
ar
X

iv
:1

40
7.

12
89

v3
 [

cs
.D

S]
 1

6
A

pr
 2

01
5

Single Pass Spectral Sparsification in Dynamic Streams

Michael Kapralov

MIT

kapralov@mit.edu

Yin Tat Lee

MIT

yintat@mit.edu

Cameron Musco

MIT

cnmusco@mit.edu

Christopher Musco

MIT

cpmusco@mit.edu

Aaron Sidford

MIT

sidford@mit.edu

Abstract

We present the first single pass algorithm for computing spectral sparsifiers of graphs in the
dynamic semi-streaming model. Given a single pass over a stream containing insertions and
deletions of edges to a graph G, our algorithm maintains a randomized linear sketch of the
incidence matrix of G into dimension O(1

ǫ2n polylog(n)). Using this sketch, at any point, the
algorithm can output a (1± ǫ) spectral sparsifier for G with high probability.

While O(1

ǫ2n polylog(n)) space algorithms are known for computing cut sparsifiers in dy-
namic streams [AGM12b, GKP12] and spectral sparsifiers in insertion-only streams [KL11],
prior to our work, the best known single pass algorithm for maintaining spectral sparsifiers in
dynamic streams required sketches of dimension Ω(1

ǫ2n
5/3) [AGM13].

To achieve our result, we show that, using a coarse sparsifier of G and a linear sketch of
G’s incidence matrix, it is possible to sample edges by effective resistance, obtaining a spectral
sparsifier of arbitrary precision. Sampling from the sketch requires a novel application of ℓ2/ℓ2
sparse recovery, a natural extension of the ℓ0 methods used for cut sparsifiers in [AGM12b].
Recent work of [MP12] on row sampling for matrix approximation gives a recursive approach
for obtaining the required coarse sparsifiers.

Under certain restrictions, our approach also extends to the problem of maintaining a spectral
approximation for a general matrix A⊤A given a stream of updates to rows in A.

http://arxiv.org/abs/1407.1289v3

1 Introduction

1.1 The Dynamic Semi-Streaming Model

When processing massive graph datasets arising from social networks, web topologies, or interaction
graphs, computation may be as limited by space as it is by runtime. To cope with this issue,
one might hope to apply techniques from the streaming model of computation, which restricts
algorithms to few passes over the input and space polylogarithmic in the input size. Streaming
algorithms have been studied extensively in various application domains – see [Mut05] for an
overview. However, the model has proven too restrictive for even the simplest graph algorithms.
For example, testing s-t connectivity requires Ω(n) space [HRR99].

The less restrictive semi-streaming model, in which the algorithm is allowed Õ(n) space, is more
suited for graph algorithms [FKM+05], and has received significant attention in recent years. In
this model, a processor receives a stream of edges over a fixed set of n nodes. Ideally, the processor
should only have to perform a single pass (or few passes) over the edge stream, and the processing
time per edge, as well as the time required to output the final answer, should be small.

In the dynamic semi-streaming model, the graph stream may include both edge insertions and
deletions [AGM12a]. This extension captures the fact that large graphs are unlikely to be static.
Dynamic semi-streaming algorithms allow us to quickly process general updates in the form of edge
insertions and deletions to maintain a small-space representation of the graph from which we can
later compute a result. Sometimes the dynamic model is referred to as the insertion-deletion model,
in contrast to the more restrictive insertion-only model.

Work on semi-streaming algorithms in both the dynamic and insertion-only settings is extensive.
Researchers have tackled connectivity, bipartiteness, minimum spanning trees, maximal matchings,
and spanners among other problems [FKM+05, ELMS11, Elk11, AGM12a, AGM12b]. In [McG14],
McGregor surveys much of this progress and provides a more complete list of citations.

1.2 Streaming Sparsification

There has also been a focus on computing general purpose graph compressions in the streaming
setting. The goal is to find a subgraph of an input graph G that has significantly fewer edges
than G, but still maintains important properties of the graph. Hopefully, this sparsified graph
can be used to approximately answer a variety of questions about G with reduced space and time
complexity. Typically, the goal is to find a subgraph with just O(n log n) edges in comparison to
the possible O(n2) edges in G.

First introduced by Benczúr and Karger [BK96], a cut sparsifier of a graph G is a weighted
subgraph with only O(1

ǫ2n log n) edges that preserves the total edge weight over every cut in G to
within a (1 ± ǫ) multiplicative factor. Cut sparsifiers can be used to compute approximations for
minimum cut, sparsest cut, maximum flow, and a variety of other problems over G. In [ST11],
Spielman and Teng introduce the stronger spectral sparsifier, a weighted subgraph whose Laplacian
spectrally approximates the Laplacian of G. In addition to maintaining the cut approximation of
Benczúr and Karger, spectral sparsifiers can be used to approximately solve linear systems over
the Laplacian of G, and to approximate effective resistances, spectral clusterings, random walk
properties, and a variety of other computations.

The problem of computing graph sparsifiers in the semi-streaming model has received a lot of
attention. Given just Õ(n) = O(n polylog(n)) space, the hope is to compute a sparsifier using barely

1

more space than required to store the sparsifier, which will typically have O(n log n) edges. Ahn
and Guha give the first single pass, insertion-only algorithm for cut sparsifiers [AG09]. Kelner and
Levin give a single pass, insertion-only algorithm for spectral sparsifiers [KL13]. Both algorithms
store a sparse graph: edges are added as they are streamed in and, when the graph grows too large,
it is resparsified. The construction is very clean, but inherently does not extend to the dynamic
model since, to handle edge deletions, we need more information than just a sparsifier itself. Edges
eliminated to create an intermediate sparsifier may become critically important later if other edges
are deleted, so we need to maintain information that allows recovery of such edges.

Ahn, Guha, and McGregor make a very important insight in [AGM12a], demonstrating the
power of linear graph sketches in the dynamic model. They present the first dynamic algorithm
for cut sparsifiers, which initially required O(1

ǫ2
n1+γ) space and O(1/γ) passes over the graph

stream. However, the result was later improved to a single pass and O(1
ǫ2
n polylog(n)) space

[AGM12b, GKP12]. Our algorithm extends the sketching and sampling approaches from these
papers to the spectral problem.

In [AGM13], the authors show that linear graph sketches that capture connectivity information
can be used to coarsely approximate spectral properties and they obtain spectral sparsifiers using
O(1

ǫ2
n5/3 polylog(n)) space in the dynamic setting. However, they also show that their coarse

approximations are tight, so a new approach is required to obtain spectral sparsifiers using just
O(1

ǫ2n polylog(n)) space. They conjecture that a dynamic algorithm for doing so exists. The
development of such an algorithm is also posed as an open question in [McG14]. A two-pass
algorithm for constructing a spectral sparsifier in the dynamic streaming model using O

(
1
ǫ2n

1+o(1)
)

space is presented in [KW14]. The approach is very different from ours: it leverages a reduction
from spanner constructions to spectral sparsification presented in [KP12]. It is not known if this
approach extends to a space efficient single pass algorithm.

1.3 Our Contribution

Our main result is an algorithm for maintaining a small graph sketch from which we can recover
a spectral sparsifier. For simplicity, we present the algorithm in the case of unweighted graphs.
However, in Section 6, we show that it is easily extended to weighted graphs. This model matches
what is standard for dynamic cut sparsifiers [AGM12b, GKP12].

Theorem 1 (Main Result). There exists an algorithm that, for any ǫ > 0, processes a list of edge
insertions and deletions for an unweighted graph G in a single pass and maintains a set of linear
sketches of this input in O

(
1
ǫ2
n polylog(n)

)
space. From these sketches, it is possible to recover,

with high probability, a weighted subgraph H with O(1
ǫ2
n log n) edges such that H is a (1±ǫ) spectral

sparsifier of G. The algorithm recovers H in O
(
1
ǫ2n

2 polylog(n)
)
time.

It is well known that independently sampling edges from a graph G according to their effective
resistances (i.e. leverage scores) gives a (1 ± ǫ) spectral sparsifier of G with O(1

ǫ2n log n) edges
[SS11]. We can ‘refine’ any coarse sparsifier for G by using it to approximate effective resistances
and then resample edges according to these approximate resistances. We show how to perform
this refinement in the streaming setting, extending graph sketching techniques initially used for
cut sparsifiers ([AGM12b, GKP12]) and introducing a new sampling technique based on an ℓ2
heavy hitters algorithm. Our refinement procedure is combined with a clever recursive method
for obtaining a coarse sparsifier introduced by Miller and Peng in a recent paper on iterative row
sampling for matrix approximation [MP12].

2

The fact that our algorithm maintains a linear sketch of the streamed graph allows for the simple
handling of edge deletions, which are treated as negative edge insertions. Additionally, due to their
linearity, our sketches are composable – sketches of subgraphs can simply be added to produce a
sketch of the full graph. Thus, our techniques are directly applicable in distributed settings where
separate processors hold different subgraphs or each processes different edge substreams.

