v in this tree by `(v). For every node v our algorithm returns

the distance estimate δ (s,v) = `(v) · φ. Note that the graph H ′′ has integer edge weights and, as F
might undergo insertions, deletions, and edge weight increases, the same type of updates might

occur in H ′′. Furthermore, observe that the rounding guarantees that

wH (u,v) ≤ wH ′(u,v) ≤ wH (u,v) + φ

for every edge (u,v) of H ′.

5.2 Running Time Analysis

We �rst provide the running time analysis. We run the algorithm in a graph in which we scale

down the edge weights by a factor of φ and round up to the next integer. This makes the algorithm

e�cient.

Lemma 5.2 (Running Time (Property A3)). The total update time of a monotone ES-tree with

maximum level L = (α + 2ϵ)D/φ + (p + 1)n1/p on H ′′ is

O

(
p

(
αD/∆ + n1/p

) (
m +

∑
u ∈V
B(u)

)
/ϵ + n

)
where B(u) denotes the number of nodes ever contained in B(u) over the sequence of updates to G.

22

Proof. By Lemma 2.2, the total time needed for maintaining the monotone ES-tree with maximum

level L on H ′′ is

O(E(H ′′) · L +W(H ′′) + n)
where E(H ′′) is the number of edges ever contained in H ′′ andW(H ′′) is the number of updates

(i.e., edge deletions, edge weight increases, and edge insertions) to H ′′.
Remember that φ = ϵ∆/(p + 1) and thus L = O(p(αD/(ϵ∆) + n1/p)). We now bound E(H ′′)

andW(H ′′). Note that at any time H ′′ has the same edges as H and each edge of H either is an

edge from G, which contains m edges, or is an edge from F . As F is de�ned via the approximate

balls (i.e., (u,v) ∈ F if and only v ∈ B(u)), E(F), the number of edges ever contained in F , is at

most

∑
u ∈V B(u), the total number of nodes ever contained in the approximate balls. It follows that

E(H ′′) ≤ m + E(F) ≤ m +
∑
u ∈V B(u). For every edge counted by E(H ′′) we need to consider at

most one insertion and at most one deletion as well as at most (D +n1/p∆)/φ edge weight increases

since we have limited the maximum edge weight in H to D + n1/p∆. Note that

(D + n1/p∆)/φ = (D + n1/p∆)(p + 1)/(ϵ∆) = O(p(D/∆ + n1/p)/ϵ) .

Therefore we have

W(H ′′) ≤ 2E(H ′′) + E(H ′′) · (D + n1/p∆)/φ = O
((
m +

∑
u ∈V
B(u)

)
· p(D/∆ + n1/p)/ϵ

)
.

We conclude that

E(H ′′) · L +W(H ′′) = O
(
p(αD/∆ + n1/p)

(
m +

∑
u ∈V
B(u)

)
/ϵ

)
and thus the claimed running time follows. �

5.3 De�nitions of Values for Approximation Guarantee

Before we analyze the approximation guarantee we de�ne the most important values used in the

analysis and provide bounds on their growth. We set

r0 = ∆

and for every 0 ≤ i ≤ p − 1 we set

si = ari + b ,

wi = αsi + β , and

ri =
(α + 1 + ϵ)∑

0≤j≤i−1w j + β

ϵ
(if i ≥ 1) .

Intuitively, ri is the distance by which we would like to shortcut the shortest path to the source

node using a single hop-set edge for nodes of priority i . If this shortcut attempt fails, si is the

distance at which we would like to �nd a nearby node of priority i + 1 and wi is the weight of the

hop-set edge to such a node.

We additionally set

γi = (α + 1 + ϵ)
∑

i≤j≤p−2
w j + β

23

for every 0 ≤ i ≤ p − 1, which equivalently can be obtained by setting γp−1 = β and γi =
γi+1 + (α + 1 + ϵ)wi for every 0 ≤ i ≤ p − 2. Finally, we set

γ = γ0 + 2ϵ∆ .

Here γi is, intuitively speaking, the amount of additive error we will make on a hop-set path for a

node of priority i and γ captures some additional rounding error for nodes of priority 0.

Lemma 5.3. For all 0 ≤ i ≤ p − 1, ϵri = γ0 − γi + β

Proof. Using the de�nition of γi , for all 0 ≤ i ≤ p − 1, we get

γ0 −γi + β = (α + 1+ϵ)
∑

0≤j≤p−2
w j − (α + 1+ϵ)

∑
i≤j≤p−2

w j + β = (α + 1+ϵ)
∑

0≤j≤i−1
w j + β = ϵri . �

Lemma 5.4. (4a3/ϵ)p ≤ n1/p

Proof. Remember that we have

p ≤
√
logn√

log

(
4a3
ϵ

) .
We only need to rewrite both expressions as follows:

n1/p = 2
1/p ·logn ≥ 2

√
log

(
4a3
ϵ

)
√
logn

·logn
= 2

√
log

(
4a3
ϵ

)
·
√
logn

(
4a3

ϵ

)p
= 2

p ·log
(
4a3
ϵ

)
≤ 2

√
logn√

log

(
4a3
ϵ

) ·log (
4a3
ϵ

)
= 2

√
logn ·

√
log

(
4a3
ϵ

)
. �

Lemma 5.5. For all 0 ≤ i ≤ p − 1 we have∑
0≤j≤i

w j ≤
(4i+1 − 1)a3i+2∆

ϵ i
.

Proof. Remember that ϵ ≤ 1 ≤ α ≤ a and β ≤ b ≤ ∆. Now observe that for all 1 ≤ i ≤ p − 1 we

have

ri =
(α + 1 + ϵ)∑

0≤j≤i−1w j + β

ϵ
≤

3a
∑

0≤j≤i−1w j + ∆

ϵ

and for all 0 ≤ i ≤ p − 1 we have

wi = αsi + β ≤ asi + b = a(ari + b) + b = a2ri + ab + b ≤ a2ri + 2a∆ .

We now prove the inequality by induction on i . We begin with the base case i = 0 where r0 = ∆
and ∑

0≤j≤0
w j = w0 ≤ a2r0 + 2a∆ = a2∆ + 2a∆ ≤ 3a2∆ =

(4 − 1)a2∆
ϵ0

.

24

In the induction step we assume that i ≥ 1:∑
0≤j≤i

w j =
∑

0≤j≤i−1
w j +wi

≤
∑

0≤j≤i−1
w j + a

2ri + 2ab

≤
∑

0≤j≤i−1
w j + a

2 ·
3a

∑
0≤j≤i−1w j + b

ϵ
+ 2ab

≤
(3a3 + 1)∑

0≤j≤i−1w j + a
2b + 2ab

ϵ

≤ (3a
3 + 1)(4i − 1)a3(i−1)+2∆ + a2b + 2ab

ϵ i

≤ (3a
3 + 1)(4i − 1)a3(i−1)+2∆ + a2∆ + 2a∆

ϵ i

≤ ((3 + 1)(4
i − 1) + 3)a3i+2∆
ϵ i

≤ (4
i+1 − 1)a3i+2∆

ϵ i
. �

Lemma 5.6. aγ + b ≤ ϵn1/p∆.

Proof. Remember that we have ϵ ≤ 1 ≤ α ≤ a and β ≤ b ≤ ∆. By Lemma 5.5 we have∑
0≤j≤p−2

w j ≤
(4p−1 − 1)a3p−4∆

ϵp−2

We now get:

aγ + b

ϵ
=
aγ0 + 2ϵa∆ + b

ϵ

=
a(α + 1 + ϵ)∑

0≤j≤p−2w j + aβ + 2ϵa∆ + b

ϵ

≤
a(a + 1 + ϵ)∑

0≤j≤p−2w j + a∆ + 2a∆ + ∆

ϵ

≤
3a2

∑
0≤j≤p−2w j + 4a∆

ϵ

≤ 3a2(4p−1 − 1)a3p−4∆ + 4a∆
ϵp−1

≤ 4
pa3p∆

ϵp

= (4a3/ϵ)p∆ ≤ n1/p∆ .

The last inequality follows from Lemma 5.4. �

Lemma 5.7. arp−1 + b ≤ n1/p∆.

25

Proof. By the de�nitions of rp−1 and γ0 we have rp−1 = γ0/ϵ . Since γ0 ≤ γ and aγ + b ≤ ϵn1/p∆ by

Lemma 5.6, we have

arp−1 + b = a
γ0
ϵ
+ b ≤ aγ0 + b

ϵ
≤ aγ + b

ϵ
≤ n1/p∆ . �

Lemma 5.8. For all 0 ≤ i ≤ j ≤ p − 1, s(ri , j − i) ≤ r j

Proof. Fix some 0 ≤ i ≤ p − 2. The proof is by induction on j. In the �rst base case j = i , the claim

is trivially true as s(ri , 0) ≤ ri . Now remember that for j ≥ 1 we have

r j =
(α + 1 + ϵ)∑

0≤j′≤j−1w j′ + β

ϵ
≥ (α + 1 + ϵ)w j−1 + β = (α + 1 + ϵ)(αsj−1 + β) + β .

