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Abstract

We show that an effective version of Siegel’s theorem on finiteness of integer solutions
for a specific algebraic curve and an application of elementary Galois theory are key
ingredients in a complexity classification of some Holant problems. These Holant
problems, denoted by Holant(f ), are defined by a symmetric ternary function f that is
invariant under any permutation of the κ ≥ 3 domain elements. We prove that
Holant(f ) exhibits a complexity dichotomy. The hardness, and thus the dichotomy,
holds even when restricted to planar multigraphs. A special case of this result is that
counting edge κ-colorings is #P-hard over planar 3-regular multigraphs for all κ ≥ 3. In
fact, we prove that counting edge κ-colorings is #P-hard over planar r-regular
multigraphs for all κ ≥ r ≥ 3. The problem is polynomial time computable in all other
parameter settings. The proof of the dichotomy theorem for Holant(f ) depends on the
fact that a specific polynomial p(x, y) has an explicitly listed finite set of integer solutions
and the determination of the Galois groups of some specific polynomials. In the
process, we also encounter the Tutte polynomial, medial graphs, Eulerian partitions,
Puiseux series, and a certain lattice condition on the (logarithm of) the roots of
polynomials.

1 Introduction
What do Siegel’s theorem and Galois theory have to do with complexity theory? In
this paper, we show that an effective version of Siegel’s theorem on finiteness of inte-
ger solutions for a specific algebraic curve and an application of elementary Galois
theory are key ingredients in a chain of steps that lead to a complexity classification
of some counting problems. More specifically, we consider a certain class of count-
ing problems that are expressible as Holant problems with an arbitrary domain of
size κ over 3-regular multigraphs (i.e., self-loops and parallel edges are allowed) and
prove a dichotomy theorem for this class of problems. The hardness, and thus the
dichotomy, holds even when restricted to planar multigraphs. Among other things, the
proof of the dichotomy theorem depends on the following: (A) the specific polynomial
p(x, y) = x5 − 2x3y − x2y2 − x3 + xy2 + y3 − 2x2 − xy has only the integer solutions
(x, y) = (−1, 1), (0, 0), (1,−1), (1, 2), (3, 3), and (B) the determination of the Galois groups
of some specific polynomials. In the process, we also encounter the Tutte polynomial,
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medial graphs, Eulerian partitions, Puiseux series, and a certain lattice condition on the
(logarithm of) the roots of polynomials such as p(x, y).
A special case of this dichotomy theorem is the problem of counting edge colorings over

planar 3-regular multigraphs using κ colors. In this case, the corresponding constraint
function is the All-Distinct3,κ function, which takes value 1 when all three inputs from
[κ] are distinct and 0 otherwise. We further prove that the problem using κ colors over
r-regular multigraphs is #P-hard for all κ ≥ r ≥ 3, even when restricted to planar multi-
graphs. The problem is polynomial time computable in all other parameter settings. This
solves a long-standing open problem.
We give a brief description of the framework of Holant problems [18,20,21,23]. The

problem Holant(F ), defined by a set of functions F , takes as input a signature grid � =
(G,π ), where G = (V, E) is a multigraph, π assigns each v ∈ V a function fv ∈ F , and
fv maps [κ]deg(v) to C for some integer κ ≥ 2. An edge κ-labeling σ : E → [κ] gives an
evaluation

∏
v∈V fv(σ |E(v)), where E(v) denotes the incident edges of v and σ |E(v) denotes

the restriction of σ to E(v). The counting problem on the instance � is to compute

Holant(�,F ) =
∑

σ :E→[κ]

∏

v∈V
fv
(
σ |E(v)

)
.

Counting edge κ-colorings over r-regular multigraphs amounts to setting fv =
All-Distinctr,κ for all v.We also use Pl-Holant(F ) to denote the restriction of Holant(F )
to planar multigraphs.
Holant problems appear in many areas under a variety of different names. They are

equivalent to counting constraint satisfaction problems (#CSPs) [7,9] with the restriction
that all variables are read twice,1 to the contraction of a tensor network [25,41], and to the
partition function of graphical models in Forney normal form [42,47] from artificial intel-
ligence, coding theory, and signal processing. Special cases of Holant problems include
simulating quantumcircuits [48,56], counting graphhomomorphisms [2,5,12,27,34], and
evaluating the partition function of the edge-coloring model [2, Section 3.6].
An edge κ-coloring of a graph G is an edge κ-labeling of G such that any two incident

edges have different colors. A fundamental problem in graph theory is to determine how
many colors are required to edge colorG. The obvious lower bound is�(G), themaximum
degree of the graph. By Vizing’s theorem [60], an edge coloring using just�(G)+ 1 colors
always exists for simple graphs (i.e., graphs without self-loops or parallel edges). Whether
�(G) colors suffice depends on the graph G.
Consider the edge-coloring problem over 3-regular graphs. It follows from the parity

condition (Lemma 4.4) that any graph containing a bridge does not have an edge 3-
coloring. For bridgeless planar simple graphs, Tait [55] showed that the existence of an
edge 3-coloring is equivalent to the four-color theorem. Thus, the answer for the decision
problem over planar 3-regular simple graphs is that there is an edge 3-coloring iff the
graph is bridgeless.
Without the planarity restriction, determining whether a 3-regular (simple) graph

has an edge 3-coloring is NP-complete [39]. This hardness extends to finding an edge
κ-coloring over κ-regular (simple) graphs for all κ ≥ 3 [45]. However, these reductions
are not parsimonious, and, in fact, it is claimed that no parsimonious reduction exists

1 Without this restriction, #CSPs are a special case of Holant problems.
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unless P = NP [62, p. 118]. The counting complexity of this problem has remained
open.
We prove that counting edge colorings over planar regular multigraphs is #P-hard.2

Theorem 1.1 #κ-EdgeColoring is #P-hard over planar r-regular multigraphs if κ ≥
r ≥ 3.

This theorem is proved in Theorem 4.8 for κ = r and Theorem 4.20 for κ > r.
The techniques we develop to prove Theorem 1.1 naturally extend to a class of Holant

problems with domain size κ ≥ 3 over planar 3-regular multigraphs. Functions such
as All-Distinct3,κ are symmetric, which means that they are invariant under any per-
mutation of its three inputs. But All-Distinct3,κ has another invariance—it is invariant
under any permutation of the κ domain elements. We call the second property domain
invariance.
A ternary function that is both symmetric and domain invariant is specified by three

values, which we denote by 〈a, b, c〉. The output is a when all inputs are the same, the
output is c when all inputs are distinct, and the output is b when two inputs are the same
but the third input is different.
We prove a dichotomy theorem for such functions with complex weights.

Theorem 1.2 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Then either
Holant(〈a, b, c〉) is computable in polynomial time or Pl-Holant(〈a, b, c〉) is #P-hard. Fur-
thermore, given a, b, c, there is a polynomial-time algorithm that decides which is the
case.

See Theorem 10.1 for an explicit listing of the tractable cases. Note that counting edge
κ-colorings over 3-regular multigraphs is the special case when 〈a, b, c〉 = 〈0, 0, 1〉.
There is only one previous dichotomy theorem for higher domain Holant prob-

lems [22] (see Theorem 5.1). The important difference is that the present work is
for general domain size κ ≥ 3, while the previous result is for domain size κ = 3.
When restricted to domain size 3, the result in [22] assumes that all unary functions
are available, while this dichotomy does not assume that; however, it does assume
domain invariance. Dichotomy theorems for an arbitrary domain size are generally dif-
ficult to prove. The Feder-Vardi conjecture for decision constraint satisfaction prob-
lems (CSPs) is still open [32]. It was a major achievement to prove this conjecture for
domain size 3 [6]. The #CSP dichotomy was proved after a long series of papers [4,5,7–
9,11,15,16,24,26,28,35].
Our proof of Theorem 1.2 has many components, and a number of new ideas are

introduced in this proof. We discuss some of these ideas and give an outline of our proof
in Sect. 2. In Sect. 3, we review basic terminology and define the notation of a succinct
signature. Section 4 contains our proof of Theorem 1.1 about edge coloring. In Sect. 5, we
discuss the tractable cases of Theorem 1.2. In Sect. 6, we extend ourmain proof technique
of polynomial interpolation. Then in Sects. 7, 8, and 9, we develop our hardness proof and
tie everything together in Sect. 10.

2 Vizing’s theorem is for simple graphs. InHolant problemsaswell as counting complexity suchas graphhomomorphism
or #CSP, one typically considers multigraphs (i.e., self-loops and parallel edges are allowed). However, our hardness
result for counting edge 3-colorings over planar 3-regular multigraphs also holds for simple graphs (Theorem 4.9).
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2 Proof outline and techniques
Asusual, thedifficult part of adichotomy theorem is to carveout exactly the tractableprob-
lems in the class and prove all the rest #P-hard. A dichotomy theorem forHolant problems
has the additional difficulty that some tractable problems are only shown to be tractable
under aholographic transformation,which canmake the appearanceof theproblemrather
unexpected. For example, we show in Sect. 5 that the problemHolant(〈−3−4i, 1,−1+2i〉)
on domain size 4 is tractable. Despite its appearance, this problem is intimately con-
nected with a tractable graph homomorphism problem defined by the Hadamard matrix[

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

]

. In order to understand all problems in a Holant problem class, we

must deal with such problems. Dichotomy theorems for graph homomorphisms and for
#CSP do not have to deal with as varied a class of such problems, since they implicitly
assume all Equality functions are available and must be preserved. This restricts the
possible transformations.
After isolating a set of tractable problems, our #P-hardness results in both Theorem 1.1

and Theorem 1.2 are obtained by reducing from evaluations of the Tutte polynomial over
planar graphs. A dichotomy is known for such problems (Theorem 4.1).
The chromatic polynomial, a specialization of the Tutte polynomial (Proposition 4.10),

is concerned with vertex colorings. On domain size κ , one starting point of our hard-
ness proofs is the chromatic polynomial, which contains the problem of counting vertex
colorings using at most κ colors. By the planar dichotomy for the Tutte polynomial, this
problem is #P-hard for all κ ≥ 3.
Another starting point for our hardness reductions is the evaluation of the Tutte poly-

nomial at an integer diagonal point (x, x), which is #P-hard for all x ≥ 3 by the same planar
Tutte dichotomy. These are new starting places for reductions involvingHolant problems.
These problemswere known to have a so-called state-sum expression (Lemma 4.3), which
is a sum over weighted Eulerian partitions. This sum is not over the original planar graph
but over its directed medial graph, which is always a planar 4-regular graph (Fig. 4). We
show that this state-sum expression is naturally expressed as a Holant problem with a
particular quaternary constraint function (Lemma 4.6).
To reduce from these two problems, we execute the following strategy. First, we attempt

to construct the unary constraint function 〈1〉, which takes value 1 on all κ inputs
(Lemma 8.1). Second, we attempt to interpolate all succinct binary signatures, assum-
ing that we have 〈1〉 (Sect. 9). (See Sect. 3 for the definition of a succinct signature.) Lastly,
we attempt to construct a ternary signaturewith a special property, assuming that all these
binary signatures are available (Lemma 7.1). At each step, there are some problems spec-
ified by certain signatures 〈a, b, c〉 for which our attempts fail. In such cases, we directly
obtain a dichotomy without the help of additional signatures. See Fig. 1 for a flowchart of
hardness reductions.
Below we highlight some of our proof techniques.

Interpolation within an orthogonal subspace We develop the ability to interpolate
when faced with some nontrivial null spaces inherently present in interpolation construc-
tions. In any construction involving an initial signature and a recurrence matrix, it is
possible that the initial signature is orthogonal to some row eigenvectors of the recur-
rence matrix. Previous interpolation results always attempt to find a construction that
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Pl-Holant(〈a, b, c〉)

Attempts 1 and 2
Lemma 8.1

Attempt 1
Lemma 9.4

Attempt 2
Cases 1, 2, 3, 4, 5

Lemmas 9.5, 9.6, 9.7, 9.11, 9.12

Attempts 3 and 4
All Cases
Lemma B.1

Attempt 1
Lemma 7.1

Bobby Fischer Gadget
Lemma 4.18

Counting Vertex κ-Colorings
Corollary 4.19

Fail

Interpolate
all 〈x, y〉

Corollary 9.13

Construct 〈1〉

Construct 〈a, b, b〉
with a �= b

Corollary 8.4

Lemma 8.2

Lemma 8.3

Construct
〈3(κ−1), κ−3, −3〉

Lemma 7.3

Counting
Weighted
Eulerian
Partitions

Corollary 7.13

Lemmas 7.14
and 7.15

Succeed

Succeed

Succeed

Fail
B = 0

Fail
A = 0

Fig. 1 Flowchart of hardness reductions in our proof of Theorem 1.2 going back to our two starting points of
hardness

avoids this. In the present work, this avoidance seems impossible. In Sect. 6, we prove an
interpolation result that can succeed in this situation to the greatest extent possible. We
prove that one can interpolate any signature, provided that it is orthogonal to the same set
of row eigenvectors, and the relevant eigenvalues satisfy a lattice condition (Lemma 6.6).

Satisfy lattice condition via Galois theory A key requirement for this interpolation
to succeed is the lattice condition (Definition 6.3), which involves the roots of the char-
acteristic polynomial of the recurrence matrix. We use Galois theory to prove that our
constructions satisfy this condition. If a polynomial has a large Galois group, such as Sn
or An, and its roots do not all have the same complex norm, then we show that its roots
satisfy the lattice condition (Lemma 6.5).

Effective Siegel’s theorem via Puiseux series We need to determine the Galois groups
for an infinite family of polynomials, one for each domain size. If these polynomials are
irreducible, then we can show they all have the full symmetric group as their Galois group
andhence fulfill the lattice condition.We suspect that these polynomials are all irreducible
but are unable to prove it.
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A necessary condition for irreducibility is the absence of any linear factor. This infinite
family of polynomials, as a single bivariate polynomial in (x, κ), defines an algebraic curve,
which has genus 3. By a well-known theorem of Siegel [52], there are only a finite number
of integer values of κ forwhich the corresponding polynomial has a linear factor. However,
this theoremandothers like it are not effective in general. There are some effective versions
of Siegel’s theorem that can be applied to the algebraic curve, but the best general effective
bound is over 1020,000 [61] and hence cannot be checked in practice. Instead, we use
Puiseux series to show that this algebraic curve has exactly five explicitly listed integer
solutions (Lemma 7.6).

Eigenvalue shifted triples For a pair of eigenvalues, the lattice condition is equivalent
to the statement that the ratio of these eigenvalues is not a root of unity. A sufficient
condition is that the eigenvalues have distinct complex norms. We prove three results,
each of which is a different way to satisfy this sufficient condition. Chief among them is
the technique we call an Eigenvalue Shifted Triple (EST). These generalize the technique
of Eigenvalue Shifted Pairs from [43]. In an EST, we have three recurrence matrices, each
of which differs from the other two by a nonzero additive multiple of the identity matrix.
Provided these two multiples are linearly independent over R, we show at least one of
these matrices has eigenvalues with distinct complex norms (Lemma 9.10). (However,
determining which one succeeds is a difficult task, but we need not know that).

EPluribusUnum When the ratio of a pair of eigenvalues is a root of unity, it is a challenge
to effectively use this failure condition. Direct application of this cyclotomic condition
is often of limited use. We introduce an approach that uses this cyclotomic condition
effectively. A direct recursive construction involving these two eigenvalues only creates
a finite number of different signatures. We reuse all of these signatures in a multitude
of new interpolation constructions (Lemma 9.3), one of which we hope will succeed. If
the eigenvalues in all of these constructions also satisfy a cyclotomic condition, then we
obtain a more useful condition than any of the previous cyclotomic conditions. This idea
generalizes the anti-gadget technique [17], which only reuses the “last” of these signatures.

Local holographic transformation One reason to obtain all succinct binary signatures
is for use in the gadget construction known as a local holographic transformation (Fig. 11).
This construction mimics the effect of a holographic transformation applied on a single
signature. In particular, using this construction, we attempt to obtain a succinct ternary
signature of the form 〈a, b, b〉, where a �= b (Lemma 7.1). This signature turns out to have
some magical properties in the Bobby Fischer gadget, which we discuss next.

Bobby Fischer gadget Typically, any combinatorial construction for higher domain
Holant problems produces very intimidating looking expressions that are nearly impos-
sible to analyze. In our case, it seems necessary to consider a construction that has to
satisfy multiple requirements involving at least nine polynomials. However, we are able
to combine the signature 〈a, b, b〉, where a �= b, with a succinct binary signature of our
choice in a special construction that we call the Bobby Fischer gadget (Fig. 9). This gadget
is able to satisfy seven conditions using just one degree of freedom (Lemma 4.18). This
ability to satisfy a multitude of constraints simultaneously in one magic stroke reminds us
of some unfathomably brilliant moves by Bobby Fischer, the chess genius extraordinaire.
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3 Preliminaries
3.1 Problems and definitions

The framework of Holant problems is defined for functions mapping any [κ]n → R for a
finite κ and some commutative semiring R. In this paper, we investigate some complex-
weighted Holant problems on domain size κ ≥ 3. A constraint function, or signature, of
arity nmaps from [κ]n → C. For consideration of models of computation, functions take
complex algebraic numbers.
Graphs (called multigraphs in Sect. 1) may have self-loops and parallel edges. A graph

without self-loops or parallel edges is a simple graph. A signature grid � = (G,π ) of
Holant(F ) consists of a graph G = (V, E), where π assigns to each vertex v ∈ V and its
incident edges some fv ∈ F and its input variables. We say � is a planar signature grid if
G is planar, where the variables of fv are ordered counterclockwise. The Holant problem
on instance � is to evaluate Holant(�;F ) = ∑

σ

∏
v∈V fv(σ |E(v)), a sum over all edge

assignments σ : E → [κ], where E(v) denotes the incident edges of v and σ |E(v) denotes
the restriction of σ to E(v).
A function fv can be represented by listing its values in lexicographical order as in a

truth table, which is a vector in Cκdeg(v) , or as a tensor in (Cκ )⊗ deg(v). In this paper, we
consider symmetric signatures. An example of which is the Equality signature =r of
arity r. Sometimes we represent f as a matrixMf that we call its signature matrix, which
has row index (x1, . . . , xt ) and column index (xk , . . . , xt+1) (in reverse order) for some t
that will be clear from context.
A Holant problem is parametrized by a set of signatures.

Definition 3.1 Given a set of signatures F , we define the counting problem Holant(F )
as:

Input: A signature grid � = (G,π );
Output: Holant(�;F ).

The problem Pl-Holant(F ) is defined similarly using a planar signature grid.
A signature f of arity n is degenerate if there exist unary signatures uj ∈ Cκ (1 ≤ j ≤ n)

such that f = u1⊗· · ·⊗un. A symmetric degenerate signature has the form u⊗n. For such
signatures, it is equivalent to replace it by n copies of the corresponding unary signature.
Replacing a signature f ∈ F by a constant multiple cf , where c �= 0, does not change the
complexity of Holant(F ). It introduces a global nonzero factor to Holant(�;F ).
We allow F to be an infinite set. For Holant(F ) to be tractable, the problem must be

computable in polynomial time even when the description of the signatures in the input�
is included in the input size. In contrast, we say Holant(F ) is #P-hard if there exists a finite
subset ofF forwhich the problem is #P-hard. The samedefinitions apply for Pl-Holant(F )
when � is a planar signature grid. We say a signature set F is tractable (resp. #P-hard)
if the corresponding counting problem Holant(F ) is tractable (resp. #P-hard). We say F
is tractable (resp. #P-hard) for planar problems if Pl-Holant(F ) tractable (resp. #P-hard).
Similarly for a signature f , we say f is tractable (resp. #P-hard) if {f } is.
We follow the usual conventions about polynomial-time Turing reduction ≤T and

polynomial-time Turing equivalence ≡T . We use In and Jn to denote the n-by-n identity
matrix and n-by-nmatrix of all 1’s, respectively.
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3.2 Holographic reduction

To introduce the idea of holographic reductions, it is convenient to consider bipartite
graphs. For a general graph, we can always transform it into a bipartite graph while
preserving the Holant value, as follows. For each edge in the graph, we replace it by a path
of length two. (This operation is called the 2-stretch of the graph and yields the edge-vertex
incidence graph.) Each new vertex is assigned the binary Equality signature =2.
We use Holant(F | G) to denote the Holant problem on bipartite graphsH = (U,V, E),

where each vertex in U or V is assigned a signature in F or G, respectively. Signatures in
F are considered as row vectors (or covariant tensors); signatures in G are considered as
column vectors (or contravariant tensors) [25]. Similarly, Pl-Holant(F | G) denotes the
Holant problem over signature grids with a planar bipartite graph.
For a κ-by-κ matrix T and a signature set F , define TF = {g | ∃f ∈ F of arity

n, g = T⊗nf }, similarly for FT . Whenever we write T⊗nf or TF , we view the signatures
as column vectors, similarly for fT⊗n or FT as row vectors.
Let T be an invertible κ-by-κ matrix. The holographic transformation defined by T is

the following operation: given a signature grid � = (H,π ) of Holant(F | G), for the same
bipartite graphH , we get a new grid�′ = (H,π ′) of Holant(FT | T−1G) by replacing each
signature in F or G with the corresponding signature in FT or T−1G. Valiant’s Holant
Theorem [57] (see also [13]) is easily generalized to domain size κ ≥ 3.

Theorem 3.2 Suppose κ ≥ 3 is the domain size. If T ∈ Cκ×κ is an invertible matrix, then
Holant(�;F | G) = Holant(�′;FT | T−1G).

Therefore, an invertible holographic transformation does not change the complexity
of the Holant problem in the bipartite setting. Furthermore, there is a special kind of
holographic transformation, the orthogonal transformation, that preserves the binary
equality and thus can be used freely in the standard setting. For κ = 2, this first appeared
in [18] as Theorem 2.2.

Theorem 3.3 Suppose κ ≥ 3 is the domain size. If T ∈ Cκ×κ is an orthogonal matrix
(i.e., TTT = Iκ ), then Holant(�;F ) = Holant(�′;TF ).

Since the complexity of a signature is unchanged by a nonzero constantmultiple, we also
call a transformationT such thatTTT = λI for some λ �= 0 an orthogonal transformation.
Such transformations do not change the complexity of a problem.

