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Abstract—We consider several well-studied problems in dy-
namic algorithms and prove that sufficient progress on any of
them would imply a breakthrough on one of five major open
problems in the theory of algorithms:
1) Is the 3SUM problem on n numbers in O(n2−ε) time for
some ε > 0?

2) Can one determine the satisfiability of a CNF formula on
n variables and poly n clauses in O((2 − ε)npoly n) time
for some ε > 0?

3) Is the All Pairs Shortest Paths problem for graphs on n
vertices in O(n3−ε) time for some ε > 0?

4) Is there a linear time algorithm that detects whether a
given graph contains a triangle?

5) Is there an O(n3−ε) time combinatorial algorithm for n×n
Boolean matrix multiplication?

The problems we consider include dynamic versions of bipartite
perfect matching, bipartite maximum weight matching, single
source reachability, single source shortest paths, strong connec-
tivity, subgraph connectivity, diameter approximation and some
nongraph problems such as Pagh’s problem defined in a recent
paper by Pǎtraşcu[STOC 2010].
Index Terms—dynamic algorithms; all pairs shortest paths;

3SUM; lower bounds;

I. INTRODUCTION
Dynamic algorithms are a natural extension of the typ-

ical notion of an algorithm: besides computing a function
on an input x, the algorithm needs to be able to update
the computed function value as x undergoes small changes,
without redoing all of the computation. Dynamic algorithms
have a multitude of applications, and their study has evolved
into a vibrant research area. Among its many successes are
efficient dynamic graph algorithms for graph connectivity [18],
[35], [29], minimum spanning tree [14], [21], [19], graph
matching [33], [4], [25], [16] and approximate shortest paths
in undirected graphs [5], [6], [17]. Graph connectivity and
minimum spanning tree for instance can be supported in only
polylogarithmic time per edge update or query. Nevertheless,
there are some dynamic problems that seem stubbornly dif-
ficult. For instance, consider maintaining a reachability tree
from a fixed vertex under edge insertions or deletions, i.e.
the so called dynamic single source reachability problem (ss-
Reach). The best known dynamic ss-Reach algorithm [32] has
update time O(n1.495) in n-node graphs. This is only better
than the trivial recomputation time for very dense graphs.

Moreover, the result uses heavy machinery such as fast matrix
multiplication, and is currently not practical. There are many
such problems, including dynamic shortest paths, maximum
matching, strongly connected components, and some non-
graph problems such as Pagh’s problem [28] supporting set
intersection updates and membership queries. For many of
these problems, the only known dynamic algorithms are to
recompute the answer from scratch. (Although there has been
some success when only insertions or only deletions are to be
supported.)
For many of these seemingly hard problems we do not

believe that a dynamic algorithm with an amortized polyloga-
rithmic update time exists and, in fact, it seems plausible that
these problems require update time that is polynomial in the
number of vertices n or edges m. Unfortunately, the state of
the art on unconditional (e.g. cell probe) lower bounds does
not allow for any superpolylogarithmic lower bounds, and we
do not have a handle on the true complexity of many (perhaps
most) dynamic problems.
In this paper, we follow an approach that is similar in spirit

to NP-hardness but more fine-grained. The approach strives
to prove, via combinatorial reductions, that improving on a
given upper bound for a computational problem X would
yield breakthrough algorithms for many other famous and
well-studied problems. Combining our reductions with widely
believed conjectured lower bounds for these famous problems,
we obtain a lower bound for the original problem X.
The famous (static) problems we consider in this work are

CNF-SAT, triangle detection, Boolean Matrix Multiplication,
All Pairs Shortest Paths (APSP) and 3-SUM. Using our
approach we are able to provide many (conditional) lower
bounds for fundamental dynamic problems most of which are
tight up to sub-polynomial factors! (See the full version [1] for
an exposition on these famous problems and their conjectured
lower bounds.) Thus, we are able to determine the exact
(polynomial) complexity of many basic dynamic problems
under certain widely believed conjectures. As an example, we
prove that the reachability tree from a single source cannot be
maintained with an amortized m1−ε update time in m-edge
graphs, for any ε > 0, without refuting the Strong Exponential
Time Hypothesis, implying that the trivial algorithm for ss-
Reach may be essentially optimal.



Our reductions start from a famous static problem (e.g.
CNF-SAT) and generate an instance of a potentially very dif-
ferent dynamic problem (e.g. ss-Reach), along with a sequence
of updates and queries. Note that it is typically easy to show
that if a static problem requires Ω(mc) time to solve, then
an appropriate dynamic version of the same problem would
require Ω(mc−1) time per update, by simply “creating” the
instance. Such a simple approach, however, cannot obtain
interesting lower bounds for basic problems like ss-Reach or
strong connectivity, since the static case can be solved in linear
time. More similar to our work are the reductions of Roditty
and Zwick [31] from APSP to partially dynamic single source
shortest paths (SSSP) in which the dynamic instance is non-
trivially modified. Here we go much further by relating a
variety of very different problems to provide a long list of
lower bounds.
In some sense, most similar to our results are the surprising

reductions of Pǎtraşcu [28] from 3-SUM on n numbers, a
problem that is assumed to require n2−o(1) time. Assuming
the hardness of 3-SUM, Pǎtraşcu is able to show that several
dynamic problems (on input sizem), such as transitive closure,
require Ω(mc) time updates for some small c > 0. Yet, as
we explain below, following Pǎtraşcu’s line of attack one
cannot hope to obtain tight lower bounds for the problems
he considers. In fact, in order to obtain a lower bound bound
of Ω(mc) for c > 1/3 different ideas seem to be required.
Meanwhile, we give tight bounds for many problems.
Pǎtraşcu’s reductions proceed as follows. He first reduces