Thus, in the second base case j = i + 1 the claim holds because s(ri , j − i) = s(ri , 1) ≤ ari + b = si =
sj−1 ≤ r j . Finally, consider the induction step where we assume that the inequality holds for j − 1
and have to show that it also holds for j, where j ≥ i + 2. By the induction hypothesis we have

s(ri , j − 1 − i) ≤ r j−1 and since j − i ≥ 2 we have

s(ri , j − i) ≤ (α + 1 + ϵ)(αas(ri , j − i − 1) + αb + β) + β .

We now get:

r j ≥ (α + 1 + ϵ)(αsj−1 + β) + β
= (α + 1 + ϵ)(αar j−1 + αb + β) + β
≥ (α + 1 + ϵ)(αas(ri , j − i − 1) + αb + β) + β
≥ s(ri , j − i) . �

5.4 Analysis of Approximation Guarantee

We now analyze the approximation error of a monotone ES-tree maintained on H ′′. This approxi-

mation error consists of two parts. The �rst part is an approximation error that comes from the fact

that the monotone ES-tree only considers paths from s with a relatively small number of edges and

therefore has to use edges from the hop set F . The second part is the approximation error we get

from rounding the edge weights. We �rst give a formula for the approximation error that depends

on the priority of the nodes and their distance to the root of the monotone ES-tree.

Before we give the proof we review a few properties of the monotone ES-tree (see [HKN16]

for the full algorithm). Similar to the classic ES-tree, the monotone ES-tree with root s maintains

a level `(v) for every node v . The monotone ES-tree is initialized by computing a shortest paths

tree up to depth L from s in H ′′ and thus, initially, `(v) = distH ′′(s,v). A single deletion or edge

weight increase in G might result in a sequence of deletions, weight increases and insertions in F ,

and thus H ′′. The monotone ES-tree �rst processes the insertions and then the deletions and edge

weight increases. It handles deletions and edge weights increases in the same way as the classic

ES-tree. Once the level `(u) of a node u exceeds the maximum level L, we set `(u) = ∞. The

procedure for handling the insertion of an edge (u,v) is trivial: it only stores the new edge and in

particular does not change `(u) or `(v). For completeness we list the pseudocode of the monotone

ES-tree in Algorithm 1.

For the analysis of the monotone ES-tree we will use the following terminology. We say that

an edge (u,v) is stretched if `(u) > `(v) + wH ′′(u,v). We say that a node u is stretched if it is

26

Algorithm 1: Monotone ES-tree

// Internal data structures:

// N (u): for every node u a heap N (u) whose intended use is to store for every

neighbor v of u in the current graph the value of `(v) +wH ′′(u,v)
// Q: global heap whose intended use is to store nodes whose levels might

need to be updated

1 Procedure Initialize()

2 Compute shortest paths tree from s in H ′′ up to depth L
3 foreach u ∈ V do
4 Set `(u) = distH ′′(s,u)
5 for every edge (u,v) in H ′′ do insert v into heap N (u) of u with key `(v)+wH ′′(u,v)

6 Procedure Delete(u, v)

7 Increase(u, v ,∞)

8 Procedure Increase(u, v,w(u,v))
// Increase weight of edge (u,v) to w(u,v)

9 Insert u and v into heap Q with keys `(u) and `(v) respectively

10 Update key of v in heap N (u) to `(v)+w(u,v) and key of u in heap N (v) to `(u)+w(u,v)
11 UpdateLevels()

12 Procedure Insert(u, v ,w(u,v))
// Increase edge (u,v) of weight w(u,v)

13 Insert v into heap N (u) with key `(v) +w(u,v) and u into heap N (v) with key

`(u) +wH ′′(u,v)

14 Procedure UpdateLevels()

15 while heap Q is not empty do
16 Take node u with minimum key `(u) from heap Q and remove it from Q
17 `′(u) ← minv (`(v) +wH ′′(u,v))

// minv (`(v) +wH ′′(u,v)) can be retrieved from the heap N (u).
argminv (`(v) +wH ′′(u,v)) is u’s parent in the ES-tree.

18 if `′(u) > `(u) then
19 `(u) ← `′(u)
20 if `′(u) > L then `(u) ← ∞
21 foreach neighbor v of u do
22 update key of u in heap N (v) to `(u) +wH ′′(u,v)
23 insert v into heap Q with key `(v) if Q does not already contain v

27

incident to an edge (u,v) that is stretched. Note that for a node u that is not stretched we have

`(u) ≤ `(v)+wH ′′(u,v) for every edge (u,v) contained in H ′′. In our proof we will use the following

properties of the monotone ES-tree.

Observation 5.9 ([HKN16]). The following holds for the monotone ES-tree:

(1) The level of a node never decreases.

(2) An edge can only become stretched when it is inserted.

(3) As long as a node is stretched, its level does not change.

(4) For every tree edge (u,v) (where v is the parent of u), `(u) ≥ `(v) +wH ′′(u,v).

Observe that property (4) above implies property A1, i.e., that the returned distance estimate

never underestimates the true distance.

A second prerequisite from [HKN16] tells us when we may apply a variant of the triangle

inequality to argue about the levels of nodes.

Lemma 5.10 ([HKN16]). Let (u,v) be an edge of H ′′ such that `(v) +wH ′′(u,v) ≤ L. If (u,v) is not
stretched and after the previous update in G the level of u was less than∞, then for the current level

of u we have `(u) ≤ `(v) +wH ′′(u,v).

Note that the second precondition simply captures the property of the monotone ES-tree that

once the level of a node exceeds L it is set to ∞ and will never be decreased anymore. At the

initialization (i.e., before the �rst update in H ′′), the �rst precondition is ful�lled automatically as

no edge is stretched yet.

To count the additive error from rounding the edge weights, we de�ne, for every node u and

every 0 ≤ i ≤ p − 1, the function h(u, i) as follows:

h(u, i) =
{
0 if u = s

(p + 1)
⌈
max(distG (u,s)−ri ,0)

∆

⌉
+ p + 1 − i otherwise

.

The intuition is that h(u, i) bounds the number of hops fromu to s , i.e., the number of edges required

to go from u to s while at the same time providing the desired approximation guarantee. The

approximation guarantee can now formally be stated as follows

Lemma 5.11 (Approximation Guarantee). For every 0 ≤ i ≤ p − 1 and every node u of priority i
with distG (u, s) ≤ D +

∑
0≤i′≤i−1 si′ we have

δ (s,u) ≤ (α + ϵ) distG (u, s) + γi + h(u, i) · φ .

Once we have proved this lemma, the desired bound on the approximation error (Property A2)

follows easily because h(u, i) · φ ≤ ϵ distG (u, s) + 2ϵ∆ (as we show below) and γ ≤ ϵn1/p∆
by Lemma 5.6, and thus

δ (s,u) ≤ (α + ϵ) distG (u, s) + γi + h(u, i) · φ
≤ (α + ϵ) distG (u, s) + γ0 + h(u, i) · φ
≤ (α + ϵ) distG (u, s) + γ0 + ϵ distG (u, s) + 2ϵ∆
= (α + 2ϵ) distG (u, s) + γ
≤ (α + 2ϵ) distG (u, s) + ϵn1/p∆ .

28

Lemma 5.12. For every node u and every 0 ≤ i ≤ p − 1,

h(u, i) · φ ≤ ϵ distG (u, s) + 2ϵ∆

Proof. If u = s , then the claim is trivially true. Otherwise we have

h(u, i) =
(
(p + 1)

⌈
max(distG (u, s) − ri , 0)

∆

⌉
+ p + 1 − i

)
φ

≤
(
(p + 1)

⌈
distG (u, s)

∆

⌉
+ p + 1

)
φ

≤
(
(p + 1)

(
distG (u, s)

∆
+ 1

)
+ p + 1

)
φ

=

(
(p + 1) distG (u, s)

∆
+ 2(p + 1)

)
φ

=

(
(p + 1) distG (u, s)

∆
+ 2(p + 1)

)
· ϵ∆

p + 1

= ϵ distG (u, s) + 2ϵ∆ . �

Proof of Lemma 5.11. The proof is by double induction �rst on the number of updates in G and

second on h(u, i). Let 0 ≤ i ≤ p − 1 and let u be a node of priority i such that distG (u, s) ≤
D +

∑
0≤i′≤i−1 si′ . Remember that δ (u, s) = `(u) · φ, where `(u) is the level of u in the monotone ES-

tree of s . We know that after the previous deletion inG the distance estimate gave an approximation

of the true distance in G. Since distances in G are non-decreasing it must have been the case that

the level of u was less than∞ after the previous deletion in G.