3.3 Realization

One basic notion used throughout the paper is realization. We say a signature f is realiz-
able or constructible from a signature set F if there is a gadget with some dangling edges
such that each vertex is assigned a signature fromF , and the resulting graph, when viewed
as a black-box signature with inputs on the dangling edges, is exactly f . If f is realizable
from a set F , then we can freely add f into F while preserving the complexity.
Formally, such a notion is defined by an F-gate [18,19]. An F-gate is similar to a

signature grid (G,π ) forHolant(F ) except thatG = (V, E, D) is a graphwith somedangling
edges D. The dangling edges define external variables for the F-gate. (See Fig. 2 for an
example.) We denote the regular edges in E by 1, 2, . . . , m and the dangling edges in D by
m + 1, . . . , m + n. Then we can define a function � for this F-gate as
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Fig. 2 AnF -gate with 5 dangling edges

�(y1, . . . , yn) =
∑

x1 ,...,xm∈[κ]
H (x1, . . . , xm, y1, . . . , yn),

where (y1, . . . , yn) ∈ [κ]n is an assignment on the dangling edges andH (x1, . . . , xm, y1, . . . ,
yn) is the value of the signature grid on an assignment of all edges in G, which is the
product of evaluations at all internal vertices. We also call this function � the signature of
the F-gate.
An F-gate is planar if the underlying graphG is a planar graph, and the dangling edges,

ordered counterclockwise corresponding to the order of the input variables, are in the
outer face in a planar embedding. A planar F-gate can be used in a planar signature grid
as if it is just a single vertex with the particular signature.
Using the idea of planar F-gates, we can reduce one planar Holant problem to

another. Suppose g is the signature of some planar F-gate. Then Pl-Holant(F ∪ {g}) ≤T
Pl-Holant(F ). The reduction is simple. Given an instance of Pl-Holant(F ∪{g}), by replac-
ing every appearance of g by the F-gate, we get an instance of Pl-Holant(F ). Since the
signature of the F-gate is g , the Holant values for these two signature grids are identical.
Although our main results are about symmetric signatures (i.e., signatures that are

invariant under any permutation of inputs), some of our proofs utilize asymmetric sig-
natures. When a gadget has an asymmetric signature, we place a diamond on the edge
corresponding to the first input. The remaining inputs are ordered counterclockwise
around the vertex. (See Fig. 5 for an example.)
We note that even for a very simple signature set F , the signatures for all F-gates can

be quite complicated and expressive.

3.4 Succinct signatures

An arity r signature on domain size κ is fully specified by κr values. However, some special
cases can be defined using far fewer values. Consider the signature All-Distinctr,κ of
arity r on domain size κ that outputs 1 when all inputs are distinct and 0 otherwise. We
also denote this signature by ADr,κ . In addition to being symmetric, it is also invariant
under any permutation of the κ domain elements. We call the second property domain
invariance. The signature of an F-gate in which all signatures in F are domain invariant
is itself domain invariant.

Definition 3.4 (Succinct signature) Let τ = (P1, P2, . . . , P
) be a partition of [κ]r listed
in some order. We say that f is a succinct signature of type τ if f is constant on each Pi. A
set F of signatures is of type τ if every f ∈ F has type τ . We denote a succinct signature
f of type τ by 〈f (P1), . . . , f (P
)〉, where f (P) = f (x) for any x ∈ P.
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Furthermore, we may omit 0 entries. If f is a succinct signature of type τ , we also say
f is a succinct signature of type τ ′ with length 
′, where τ ′ lists 
′ parts of the partition τ ,
and we write f as 〈 f1, f2, . . . , f
′ 〉, provided that all nonzero values f (Pi) are listed. When
using this notation, we will make it clear which zero entries have been omitted.

For example, a symmetric signature in theBoolean domain (i.e., κ = 2) has been denoted
in previous work [14] by [ f0, f1, . . . , fr], where fw is the output on inputs of Hamming
weight w. This corresponds to the succinct signature type (P0, P1, . . . , Pr), where Pw is the
set of inputs of Hamming weight w. A similar succinct signature notation was used for
symmetric signatures on domain size 3 [22, p. 1282].
We prove a dichotomy theorem for Pl-Holant(f ) when f is a succinct ternary signature

of type τ3 on domain size κ ≥ 3. For κ ≥ 3, the succinct signature of type τ3 = (P1, P2, P3)
is a partition of [κ]3 with Pi = {(x, y, z) ∈ [κ]3 : |{x, y, z}| = i} for 1 ≤ i ≤ 3. The notation
{x, y, z} denotes a multiset, and |{x, y, z}| denotes the number of distinct elements in it.
Succinct signatures of type τ3 are exactly the symmetric and domain invariant ternary
signatures. In particular, the succinct ternary signature for AD3,κ is 〈0, 0, 1〉.
We use several other succinct signature types as well. For domain invariant unary signa-

tures, there are only two signatures up to a nonzero scalar. Using the trivial partition that
contains all inputs, we denote these two succinct unary signatures as 〈0〉 and 〈1〉 and say
that they have succinct type τ1. We also need a succinct signature type for domain invari-
ant binary signatures. Such signatures are necessarily symmetric. We call their succinct
signature type τ2 = (P1, P2), where Pi = {(x, y) ∈ [κ]2 : |{x, y}| = i} for 1 ≤ i ≤ 2.
We note that the number of succinct signature types for arity r signatures on domain

size κ that are both symmetric and domain invariant is the number of partitions of r into
at most κ parts. This is related to the partition function from number theory, which is not
to be confused with the partition function with its origins in statistical mechanics and has
been intensively studied in complexity theory of counting problems.
While there are some other succinct signature types that we define later as needed,

there is one more important type that we define here. Any quaternary signature f that
is domain invariant has a succinct signature of length at most 15. When a signature
has both vertical and horizontal symmetry, there is a shorter succinct signature that has
only length 9. We say a signature f has vertical symmetry if f (w, x, y, z) = f (x, w, z, y)
and horizontal symmetry if f (w, x, y, z) = f (z, y, x, w). For example, the signature of
the gadget in Fig. 9 has both vertical and horizontal symmetry. Accordingly, let τ4 =
(P 1 1

1 1
, P 1 2

1 1
, P 1 2

1 2
, P 1 3

1 2
, P 1 2

2 1
, P 1 3

2 1
, P 1 1

2 2
, P 1 1

2 3
, P 1 4

2 3
) be a type of succinct quaternary signature

with partitions

P 1 1
1 1

= {(w, x, y, z) ∈ [κ]4 | w = x = y = z},

P 1 2
1 1

=
{

(w, x, y, z) ∈ [κ]4
∣
∣ (w = x = y �= z) ∨ (w = x = z �= y)
∨(w = y = z �= x) ∨ (x = y = z �= w)

}

,

P 1 2
1 2

= {(w, x, y, z) ∈ [κ]4 | w = x �= y = z},
P 1 3

1 2
= {(w, x, y, z) ∈ [κ]4 | (w = x �= y �= z �= x) ∨ (y = z �= w �= x �= z)},

P 1 2
2 1

= {(w, x, y, z) ∈ [κ]4 | w = y �= x = z},
P 1 3

2 1
= {(w, x, y, z) ∈ [κ]4 | (w = y �= x �= z �= y) ∨ (x = z �= w �= y �= z)},

P 1 1
2 2

= {(w, x, y, z) ∈ [κ]4 | w = z �= x = y},
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P 1 1
2 3

= {(w, x, y, z) ∈ [κ]4 | (w = z �= x �= y �= z) ∨ (x = y �= w �= z �= y)}, and
P 1 4

2 3
= {(w, x, y, z) ∈ [κ]4 | w, x, y, z are all distinct}.

4 Counting edge κ-colorings over planar r-regular graphs
In this section, we show that counting edge κ-colorings over planar r-regular graphs is
#P-hard provided κ ≥ r ≥ 3. When this condition fails to hold, the problem is trivially
tractable. There are two cases depending on whether κ = r or not.

4.1 The Case κ = r

When κ = r, we reduce from evaluating the Tutte polynomial of a planar graph at the
positive integer points on the diagonal x = y. For x ≥ 3, evaluating the Tutte polynomial
of a planar graph at (x, x) is #P-hard.

Theorem 4.1 (Theorem 5.1 in [59]) For x, y ∈ C, evaluating the Tutte polynomial
at (x, y) is #P-hard over planar graphs unless (x − 1)(y − 1) ∈ {1, 2} or (x, y) ∈
{(1, 1), (−1,−1), (ω,ω2), (ω2,ω)}, where ω = e2π i/3. In each exceptional case, the com-
putation can be done in polynomial time.

To state the connection with the diagonal of the Tutte polynomial, we need to consider
Eulerian subgraphs in directed medial graphs. We say a graph is an Eulerian (di)graph if
every vertex has even degree (resp. in-degree equal to out-degree), but connectedness is
not required. Now recall the definition of a medial graph and its directed variant.

Definition 4.2 (cf. Section 4 in [30]) For a connected plane graphG (i.e., a planar embed-
ding of a connected planar graph), itsmedial graph Gm has a vertex on each edge ofG and
two vertices in Gm are joined by an edge for each face of G in which their corresponding
edges occur consecutively.
The directed medial graph �Gm of G colors the faces of Gm black or white depending on

whether they contain or do not contain, respectively, a vertex of G. Then the edges of the
medial graph are directed so that the black face is on the left.

Figures 3 and4 give examples of amedial graph and adirectedmedial graph, respectively.
Notice that the (directed) medial graph is always a planar 4-regular graph.
Building on previous work [1,29,49,58], Ellis-Monaghan gave the following connection

with the diagonal of the Tutte polynomial. A monochromatic vertex is a vertex with all its
incident edges having the same color.

(a) (b) (c)

Fig. 3 A plane graph (a), its medial graph (c), and the two graphs superimposed (b)
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(a) (b) (c)

Fig. 4 A plane graph (a), its directed medial graph (c), and both superimposed (b)

Lemma 4.3 (Equation (17) in [30]) Suppose G is a connected plane graph and �Gm is its
directed medial graph. For κ ∈ N, let C( �Gm) be the set of all edge κ-labelings of �Gm so that
each (possibly empty) set of monochromatic edges forms an Eulerian digraph. Then

κ T(G; κ + 1, κ + 1) =
∑

c ∈ C( �Gm)

2m(c), (1)

where m(c) is the number of monochromatic vertices in the coloring c.

The Eulerian partitions in C( �Gm) have the property that the subgraphs induced by each
partition do not intersect (or crossover) each other due to the orientation of the edges in
themedial graph.We call the counting problem defined by the sum on the right-hand side
of (1) counting weighted Eulerian partitions over planar 4-regular graphs. This problem
also has an expression as a Holant problem using a succinct signature. To define this
succinct signature, it helps to know the following basic result about edge colorings.
When the number of available colors coincides with the regularity parameter of the

graph, the cuts in any coloring satisfy a well-known parity condition. This parity condition
follows from amore general parity argument (see (1.2) and the parity argument on page 95
in [54]).We state this simpler parity condition and provide a short proof for completeness.

Lemma 4.4 (Parity Condition) Let G be a κ-regular graph and consider a cut C in G. For
any edge κ-coloring of G,

c1 ≡ c2 ≡ · · · ≡ cκ (mod 2),

where ci is the number of edges in C colored i for 1 ≤ i ≤ κ .

Proof Consider two distinct colors i and j. Remove from G all edges not colored i or j.
The resulting graph is a disjoint union of cycles consisting of alternating colors i and j.
Each cycle in this graph must cross the cut C an even number of times. Therefore, ci ≡ cj
(mod 2). ��
Consider all quaternary {ADκ ,κ }-gates on domain size κ ≥ 3. These gadgets have a

succinct signature of type τcolor = (P 1 1
1 1
, P 1 2

1 2
, P 1 2

2 1
, P 1 1

2 2
, P 1 4

2 3
, P0), where

P 1 1
1 1

= {(w, x, y, z) ∈ [κ]4 | w = x = y = z},
P 1 2

1 2
= {(w, x, y, z) ∈ [κ]4 | w = x �= y = z},

P 1 2
2 1

= {(w, x, y, z) ∈ [κ]4 | w = y �= x = z},
P 1 1

2 2
= {(w, x, y, z) ∈ [κ]4 | w = z �= x = y},

P 1 4
2 3

= {(w, x, y, z) ∈ [κ]4 | w, x, y, z are distinct}, and
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P0 = [κ]4 − P 1 1
1 1

− P 1 2
1 2

− P 1 2
2 1

− P 1 1
2 2

− P 1 4
2 3
.

Any quaternary signature of an {ADκ ,κ }-gate is constant on the first five parts of τcolor since
ADκ ,κ is domain invariant. Using Lemma 4.4, we can show that the entry corresponding
to P0 is 0.

Lemma 4.5 Suppose κ ≥ 3 is the domain size and let F be a quaternary {ADκ ,κ }-gate
with succinct signature f of type τcolor. Then f (P0) = 0.

Proof Let σ0 ∈ P0 be an edge κ-labeling of the external edges of F . Assume for a con-
tradiction that σ0 can be extended to an edge κ-coloring of F . We form a graph G from
two copies of F (namely, F1 and F2) by connecting their corresponding external edges.
Then G has a coloring σ that extends σ0. Consider the cut C = (F1, F2) in G whose cut
set contains exactly those edges labeled by σ0. By Lemma 4.4, the counts of the colors
assigned by σ0 must satisfy the parity condition. However, this is a contradiction since no
edge κ-labeling in P0 satisfies the parity condition. ��

By Lemma 4.5, we denote a quaternary signature f of an {ADκ ,κ }-gate by the succinct
signature 〈f (P 1 1

1 1
), f (P 1 2

1 2
), f (P 1 2

2 1
), f (P 1 1

2 2
), f (P 1 4

2 3
)〉 of type τcolor, which has the entry for P0

omitted.3 When κ = 3, P 1 4
2 3

is empty and we define its entry in the succinct signature to
be 0.

Lemma 4.6 Let G be a connected plane graph and let Gm be the medial graph of G. Then

κ T(G; κ + 1, κ + 1) = Pl-Holant(Gm; 〈2, 1, 0, 1, 0〉),
where the Holant problem has domain size κ and 〈2, 1, 0, 1, 0〉 is a succinct signature of
type τcolor.

Proof Let f = 〈2, 1, 0, 1, 0〉. By Lemma 4.3, we only need to prove that
∑

c ∈ C( �Gm)

2m(c) = Pl-Holant(Gm; f ), (2)

where the notation is from Lemma 4.3.
Each c ∈ C( �Gm) is also an edge κ-labeling of Gm. At each vertex v ∈ V ( �Gm), the four

incident edges are assigned at most two distinct colors by c. If all four edges are assigned
the same color, then the constraint f on v contributes a factor of 2 to the total weight.
This is given by the value in the first entry of f . Otherwise, there are two different colors,
say x and y. Because the orientation at v in �Gm is cyclically “in, out, in, out,” the coloring
around v can only be of the form xxyy or xyyx. These correspond to the second and fourth
entries of f . Therefore, every term in the summation on the left-hand side of (2) appears
(with the same nonzero weight) in the summation Pl-Holant(Gm; f ).
It is also easy to see that every nonzero term in Pl-Holant(Gm; f ) appears in the sum

on the left-hand side of (2) with the same weight of 2 to the power of the number of

3 If κ > 4, then Lemma 4.4 further implies that these signatures are also 0 on P 1 4
2 3

. However, when κ = 4, this value
might be nonzero. The AD4,4 signature is an example of this. Instead of using this observation that depends on κ in
our proof, we only construct gadgets such that their signatures are 0 on P 1 4

2 3
for any value of κ .
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monochromatic vertices. In particular, any coloring with a vertex that is cyclically colored
xyxy for different colors x and y does not contribute because f (P 1 2

2 1
) = 0. ��

Remark This result shows that this planarHolant problem is at least as hard as computing
the Tutte polynomial at the point (κ + 1, κ + 1) over planar graphs, which implies #P-
hardness. Of course they are equally difficult in the sense that both are #P-complete. In
fact, they are more directly related since every 4-regular plane graph is the medial graph
of some plane graph.

By Theorem 4.1 and Lemma 4.6, the problem Pl-Holant(〈2, 1, 0, 1, 0〉) is #P-hard. We
state this as a corollary.

Corollary 4.7 Suppose κ ≥ 3 is the domain size. Let 〈2, 1, 0, 1, 0〉 be a succinct quaternary
signature of type τcolor. Then Pl-Holant(〈2, 1, 0, 1, 0〉) is #P-hard.
With this connection established, we can now show that counting edge colorings is #P-

hard over planar regular graphs when the number of colors and the regularity parameter
coincide.

Theorem 4.8 #κ-EdgeColoring is #P-hard over planar κ-regular graphs for all κ ≥ 3.

Proof Let κ be the domain size of all Holant problems in this proof and let 〈2, 1, 0, 1, 0〉 be
a succinct quaternary signature of type τcolor. We reduce from Pl-Holant(〈2, 1, 0, 1, 0〉) to
Pl-Holant(ADκ ,κ ), which denotes the problem of counting edge κ-colorings over pla-
nar κ-regular graphs as a Holant problem. Then by Corollary 4.7, we conclude that
Pl-Holant(ADκ ,κ ) is #P-hard.
Consider the gadget in Fig. 5, where the bold edge represents κ − 2 parallel edges. We

assign ADκ ,κ to both vertices. Up to a nonzero factor of (κ − 2)!, this gadget has the
succinct quaternary signature f = 〈0, 1, 1, 0, 0〉 of type τcolor. Now consider the recursive
construction in Fig. 6. All vertices are assigned the signature f . Let fs be the succinct
quaternary signature of type τcolor for the sth gadget of the recursive construction. Then
f1 = f and fs = Ms f0, where

Fig. 5 Quaternary gadget used in the interpolation construction below. All vertices are assigned ADκ ,κ . The
bold edge represents κ − 2 parallel edges

N1 N2

Ns

Ns+1

Fig. 6 Recursive construction to interpolate 〈2, 1, 0, 1, 0〉. The vertices are assigned the signature of the
gadget in Fig. 5
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M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 κ − 1 0 0 0
1 κ − 2 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and f0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The signature f0 is simply the succinct quaternary signature of type τcolor for two parallel
edges. We can expressM via the Jordan decompositionM = P�P−1, where

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 − κ 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and � = diag(κ − 1,−1, 1,−1, 1). Then for t = 2s, we have

ft = P

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

κ − 1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

t

P−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= P

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

P−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

y + 1
y
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where x = (κ − 1)t and y = x−1
κ

.
Consider an instance�ofPl-Holant(〈2, 1, 0, 1, 0〉) ondomain sizeκ . Suppose 〈2, 1, 0, 1, 0〉

appears n times in �. We construct from � a sequence of instances �t of Pl-Holant(f )
indexed by t, where t = 2swith s ≥ 0.We obtain�t from� by replacing each occurrence
of 〈2, 1, 0, 1, 0〉 with the gadget ft .
As a polynomial in x = (κ − 1)t , Pl-Holant(�t ; f ) is independent of t and has degree at

most n with integer coefficients. Using our oracle for Pl-Holant(f ), we can evaluate this
polynomial at n + 1 distinct points x = (κ − 1)2s for 0 ≤ s ≤ n. Then via polynomial
interpolation, we can recover the coefficients of this polynomial efficiently. Evaluating this
polynomial at x = κ + 1 (so that y = 1) gives the value of Pl-Holant(�; 〈2, 1, 0, 1, 0〉), as
desired. ��
Remark For κ = 3, the interpolation step is actually unnecessary since the succinct
signature of f2 happens to be 〈2, 1, 0, 1, 0〉.
When κ = 3, it is easy to extend Theorem 4.8 by further restricting to simple graphs,

i.e., graphs without self-loops or parallel edges.

Theorem 4.9 #3-EdgeColoring is #P-hard over simple planar 3-regular graphs.

Proof By Theorem 4.8, it suffices to efficiently compute the number of edge 3-colorings
of a planar 3-regular graph G that might have self-loops and parallel edges. Furthermore,
we can assume that G is connected since the number of edge colorings is multiplicative
over connected components. If G contains a self-loop, then there are no edge colorings
in G, so assume G contains no self-loops. If G also contains no parallel edges, then G is
simple and we are done.
Thus, assume that G contains n vertices and parallel edges between some distinct ver-

tices u and v. If u and v are connected by three edges, then this constitutes the whole
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graph, which has six edge 3-colorings. Otherwise, u and v are connected by two edges.
Then there exist vertices u′ and v′ such that u and u′ are connected by a single edge, v and
v′ are connected by a single edge, and u′ �= v′. In any edge 3-coloring ofG, it is easy to see
that the edges (u, u′) and (v, v′) must be assigned the same color. By removing u, v, and
their incident edges while adding an edge between u′ and v′, we have a planar 3-regular
graph G′ on n − 2 vertices with half as many edge colorings as G. Then by induction, we
can efficiently compute the number of edge 3-colorings in G′. ��

In “Appendix 3”, we give an alternative proof of Theorem 4.8, which uses the interpo-
lation techniques we develop in Sect. 6. The purpose of “Appendix 3” is to show how a
recursive construction in an interpolation proof can be used to form a hypothesis about
possible invariance properties. One example of an invariance property is that any planar
{ADκ ,κ }-gate with a succinct quaternary signature 〈a, b, c, d, e〉 of type τcolor must satisfy
a + c = b + d (Lemma 13.1).

4.2 The case κ > r

Now we consider κ > r ≥ 3. This time, we reduce from the problem of counting vertex
κ-colorings over planar graphs. This problem is also #P-hard by the same dichotomy for
the Tutte polynomial (Theorem 4.1) since the chromatic polynomial is a specialization
the Tutte polynomial.

Proposition 4.10 (Proposition 6.3.1 in [3]) Let G = (V, E) be a graph. Then χ (G; λ), the
chromatic polynomial of G, is expressed as a specialization of the Tutte polynomial via the
relation

χ (G; λ) = (−1)|V |−k(G)λk(G) T(G; 1 − λ, 0),

where k(G) is the number of connected components of the graph G.

The first step in the proof is to interpolate every possible binary signature that is domain
invariant, which are necessarily symmetric. These signatures have the succinct signature
type τ2.

Lemma 4.11 Suppose κ ≥ 3 is the domain size and let x, y ∈ C. If we assign the succinct
binary signature 〈x, y〉 of type τ2 to every vertex of the recursive construction in Fig. 7, then
the corresponding recurrence matrix is

[
x (κ−1)y
y x+(κ−2)y

]
with eigenvalues x + (κ − 1)y and

x − y.

Proof Let f
 be the signature of the 
th gadget in this construction. To obtain f
+1 from f
,
we view f
 as a column vector andmultiply it by the recurrencematrixM =

[
x (κ−1)y
y x+(κ−2)y

]
.

f1 f2

f�

f�+1

Fig. 7 Recursive construction to interpolate any succinct binary signature of type τ2. All vertices are assigned
the same succinct binary signature of type τ2
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In general, we have f
 = M
 f0, where f0 is the initial signature, which is just a single edge
and has the succinct binary signature 〈1, 0〉 of type τ2. The (column) eigenvectors of M
are
[ 1
1
]
and

[ 1−κ
1
]
with eigenvalues x + (κ − 1)y and x − y, respectively, as claimed. ��

The success of interpolation depends on these eigenvalues and the relationship between
the recurrence matrix and the initial signature of the construction. To show that the
interpolation succeeds,weuse a result from [36], the full versionof [37]. This result is about
interpolating unary signatures on a Boolean domain for planar Holant problems, but the
same proof applies equally well for higher domains using a binary recursive construction
(like that in Fig. 7) and a succinct signature type with length 2.