Our application of linear sketching also gives a nice information theoretic result on graph com-
pression. A spectral sparsifier is a powerful compression for a graph. It maintains, up to an ǫ
factor, all spectral information about the Laplacian using just O(1

ǫ2n log n) space. At first glance,
it may seem that such a compression requires careful analysis of the input graph to determine
what information to keep and what to discard. However, the non-adaptive linear sketches used
in our algorithm are completely oblivious: at each edge insertion or deletion, we do not need to
examine the current compression at all to make the appropriate update. As in sparse recovery or
dimensionality reduction, we essentially just multiply the vertex edge incidence matrix by a ran-
dom projection matrix, decreasing its height drastically in the process. Nevertheless, the oblivious
compression obtained holds as much information as a spectral sparsifier – in fact, we show how to
extract a spectral sparsifier from it! Furthermore, the compression is only larger than O(1

ǫ2
n log n)

by log factors. Our result is the first of this kind in the spectral domain. The only other streaming
algorithm for spectral sparsification that uses O(1

ǫ2
n polylog(n)) space is distinctly non-oblivious

[KL13] and oblivious subspace embeddings for compressing general matrices inherently require
O(n2 polylog(n)) space, even when the matrix is sparse (as in the case of an edge vertex incidence
matrix) [Sar06, CW13, MM13, NN13].

Finally, it can be noted that our proofs rely very little on the fact that our data stream represents
a graph. We show that, with a few modifications, given a stream of row updates for a general
structured matrix A, it is possible to maintain a O(1

ǫ2
n polylog(n)) sized sketch from which a

spectral approximation to A⊤A can be recovered. By structured, we mean any matrix whose rows
are selected from some fixed dictionary of size poly(n). Spectral graph sparsification is a special
case of this problem: set A to be the vertex edge incidence matrix of our graph. The dictionary is
the set of all possible

(
n
2

)
edge rows that may appear in A and A⊤A is the graph Laplacian.

1.4 Road Map

Section 2 Lay out notation, build linear algebraic foundations for spectral sparsification, and
present lemmas for graph sampling and sparse recovery required by our algorithm.

Section 3 Give an overview of our central algorithm, providing intuition and motivation.

Section 4 Present an algorithm of Miller and Peng ([MP12]) for building a chain of coarse sparsi-
fiers and prove our main result, assuming a primitive for sampling edges by effective resistance
in the streaming model.

Section 5 Develop this sampling primitive, our main technical contribution.

Section 6 Show how to extend the algorithm to weighted graphs.

Section 7 Show how to extend the algorithm to general structured matrices.

Section 8 Remove our assumption of fully independent hash functions, using a pseudorandom
number generator to achieve a final small space algorithm.

3

2 Notation and Preliminaries

2.1 Graph Notation

Let Bn ∈ R
(n2)×n be the vertex edge incidence matrix of the undirected, unweighted complete graph

over n vertices. be, the row corresponding to edge e = (u, v) contains a 1 in column u, a (−1) in
column v, and 0’s elsewhere.

We write the vertex edge incidence matrix of an unweighted, undirected graph G(V,E) as
B = SBn where S is an

(n
2

)
×

(n
2

)
diagonal matrix with ones at positions corresponding to edges

contained in G and zeros elsewhere.1 The n× n Laplacian matrix of G is given by K = B⊤B.

2.2 Spectral Sparsification

For any matrix B ∈ R
m×n, K̃ is a (1±ǫ) spectral sparsifier of K = B⊤B if, ∀x ∈ R

n, (1−ǫ)x⊤Kx ≤
x⊤K̃x ≤ (1 + ǫ)x⊤Kx. This condition can also be written as (1 − ǫ)K � K̃ � (1 + ǫ)K where
C � D indicates that D −C is positive semidefinite. More succinctly, K̃ ≈ǫ K denotes the same
condition. We also use the slightly weaker notation (1 − ǫ)K �r K̃ �r (1 + ǫ)K to indicate that
(1− ǫ)x⊤Kx ≤ x⊤K̃x ≤ (1 + ǫ)x⊤Kx for all x in the row span of K. If K̃ has the same row span
as K this notation is equivalent to the initial notion of spectral sparsification.

While these definitions apply to general matrices, for our purposes, B is typically the vertex
edge incidence matrix of a graph G and K is a graph Laplacian. We do not always require our
approximation K̃ to be the graph Laplacian of a weighted subgraph, which is a standard assumption.
For this reason, we avoid the standard LG notation for the Laplacian. For our purposes, K̃ is always
be a sparse symmetric diagonally dominant matrix with no more than O(n log n) non-zero entries.
In fact, it will always be the Laplacian of a sparse subgraph, but possibly with weight added to its
diagonal entries. Furthermore, the final approximation returned by our streaming algorithm will
be a bonafide spectral graph sparsifier – i.e. the Laplacian matrix of a weighted subgraph of G.

2.3 Leverage Scores and Row Sampling

For any B ∈ R
m×n with rank r, consider the reduced singular value decomposition, B = UΣV⊤.

U ∈ R
m×r and V ∈ R

n×r have orthonormal columns and Σ ∈ R
r×r is diagonal and contains the

non-zero singular values of B. Then, B⊤B = VΣU⊤UΣV⊤ = VΣ2V⊤. We let K+ denote the
Moore-Penrose pseudoinverse of K = B⊤B:

K+ = V(Σ−1)2V⊤.

The leverage score, τi, for a row bi in B is defined as

τi
def
= b⊤

i K
+bi = u⊤

i ΣV⊤(VΣ−2V⊤)VΣui = ‖ui‖22 ≤ 1.

The last inequality follows from the fact that every row in a matrix with orthonormal columns has
norm less than 1. In a graph, τi = riwi, where ri is the effective resistance of edge i and wi is the
edge’s weight. Furthermore,

m∑

i=1

τi = tr(BK+B⊤) = ‖U‖2F = r = rank(B).

1Typically rows of B that are all 0 are removed, but we find this formulation more convenient for our purposes.

4

It is well known that by sampling the rows of B according to their leverage scores it is possible to
obtain a matrix B̃ such that K̃ = B̃⊤B̃ ≈ǫ K with high probability. Furthermore, if obtaining exact
leverage scores is computationally difficult, it suffices to sample by upper bounds on the scores.
Typically, rows are sampled with replacement with probability proportional to their leverage score
[SS11, LMP13]. We require an alternative procedure for sampling edges independently.

Lemma 1 (Spectral Approximation via Leverage Score Sampling). Let τ̃ be a vector of leverage
score overestimates for B’s rows such that τ̃i ≥ τi for all i ∈ [m]. For 0 < ǫ < 1 and fixed constant
c, define the sampling probability for row bi to be pi = min{1, c log nǫ−2τ̃i}. Define a diagonal
sampling matrix W with W(i, i) = 1

pi
with probability pi and W(i, i) = 0 otherwise. With high

probability,

K̃ = B⊤WB ≈ǫ K.

Furthermore, W has O(‖τ̃‖1 log nǫ−2) non-zeros with high probability.

A proof of Lemma 1 based on a matrix concentration result from [Tro12] can be found in
[CLM+15] (Lemma 4). Note that, when applied to the vertex edge incidence matrix of a graph,
leverage score sampling is equivalent to effective resistance sampling, as introduced in [SS11] for
graph sparsification.

2.4 Sparse Recovery

While we cannot sample by leverage score directly in the streaming model, we can use a sparse
recovery primitive to sample edges from a set of linear sketches. We use an ℓ2 heavy hitters
algorithm that, for any vector x, lets us recover from a small linear sketch Φx, the index i and the
approximate value of xi for all i such that xi > η||x||2.

Lemma 2 (ℓ2 Heavy Hitters). For any η > 0, there is a decoding algorithm D and a distribution on
matrices Φ in R

O(η−2 polylog(N))×N such that, for any x ∈ R
N , given Φx, the algorithm D returns

a vector w such that w has O(η−2 polylog(N)) non-zeros and satisfies

||x−w||∞ ≤ η||x||2.

with probability 1 − N−c over the choice of Φ. The sketch Φx can be maintained and decoded in
O(η−2 polylog(N)) space.

This procedure allows us to distinguish from a sketch whether or not a specified entry in x is
equal to 0 or has value > 2η‖x‖2. We give a proof of Lemma 2 in Appendix A

3 Algorithm Overview

Before formally presenting a proof of our main result, Theorem 1, we give an informal overview of
the algorithm to provide intuition.

5

3.1 Effective Resistances

As explained in Section 2.3, spectral sparsifiers can be generated by sampling edges, i.e. rows of the
vertex edge incidence matrix. For an unweighted graph G, each edge e is sampled independently
with probability proportional to its leverage score, τe. After sampling, we reweight and combine
any sampled edges. The result is a subgraph of G containing, with high probability, O(1

ǫ2n log n)
edges and spectrally approximating G.