If u = s , the claim is trivially true because `(s) = 0. Assume that u , s . If u is stretched in the

monotone ES-tree, then the level of u has not changed since the previous deletion inG and thus the

claim is true by induction. If u is not stretched, then `(u) ≤ `(v) +wH ′′(u,v) for every edge (u,v)
in H ′′. De�ne the nodes v and x as follows. If distG (u, s) ≤ ri , then v = s . If distG (u, s) > ri , then

consider a shortest path π from u to s in G and let v be the furthest node from u on π such that

distG (u,v) ≤ ri (which implies distG (v, s) ≥ distG (u, s) − ri). Furthermore let x be the neighbor ofv
on the shortest path π that is closer to s than v is. Note that distG (u,x) ≥ ri (and thus distG (x , s) ≤
distG (u, s)−ri) and in particularG contains the edge (v,x). The edge (v,x) is also contained inH (and

thus in H ′ and H ′′) by the following argument: For distG (u, s) ≤ D+
∑

0≤i′≤i−1 si′ to hold it has to be

the case that wG (v,x) ≤ D +
∑

0≤i′≤i−1 si′ . Note that

∑
0≤i′≤i−1 si′ ≤

∑
0≤i′≤i−1wi′ ≤ rp−1 ≤ n1/p∆

by Lemma 5.7. Thus, wG (v,x) ≤ D +n1/p∆, which by the de�nition of H means that the edge (v,x)
is contained in H .

Note that s(distG (u,v),p − 1 − i) ≤ s(ri ,p − 1 − i) since the function s(·, ·) is non-decreasing

in the �rst argument. By Lemma 5.8 we have s(ri ,p − 1 − i) ≤ rp−1 and by Lemma 5.7 we have

rp−1 ≤ n1/p∆ ≤ D̂. It follows that s(distG (u,v),p − 1 − i) ≤ D̂. Thus, by Property B2 we know

that either v ∈ B(u) or there is a node v ′ of priority j ′ > i such that u ∈ B(v) and distG (u,v ′) ≤
s(distG (u,v), j ′ − i). Note that in the �rst case the set of edges F contains the edge (u,v) and in the

second case it contains the edge (u,v ′).
Case 1: v ∈ B(u)

If v ∈ B(u), then F contains an edge (u,v) such that

wF (u,v) = ˆδ (u,v) ≤ α distG (u,v) + β (2)

29

Since distG (u,v) ≤ ri we have wF (u,v) ≤ αri + β ≤ αrp−1 + β ≤ n1/p∆, where the last inequality

holds by Lemma 5.7. Thus, (u,v) is contained in H and thus also in H ′ and H ′′.
If distG (u, s) ≤ ri , then we have v = s . First observe that by the de�nition of H ′′ we have

wH ′′(u, s) = wH ′(u, s)/φ. Furthermore the rounding of the edge weights in H ′ guarantees that

wH ′(u, s) ≤ wH (u, s) + φ. We therefore get

wH ′′(u, s) ≤
wF (u, s) + φ

φ

≤ α distG (u, s) + β + φ
φ

≤
α

(
D +

∑
0≤i′≤i−1 si′

)
+ β + φ

φ

≤
αD + (α + 1 + ϵ)∑

0≤i′≤p−2wi′ + β + φ

φ

=
αD + γ0 + φ

φ

=
αD + γ0 +

ϵ∆
p+1

φ

≤ αD + γ0 + 2ϵ∆

φ

=
αD + γ

φ
≤ αD + ϵn1/p∆

φ
≤ (α + 2ϵ)D

φ
+ (p + 1)n1/p = L .

Here we have used the inequality γ ≤ ϵn1/p∆ from Lemma 5.6. Since the maximum level in

the monotone ES-tree is L and u is not stretched, it follows from Lemma 5.10 that `(u) ≤ `(s) +
wH ′′(u, s) = wH ′′(u, s). Together with the observations h(u, i) ≥ 1 (since u , s) and β ≤ γ0 we

therefore get

δ (s,u) = `(u) · φ ≤ wH ′′(u, s) · φ ≤ α distG (u, s) + β + φ
≤ α distG (u, s) + β + h(u, i) · φ ≤ (α + ϵ) distG (u, s) + γ0 + h(u, i) · φ .

Consider now the case distG (u, s) > ri . Let j denote the priority of x . We �rst prove the

following inequality, which will allow us among other things to use the induction hypothesis on x .

Claim 5.13. If distG (u, s) > ri , then h(x , j) + 2 ≤ h(u, i).

Proof. Remember that i ≤ p − 1. The assumption distG (u, s) > ri implies that distG (x , s) ≤
distG (u, s) − ri . If distG (x , s) < r j , we have

h(x , j) + 2 ≤ p + 1 − j + 2 ≤ p + 1 + 2 ≤ p + 1 + p + 1 − i

≤ (p + 1)
⌈
distG (u, s) − ri

∆

⌉
+ p + 1 − i = h(u, i) .

Here we use the inequality d(distG (u, s)−r j)/∆e ≥ 1which follows from the assumption distG (u, s) >
ri .

30

If distG (x , s) ≥ r j , then, using r j ≥ r0 ≥ ∆, we get

h(x , j) + 2 = (p + 1)
⌈
distG (x , s) − r j

∆

⌉
+ p + 1 − j + 2

≤ (p + 1)
⌈
distG (x , s) − ∆

∆

⌉
+ p + 1 + 2

= (p + 1)
⌈
distG (x , s)

∆
− 1

⌉
+ p + 1 + 2

= (p + 1)
(⌈
distG (x , s)

∆

⌉
− 1

)
+ p + 1 + 2

= (p + 1)
⌈
distG (x , s)

∆

⌉
+ 2

≤ (p + 1)
⌈
distG (x , s)

∆

⌉
+ p + 1 − i

≤ (p + 1)
⌈
distG (u, s) − ri

∆

⌉
+ p + 1 − i

≤ (p + 1)
⌈
max(distG (u, s) − ri , 0)

∆

⌉
+ p + 1 − i = h(u, i) .

Here the last inequality follows from the trivial observation distG (u, s) − ri ≤ max(distG (u, s) −
ri , 0). �

Having proved this claim, we go on with the proof of the lemma. We will now show that

`(x) +wH ′′(v,x) +wH ′′(u,v) ≤
(α + ϵ) distG (u, s) + γi + h(u, i) · φ

φ
(3)

as follows. If distG (u, s) > ri , then we have distG (u,x) ≥ ri by the choice of x . Remember that the

edge (v,x) lies on a shortest path from u to s in G. It is therefore contained in G since before the

�rst deletion and thus will never be stretched. We also may apply the induction hypothesis on x
since

distG (x , s) = distG (u, s) − distG (u,x) ≤ distG (u, s) − ri ≤ D +
∑

0≤i′≤i−1
si′ − ri ≤ D

due to

∑
0≤i′≤i−1 si′ ≤ ri by the de�nition of ri . Therefore we get

(`(x) +wH ′′(v,x) +wH ′′(u,v)) · φ
≤ δ (s,x) +wH ′′(v,x) · φ +wH ′′(u,v) · φ (de�nition of δ (s,x))
= δ (s,x) +wH ′(v,x) +wH ′(u,v) (de�nition of H ′)

≤ δ (s,x) +wH (v,x) + φ +wH (u,v) + φ (property of wH ′)

≤ δ (s,x) +wG (v,x) + φ +wF (u,v) + φ ((v,x) ∈ E and (u,v) ∈ F)

≤ (α + ϵ) distG (x , s) + γj + h(x , j) · φ +wG (v,x) + φ +wF (u,v) + φ (induction hypothesis)

= (α + ϵ) distG (x , s) + γj +wF (u,v) +wG (v,x) + (h(x , j) + 2) · φ (rearranging terms)

≤ (α + ϵ) distG (x , s) + γj +wF (u,v) +wG (v,x) + h(u, i) · φ (Claim 5.13)

31

≤ (α + ϵ) distG (x , s) + γ0 +wF (u,v) +wG (v,x) + h(u, i) · φ (γj ≤ γ0)
≤ (α + ϵ) distG (x , s) + γ0 + α distG (u,v) + β +wG (v,x) + h(u, i) · φ (by Inequality (2))

= (α + ϵ) distG (x , s) + γ0 + α distG (u,v) + β + distG (v,x) + h(u, i) · φ ((v,x) on shortest path)

≤ (α + ϵ) distG (x , s) + γ0 + α distG (u,v) + β + α distG (v,x) + h(u, i) · φ (α ≥ 1)

= (α + ϵ) distG (x , s) + α(distG (u,v) + distG (v,x)) + β + γ0 + h(u, i) · φ (rearranging terms)

= (α + ϵ) distG (x , s) + α distG (u,x) + β + γ0 + h(u, i) · φ (v on shortest path)

= (α + ϵ) distG (x , s) + α distG (u,x) + β + γ0 − γi + γi + h(u, i) · φ (zero addition)

= (α + ϵ) distG (x , s) + α distG (u,x) + ϵri + γi + h(u, i) · φ (by Lemma 5.3)

≤ (α + ϵ) distG (x , s) + α distG (u,x) + ϵ distG (u,x) + γi + h(u, i) · φ (distG (u,x) ≥ ri)

= (α + ϵ)(distG (u,x) + distG (x , s)) + γi + h(u, i) · φ (rearranging terms)

= (α + ϵ) distG (u, s) + γi + h(u, i) · φ (x on shortest path) .