Lemma 4.12 (Lemma 4.4 in [36]) Suppose F is a set of signatures and τ is a succinct
signature type with length 2. If there exists an infinite sequence of planarF-gates defined by
an initial succinct signature s ∈ C2×1 of type τ and recurrence matrixM ∈ C2×2 satisfying
the following conditions,

1. det(M) �= 0;
2. det([s Ms]) �= 0;
3. M has infinite order modulo a scalar;

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F ),

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ .

Consider the recursive construction in Fig. 7. To every vertex, we assign the succinct
binary signature 〈x, y〉. Since the initial signature is s = 〈1, 0〉, the determinant of the
matrix [s Ms] is simply y. In order to interpolate all binary succinct signatures of type τ2,
we need to satisfy the second condition of Lemma 4.12, which is y �= 0. However, when
y = 0, the recurrence matrix is a scalar multiple of the identity matrix, which implies that
the eigenvalues are the same. For two-dimensional interpolation using a matrix with a full
basis of eigenvectors, as is the case here, the third condition of Lemma 4.12 is equivalent
to the ratio of the eigenvalues not being a root of unity. In particular, the eigenvalues
cannot be the same. Therefore, when using the recursive construction in Fig. 7, it suffices
to satisfy the first and third conditions of Lemma 4.12. We state this as a corollary.

Corollary 4.13 Suppose F is a set of signatures. Let s = 〈1, 0〉 of type τ2 be the initial
succinct binary signature and let M ∈ C2×2 be the recurrence matrix for some infinite
sequence of planar F-gates defined by the recursive construction in Fig. 7. If M satisfies the
following conditions,

1. det(M) �= 0;
2. M has infinite order modulo a scalar;

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F ),

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.
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Lemma 4.14 Suppose κ is the domain size with κ > r for any integer r ≥ 3, and x, y ∈ C.
Let F be a signature set containing ADr,κ . Then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F ),

where 〈x, y〉 is a succinct binary signature of type τ2.

Proof Let (n)k = n(n−1) · · · (n−k +1) be the kth falling power of n. Consider the gadget
in Fig. 8. We assign ADr,κ to both vertices. The succinct binary signature of type τ2 for
this gadget is f = 〈(κ − 1)r−1, (κ − 2)r−1〉. Up to a nonzero factor of (κ − 2)r−2, we have
the signature f ′ = 1

(κ−2)r−2
f = 〈κ − 1, κ − r〉.

Consider the recursive construction in Fig. 7.We assign f ′ to all vertices. By Lemma4.11,
the eigenvalues of the corresponding recurrence matrix are (r − 1) > 0 and (κ − 1)(κ −
r + 1) > 0. Thus, M is nonsingular. Furthermore, the eigenvalues are not equal since
κ /∈ {0, r}. Therefore, we are done by Corollary 4.13. ��
Nextwe show that Pl-Holant(ADr,κ ) is at least as hard as Pl-Holant(AD3,κ ). To overcome

a difficulty when r is even, we apply the following result, which uses the notion of a planar
pairing.

Definition 4.15 (Definition 11 in [37]) A planar pairing in a graph G = (V, E) is a set of
edges P ⊂ V ×V such that P is a perfect matching in the graph (V,V ×V ), and the graph
(V, E ∪ P) is planar.

Lemma 4.16 (Lemma 12 in [37]) For any planar 3-regular graph G, there exists a planar
pairing that can be computed in polynomial time.

Lemma 4.17 Suppose κ is the domain size with κ > r for any integer r ≥ 3. Then

Pl-Holant(AD3,κ ) ≤T Pl-Holant(ADr,κ ).

Proof By Lemma 4.14, we can assume that 〈1, 1〉 is available. Take ADr,κ and first form
t = ⌈ r−4

2
⌉
self-loops. Then add a new vertex on each self-loop and assign 〈1, 1〉 to each

of these new vertices. Up to a nonzero factor of (κ − 3)2t , the resulting signature is AD3,κ
if r is odd and AD4,κ if r is even. To reduce from r = 3 to r = 4, we use a planar pairing,
which can be efficiently computed by Lemma 4.16.We add a new vertex on each edge in a
planar pairing and assign 〈1, 1〉 to each of these new vertices. Then up to a nonzero factor
of κ − 3, the signature at each vertex of the initial graph is effectively AD3,κ . ��
The succinct binary signature 〈1 − κ , 1〉 of type τ2 has a special property. Let u be

any constant unary signature, which has a succinct signature of type τ1. If 〈1 − κ , 1〉 is
connected to u, then the resulting unary signature is identically 0.
This observation is the key to what follows. We use it in the next lemma to achieve

what would appear to be an impossible task. The requirements, if duly specified, would
result in multiple conditions to be satisfied by nine separate polynomials pertaining to

Fig. 8 Binary gadget used in the interpolation construction of Fig. 7. Both vertices are assigned ADr,κ , and
the bold edge represents r − 1 parallel edges
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some construction in place of the gadget in Fig. 9. And yet we are able to use just one
degree of freedom to cause seven of the polynomials to vanish, satisfying most of these
conditions. In addition, the other two polynomials are not forgotten. They are nonzero,
and their ratio is not a root of unity, which allows interpolation to succeed.
This ability to satisfy a multitude of constraints simultaneously in one magic stroke

reminds us of some unfathomably brilliant moves by Bobby Fischer, the chess genius
extraordinaire, and so we name this gadget (Fig. 9) the Bobby Fischer gadget.
This gadget is the new idea that allows us to prove Theorem 4.20.

Lemma 4.18 Suppose κ ≥ 3 is the domain size and a, b ∈ C. Let F be a signature
set containing the succinct ternary signature 〈a, b, b〉 of type τ3 and the succinct binary
signature 〈1 − κ , 1〉 of type τ2. If a �= b, then

Pl-Holant(F ∪ {=4}) ≤T Pl-Holant(F ).

Proof Consider the gadget in Fig. 9. We assign 〈a, b, b〉 to the circle vertices and 〈1− κ , 1〉
to the square vertex. This gadget has a succinct quaternary signature of type τ4, which has
length 9. However, all but two of the entries in this succinct signature must be 0.
To see this, consider an assignment that assigns different values to the two edges incident

to the circle vertex on top. Since the assignment to these two edges differs, the signature
〈a, b, b〉 contributes a factor of b regardless of the value of its third edge, which is connected
to the square vertex assigned 〈1− κ , 1〉. From the perspective of 〈1− κ , 1〉, this behavior is
equivalent to connecting it to the succinct unary signature b〈1〉 of type τ1. Thus, the sum
over the possible assignments to this third edge is 0. The same argument shows that the
two edges incident to the circle vertex on the bottom do not contribute anything to the
Holant sum when assigned different values.
Thus, any nonzero contribution to the Holant sum comes from assignments where the

top two dangling edges are assigned the same value and the bottom two dangling edges
are assigned the same value. There are only two entries that satisfy this requirement in
the succinct quaternary signature of type τ4 for this gadget, which are the entries for P 1 1

1 1

and P 1 1
2 2
. To compute those two entries, we use the following trick. Since the two external

edges of each circle vertex must be assigned the same value, we think of them as just a
single edge. Then the effective succinct binary signature of type τ2 for the circle vertices
is just 〈a, b〉. By connecting the first 〈a, b〉 with 〈1 − κ , 1〉, the result is (a − b)〈1 − κ , 1〉
like it is an eigenvector. Connecting the other copy of 〈a, b〉 to (a − b)〈1 − κ , 1〉 gives
(a−b)2〈1− κ , 1〉. This computation is expressed via the matrix multiplication [bJκ + (a−
b)Iκ ][Jκ − κIκ ][bJκ + (a− b)Iκ ] = (a− b)[Jκ − κIκ ][bJκ + (a− b)Iκ ] = (a− b)2[Jκ − κIκ ].
Thus up to a nonzero factor of (a− b)2, the corresponding succinct quaternary signature
of type τ4 for this gadget is f = 〈1 − κ , 0, 0, 0, 0, 0, 1, 0, 0〉.

Fig. 9 The Bobby Fischer gadget, which achieves many objectives using only a single degree of freedom
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Consider the recursive construction in Fig. 6. We assign f to all vertices. Let fs be the
signature of the sth gadget in this construction. The seven entries that are 0 in the succinct
signature of type τ4 for f are also 0 in the succinct signature of type τ4 for fs. Thus, we
can express fs via a succinct signature of type τ ′

4 with length 2, defined as follows. The
first two parts in τ ′

4 are P 1 1
1 1

and P 1 1
2 2

from the succinct signature type τ4. The last part
contains all the remaining assignments. Then the succinct signature for fs of type τ ′

4 is
Ms f0, where M = [ 1−κ 0

0 1
]
and f0 = 〈1, 1〉, which is just the succinct signature of type τ ′

4
for two parallel edges.
Clearly the conditions in Lemma 4.12 hold, so we can interpolate any succinct signature

of type τ ′
4. In particular, we can interpolate our target signature =4, which is 〈1, 0〉 when

expressed as a succinct signature of type τ ′
4. ��

Remark The nine polynomials mentioned before Lemma 4.18 correspond to the nine
entries of some quaternary gadget with a succinct signature of type τ4. In light of
Lemma 4.14, this gadget might involve many succinct binary signatures 〈x, y〉 of type
τ2 for various choices of x, y ∈ C. Each distinct binary signature provides an additional
degree of freedom to these polynomials. Our construction in Fig. 9 only requires one
binary signature 〈x, y〉, and we use our one degree of freedom to set x

y = 1 − κ .

With the aid of the succinct unary signature 〈1〉 of type τ1 and the succinct binary
signature 〈0, 1〉 of type τ2, the assumptions in the previous lemma are sufficient to prove
#P-hardness.

Corollary 4.19 Suppose κ ≥ 3 is the domain size and a, b ∈ C. Let F be a signature set
containing the succinct ternary signature 〈a, b, b〉 of type τ3, the succinct unary signature
〈1〉 of type τ1, and the succinct binary signatures 〈1 − κ , 1〉 and 〈0, 1〉 of type τ2. If a �= b,
then Pl-Holant(F ) is #P-hard.

Proof By Lemma 4.18, we have =4. Connecting 〈1〉 to =4 gives =3. With =3, we can
construct the equality signatures of every arity. Alongwith the binary disequality signature
�=2, which is the succinct binary signature 〈0, 1〉 of type τ2, we can express the problem of
counting the number of vertex κ-colorings over planar graphs. By Proposition 4.10, this
is, up to a nonzero factor, the problem of evaluating the Tutte polynomial at (1 − κ , 0),
which is #P-hard by Theorem 4.1. ��
Now we can show that counting edge colorings is #P-hard over planar regular graphs

when there are more colors than the regularity parameter.

Theorem 4.20 #κ-EdgeColoring is #P-hard over planar r-regular graphs for all κ >

r ≥ 3.

Proof By Lemma 4.17, it suffices to consider r = 3. By Lemma 4.14, we can assume that
any succinct binary signature of type τ2 is available.
Consider the gadget in Fig. 10. We assign AD3,κ to the circle vertex and 〈3− κ , 1〉 to the

square vertices. By Lemma 11.6, the succinct ternary signature of type τ3 for this gadget
is f = 2(κ − 2)〈−(κ − 3)(κ − 1), 1, 1〉.
Now take two edges of AD3,κ and connect them to the two edges of 〈1, 1〉. Up to a

nonzero factor of (κ − 1)(κ − 2), this gadget has the succinct unary signature 〈1〉 of type
τ1. Then we are done by Corollary 4.19. ��
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Fig. 10 Local holographic transformation gadget construction for a ternary signature

5 Tractable problems
In the rest of the paper, we adapt and extend our previous proof techniques to obtain a
dichotomy for Pl-Holant(〈a, b, c〉), where 〈a, b, c〉 is a succinct ternary signature of type τ3
on domain size κ ≥ 3, for any a, b, c ∈ C. In this section, we show how to compute a few
of these problems in polynomial time.

5.1 Previous dichotomy theorem

There is only one previous dichotomy theorem for higher domain Holant problems. It
is a dichotomy for a single symmetric ternary signature on domain size κ = 3 in the
framework of Holant∗ problems, which means that all unary signatures are assumed to be
freely available.
In Theorem 5.1, the notation f �g denotes the signature that results from connecting

one edge incident to a vertex assigned the signature f to one edge incident to a vertex
assigned the signature g . When f and g are both unary signatures, which are represented
by vectors, then the resulting 0-ary signature is just a scalar.

Theorem 5.1 (Theorem 3.1 in [22]) Let f be a symmetric ternary signature on domain
size 3. Then Holant∗(f ) is #P-hard unless f is of one of the following forms, in which case,
the problem is computable in polynomial time.

1. There exists α,β , γ ∈ C3 that are mutually orthogonal (i.e., α�β = α�γ = β�γ =
0) and

f = α⊗3 + β⊗3 + γ ⊗3;

2. There exists α,β1,β2 ∈ C3 such that α�β1 = α�β2 = β�
1 β1 = β�

2 β2 = 0 and

f = α⊗3 + β⊗3
1 + β⊗3

2 ;

3. There exists β , γ ∈ C3 and fβ ∈ (C3)⊗3 such that β �= 0, β�β = 0, f �
β β = 0, and

f = fβ + β⊗2 ⊗ γ + β ⊗ γ ⊗ β + γ ⊗ β⊗2.

Some domain invariant signatures are tractable by Theorem 5.1.

Corollary 5.2 Suppose the domain size is 3 and a, b, λ ∈ C. Let f be a succinct ternary
signature of type τ3. Then Holant(f ) is computable in polynomial time when f has one of
the following forms:

1. f = λ〈1, 0, 0〉 = λ
[
(1, 0, 0)⊗3 + (0, 1, 0)⊗3 + (0, 0, 1)⊗3];

2. f = 3λ〈−5,−2, 4〉 = λ
[
(1,−2,−2)⊗3 + (−2, 1,−2)⊗3 + (−2,−2, 1)⊗3];
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3. f = 〈a, b, a〉 = a+2b
3 (1, 1, 1)⊗3 + a−b

3
[
(1,ω,ω2)⊗3 + (1,ω2,ω)⊗3],

where ω is a primitive third root of unity.

In Corollary 5.2, form 1 is the ternary equality signature =3, which is trivially tractable
for any domain size. Then form 2 is just form 1 after a holographic transformation by the
matrix T =

[ 1 −2 −2
−2 1 −2
−2 −2 1

]
, which is orthogonal after scaling by 1

3 . This is an example of
two problems that must have the same complexity by Theorem 3.3.
The tractability of these two problems for higher domain sizes is stated in the following

corollary.

Corollary 5.3 Suppose κ ≥ 3 is the domain size and λ ∈ C. Let f be a succinct ternary
signature of type τ3. Then Holant(f ) is computable in polynomial time if f has one of the
following forms:

1. f = λ〈1, 0, 0〉;
2. f = λT⊗3〈1, 0, 0〉 = λκ〈κ2 − 6κ + 4,−2(κ − 2), 4〉,

where T = κIκ − 2Jκ .

Note that T = κIκ − 2Jκ is an orthogonal matrix after scaling by 1
κ
.

5.2 Affine signatures

Let ω be a primitive third root of unity. Consider the ternary signature f (x, y, z) with
succinct ternary signature 〈1, 0, c〉 of type τ3 on domain size 3, where c3 = 1. Its support
is an affine subspace of Z3 defined by x + y+ z = 0. Furthermore, consider the quadratic
polynomial qc(x, y, z) = λc(xy + xz + yz), where λ1 = 0, λω = 2, and λω2 = 1. Then
ωqc(x,y,z) agrees with f when x + y + z = 0. This function f is an example of a ternary
domain affine signature.

Definition 5.4 A k-ary function f (x1, . . . , xk ) is affine on domain size 3 if it has the form

λ · χAx=0 · e 2π i
3 q(x),

where λ ∈ C, x = (x1, x2, . . . , xk , 1)T, A is a matrix over Z3, q(x) ∈ Z3 is a quadratic
polynomial, and χ is a 0-1 indicator function such that χAx=0 is 1 iff Ax = 0. We use A
to denote the set of all affine functions.

The ternary domain affine signatures are tractable just as those in the Boolean domain
are [10].

Lemma 5.5 Suppose the domain size is 3. Then Holant(A ) is computable in polynomial
time.

Proof Given an instance of Holant(A ), the output can be expressed as the summation of
a single function F = χAx=0 · e 2π i

3 q(x1 ,x2 ,...,xk ) since A is closed under multiplication. In
polynomial time, we can solve the linear system Ax = 0 over Z3 and decide whether it is
feasible. If the linear system is infeasible, then the function is the identically 0 function, so
the output is just 0.
Otherwise, the linear system is feasible (including possibly vacuous). Without loss of

generality,we can assume that y1, y2, . . . , ys are independent variables overZ3 while all oth-
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ers are dependent variables, where 0 ≤ s ≤ k . Each dependent variable can be expressed
by an affine linear form of y1, y2, . . . , ys. We can substitute for all of the dependent vari-
ables in q(x1, x2, . . . , xk ), which gives a new quadratic polynomial q′(y1, y2, . . . , ys). Thus,
we have

∑

x1 ,...,xk∈Z3

χAx=0 · e 2π i
3 q(x1,x2 ,...,xk ) =

∑

y1 ,...,ys∈Z3

e
2π i
3 q′(y1 ,y2 ,...,ys). (3)

Then the right-hand side of (3) is computable in polynomial time by Theorem 1 in [24].
��

After multiplying the function 〈1, 0, c〉 by a scalar, we obtain the succinct ternary signa-
ture 〈a, 0, c〉 of type τ3 such that a3 = c3. Since undergoing an orthogonal transformation
does not change the complexity of the problem by Theorem 3.3, we obtain the following
corollary of the previous result.

Corollary 5.6 Suppose the domain size is 3 and a, c ∈ C. Let T ∈ O3(C) and let 〈a, 0, c〉 be
a succinct ternary signature of type τ3. If a3 = c3, then Holant(T⊗3〈a, 0, c〉) is computable
in polynomial time.

For domain size 3, the only orthogonal matrix T such that T⊗3〈a, b, c〉 is still a succinct
ternary signature of type τ3 is ± 1

3

[ 1 −2 −2
−2 1 −2
−2 −2 1

]
. However, the tractability in Corol-

lary 5.6 holds for any orthogonal matrix T .
We introduce another affine signature. It can be considered as a signature of arity 4 on

the Boolean domain. When placed in a planar signature grid, its input variables are listed
in a cyclic order x1, x2, y2, y1 counterclockwise. We then consider it as a binary signature
on domain size 4, where the two variables (x1, x2) and (y1, y2) range over the four values
in {0, 1}2. Notice the reversal of the order y2, y1. This is to allow a planar connection

between these signatures. We list its values as the matrix H4 =
[

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

]

,

which is an Hadamard matrix, where the row index is (x1, x2) and the column index is
(y1, y2), both ordered lexicographically. A closed-form expression showing that this is an
affine signature on the Boolean domain is f (x1, x2, y2, y1) = (−1)q(x1,x2 ,y1 ,y2), where q is the
quadratic polynomial

q(x1, x2, y1, y2) = x1 + x2 + x1x2 + y1 + y2 + y1y2 + x1y2 + x2y1. (4)

As a binary signature on domain size 4, f has the succinct signature 〈1,−1〉 of type
τ2. The fact that f is an affine signature on the Boolean domain shows that the Holant
problem defined by f on domain size 4 is tractable. This follows fromTheorem 1.4 in [24],
or the more general graph homomorphism dichotomy theorems [12,34].
We are interested in this problem because its tractability implies the tractability of a set

of problems defined by a succinct ternary signature of type τ3.

Lemma 5.7 Suppose the domain size is 4 and λ,μ ∈ C. Let 〈μ2, 1,μ〉 be a succinct ternary
signature of type τ3. If μ = −1 + ε2i with ε = ±1, then Holant(λ〈μ2, 1,μ〉) is computable
in polynomial time.

Proof Let T = 1
2

[ x y y y
y x y y
y y x y
y y y x

]

, where x = −3 − εi and y = 1 − εi. Then up to a factor

of λn on graphs with n vertices, the output of Holant(λ〈μ2, 1,μ〉) is the same as the output
for
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Holant(〈μ2, 1,μ〉) = Holant(〈−3 − ε4i, 1,−1 + ε2i〉)
≡T Holant(=2 | T⊗3(=3))

= Holant((=2)T⊗2 | =3)

= Holant(2〈1,−1〉 | =3)

≤T Holant(〈1,−1〉 | {=k | k ∈ Z
+}).

Since Holant(〈1,−1〉 | {=k | k ∈ Z+}) is the Holant expression for the graph homomor-

phism problem defined by the Hadamard matrix
[

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

]

, we can finish the

proof by applying the dichotomy theorems for symmetric matrices in [12,34]. For exam-
ple, this problem is tractable by Theorem 1.2 in [34] (see also [24]), where the quadratic
representation is q(x1, x2, y1, y2) from (4). ��

We restate this lemma as a simple corollary for later convenience.

Corollary 5.8 Suppose the domain size is 4 and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If a+5b+2c = 0 and 5b2+2bc+c2 = 0, thenHolant(〈a, b, c〉)
is computable in polynomial time.

Proof Since a = −5b − 2c and b = 1
5 (−1 ± 2i)c, after scaling by μ = −1 ∓ 2i, we have

μ〈a, b, c〉 = c〈μ2, 1,μ〉 and are done by Lemma 5.7. ��

6 An interpolation result
Thegoal of this section is to generalize an interpolation result from [21],whichwe rephrase
using our notion of a succinct signature (cf. Lemma 4.12).

Theorem 6.1 (Theorem 3.5 in [21]) Suppose F is a set of signatures and τ is a succinct
signature type with length 3. If there exists an infinite sequence of planar F-gates defined
by an initial succinct signature s ∈ C3×1 of type τ and a recurrence matrix M ∈ C3×3 with
eigenvalues α, β , and γ satisfying the following conditions:

1. det(M) �= 0;
2. s is not orthogonal to any row eigenvector of M;
3. for all (i, j, k) ∈ Z3 − {(0, 0, 0)} with i + j + k = 0, we have αiβ jγ k �= 1;

then

Pl-Holant(F ∪ {f }) ≤T Pl-Holant(F ),

for any succinct ternary signature f of type τ .