If we view G as an electrical circuit, with each edge representing a unit resistor, the leverage
score of an edge e = (i, j) is equivalent to its effective resistance. This value can be computed by
forcing 1 unit of current out of vertex i and 1 unit of current into vertex j. The resulting voltage
difference between the two vertices is the effective resistance of e. Qualitatively, if the voltage drop
is low, there are many low resistance (i.e. short) paths between i and j. Thus, maintaining a
direct connection between these vertices is less critical in approximating G, so e is less likely to be
sampled. Effective resistance can be computed as:

τe = b⊤
e K

+be

Note that τe can be computed for any pair of vertices, (i, j), or in other words, for any possible
edge in G. We can evaluate b⊤

e K
+be even if e is not present in the graph. Thus, we can reframe

our sampling procedure. Instead of just sampling edges actually in G, imagine we run a sampling
procedure for every possible e. When recombining edges to form a spectral sparsifier, we separately
check whether each edge e is in G and only insert into the sparsifier if it is.

3.2 Sampling in the Streaming Model

With this procedure in mind, a sampling method that works in the streaming setting requires two
components. First, we need to obtain a constant factor approximation to τe for any e. Known
sampling algorithms, including our Lemma 1, are robust to this level of estimation. Second, we
need to compress our edge insertions and deletions in such a way that, during post-processing of
our sketch, we can determine whether or not a sampled edge e actually exists in G.

The first requirement is achieved through the recursive procedure given in [MP12]. We will give
the overview shortly but, for now, assume that we have access to a coarse sparsifier, K̃ ≈1/2 K.

Computing b⊤
e K̃

+be gives a 2 factor multiplicative approximation of τe for each e. Furthermore,
as long as K̃ has sparsity O(n log n), the computation can be done in small space using an iterative
system solver (e.g. conjugate gradient) or a nearly linear time solver for symmetric diagonally
dominant matrices (e.g. [KMP11]).

Solving part two (determining which edges are actually in G) is a bit more involved. As a first
step, consider writing

τe = b⊤
e K

+KK+be = ‖BK+be‖22 = ‖SBnK
+be‖22.

Referring to Section 2, recall that B = SBn is exactly the same as a standard vertex edge incidence
matrix except that rows inBn corresponding to nonexistent edges are zeroed out instead of removed.
Denote xe = SBnK

+be. Each nonzero entry in xe contains the voltage difference across some edge
(resistor) in G when one unit of current is forced from i to j.

When e is not in G, then the eth entry of xe, xe(e) is 0. If e is in G, xe(e) = τe. Furthermore,
‖xe‖22 = τe. Given a space allowance of polylog(n), the sparse recovery algorithm from Lemma 2

6

allows us to recover an entry if it accounts for at least an Ω(1/polylog(n)) fraction of the total
ℓ2 norm. Currently, xe(e)/‖xe‖2 =

√
τe, which could be much smaller than O(1/polylog(n)).

However, suppose we had a sketch of xe with all but a τe fraction of edges randomly sampled out.
Then, we would expect ‖xe‖22 ≈ τ2e and thus, xe(e)/‖xe‖2 = O(1) = Ω(1/polylog(n)) and sparse
recovery would successfully indicate whether or not e ∈ G. What’s more, randomly zeroing out
entries of xe can serve as our main sampling routine for edge e. This process will set xe(e) = 0
with probability (1− τe), exactly what we wanted to sample by in the first place!

However, how do we go about sketching every appropriately sampled xe? Well, consider sub-
sampling our graph at geometrically decreasing rates, 1/2s for s ∈ {0, 1, ...O(log n)}. Maintain
linear sketches Π1B1, ...ΠO(log n)BO(logn) of the vertex edge incidence matrix for every subsampled
graph using the ℓ2 sparse recovery sketch distribution from Lemma 2. When asked to output a
spectral sparsifier, for every possible edge e, we compute using K̃ a rate 1/2s that approximates τe.

Since each sketch is linear, we can just multiply Π1/2sB1/2s on the right by K̃+be to compute

Π1/2sB1/2sK̃
+be ≈ Π1/2sx

1/2s

e ,

where x
1/2s

e (e) is xe sampled at rate 1/2s ≈ τe. Then, as explained, we can use our sparse recovery
routine to determine whether or not e is present. If it is, we have obtained a sample for our spectral
sparsifier!

3.3 A Chain of Coarse Sparsifiers

The final required component is access to some sparse K̃ ≈1/2 K. This coarse sparsifier is obtained

recursively by constructing a chain of matrices,
[
K(0),K(1), . . . ,K(d),K

]
each weakly approxi-

mating the next. Specifically, imagine producing K(d) by adding a fairly light identity matrix to
K. As long as the identity’s weight is small compared to K’s spectrum, K(d) approximates K.
Add even more weight to the diagonal to form K(d − 1). Again, as long as the increase is small,
K(d − 1) approximates K(d). We continue down the chain until K(0), which will actually have a
heavy diagonal after all the incremental increases. Thus, K(0) can be approximated by an appro-
priately scaled identity matrix, which is clearly sparse. Miller and Peng show that parameters can
be chosen such that d = O(log n) [MP12].

Putting everything together, we maintain O(log n) sketches for
[
K(0),K(1), . . . ,K(d),K

]
. We

first use a weighted identity matrix as a coarse approximation for K(0), which allows us to recover
a good approximation to K(0) from our sketch. This approximation will in turn be a coarse
approximation for K(1), so we can recover a good sparsifier of K(1). Continuing up the chain, we
eventually recover a good sparsifier for our final matrix, K.

4 Recursive Sparsifier Construction

In this section, we formalize a recursive procedure for obtaining a chain of coarse sparsifiers that
was introduced by Miller and Peng – “Introduction and Removal of Artificial Bases” [MP12]. We
prove Theorem 1 by combining this technique with the sampling algorithm developed in Section 5.

Theorem 2 (Recursive Sparsification – [MP12], Section 4). Consider any PSD matrix K with
maximum eigenvalue bounded from above by λu and minimum non-zero eigenvalue bounded from

7

below by λl. Let d = ⌈log2(λu/λl)⌉. For ℓ ∈ {0, 1, 2, ..., d}, define

γ(ℓ) =
λu

2ℓ
.

So, γ(0) = λu and γ(d) ≤ λl. Then the chain of PSD matrices,
[
K(0),K(1), . . . ,K(d)

]
with

K(ℓ) = K+ γ(ℓ)In×n,

satisfies the following relations:

1. K �r K(d) �r 2K,

2. K(ℓ) � K(ℓ− 1) � 2K(ℓ) for all ℓ ∈ {1, . . . , d},

3. K(0) � 2γ(0)I � 2K(0).

When K is the Laplacian of an unweighted graph, its largest eigenvalue λmax < 2n and its smallest
non-zero eigenvalue λmin > 8/n2. Thus the length of our chain, d = ⌈log2 λu/λl⌉, is O(log n).

For completeness, we include a proof of Theorem 2 in Appendix B. Now, to prove our main
result, we need to state the sampling primitive for streams that we develop in Section 5. This
procedure maintains a linear sketch of a vertex edge incidence matrixB, and using a coarse sparsifier
of K(ℓ) = B⊤B + γ(ℓ)I, performs independent edge sampling as required by Lemma 1, to obtain
a better sparsifier of K(ℓ).

Theorem 3. Let B ∈ R
n×m be the vertex edge incidence matrix of an unweighted graph G, spec-

ified by an insertion-deletion graph stream. Let γ = poly(n) be a fixed parameter and consider
K = B⊤B + γI. For any 0 < ǫ < 1, there exists a sketching procedure MaintainSketches(B, ǫ)
that outputs an O(n polylog(n)) sized sketch ΠB. There exists a corresponding recovery algorithm
RefineSparsifier running in O(n polylog(n)) space, such that, if K̃ is a spectral approximation
to K with O(n log n) non-zeros and cK �r K̃ �r K for some constant 0 < c < 1 then:

RefineSparsifier(ΠB, K̃, γ, ǫ, c) returns, with high probability, K̃ǫ = B̃⊤
ǫ B̃ǫ + γI, where (1−

ǫ)K �r K̃ǫ �r (1 + ǫ)K, and B̃ǫ contains only O(ǫ−2c−1n log n) reweighted rows of B with high
probability. RefineSparsifier runs in O(n2 polylog(n)) time.

Using this sampling procedure, we can initially set K̃ = 2γ(0)I and use it obtain a sparsifier
for K(0) from a linear sketch of B. This sparsifier is then used on a second sketch of B to obtain
a sparsifier for K(1), and so on. Working up the chain, we eventually obtain a sparsifier for our
original K. While sparsifier recovery proceeds in several levels, we construct all required sketches
in a single pass over edge insertions and deletions. Recovery is performed in post-processing.

Proof of Theorem 1. Let K be the Laplacian of our graph G. Process all edge insertions and dele-
tions, using MaintainSketches to produce a sketch, (ΠB)ℓ for each ℓ ∈ {0, 1, . . . , ⌈log2 λu/λl⌉+1}.
We then use Theorem 3 to recover an ǫ approximation, K̃(ℓ), for any K(ℓ) given an ǫ approximation
for K(ℓ− 1). First, consider the base case, K(0). Let:

K̃(0) = RefineSparsifier((ΠB)0, γ(0)I, γ(0), ǫ,
1

2
).