By Lemma 5.12 we have h(u, i) · φ ≤ ϵ distG (u, s) + 2ϵ∆ and thus Inequality (3) implies that

`(x) +wH ′′(v,x) +wH ′′(u,v) ≤
(α + 2ϵ) distG (u, s) + γi + 2ϵ∆

φ

≤
(α + 2ϵ)

(
D +

∑
0≤i′≤i−1 si′

)
+ γi + 2ϵ∆

φ

≤
(α + 2ϵ)D + (α + 1 + ϵ)

(∑
0≤i′≤i−1wi′

)
+ γi + 2ϵ∆

φ

≤ (α + 2ϵ)D + γ0 + 2ϵ∆
φ

=
(α + 2ϵ)D + γ

φ

≤ (α + 2ϵ)D + ϵn
1/p∆

φ

=
(α + 2ϵ)D

φ
+ (p + 1)n1/p = L

where the last inequality follows from Lemma 5.6. As the maximum level in the monotone ES-tree

is L and the edge (v,x) is not stretched, it follows from Lemma 5.10 that `(v) ≤ `(x) +wH ′′(v,x)
and since u is not stretched, we have

`(u) ≤ `(v) +wH ′′(u,v) ≤ `(x) +wH ′′(v,x) +wH ′′(u,v) .

and thus

δ (s,u) = `(u) · φ ≤ (`(x) +wH ′′(v,x) +wH ′′(u,v)) · φ ≤ (α + ϵ) distG (u, s) + γi + h(u, i) · φ

Case 2: v < B(u)
By Property B2 we know that there is some node v ′ of priority j ′ > i such that u ∈ B(v ′) and

distG (u,v ′) ≤ s(distG (u,v), j ′ − i). By Lemma 5.8 we therefore have

distG (u,v ′) ≤ s(ri , j ′ − i) ≤ s(r j′−1, 1) = sj′−1 .

32

From the de�nition of F and Property B1 it now follows that F contains the edge (u,v ′) of weight

distG (u,v ′) ≤ wF (u,v ′) = ˆδ (u,v ′) ≤ α distG (u,v ′) + β ≤ αsj′−1 + β = w j′−1 (4)

Since j ′ ≤ p − 1 we have w j′−1 ≤ wp−2 ≤ rp−1. As rp−1 ≤ n1/p∆, by Lemma 5.7, we conclude that

the edge (u,v ′) is contained H and thus also in H ′ and H ′′.
We �rst prove the following inequality, which will allow us among other things to apply the

induction hypothesis on v ′.

Claim 5.14. h(v ′, j ′) + 1 ≤ h(u, i)

Proof. Remember that j ′ ≥ i + 1. If distG (v ′, s) < r j′ , we get

h(v ′, j ′) + 1 ≤ p + 1 − j ′ + 1 ≤ p + 1 − i ≤ h(u, i) .

If distG (v ′, s) ≥ r j′ , then we use the inequality r j′ ≥ ri + sj′−1 (which easily follows from the

de�nition of r j′ and the fact that α ≥ 1) and get

h(v ′, j ′) + 1 = (p + 1)
⌈
distG (v ′, s) − r j′

∆

⌉
+ p + 1 − j ′ + 1

≤ (p + 1)
⌈
distG (v ′, s) − r j′

∆

⌉
+ p + 1 − i − 1 + 1

≤ (p + 1)
⌈
distG (v ′,u) + distG (u, s) − r j′

∆

⌉
+ p + 1 − i

≤ (p + 1)
⌈
sj′−1 + distG (u, s) − r j′

∆

⌉
+ p + 1 − i

≤ (p + 1)
⌈
distG (u, s) − ri

∆

⌉
+ p − i

≤ (p + 1)
⌈
max(distG (u, s) − ri , 0)

∆

⌉
+ p + 1 − i = h(u, i) . �

Having proved this claim, we go on with the proof of the lemma. Note that we may apply the

induction hypothesis on v ′ because by the triangle inequality we have

distG (v ′, s) ≤ distG (u, s) + distG (v ′,u) ≤ D +
∑

0≤i′≤i−1
si′ + distG (v ′,u)

≤ D +
∑

0≤i′≤i−1
si′ + sj′−1 ≤ D +

∑
0≤i′≤j′−1

si′ .

We will now show that

`(v ′) +wH ′′(u,v ′) ≤
(α + ϵ) distG (u, s) + γi + h(u, i) · φ

φ
(5)

33

as follows:

(`(v ′) +wH ′′(u,v ′)) · φ (u not stretched)

= δ (v ′, s) +wH ′′(u,v ′) · φ (de�nition of δ (v ′, s))
= δ (v ′, s) +wH ′(u,v ′) (de�nition of H ′′)

≤ δ (v ′, s) +wH (u,v ′) + φ (property of wH ′(u,v ′))
≤ δ (v ′, s) +wF (u,v ′) + φ (de�nition of H)

≤ (α + ϵ) distG (v ′, s) + γj′ + h(v ′, j ′) · φ +wF (u,v ′) + φ (induction hypothesis)

= (α + ϵ) distG (v ′, s) + γj′ +wF (u,v ′) + (h(v ′, j ′) + 1) · φ (rearranging terms)

≤ (α + ϵ) distG (v ′, s) + γj′ +wF (u,v ′) + h(u, i) · φ (Claim 5.14)

≤ (α + ϵ)(distG (v ′,u) + distG (u, s)) + γj′ +wF (u,v ′) + h(u, i) · φ (triangle inequality)

≤ (α + ϵ)(wF (u,v ′) + distG (u, s)) + γj′ +wF (u,v ′) + h(u, i) · φ (by Inequality (4))

= (α + ϵ) distG (u, s) + γj′ + (α + ϵ + 1)wF (u,v ′) + h(u, i) · φ (rearranging terms)

≤ (α + ϵ) distG (u, s) + γj′ + (α + ϵ + 1)w j′−1 + h(u, i) · φ (by Inequality (4))

= (α + ϵ) distG (u, s) + γj′−1 + h(u, i) · φ (de�nition of γj′−1)

≤ (α + ϵ) distG (u, s) + γi + h(u, i) · φ (γi ≥ γj′−1 as j ′ ≥ i + 1) .

By Lemma 5.12 we have h(u, i) · φ ≤ ϵ distG (u, s) + 2ϵ∆ and thus Inequality (5) implies that

`(v ′) +wH ′′(u,v ′) ≤
(α + 2ϵ) distG (u, s) + γi + 2ϵ∆

φ
≤ (α + 2ϵ)D

φ
+ (p + 1)n1/p = L .

As the maximum level in the monotone ES-tree is L andu is not stretched, it follows from Lemma 5.10

that `(u) ≤ `(v ′) +wH ′′(u,v ′) and thus

δ (s,u) = `(u) · φ ≤ (`(v ′) +wH ′′(u,v ′)) · φ ≤ (α + ϵ) distG (u, s) + γi + h(u, i) · φ . �

6 Putting Everything Together

In the following we combine the results of Section 4 and Section 5 to obtain decremental algorithms

for approximate SSSP and approximate APSP.

6.1 Approximate SSSP

We �rst show how to obtain an algorithm for approximate SSSP. First, we obtain an algorithm

that provides approximate distance for all nodes that are at distance of at most R from the source,

where R is some range parameter. We use a hierarchical approach to obtain this algorithm: Given

an algorithm for maintaining approximate shortest paths, we obtain an algorithm for maintaining

approximate balls, which in turn gives us an algorithm for maintaining approximate shortest paths

for a larger range of distances than the initial algorithm. This scheme is repeated several times and

can be “started” with the (exact) ES-tree.

Lemma 6.1. For every R ≥ n and every 0 < ϵ ≤ 1, there is a decremental approximate SSSP algorithm

that, given a �xed source node s , maintains, for every node v , a distance estimate δ (s,v) such that

34

δ (s,v) ≥ distG (s,v) and if distG (s,v) ≤ R, then δ (s,v) ≤ (1+ ϵ) distG (s,v). It has a total update time

of O(m1+O ((log logR)/q)R2/q + n) in expectation, where

q =

√√√√√√√√√√√
√
logn√

log

(
12·43 logn

ϵ

)

and, after every update inG, returns each node v such that δ (s,v) has changed together with the new

value of δ (s,v).

Proof. In the proof we will use the following values. We set a = 4,

p =

√
logn√

log

(
12a3 logn

ϵ

)

and q = b√pc. Furthermore we set ϵ ′ = ϵ/(2(q − 2)) and for every 0 ≤ k ≤ q − 2 we set

αk = 1 + 3kϵ ′ ≤ 1 + ϵ , ak = 2αk ≤ a, ∆k = Rk/q , and Dk = R(k+2)/q .

The heart of our proof is the following claim which gives us decremental approximate SSSP

algorithms for larger and larger depths, until �nally the full range R is covered.