Our generalization of this result is designed to relax the second condition so that s can
be orthogonal to some row eigenvectors ofM. Suppose r is a row eigenvector ofM, with
eigenvalue λ, that is orthogonal to s (i.e., the dot product r · s is 0). ConsiderMks, the kth
signature in the infinite sequence defined byM and s. This signature is also orthogonal to
r since r ·Mks = λkr · s = 0.We do not know of any way of interpolating a signature using
this infinite sequence that is not also orthogonal to r. On the other hand, we would like to
interpolate those signatures that do satisfy this orthogonality condition. Our interpolation
result gives a sufficient condition to achieve this.
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We assume our n-by-n matrix M is diagonalizable, i.e., it has n linearly independent
(row and column) eigenvectors. We do not assume that M necessarily has n distinct
eigenvalues (although this would be a sufficient condition for it to be diagonalizable). The
relaxation of the second condition is that, for some positive integer 
, the initial signature
s is not orthogonal to exactly 
 of these linearly independent row eigenvectors of M. To
satisfy this condition, we use a two-step approach. First, we explicitly exhibit n−
 linearly
independent row eigenvectors of M that are orthogonal to s. Then we use the following
lemma to show that the remaining row eigenvectors of M are not orthogonal to s. The
justification for this approach is that the eigenvectors orthogonal to s are often simple to
express while the eigenvectors not orthogonal to s tend to be more complicated.

Lemma 6.2 For n ∈ Z+, let s ∈ Cn×1 be a vector and let M ∈ Cn×n be a diagonalizable
matrix. If rank([s Ms . . . Mn−1s]) ≥ 
, then for any set of n linearly independent row
eigenvectors, s is not orthogonal to at least 
 of them.

Proof SinceM is diagonalizable, it has n linearly independent eigenvectors. Suppose for a
contradiction that there exists a set of n linearly independent row eigenvectors ofM such
that s is orthogonal to t > n − 
 of them. Let N ∈ Ct×n be the matrix whose t rows are
the row eigenvectors of M that are orthogonal to s. Then N [s Ms . . . Mn−1s] is the zero
matrix. From this, it follows that rank([s Ms . . . Mn−1s]) < 
, a contradiction. ��

The third condition of Theorem 6.1 is also known as the lattice condition.

Definition 6.3 Fix some 
 ∈ N. We say that λ1, λ2, . . . , λ
 ∈ C − {0} satisfy the lattice
condition if for all x ∈ Z
 − {0} with∑


i=1 xi = 0, we have
∏


i=1 λ
xi
i �= 1.

When 
 ≥ 3, we use Galois theory to show that the lattice condition is satisfied. The
idea is that the lattice condition must hold if the Galois group of the polynomial, whose
roots are the λi’s, is large enough. In [21], for the special case n = 
 = 3, it was shown that
the roots of most cubic polynomials satisfy the lattice condition using this technique.

Lemma 6.4 (Lemma 5.2 in [21]) Let f (x) ∈ Q[x] be an irreducible cubic polynomial.
Then the roots of f (x) satisfy the lattice condition iff f (x) is not of the form ax3 + b for some
a, b ∈ Q.

In the following lemma, we show that if the Galois group for a polynomial of degree n is
one of the two largest possible groups, Sn or An, then its roots satisfy the lattice condition
provided these roots do not all have the same complex norm.

Lemma 6.5 Let f be a polynomial of degree n ≥ 2 with rational coefficients. If the Galois
group of f over Q is Sn or An and the roots of f do not all have the same complex norm,
then the roots of f satisfy the lattice condition.

Proof We consider An since the same argument applies to Sn ⊃ An. For 1 ≤ i ≤ n, let
ai be the roots of f such that |a1| ≤ · · · ≤ |an|. By assumption, as least one of these
inequalities is strict. Suppose for a contradiction that these roots fail to satisfy the lattice
condition. This means there exists x ∈ Zn − {0} satisfying∑n

i=1 xi = 0 such that
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ax11 · · · axnn = 1. (5)

Since x is not all 0, it must contain some positive entries and some negative entries.
We can rewrite (5) as by11 · · · byss = cz11 · · · cztt , where s, t ≥ 1, b1, . . . , bs, c1, . . . , ct are s + t
distinct members from {a1, . . . , an}, yi > 0 for 1 ≤ i ≤ s, zi > 0 for 1 ≤ i ≤ t, and
y1 + · · · + ys = z1 + · · · + zt . We omit factors in (5) with exponent 0.
If n = 2, then s = t = 1 and |b1| = |c1|. This is a contradiction to the assumption

that roots of f do not all have the same complex norm. Otherwise, assume n ≥ 3. If
s = t = 1, then |b1| = |c1| again. We apply 3-cycles from An to conclude that all roots
of f have the same complex norm, a contradiction. Otherwise, s + t > 2. Without loss
of generality, suppose s ≥ t, which implies s ≥ 2. Pick j ∈ {0, . . . , n − s − t} such that
|aj+1| ≤ · · · ≤ |aj+s+t | contains a strict inequality.We permute the roots so that bi = aj+i
for 1 ≤ i ≤ s and ci = aj+s+i for 1 ≤ i ≤ t (or possibly swapping b1 and b2 if necessary
to ensure the permutation is in An). Then taking the complex norm of both sides gives a
contradiction. ��

Remark This result can simplify the interpolation arguments in [21]. Since each of their
cubic polynomials is irreducible, the correspondingGalois groups are transitive subgroups
of S3, namely S3 orA3 (and in fact by inspection, they are all S3). Then Lemma4.5 from [44]
(the full version of [43]) shows that the eigenvalues of these polynomials do not all have
the same complex norm. Thus, the roots of all polynomials exhibited in [21] satisfy the
lattice condition by Lemma 6.5.

In the current paper, we apply Lemma 6.5 to an infinite family of quintic polynomials
that we encounter in Sect. 7. If the polynomials are irreducible, then we are able to apply
this lemma.Unfortunately,we are unable to show that all these polynomials are irreducible
and thus also have to consider the possible ways in which they could factor. Nevertheless,
we are still able to show that all these polynomials satisfy the lattice condition.
To conclude, we state and prove our new interpolation result.

Lemma 6.6 Suppose F is a set of signatures and τ is a succinct signature type with length
n ∈ Z+. If there exists an infinite sequence of planar F-gates defined by an initial succinct
signature s ∈ Cn×1 of type τ and a recurrence matrix M ∈ Cn×n satisfying the following
conditions,

1. M is diagonalizable with n linearly independent eigenvectors;
2. s is not orthogonal to exactly 
 of these linearly independent row eigenvectors of M

with eigenvalues λ1, . . . , λ
;
3. λ1, . . . , λ
 satisfy the lattice condition;

then

Pl-Holant(F ∪ {f }) ≤T Pl-Holant(F )

for any succinct signature f of type τ that is orthogonal to the n − 
 of these linearly
independent eigenvectors of M to which s is also orthogonal.

Proof Let λ1, . . . , λn be the n eigenvalues ofM, with possible repetition. SinceM is diag-
onalizable, we can write M as T�T−1, where � is the diagonal matrix

[
B1 0
0 B2

]
with

B1 = diag(λ1, . . . , λ
) and B2 = diag(λ
+1, . . . , λn). Notice that the columns of T are the
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column eigenvectors of M and the rows of T−1 are the row eigenvectors of M. Let ti be
the ith column T and let T−1s = [α1 . . . αn]T. Then αi �= 0 for 1 ≤ i ≤ 
 and αi = 0 for

 < i ≤ n, since s is not orthogonal to exactly the first 
 row eigenvectors ofM.
Now we can write

Mks = T
[
Bk
1 0
0 Bk

2

]

T−1s = T
[
Bk
1 0
0 Bk

2

]
⎡

⎢
⎢
⎢
⎣

α1
...

α

0
...
0

⎤

⎥
⎥
⎥
⎦

= T diag (α1λ
k
1 , . . . ,α
λ

k

 , 0, . . . , 0)

= T diag(α1, . . . ,α
, 0, . . . , 0)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λk1
...

λk

0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= [α1t1, . . . ,α
t
, 0, . . . , 0]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λk1
...

λk

0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

For 1 ≤ i ≤ 
, let t′i = αiti. Both the columns of T and the rows of T−1 are linearly
independent. From T−1T = Im, we see that ti for 1 ≤ i ≤ 
 is orthogonal to the last n− 


rows of T−1. Thus span{t1, . . . , t
} = span{t′1, . . . , t′
} is precisely the space of vectors
orthogonal to the last n − 
 rows of T−1.
Consider an instance � of Pl-Holant(F ∪ {f }). Let Vf be the subset of vertices assigned

f with nf = |Vf |. Since f is orthogonal to any row eigenvector of M to which s is also
orthogonal, we have f ∈ span{t′1, . . . , t′
}. Let f = β1t′1+· · ·+β
t′
. Then Pl-Holant(�;F ∪
{f }) is a homogeneous polynomial in the βi ’s of total degree nf . For y = (y1, . . . , y
) ∈ N
,
let cy be the coefficient of βy1

1 · · · βy


 in Pl-Holant(�;F ∪ {f }) so that

Pl-Holant(�;F ∪ {f }) =
∑

y1+···+y
=nf

cyβ
y1
1 · · · βy



 .

We construct from � a sequence of instances �k of Pl-Holant(F ) indexed by k ∈ N.
We obtain �k from � by replacing each occurrence of f withMks, for k ≥ 0. Then

Pl-Holant(�k ;F ) =
∑

y1+···+y
=nf

cy
(
λ
y1
1 · · · λy



)k .

Note that, crucially, the same cy coefficients appear. We treat this as a linear system
with the cy’s as the unknowns. The coefficient matrix is a Vandermonde matrix of order
(nf +
−1


−1
)
, which is polynomial in nf and thus polynomial in the size of �. It is nonsingular

if every λ
y1
1 · · · λy

 is distinct, which is indeed the case since λ1, . . . , λ
 satisfy the lattice

condition.
Therefore, we can solve for the cy’s in polynomial time and compute Pl-Holant(�;F ∪

{f }). ��
Remark When restricted to n = 
 = 3, this proof is simpler than the one given in [21]
for Theorem 6.1 due to our implicit use of a local holographic transformation (i.e., the
writing of f as a linear combination of t′1, . . . , t′
 and expressing Pl-Holant(�;F ∪ {f }) in
terms of this).

7 Puiseux series, Siegel’s theorem, and Galois theory
We prove our main dichotomy theorem in three stages. This section covers the last
stage, which assumes that all succinct binary signatures of type τ2 are available. Among
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the ways we utilize this assumption is to build the gadget known as a local holographic
transformation (see Fig. 11), which is the focus of Sect. 7.1. Then in Sect. 7.2, our efforts
are largely spent, proving that a certain interpolation succeeds. To that end, we employ
Galois theory aided by an effective version of Siegel’s theorem for a specific algebraic
curve, which is made possible by analyzing Puiseux series expansions.
We define the following expressions which appear throughout the rest of the paper:

A = a − 3b + 2c; (6)

B = A + κ(b − c) = a + (κ − 3)b − (κ − 2)c; and (7)

C = B + κ[2b + (κ − 2)c] = a + 3(κ − 1)b + (κ − 1)(κ − 2)c. (8)

7.1 Constructing a special ternary signature

We construct one of two special ternary signatures. Either we construct a signature of
the form 〈a, b, b〉 with a �= b and can finish the proof with Corollary 4.19 or we construct
〈3(κ − 1), κ − 3,−3〉. With this latter signature, we can interpolate the weighted Eulerian
partition signature.
A key step in our dichotomy theorem occurred back in Sect. 4.2 through Lemma 4.18

with the Bobby Fischer gadget. To apply this lemma, we need to construct a gadget
with a succinct ternary signature of type τ3 such that the last two entries are equal and
different from the first. This is the goal of the next lemma, which assumesB �= 0.We will
determine the complexity of the case B = 0 in Corollary 8.4 without using the results
from this section.

Lemma 7.1 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let F be a signature
set containing the succinct ternary signature 〈a, b, c〉 of type τ3 and the succinct binary
signature 〈x, y〉 of type τ2 for all x, y ∈ C. If AB �= 0, then there exist a′, b′ ∈ C satisfying
a′ �= b′ such that

Pl-Holant(F ∪ {〈a′, b′, b′〉}) ≤T Pl-Holant(F ),

where 〈a′, b′, b′〉 is a succinct ternary signature of type τ3.

Proof Consider the gadget in Fig. 11.We assign 〈a, b, c〉 to the circle vertex and 〈x, y〉 to the
square vertices for some x, y ∈ C of our choice, to be determined shortly. By Lemma 11.6,
the succinct ternary signature of type τ3 for the resulting gadget is 〈a′, b′, c′〉, where

a′ − b′ = (x − y)2[2D + A(x − y)] and b′ − c′ = (x − y)2D

Fig. 11 Local holographic transformation gadget construction for a ternary signature
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withD = (b − c)(x − y) + By. We pick x = B + y and y = −(b − c) so that D = 0 and
thus b′ − c′ = 0. Then the first difference simplifies to a′ − b′ = AB3 �= 0. This signature
has the desired properties, so we are done. ��
The previous proof fails when A = 0 because such signatures are invariant set-wise

under this type of local holographic transformation. With the exception of a single point,
we can use this same gadget construction to reduce between any two of these points.

Lemma 7.2 Suppose κ ≥ 3 is the domain size and b, c, s, t ∈ C. Let F be a signature set
containing the succinct ternary signature 〈3b − 2c, b, c〉 of type τ3 and the succinct binary
signature 〈x, y〉 of type τ2 for all x, y ∈ C. If b �= c, 3b+ (κ −3)c �= 0, and 3s+ (κ −3)t �= 0,
then

Pl-Holant(F ∪ {〈3s − 2t, s, t〉}) ≤T Pl-Holant(F ),

where 〈3s − 2t, s, t〉 is a succinct ternary signature of type τ3.

Proof Consider the gadget in Fig. 11. We assign 〈3b − 2c, b, c〉 to the circle vertex and
〈x, y〉 to the square vertices for some x, y ∈ C of our choice, to be determined shortly. By
Lemma 11.6, the signature of this gadget is f = [x + (κ − 1)y]〈3b̂ − 2ĉ, b̂, ĉ〉, where

b̂ = bx2 + 2[2b + (κ − 3)c]xy + [(3κ − 5)b + (κ2 − 5κ + 6)c]y2 and

ĉ = cx2 + 2[3b + (κ − 4)c]xy + [(3κ − 6)b + (κ2 − 5κ + 7)c]y2.

We note that the difference b̂ − ĉ nicely factors as

b̂ − ĉ = (b − c)(x − y)2.

We pick x = y+ √
s − t so that b̂− ĉ = (b− c)(s − t) is the desired difference s − t up to

a nonzero factor of b − c. Then we want to set ĉ to be (b − c)t. With x = y + √
s − t, we

can simplify (b − c)t − ĉ to

(b − c)t − ĉ = −κ[3b + (κ − 3)c]y2 − 2
√
s − t[3b + (κ − 3)c]y + bt − cs. (9)

Since κ[3b+(κ−3)c] �= 0, (9) is a nontrivial quadratic polynomial in y, so we can set y such
that this expression vanishes. Then the signature is f = (b− c)[x+ (κ − 1)y]〈3s− 2t, s, t〉.
It remains to check that x + (κ − 1)y �= 0.
If x + (κ − 1)y = 0, then y = −

√
s−t
κ

. However, plugging this into (9) gives
(b−c)[3s+(κ−3)t]

k �= 0, so x + (κ − 1)y is indeed nonzero. ��
If A = 0 and 3b + (κ − 3)c = 0, then −3〈a, b, c〉 simplifies to c〈3(κ − 1), κ − 3,−3〉,

which is a failure condition of the previous lemma. The reason is that this signature is
pointwise invariant under such local holographic transformations. However, a different
ternary construction can reach this point.

Lemma 7.3 Suppose κ ≥ 3 is the domain size and b, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈3b − 2c, b, c〉 of type τ3 and the succinct binary
signature 〈x, y〉 of type τ2 for every x, y ∈ C. If b �= c, then

Pl-Holant(F ∪ {〈3(κ − 1), κ − 3,−3〉}) ≤T Pl-Holant(F ),

where 〈3(κ − 1), κ − 3,−3〉 is a succinct ternary signature of type τ3.
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Proof If 3b+ (κ − 3)c = 0, then up to a nonzero factor of −c
3 , 〈3b− 2c, b, c〉 is already the

desired signature. Otherwise, 3b + (κ − 3)c �= 0. By Lemma 7.2, we have 〈3s − 2t, s, t〉 for
any s, t ∈ C satisfying 3s + (κ − 3)t �= 0.
Consider the gadget in Fig. 12. We assign 〈3s − 2t, s, t〉 to vertices for some s, t ∈ C

satisfying 3s + (κ − 3)t �= 0 of our choice, to be determined shortly. By Lemma 11.4, the
signature of this gadget is 〈3s′ − 2t ′, s′, t ′〉, where

s′ = (5κ + 14)s3 + (κ2 + 9κ − 42)s2t + (7κ2 − 33κ+42)st2 + (κ − 2)(κ2 − 6κ+7)t3,

and

t ′ = (κ + 14)s3 + 21(κ − 2)s2t + 3(3κ2 − 15κ + 14)st2 + (κ3 − 9κ2 + 23κ − 14)t3.

It suffices to pick s and t satisfying 3s + (κ − 3)t �= 0 such that s′ = κ − 3 and t ′ = −3 up
to a common nonzero factor.
We note that the difference s′ − t ′ factors as

s′ − t ′ = κ(s − t)2[4s + (κ − 4)t].

We pick s = −(κ−4)t+1
4 so that s′ − t ′ = κ(s − t)2 is the desired difference κ up to a factor

of (s − t)2. Then we want to set t ′ to be −3(s − t)2. With s = −(κ−4)t+1
4 , we can simplify

−3(s − t)2 − t ′ to

− 3(s − t)2 − t ′ = 1
64
[
κ3(κ − 2)t3 − 3κ2(κ + 2)t2 + 3κ(κ − 10)t − (κ + 26)

]
. (10)

Since κ ≥ 3, (10) is a nontrivial cubic polynomial in t, so we can set t such that this
expression vanishes. Then 〈3s′ − 2t ′, s′, t ′〉 = (s − t)2〈3(κ − 1), κ − 3,−3〉. It remains to
check that s �= t and 3s + (κ − 3)t �= 0.
If s = t, then t = 1

κ
. Plugging this into (10) gives −1, so s �= t. If 3s + (κ − 3)t = 0, then

t = − 3
κ
. Plugging this into (10) gives 1 − κ �= 0, so 3s + (κ − 3)t �= 0. ��

7.2 Dose of an effective Siegel’s theorem and Galois theory

It suffices to show that 〈3(κ−1), κ−3,−3〉 is #P-hard for all κ ≥ 3.The general strategy is to
use interpolation. However, proving that this interpolation succeeds presents a significant
challenge.
Consider the polynomial p(x, y) ∈ Z[x, y] defined by

p(x, y) = x5 − 2x3y − x2y2 − x3 + xy2 + y3 − 2x2 − xy

= x5 − (2y + 1)x3 − (y2 + 2)x2 + y(y − 1)x + y3.

We consider y as an integer parameter y ≥ 4 and treat p(x, y) as an infinite family of
quintic polynomials in x with integer coefficients. We want to show that the roots of all

Fig. 12 Triangle gadget used to construct 〈3(κ − 1), κ − 3,−3〉
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these quintic polynomials satisfy the lattice condition. First, we determine the number of
real and nonreal roots.

Lemma 7.4 For any integer y ≥ 1, the polynomial p(x, y) in x has three distinct real roots
and two nonreal complex conjugate roots.

Proof Up to a factor of −4y2, the discriminant of p(x, y) (with respect to x) is

27y11 − 4y10 + 726y9 − 493y8 + 2712y7 − 400y6 − 2503y5

+ 475y4 + 956y3 − 904y2 + 460y + 104.

By replacing y with z + 1, we get

27z11 + 293z10 + 2171z9 + 10316z8 + 33334z7 + 77398z6 + 127383z5

+ 141916z4 + 102097z3 + 44373z2 + 10336z + 1156,

which is positive for any z ≥ 0. Thus, the discriminant is negative.
Therefore, p(x, y) has distinct roots in x for all y ≥ 1. Furthermore, with a negative

discriminant, p(x, y) has 2s nonreal complex conjugate roots for some odd integer s. Since
p(x, y) is a quintic polynomial (in x), the only possibility is s = 1. ��
We suspect that for any integer y ≥ 4, p(x, y) is in fact irreducible overQ as a polynomial

in x.When considering y as an indeterminate, the bivariate polynomialp(x, y) is irreducible
overQ and the algebraic curve it defines has genus 3, so by Theorem 1.2 in [50], p(x, y) is
reducible over Q for at most a finite number of y ∈ Z. For any integer y ≥ 4, if p(x, y) is
irreducible overQ as a polynomial in x, then its Galois group is S5 and its roots satisfy the
lattice condition.

Lemma 7.5 For any integer y ≥ 4, if p(x, y) is irreducible in Q[x], then the roots of p(x, y)
satisfy the lattice condition.

Proof By Lemma 7.4, p(x, y) has three distinct real roots and two nonreal complex con-
jugate roots. With three distinct real roots, we know that not all the roots have the same
complex norm. It is well known that an irreducible polynomial of prime degree n with
exactly two nonreal roots has Sn as a Galois group over Q (for example, Theorem 10.15
in [53]). Then we are done by Lemma 6.5. ��
We know of just five values of y ∈ Z for which p(x, y) is reducible as a polynomial in x:

p(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − 1)(x4 + x3 + 2x2 − x + 1) y = −1,

x2(x3 − x − 2) y = 0,

(x + 1)(x4 − x3 − 2x2 − x + 1) y = 1,

(x − 1)(x2 − x − 4)(x2 + 2x + 2) y = 2,

(x − 3)(x4 + 3x3 + 2x2 − 5x − 9) y = 3.

These five factorizations also give five integer solutions to p(x, y) = 0. It is a well-known
theorem of Siegel [52] that an algebraic curve of genus at least 1 has only a finite number
of integral points. For this curve of genus 3, Faltings’ theorem [31] says that there can
be only a finite number of rational points. However, these theorems are not effective in
general. There are some effective versions of Siegel’s theorem that can be applied to our
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polynomial, but the best effective bound that we can find is over 1020,000 [61] and hence
cannot be checked in practice.
However, it is shown in the next lemma that in fact these five are the only integer

solutions. In particular, for any integer y ≥ 4, p(x, y) does not have a linear factor in
Z[x], and hence by Gauss’s Lemma, also no linear factor in Q[x]. The following proof
is essentially due to Aaron Levin [46]. We thank Aaron for suggesting the key auxiliary
function g2(x, y) = y2

x + y− x2 + 1, as well as for his permission to include the proof here.
We also thank Bjorn Poonen [51] who suggested a similar proof. After the proof, we will
explain certain complications in the proof.

Lemma 7.6 The only integer solutions to p(x, y) = 0 are (1,−1), (0, 0), (−1, 1), (1, 2), and
(3, 3).

Proof Clearly these five points are solutions to p(x, y) = 0. For a ∈ Z with −3 < a < 17,
one can directly check that p(a, y) = 0 has no other integer solutions in y.
Let (a, b) ∈ Z2 be a solution to p(x, y) = 0 with a �= 0. We claim a | b2. By definition of

p(x, y), clearly a | b3. If p is a prime that divides a, then let ordp(a) = e and ordp(b) = f
be the exact orders with which p divides a and b, respectively. Then f ≥ 1 since 3f ≥ e
and our claim is that 2f ≥ e. Suppose for a contradiction that 2f < e. From p(a, b) = 0,
we have

a2(a3 − 2ab − a − b2 − 2) = −b3 − ab(b − 1).