3-SUM on n numbers to the problem of reporting m =
O(n1.5) triangles in a graph with O(m) edges. Subsequently,
he presents a simple reduction from the triangle reporting
problem to an intermediate problem called the multiphase
problem that can then be reduced to several dynamic problems.
The obtained lower bound for the dynamic problems depends
on the size of the required instance and the number of
required updates and queries in these reductions. We extend
this approach for many dynamic problems such as bipartite
matching in the full version [1] of the paper and optimize
the lower bounds from 3-SUM following Pǎtraşcu’s approach.
These lower bounds are unfortunately still not tight.
The loss in the approach comes from the fact that in the

reductions, in order to get a subquadratic algorithm for 3-
SUM, the dynamic problems are required to find m triangles
in O(m4/3−ε) time. However, the state-of-the-art algorithms
even for finding a single triangle run in O(m1.41) time [2].
Moreover, Pǎtraşcu’s reduction from reporting triangles to the
dynamic problems essentially reduces triangle reporting to
triangle finding (in a special instance). This reduction, just
as all known reductions from triangle reporting to detection,
is lossy, and the final conditional lower bounds on the dynamic
problems incur this loss. In a sense, the true barrier for the
hardness of dynamic problems such as the ones Pǎtraşcu
considers is triangle detection. We explore this barrier later in
the paper and are able to tighten and extend the lower bounds.
The main contribution of this work is that we identify

different barriers for different dynamic problems and find

different famous hard problems that allow us to better explain
these barriers.

a) SETH: Our first set of results is based on the obser-
vation that the hardness of improving on the trivial runtime
of many basic dynamic problems can be “blamed” on the
hardness of devising algorithms for CNF-SAT that are expo-
nentially faster than the brute force 2n solution.
Despite hundreds of papers on faster exponential algorithms

for NP-Hard problems in recent years (see the survey by
Woeginger for an exposition [42]), and despite the remarkable
effort put into obtaining faster satisfiability algorithms, the
best upper bounds for CNF-SAT on n variables and m
clauses remain of the form 2n−o(n)poly (m) (e.g. [20], [27],
[34]). The Strong Exponential Time Hypothesis (SETH) of
Impagliazzo, Paturi and Zane, which has received a lot of
attention recently, states that better algorithms do not exist.
(See the full version [1] for more background on SETH).

Conjecture 1 (SETH). For every ε > 0, there exists a k, such
that SAT on k-CNF formulas on n variables cannot be solved
in O∗(2(1−ε)n) time.

Our reductions from CNF-SAT can be classified into two
kinds. In the first kind, given a CNF formula on n variables
we construct a sparse graph on N = 2n/2poly (n) nodes and
edges on which O(N) updates and queries of certain dynamic
problems, such as the problem of computing the number of
nodes reachable from a single source (#SSR), would allow us
to conclude whether the formula is satisfiable. Therefore, any
dynamic algorithm for these problems with truly sub-linear
amortized update and query times, i.e. O(n1−ε) for some ε >
0, would refute SETH.
Intuitively speaking, any problem that allows us to check

whether a certain node s ∈ V can reach every node in a
certain set T ⊆ V will have a lower bound from SETH.
For #SSR in sparse n-node graphs, the lower bound of

Ω(n1−ε) for all ε > 0 from above is tight up to no(1) factors,
since the trivial algorithm that computes the answer from
scratch after every update runs in O(n) time per update (the
graph is sparse). We obtain similar tight linear lower bounds
for other problems such as variants of maintaining the strongly
connected components of a directed graph (SC2 and MaxSCC)
and the connectivity problem in undirected graphs with node
updates (ConnSub) studied by Chan et al. [7], [8]. (See Table I
for definitions and the full version for background on the
problems.)
Quite surprisingly, seemingly similar versions of these prob-

lems can be solved with polylogarithmic time updates, e.g.
#SSR in undirected graphs or ConnSub with edge updates
instead of node updates. Meanwhile, we prove that any “truly”
faster than trivial algorithm for the above versions implies
a breakthrough algorithm for CNF-SAT. Using an additional
idea we show that SETH implies that even after an arbitrary
polynomial preprocessing time (O(nc) for any constant c),
one cannot maintain the updates and answer the queries in
amortized sub-linear time.



Theorem I.1 (informal). SETH implies that #SSR, SC2,
MaxSCC and ConnSub cannot be solved with O(m1−ε) amor-
tized update and query times on sparse graphs, for any ε > 0,
even after an arbitrarily long polynomial time preprocessing.

Interestingly, although our lower bound is tight when the
graph is sparse, using an approach by Sankowski [32] we
can solve #SSR with an O(n1.575) update time using matrix
multiplication. This is sub-linear in the number of edges when
the graph is dense. We are not able to get a higher than n1−o(1)

lower bound from SETH when the graph is dense. However,
we will later show how a different conjecture allows us to get a
better lower bound, also suggesting that matrix multiplication
may be necessary to obtain improvements.
In the second kind of reductions from CNF-SAT, different

ideas and different dynamic problems allow us to implement
a similar construction where the number N of nodes, edges,
queries and updates is only 2n/3poly (n), thus implying a
much higher, quadratic, lower bound on the amortized update
and query times.
An example of a problem for which this kind of reduction

applies is maintaining a (4/3− ε)-approximation of the graph
diameter (4/3-Diam), for any ε > 0. The n2−o(1) update
lower bound (under SETH) that we obtain for 4/3-Diam in
sparse graphs is quite striking: In the dynamic setting, Õ(n2)
time per update [13] is sufficient to maintain even all pairs of
distances in dense graphs, whereas our n2−o(1) lower bound
is for maintaining a single distance in a sparse graph. In the
static setting, one can solve even APSP in sparse graphs in
Õ(n2) time, implying that the trivial dynamic algorithm that
computes the exact diameter from scratch after every update
is essentially optimal. Another basic dynamic problem with
such a high n2−o(1) lower bound is ST -Reach in which we
ask whether every node in the subset S ⊆ V can reach every
node in the subset T ⊆ V .