Claim 6.2. For every 0 ≤ k ≤ q− 2, there is a decremental approximate SSSP algorithm ApproxSSSPk
with the following properties:

A1 δ (s,v) ≥ distG (s,v)

A2 If distG (s,v) ≤ Dk , then δ (s,v) ≤ αk distG (s,v).

A3 The expected total update time of ApproxSSSPk is

Tk (m,n) = O(p logn logR)k ·O(m1+k/pR2/q/ϵ ′) +O(n) .

A4 After every update inG , ApproxSSSPk returns each nodev such that δ (s,v) has changed together
with the new value of δ (s,v).

Proof. We prove the claim by induction on k . In the base case k = 0 we use the (exact) ES-tree (see

Lemma 2.1), which for distances up to D ≤ D0 has a total update time ofO(mD0+n) = O(mR2/q +n)
and thus has all claimed properties

We now consider the induction step. We apply Proposition 4.1 to obtain a decremental algorithm

ApproxBallsk (with parameters
ˆk = p and ϵ̂ = 1) that maintains for every node u ∈ V a set of

nodes Bk (u) and a distance estimate
ˆδk (u,v) for every node v ∈ Bk (u) such that:

B1 For every node u and every node v ∈ Bk (u) we have distG (u,v) ≤ ˆδk (u,v) ≤ αk−1 distG (u,v).

B2 For all x ≥ 0, set sk (x , 0) = x , and for all x ≥ 0 and l ≥ 1, set sk (x , l) = ak−1(ak−1 + 1)l−1x .

Then for every 0 ≤ i ≤ p − 1, every node u of priority i , and every node v such that

sk (distG (u,v),p − 1 − i) ≤ Dk , either (1) v ∈ Bk (u) or (2) there is some node v ′ of priority

j > i such that u ∈ Bk (v ′) and distG (u,v ′) ≤ sk (distG (u,v), j − i).

35

B3 In expectation,

∑
u ∈V Bk (u) = O(pm1+1/p

logDk), where Bk (u) denotes the number of nodes

ever contained in Bk (u).

B4 The total update time of ApproxBallsk is

tk (m,n) = O
((
pm1+1/p +

∑
0≤i≤p−1

m

mi/p ·Tk−1(mi ,ni)
)
logn logDk + pTk−1(m,n)

)
in expectation, where, for each 0 ≤ i ≤ p − 1,mi = O(m(i+1)/p) and ni = O(m(i+1)/p).

Note that Dk ≤ R and thus logDk ≤ logR and remember that by the induction hypothesis we

have

Tk (m,n) = O(p logn logR)k−1 ·O(m1+(k−1)/pR2/q/ϵ ′) +O(n) .

To analyze
m

mi/p ·Tk−1(mi ,ni) for every 0 ≤ i ≤ p−1, observe that
m

mi/p · (m(i+1)/p)1+(k−1)/p ≤ m1+k/p

because

1 − i/p + ((i + 1)/p) · (1 + (k − 1)/p) = 1 + 1/p + ((i + 1)/p)((k − 1)/p)
≤ 1 + 1/p + (k − 1)/p
= 1 + k/p .

It now follows that

tk (m,n) = O(p logn logR)k ·O(m1+k/pR2/q/ϵ ′) +O(n) .

We now want to argue that we may apply Proposition 5.1 to obtain an approximate decremental

SSSP algorithm ApproxSSSP
′
k (with parameters p, ∆k Dk , and ϵ ′). We �rst show that

p ≤
√
logn√

log

(
4a3
ϵ ′

) ,
First note that q ≤ logn and thus ϵ ′ = ϵ(2(q − 2) ≥ ϵ/(2q) ≥ ϵ/(2 logn). It follows that

√
logn√

log

(
4a3
ϵ ′

) ≥ √
logn√

log

(
12a3 logn

ϵ

) ≥

√
logn√

log

(
12·43 logn

ϵ

)

= p .

Note also that for all x ≥ 0 we have sk (x , 1) = ak−1x and for all x ≥ 0 and l ≥ 1 we have

sk (x , l + 1) = (ak−1 + 1)sk (x , l) ≤ 2ak−1sk (x , l) ≤ (αk−1 + 1 + ϵ ′)αk−1ak−1sk (x , l) .

We therefore may apply Proposition 5.1 to obtain an approximate decremental SSSP algorithm

ApproxSSSP
′
k (with parameters p, ∆k , Dk , and ϵ ′) that maintains, for every node v ∈ V , a distance

estimate δ ′(s,v) such that:

A1’ δ ′(s,v) ≥ distG (s,v)

36

A2’ If distG (s,v) ≤ Dk , then δ ′(s,v) ≤ (αk + 2ϵ ′) distG (s,v) + ϵ ′n1/p∆k

A3’ The total update time of ApproxSSSP
′
k is

T ′k (m,n) = tk (m,n) +O
(
p

(
αkDk/∆k + n

1/p
) (

m +
∑
u ∈V
Bk (u)

)
/ϵ ′ + n

)
.

A4’ After every update in G, ApproxSSSP
′
k returns each node v such that δ (s,v) has changed

together with the new value of δ (s,v).

Note that αk ≤ 1 + ϵ ≤ 2 and Dk/∆k = R2/q
. Since q ≤ p and R ≥ n we have n1/p ≤ R2/q

. We

also have

∑
u ∈V Bk (u) = O(pm1+1/p

logR) in expectation. Therefore the expected total update time

of ApproxSSSP
′
k is

T ′k (m,n) = O(p logn logR)
k ·O(m1+k/pR2/q/ϵ ′) +O(p2m1+1/pR2/q

logR/ϵ ′ + n)

and since p ≤ logn it follows that

T ′k (m,n) = O(p logn logR)
k ·O(m1+k/pR2/q/ϵ ′) +O(n) .

Let ApproxSSSPk denote the algorithm that internally runs both ApproxSSSP
′
k and ApproxSSSPk−1

and additionally maintains, for every node v , the value δk (s,v) = min(δ ′k (s,v),δk−1(s,v)). Since

both ApproxSSSP
′
k and ApproxSSSPk−1 return, after each update in G, every node v for which

δ (s,v) has changed, and the minimum can be computed in constant time, ApproxSSSPk has

the same asymptotic total update time as ApproxSSSP
′
k . It remains to show that δk (s,v) ful-

�lls the desired approximation guarantee for every node v . Since both δ ′k (s,v) ≥ distG (s,v) and

δk−1(s,v) ≥ distG (s,v) also δk (s,v) ≥ distG (s,v). Furthermore, we know that if distG (s,v) ≤ Dk ,

then δ ′k (s,v) ≤ ϵn1/p∆k . Let v be a node such that distG (s,v) ≤ Dk . If distG (s,v) ≤ Dk−1, then

δk (s,v) ≤ δk−1(s,v) ≤ αk−1 distG (s,v) ≤ αk distG (u,v). If distG (s,v) ≥ Dk−1, then

δk (s,v) ≤ δ ′k (s,v) ≤ (αk−1 + 2ϵ
′) distG (s,v) + ϵ ′n1/p∆k

≤ (αk−1 + 2ϵ ′) distG (s,v) + ϵ ′Dk−1 ≤ (αk−1 + 3ϵ ′) distG (s,v)
= αk distG (s,v) .

This �nishes the proof of the claim. �

The lemma now follows from the claim by observing that ApproxSSSPq−2 is the desired decre-

mental approximate SSSP algorithm. The correctness simply follows from the choice Dq−2 = R.

The expected total update time is

Tq−2(m,n) = O(p logn logR)q−2 ·O(m1+(q−2)/pR2/q/ϵ ′) +O(n) .

Remember that q = b√pc and thus (q − 2)/p ≤ q/p ≤ 1/√p ≤ 1/q. By the de�nition of p we have

(2/ϵ ′)p ≤ n1/p and thus (2/ϵ ′)q ≤ (2/ϵ ′)p ≤ n1/p ≤ n1/q and furthermore, since p ≤ logn and

R ≥ n, p ≤ logn ≤ (logR)q ≤ (logR)p = (2p)log logR ≤ (n1/p)log logR = n(log logR)/p ≤ n(log logR)/q . It

follows that the total update time is

Tq−2(m,n) = O(m1+O ((log logR)/q)R2/q) + n) . �

37

We can turn the algorithm above into an algorithm for the full distance range by using the

rounding technique once more.

Theorem 6.3. For every 0 < ϵ ≤ 1, there is a decremental approximate SSSP algorithm that, given

a �xed source node s , maintains, for every node v , a distance estimate δ (s,v) such that distG (s,v) ≤
δ (s,v) ≤ (1 + ϵ) distG (s,v). It has constant query time and a total update time of

O(m1+O (log5/4((logn)/ϵ)/log1/4 n)
logW + n)

in expectation. If 1/ϵ = polylogn, then the total update time is O(m1+o(1)
logW + n) in expectation.

Proof. For every 0 ≤ i ≤ blog(nW)c we de�ne

φi =
ϵ2i

n
.