The order with respect to p of the left-hand side is

ordp
(
a2(a3 − 2ab − a − b2 − 2)

) ≥ ordp
(
a2
) = 2e.

Since p is relatively prime to b−1, ordp (ab(b − 1)) = e+ f > 3f , and therefore, the order
of the right-hand side with respect to p is

ordp
(−b3 − ab(b − 1)

) = ordp(b3) = 3f.

However, 2e > 3f , a contradiction. This proves the claim.
Now consider the functions g1(x, y) = y − x2 and g2(x, y) = y2

x + y − x2 + 1. Whenever
(a, b) ∈ Z2 is a solution to p(x, y) = 0 with a �= 0, g1(a, b) and g2(a, b) are integers.
However, we show that if a ≤ −3 or a ≥ 17, then either g1(a, b) or g2(a, b) is not an
integer.
Let c2 = −(x − 1)x, c1 = −x(2x2 + 1), and c0 = x2(x3 − x − 2) so that p(x, y) =

y3 + c2y2 + c1y + c0. Then the discriminant of p(x, y) with respect to y is

discy(p(x, y)) = c22c
2
1 − 4c31 − 4c32c0 − 27c20 + 18c2c1c0

= (x − 1)x3(4x7 + 5x6 + x5 + 45x4 + 151x3 + 163x2 + 67x − 4). (11)

Suppose x ≤ −3. Replacing x with −z − 1 in (11) gives

−(z + 1)3(z + 2)(4z7 + 23z6 + 55z5 + 25z4 + 21z3 + 39z2 + 17z + 14).

This is clearly negative (for z ≥ 0), so (11) is negative. Thus p(x, y) only has one real
root as a polynomial in y. Let y1(x) be that root and consider y−

1 (x) = x2 + 2x−1 and
y+
1 (x) = x2 + 2x−1 + 2x−2. We have p(x, y−

1 (x)) = −2x2 + 6 + 4x−1 + 8x−3 < 0. Also
p(x, y+

1 (x)) = 6 + 18x−1 + 16x−2 + 12x−3 + 24x−4 + 24x−5 + 8x−6 > 0.
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Hence, y−
1 (x) < y1(x) < y+

1 (x), and all three are positive since y
−
1 (x) is positive. Then for

x ≤ −3,

−1 < 2x−1 = g1(x, y−
1 (x)) < g1(x, y1(x)) < g1(x, y+

1 (x)) = 2x−1 + 2x−2 < 0,

so g1(x, y1(x)) is not an integer. Therefore, y1(x), the only real root for any integer x ≤ −3,
is not an integer.
Now suppose x ≥ 17. Then (11) is positive, and there are three distinct real roots. Similar

to the previous argument, we have p(x, y−
1 (x)) < 0 and p(x, y+

1 (x)) > 0. Hence, there is
some root y1(x) in the open interval (y−

1 (x), y
+
1 (x)). All three terms y−

1 (x) < y1(x) < y+
1 (x)

are positive because y−
1 (x) > 0. Then

0 < 2x−1 = g1(x, y−
1 (x)) < g1(x, y1(x)) < g1(x, y+

1 (x)) = 2x−1 + 2x−2 < 1,

so g1(x, y1(x)) is not an integer.
There are two more real roots. Consider

y−
2 (x) = x3/2 − 1

2
x + 1

8
x1/2 − 65

128
x−1/2 − 2x−1 and

y+
2 (x) = x3/2 − 1

2
x + 1

8
x1/2 − 65

128
x−1/2.

Replacing x with (z + 2)2 in

p(x, y−
2 (x)) = 2x5/2 − 2495

512
x2 + 1087

512
x3/2 − 19569

16384
x − 8579

16384
x1/2 + 126847

32768

+ 1452419
131072

x−1/2 − 317
256

x−1 + 2871103
2097152

x−3/2 − 12675
8192

x−2

− 195
32

x−5/2 − 8x−3

gives
1

2097152(z + 2)6

×
⎛

⎜
⎝

4194304z11 + 82055168z10 + 722808832z9 + 3774605184z8

+ 12935149184z7 + 30375187136z6 + 49489164080z5 + 55372934880z4

+ 41238374079z3 + 19431701370z2 + 5465401844z + 812262392

⎞

⎟
⎠,

which is clearly positive (z ≥ 0). Thus, p(x, y−
2 (x)) > 0. Also

p(x, y+
2 (x)) = −2x5/2 − 447

512
x2 − 193

512
x3/2 − 3185

16384
x + 20605

16384
x1/2 − 4225

32768

+ 12675
131072

x−1/2 − 274625
2097152

x−3/2 < 0.

Hence, there is some root y2(x) in the open interval (y−
2 (x), y

+
2 (x)). All three terms y−

2 (x) <

y2(x) < y+
2 (x) are positive because y

−
2 (x) > 0. Hence, for x ≥ 17,

−1 < − 4x−1/2 − 65
512

x−1 − 1
2
x−3/2 + 4225

16384
x−2 + 65

32
x−5/2 + 4x−3

= g2(x, y−
2 (x)) < g2(x, y2(x)) < g2(x, y+

2 (x)) = − 65
512

x−1 + 4225
16384

x−2 < 0,

so g2(x, y2(x)) is not an integer.



Cai et al. Res Math Sci (2016) 3:18 Page 34 of 77

Finally, consider

y−
3 (x) = −x3/2 − 1

2
x − 1

8
x1/2 + 65

128
x−1/2 − x−1 and

y+
3 (x) = −x3/2 − 1

2
x − 1

8
x1/2 + 65

128
x−1/2 − 1

2
x−1.

We have

p(x, y−
3 (x)) = − 1471

512
x2 − 447

512
x3/2 − 11377

16384
x − 6013

16384
x1/2 + 94079

32768
− 339331

131072
x−1/2

− 61
512

x−1 − 511807
2097152

x−3/2 − 12675
16384

x−2 + 195
128

x−5/2 − x−3

< 0.

Replacing x with (z + 3)2 in

p(x, y+
3 (x)) = x5/2 − 959

512
x2 − 127

512
x3/2 − 7281

16384
x − 13309

16384
x1/2+ 53119

32768
− 77699
131072

x−1/2

+ 67
1024

x−1 + 78017
2097152

x−3/2 − 12675
32768

x−2 + 195
512

x−5/2 − 1
8
x−3

gives

1
2097152(z + 3)6

×
⎛

⎜
⎝

2097152z11 + 65277952z10 + 919728128z9 + 7736969088z8

+ 43137332608z7+167175471424z6+458797435600z5+889807335920z4

+1191781601633z3+1045691960361z2+537771428331z+121660965323

⎞

⎟
⎠,

which is clearly positive (z ≥ 0). Thus, p(x, y+
3 (x)) > 0. Hence, there is some root y3(x)

in the open interval (y−
3 (x), y

+
3 (x)). All three terms y−

3 (x) < y3(x) < y+
3 (x) are negative

because y+
3 (x) < 0. Furthermore, the partial derivative ∂g2(x,y)

∂y = 2x−1y+ 1 and ∂2g2(x,y)
∂y2 =

2x−1 > 0. Thus, ∂g2(x,y)
∂y ≤ ∂g2(x,y)

∂y |y=y+3 (x)
= −2x1/2 − 1

4x
−1/2 + 65

64x
−3/2 − x−2 < 0,

for all y ∈ (−∞, y+
3 (x)]. Thus, g2(x, y) is decreasing monotonically in y over the interval

(−∞, y+
3 (x)]. Then

0 < x−1/2 − 65
512

x−1 + 1
8
x−3/2 + 4225

16384
x−2 − 65

128
x−5/2 + 1

4
x−3

= g2(x, y+
3 (x)) < g2(x, y3(x)) < g2(x, y−

3 (x))

= 2x−1/2 − 65
512

x−1 + 1
4
x−3/2 + 4225

16384
x−2 − 65

64
x−5/2 + x−3 < 1,

so g2(x, y3(x)) is not an integer. To complete the proof, notice that the intervals
(y−

1 (x), y
+
1 (x)), (y

−
2 (x), y

+
2 (x)), and (y−

3 (x), y
+
3 (x)) are disjoint. Therefore, we have shown

that none of the three roots is an integer for any integer x ≥ 17. ��

Remark One can obtain the Puiseux series expansions for p(x, y), which are

y1(x) = x2 + 2x−1 + 2x−2 − 6x−4 − 18x−5 + O(x−6) for x ∈ R,

y2(x) = x3/2 − 1
2x + 1

8x
1/2 − 65

128x
−1/2 − x−1 − 1471

1024 x
−3/2 − x−2 + O(x−5/2) for x > 0, and

y3(x) = −x3/2 − 1
2x − 1

8x
1/2 + 65

128x
−1/2 − x−1 + 1471

1024 x
−3/2 − x−2 + O(x−5/2) for x > 0.
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These series converge to the actual roots of p(x, y) for large x. The basic idea of the proof—
called Runge’s method—is that, for example, when we substitute y2(x) in g2(x, y), we get
g2(x, y2(x)) = O(x−1/2), where the multiplier in the O-notation is bounded both above
and below by a nonzero constant in absolute value. Thus, for large x, this cannot be an
integer. However, for integer solutions (x, y) of p(x, y), this must be an integer.
We note that the expressions for the y+

i (x) and y−
i (x) are the truncated or rounded

Puiseux series expansions. The reason we discuss y+
i (x) and y−

i (x) is because we want to
prove an absolute bound, instead of the asymptotic bound implied by the O-notation.

By Lemma 7.6, if p(x, y) is reducible over Q as a polynomial in x for any integer y ≥ 4,
then the onlyway it can factor is as a product of an irreducible quadratic and an irreducible
cubic. The next lemma handles this possibility.

Lemma 7.7 For any integer y0 ≥ 4, if p(x, y0) is reducible overQ, then the roots of p(x, y0)
satisfy the lattice condition.

Proof Let q(x) = p(x, y0) for a fixed integer y0 ≥ 4. Suppose that q(x) = f (x)g(x), where
f (x), g(x) ∈ Q[x] are monic polynomials of degree at least 1. By Lemma 7.6, the degree
of each factor must be at least 2. Then without loss of generality, let f (x) and g(x) be
quadratic and cubic polynomials, respectively, both of which are irreducible over Q. By
Gauss’ Lemma, we can further assume f (x), g(x) ∈ Z[x].
Let Qf and Qg denote the splitting fields over Q of f and g , respectively. Suppose α,β

are the roots of f (x) and γ , δ, ε are the roots of g(x). Of course none of these roots are 0.
Suppose there exist i, j, k,m, n ∈ Z such that

αiβ j = γ kδmεn and i + j = k + m + n. (12)

We want to show that i = j = k = m = n = 0.
We first show that if i = j and k = m = n, then i = j = k = m = n = 0. By (12), we

have (αβ)i = (γ δε)k and 2i = 3k . Suppose i �= 0, then also k �= 0. We can write i = 3t
and k = 2t for some nonzero t ∈ Z. Let A = αβ and B = γ δε. Then, both A and B are
integers and AB = y30. From A3t = B2t , we have A3 = ±B2. Then y60 = A2B2 = ±A5, and
since y0 > 3, there is a nonzero integer s > 1 such that y0 = s5. This implies A = ±s6 and
B = ±s9 (with the same ± sign). Then f (x) = x2 + c1x ± s6, g(x) = x3 + c′2x2 + c′1x ± s9,
and q(x) = x5 − (2s5 + 1)x3 − (s10 + 2)x2 + s5(s5 − 1)x+ s15. We consider the coefficient
of x in q(x) = f (x)g(x). This is s10 − s5 = ±c′1s6 ± c1s9. Since s > 1, there is a prime p
such that pu | s and pu+1 � | s, for some u ≥ 1. But then p6u divides s5 = s10 ± c′1s6 ± c1s9.
This is a contradiction. Hence, i = j and k = m = n imply i = j = k = m = n = 0.
Now we claim that ω = α/β is not a root of unity. For a contradiction, suppose that ω

is a primitive dth root of unity. Since ω ∈ Qf , which is a degree 2 extension over Q, we
have φ(d) | 2, where φ(·) is Euler’s totient function. Hence, d ∈ {1, 2, 3, 4, 6}. The quadratic
polynomial f (x) has the form x2 − (1 + ω)βx + ωβ2 ∈ Z[x]. Hence, r = (1+ω)

ωβ
∈ Q. We

prove the claim separately according to whether r = 0 or not.
If r = 0, then ω = −1 and d = 2. In this case, f (x) has the form x2 + a for some a ∈ Z.

It is easy to check that q(x) has no such polynomial factor in Z[x] unless y0 = 0. In fact,
suppose x2+a | q(x) inZ[x]. Then q(x) = (x2+a)(x3+bx+c) since the coefficient of x4 in
q(x) is 0. Also a+b = −(2y0+1), c = −(y20+2), ab = y0(y0−1) and ac = y30. It follows that
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a and b are the two roots of the quadratic polynomial X2 + (2y0 + 1)X + y20 − y0 ∈ Z[X].
Since a, b ∈ Z, the discriminant 8y0 + 1 must be a perfect square, and in fact an odd
perfect square (2z − 1)2 for some z ∈ Z. Thus, y0 = z(z − 1)/2. By the quadratic formula,
a = −y0 + z − 1 or −y0 − z. On the other hand, a = ac/c = −y30/(y

2
0 + 2). In both cases,

this leads to a polynomial in z inZ[z] that has no integer solutions other than z = 0, which
gives y0 = 0.
Now suppose r �= 0. Plugging r back in f (x), we have f (x) = x2 − (2+ ω + ω−1)r−1x +

(2 + ω + ω−1)r−2. The quantity 2 + ω + ω−1 = 4, 1, 2, 3 when d = 1, 3, 4, 6, respectively.
Since (2+ω +ω−1)r−2 ∈ Z, the rational number r−1 must be an integer when d = 3, 4, 6
and half an integer when d = 1. In all cases, it is easy to check that a polynomial f (x) of
the specified form does not divide q(x) unless y = 0 or y = −1. Thus, we have proved the
claim that ω = α/β is not a root of unity.
Next consider the case that f (x) is irreducible over Qg . Let E be the splitting field of f

over Qg . Then, [E : Qg ] = 2. Therefore, there exists an automorphism τ ∈ Gal(E/Qg )
that swaps α and β but fixes Qg and thus fixes γ , δ, ε pointwise. By applying τ to (12), we
have αjβ i = γ kδmεn. Dividing by (12) gives (α/β)j−i = 1. Since α/β is not a root of unity,
we get i = j. Hence, we have (αβ)i = γ kδmεn. The order of Gal(Qg/Q) is [Qg : Q], which
is divisible by 3. Thus, Gal(Qg/Q) ⊆ S3 contains an element of order 3, which must act as
a 3-cycle on γ , δ, ε. Since αβ ∈ Q, applying this cyclic permutation gives (αβ)i = γmδnεk .
Therefore, γ k−mδm−nεn−k = 1. Notice that (k − m) + (m − n) + (n − k) = 0.
It can be directly checked that q(x) is not divisible by any x3 + c ∈ Z[x],
and therefore by Lemma 6.4, the roots γ , δ, ε of the cubic polynomial g(x) satisfy the

lattice condition. Therefore, k = m = n. Again, we have shown that i = j and k = m = n
imply i = j = k = m = n = 0.
The last case is when f (x) splits in Qg [x]. Then Qf is a subfield of Qg , and 2 = [Qf :

Q]|[Qg : Q]. Therefore, [Qg : Q] = 6 and Gal(Qg/Q) = S3. Since Qf is normal over Q,
being a splitting field of a separable polynomial in characteristic 0, by the fundamental
theorem of Galois theory, the corresponding subgroup for Qf is Gal(Qg/Qf ), which is
a normal subgroup of S3 with index 2. Such a subgroup of S3 is unique, namely A3. In
particular, the transposition τ ′ that swaps γ and δ but fixes ε is an element inGal(Qg/Q) =
S3 but not in Gal(Qg/Qf ) = A3. This transposition must fix α and β setwise but not
pointwise. Hence, it must swap α and β .
By applying τ ′ to (12), we have αjβ i = γmδkεn. Then dividing these two equations

gives (α/β)i−j = (δ/γ )m−k . Similarly, by considering the transposition that switches γ

and ε and fixes δ, we get (α/β)i−j = (γ /ε)k−n. By combining these two equations, we have
γ n−mδm−kεk−n = 1. Note that (n − m) + (m − k) + (k − n) = 0.
As we noted above, the roots of the irreducible g(x) satisfy the lattice condition, so we

conclude that k = n = m. From (α/β)i−j = (δ/γ )m−k = 1, we get i = j since α/β is not
a root of unity. We conclude that i = j = k = m = n = 0, so the roots of q(x) satisfy the
lattice condition. ��

Even though p(x, 3) = (x− 3)(x4 + 3x3 + 2x2 − 5x− 9) is reducible, its roots still satisfy
the lattice condition. To show this, we utilize a few results, Theorem 7.8, Lemma 7.9, and
Lemma 7.10.
The first is a well-known theorem of Dedekind.
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Theorem 7.8 (Theorem 4.37 [40]) Suppose f (x) ∈ Z[x] is a monic polynomial of degree
n. For a prime p, let fp(x) be the corresponding polynomial in Zp[x]. If fp(x) has distinct
roots and factors over Zp[x] as a product of irreducible factors with degrees d1, d2, . . . , dr ,
then the Galois group of f overQ contains an element with cycle type (d1, d2, . . . , dr ).

With the second result, we can show that x4 + 3x3 + 2x2 − 5x − 9 has Galois group S4
overQ.

Lemma 7.9 (Lemma on page 98 in [33]) For n ≥ 2, let G be a subgroup of Sn. If G is
transitive, contains a transposition and contains a p-cycle for some prime p > n/2, then
G = Sn.

In the contrapositive, the third result shows that the roots of x4 + 3x3 + 2x2 − 5x − 9
do not all have the same complex norm.

Lemma 7.10 (Lemma D.2 in [17]) If all roots of x4 +a3x3 +a2x2 +a1x+a0 ∈ C[x] have
the same complex norm, then a2|a1|2 = |a3|2a2a0.

Theorem 7.11 The roots of p(x, 3) = (x − 3)(x4 + 3x3 + 2x2 − 5x − 9) satisfy the lattice
condition.

Proof Let f (x) = x4 + 3x3 + 2x2 − 5x − 9 and let Gf be the Galois group of f overQ. We
claim that Gf = S4. As a polynomial over Z5, f (x) ≡ x4 + 3x3 + 2x2 + 1 is irreducible, so
f (x) is also irreducible over Z. By Gauss’ Lemma, this implies irreducibility over Q. Over
Z13, f (x) factors into the product of irreducibles (x2 + 7)(x + 6)(x + 10) and clearly has
distinct roots, so by Theorem 7.8, Gf contains a transposition. Over Z3, f (x) factors into
the product of irreducibles x(x3+2x+1) and has distinct roots because its discriminant is
1 �≡ 0 (mod 3), so by Theorem 7.8, Gf contains a 3-cycle. Then by Lemma 7.9, Gf = S4.
Let α,β , γ , δ be the roots of f (x). Suppose there exist i, j, k, 
, n ∈ Z satisfying n =

i + j + k + 
 such that 3n = αiβ jγ kδ
. Now Gf = S4 contains the 4-cycle (1 2 3 4) that
cyclically permutes the roots of f (x) but fixes Q. We apply it zero, one, two, and three
times to get

3n = αiβ jγ kδ
,

= β iγ jδkα
,

= γ iδjαkβ
, and

= δiαjβkγ 
.

Then 34n = (αβγ δ)i+j+k+
 = (−9)i+j+k+
. Since n = i + j + k + 
, this can only hold
when n = 0.
Thus, it suffices to show that the roots of f (x) satisfy the lattice condition. By the

contrapositive of Lemma 7.10, the roots of f (x) do not all have the same complex norm.
Then we are done by Lemma 6.5. ��

From Lemma 7.5, Lemma 7.7, and Theorem 7.11, we obtain the following Theorem.

Theorem 7.12 For any integer y0 ≥ 3, the roots of p(x, y0) satisfy the lattice condition.
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We use Theorem 7.12 to prove Lemma 7.14. We note that the succinct signature type
τ4 is a refinement of τcolor, so any succinct signature of type τcolor can also be expressed
as a succinct signature of type τ4. In particular, the succinct signature 〈2, 1, 0, 1, 0〉 of type
τcolor is written 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉 of type τ4. Then the following is a restatement of
Corollary 4.7.

Corollary 7.13 Suppose κ ≥ 3 is the domain size. Let 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉 be a succinct
quaternary signature of type τ4 . Then Pl-Holant(〈2, 0, 1, 0, 0, 0, 1, 0, 0〉) is #P-hard.

Lemma 7.14 Suppose κ ≥ 4 is the domain size. Then Pl-Holant(〈3(κ − 1), κ − 3,−3〉) is
#P-hard.

Proof Let 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉 be a succinct quaternary signature of type τ4. We reduce
from Pl-Holant(〈2, 0, 1, 0, 0, 0, 1, 0, 0〉), which is #P-hard by Corollary 7.13.
Consider the gadget in Fig. 13. We assign 〈3(κ − 1), κ − 3,−3〉 to the vertices. By

Lemma 11.3, the signature of this gadget is f = 〈 f 1 1
1 1
, f 1 2

1 1
, f 1 2

1 2
, f 1 3

1 2
, f 1 2

2 1
, f 1 3

2 1
, f 1 1

2 2
, f 1 1

2 3
, f 1 4

2 3
〉

up to a nonzero factor of κ , where

f 1 1
1 1

= (κ − 1)(κ + 3),

f 1 2
1 1

= κ − 3,

f 1 2
1 2

= 2κ − 3,

f 1 3
1 2

= κ − 3,

f 1 2
2 1

= 2κ − 3,

f 1 3
2 1

= κ − 3,

f 1 1
2 2

= (κ − 3)(κ + 1),

f 1 1
2 3

= κ − 3, and

f 1 4
2 3

= −3.

Now consider the recursive construction in Fig. 14. We assign f to every vertex. Up to
a nonzero factor of κs, let gs be the succinct signature of type τ4 for the sth gadget in this
construction. Then g0 = 〈1, 0, 0, 0, 0, 0, 1, 0, 0〉 and gs = Msg0, where M is the matrix in
Table 1.
The row vectors

(0, 0, 0, 0,−1, 0, 0, 0, 1),

(0,−1, 0, 1,−1, 0, 0, 1, 0),

(−1, 0, 1, 0,−1, 0, 1, 0, 0), and

(0, 0, 0, 0,−1, 1, 0, 0, 0)

Fig. 13 Quaternary gadget used in the interpolation construction below. All vertices are assigned
〈3(κ − 1), κ − 3,−3〉
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N0

N
s

Ns+1

Fig. 14 Recursive construction to interpolate the weighted Eulerian partition signature. The vertices are
assigned the signature of the gadget in Fig. 13

are linearly independent row eigenvectors of M, all with eigenvalue κ3, that are orthog-
onal to the initial signature g0. Note that our target signature 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉 is also
orthogonal to these four row eigenvectors.
Up to a factor of (x − κ3)4, the characteristic polynomial ofM is

h(x, κ) = x5−κ6(2κ−1)x3−κ9(κ2−2κ+3)x2+(κ−2)(κ−1)κ12x+(κ−1)3κ15.