Theorem I.2 (informal). SETH implies that 4/3-Diam and
ST -Reach cannot be solved with O(m2−ε) amortized update
and query times, for any ε > 0, even after an arbitrarily long
polynomial time preprocessing.

b) Triangle Detection: Our second set of results is based
on the observation that the hardness in solving many basic
dynamic graph problems can be explained by the hardness of
solving triangle detection. An example of such a problem is
dynamic reachability between a single source-sink pair (s, t-
Reach). Given an n node and m edge graph, the fastest
algorithms for determining whether the graph contains a
triangle run in time O(min{nω,m2ω/(ω+1)}) [23], [2] where
ω < 2.373 is the matrix multiplication exponent [36], [15],
[10], [11].
The known truly subcubic algorithms for matrix multi-

plication are largely impractical, and a lot of research has
gone into obtaining a “combinatorial” algorithm for the prob-
lem: a simple, practical algorithm that does not suffer from
the overhead of the current theoretically fast approaches.
The fastest combinatorial algorithms for triangle detection,

however, are far from fast: they run in O(m3/2) [23] and
O(n3/ log2.25 n) [3] time.
Below we introduce the “Strong Triangle conjecture”, that

essentially says that the current bounds for Triangle detection
cannot be beaten. This conjecture allows us to get high lower
bounds for several dynamic problems. The lower bounds are
tight when restricted to combinatorial algorithms.

Conjecture 2 (Strong Triangle). In the Word RAM model
with words of O(log n) bits, any algorithm requires
min{nω−o(1),m2ω/(ω+1)−o(1)} time in expectation to detect
whether an n node m edge graph contains a triangle. More-
over, any combinatorial algorithm requires m3/2−o(1) time.

In the full version of the paper [1] we explain how the
combinatorial part of the Strong Triangle conjecture is implied
by a now standard conjecture that combinatorial algorithms for
Boolean Matrix Multiplication (BMM) must take essentially
cubic time. Thus, we can obtain tight lower bounds for many
dynamic problems, also based on the hardness of BMM, sug-
gesting that the use of fast matrix multiplication is necessary
to obtain nontrivial algorithms.
Notice that if ω = 2, then the best algorithm for triangle

detection in m-edge graphs would run in O(m4/3) time which
is still far from linear. One of the weakest (and hence most
likely to be true) conjectures in our paper is that Triangle
detection does not admit linear time algorithms. We state a
flexible version of this conjecture below, for any δ > 0.

Conjecture 3 (δ-Triangle). In the Word RAM model with
words of O(log n) bits, any algorithm requiresm1+δ−o(1) time
in expectation to detect whether an m edge graph contains a
triangle.

Our results based on the Strong Triangle conjecture are
consequences of our results from the above conjecture. In
particular, for sparse graphs, one can directly apply the results
from the δ-Triangle conjecture with δ = (ω − 1)/(ω + 1).
Under the δ-Triangle conjecture (for any δ > 0), we

obtain Ω(m2δ−o(1)) update lower bounds for many dynamic
problems. If ω = 2 and δ = 1/3 (as in the Strong Triangle con-
jecture), our lower bounds would be m2/3−o(1). These bounds
are significantly higher than the ones we can obtain from
3-SUM following Pǎtraşcu’s approach (that at best achieve
Ω(m1/3)). Moreover, the δ-Triangle conjecture may be a more
plausible assumption than the 3-SUM Conjecture (see the full
version for a discussion).
Our reductions proceed as follows. We first show how using

O(n) updates and queries to s, t-Reach in a dynamic graph
on O(m) edges and O(n) nodes one can detect whether an n
node m edge graph contains a triangle. Then we show how
s, t-Reach can be replaced by several other dynamic problems
such as strong connectivity and bipartite matching. Finally,
we add a high-degree-low-degree step to get a more efficient
reduction when the graph is sparse. The intuitive moral of our
reductions is that s, t-Reach is possibly the simplest dynamic
problem that can solve Triangle detection, and any problem



that can capture it would suffer from similar limitations.
Below is an informal statement of some of our results.

Theorem I.3 (informal). Let γ = (ω − 1)/(ω + 1) ∈
[1/3, 0.408] and let ε > 0 be any constant. The Strong
Triangle conjecture implies that dynamic s, t-Reach, strong
connectivity and bipartite matching cannot be solved with
O(m2γ−ε) update and query times even after O(m1+γ−ε)
preprocessing time, nor, if the algorithm is combinatorial, with
O(m1−ε) update and query time, even after O(m3/2−ε) time
preprocessing.

Theorem I.3 shows that any non-trivial combinatorial al-
gorithm for these dynamic problems would imply a surpris-
ing breakthrough for Triangle detection and hence also for
Boolean matrix multiplication. Interestingly, for some of the
above problems, fast matrix multiplication has been used to
obtain faster update times for dense graphs, e.g. O(n1.495) for
bipartite matching [33]. Our results imply that update times
faster than O(nω−1) = O(n1.373) for such problems would be
difficult to obtain. Closing this gap between n1.373 and n1.495

is a very interesting open question.
c) APSP: Next we consider edge weighted graph prob-

lems and we show that the current upper bounds for dynamic
maximum weight matching and s, t-shortest path (st-SP) are
optimal, even on partially dynamic graphs, unless an unex-
pected truly subcubic algorithm for APSP exists.
Classical algorithms such as Dijkstra’s or Floyd-Warshall’s

provide O(n3) running times for APSP in n-node graphs.
Many no(1) improvements over this cubic runtime were found,
the current best is the recent n3

2Ω(
√

( log n))
by Williams [40].