Let G ′i be the graph that has the same nodes and edges as G and in which every edge weight is

rounded to the next multiple of φi , i.e., every edge (u,v) in G ′i has weight

wG′i (u,v) =
⌈
wG (u,v)

φi

⌉
· φi

where wG (u,v) is the weight of (u,v) in G. This rounding guarantees that

wG (u,v) ≤ wGi (u,v) ≤ wG (u,v) + φi

for every edge (u,v) of G. Furthermore we de�ne G ′′i to be the graph that has the same nodes and

edges as G ′i and in which every edge weight is scaled down by a factor of 1/φi , i.e., every edge

(u,v) in G ′′i has weight

wG′′i (u,v) =
wG′i (u,v)

φi
=

⌈
w(u,v)
φi

⌉
.

The algorithm is as follows: For every 0 ≤ i ≤ blog(nW)c we use the algorithm of Lemma 6.1 on

the graph G ′′i with R = 4n/ϵ to maintain a distance estimate δi (s,v) for every node v that satis�es

• δi (s,v) ≥ distG′′i (s,v) and

• if distG′′i (s,v) ≤ R, then δi (s,v) ≤ (1 + ϵ) distG′′i (s,v).

We let our algorithm return the distance estimate

δ (s,v) = min

0≤i≤blognW c
φiδi (s,v) .

We now show that there is some 0 ≤ i ≤ blog(nW)c such that φiδi (s,v) ≤ (1 + 3ϵ) distG (s,v).
As δ (s,v) is the minimum of all the distance estimates, this implies that δ (s,v) ≤ (1+ 3ϵ) distG (s,v).
In particular, we know that there is some 0 ≤ i ≤ blog(nW)c such that 2

i ≤ distG (s,v) ≤ 2
i+1

since

W is the maximum edge weight and all paths consist of at most n edges. Consider a shortest path π
from s tov inG whose weight is equal to distG (s,v). LetwG (π) andwG′i (π) denote the weight of the

38

path π in G and G ′i , respectively. Since π consists of at most n edges we have wG′i (π) ≤ w(π) + nφi .
Therefore we get

distG′i (s,v) ≤ wG′i (π) ≤ w(π) + nφi = distG (s,v) + ϵ2i ≤ distG (s,v) + ϵ distG (s,v)
= (1 + ϵ) distG (s,v) .

Now observe the following:

distG′′i (s,v) =
distG′i (s,v)

φi
≤ (1 + ϵ) distG (s,v)

φi
≤ 2 distG (s,v)

φi
=

2 distG (s,v)n
ϵ2i

≤ 2 · 2i+1n
ϵ2i

=
4n

ϵ
= R .

Since distG′′i (s,v) ≤ R we get δi (s,v) ≤ (1 + ϵ) distG′′i (s,v) by Lemma 6.1. Thus, we get

φiδi (s,v) ≤ φi ((1 + ϵ) distG′′i (s,v)) = (1 + ϵ) distG′i (s,v) ≤ (1 + ϵ)
2
distG (s,v)

≤ (1 + 3ϵ) distG (s,v)

as desired.

We now analyze the running time of this algorithm. By Lemma 6.1, for every 0 ≤ i ≤ blog (nW)c,
maintaining δi (s,v) on G ′′i for every node v takes time O(m1+O ((log logR)/q)R2/q + n), where

q =

√√√√√√√√√√√
√
logn√

log

(
12·43 logn

ϵ

)

By our choice of R = 4n/ϵ , the total update time for maintaining all these blog (nW)c distance

estimates is O(m1+O ((log log (n/ϵ))/q)
logW /ϵ) in expectation. To obtain a (1 + ϵ)-approximation

(instead of a (1+ 3ϵ)-approximation, we simply run the whole algorithm with ϵ ′ = ϵ/3. This results

in a total update time of O(m1+O ((log log (n/ϵ))/q)
logW /ϵ), where

q =

√√√√√√√√√√√
√
logn√

log

(
36·43 logn

ϵ

)

Now observe that 1/ϵ ≤ n1/q and that

O

(
log log

(n
ϵ

)
q

)
= O

©«
(
log log

(n
ϵ

)) (
log

(
logn
ϵ

))
1/4

(logn)1/4
ª®®¬ = O

©«
(
log

(
logn
ϵ

))
5/4

(logn)1/4
ª®®¬ .

The total update time therefore is

O(m1+O (log5/4((logn)/ϵ)/log1/4 n)
logW + n) .

39

If 1/ϵ = polylogn, then the total update time is O(m1+(log5/4 logn)/log1/4 n
logW + n), which is

O(m1+o(1)
logW + n) since limx→∞(log5/4 logn)/log1/4 n = 0.

The query time of the algorithm described above is O(log(nW)) as it has to compute δ (s,v) =
min

0≤i≤blognW c φiδi (s,v) when asked for the approximate distance from s to v . We can reduce the

query time toO(1) by using a min-heap for every nodev that stores δi (s,v) for all 0 ≤ i ≤ blog(nW)c.
This allows us to query for δ (s,v) in constant time and does not increase our asymptotic bound on

the total update time. �

6.2 Approximate APSP

We now show how to use our techniques to obtain a decremental approximate APSP algorithm.

This is conceptually simple now. We use the approximate SSSP algorithm from Theorem 6.3 and

plug it into the algorithm for maintaining approximate balls from Proposition 4.1. By using an

adequate query procedure we can use the distance estimates maintained for the approximate balls

to return the approximate distances between any two nodes.

Theorem 6.4. For every k ≥ 2 and every 0 < ϵ ≤ 1, there is a decremental approximate APSP

algorithm that upon a query for the approximate between any pair of nodes u and v returns a distance

estimate δ (u,v) such that distG (u,v) ≤ δ (u,v) ≤ ((2 + ϵ)k − 1) distG (u,v). It has a query time of

O(kk) and a total update time of

O(m1+1/k+O (log5/4((logn)/ϵ)/log1/4 n)
log

2W + n)

in expectation. If 1/ϵ = polylogn, then the total update time isO(m1+1/k+o(1)
log

2W +n) in expectation.

Proof. We use the approximate SSSP algorithm of Theorem 6.3 that provides a (1+ϵ)-approximation

and has an total update time of

T (m,n) = O(m1+O (log5/4((logn)/ϵ)/log1/4 n)
logW + n)

in expectation, and if 1/ϵ = polylogn, then the total update time is T (m,n) = O(m1+o(1)
logW + n)

in expectation. By Proposition 4.1 we can maintain approximate balls with D = 5
knW in total

update time

t(m,n,k, ϵ) = O
((
km1+1/k +

∑
0≤i≤k−1

m

mi/k ·T (mi ,ni)
)
k logn

log (nW)
ϵ

+ k ·T (m,n)
)

in expectation, where, for each 0 ≤ i ≤ k − 1, mi = O(m(i+1)/k) and ni = O(m(i+1)/k). After

simpli�cation, we have t(m,n,k, ϵ) = O(m1+1/k+O (log5/4((logn)/ϵ)/log1/4 n)
log

2W +n) and t(m,n,k, ϵ) =
O(m1+1/k+o(1)

log
2W + n) if 1/ϵ = polylogn as desired.

Additionally we maintain, for every node v ∈ V and every 1 ≤ i ≤ k − 1, the node ci (v) which

is a node with minimum δ (u,v) among all nodes u of priority i such that v ∈ B(u). This can be

done as follows. For every node v we maintain a heap containing all nodes u of priority i such

that v ∈ B(u) using the key δ (u,v). Every time v joins or leaves B(u) we insert or remove u from

the heap of v . Every time δ (u,v) changes, we update the key of u in the heap of v . After each

insert, remove, or update in the heap of some node v , we �nd the minimal element ci (v) of the

heap. As each heap operation takes logarithmic time, the total update time of the algorithm of

40

Procedure 2: �ery(u, v)

1 if v ∈ B(u) then
2 δ ′(u,v) ← δ (u,v)
3 else
4 Set i to the priority of u
5 foreach j = i + 1 to k − 1 do
6 if c j (u) exists then
7 v ′′← c j (u)
8 δ ′(v ′′,v) ←�ery(v ′′, v)

9 δ ′j (u,v) ← δ (v,v ′′) + δ ′(v ′′,v)
10 else
11 δ ′j (u,v) ← ∞

12 δ ′(u,v) ← mini+1≤j≤k−1 δ
′
j (u,v)

13 return δ ′(u,v)

Proposition 4.1 only increases by a logarithmic factor, which does not alter the overall running time

bound of our algorithm.

To answer a query for the approximate distance between a pair of nodes u and v we use

Procedure 2. This procedure �rst tests whether v ∈ B(u) and if yes returns δ (u,v). Otherwise it

does the following for every j ≥ i + 1, where i is the priority of u: It �rst computes the node c j (u),
which among the nodesv ′ of priority j withu ∈ B(v ′) is the one with the minimum value of δ (v ′,u).
Then it recursively queries for the approximate distance δ ′(c j (u),v) from c j (u) to v and sets the

distance estimate via c j (u) to δ ′j (u,v) = δ (v, c j (u)) + δ ′(c j (u),v). Finally, it returns the minimum of

all distance estimates δ ′j (u,v).
Note that in each instance there areO(k) recursive calls and with each recursive call the priority

of u increases by at least one. Thus the running time of the query procedure is O(kk).