Since h(κ3, κ) = (κ − 3)κ17 and κ ≥ 4, we know that κ3 is not a root of h(x, κ) as a
polynomial in x. Thus, none of the remaining eigenvalues are κ3. The roots of h(x, κ)
satisfy the lattice condition iff the roots of

h̃(x, κ) = 1
κ15 h(κ

3x, κ)

= x5 − (2κ − 1)x3 − (κ2 − 2κ + 3)x2 + (κ − 2)(κ − 1)x + (κ − 1)3

satisfy the lattice condition. In h̃(x, κ), we replace κ by y + 1 to get p(x, y) = x5 − (2y +
1)x3 − (y2 + 2)x2 + (y − 1)yx + y3. By Theorem 7.12, the roots p(x, y0) satisfy the lattice
condition for any integer y0 ≥ 3. Thus, the roots of h̃(x, κ) satisfy the lattice for any κ ≥ 4.
In particular, this means that the five eigenvalues of M different from κ3 are distinct, so
M is diagonalizable.
The 5-by-5 matrix in the upper-left corner of [g0 Mg0 . . . M8g0] is
⎡

⎢
⎢
⎣

1 9(κ−1)2κ (κ−1)κ4(κ3−3κ2+11κ+3) (κ−1)κ7(κ3+12κ2−11κ+6) (κ−1)κ10(κ4+4κ3−4κ2+44κ−33)
0 3(κ−3)(κ−1)κ −(κ−3)κ4(κ2−2κ−1) (κ−3)κ7(3κ2−3κ+2) (κ−3)κ10(κ3−4κ2+16κ−11)
0 9(κ−1)2κ κ4(κ4−4κ3+6κ2+4κ−3) κ7(15κ3−28κ2+11κ−6) κ10(κ5+3κ4−22κ3+72κ2−83κ+33)
0 3(κ−3)(κ−1)κ −(κ−3)(κ−1)κ4(κ+1) 2(κ−3)κ7(2κ2−κ+1) (κ−3)(κ−1)κ10(κ2−6κ+11)
0 (κ−3)2κ (κ−3)κ4(κ+1) (κ−3)κ7(κ2−κ+2) (κ−3)κ10(κ3−2κ2+10κ−11)

⎤

⎥
⎥
⎦ .

Its determinant is (κ − 3)3(κ − 1)2κ26(κ4 + κ3 + 17κ2 + 3κ + 2), which is nonzero since
κ ≥ 4. Thus, [g0 Mg0 . . . M8g0] has rank at least 5, so by Lemma 6.2, g0 is not orthogonal
to the five remaining row eigenvectors ofM.
Therefore, by Lemma 6.6, we can interpolate 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉, which completes the

proof. ��
When κ = 3, 〈3(κ − 1), κ − 3,−3〉 simplifies to −3〈−2, 0, 1〉. We have a much simpler

proof that this signature is #P-hard.

Lemma 7.15 Suppose the domain size is 3. Then Pl-Holant(〈−2, 0, 1〉) is #P-hard.
Proof Let g = 〈2, 0, 1, 0, 0, 0, 1, 0〉 be a succinct quaternary signature of type τ4.We reduce
from Pl-Holant(g), which is #P-hard by Corollary 7.13.
Consider the gadget in Fig. 15. The vertices are assigned 〈−2, 0, 1〉. Up to a factor of 9,

the signature of this gadget is g , as desired. ��
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Fig. 15 Square gadget used to construct the weighted Eulerian partition signature

We summarize this sectionwith the following result.With all succinct binary signatures
of type τ2 available as well as the succinct unary signature 〈1〉 of type τ1, any succinct
ternary signature 〈a, b, c〉 of type τ3 satisfyingB �= 0 is #P-hard.

Lemma 7.16 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈a, b, c〉 of type τ3, the succinct unary signature
〈1〉 of type τ1, and the succinct binary signature 〈x, y〉 of type τ2 for all x, y ∈ C. If B �= 0,
then Pl-Holant(F ) is #P-hard.

Proof Suppose A �= 0. By Lemma 7.1, we have a succinct ternary signature 〈a′, b′, b′〉 of
type τ3 with a′ �= b′. Then we are done by Corollary 4.19.
Otherwise, A = 0. SinceB �= 0, we have b �= c. By Lemma 7.3, we have 〈3(κ − 1), κ −

3,−3〉. If κ ≥ 4, then we are done by Lemma 7.14. Otherwise, κ = 3 and we are done by
Lemma 7.15. ��

8 Constructing a nonzero unary signature
The primary goal of this section is to construct the succinct unary signature 〈1〉 of type
τ1. However, this is not always possible. For example, the succinct ternary signature
〈0, 0, 1〉 = AD3,3 of type τ3 (on domain size 3) cannot construct 〈1〉. This follows from
the parity condition (Lemma 4.4). In such cases, we show that the problem is either
computable in polynomial time or #P-hard without the help of additional signatures.
Lemma 8.1 handles two easy cases for which it is possible to construct 〈1〉.

Lemma 8.1 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let F be a signature
set containing the succinct ternary signature 〈a, b, c〉 of type τ3. If a + (κ − 1)b �= 0 or
[2b + (κ − 2)c][b2 − 4bc − (κ − 3)c2] �= 0, then

Pl-Holant(F ∪ {〈1〉}) ≤T Pl-Holant(F ),

where 〈1〉 is a succinct unary signature of type τ1.

Proof Suppose a+ (κ − 1)b �= 0. Consider the gadget in Fig. 16a. We assign 〈a, b, c〉 to its
vertex. By Lemma 11.1, this gadget has the succinct unary signature 〈u〉 of type τ1, where
u = a + (κ − 1)b. Since u �= 0, this signature is equivalent to 〈1〉.

(a) (b)

Fig. 16 Two simple unary gadgets a is a simple self-loop and b contains parallel edges
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Otherwise, a + (κ − 1)b = 0, and [2b + (κ − 2)c][b2 − 4bc − (κ − 3)c2] �= 0. Consider
the gadget in Fig. 16b. We assign 〈a, b, c〉 to all three vertices. By Lemma 11.1, this gadget
has the succinct unary signature 〈u′〉 of type τ1, where u′ = −(κ − 1)(κ − 2)[2b + (κ −
2)c][b2 − 4bc − (κ − 3)c2]. Since u′ �= 0, this signature is equivalent to 〈1〉. ��
One of the failure conditions of Lemma 8.1 is when both a+ (κ −1)b = 0 and b2−4bc−

(κ −3)c2 = 0 hold. In this case, 〈a, b, c〉 = c〈−(κ −1)(2±√
κ + 1), 2±√

κ + 1, 1〉. If c = 0,
then a = b = c = 0 and the signature is trivial. Otherwise, c �= 0. Then up to a nonzero
factor of c, this signature further simplifies to AD3,3 by taking the minus sign when κ = 3.
Just like AD3,3, we show (in Lemma 8.2) that all of these signatures are #P-hard.
Similar to the proof of Theorem 4.8, we prove the hardness in Lemma 8.2 by reducing

from counting weighted Eulerian partitions.

Lemma 8.2 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If a + (κ − 1)b = 0 and b2 − 4bc − (κ − 3)c2 = 0, then

〈a, b, c〉 = c〈−(κ − 1)(2 + ε
√

κ + 1), 2 + ε
√

κ + 1, 1〉,
where ε = ±1, and Pl-Holant(〈a, b, c〉) is #P-hard unless c = 0, in which case, the problem
is computable in polynomial time.

Proof If c = 0, then a = b = c = 0 so the output is always 0. Otherwise, c �= 0. Up to
a nonzero factor of c, 〈a, b, c〉 can be written as 〈−(κ − 1)(2 + ε

√
κ + 1), 2 + ε

√
κ + 1, 1〉

under the given assumptions, where ε = ±1.
Suppose κ = 3. If ε = −1, then we have 〈0, 0, 1〉 = AD3,3 and we are done by Theo-

rem 4.8. Otherwise, ε = 1 and we have 〈8,−4,−1〉. Let T = 1
3

[ 1 −2 −2
−2 1 −2
−2 −2 1

]
, which is an

orthogonal matrix. It follows from Theorem 3.3 and Lemma 11.6 that

Pl-Holant(〈8,−4,−1〉) ≡T Pl-Holant(T⊗3〈8,−4,−1〉) ≡T Pl-Holant(〈0, 0, 1〉),
so again we are done by Theorem 4.8.
Nowwe suppose κ ≥ 4. Let g = 〈2, 0, 1, 0, 0, 0, 1, 0, 0〉 be a succinct quaternary signature

of type τ4. We reduce from Pl-Holant(g) to Pl-Holant(〈a, b, c〉). Then by Corollary 7.13,
Pl-Holant(〈a, b, c〉) is #P-hard. We write this signature as 〈−(κ − 1)γ , γ , 1〉, where γ =
2+ ε

√
κ + 1. Consider the gadget in Fig. 17. We assign 〈−(κ − 1)γ , γ , 1〉 to both vertices.

By Lemma 11.3, up to a nonzero factor of γ − 1, this gadget has the succinct quaternary
signature f of type τ4, where

f = 〈
(κ − 1)(γ − 3)γ 2, −(κ − 2)γ , 3γ − 1, 2γ , 3γ − 1, 2γ ,

−(γ − 3)γ 2, 2γ , γ + 1
〉
.

Now consider the recursive construction in Fig. 6. We assign f to all vertices. Let fs
be the succinct signature of type τ4 for the sth gadget in this recursive construction.

Fig. 17 Quaternary gadget used in the interpolation construction below. All vertices are assigned
〈−(κ − 1)γ , γ , 1〉
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The initial signature, which is just two parallel edges, has the succinct signature f0 =
〈1, 0, 0, 0, 0, 0, 1, 0, 0〉 of type τ4. We can express fs as Ms f0, where M is the matrix in
Table 2.
Consider an instance � of Pl-Holant(g). Suppose g appears n times in �. We construct

from � a sequence of instances �s of Pl-Holant(f ) indexed by s ≥ 0. We obtain �s from
� by replacing each occurrence of g with the gadget fs.
We can expressM as (γ − 1)3P−1�P, where P is the matrix in Table 3,

� = diag(−1,−1,−1,−1, κ − 2, κ − 2, κ − 1, κ − 1, λ),

and λ = (κ−2)(κ+2γ−4)
(γ−1)2 . The rows of P are linearly independent since

det(P) = (κ − 1)(κ − 2)2(γ − 1)6(γ − 3)3γ �= 0.

For 1 ≤ i ≤ 9, let ri be the ith row of P. Notice that the initial signature f0 and the
target signature g are orthogonal to the same set of row eigenvectors of M, namely
{r1, r2, r3, r5, r7, r9}. Up to a common factor of (γ − 1)3, the eigenvalues for M corre-
sponding to r4, r6, and r8 (the three row eigenvectors ofM not orthogonal to f0) are −1,
κ −2, and κ −1, respectively. Since κ ≥ 4, κ −2 and κ −1 are relatively prime and greater
than 1, so these three eigenvalues satisfy the lattice condition. Thus by Lemma 6.6, we can
interpolate g as desired. ��

Remark Although the matrices in Table 2 and Table 3 seem large, they are probably
the smallest possible to succeed in this recursive quaternary construction. In fact, for
quaternary signatures one would normally expect these matrices to be even larger since
there are typically fifteen different entries in a domain invariant signature of arity 4.

The other failure condition of Lemma 8.1 is when both a+ (κ − 1)b = 0 and 2b+ (κ −
2)c = 0 hold. In this case, 〈a, b, c〉 = c〈(κ − 1)(κ − 2),−(κ − 2), 2〉. If this signature is
connected to 〈1〉, then the first entry of the resulting succinct binary signature of type τ2 is
(κ −1)(κ −2) ·1− (κ −2) · (κ −1) = 0 while the second entry is−(κ −2) ·2+2 · (κ −2) = 0.
That is, the resulting binary signature is identically 0. This suggests we apply a holographic
transformation such that the support of the resulting signature is only on κ − 1 of the
domain elements.
If c = 0, then a = b = c = 0 and the signature is trivial. Otherwise, c �= 0. If κ = 3, then

up to a nonzero factor of c, this signature further simplifies to 〈2,−1, 2〉, which is tractable
by case 3 of Corollary 5.2. Otherwise, κ ≥ 4, and we show the problem is #P-hard.

Lemma 8.3 Suppose κ ≥ 4 is the domain size. Let f = 〈(κ − 1)(κ − 2),−(κ − 2), 2〉 be a
succinct ternary signature of type τ3. Then Pl-Holant(f ) is #P-hard.

Proof Consider the matrix T = [ 1 1
1 T ′

] ∈ Cκ×κ , where T ′ = yJκ−1 + (x − y)Iκ−1 with
x = − κ+√

κ−1√
κ+1 and y = 1√

κ+1 . After scaling by 1√
κ
, we claim that T is an orthogonal

matrix.
Let ri be the ith row of 1√

κ
T . First we compute the diagonal entries of 1

κ
TTT. Clearly

r1rT1 = 1. For 2 ≤ i ≤ κ , we have

rirTi = 1
κ

[
1 + x2 + (κ − 2)y2

] = 1
κ

[

1 + (κ + √
κ − 1)2

(
√

κ + 1)2
+ κ − 2

(
√
k + 1)2

]

= 1.
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Now we compute the off-diagonal entries. For 2 ≤ i ≤ κ , we have

r1rTi = 1
κ

[
1 + x + (κ − 2)y

] = 1
κ

[

1 − κ + √
κ − 1√

κ + 1
+ κ − 2√

κ + 1

]

= 0.

For 2 ≤ i < j ≤ κ , we have

rirTj = 1
κ

[
1 + 2xy + (κ − 3)y2

] = 1
κ

[

1 − 2(κ + √
κ − 1)

(
√

κ + 1)2
+ κ − 3

(
√
k + 1)2

]

= 0.

This proves the claim.
We apply a holographic transformation by T to the signature f to obtain f̂ = T⊗3f ,

which does not change the complexity of the problem by Theorem 3.3. Since the first row
of T is a row of all 1’s, the output of f̂ on any input containing the first domain element
is 0. When restricted to the remaining κ − 1 domain elements, f̂ is domain invariant and
symmetric, so it can be expressed as a succinct ternary signature of type τ3.
Up to anonzero factor of κ3

(
√

κ+1)2 , it canbe verified that f̂ = 〈−(κ−2)(2+√
κ), 2+√

κ , 1〉.
One way to do this is as follows. We write f = 〈a, b, 2〉 and T = [ 1 1

1 T ′
] ∈ Cκ×κ , where

T ′ = yJκ−1 + (x − y)Iκ−1. The entries of f̂ are polynomials in κ with coefficients from
Z[a, b, x, y]. The degree of these polynomials is at most 3 since the arity of f is 3. After
computing the entries of f̂ for domain sizes 3 ≤ κ ≤ 6 as elements in Z[a, b, x, y], we
interpolate the entries of f̂ as elements in (Z[a, b, x, y])[κ]. Then replacing a, b, x, y with
their actual values gives the claimed expression for the signature.
Since κ ≥ 4, f̂ is #P-hard by Lemma 8.2, which completes the proof. ��
At this point, we have achieved the broader goal of this section. For any a, b, c ∈ C

and domain size κ ≥ 3, either Pl-Holant(〈a, b, c〉) is computable in polynomial time, or
Pl-Holant(〈a, b, c〉) is #P-hard, or we can use 〈a, b, c〉 to construct 〈1〉 (i.e., the reduction
Pl-Holant({〈a, b, c, 〉, 〈1〉} ≤T Pl-Holant(〈a, b, c〉) holds). However, Lemma 8.3 is easily
generalized, and this generalization turns out to be necessary to obtain our dichotomy.
Recall that connecting f = 〈(κ − 1)(κ − 2),−(κ − 2), 2〉 to 〈1〉 results in an identically 0

signature. This suggests that we consider the more general signature f̃ = α〈1〉⊗3 + βf
for any α ∈ C and any nonzero β ∈ C since this does not change the complexity (as we
argue in Corollary 8.4). For any a, b, c ∈ C satisfyingB = 0 (cf. (7)), if α = 2b+(κ−2)c

κ
and

β = −b+c
κ

, then f̃ = 〈a, b, c〉. We note that the condition B = 0 can also be written as
(κ − 2)(b − c) = b − a. We now prove a dichotomy for the signature f̃ .

Corollary 8.4 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If B = 0, then Pl-Holant(〈a, b, c〉) is #P-hard unless b = c or
κ = 3, in which case, the problem is computable in polynomial time.

Proof If b = c, then byB = 0we have a = b = c, whichmeans the signature is degenerate
and the problem is trivially tractable. If κ = 3, then a = c and the problem is tractable by
case 3 of Corollary 5.2. Otherwise b �= c and κ ≥ 4.
Since B = 0, it can be verified that 〈a, b, c〉 = 2b+(κ−2)c

κ
〈1〉⊗3 + −b+c

κ
f , where f =

〈(κ − 1)(κ − 2),−(κ − 2), 2〉. We show that Pl-Holant(〈a, b, c〉) is #P-hard iff Pl-Holant(f )
is. Since Pl-Holant(f ) is #P-hard by Lemma 8.3, this proves the result.
Let G = (V, E) be a connected planar 3-regular graph with n = |V | and m = |E|. We

can view Pl-Holant(G; 〈a, b, c〉) as a sum of 2n Holant computations using the signatures
α〈1〉⊗3 and βf . Each of these Holant computations considers a different assignment of
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eitherα〈1〉⊗3 orβf to each vertex. Since connecting f to 〈1〉 gives an identically 0 signature,
if any connected signature grid contains both α〈1〉⊗3 and βf , then that particular Holant
computation is 0. This is because a vertex of degree three assigned 〈1〉⊗3 is equivalent
to three vertices of degree one connected to the same three neighboring vertices and
each assigned 〈1〉. There are only two possible assignments that could be nonzero. If
all vertices are assigned α〈1〉⊗3, then the Holant is αnκm. Otherwise, all vertices are
assigned βf and the Holant is βn Pl-Holant(G; f ). Thus, Pl-Holant(G;α〈1〉⊗3 + βf ) =
αnκm + βn Pl-Holant(G; f ). Since β �= 0, one can solve for either Holant value given the
other. ��

9 Interpolating all binary signatures of type τ2

In this section, we show how to interpolate all binary succinct signatures of type τ2 in
most settings. We use two general techniques to achieve this goal. In the first subsection,
we use a generalization of the anti-gadget technique that creates a multitude of gadgets.
They are so numerous that one is most likely to succeed. In the second subsection, we
introduce a new technique called Eigenvalue Shifted Triples (ESTs). These generalize the
technique of Eigenvalue Shifted Pairs from [43], and we use EST to interpolate binary
succinct signatures in cases where the anti-gadget technique cannot handle. There are a
few isolated problems for which neither technique works. However, these problems are
easily handled separately in Lemma 12.1 in “Appendix 2”.
FromSect. 8, every problemfits intooneof three cases: either (1) theproblem is tractable,

(2) the problem is #P-hard, or (3) we can construct the succinct unary signature 〈1〉 of
type τ1. Thus, many results in this section assume that 〈1〉 is available.

9.1 E pluribus unum

we use Lemma 4.12 to prove our interpolation results. The main technical difficulty is to
satisfy the third condition of Lemma 4.12, which is to prove that some recurrence matrix
(that defines a sequence of gadgets) has infinite order up to a scalar. When the matrix
has a finite order up to a scalar, we can utilize this failure condition to our advantage by
constructing an anti-gadget [17], which is the “last” gadget with a distinct signature (up to
a scalar) in the infinite sequence of gadgets. To make sure that we construct a multitude
of nontrivial gadgets without cancelation, we put the anti-gadget inside another gadget
(contrast the gadget in Fig. 18 with the gadget in Fig. 19b). From among this plethora of
gadgets, at least one must succeed under the right conditions.
Although this idea works quite well in that some gadget among those constructed does

succeed, we still must prove that one such gadget succeeds in every setting. We aim to
exhibit a recurrence matrix whose ratio of eigenvalues is not a root of unity. We consider
three related recurrence matrices at once. The next two lemmas consider two similar
situations involving the eigenvalues of three such matrices. When applied, these lemmas
show that some recurrence matrix must have eigenvalues with distinct complex norms,
even though exactly which one among them succeeds may depend on the parameters in
a complicated way.

Lemma 9.1 Let d0, d1, d2,� ∈ C. If d0, d1, andd2 have the sameargument but are distinct,
then for all ρ ∈ R, there exists i ∈ {0, 1, 2} such that |� + di| �= ρ.
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Fig. 18 Binary gadget that generalizes the anti-gadget technique. The circle vertices are assigned 〈a, b, c〉,
while the square and triangle vertices are each assigned the signature of some gadget

(a) (b)

Fig. 19 Binary gadgets used to interpolate any succinct binary signature of type τ2. In a circle vertices are
assigned 〈a, b, c〉, and the square vertex is assigned 〈1〉. In b Both circle vertices are assigned 〈a, b, c〉

Proof Assume to the contrary that there exists ρ ∈ R such that |� + di| = ρ for every
i ∈ {0, 1, 2}. In the complex plane, consider the circle centered at the origin of radius ρ.
Each � + di is a distinct point on this circle as well as a distinct point on a common line
through � . However, the line intersects the circle in at most two points, a contradiction.

��

Lemma 9.2 Let d0, d1, d2,� ∈ C. If d0, d1, and d2 have the same complex norm but are
distinct and � �= 0, then for all ρ ∈ R, there exists i ∈ {0, 1, 2} such that |� + di| �= ρ.

Proof Let 
 = |d0|. Assume to the contrary that there exists ρ ∈ R such that |� +di| = ρ

for every i ∈ {0, 1, 2}. In the complex plane, consider the circle centered at the origin of
radius ρ and the circle centered at � of radius 
. Since � �= 0, these circles are distinct.
Each � + di is a distinct point on both circles. However, these circles intersect in at most
two points, a contradiction. ��

Now we use Lemma 9.1 and Lemma 9.2 as well as our generalization of the anti-gadget
technique to establish a crucial lemma.