Nevertheless, no truly subcubic time algorithm for APSP is
known, and is conjectured to be impossible in many papers,
e.g. [31], [41].

Conjecture 1 (APSP). There is a constant c, such that in the
Word RAM model with words of O(log n) bits, any algorithm
requires n3−o(1) time in expectation to compute the distances
between every pair of vertices in an n node graph with edge
weights in {1, . . . , nc}.
Roditty and Zwick [31] show how to reduce APSP to O(n)

updates and O(n2) queries of partially dynamic SSSP to obtain
a tight lower bound for this problem, assuming the APSP
conjecture above. We present a more efficient reduction to
an even easier problem, reducing APSP to O(n) updates and
queries of partially dynamic st-SP, perhaps identifying the
simplest dynamic problem that can efficiently solve APSP.
This simplification allows us to conclude a similar tight lower
bound for partially dynamic maximum weight matching in
bipartite graphs (BWMatch), via a folklore reduction from st-
SP to BWMatch.

Theorem I.4 (informal). The APSP conjecture implies that st-
SP and BWMatch cannot be solved with amortized O(n2−ε)
update and query times in decremental or incremental graphs.

Theorem I.4 is quite surprising since the shortest s, t-
path can be computed from scratch in Õ(n2) time and yet

we show that (under the above conjecture) quadratic time
cannot be avoided over a sequence of only edge deletions (or
only insertions) even in an amortized sense! For comparison,
observe that incremental single source reachability can be
solved with O(1) amortized update and query time. Similarly,
dynamic BWMatch can be easily solved with Õ(n2) worst
case update time by checking for augmenting paths after every
update, and unexpectedly, we show that this is optimal even
for amortized, partially dynamic algorithms.

d) More results: The majority of our results appear in
Table II, and the problems we study are defined in Table I.
Our results apply for many well-studied problems beyond the
ones we have mentioned so far. Notably, our reductions also
apply to non-graph problems. An interesting example is the
problem we call ∅-PP (a variant of which appeared in [28]
as Pagh’s problem). In this problem, one is to maintain a
collection of k subsets X1, . . . , Xk over a universe of size n,
where the updates are, given two indices i, j, add the subset
Xij = Xi ∩Xj to the collection. A query points to a subset
in the current collection and asks whether it is empty. The
motivation for this problem comes from conjunctive queries
in databases and information retrieval [9], [37], [26]. For
instance, each set Xi might correspond to the set of documents
containing a word Wi and one might be interested in finding
documents containing multiple words of interest. We prove
that SETH implies that even when the number of subsets
k = O(log n) is quite small and when we are allowed to
preprocess the initial collection in arbitrarily long polynomial
time, it is impossible to support the updates in amortized
O(n1−ε) time, for any ε > 0. Notice that the trivial update
time is O(n).
More careful reductions allow us to also prove statements

about maintaining an approximate matching dynamically. In
particular, we show that a certain natural approach is unlikely
to yield very efficient updates for c-approximate dynamic
matching for a fixed constant c. For details, see the full version.

e) Meaning of the results: One way to look at our
results is that we prove conditional lower bounds for dynamic
problems. There is another way to look at them however:
our results present new approaches to attacking famous open
problems. Perhaps a new technique in dynamic algorithms may
be the key to truly subcubic APSP, or to breaking SETH.
Due to the nature of our techniques, all of our reductions

imply results not only for fully dynamic algorithms, but also
for partially dynamic ones. In particular, most of the lower
bounds in Table II also hold when only insertions or only
deletions are to be performed, and when the update and query
times are worst case. Also due to the nature of our techniques,
our results also hold for algorithms that have lookahead access,
i.e. they know the updates and queries in advance. This is
interesting since many dynamic problems have more efficient
algorithms in the presence of lookahead. In our reductions,
the number of updates and queries we make to the dynamic
algorithm is roughly linear (or quadratic) in the input size, and
therefore the lower bounds hold even when amortizing over a
sequence of that number of updates and queries.



f) Rules of thumb: We can conclude the following rules
of thumb for future work on conditional lower bounds for
dynamic problems. Let P be a dynamic problem.

• If P looks like graph reachability, attempt reducing from
Triangle detection, BMM or 3-SUM.

• If P can detect a pair of nodes s, t such that t is not
reachable from s, then attempt reducing from CNF-SAT.

• If P can maintain some shortest path, then attempt
reducing from APSP.

II. SUMMARY OF TECHNIQUES
Detailed proofs are given in the full version of the paper. In

the rest of this version, we summarize the main ideas in our
reductions.