8

By Theorem 2, Relation 3:

1

2
K(0) � γ(0)I � K(0).

Thus, with high probability, (1 − ǫ)K(0) �r K̃(0) �r (1 + ǫ)K(0) and K̃(0) contains O((1/2)−1 ·
n log n · ǫ−2) = O(ǫ−2n log n) entries.

Now, consider the inductive case. Suppose we have some K̃(ℓ− 1) such that (1− ǫ)K(ℓ− 1) �r

K̃(ℓ− 1) �r (1 + ǫ)K(ℓ− 1). Let:

K̃(ℓ) = RefineSparsifier((ΠB)ℓ,
1

2(1 + ǫ)
K̃(ℓ− 1), γ(ℓ), ǫ,

1− ǫ

2(1 + ǫ)
).

By Theorem 2, Relation 2:

1

2
K(ℓ) � 1

2
K(ℓ− 1) � K(ℓ).

Furthermore, by assumption we have the inequalities:

1− ǫ

1 + ǫ
K(ℓ− 1) �r

1

1 + ǫ
K̃(ℓ− 1) �r K(ℓ− 1).

Thus:

1− ǫ

2(1 + ǫ)
K(ℓ) �r

1

2(1 + ǫ)
K̃(ℓ− 1) �r K(ℓ).

So, with high probability RefineSparsifier returns K̃(ℓ) such that (1 − ǫ)K(ℓ) �r K̃(ℓ) �r

(1 + ǫ)K(ℓ) and K̃(ℓ) contains just O((2(1+ǫ)
1−ǫ)2ǫ−2n log n) = O(ǫ−2n log n) nonzero elements. It

is important to note that there is no “compounding of error” in this process. Every K̃(ℓ) is an ǫ
approximation for K(ℓ). Error from using K̃(ℓ− 1) instead of K(ℓ− 1) is absorbed by a constant
factor increase in the number of rows sampled from B. The corresponding increase in sparsity for
K(ℓ) does not compound – in fact Theorem 3 is completely agnostic to the sparsity of the coarse
approximation K̃ used.

Finally, to obtain a bonafide graph sparsifier (a weighted subgraph of our streamed graph), let:

K̃ = RefineSparsifier((ΠB)d+1,
1

2(1 + ǫ)
K̃(d), 0, ǫ,

1− ǫ

2(1 + ǫ)
).

As in the inductive case,

1− ǫ

2(1 + ǫ)
K �r

1

2(1 + ǫ)
K̃(d) �r K.

Thus, it follows that, with high probability, K̃ has sparsity O(ǫ−2n log n) and (1 − ǫ)K �r K̃ �r

(1 + ǫ)K. Since we set γ to 0 for this final step, K̃ simply equals B̃⊤B̃ for some B̃ that contains
reweighted rows of B. Any vector in the kernel of B is in the kernel of B̃, and thus any vector in
the kernel of K is in the kernel of K̃. Thus, we can strengthen our approximation to:

(1− ǫ)K � K̃ � (1 + ǫ)K.

We conclude that K̃ is the Laplacian of some graph H containing O(ǫ−2n log n) reweighted edges
and approximating G spectrally to precision ǫ. Finally, note that we require d+1 = O(log n) recov-
ery steps, each running in O(n2 polylog(n)) time. Thus, our total recovery time is O(n2 polylog(n)).

9

5 Streaming Row Sampling

In this section, we develop the sparsifier refinement routine required for Theorem 1.

Proof of Theorem 3. Outside of the streaming model, given full access to B rather than just a
sketch ΠB it is easy to implement RefineSparsifier via leverage score sampling. Letting ⊕
denote appending the rows of one matrix to another, we can define Bγ = B ⊕

√
γ(ℓ) · I, so

K = B⊤B+ γI = B⊤
γ Bγ . Since τi = b⊤

i K
+bi and cK �r K̃ �r K, for any row of Bγ we have

τi ≤ b⊤
i K̃

+bi ≤
1

c
τi.

Let τ̃i = b⊤
i K̃

+bi be the leverage score of bi approximated using K̃. Let τ̃ be the vector
of approximate leverage scores, with the leverage scores of the n rows corresponding to

√
γ(ℓ)I

rounded up to 1. While not strictly necessary, including rows of the identity with probability
1 will simplify our analysis in the streaming setting. Using this τ̃ in Lemma 1, we can obtain
K̃ǫ ≈ǫ K with high probability. Since ‖τ̃‖1 ≤ 1

c‖τ‖1 + n ≤ 1
c · rank(B) + n ≤ n

c + n, we can write

K̃ǫ = B̃⊤
ǫ B̃ǫ + γI, where B̃ǫ contains O(ǫ−2c−1n log n) reweighted rows of B with high probability.

The challenge in the semi-streaming setting is actually sampling edges given only a sketch of
B. The general idea is explained in Section 3, with detailed pseudocode included below.

Streaming Sparsifier Refinement

MaintainSketches(B, ǫ):

1. For s ∈ {1, ...O(log n)} let hs :
(n
2

)
→ {0, 1} be a uniform hash function. Let Bs be B

with all rows except those with
∏

j≤s hj(e) = 0 zeroed out. So Bs is B with rows sampled

independently at rate 1
2s . B0 is simply B.

2. Maintain sketchs Π0B0,Π1B1, ...,ΠO(log n)BO(logn) where {Π0,Π1, ...ΠO(log n)} are
drawn from the distribution from Lemma 2 with η = ǫ

c1
√
logn

.

3. Output all of these sketches stacked: ΠB = Π0B0 ⊕ . . . ⊕ΠO(logn)BO(logn).

RefineSparsifier(ΠB, K̃, γ, ǫ, c):

1. Compute ΠsBsK̃
+ for each s ∈ {0, 1, 2, ...O(log n)}.

2. For every edge e in the set of
(
n
2

)
possible edges:

(a) Compute τ̃e = b⊤
e K̃

+be and pe = c2τ̃e log nǫ
−2, where c2 is the oversampling constant

from Lemma 1. Choose s such that min{1, pe} ≤ 1
2s ≤ min{1, 2pe}.

(b) Compute Πsxe = ΠsBsK̃
+be and run the heavy hitters algorithm of Lemma 2.

Determine whether or not xe = 0 or xe ≥ ǫ
c1
√
logn

‖BsK̃
+be‖2 by checking whether

the returned we > τ̃e/2.

(c) If it is determined that xe(e) 6= 0 set W(e, e) = 2s.

3. Output K̃ǫ = B⊤WB+ γI.

10

We show that every required computation can be performed in the dynamic semi-streaming
model and then prove the correctness of the sampling procedure.

Implementation in the Semi-Streaming Model.

Assuming access to uniform hash functions, MaintainSketches requires O(n polylog(n)) space in
total and can be implemented in the dynamic streaming model. When an edge insertion comes in,
use {hs} to compute which Bs’s should contain the inserted edge, and update the corresponding
sketches. For an edge deletion, simply update the sketches to add −be to each appropriate Bs.

Unfortunately, storing O(log n) uniform hash functions over
(n
2

)
requires O(n2 log n) space, and

is thus impossible in the semi-streaming setting. If Section 8 we show how to cope with this issue
by using a small-seed pseudorandom number generator.

Step 1 of RefineSparsifier can also be implemented in O(n polylog n) space. Since K̃ has
O(n log n) non-zeros and ΠsBs has O(polylog n) rows, computing ΠsBsK̃

+ requires O(polylog n)
linear system solves in K̃. We can use an iterative algorithm or a nearly linear time solver for
symmetric diagonally dominant matrices to find solutions in O(n polylog n) space total.

For step 2(a), the s chosen to guarantee min{1, pe} ≤ 1
2s ≤ min{1, 2pe} could in theory be

larger than the index of the last sketch ΠiBi maintained. However, if we take O(log n) samplings,
our last will be empty with high probability. Accordingly, all samplings for higher values of s can
be considered empty as well and we can just skip steps 2(b) and 2(c) for such values of s. Thus,
O(log n) sampling levels are sufficient.

Finally, by our requirement that K̃ is able to compute 1
c factor leverage score approximations,

with high probability, Step 2 samples at most O(n log nǫ−2) edges in total (in addition to selecting
n identity edges). Thus, the procedure’s output can be stored in small space.

Correctness

To apply our sampling lemma, we need to show that, with high probability, RefineSparsifier
independently samples each row of B with probability p̂e where min{1, pe} ≤ p̂e ≤ min{1, 2pe}.
Since the algorithm samples the rows of

√
γI with probability 1, and since τe ≤ τ̃e ≤ 1

c τe for all e,

by Lemma 1, with high probability, K̃ǫ = BWB+ γI = B̃⊤
ǫ B̃ǫ + γI is a (1± ǫ) spectral sparsifier

for K. Furthermore, B̃ǫ contains O(ǫ−2c−1n log n) reweighted rows of B.
In RefineSparsifier, an edge is only included in K̃ǫ if it is included in the Bs(e) where

min{1, pe} ≤ 1

2s(e)
≤ min{1, 2pe}.