Lemma 9.3 Suppose κ ≥ 3 is the domain size anda, b, c,ω ∈ C. LetF be a set of signatures
containing the succinct binary signature 〈ω+κ−1,ω−1〉 of type τ2 and the succinct ternary
signature 〈a, b, c〉 of type τ3. If the following three conditions are satisfied:

1. ω /∈ {0,±1},
2. B �= 0, and
3. at least one of the following holds:

(i) C = 0 or
(ii) C2 = ω2
B2 for some 
 ∈ {0, 1} but either C2 �= A2 or κ �= 3,

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.
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We use this lemma to establish that various 2-by-2 recurrence matrices have infinite
order modulo scalars. When applied, ω will be the ratio of two eigenvalues, one of which
is a multiple ofB orB2 by a nonzero function of κ .

Proof of Lemma 9.3 Let � = C2

B2 and � = (κ−2)A2

B2 . Consider the recursive construction
in Fig. 7. After scaling by a nonzero factor of κ , we assign f = 1

κ
〈ω + κ − 1,ω − 1〉

to every vertex. Let fs be the succinct binary signature of type τ2 for the sth gadget
in this construction. We can express fs as Ms [ 1

0
]
, where M = 1

κ

[
ω+κ−1 (κ−1)(ω−1)

ω−1 (κ−1)ω+1

]
=

[ 1 1−κ
1 1

] [
ω 0
0 1
] [ 1 1−κ

1 1
]−1 by Lemma 4.11. Then fs = 1

κ
〈ωs+κ −1,ωs−1〉. The eigenvalues

ofM are 1 and ω, so the determinant ofM is ω �= 0. If ω is not a root of unity, then we are
done by Corollary 4.13.
Otherwise, supposeω is a primitive root of unity of ordern. Sinceω �= ±1by assumption,

n ≥ 3. Now consider the gadget in Fig. 18. We assign 〈a, b, c〉 to the circle vertices,
fr = 1

κ
〈ωr + κ − 1,ωr − 1〉 to the square vertex, and fs = 1

κ
〈ωs + κ − 1,ωs − 1〉 to

the triangle vertex, where r, s ≥ 0 are parameters of our choice. By Lemma 11.5, up to a
nonzero factor of B2

κ
, this gadget has the succinct binary signature

f (r, s) = 1
κ
〈�ωr+s + (κ − 1)(ωr + ωs + � + 1), �ωr+s − (ωr + ωs + � + 1) + κ〉

of type τ2. Consider using this gadget in the recursive construction of Fig. 7. Let ft (r, s) be
the succinct binary signature of type τ2 for the tth gadget in this recursive construction.
Then f1(r, s) = f (r, s) and ft (r, s) = (M(r, s))t

[ 1
0
]
, where the eigenvalues of M(r, s) are

�ωr+s + κ − 1 and ωr + ωs + � by Lemma 4.11. Thus, the determinant of M(r, s) is
(�ωr+s + κ − 1)(ωr + ωs + �). Since � is either 0 or a power of ω by condition 3, the first
factor is nonzero for any choice of r and s. However, for some r and s, it might be that
g(r, s) = ωr + ωs + � = 0.
Suppose � = 0. We consider the two possible cases of � in order to finish the proof

under this assumption.

1. Suppose � = 0. Consider the gadgetM(0, 1). The determinant ofM(0, 1) is nonzero
since g(0, 1) �= 0 and the ratio of its eigenvalues is not a root of unity because they
have distinct complex norms. Thus, we are done by Corollary 4.13.

2. Suppose � = ω2
 for some 
 ∈ {0, 1}. Consider the gadget M(n − 
, n − 
). The
determinant of M(n − 
, n − 
) is nonzero since g(n − 
, n − 
) �= 0 and the ratio
of its eigenvalues is not a root of unity because they have distinct complex norms.
Thus, we are done by Corollary 4.13.

Otherwise, � �= 0. We claim that g(r, s) = 0 can hold for at most one choice of
r, s ∈ Zn (modulo the swapping of r and s). To see this, consider r1, s1, r2, s2 such that
g(r1, s1) = 0 = g(r2, s2). Thenωr1 +ωs1 = −� = ωr2 +ωs2 . By taking complex norms and
applying the law of cosines, we have cos θ1 = cos θ2, where θj = arg(ωsj−rj ) is the angle
from ωrj to ωsj for j ∈ {1, 2}. Thus, θ1 = ±θ2. Since � �= 0, we have θ1 �= ±π . If θ1 = θ2,
then ωr1 (1 + eiθ1 ) = ωr2 (1 + eiθ1 ). Since θ1 �= ±π , the factor 1 + eiθ1 is nonzero. After
dividing by this factor, we conclude that r1 = r2 and thus s1 = s2. Otherwise, θ1 = −θ2.
Then ωr1 (1+ eiθ1 ) = ωs2 (1+ eiθ1 ), and we conclude that r1 = s2 and s1 = r2. This proves
the claim.
Suppose n ≥ 4 and let S0 = {(0, 0), (1, n−1), (2, n−2)} and S1 = {(1, 1), (2, 0), (3, n−1)}.

Then g(r, s) = 0 holds for at most one (r, s) ∈ S0∪S1. In particular, g(r, s) is either nonzero



Cai et al. Res Math Sci (2016) 3:18 Page 50 of 77

for all (r, s) ∈ S0 or nonzero for all (r, s) ∈ S1. Pick j ∈ {0, 1} such that g(r, s) is nonzero for
all (r, s) ∈ Sj . By Lemma 9.1 with di = (ωi + ω−i)ωj and ρ = |�ω2j + κ − 1|, there exists
some (r, s) ∈ Sj such that the eigenvalues of M(r, s) have distinct complex norms, so we
are done by Corollary 4.13.
Otherwise, n = 3. We consider the two possible cases of � in order to finish the proof.

1. Suppose � = 0. Let Sj = {(0, j), (1, j + 1), (2, j + 2)}. Then g(r, s) = 0 holds for at
most one (r, s) ∈ S0 ∪ S1. In particular, g(r, s) is either nonzero for all (r, s) ∈ S0 or
nonzero for all (r, s) ∈ S1. Pick j ∈ {0, 1} such that g(r, s) is nonzero for all (r, s) ∈ Sj .
By Lemma 9.2 with di = (1 + ωj)ωi and ρ = κ − 1, there exists some (r, s) ∈ Sj
such that the eigenvalues ofM(r, s) have distinct complex norms, so we are done by
Corollary 4.13.

2. Suppose � = ω2
 for some 
 ∈ {0, 1} but either C2 �= A2 or κ �= 3.
Note that this is equivalent to � �= � or κ �= 3. Consider the set S =
{(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}. If there exists some (r, s) ∈ S such that g(r, s) �=
0 and the eigenvalues of M(r, s) have distinct complex norms, then we are done by
Corollary 4.13.

Otherwise, for every (r, s) ∈ S, either g(r, s) = 0 or the eigenvalues of M(r, s) have the
same complex norm. If the latter condition were to always hold, then we would have

|2 + �| =
∣
∣
∣ω2
 + κ − 1

∣
∣
∣ = |−1 + �| ,

∣
∣2ω2 + �

∣
∣ =

∣
∣
∣ω2
+1 + κ − 1

∣
∣
∣ = ∣∣−ω2 + �

∣
∣ , and

|2ω + �| =
∣
∣
∣ω2
+2 + κ − 1

∣
∣
∣ = |−ω + �| ,

where each equality corresponds to one of the six M(r, s) having eigenvalues of equal
complex norm for (r, s) ∈ S. Of the six equalities, atmost onemay not hold since g(r, s) = 0
for at most one (r, s) ∈ S. Since n = 3, two of the three terms of the form |ω2
+m + κ − 1|
must be equal, so we can write the stronger condition

∣
∣2ω2 + �ω


∣
∣ = |ω + κ − 1| = ∣∣−ω2 + �ω


∣
∣

‖
∣
∣2ω + �ω


∣
∣ = ∣∣ω2 + κ − 1

∣
∣ = ∣∣−ω + �ω


∣
∣ .

(13)

As it is, one of the horizontal equalities in (13) may not hold. However, even without one
of these equalities, we can still reach a contradiction.
We show that �ω
 ∈ R even if one of the equalities in (13) does not hold. In fact, either

the left or the right half of the equalities in (13) hold. In the first case, |2ω2+�ω
| = |2ω+
�ω
| holds andwe get�ω
 ∈ R. Similarly in the second case, |−ω2+�ω
| = |−ω+�ω
|
holds and we get �ω
 ∈ R as well. Next, we use real and imaginary parts to calculate the
complex norms even if one of the equalities in (13) does not hold. Either the top half of the
equalities hold and thus |2ω2 +�ω
| = |−ω2 +�ω
|, or the bottom half of the equalities
hold and thus |2ω + �ω
| = |−ω + �ω
|. In any case, it readily follows that �ω
 = 1.
This implies � = ω2
, so we can rewrite (13) as

√
3 = |ω + κ − 1| = √

3
‖√

3 = ∣∣ω2 + κ − 1
∣
∣ = √

3,



Cai et al. Res Math Sci (2016) 3:18 Page 51 of 77

where at most one equation may not hold. This forces κ = 3. However, � = ω2
 = �

and κ = 3 is a contradiction. ��
The previous lemma is strong enough to handle the typical case.

Lemma 9.4 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈a, b, c〉 of type τ3 and the succinct unary signature
〈1〉 of type τ1. If

1. B �= 0,
2. C �= 0,
3. C2 �= B2, and
4. either C2 �= A2 or κ �= 3,

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.

Proof Letω = C
B , which is well defined. Consider the gadget in Fig. 19a.We assign 〈a, b, c〉

to the circle vertex and 〈1〉 to the square vertex. Up to a nonzero factor of B
κ
, this gadget

has the succinct binary signature
κ

B
〈a + (κ − 1)b, 2b + (κ − 2)c〉 = 〈ω + κ − 1,ω − 1〉

of type τ2. Then we are done by Lemma 9.3 with 
 = 1 in case (ii) of condition 3. ��
If B = 0, then we already know the complexity by Corollary 8.4. The other failure

conditions from the previous lemma are:

C − B = κ[2b + (κ − 2)c] = 0; (14)

C + B = 2a + 2(2κ − 3)b + (κ − 2)2c = 0; (15)

C = 0; (16)

κ = 3 and C − A = 0, or equivalently κ = 3 and b = 0; (17)

κ = 3 and C + A = 0, or equivalently κ = 3 and 2a + 3b + 4c = 0. (18)

Notice that these five failure conditions are linear in a, b, c.
By starting the proof with a different gadget, Lemma 9.3 can handle the first three failure

conditions. The last two failure conditions require a new idea, Eigenvalue Shifted Triples,
whichwe introduce in Sect. 9.2. In fact, these two cases are equivalent under an orthogonal
holographic transformation.
The next lemma considers the failure condition in (14).Note thatC = B iff the signature

can bewritten as 〈2a,−(κ−2)c, 2c〉up to a factor of 2. The first excluded case in Lemma9.5
is handled by Corollary 8.4, and the last two excluded cases are tractable by Corollary 5.3.

Lemma 9.5 Suppose κ ≥ 3 is the domain size and a, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈2a,−(κ − 2)c, 2c〉 of type τ3 and the succinct
unary signature 〈1〉 of type τ1. If

1. 2a �= (κ − 1)(κ − 2)c,
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2. 4a �= (κ2 − 6κ + 4)c, and
3. c �= 0,

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.

Proof Note thatwhen 2b = −(κ−2)c, we haveB = C = 2a−(κ−1)(κ−2)c by (14), which
is nonzero by condition 1 of the lemma. Letω0 = 4a2+ (κ −2)[4ac+ (2κ2+κ −2)c2] and
assumeω0 �= 0. Then letω = B2

ω0
�= 0. By conditions 2 and 3, it follows thatω �= 1. Alsowe

note that when 2b = −(κ−2)c, we have 2A = 2a+(3κ−2)c and 2C = 2a−(κ−1)(κ−2)c.
By the same conditions, 2 and 3, we haveC2 �= A2.We further assume thatω �= −1, which
is equivalent to 8a2 − 4(κ − 2)2ac + (κ − 2)(κ3 − 2κ2 + 6κ − 4)c2 �= 0.
Consider the gadget in Fig. 19b. We assign 〈2a,−(κ − 2)c, 2c〉 to the vertices. Up to a

nonzero factor of ω0
κ
, this gadget has the succinct binary signature

κ

ω0
〈4a2 + (κ − 1)(κ − 2)(3κ − 2)c2, −(κ − 2)[4ac − (κ2 − 6κ + 4)c2]〉

= 〈ω + κ − 1, ω − 1〉
of type τ2. Then we are done by Lemma 9.3 with 
 = 0 in case (ii) of condition 3.
Now we deal with the following exceptional cases.

1. Ifω0 = 0, then 2a = −[κ −2± iκ
√
2(κ − 2)

]
c. Up to a nonzero factor of−c, we have

− 1
c 〈2a,−(κ − 2)c, 2c〉 = 〈κ − 2± iκ

√
2(κ − 2), κ − 2,−2〉 and are done by case 1 of

Lemma 12.1.
2. If 8a2 − 4(κ − 2)2ac + (κ − 2)(κ3 − 2κ2 + 6κ − 4)c2 = 0, then 4a = [

(κ − 2)2 ±
iκ

√
κ2 − 4

]
c. Up to a nonzero factor of c

2 , we have

2
c
〈2a,−(κ − 2)c, 2c〉 = 〈(κ − 2)2 ± iκ

√
κ2 − 4,−2(κ − 2), 4〉

and are done by case 2 of Lemma 12.1. ��

The next lemma considers the failure condition in (15). Note that C = −B iff the
signature can be written as 〈−2(2κ − 3)b − (κ − 2)2c, 2b, 2c〉 up to a factor of 2. The first
excluded case in Lemma 9.6 is handled by Corollary 8.4, and the last excluded case is
tractable by Corollary 5.8.

Lemma 9.6 Suppose κ ≥ 3 is the domain size and a, b ∈ C. Let F be a signature set
containing the succinct ternary signature 〈−2(2κ − 3)b − (κ − 2)2c, 2b, 2c〉 of type τ3 and
the succinct unary signature 〈1〉 of type τ1. If

1. 2b �= −(κ − 2)c and
2. κ �= 4 or 5b2 + 2bc + c2 �= 0,

then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.
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Proof Note that when 2a = −2(2κ − 3)b − (κ − 2)2c, we have B = −C by (15) and
2B = −κ[2b + (κ − 2)c], which is nonzero by condition 1 of the lemma. Let ω0 =
8(2κ − 3)b2 + (κ − 2)

[
8(κ − 3)bc + (κ2 − 6κ + 12)c2

]
and assume ω0 �= 0. Then let

ω = κ[2b+(κ−2)c]2
ω0

. By condition 1, ω �= 0. It can be shown that κ[2b + (κ − 2)c]2 = ω0
is equivalent to (b − c)[3b + (κ − 3)c] = 0. Thus, assume b �= c and 3b �= −(κ − 3)c.
Then ω �= 1. Also we note that when 2a = −2(2κ − 3)b − (κ − 2)2c, we have 2A =
−κ[4b + (κ − 4)c] and 2C = κ[2b + (κ − 2)c]. By the same assumptions, b �= c and
3b �= −(κ − 3)c, we have C2 �= A2. Further assume that ω �= −1, which is equivalent to
2(5κ − 6)b2 + (κ − 2)[6(κ − 2)bc + (κ2 − 4κ + 6)c2] �= 0.
Consider the gadget in Fig. 19b. We assign 〈−2(2κ − 3)b − (κ − 2)2c, 2b, 2c〉 to the

vertices. Up to a nonzero factor of ω0
4 , this gadget has the succinct binary signature

1
ω0

〈x, y〉 = 〈ω + κ − 1,ω − 1〉 of type τ2, where

x = 4(4κ2 − 9κ + 6)b2 + (κ − 2)
[
4(κ − 2)(2κ − 3)bc + (κ3 − 6κ2 + 16κ − 12)c2

]

and

y = −4(κ − 2)
[
3b3 + (κ − 6)bc − (κ − 3)c2

]
.

Then we are done by Lemma 9.3 with 
 = 0 in case (ii) of condition 3.
Now we deal with the following exceptional cases.

1. If ω0 = 0, then we have −4(2κ − 3)b = [2(κ − 3)(κ − 2)± iκ
√
2(κ − 2)

]
c but κ �= 4

by condition 2 since otherwise ω0 = 8(5b2 + 2bc + c2) �= 0. Up to a nonzero factor
of c

2(2κ−3) ,

2(2κ − 3)
c

〈−2(2κ − 3)b − (κ − 2)2c, 2b, 2c〉
=
〈
−(2κ − 3)

[
2(κ − 2) ∓ iκ

√
2(κ − 2)

]
,

− 2 (κ − 3)(κ − 2) ∓ iκ
√
2(κ − 2), 4(2κ − 3)

〉

and are done by case 3 of Lemma 12.1.
2. If b = c, then up to a nonzero factor of c, we have 1

c 〈−2(2κ−3)b−(κ−2)2c, 2b, 2c〉 =
〈−κ2 + 2, 2, 2〉 and are done by case 4 Lemma 12.1.

3. If 3b = −(κ − 3)c, then up to a nonzero factor of c
3 , we have

3
c 〈−2(2κ − 3)b − (κ −

2)2c, 2b, 2c〉 = 〈κ2 − 6κ + 6,−2(κ − 3), 6〉 and are done by case 5 of Lemma 12.1.
4. If 2(5κ − 6)b2 + (κ − 2)[6(κ − 2)bc + (κ2 − 4κ + 6)c2] = 0, then −2(5κ − 6)b =
[
3(κ − 2)2 ± iκ

√
κ2 − 4

]
c. Up to a nonzero factor of c

5κ−6 ,

5κ − 6
c

〈−2(2κ − 3)b − (κ − 2)2c, 2b, 2c〉
=
〈
(κ − 3)(κ − 2)2 ± iκ(2κ − 3)

√
κ2 − 4,

− 3 (κ − 2)2 ∓ iκ
√

κ2 − 4, 2(5κ − 6)
〉

and are done by case 6 of Lemma 12.1. ��
The next lemma considers the failure condition in (16). Note thatC = 0 iff the signature

can be written as 〈−3(κ − 1)b − (κ − 1)(κ − 2)c, b, c〉. The excluded case in Lemma 9.7 is
handled by Corollary 8.4.
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Lemma 9.7 Suppose κ ≥ 3 is the domain size and b, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈−3(κ −1)b− (κ −1)(κ −2)c, b, c〉 of type τ3 and
the succinct unary signature 〈1〉 of type τ1. If 2b �= −(κ − 2)c, then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.

Proof Note that when a = −3(κ − 1)b − (κ − 2)(κ − 1)c, we have C = 0 and 2B =
−κ[2b+ (κ −2)c], which is nonzero by assumption. Letω0 = (9κ −10)b2+ (κ −2)[2(3κ −
5)bc+ (κ2−4κ +5)c2] and assumeω0 �= 0. Then letω = (κ−1)[2b+(κ−2)c]2

ω0
. By assumption,

ω �= 0. Assume ω �= 1, which is equivalent to −(5κ − 6)b2 − (κ − 3)(κ − 2)(2b− c)c �= 0.
Further assume ω �= −1, which is equivalent to (13κ − 14)b2 + (κ − 2)[2(5κ − 7)bc +
(2κ2 − 7κ + 7)c2] �= 0.
Consider the gadget in Fig. 19b. We assign 〈−3(κ − 1)b − (κ − 1)(κ − 2)c, b, c〉 to

the vertices. Up to a nonzero factor of ω0, this gadget has the succinct binary signature
1
ω0

〈x, y〉 = 〈ω + κ − 1,ω − 1〉 of type τ2, where

x = (κ − 1)
{
3(3κ − 2)b2 + (κ − 2)

[
6bc + (κ2 − 3κ + 3)c2

]}
and

y = −(5κ − 6)b2 − (κ − 3)(κ − 2)(2b − c)c.

Then we are done by Lemma 9.3 via case (i) of condition 3.
Now we deal with the following exceptional cases.

1. If ω0 = 0, then −(9κ − 10)b = [(κ − 2)(3κ − 5) ± iκ
√
2(κ − 2)]c. Up to a nonzero

factor of c
9κ−10 , we have

9κ − 10
c

〈−3(κ − 1)b − (κ − 1)(κ − 2)c, b, c〉
= 〈−(κ − 1)

[
5(κ − 2) ∓ 3iκ

√
2(κ − 2)

]
,

−(κ − 2)(3κ − 5) ∓ iκ
√
2(κ − 2), 9κ − 10〉

and we are done by case 7 of Lemma 12.1.
2. If −(5κ − 6)b2 − (κ − 3)(κ − 2)(2b − c)c = 0, then −(5κ − 6)b = [(κ − 3)(κ − 2) ±

κ
√

κ2 − 5κ + 6
]
c. Up to a nonzero factor of − c

5κ−6 , we have

−5κ − 6
c

〈−3(κ − 1)b − (κ − 1)(κ − 2)c, b, c〉
= 〈(κ − 1)

[
(κ − 2)(2κ + 3) ∓ 3κ

√
κ2 − 5κ + 6

]
,

(κ − 3)(κ − 2) ± κ
√

κ2 − 5κ + 6, −5κ + 6〉
and are done by case 8 Lemma 12.1.

3. If (13κ − 14)b2 + (κ − 2)[2(5κ − 7)bc+ (2κ2 − 7κ + 7)c2] = 0, then −(13κ − 14)b =
[
(κ − 2)(5κ − 7) ± iκ

√
κ2 − κ − 2

]
c. Up to a nonzero factor of c

13κ−14 , we have

13κ − 14
c

〈−3(κ − 1)b − (κ − 1)(κ − 2)c, b, c〉
= 〈(κ − 1)

[
(κ − 2)(2κ − 7) ± 3iκ

√
κ2 − κ − 2

]
,

−(κ − 2)(5κ − 7) ∓ iκ
√

κ2 − κ − 2, 13κ − 14〉
and are done by case 9 of Lemma 12.1. ��
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9.2 Eigenvalue shifted triples

To handle failure conditions (17) and (18) from Lemma 9.4, we need another technique.
We introduce an Eigenvalue Shifted Triple, which extends the concept of an Eigenvalue
Shifted Pair.

Definition 9.8 (Definition 4.6 in [43]) A pair of nonsingular matrices M,M′ ∈ C2×2 is
called an Eigenvalue Shifted Pair if M′ = M + δI for some nonzero δ ∈ C, and M has
distinct eigenvalues.

Eigenvalue Shifted Pairs were used in [43] to show that interpolation succeeds in most
cases since these matrices correspond to some recursive gadget constructions and at least
one of them usually has eigenvalues with distinct complex norms. In [43], it is shown that
the interpolation succeeds unless the variables in question take real values. Then other
techniques were developed to handle the real case. We use Eigenvalue Shifted Pairs in a
stronger way. We exhibit three matrices such that any two form an Eigenvalue Shifted
Pair. Provided that these shifts are linearly independent over R, this is enough to show
that interpolation succeeds for both real and complex settings of the variables. We call
this an Eigenvalue Shifted Triple.