g) Lower bounds based on the SETH: By a careful use of
the sparsification lemma of Impagliazzo, Paturi and Zane [22],
one can show that, to refute SETH, it is enough to solve
SAT on CNF formulas with n variables and O(n) clauses
in O∗(2(1−δ)n) time for δ > 0. Given such a formula F , we
construct graphs as follows.
To explain the first kind of reductions from CNF-SAT,

let us focus on the reduction to dynamic #SSR. The other
reductions require different ideas to implement but proceed
along the same lines. We start by splitting the variables V
into two sets U and V \ U of size n/2 each. We create
a set A on N = 2n/2 nodes, each corresponding to a
partial assignment to the variables in U . We also create a
set C on O(n) nodes, one corresponding to each clause,
and an additional node s which will be our source. So far
the reduction resembles most reductions from CNF-SAT to
polynomial time solvable problems. The first such reduction
was devised by Williams in his study of the orthogonal pairs
and subset query problems [38], [39], [30].
Suppose now that we add a directed edge from a clause

c ∈ C to each partial assignment a ∈ A if and only if a does
not satisfy c. In our reduction, we will add and remove edges
from the node s to the nodes in C, while the edges from part C
to part A will remain unchanged. We will have N stages, one
stage for each partial assignment b to the variables in V \ U .
We start the stage by connecting the node s with edges to all
the clauses c ∈ C such that the partial assignment b does not
satisfy c. Then, the main observation is that b can be completed
to a satisfying assignment to our formula F if and only if there
is a node a ∈ A that s cannot reach. To see this, observe that
s can reach a if and only if there is a clause c ∈ C that is not
satisfied by neither a nor b. Therefore, the second part of our
stage is a query asking about the number of nodes reachable
from the source s. If k is the number of clauses not satisfied
by our current b then the answer to the query will be less than
k + 2n/2 if and only if b can be completed to a satisfying
assignment. If the satisfiability of F was not confirmed by the
query, we finish the stage by removing all the edges from s
to C and move on to the next partial assignment.
The formula F is satisfiable if and only if at least one of

the N stages confirms the satisfiability, which concludes the
correctness of our reduction. Note that the graph we create has

O(2n/2) = O(N) nodes and m = O(n2n/2) = O(N logN)
edges, while we do O(n2n/2) = O(N logN) updates and
N queries. Hence any dynamic algorithm with O(N2−ε)
preprocessing time, and O(m1−ε) update and query time
would violate the SETH.
Now, suppose that we could achieve O(m1−ε) update and

query time after O(N t) preprocessing for some big constant
t. Then we could still contradict the SETH by modifying the
above construction. Instead of splitting the variables into two
parts on n/2 variables each, we split them into U of size δn
and V \ U of size (1− δ)n for some constant δ < 1/t. Then
we apply exactly the same construction as above where A is
the set of 2δn partial assignments to U , while the number of
stages is the number of partial assignments to V \U which is
2(1−δ)n. The number of vertices and edges of the graph is now
O(n2δn) ≤ O(2n(1−γ)/t) for some γ > 0. Hence the O(N t)
preprocessing time only takes O(2n(1−γ)) time. The number
of updates we do is O(n2(1−δ)n) but since the graph is much
smaller we get that O(m1−ε) time updates and queries imply
a runtime of

2δn(1−ε) · 2(1−δ)n = 2n(1−εδ)

(excluding polynomial factors) for solving the SAT instance.
Hence we again violate the SETH.
To explain the second kind of reduction from CNF-SAT,

we focus on dynamic ST -Reach. The key observation is that
dynamic ST -Reach allows us to efficiently check the existence
of a triple of partial assignments that satisfy all our clauses,
allowing us to split the variables V into three sets U1, U2, U3

and eventually get a higher lower bound.
Assume for simplicity of presentation that the variables are

split evenly among the sets. For each of the N = 2n/3 partial
assignments to the variables in U1 we create a node a in part
S of our graph, and for each of the N partial assignments to
the variables in U2 we create a node b in part T of our graph.
We also add two sets of nodes C1 and C2 of size O(n). For
every clause c in our formula we add nodes c1 to C1 and c2
to C2. A node a in S will be connected with a directed edge
to a clause node c1 if and only if a does not satisfy c, and a
node b in T will have an incoming directed edge from c2 if
and only if b does not satisfy c. These edges from S to the C1

nodes and from C2 to T will not change during our reduction,
and we will be adding and removing edges from C1 to C2.
We will haveN stages, one stage for each partial assignment

d to the variables in U3. We start the stage by adding edges
c1 → c2 for all the clauses c ∈ C such that the partial
assignment d does not satisfy c. Then, the main observation
is that d can be completed to a satisfying assignment to our
formula F if and only if there are two nodes a ∈ S and b ∈ T
such that a cannot reach b. To see this, observe that a can reach
b if and only if there is a clause c ∈ C that is not satisfied by
any of a, b and d. Therefore, the answer to an ST -Reach query
tells us whether d can be completed to a satisfying assignment.
If the satisfiability of F was not confirmed by the query, we
finish the stage by removing all the edges from C1 to C2 and
move on to the next partial assignment.



Problem
Maintain Update Query

(s, t)-Subgraph Connectivity (st-SubConn)
A fixed undirected graph, a subset S Insert/remove a node into/from S Are s and t connected in the
of its vertices and fixed vertices s, t subgraph induced by the nodes in S?

Bipartite Perfect Matching (BPMatch)
An undirected bipartite graph Edge insertions/deletions Does the graph have a

perfect matching?
Bipartite Maximum Weight Matching (BWMatch)

An undirected bipartite graph Edge insertions/deletions What is the weight of the
with integer edge weights maximum weight matching?

Bipartite matching without length k augmenting paths (k-BPM)
An undirected bipartite graph Edge insertions/deletions What is the size of a matching

that does not admit
length k augmenting paths?

Single Source Reachability (SS-Reach)
A directed graph and a Edge insertions/deletions Given a vertex t,

fixed vertex s is t reachable from s?
(s, t)-Reachability (st-Reach)

A directed graph and Edge insertions/deletions Is t reachable from s?
fixed vertices s, t

(s, t)-shortest path (st-SP)
An undirected weighted graph and Edge insertions/deletions What is the distance

fixed vertices s, t between s and t?
Strong Connectivity (SC)

A directed graph Edge insertions/deletions Is the graph strongly connected?
2 Strong Components (SC2)

A directed graph Edge insertions/deletions Are there more than 2
strongly connected components?