The probability that be is included in the sampled matrix Bs(e) is simply 1/2s(e), and sampling
is done independently using uniform hash functions. So, we just need to show that, with high
probability, any be included in its respective Bs(e) is recovered by Step 2(b).

Let xe = BK̃+be and x
s(e)
e = Bs(e)K̃

+be. As explained in Section 3,

xs(e)
e (e) = xe(e) = 1eBK̃+be = b⊤

e K̃
+be = τ̃e (1)

11

Furthermore, we can compute:

‖xe‖22 = b⊤
e K̃

+B⊤BK̃+be

≤ b⊤
e K̃

+B⊤
γ BγK̃

+be (Since B⊤B � B⊤
γ Bγ)

≤ 1

c
· b⊤

e K̃
+be (Since c

(
B⊤

γ Bγ

)
� K̃)

=
1

c
τ̃e (2)

Now, writing p̂e =
1

2s(e)
, we expect ‖xs(e)

e (e)‖22 to equal p̂e‖xe‖22 = O(τ̃2e log nǫ
−2). We want to argue

that the norm falls close to this value with high probability. This follows from claiming that no
entry in xe is too large. For any edge e′ 6= e define:

τ̃e′,e
def
= xe(e

′) = 1e′BK̃+be = b⊤
e′K̃

+be.

Lemma 3. τ̃e′,e ≤ τ̃e

.

Proof. Consider ṽe = K̃+be. Let e = (u1, u2) and e′ = (u′1, u
′
2). If we have |ṽe(u

′
1) − ṽe(u2)

′| ≤
|ṽe(u1)− ṽe(u2)| then

b⊤
e′ṽe = b⊤

e′K̃
+be ≤ b⊤

e K̃
+be = b⊤

e ṽe,

which implies τ̃e′,e ≤ τ̃e as desired.

Now, K̃ is a weighted graph Laplacian added to a weighted identity matrix. Thus it is full
rank and diagonally dominant. Since it has full rank, K̃ṽe = K̃K̃+be = be. Since K̃ is diagonally
dominant and since be is zero everywhere except at be(u1) = 1 and be(u2) = −1, it must be that
ṽe(u1) is the maximum value of ṽe and ṽe(u2) is the minimum value. So |ṽe(u

′
1) − ṽe(u2)

′| ≤
|ṽe(u1)− ṽe(u2)| and τ̃e′,e ≤ τ̃e.

From Lemma 3, the vector 1
τ̃e
xe has all entries (and thus all squared entries) in [0, 1] so we can

apply a Chernoff/Hoeffding bound to show concentration for ‖ 1
τ̃e
x
s(e)
e ‖22. Specifically, we use the

standard multiplicative bound [Hoe63]:

P(X > (1 + δ)EX) < e−2δ2 EX . (3)

Since

E ‖ 1

τ̃e
xs(e)
e ‖22 = p̂e ·

τ̃e
c
· 1

τ̃2e
= Θ(log nǫ−2), (4)

we can set δ = ǫ and conclude that

P(‖ 1

τ̃e
xs(e)
e ‖22 > (1 + ǫ)E ‖ 1

τ̃e
xs(e)
e ‖22) = O(n−Θ(1)).

12

Accordingly, ‖xs(e)
e ‖22 ≤ c3τ̃

2
e log nǫ

−2 with high probability for some constant c3 and ǫ ≤ 1.

Now, if x
s(e)
e (e) = 0, then our sparse recovery routine must return an estimated value for

xe that is ≤ η‖xs(e)
e ‖2. We set η = ǫ

c1
√
logn

, so with high probability, the returned value is <

ǫ
c1
√
logn

√
‖xs(e)

e ‖22 =
√
c3τ̃e
c1

. On the other hand, if x
s(e)
e (e) is non-zero, it equals τ̃e, so our sparse

recovery sketch must return a value greater than (1−
√
c3
c1

)τ̃e. Therefore, as long as we set c1 high
enough, we can distinguish between both cases by simply checking whether or not the return value
is > τ̃e/2, as described for Step 2.

Thus, as long as ‖xs(e)
e ‖22 concentrates as described, our procedure recovers e if and only if be is

included in Bs(e). As explained, this ensures that our process is exactly equivalent to independent

sampling. Since concentration holds with probability O(n−Θ(1)), we can adjust constants and
union bound over all

(n
2

)
possible edges to claim that our algorithm returns the desired K̃ǫ with

high probability.

6 Sparsification of Weighted Graphs

We can use a standard technique to extend our result to streams of weighted graphs in which an
edge’s weight is specified at deletion, matching what is known for cut sparsifiers in the dynamic
streaming model [AGM12b, GKP12]. Assume that all edge weights and the desired approxima-
tion factor ǫ are polynomial in n, then we can consider the binary representation of each edge’s
weight out to O(log n) bits. For each bit of precision, we maintain a separate unweighted graph
G0, G1, ...GO(log n). We add each edge to the graphs corresponding to bits with value one in its
binary representation. When an edge is deleted, its weight is specified, so we can delete it from
these same graphs. Since G =

∑
i 2

i ·Gi, given a (1± ǫ) sparsifier K̃i for each Ki we have:

(1− ǫ)
∑

i

2i ·Ki �
∑

i

2i · K̃i � (1 + ǫ)
∑

i

2i ·Ki

(1− ǫ)K �
∑

i

2i · K̃i � (1 + ǫ)K.

So
∑

i 2
i · K̃i is a spectral sparsifier for K, the Laplacian of the weighted graph G.

7 Sparsification of Structured Matrices

Next, we extend our algorithm to sparsify certain general quadratic forms in addition to graph
Laplacians. There were only three places in our analysis where we used that B was not an arbitrary
matrix. First, we needed that B = SBn, where Bn is the vertex edge incidence matrix of the
unweighted complete graph on n vertices. In other words, we assumed that we had some dictionary
matrix Bn whose rows encompass every possible row that could arrive in the data stream. In
addition to this dictionary assumption, we needed B to be sparse and to have a bounded condition
number in order to achieve our small space results. These conditions allow our compression to avoid
an Ω(n2 polylog(n)) lower bound for approximately solving regression on general Rm×n matrices in
the streaming model [CW09].

13

As such, to handle the general ‘structured matrix’ case, we assume that we have some dictionary
A ∈ R

m×n containing m rows ai ∈ R
n. We assume thatm = O(poly(n)). In the dynamic streaming

model we receive insertions and deletions of rows from A resulting in a matrix A = SA where
S ∈ R

m×m is a diagonal matrix such that Sii ∈ {0, 1} for all i ∈ [m]. Our goal is to recover from an
O(n polylog(m)) space compression a diagonal matrix W with at most O(n log(n)) nonzero entries
such that A⊤W2A ≈ǫ A

⊤S2A = A⊤A. Formally, we prove the following:

Theorem 4 (Streaming Structured Matrix Sparsification). Given a row dictionary A ∈ R
m×n

containing all possible rows of the matrix A, there exists an algorithm that, for any ǫ > 0, processes
a stream of row insertions and deletions for A in a single pass and maintains a set of linear sketches
of this input in O

(
1
ǫ2
n polylog(m,κu)

)
space where κu is an upper bound on the condition number

of A⊤A. From these sketches, it is possible to recover, with high probability, a matrix Ã⊤Ã such
that Ã contains only O(ǫ−2n log n) reweighted rows of A and Ã⊤Ã is a (1 ± ǫ) spectral sparsifier
of A⊤A. The algorithm recovers Ã in poly(m, ǫ, n, log κu) time.

Note that, when m,κu = O(poly(n)), the sketch space is O
(
1
ǫ2
n polylog(n)

)
. To prove Theorem

4, we need to introduce a more complicated sampling procedure than what was used for the graph
case. In Lemma 3, for the correctness proof of RefineSparsifier in Section 5, we relied on
the structure of our graph Laplacian and vertex edge incidence matrix to show that τ̃e′,e ≤ τ̃e.

This allowed us to show that the norm of a sampled x
s(e)
e concentrates around its mean. Thus,

we could recover edge e with high probability if it was in fact included in the sampling Bs(e).

Unfortunately, when processing general matrices, τ̃e is not necessarily the largest element x
s(e)
e and

the concentration argument fails.
We overcome this problem by modifying our algorithm to compute more sketches. Rather than

computing a single ΠAs, for every sampling rate 1/2s, we compute O(log n) sketches of different
samplings of A at rate 1/2s. Each sampling is fully independent from the all others, including
those at the same and different rates. This differs from the graph case, where B1/2s+1 was always
a subsampling of B1/2s (for ease of exposition). Our modified set up lets us show that, with

high probability, the norm of xi
s(i) is close to its expectation for at least a (1 − ǫ) fraction of the

independent samplings for rate s(i). We can recover row i if it is present in one of the ‘good’
samplings.