Claim 6.5. For every pair of nodes u and v the distance estimate δ ′(u,v) computed by Procedure 2

satis�es δ ′(u,v) ≤ (((1 + ϵ)2 + 1)k−i − 1) distG (u,v), where i is the priority of u.

Proof. The proof is by induction on the priority i of u. Let δ ′(u,v) denote the distance estimate

returned by Procedure 2. If i = k − 1, then by Proposition 4.1 and our choice of D we know that

v ∈ B(u) and thus δ ′(u,v) = δ (u,v) ≤ (1 + ϵ) distG (u,v). If i < k − 1 we distinguish between

the two cases v ∈ B(u) and v < B(u). If v ∈ B(u), then δ ′(u,v) = δ (u,v) ≤ (1 + ϵ) distG (u,v). If

v < B(u), then by Proposition 4.1 and our choice of D there is a node v ′ of priority j > i such that

u ∈ B(v ′) and distG (u,v ′) ≤ (1 + ϵ)2((1 + ϵ)2 + 1)j−i−1 distG (u,v).
We will now argue that δ ′j (u,v) ≤ 2((1 + ϵ)3 + 1)k−1−i − 1) distG (u,v), which implies the same

upper bound for δ ′(u,v). Setv ′′← c j (u). Since bothv ′′ andv ′ have priority j and u ∈ B(v ′) as well

asv ∈ B(v ′′)we have δ (u,v ′′) ≤ δ (u,v ′) by the de�nition ofv ′′. Since δ (u,v ′) ≤ (1+ϵ) distG (u,v ′),
we have

δ (u,v ′′) ≤ (1 + ϵ) distG (u,v ′) ≤ (1 + ϵ)3((1 + ϵ)2 + 1)j−i−1 distG (u,v)
≤ (1 + ϵ)3((1 + ϵ)3 + 1)j−i−1 distG (u,v) .

41

To simplify the presentation in the following we set a = (1 + ϵ)3 and thus have δ (u,v ′′) ≤
a(a + 1)j−i−1 distG (u,v). By the triangle inequality we have

distG (v ′′,v) ≤ distG (v ′′,u) + distG (u,v) ≤ δ (v ′′,u) + distG (u,v)
≤ (a(a + 1)j−i−1 + 1) distG (u,v)

and by the induction hypothesis we have

δ ′(v ′′,v) ≤ (2(a + 1)k−1−j − 1) distG (v ′′,v)
≤ (2(a + 1)k−1−j − 1)(a(a + 1)j−i−1 + 1) distG (u,v) .

Since j ≥ i + 1 we get

δ ′j (u,v) = δ (u,v ′′) + δ ′(v ′′,v)

≤
(
a(a + 1)j−i−1 + (2(a + 1)k−1−j − 1)(a(a + 1)j−i−1 + 1)

)
distG (u,v)

=
(
2(a + 1)k−1−j (a(a + 1)j−i−1 + 1) − 1

)
distG (u,v)

=
(
2a(a + 1)k−1−(i+1) + 2(a + 1)k−1−j) − 1

)
distG (u,v)

≤
(
2a(a + 1)k−1−(i+1) + 2(a + 1)k−1−(i+1)) − 1

)
distG (u,v)

=
(
2(a + 1)k−1−(i+1)(a + 1) − 1

)
distG (u,v)

= (2(a + 1)k−1−i − 1) distG (u,v) . �

Note that 2 ≤ ((1 + ϵ)3 + 1) and therefore we have δ ′(u,v) ≤ (((1 + ϵ)3 + 1)k−i − 1) distG (u,v).
Furthermore, (1 + ϵ)3 ≤ 1 + 7ϵ and in the worst case i = 0. Thus, by running the whole algorithm

with ϵ ′ = ϵ/7, we can guarantee that δ ′(u,v) ≤ ((2 + ϵ)k − 1) distG (u,v). �

7 Conclusion

In this paper, we showed that single-source shortest paths in undirected graphs can be maintained

under edge deletions with near-linear total update time and constant query time. The main approach

is to maintain an (no(1), ϵ)-hop set of near-linear size in near-linear time. We leave two major open

problems. The �rst problem is whether the same total update time can be achieved for directed

graphs, substantially improving the current mn0.9+o(1) total update time by [HKN14, HKN15]. This

problem is very challenging because a suitable hop set for directed graphs is not known even in

the static setting. Moreover, improving the current Õ(m
√
n) total update time by [Che

+
16] for the

decremental reachability problem is already very interesting.

The second major open problem is to derandomize our algorithm. The main task here is to

deterministically maintain the priority-induced balls of the nodes up to small bounded distance,

which is the key to maintaining the hop set. A related question is whether the algorithm of Roditty

and Zwick [RZ12] for decrementally maintaining the priority-induced clusters of Thorup and

Zwick [TZ05] up to small bounded distance (and the corresponding spanners and emulators) can

be derandomized, which is possible in the static setting [RTZ05]. We have previously demon-

strated [HKN16] how to derandomize the decremental (1 + ϵ)-approximate APSP algorithm of

42

Roditty and Zwick [RZ12], but the technique does not carry over to maintaining the clusters. Using a

principally di�erent approach, Bernstein and Chechik [BC16] have recently introduced a technique

to deterministically maintain approximate SSSP under edge deletions yielding total update times of

Õ(n2 logW) in weighted graphs [Ber17] and Õ(mn3/4) in unweighted graphs [BC17], respectively.

Can their technique be extended to obtain a deterministic algorithm that is as fast as our randomized

one in the sparse regime?

Acknowledgement

The authors would like to thank the anonymous reviewers of FOCS and JACM for their valuable

feedback.

References

[ABP17] Amir Abboud, Greg Bodwin, and Seth Pettie. “A Hierarchy of Lower Bounds for Sublin-

ear Additive Spanners”. In: Symposium on Discrete Algorithms (SODA). 2017, pp. 568–576

(cit. on p. 8).

[ACT14] Ittai Abraham, Shiri Chechik, and Kunal Talwar. “Fully Dynamic All-Pairs Shortest Paths:

Breaking the O(n) Barrier”. In: International Workshop on Approximation Algorithms for

Combinatorial Optimization Problems (APPROX). 2014, pp. 1–16 (cit. on p. 5).

[AV14] Amir Abboud and Virginia Vassilevska Williams. “Popular conjectures imply strong

lower bounds for dynamic problems”. In: Symposium on Foundations of Computer Science

(FOCS). 2014, pp. 434–443 (cit. on p. 4).

[BC16] Aaron Bernstein and Shiri Chechik. “Deterministic decremental single source shortest

paths: beyond the o(mn) bound”. In: Symposium on Theory of Computing (STOC). 2016,

pp. 389–397 (cit. on pp. 4, 43).

[BC17] Aaron Bernstein and Shiri Chechik. “Deterministic Partially Dynamic Single Source

Shortest Paths for Sparse Graphs”. In: Symposium on Discrete Algorithms (SODA). 2017,

pp. 453–469 (cit. on pp. 4, 43).

[Ber09] Aaron Bernstein. “Fully Dynamic (2+ϵ) Approximate All-Pairs Shortest Paths with Fast

Query and Close to Linear Update Time”. In: Symposium on Foundations of Computer

Science (FOCS). 2009, pp. 693–702 (cit. on pp. 4, 7–9).

[Ber16] Aaron Bernstein. “Maintaining Shortest Paths Under Deletions in Weighted Directed

Graphs”. In: SIAM Journal on Computing 45.2 (2016). Announced at STOC’13, pp. 548–

574 (cit. on pp. 4, 5, 7).

[Ber17] Aaron Bernstein. “Deterministic Partially Dynamic Single Source Shortest Paths in

Weighted Graphs”. In: International Colloquium on Automata, Languages, and Program-

ming (ICALP). 2017, 44:1–44:14 (cit. on pp. 4, 43).

[BR11] Aaron Bernstein and Liam Roditty. “Improved Dynamic Algorithms for Maintaining

Approximate Shortest Paths Under Deletions”. In: Symposium on Discrete Algorithms

(SODA). 2011, pp. 1355–1365 (cit. on pp. 4–6).

43

http://dx.doi.org/10.1137/1.9781611974782.36
http://dx.doi.org/10.1137/1.9781611974782.36
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1145/2897518.2897521
http://dx.doi.org/10.1145/2897518.2897521
http://dx.doi.org/10.1137/1.9781611974782.29
http://dx.doi.org/10.1137/1.9781611974782.29
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1137/130938670
http://dx.doi.org/10.1137/130938670
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.44
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.44
http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1137/1.9781611973082.104

[Che
+
16] Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Lacki, and Nikos

Parotsidis. “Decremental Single-Source Reachability and Strongly Connected Compo-

nents in Õ(m√n) Total Update Time”. In: Symposium on Foundations of Computer Science

(FOCS). 2016, pp. 315–324 (cit. on pp. 4, 42).