2 vs k Strong Components (AppxSC)
A directed graph Edge insertions/deletions Is the number of SCCs

2 or more than k?
Maximum SCC size (MaxSCC)

A directed graph Edge insertions/deletions What is the size of
the largest SCC?

Single Source Reachability Count (# SSR)
A directed graph with Edge insertions/deletions Given �, is the number of
a fixed source s nodes reachable from s < �?

Connected Subgraph (ConnSub)
A fixed undirected graph Insert/remove a node Is the subgraph induced
and a vertex subset S into/from S by S connected?

(S, T )-Reachability (ST -Reach)
A directed graph and Edge insertions/deletions Are there some s ∈ S, t ∈ T

fixed node subsets S and T s.t. t is unreachable from s?
(4/3− ε)-Approximate Diameter (4/3-Diam)

An undirected graph Edge insertions/deletions Is the diameter
3 or 4?

Chan’s Subset Union Problem (SubUnion)
A subset S of a fixed collection Insert/remove a set Is ∪Xi∈SXi = U?

X = {X1, . . . , Xn} of subsets over a Xi into/from S
universe U , with

∑
i |Xi| = m

Pagh’s Problem (PP)
A collection X of Given i, j, insert Given index i

subsets X1, . . . , Xk ⊆ [n] Xi ∩Xj into X and u ∈ U , is u ∈ Xi?
Pagh’s Problem with Emptiness Queries (∅-PP)

A collection X of Given i, j, insert Given index i,
subsets X1, . . . , Xk ⊆ [n] Xi ∩Xj into X is Xi = ∅?

TABLE I
THE PROBLEMS WE CONSIDER.



Best Upper Bounds Our Lower Bounds
#SSR, SC2, AppxSC

Trivial Full Version SETH Comb.-Δ Strong-Δ δ-Δ 3SUM
Update m n1.575

n (*) m m0.81 m2δ mα

Query 1 1 n (*) m m0.81 m2δ m2/3−α

ConnSub, SubUnion
Trivial Full Version SETH Comb.-Δ Strong-Δ δ-Δ 3SUM

Update m n1.575
n (*) - - - -

Query 1 1 n (*) - - - -
ST-Reach, 4/3-Diam

Trivial [13], [12] SETH Comb.-Δ Strong-Δ δ-Δ 3SUM
Update mn n2

n
2 (*) m m0.81 m2δ mα

Query 1 1 n
2 (*) m m0.81 m2δ m2/3−α

st-Reach, BPMatch, 17-BPM
Trivial (*) [32], [33] SETH Comb.-Δ Strong-Δ δ-Δ 3SUM

Update m n1.495 - m m0.81 m2δ mα

Query 1 1 - m m0.81 m2δ m2/3−α

SC
Trivial Full Version SETH Comb.-Δ Strong-Δ δ-Δ 3SUM

Update m n1.575 - m m0.81 m2δ mα

Query 1 1 - m m0.81 m2δ m2/3−α

st-SubConn
[8] SETH Comb.-Δ Strong-Δ δ-Δ 3SUM

Update m2/3 - m1/2 m0.41 mδ mα

Query 1 - m m0.81 m2δ m2/3−α

Decremental or Incremental
BWMatch or st-SP

Trivial (**) APSP (total update time)
Update m n

2

Query 1 n
2

TABLE II
THE TABLE INCLUDES THE CURRENT BEST UPPER BOUNDS FOR THE LISTED PROBLEMS, TOGETHER WITH BOUNDS FOR WHICH A LISTED CONJECTURE

WOULD BE FALSIFIED. AN nc UPPER BOUND IN THE TABLE INDICATES THE EXISTENCE OF AN Õ(nc) ALGORITHM, WHILE AN nc LOWER BOUND
INDICATES THAT AN O(nc−ε) ALGORITHM, FOR ANY ε > 0, FALSIFIES THE LISTED CONJECTURE. THE UPPER BOUNDS MARKED BY FULL VERSION ARE
SIMPLE CONSEQUENCES OF SANKOWSKI’S ALGORITHM FOR TRANSITIVE CLOSURE [32] AND ARE OBTAINED IN THE FULL VERSION OF THE PAPER. THE

3SUM BOUNDS HOLD FOR ANY α IN [1/6, 1/3]. (*) THE LOWER BOUND HOLDS EVEN WHENm = Õ(n). (**) FOR DYNAMIC MATCHING ONE CAN
SUPPORT UPDATES IN O(m) TIME BY LOOKING FOR AUGMENTING PATHS. ALL LOWER BOUNDS CAN BE AMORTIZED AND EXPECTED IN THE FULLY

DYNAMIC CASE, AND HOLD IN THE CASE OF PARTIALLY DYNAMIC ALGORITHMS AS WORST CASE LOWER BOUNDS, EXCEPT THE APSP BOUNDS WHICH
ARE AMORTIZED IN ANY CASE.