Ultimately, we argue, in a similar manner to [KP12], that we can sample rows according to some
distribution that is close to the distribution obtained by independently sampling rows according to
leverage score. Using this primitive, we can proceed as in the previous sections to prove Theorem 4.
In Section 7.1, we provide the row sampling subroutine and in Section 7.2, we show how to use this
sampling routine to prove Theorem 4.

7.1 Generalized Row Sampling

Our leverage score sampling algorithm for the streaming model is as follows:

Streaming Row Sampling Algorithm

MaintainMatrixSketches(A, ǫ, κu, γ, c):

14

1. Let S = O(log κu), T = O(logm), and for all s ∈ [S] and t ∈ [T] let F
(t)
s ∈ R

m×m be a

diagonal matrix with [F
(t)
s]ii = 1 independently with probability 1

2s and is 0 otherwise.2

2. For all s ∈ [S] and t ∈ [T] maintain sketch Π
(t)
s F

(t)
s A where each Π

(t)
s is drawn indepen-

dently from the distribution in Lemma 2 with η2 = 1
C and C = c1ǫ

−3 logm log n.

3. Add rows of γI, independently sampled at rate 1
2s , to each sketch.

RowSampleMatrix(ΠA, K̃, ǫ, c):

1. For all s ∈ [S] and t ∈ [T] let x
(t)
s = F

(t)
s AK̃+ and compute Π

(t)
s x

(t)
s .

2. For every i ∈ [m]:

(a) Compute τ̃i = a⊤i K̃
+ai and pi = c2τ̃i log nǫ

−2, where c2 is the oversampling constant
from Lemma 1. Choose si such that min{1, pi} ≤ 1

2s
i
≤ min{1, 2pi}.

(b) Pick ti ∈ [T] uniformly at random and use Lemma 2 to check if x
(ti)
si (i)2 ≥ C−1‖x(ti)

si ‖22.
(c) If i is recovered, add row i to the set of sampled edges with weight 2si .

We claim that, with high probability, the set of edges returned by the above algorithm is a
random variable that is stochastically dominated by the two random variables obtained by sampling
edges independently at rates pi and (1− ǫ)pi, respectively.

The following property of PSD matrices is used in our proof of correctness:

Lemma 4. For any symmetric PSD matrix K ∈ R
n×n and indices i, j ∈ [n] we have

|Kij | ≤
1

2
(Kii +Kjj) .

Proof. Let 1i be the vector with a 1 at position i and 0s else where. For all i, j ∈ [n] by the fact
that K is PSD we have that

(1i − 1j)K (1i − 1j) ≥ 0 and (1i + 1j)K (1i + 1j) ≥ 0.

Expanding, we have that:
−Kii −Kjj ≤ 2Kij ≤ Kii +Kjj,

yielding the result.

We can now proceed to prove that our sampling procedure approximates sampling the rows of
A by their leverage scores.

Lemma 5. Consider an execution of RowSampleMatrix(ΠA, K̃, c, ǫ) where

• cA⊤A � K̃ � A⊤A for c ∈ (0, 1], and

2Throughout this section, for X ∈ Z
+ we let [X] = {0, 1, 2, . . . , X}

15

• ǫ ∈ (0, 1].

Let D be a random variable for the indices returned by RowSampleMatrix(ΠA, K̃, c, ǫ). Let I ⊆ [m]
denote the indices of the nonzero rows of A and let Dr and Dq be random variables for the subset
of [m] obtained by including each i ∈ I independently with probability

ri = (1− ǫ)
1

2si
and qi =

1

2si
.

With high probability, i.e. except for a (1− 1
mO(1)) fraction of the probability space, D is stochastically

dominated by Dq and D stochastically dominates Dr with respect to set inclusion.

Proof. By definition, Dr and Dq are always subsets of I and D is a subset of I with high probability
(it is a subset as long as the algorithm of Lemma 2 succeeds). Thus it remains to show that, with
high probability for each J ⊆ I,

∏

i∈J
ri = P[J ⊆ Dr] ≤ P[J ⊆ D] ≤ P[J ⊆ Dq] =

∏

i∈J
qi.

Furthermore, by definition, with high probability, RowSampleMatrix outputs i ∈ I if and only if

x
(ti)
si (i)2 ≥ C−1‖x(ti)

si ‖22 and consequently

P[J ⊆ D] = P

[
∀i ∈ J : x(ti)

si (i)2 ≥ C−1‖x(ti)
si ‖22

]
. (5)

As shown in Equation 1, when proving our graph sampling Lemma, for all i ∈ J ,

x(ti)
si (i) = [F(ti)

si]ii · τ̃i.

Consequently, by the definition of [F
(ti)
si]ii we can rewrite (5) as:

P[J ⊆ D] = P

[
∀i ∈ J : ‖x(ti)

si ‖22 ≤ C · τ̃2i and [F(ti)
si]ii = 1

]
. (6)

From (6) and the independence of [F
(ti)
si]ii we obtain the following trivial upper bound on P[J ⊆ D],

P[J ⊆ D] ≤ P

[
∀i ∈ J : [F(ti)

si]ii = 1
]
=

∏

i∈J

1

2si
=

∏

i∈J
qi

and consequently D is stochastically dominated by Dq as desired.
As shown in Equation 2, when proving the graph sampling case, for all i ∈ I and t ∈ [T]

piτ̃i ≤ E

[
‖x(t)

si ‖
2
2

]
≤ 2

c
piτ̃i. (7)

Recalling that pi = c2τ̃i log nǫ
−2, combining (6) and (7) yields:

P[J ⊆ D] ≥ P

[
∀i ∈ J : ‖x(ti)

si ‖22 ≤ c3 logmǫ−1 · E[‖x(ti)
si ‖22] and [F(ti)

si]ii = 1
]
, (8)

where c3 = c1c/2c2.

16

To bound the probability that ‖x(ti)
si ‖22 ≤ c3 logmǫ−1 · E[‖x(ti)

si ‖22] we break the contribution to

‖x(t)
si ‖22 for each t into two parts. For all i we let Ki = {j ∈ I|sj = si}, i.e. the set of all rows j which

we attempt to recover at the same sampling rate as i. For any t ∈ [T], we let A
(t)
i =

∑
j∈K x

(t)
i (j)2

and B
(t)
i =

∑
j∈I−K x

(t)
i (j)2. Using this notation and (8) we obtain the following lower bound

P[J ⊆ D] ≥ P

[
∀i ∈ J : A

(ti)
i ≤ c3 logmǫ−1

2
· E[‖x(ti)

si ‖22] , B
(ti)
i ≤ c3 logmǫ−1

2
· E[‖x(ti)

si ‖22] , and [F(ti)
si]ii = 1

]
.

For all j ∈ Ki, the rows that we attempt to recover at the same rate as row i, we know that τ̃j ≤ 2τ̃i.
By Lemma 4 we know that for all i ∈ I with si ≥ 1 and j ∈ Ki

x(t)si (j)
2 = [F(t)

si]jj ·
∣∣∣a⊤i K̃+aj

∣∣∣
2
≤ 1 ·

(
τ̃i + τ̃j

2

)2

≤
(
τ̃i + 2τ̃i

2

)2

≤ 3c−1
2 ǫ2 log−1 nE[‖x(t)

si ‖
2
2] . (9)

Now recall that C = Ω(ǫ−2 log n). If τ̃i > 1/2 and therefore si = 0 then x
(ti)
si (i)2 = τ̃2i and setting

constants high enough and considering (7), we see that row i is output with high probability. On
the other hand if si ≥ 1, then by (9) and Chernoff bound choosing a sufficiently large constant we

can ensure that with high probability A
(t)
i ≤ c3 logmǫ−1

2 E[‖x(t)
si ‖22] for all i and t.

Furthermore, by (7) and Markov bound we know that P[B
(ti)
i > c3 logmǫ−1

2 E[‖x(t)
si ‖22] ≤ ǫ

O(logm) .
Therefore, by Chernoff bound, with high probability for each i ∈ J with si ≥ 1 for at least a

1 − ǫ fraction of the values of t ∈ T we have B
(ti)
i ≤ c3 logmǫ−1

2 E[‖x(t)
si ‖22]. However, note that by

construction all the B
(t)
i are mutually independent of the A

(t)
i and the values of [F

(t)
sj]jj for j ∈ Ki.

So, RowSampleMatrix is simply picking each row i with probability 1
2si (failing with only a 1

mO(1)

probability) or not being able to recover each edge independently with some probability at most

ǫ – the probability that B
(ti)
i is too large. Consequently, except for a negligible fraction of the

probability space we have that

P [J ⊆ D] ≥
∏

i∈J
(1− ǫ) · [Ft

si]ii =
∏

i∈J

1− ǫ

2si
=

∏

i∈J
ri

and we have the desired result.

7.2 Generalized Recursive Sparsification

Next we show how to construct a spectral sparsifier in the streaming model for a general structured
matrix using the row sampling subroutine, RowSampleMatrix. In the graph case, Theorem 1 shows
that, if we can find a sparsifier to a graph G using a coarse sparsifier, then we can use the chain
of spectrally similar graphs provided in Theorem 2 to find a final (1 ± ǫ) sparsifier for our input
graph.