[Coh00] Edith Cohen. “Polylog-Time and Near-Linear Work Approximation Scheme for Undi-

rected Shortest Paths”. In: Journal of the ACM 47.1 (2000). Announced at STOC’94,

pp. 132–166 (cit. on p. 8).

[Coh98] Edith Cohen. “Fast Algorithms for Constructing t-Spanners and Paths with Stretch t”.
In: SIAM Journal on Computing 28.1 (1998). Announced at FOCS’93, pp. 210–236 (cit. on

pp. 4, 7).

[Din06] Ye�m Dinitz. “Dinitz’ Algorithm: The Original Version and Even’s Version”. In: Essays

in Memory of Shimon Even. 2006, pp. 218–240 (cit. on p. 6).

[Din70] E. A. Dinic. “An algorithm for the solution of the max-�ow problem with the polyno-

mial estimation”. In: Doklady Akademii Nauk SSSR 194.4 (1970). In Russian; English

translation: Soviet Mathematics Doklady 11, 5 (1970), 1277–1280 (cit. on p. 6).

[EN] Michael Elkin and Ofer Neiman. “Linear-Size Hopsets with Small Hopbound, and

Distributed Routing with Low Memory”. In: CoRR abs/1704.08468 (). arXiv: 1704.08468

(cit. on p. 8).

[ES81] Shimon Even and Yossi Shiloach. “An On-Line Edge-Deletion Problem”. In: Journal of

the ACM 28.1 (1981), pp. 1–4 (cit. on pp. 3, 6).

[Hen
+
15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-

nurak. “Unifying and Strengthening Hardness for Dynamic Problems via the Online

Matrix-Vector Multiplication Conjecture”. In: Symposium on Theory of Computing

(STOC). 2015, pp. 21–30 (cit. on p. 3).

[HK95] Monika Henzinger and Valerie King. “Fully Dynamic Biconnectivity and Transitive

Closure”. In: Symposium on Foundations of Computer Science (FOCS). 1995, pp. 664–672

(cit. on pp. 4, 6).

[HKN14] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Sublinear-Time

Decremental Algorithms for Single-Source Reachability and Shortest Paths on Directed

Graphs”. In: Symposium on Theory of Computing (STOC). 2014, pp. 674–683 (cit. on pp. 4,

42).

[HKN15] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Improved Algo-

rithms for Decremental Single-Source Reachability on Directed Graphs”. In: Interna-

tional Colloquium on Automata, Languages and Programming (ICALP). 2015, pp. 725–736

(cit. on pp. 4, 42).

[HKN16] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Dynamic Approx-

imate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and Derandomization”. In:

SIAM Journal on Computing 45.3 (2016). Announced at FOCS’13, pp. 947–1006 (cit. on

pp. 6, 7, 13, 22, 26, 28, 42).

[HP17] Shang-En Huang and Seth Pettie. “Thorup-Zwick Emulators are Universally Optimal

Hopsets”. In: CoRR abs/1705.00327 (2017). arXiv: 1705.00327 (cit. on p. 8).

44

http://dx.doi.org/10.1109/FOCS.2016.42
http://dx.doi.org/10.1109/FOCS.2016.42
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1137/S0097539794261295
http://dx.doi.org/10.1007/11685654_10
http://arxiv.org/abs/1704.08468
http://arxiv.org/abs/1704.08468
http://arxiv.org/abs/1704.08468
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1007/978-3-662-47672-7_59
http://dx.doi.org/10.1007/978-3-662-47672-7_59
http://dx.doi.org/10.1137/140957299
http://dx.doi.org/10.1137/140957299
http://arxiv.org/abs/1705.00327
http://arxiv.org/abs/1705.00327
http://arxiv.org/abs/1705.00327

[Kha
+
12] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar.

“E�cient distributed approximation algorithms via probabilistic tree embeddings”. In:

Distributed Computing 25.3 (2012). Announced at PODC’08, pp. 189–205 (cit. on p. 8).

[Kin99] Valerie King. “Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and

Transitive Closure in Digraphs”. In: Symposium on Foundations of Computer Science

(FOCS). 1999, pp. 81–91 (cit. on pp. 4, 6).

[KS97] Philip N. Klein and Sairam Subramanian. “A Randomized Parallel Algorithm for Single-

Source Shortest Paths”. In: Journal of Algorithms 25.2 (1997), pp. 205–220 (cit. on pp. 4,

7).

[Lac13] Jakub Łącki. “Improved Deterministic Algorithms for Decremental Reachability and

Strongly Connected Components”. In: ACM Transactions on Algorithms 9.3 (2013).

Announced at SODA’11, p. 27 (cit. on p. 4).

[Mąd10] Aleksander Mądry. “Faster Approximation Schemes for Fractional Multicommodity

Flow Problems via Dynamic Graph Algorithms”. In: Symposium on Theory of Computing

(STOC). 2010, pp. 121–130 (cit. on pp. 3, 4, 7).

[Nan14] Danupon Nanongkai. “Distributed Approximation Algorithms for Weighted Shortest

Paths”. In: Symposium on Theory of Computing (STOC). 2014, pp. 565–573 (cit. on pp. 7,

8).

[Rod13] Liam Roditty. “Decremental maintenance of strongly connected components”. In: Sym-

posium on Discrete Algorithms (SODA). 2013, pp. 1143–1150 (cit. on pp. 3, 4).

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. “Deterministic Constructions of Ap-

proximate Distance Oracles and Spanners”. In: International Colloquium on Automata,

Languages and Programming (ICALP). 2005, pp. 261–272 (cit. on p. 42).

[RZ08] Liam Roditty and Uri Zwick. “Improved Dynamic Reachability Algorithms for Directed

Graphs”. In: SIAM Journal on Computing 37.5 (2008). Announced at FOCS’02, pp. 1455–

1471 (cit. on p. 4).

[RZ11] Liam Roditty and Uri Zwick. “On Dynamic Shortest Paths Problems”. In: Algorithmica

61.2 (2011). Announced at ESA’04, pp. 389–401 (cit. on p. 3).

[RZ12] Liam Roditty and Uri Zwick. “Dynamic Approximate All-Pairs Shortest Paths in Undi-

rected Graphs”. In: SIAM Journal on Computing 41.3 (2012). Announced at FOCS’04,

pp. 670–683 (cit. on pp. 42, 43).

[Tho99] Mikkel Thorup. “Undirected Single-Source Shortest Paths with Positive Integer Weights

in Linear Time”. In: Journal of the ACM 46.3 (1999). Announced at FOCS’97, pp. 362–394

(cit. on p. 3).

[TZ05] Mikkel Thorup and Uri Zwick. “Approximate Distance Oracles”. In: Journal of the ACM

52.1 (2005). Announced at STOC’01, pp. 74–92 (cit. on pp. 5, 8, 11, 42).

[TZ06] Mikkel Thorup and Uri Zwick. “Spanners and emulators with sublinear distance errors”.

In: Symposium on Discrete Algorithms (SODA). 2006, pp. 802–809 (cit. on pp. 6, 8–10, 16).

[VW10] Virginia Vassilevska Williams and Ryan Williams. “Subcubic Equivalences between

Path, Matrix and Triangle Problems”. In: Symposium on Foundations of Computer Science

(FOCS). 2010, pp. 645–654 (cit. on p. 3).

45

http://dx.doi.org/10.1007/s00446-012-0157-9
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1006/jagm.1997.0888
http://dx.doi.org/10.1006/jagm.1997.0888
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/1806689.1806708
http://dx.doi.org/10.1145/1806689.1806708
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1137/1.9781611973105.82
http://dx.doi.org/10.1007/11523468_22
http://dx.doi.org/10.1007/11523468_22
http://dx.doi.org/10.1137/060650271
http://dx.doi.org/10.1137/060650271
http://dx.doi.org/10.1007/s00453-010-9401-5
http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1145/316542.316548
http://dx.doi.org/10.1145/316542.316548
http://dx.doi.org/10.1145/1044731.1044732
http://dl.acm.org/citation.cfm?id=1109557.1109645
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1109/FOCS.2010.67

[Zwi02] Uri Zwick. “All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix Mul-

tiplication”. In: Journal of the ACM 49.3 (2002). Announced at FOCS’98, pp. 289–317

(cit. on pp. 4, 7).

46

http://dx.doi.org/10.1145/567112.567114
http://dx.doi.org/10.1145/567112.567114

	1 Introduction
	2 Preliminaries
	3 Technical Overview
	4 From Approximate SSSP to Approximate Balls
	4.1 Relation to Exact Balls
	4.2 Properties of Approximate Balls

	5 From Approximate Balls to Approximate SSSP
	5.1 Algorithm Description
	5.2 Running Time Analysis
	5.3 Definitions of Values for Approximation Guarantee
	5.4 Analysis of Approximation Guarantee

	6 Putting Everything Together
	6.1 Approximate SSSP
	6.2 Approximate APSP

	7 Conclusion
	References