As before, the formula F is satisfiable if and only if at
least one of the N stages confirms the satisfiability, which
concludes the correctness of our reduction. Note that the
graph we create is smaller this time, with O(2n/3) = O(N)
nodes and m = O(n2n/3) = O(N logN) edges, and we
do O(n2n/3) = O(N logN) updates and N queries, which
is fewer than before. Hence any dynamic algorithm with
O(N3−ε) preprocessing time, and O(m2−ε) update and query
time would violate the SETH.

h) Lower bounds from Triangle Detection and BMM:
Here we give an overview of our reductions from the δ-
Triangle conjecture from the introduction, and a related con-
jecture on the complexity of BMM. The BMM conjecture
(formally defined in the full version) roughly states that any
combinatorial algorithm for n×n Boolean matrix multiplica-
tion requires n3−o(1) time.
To obtain lower bounds based on the BMM conjecture, we

first obtain lower bounds from the δ-Triangle conjecture that
hold for arbitrary δ and an arbitrary number of edges m, and
then apply them for m = n2 and a carefully chosen δ to

obtain the lower bounds from BMM. For instance if the δ-
Triangle conjecture for any constant δ implies that problem
P cannot have a dynamic algorithm with m1+δ preprocessing
time, mδ update time and m2δ query time, then we get that
the BMM conjecture implies that P cannot have a dynamic
algorithm with n2+2δ preprocessing time, n2δ update time and
n4δ query time. Then picking δ = (1− ε)/2, we get a lower
bound for all ε > 0 of preprocessing time n3−ε, update time
n1−ε and query time n2−ε.
Our reductions from Triangle Detection typically begin with

the following construction. Given a graph G = (V,E) on m
edges and n vertices, we create 4 copies of V , A,B,C,D,
and for each edge (u, v) ∈ E we add the directed edges
(uA, vB), (uB , vC), (uC , vD) where uX is the copy of u in
X ∈ {A,B,C,D}. Now G contains a triangle if and only if
for some u, there is a path from uA to uD. Since the new graph
has O(m) edges and O(n) vertices, it suffices to simulate the
n reachability queries (uA, uD) with dynamic algorithms for
the problem at hand.
For st-Reach for instance, we add two additional nodes s



and t to the above graph and we proceed in stages, one for
each node u ∈ V . In each stage, we add edges (s, uA) and
(uD, t), and ask whether t is reachable from s. This will be
the case iff u appears in a triangle in G. If the answer to
the query is no, we remove the edges incident to s and t
and move on to the next stage. The number of queries and
updates is O(n) overall, and hence any dynamic algorithm
with O(m1+δ) preprocessing time, and O(m2δ) update and
query time would imply an O(m1+δ + nm2δ) time triangle
algorithm. We then apply a high-degree low-degree argument
as in [2] to show that this also implies an O(m1+δ) time
triangle algorithm.
To obtain the lower bounds for Strong Connectivity and

Bipartite Perfect Matching, we prove general reductions from
st-Reach to SC and BPMatch that show that if the latter
two problems can be solved with preprocessing time p(m,n),
update time u(m,n) and query time q(m,n), then st-Reach
can be solved with preprocessing time p(O(m), O(n)), update
time u(O(m), O(n)) and query time q(O(m), O(n)). We
show a separate reduction from Triangle Detection to st-
SubConn (similar to the one to st-Reach) that performs m
updates and n queries, giving an mδ−o(1) lower bound on the
update time and m2δ−o(1) on the query time.
Our lower bound for PP is more involved than the rest of

the lower bounds based on the δ-Triangle conjecture. We will
explain the main ideas. Given an n-node, m-edge graph, first
let us look for triangles containing a node of high degree ≥ Δ.
We begin by creating for every node j of high degree a set Xj

containing node i iff j is not a neighbor of i. The number of
such sets is O(m/Δ) and constructing them takes O(mn/Δ)
time. Now, for each node a, using d(a) updates, we create
the intersection Ya of all sets Xj for the neighbors j of a.
Then, for every edge (a, b), we query whether b ∈ Ya. Notice
that b ∈ Ya if and only if b is not a neighbor of any of the
neighbors j of a. Thus, if any one of the m queries returns
“no”, we have detected a triangle.
Suppose now that no triangle with a node of high degree is

found. Then, all nodes of any triangle have degree < Δ. We
can attempt to do exactly the same reduction as above. The
only problem is that the number of sets Xj that we would have
to create could be n, and thus just creating the sets would take
O(n2) time. This is sufficient for a reduction from triangle in
dense graphs, however it is too costly for a reduction from
sparse graphs. Fortunately, we can avoid the high cost. Before
we create the sets Xj , we pick a universal hash function h and
hash all nodes with it into a universe of size O(Δ2). We are
guaranteed that with constant probability, if we take two nodes
a and b of low degree, then N(a) ∪N(b) won’t contain any
two nodes hashing to the same element. Thus, we can simulate
the search for a triangle with an edge (a, b) where both a and
b have low degree, just as before, except that we create a set
for each hash value v, Xv = {j | ∀c ∈ N(j), h(c) �= v}.
The creation time is now O(nΔ2), and everything else works
out with constant probability. We can obtain correctness with
high probability by using O(log n) hash functions. Picking
Δ = m1/3, we obtain an extra term m2/3n in our reduction

which is negligible if we are trying to contradict the δ-Triangle
conjecture for δ > 1/3.

i) Lower bounds on partially dynamic algorithms: No-
tice that our reductions almost always look like this (with the
exception of PP and ∅-PP). They proceed in stages, and each
stage i has the following form: Ii insertions are performed,
then some number of queries Qi are asked. Finally the Ii
insertions are undone.
We can simulate this type of a reduction with an incremental

algorithm as follows. During each stage, we perform the Ii
insertions and Qi queries, and while we do them, we record the
sequence of all changes to the data structure that the insertions
(and queries) cause. This makes our reduction no longer black
box (it was black box for fully dynamic algorithms). It also
increases the space usage to be on the order of the time that
it takes to perform the Ii insertions. However, once we have
recorded all the changes, we can undo them in reverse order
in roughly the same time as they originally took, and bring the
data structure to the same state that it was before the beginning
of the stage. We obtain lower bounds on the preprocessing,
update and query time of incremental algorithms. However,
since we undo changes, the lower bounds only hold for worst
case runtimes.
Simulating the above algorithms with decremental algo-

rithms is more challenging since it would seem that we need to
simulate Ii insertions with roughly Ii deletions, and this is not
always possible. We develop some techniques that work for
many of our reductions. For instance, we are able to simulate
the following with only O(n) deletions (and undeletions) over
all n stages: in each stage i a node s has an edge to only the
ith node from a set of size n. This is useful for our proof
that efficient worst-case decremental st-Reach implies faster
triangle algorithms.