The proof of Theorem 1 includes our third reliance on the fact that we are sparsifying graphs
– we claim that the condition number of an unweighted graph is polynomial in n. This fact does
not hold in the general matrix case since the condition number can be exponentially large even
for bounded integer matrices. Therefore, our result for general matrix depends on the condition
number of A.

17

Theorem 5. Given a row dictionary A ∈ R
m×n. Let A = SA be the matrix specified by an

insertion-deletion stream where S ∈ R
m×m is a diagonal matrix such that Sii ∈ {0, 1} for all

i ∈ [m]. Let κu be a given upper bound on the possible condition number of any A. Let γ
be a fixed parameter and consider K = A⊤A + γI. For any ǫ > 0, there exists a sketch-
ing procedure MaintainMatrixSketches(A, ǫ, γ, κu, c) that outputs an O(n polylog(m,κu)) sized
sketch ΠA. There exists a corresponding recovery algorithm RefineMatrixSparsifier such that
if cK � K̃ � K for some 0 < c < 1 then:

RefineMatrixSparsifier(ΠA, K̃, ǫ, c) returns, with high probability, K̃ǫ = Ã⊤
ǫ Ãǫ + γI, where

(1 − ǫ)K �r K̃ǫ �r (1 + ǫ)K, and Ãǫ contains only O(ǫ−2n log n) reweighted rows of A with high
probability.

Proof. As in the graph case, we can think of the identity γI as a set of rows that we sample with
probability 1. Hence, we have K̃ǫ = Ã⊤

ǫ Ãǫ + γI.
Lemma 5 shows that RowSampleMatrix(ΠA, K̃, c, ǫ) returns a random set of indices of A such

that the generated random variable is dominated by Dq and is stochastically dominates Dr. Recall
that Dr and Dq are random variables for the subset of [m] obtained by including each i ∈ I
independently with probability

ri = (1− ǫ)
1

2si
and qi =

1

2si
.

Since 1
2si is a constant factor approximation of leverages score, Lemma 1 shows that sampling

and reweighing the rows according to Dr gives a spectral sparsifier of K with the guarantee re-
quired. Similarly, sampling according to Dq gives a sparsifier. Since the indices returned by
RowSampleMatrix(A, K̃, c, ǫ) are sandwiched between two processes which each give spectral spar-
sifiers, sampling according to RowSampleMatrix gives the required spectral sparsifier [KP12].

Using RefineMatrixSparsifier, the arguments in Theorem 1 yield Theorem 4. Our sketch
size needs to be based on log κu for two reasons – we must subsample the matrix at O(log κu)
different rates as our leverage scores will be lower bounded by some poly(κu). Further the chain
of recursive sparsifiers presented in Theorem 2 will have length log κu. Recovery will run in time
poly(m,n, ǫ, log κu). Space usage will depend on the sparsity of the rows in A as we will need
enough space to solve linear systems in K̃. In the worst case, this will require O(n2) space,
however, if the row of A are sparse, and hence K̃ is sparse, recovery will take less space, specifically
O(n polylog(m)) with constant row sparsity.

8 Using a Pseudorandom Number Generator

In the proof of our sketching algorithm, Theorem 3, we assume that MaintainSketches has access
to O(log n) uniform random hash functions, h1, . . . , hO(log n) mapping every edge to {0, 1}. These
functions are used to subsample our vertex edge incidence matrix, B, at geometrically decreasing
rates. Storing the functions as described would require O(n2 log n) space - we need O(log n) random
bits for each possible edge.

To achieve O(n polylog(n)) space, we need to compress the hash functions using Nisan’s pseu-
dorandom number generator. Our approach follows an argument in [AGM12b] (Section 3.4) that
was originally introduced in [Ind06] (Section 3.3). First, we summarize the pseudorandom number
generator from [Nis92]

18

Theorem 6 (Corollary 1 in [Nis92]). Any randomized algorithm running in space(S) and using
R random bits may be converted to one that uses only O(S logR) random bits (and runs in space
O(S logR)).

[Nis92] gives this conversion explicitly by describing a method for generating R pseudorandom
bits from O(S logR) truly random bits. For any algorithm running in space(S), the pseudorandom
bits are “good enough” in that the output distribution of the algorithm under pseudorandom bits
is very close to the output distribution under truly random bits. In particular, the total variation
distance between the distributions is at worst 2−O(S) (see Lemma 3 in [Nis92]). It follows that using
pseudorandom bits increases the failure probability of any randomized algorithm by just 2−O(S) in
the worst case.

As described, our algorithm runs in O(n2 log n) space and it is not immediately obvious how
to use Theorem 6 to reduce this requirement. However, consider the following: suppose our algo-
rithm is used on a sorted edge stream where all insertions and deletions for a single edge come in
consecutively. In this case, at any given time, we only need to store one random bit for each hash
function, which requires just O(log n) space. The random bits can be discarded after moving on to
the next edge. Thus, the entire algorithm can run in O(n polylog(n)) space. Then, we can apply
Theorem 6, using the pseudorandom generator to get all of our required random bits by expanding
just S logR = O(n polylog(n)) · O(log(n2 log n)) = O(n polylog(n)) truly random bits. Since our
failure probability increases by at most 1/2O(n polylogn), we still only fail with probability inverse
polynomial in n.

Now notice that, since our algorithm is sketch based, edge updates simply require an addition
to or subtraction from a sketch matrix. These operations commute, so our output will not differ
if we reorder of the insertion/deletion stream. Thus, we can run our algorithm on a general edge
stream, using the pseudorandom number generator to generate any of the required O(n2 log n) bits
as they are needed and operating in only O(n polylog n) space.

Each time an edge is streamed in, we need to generate log n random bits from the pseudorandom
generator. This can be done in log(R) ∗ S = O(n polylog(n)) time [Ind06], which dominates the
runtime required to process each streaming update.

Finally, Section 7 uses a slightly different sampling scheme for general structured matrices.
Instead of building a sequence of subsampled matrices, the row dictionary is sampled independently
at each level. In total, the required number of random bits is O(m log2 n), where m is the number
of rows in the dictionary A. We require that m = poly(n), in which case the arguments above
apply unmodified for the general matrix case.

9 Acknowledgements

We would like to thank Richard Peng for pointing us to the recursive row sampling algorithm
contained in [MP12], which became a critical component of our streaming algorithm. We would
also like to thank Jonathan Kelner for useful discussions and Jelani Nelson for a helpful initial
conversation on oblivious graph compression.

This work was partially supported by NSF awards 0843915, 1111109, and 0835652, CCF-
1065125, CCF-AF-0937274, CCF-0939370, and CCF-1217506, NSF Graduate Research Fellowship
grant 1122374, Hong Kong RGC grant 2150701, AFOSR grants FA9550-13-1-0042 and FA9550-
12-1-0411, MADALGO center, Simons Foundation, and the Defense Advanced Research Projects
Agency (DARPA).

19

References

[AG09] Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model.
In Proceedings of the 36th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), pages 328–338, 2009.

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via
linear measurements. In Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 459–467, 2012.

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsifica-
tion, spanners, and subgraphs. In Proceedings of the 31st Symposium on Principles of
Database Systems (PODS), pages 5–14, 2012.

[AGM13] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsification in dy-
namic graph streams. In Proceedings of the 16th International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization Problems (APPROX), pages 1–10,
2013.

[BK96] András Benczúr and David Karger. Approximating s-t minimum cuts in Õ(n2) time.
In Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC),
pages 47–55, 1996.

[CLM+15] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,
and Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of the
6th Conference on Innovations in Theoretical Computer Science (ITCS), 2015.

[CW09] Kenneth Clarkson and David Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing
(STOC), pages 205–214, 2009.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Proceedings of the 45th Annual ACM Symposium on Theory
of Computing (STOC), pages 81–90, 2013.

[Elk11] Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing
and maintaining sparse spanners. ACM Transactions on Algorithms, 7(2):20, 2011.
Preliminary version in the 34th International Colloquium on Automata, Languages and
Programming (ICALP).

[ELMS11] Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation
guarantees for weighted matching in the semi-streaming model. SIAM Journal on Dis-
crete Mathematics, 25(3):1251–1265, 2011. Preliminary version in the 27th International
Symposium on Theoretical Aspects of Computer Science (STACS).

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. On graph problems in a semi-streaming model. Theoretical Computer Science,
348(2):207–216, 2005.

20

[GI10] Anna C. Gilbert and Piotr Indyk. Sparse recovery using sparse matrices. Proceedings
of the IEEE, 98(6):937–947, 2010.

[GKP12] Ashish Goel, Michael Kapralov, and Ian Post. Single pass sparsification in the streaming
model with edge deletions. Computing Research Repository (CoRR), abs/1203.4900,
2012.

[GLPS12] A. Gilbert, Y. Li, E. Porat, and M. Strauss. Approximate sparse recovery: Optimizing
time and measurements. SIAM Journal on Computing, 41(2):436–453, 2012. Prelimi-
nary version in the 42nd Annual ACM Symposium on Theory of Computing (STOC).

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[HRR99] Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. External mem-
ory algorithms. chapter Computing on Data Streams, pages 107–118. American Math-
ematical Society, Boston, MA, USA, 1999.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. volume 53, pages 307–323, 2006. Preliminary version in the 41st
Annual IEEE Symposium on Foundations of Computer Science (FOCS).

[KL13] Jonathan A Kelner and Alex Levin. Spectral sparsification in the semi-streaming set-
ting. Theory of Computing Systems, 53(2):243–262, 2013. Preliminary version in the
28th International Symposium on Theoretical Aspects of Computer Science (STACS).

[KMP11] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for sdd
linear systems. In Proceedings of the 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 590–598, 2011.

[KP12] Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners.
In Proceedings of the 3rd Conference on Innovations in Theoretical Computer Science
(ITCS), pages 393–398, 2012.

[KW14] Michael Kapralov and David Woodruff. Spanners and sparsifiers in dynamic streams.
In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing
(PODC), pages 107–118, 2014.

[LMP13] Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In Proceedings of
the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
127–136, 2013.

[McG14] Andrew McGregor. Graph stream algorithms: A survey. SIGMOD Rec., 43(1):9–20,
2014.

[MM13] Michael W Mahoney and Xiangrui Meng. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Proceedings of the 45th
Annual ACM Symposium on Theory of Computing (STOC), pages 91–100, 2013.

[MP12] Gary L. Miller and Richard Peng. Iterative approaches to row sampling. Computing
Research Repository (CoRR), abs/1211.2713v1, 2012.

21

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2):1–136, 2005.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449–461, 1992. Preliminary version in the 22nd Annual ACM Symposium on
Theory of Computing (STOC).

[NN13] Jelani Nelson and Huy L. Nguyen. OSNAP: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 117–126, 2013.

[Sar06] Tamas Sarlos. Improved approximation algorithms for large matrices via random projec-
tions. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 143–152, 2006.

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011. Preliminary version in the 40th
Annual ACM Symposium on Theory of Computing (STOC).

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM
Journal on Computing, 40(4):981–1025, 2011. Preliminary version in the 36th Annual
ACM Symposium on Theory of Computing (STOC).

[ST14] Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for precondi-
tioning and solving symmetric, diagonally dominant linear systems. SIAM Journal on
Matrix Analysis and Applications, 35(3):835–885, 2014. Preliminary version in the 36th
Annual ACM Symposium on Theory of Computing (STOC).

[Tro12] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, 2012.

A Sparse Recovery

In this section we give a proof of the ℓ2 heavy hitters algorithm given in Lemma 2. It is known that
ℓ2 heavy hitters is equivalent to the ℓ2/ℓ2 sparse recovery problem [GI10]. Some sparse recovery
algorithms are in fact based on algorithms for solving heavy hitters problem. However, we were not
able to find a suitable reference for an ℓ2 heavy hitters algorithm so we show the reduction here -
namely, how to find ℓ2 heavy hitters using a sparse recovery algorithm.

We follow the terminology of [GLPS12]. An approximate sparse recovery system consists of
parameters k,N , an m×N measurement matrix Φ, and a decoding algorithm D. For any vector
x ∈ R

N the decoding algorithm D can be used to recover an approximation x̂ to x from the linear
sketch Φx. In this paper we will use a sparse recovery algorithm that achieves the ℓ2/ℓ2 sparse
recovery guarantee:

||x̂− x||2 ≤ C · ||x− xk||2
where xk is the best k-term approximation to x and C > 1. Our main sparse recovery primitive is
the following result of [GLPS12]:

22

Theorem 7 (Theorem 1 in [GLPS12]). For each k ≥ 1 and ǫ > 0, there is an algorithm and a
distribution Φ over matrices in R

O(k log(N/k)/ǫ)×N satisfying that for any x ∈ R
N , given Φx, the

algorithm returns x̂ such that x̂ has O(k logO(1)N/ǫ) non-zeros and

||x̂− x||22 ≤ (1 + ǫ)||x− xk||22
with probability at least 3/4. The decoding algorithm runs in time O(k logO(1)N/ǫ).

Using this primitive, we can prove Lemma A.

Lemma 2 (ℓ2 Heavy Hitters). For any η > 0, there is a decoding algorithm D and a distribution on
matrices Φ in R

O(η−2 polylog(N))×N such that, for any x ∈ R
N , given Φx, the algorithm D returns

a vector w such that w has O(η−2 polylog(N)) non-zeros and satisfies

||x−w||∞ ≤ η||x||2.

with probability 1 − N−c over the choice of Φ. The sketch Φx can be maintained and decoded in
O(η−2 polylog(N)) space.

Proof. Let h : [N] → [16/η2] be a random hash function (pairwise independence suffices), and for
j = 1, . . . , 16/η2 let yj

i = xi if h(i) = j and 0 o.w. For a vector u ∈ R
N we write u−i to denote u

with the i-th component zeroed out.
By Markov’s inequality we have

P[||yh(i)
−i ||2 > η2‖x−i‖2/2] < 1/8.

Note that since we are only using Markov’s inequality, it is sufficient to have h be pairwise inde-
pendent. Such a function h can be represented in small space. Now invoke the result of Theorem 7
on yh(i) with k = 1, ǫ = 1, and let wh(i) be the output. We have

||yh(i) −wh(i)||22 ≤ 2||yh(i) − y
h(i)
k ||22 ≤ 2||yh(i)

−i ||2.

Hence, we have

(y
h(i)
i −w

h(i)
i)2 ≤ η2‖x‖2.

This shows that applying sketches from Theorem 7 to vectors yj , for j = 1, . . . , 16/η2 and

outputting the vector w with wi = w
h(i)
i allows us to recover all i ∈ [N] with η‖x‖2 additive error

with probability at least 3/4− 1/8.
Performing O(logN) repetitions and taking the median value of wi yields the result. Note that

our scheme uses O(η−2 polylog(N)) space and decoding time, and is linear in x, as desired.

B Recursive Sparsification

For completeness, we give a short proof of Theorem 2:

Theorem 2 (Recursive Sparsification – [MP12], Section 4). Consider any PSD matrix K with
maximum eigenvalue bounded from above by λu and minimum nonzero eigenvalue bounded from
below by λl. Let d = ⌈log2(λu/λl)⌉. For ℓ ∈ {0, 1, 2, ..., d}, define:

γ(ℓ) = λu/2
ℓ

23

So, γ(d) ≤ λl and γ(0) = λu. Then the chain of PSD matrices,
[
K(0),K(1), . . . ,K(d)

]
with:

K(ℓ) = K+ γ(ℓ)In×n

satisfies the following relations:

1. K �r K(d) �r 2K

2. K(ℓ) � K(ℓ− 1) � 2K(ℓ) for all ℓ ∈ {1, . . . , d}

3. K(0) � 2γ(0)I � 2K(0)

When K is the Laplacian of an unweighted graph, λmax < 2n and λmin > 8/n2 (where here λmin

is the smallest nonzero eigenvalue). Thus the length of our chain, d = ⌈log2 λu/λl⌉, is O(log n).

Proof. Relation 1 follows trivially from the fact that γ(d) ≤ λl is smaller than the smallest nonzero
eigenvalue of K. For any x ⊥ ker(K):

x⊤K(d)x = x⊤Kx+ x⊤(γ(d)I)x ≤ x⊤Kx+ x⊤(λminI)x ≤ 2x⊤Kx

The other direction follows from γ(d)I � 0. Using the same argument, relation 3 follows from the
fact that γ(0) ≥ λmax(K). For relation 2:

2K(ℓ) = 2K+ 2γ(ℓ)I = 2K+ γ(ℓ− 1)I � K(ℓ− 1)

Again, the other direction just follows from γ(ℓ)I � 0.
Finally, we need to prove the required eigenvalue bounds. For an unweighted graph, λmax < n

follows from fact that n is the maximum eigenvalue of the Laplacian of the complete graph on
n vertices. λmin > 8/n2 by Lemma 6.1 of [ST14]. Note that this argument extends to weighted
graphs when the ratio between the heaviest and lightest edge is bounded by a polynomial in n.

24

	1 Introduction
	1.1 The Dynamic Semi-Streaming Model
	1.2 Streaming Sparsification
	1.3 Our Contribution
	1.4 Road Map

	2 Notation and Preliminaries
	2.1 Graph Notation
	2.2 Spectral Sparsification
	2.3 Leverage Scores and Row Sampling
	2.4 Sparse Recovery

	3 Algorithm Overview
	3.1 Effective Resistances
	3.2 Sampling in the Streaming Model
	3.3 A Chain of Coarse Sparsifiers

	4 Recursive Sparsifier Construction
	5 Streaming Row Sampling
	6 Sparsification of Weighted Graphs
	7 Sparsification of Structured Matrices
	7.1 Generalized Row Sampling
	7.2 Generalized Recursive Sparsification

	8 Using a Pseudorandom Number Generator
	9 Acknowledgements
	A Sparse Recovery
	B Recursive Sparsification