j) Lower bounds based on APSP: To show our lower
bounds from APSP to incremental/decremental st-SP and
BWM, we first reduce st-SP to BWM, thus showing that
we only have to concentrate on st-SP. Then, we carefully
combine the ideas behind Roditty and Zwick’s [31] original
reduction with Vassilevska Williams and Williams’ [41] proof
that negative triangle detection is equivalent to APSP. In
particular, we show that the number of shortest paths queries
can be reduced to n (from n2) since we only need to simulate
determining whether there is a path on 3 edges from each
vertex back to itself.

k) Lower bounds from 3SUM: Pǎtraşcu [28] showed
that 3-SUM on n numbers can be reduced to the problem
of listing O(n2/R) triangles in a certain tripartite graph on
partitions A,B,C where |A| = |B| =

√
nR, |C| = n,

|E(A,B)| = O(nR) and |E(A,C)| + |E(B,C)| = O(n1.5),
for any R = n

1
2+δ and 0 < δ < 1

2 , in truly subquadratic
time. Then, he reduced this triangle listing problem to “the
multiphase problem”, which in turn can be reduced to sev-
eral dynamic problems. We examine Pǎtraşcu’s reduction in
more detail and show that by directly reducing the triangle
listing problem to dynamic problems like st-SubConn we
can overcome some inefficiencies incurred by “the multiphase



problem” and get improved lower bounds.
A first approach is to use the known reductions from triangle

listing to triangle finding [41], [24] to directly apply our
hardness results based on triangle finding. However, using
the currently best reductions, even a linear time algorithm for
triangle finding would not be able to get us a faster than m4/3

time algorithm for listing m triangles which is what we need
in order to get subquadratic 3SUM.
Instead, we reason about Pǎtraşcu’s construction directly.

First, we observe that to falsify the 3SUM conjecture, it is
enough to list in subquadratic time all pairs of nodes (a, b) ∈
A × B that participate in a triangle. To do this, note that in
Pǎtraşcu’s construction, every node of A has at most O(n/R)
neighbors in C. Thus, once the ≤ O(n2/R) pairs of nodes that
appear in triangles are known, one can go through each one
pair (a, b), and check each of the at most O(n/R) neighbors
c ∈ C of a, to find all triangles going through (a, b). Thus
3SUM would be in O(n2/R · n/R) = O(n3/R2) time which
is truly subquadratic when R = n

1
2+δ for δ > 0.

Thus, to obtain lower bounds for our dynamic problems,
we show how to list the pairs of nodes in A×B that appear
in triangles using a small number of queries and updates. We
first reduce st-Reach to st-SubConn, thus also showing that
st-SubConn is at least as hard as SC and BPMatch. Then we
focus on st-SubConn. Given Pǎtraşcu’s graph for some choice
of R, we create an instance H of st-SubConn. H is a copy
of G in which all the edges between parts A,B are removed.
Thus H has only O(n1.5) edges for any choice of R. We also
add a node s that is connected to all the nodes in A and a
node t that is connected to all the nodes in B. Initially, s, t
and all nodes in C are activated, while the nodes in A,B are
deactivated.
We preprocess this graph in p(n1.5) time which is sub-

quadratic if p(m) = O(m
4
3−ε). Then, we have a stage for

each of the O(nR) edges in A × B in G. In the stage for
(a, b), we activate the nodes a, b in H and query if s, t are
connected. s and t are connected iff there is a node in C that
is a neighbor of both a, b, i.e. (a, b) participates in a triangle.
Then we deactivate a and b and move on to the next edge.
This way, we can list all the pairs that are in triangles with
O(nR) updates and queries to st-SubConn, which would be
in subquadratic time if R = n1+ε/2 and the update and query
times are u(m), q(m) = O(m

1
3−ε).

This type of approach is insufficient to prove a tradeoff
between the query and update time, however. To obtain such
a tradeoff, we need to be able to reduce the search for triangle
edges to st-SubConn where the number of queries is very
different from the number of updates. To achieve this, on the
same underlying graph as before, we use st-SubConn to binary
search for the nodes in B that participate in a triangle with a
given node a (instead of simply trying each neighbor of a as
we did above). This allows us to reduce the number of queries
in the reduction to Õ(n2/R), while keeping the number of
updates Õ(nR). This lets us pick a larger R and trade-off the
lower bounds for the query and the update times.
In the binary search for a fixed a ∈ A, we use the queries to

check whether there is a node b in a certain contiguous subset
of B (interval) that participates in a triangle with a. This can be
done by activating all neighbors of a in the interval at once,
and asking the s, t connectivity query. We start the search
with an interval that contains all of B. If we discover that
an interval I contains a node b that participates in a triangle
with a, we proceed to search within both subintervals of I of
half the size. (Thus, we only search in an interval if its parent
interval returned “yes”.) Since no b that appears in a triangle
with a appears in more than O(log n) B-intervals, the number
of queries to st-SubConn is only bigger than the number of
triangles by a logarithmic factor, and is thus Õ(n2/R). The
number of updates is no more than O(dB(a) log n) for each
a where dB(a) is the number of neighbors of a in B. Hence
the total number of updates is Õ(nR).
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