Definition 9.9 A trio of nonsingularmatricesM0,M1,M2 ∈ C2×2 is called an Eigenvalue
Shifted Triple (EST) if M0 has distinct eigenvalues and there exist nonzero δ1, δ2 ∈ C

satisfying δ1
δ2

/∈ R such thatM1 = M0 + δ1I , andM2 = M0 + δ2I .

Wenote that ifM0,M1, andM2 formanEigenvalue ShiftedTriple, then any permutation
of the matrices is also an Eigenvalue Shifted Triple.
The proof of the next lemma is similar to the proof of Lemma 4.7 in [44], the full version

of [43].

Lemma 9.10 Suppose α,β , δ1, δ2 ∈ C. If α �= β , δ1, δ2 �= 0, and δ1
δ2

/∈ R, then |α| �= |β| or
|α + δ1| �= |β + δ1| or |α + δ2| �= |β + δ2|.
Proof Assume for a contradiction that |α| = |β|, |α+δ1| = |β+δ1|, and |α+δ2| = |β+δ2|.
After a rotation in the complex plane, we can assume that α = β . Note that all of our
assumptions are unchanged by this rotation. For i ∈ {1, 2}, we have

(α + δi)(α + δi) = |α + δi|2
= |β + δi|2
= (β + δi)(β + δi) = (α + δi)(α + δi).

This implies (α − α)(δi − δi) = 0. Since α �= β = α, we have δi ∈ R. Then δ1
δ2

∈ R, a
contradiction. ��
The next lemma considers the failure condition in (17), which is κ = 3 and b = 0,

so the signature has the form 〈a, 0, c〉. If a = 0, then the problem is already #P-hard by
Theorem 4.8. If c = 0, then the problem is tractable by case 1 of Corollary 5.2. If a3 = c3,
then the problem is tractable by Corollary 5.6.

Lemma 9.11 Suppose the domain size is 3anda, c ∈ C. LetF be a signature set containing
the succinct ternary signature 〈a, 0, c〉 of type τ3 and the succinct unary signature 〈1〉 of
type τ1. If ac �= 0 and a3 �= c3, then
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Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.

Proof Assume 2a + c �= 0 and let ω = a2+2c2
c(2a+c) . Assume a2 + 2c2 so that ω �= 0. Further

assume a2 + 2ac + 3c2 �= 0 so that ω2 �= 1 as well as a2 + ac + 7c2 �= 0 so that ω3 �= 1.
Note that these conclusions also require a �= c and a3 �= c3, respectively.
Consider using the recursive construction in Fig. 20. The circle vertices are assigned

〈a, 0, c〉, and the square vertex is assigned 〈1〉. Let z = c
a , which is well defined by assump-

tion. The succinct signature of type τ2 for the initial gadgetN0 in this construction is 〈a, c〉.
Up to a nonzero factor of a, this signature is f0 = 1

a 〈a, c〉 = 〈1, z〉. Then up to a nonzero
factor of c(2a+ c), the succinct signature of type τ2 for the sth gadget in this construction
is fs = 〈ωk , z〉 = Ms f0, where

M = 1
c(2a + c)

[
a2 + 2c2 0

0 c(2a + c)

]

=
[
ω 0
0 1

]

.

ClearlyM is nonsingular. The determinant of [ f0 M f0] = [ a aω
c c ] is z(1− ω) �= 0. If ω is

not a root of unity, then we are done by Lemma 4.12.
Otherwise, suppose ω is a primitive root of unity of order n. By assumption, n ≥ 4.

Now consider the recursive construction in Fig. 7. We assign fs to every vertex, where
s ≥ 0 is a parameter of our choice. Let gt (s) be the signature of the tth gadget in this
recursive construction when using fs. Then g1(s) = fs and gt (s) = (N (s))t

[ 1
0
]
, where

N (s) = [ ωs 2z
z ωs+z

]
.

By Lemma 4.11, the eigenvalues of N (s) are ωs + 2z and ωs − z, which means the
determinant ofN (s) is (ωs + 2z)(ωs − z). Each eigenvalue can vanish for at most one value
of s ∈ Zn since both eigenvalues are linear polynomials in ωs that are not identically 0.
Furthermore, at least one of the eigenvalues never vanishes for all s ∈ Zn since otherwise
1 = |z| = 1

2 .
Thus, atmost onematrix amongN (0),N (1),N (2), andN (3) can be singular. Pick distinct

j, k, 
 ∈ {0, 1, 2, 3} such that N (j), N (k), and N (
) are nonsingular. To finish the proof, we
show that N (j), N (k), and N (
) form an Eigenvalue Shifted Triple. Then by Lemma 9.10,
at least one of the matrices has eigenvalues with distinct complex norms, so we are done
by Corollary 4.13.
The eigenvalue shift from N (j) to N (k) is δj,k = ωj(ωk−j − 1), which is nonzero since j

and k are distinct in Zn. Assume for a contradiction that δj,k
δj,


∈ R, which is equivalent to
arg(δj,k ) = arg(±δj,
). Then we have

arg
(
ωk−j − 1

)
= arg

(
±(ω
−j − 1)

)
. (19)

N0 N1

Ns

Ns+1

Fig. 20 Alternative recursive construction to interpolate a binary signature (cf. Fig. 7). The circle vertices are
assigned 〈a, b, c〉, and the square vertex is assigned 〈1〉
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In the complex plane, any nonzero x − 1 ∈ C with |x| = 1 lies on the circle of radius 1
centered at (−1, 0). Such x satisfy π

2 < arg(x − 1) < 3π
2 . Thus, the argument of x − 1

is unique, even up to a sign, contradicting (19). Therefore, Mj , Mk , and M
 form an
Eigenvalue Shifted Triple as claimed.
Now we deal with the following exceptional cases.

1. If 2a + c = 0, then up to a nonzero factor of a, we have 1
a 〈a, 0, c〉 = 〈1, 0,−2〉 and

are done by case 10 of Lemma 12.1.
2. If a2 + 2c2 = 0, then a = ±i

√
2c. Up to a nonzero factor of c, we have 1

c 〈a, 0, c〉 =
〈±i

√
2, 0, 1〉 and are done by case 11 of Lemma 12.1.

3. If a2 + 2ac + 3c2 = 0, then a = c(−1 ± i
√
2). Up to a nonzero factor of c, we have

1
c 〈a, 0, c〉 = 〈−1 ± i

√
2, 0, 1〉 and are done by case 12 of Lemma 12.1.

4. If a2 + ac + 7c2 = 0, then 2a = c(−1± 3i
√
3). Up to a nonzero factor of c

2 , we have
2
c 〈a, 0, c〉 = 〈−1 ± 3i

√
3, 0, 2〉 and are done by case 13 of Lemma 12.1. ��

The next lemma considers the failure condition in (18). Since this failure condition is
just a holographic transformation of the failure condition in (17), the excluded cases in
this lemma are handled exactly as those preceding Lemma 9.11.

Lemma 9.12 Suppose the domain size is 3and b, c ∈ C. LetF be a signature set containing
the succinct ternary signature 〈−3b−4c, 2b, 2c〉 of type τ3 and the succinct unary signature
〈1〉 of type τ1. Assume T⊗3〈−3b− 4c, 2b, 2c〉 = 〈â, b̂, ĉ〉, where T =

[ 1 −2 −2
−2 1 −2
−2 −2 1

]
. If âĉ �= 0

and â3 �= ĉ3, then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.

Proof By Lemma 11.6 with x = 1 and y = −2, we have b̂ = 0. Thus, after a holographic
transformation by T , we are in the case covered by Lemma 9.11. Since T is orthogonal
after scaling by 1

3 , the complexity of these problems is unchanged by Theorem 3.3. ��

We summarize this section with the following lemma.

Corollary 9.13 Suppose the domain size is κ ≥ 3 and a, b, c ∈ C. Let F be a signature set
containing the succinct ternary signature 〈a, b, c〉 of type τ3 and the succinct unary signature
〈1〉 of type τ1. Then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2, unless

• B = 0 or
• there exist λ ∈ C and T ∈ {Iκ , κIκ − 2Jκ} such that

〈a, b, c〉 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T⊗3λ〈1, 0, 0〉, or
T⊗3λ〈0, 0, 1〉 and κ = 3, or

T⊗3λ〈1, 0,ω〉 and κ = 3 where ω3 = 1, or

T⊗3λ〈μ2, 1,μ〉 and κ = 4 where μ = −1 ± 2i.
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Proof If failure condition (14), (15), (16), (17), or (18) holds, then we are done by
Lemma 9.5, Lemma 9.6, Lemma 9.7, Lemma 9.11, or Lemma 9.12, respectively, with
the various excluded cases listed. If none of (14), (15), (16), (17), and (18) hold, then we
are done by Lemma 9.4. ��

10 Themain dichotomy
Now we can prove our main dichotomy theorem.

Theorem 10.1 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. Then Pl-Holant(〈a, b, c〉) is #P-hard unless at least one of the
following holds:

1. a = b = c;
2. a = c and κ = 3;

there exists λ ∈ C and T ∈ {Iκ , κIκ − 2Jκ} such that

3. 〈a, b, c〉 = T⊗3λ〈1, 0, 0〉;
4. 〈a, b, c〉 = T⊗3λ〈1, 0,ω〉 and κ = 3 where ω3 = 1;
5. 〈a, b, c〉 = T⊗3λ〈μ2, 1,μ〉 and κ = 4 where μ = −1 ± 2i;

in which case, the computation can be done in polynomial time.

Proof The signature in case 1 is degenerate, which is trivially tractable. Case 2 is tractable
by case 3 of Corollary 5.2. Case 3 is tractable by Corollary 5.3. Case 4 is tractable by
Corollary 5.6. Case 5 is tractable by Lemma 5.7.
Otherwise, 〈a, b, c〉 is none of these tractable cases. If B = 0, then we are done by

Corollary 8.4, so assume thatB �= 0. If a+ (κ −1)b = 0 and b2−4bc− (κ −3)c2 = 0, then
we are done by Lemma 8.2, so assume that a+ (κ − 1)b �= 0 or b2 − 4bc − (κ − 3)c2 �= 0.
If a + (κ − 1)b �= 0, then we have the succinct unary signature 〈1〉 of type τ1 by

Lemma 8.1. Otherwise, a + (κ − 1)b = 0 and b2 − 4bc − (κ − 3)c2 �= 0. SinceB �= 0, we
have 2b + (κ − 2)c �= 0. Then again we have 〈1〉 by Lemma 8.1. Thus, in either case, we
have 〈1〉.
By Corollary 9.13, we have all binary succinct signatures 〈x, y〉 for any x, y ∈ C. Then we

are done by Lemma 7.16. ��
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11 Appendix 1: Computing gadget signatures
In this paper, some of the more difficult claims to verify are those when we say that a
particular F-gate (or gadget) has a particular signature. This is an essential difficultly
that cannot be avoided. We are proving that Pl-Holant(F ) is #P-hard for various F (and
computing the signature of an F-gate is a generalization of this problem). Thus, one
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should not expect to be able to compute these signatures significantly faster in general
than what the naive algorithm can do.
This has always been an issue for any dichotomy theorem about counting problems,

but with larger domain sizes, we seem to be reaching the limit of what can be computed
by hand for the signatures of gadget constructions that are presented in our proofs. To
counter this, the standard techniques are to utilize the smallest gadgets (that suffice) or an
infinite family of related gadgets with a (small) description of finite size, whichwe certainly
employ. Additionally, we point out some tricks, where they exist, to save as much work as
possible.
Beyond all this, we also face another problem. We would like to express the signature

of a gadget as a function of the domain size. To compute the signature of a gadget for
every domain size is no longer a finite computation. However, each entry of the gadget’s
signature is a polynomial in the domain size of degree at most the number of internal
edges in the gadget. To obtain these polynomials, one can interpolate them by computing
the signature for small domain sizes. It is easy to write a program to do this.
When computing by hand, there is another possibility that works quite well. One par-

titions the internal edge assignments into a limited number of parts such that the assign-
ments in each part contribute the same quantity to the Holant sum. This is best explained
with some examples.

Lemma 11.1 Suppose κ ≥ 3 is the domain size and a, b, c, x, y ∈ C. Let 〈a, b, c〉 be a
succinct ternary signature of type τ3 and let 〈x, y〉 be a succinct signature of type τ2. If we
assign 〈a, b, c〉 to the circle vertex and 〈x, y〉 to the square vertex of the gadget in Fig. 21c,
then the succinct unary signature of type τ1 of the resulting gadget is 〈x[a + (κ − 1)b] +
y(κ − 1)[2b + (κ − 2)c]〉.
If the square vertex is replaced by Fig. 21d, then the resulting signature is 〈a+ (κ −1)b〉. If

the square vertex is replaced by Fig. 21e, and a+ (κ − 1)b = 0, then the resulting signature
is

〈−(κ − 1)(κ − 2)[2b + (κ − 2)c][b2 − 4bc − (κ − 3)c2]〉. (20)

Proof Since 〈a, b, c〉 and 〈x, y〉 are domain invariant, the signatures of these gadgets are
also domain invariant. Any domain invariant unary signature has a succinct signature of
type τ1.
Let g ∈ [κ] be a possible edge assignment, which we call a color. Suppose the external

edge is assigned g and consider all internal edge assignments that assign the same colors
to both edges. For such assignments, 〈x, y〉 contributes a factor of x. Now if this color
assigned to both internal edges is also g , then 〈a, b, c〉 contributes a factor of a. Thus, the

(a) (b) (c) (d) (e)

Fig. 21 Gadgets (a) and (b) are used to construct 〈1〉. They are special cases of (c) and are obtained by
replacing the square in (c) with either (d) or (e), respectively. All (circle) vertices are assigned 〈a, b, c〉
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Holant sum includes one factor of ax. If the two internal edges are assigned any color
different from g , then 〈a, b, c〉 contributes a factor of b. Since there are κ − 1 such colors,
this adds (κ − 1)bx to the Holant sum.
Now consider all internal assignments that assign different colors to the edges. For such

assignments, 〈x, y〉 contributes a factor of y. First, suppose that one of the internal edges
is assigned g . There are two ways this could happen and 〈a, b, c〉 contributes a factor of
b. Since there are κ − 1 choices for the remaining edge assignment, this adds 2(κ − 1)by
to the Holant sum. Lastly, suppose that the two internal edges are not assigned g . Then
〈a, b, c〉 contributes a factor of c. Since there are (κ −1)(κ −2) such assignments, this adds
(κ − 1)(κ − 2)cy to the Holant sum. Thus, the resulting signature is 〈x[a + (κ − 1)b] +
y(κ − 1)[2b + (κ − 2)c]〉 as claimed.
Replacing the square by Fig. 21d is equivalent to setting x = 1 and y = 0, which gives

〈a + (κ − 1)b〉. Replacing the square by Fig. 21e is equivalent to setting x and y to the
values given in Lemma 11.2. The resulting signature is indeed (20). ��

Lemma 11.2 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If we assign 〈a, b, c〉 to both vertices of the gadget in Fig. 22,
then the succinct binary signature of type τ2 of the resulting gadget is 〈x, y〉, where

x = a2 + 3(κ − 1)b2 + (κ − 1)(κ − 2)c2 and

y = 2ab + κb2 + 4(κ − 2)bc + (κ − 2)(κ − 3)c2.

Proof Since 〈a, b, c〉 is domain invariant, the signature of this gadget is also domain invari-
ant. Any domain invariant binary signature has a succinct signature of type τ2.
Let g, r ∈ [κ] be distinct edge assignments.Wehave two entries to compute. To compute

x, suppose that both external edges are assigned g . We begin with the case where both
internal edges have the same assignment. If this assignment is g , then a2 is contributed
to the sum. If this assignment is not g , then b2 is contributed to the sum for a total
contribution of (κ − 1)b2. Now consider the case that the two internal edges have a
different assignment. If one of these assignments is g , then b2 is contributed to the sum
for a total contribution of 2(κ − 1)b2. If neither assignment is g , then c2 is contributed to
the sum for a total contribution of (κ − 1)(κ − 2)c2. These total contributions sum to the
value for x given in Lemma 11.2.
To compute y, suppose one external edge is assigned g and the other is assigned r.

We begin with the case where both internal edges have the same assignment. If this
assignment is g or r, then ab is contributed to the sum for a total contribution of 2ab. If
this assignment is not g or r, then b2 is contributed to the sum for a total contribution of
(κ − 2)b2. Now consider the case that the two internal edges have a different assignment.
If both are assigned g or r, then b2 is contributed to the sum for a total contribution of 2b2.
If exactly one is assigned g or r, then bc is contributed to the sum for a total contribution
of 4(κ − 2)bc. If neither is assigned g or r, then c3 is contributed to the sum for a total

Fig. 22 A simple binary gadget
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contribution of (κ − 2)(κ − 3)c3. These total contributions sum to the value for y given in
Lemma 11.2. ��

When checking these proofs, a concern is that some assignments might not have been
counted. One sanity check to address this concern is to set a = b = c = 1 and inspect the
resulting expression. If computed correctly, the result will be κm, wherem is the number
of internal edges, which is the number of internal edge assignments.

Lemma 11.3 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If we assign 〈a, b, c〉 to both vertices of the gadget in Fig. 23,
then the succinct quaternary signature of type τ4 of the resulting gadget is

f =
〈
f 1 1
1 1
, f 1 2

1 1
, f 1 2

1 2
, f 1 3

1 2
, f 1 2

2 1
, f 1 3

2 1
, f 1 1

2 2
, f 1 1

2 3
, f 1 4

2 3

〉
,

where
f 1 1
1 1

= a2 + (κ − 1)b2,

f 1 2
1 1

= b[a + b + (κ − 2)c],

f 1 2
1 2

= 2b2 + (κ − 2)c2,

f 1 3
1 2

= b2 + 2bc + (κ − 3)c2,

f 1 2
2 1

= f 1 2
1 2
,

f 1 3
2 1

= f 1 3
1 2
,

f 1 1
2 2

= b[2a + (κ − 2)b],

f 1 1
2 3

= ac + 2b2 + (κ − 3)bc, and

f 1 4
2 3

= c[4b + (κ − 4)c].

Proof Since 〈a, b, c〉 is domain invariant, the signature of this gadget is also domain invari-
ant. The vertical and horizontal symmetry of this gadget implies that its signature has a
succinct signature of type τ4.
Letw, x, y, z ∈ [κ] be distinct edge assignments.We have nine entries to compute. Recall

that the edge with the diamond is considered the first input and the rest are ordered
counterclockwise.

1. To compute f 1 1
1 1
, suppose the external assignment is (w,w, w, w). If the internal edge

is also assigned w, then a2 is contributed to the sum. If the internal edge is not
assigned w, then b2 is contributed to the sum for a total contribution of (κ − 1)b2.

2. To compute f 1 2
1 1
, suppose the external assignment is (w,w, w, x). If the internal edge

is assigned w, then ab is contributed to the sum. If the internal edge is assigned x,
then b2 is contributed to the sum. If the internal edge is not assigned w or x, then bc
is contributed to the sum for a total contribution of (κ − 2)bc.

Fig. 23 A simple quaternary gadget
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3. To compute f 1 2
1 2
, suppose the external assignment is (w,w, x, x). If the internal edge

is assigned w, then b2 is contributed to the sum. If the internal edge is assigned x,
then b2 is contributed to the sum. If the internal edge is not assigned w or x, then c2

is contributed to the sum for a total contribution of (κ − 2)c2.
4. To compute f 1 3

1 2
, suppose the external assignment is (w,w, x, y). If the internal edge is

assigned w, then b2 is contributed to the sum. If the internal edge is assigned x, then
bc is contributed to the sum. If the internal edge is assigned y, then bc is contributed
to the sum. If the internal edge is not assigned w, x or y, then c2 is contributed to the
sum for a total contribution of (κ − 3)c2.

5. To compute f 1 3
1 2
, suppose the external assignment is (w, x, w, x). This entry is the

same as that for (w,w, x, x). The reason is that the signature is unchanged if the two
external edges of the lower vertex are swapped since 〈a, b, c〉 is symmetric.

6. To compute f 1 3
2 1
, suppose the external assignment is (w, x, w, y). This entry is the

same as that for (w,w, x, y) for the same reason as the previous entry.
7. To compute f 1 1

2 2
, suppose the external assignment is (w, x, x, w). If the internal edge

is assigned w, then ab is contributed to the sum. If the internal edge is assigned x,
then ab is contributed to the sum. If the internal edge is not assigned w or x, then b2

is contributed to the sum for a total contribution of (κ − 2)b2.
8. To compute f 1 1

2 3
, suppose the external assignment is (w, x, y, w). If the internal edge is

assigned w, then ac is contributed to the sum. If the internal edge is assigned x, then
b2 is contributed to the sum. If the internal edge is assigned y, then b2 is contributed
to the sum. If the internal edge is not assigned w, x or y, then bc is contributed to the
sum for a total contribution of (κ − 3)c2.

9. To compute f 1 4
2 3
, suppose the external assignment is (w, x, y, z). If the internal edge

is assigned w, x, y, or z, then bc is contributed to the sum for a total contribution of
4bc. If the internal edge is not assigned w, x, y or z, then c2 is contributed to the sum
for a total contribution of (κ − 4)c2.

These total contributions each sumto their corresponding entry of f given in the statement
of Lemma 11.3. ��

Although possible, it would be difficult to compute the signature of the gadget in Fig. 24c
throughpartitioning of the internal edge assignments alone.To simplifymatters,weutilize
the calculations from Lemma 11.3. Since composing the gadget in Fig. 24a with the one
in Fig. 24b gives a symmetric signature, we refrain from distinguishing the external edges
of the gadget in Fig. 24b.

(a) (b) (c)

Fig. 24 Decomposition of a ternary gadget. All circle vertices are assigned 〈a, b, c〉, and the square vertex
in (b) is assigned the signature of the gadget in (a). a Inner structure b outer structure c entire binary gadget
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Lemma 11.4 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If we assign 〈a, b, c〉 to all vertices of the gadget in Fig. 24c, then
the succinct ternary signature of type τ3 of the resulting gadget is 〈a′, b′, c′〉, where

a′ = a3 + 3(κ − 1)ab2 + 4(κ − 1)b3 + 3(κ − 1)(κ − 2)(b2c + bc2)

+ (κ − 1)(κ − 2)(κ − 3)c3,

b′ = a2b + 4ab2 + 2(κ − 2)abc + (κ − 2)ac2 + (5κ − 7)b3 + (κ − 2)(κ + 5)b2c

+ (κ − 2)(7κ − 18)bc2 + (κ − 2)(κ − 3)2c3, and

c′ = 3ab2 + 6abc + 3(κ − 3)ac2 + (κ + 5)b3 + 3(7κ − 18)b2c + 9(κ − 3)2bc2

+ (κ3 − 9κ2 + 29κ − 32)c3.

Furthermore, if A = 0, then

a′ = 3b′ − 2c′,
b′ = (5κ + 14)b3 + (κ2 + 9κ − 42)b2c + (7κ2 − 33κ + 42)bc2

+ (κ − 2)(κ2 − 6κ + 7)c3, and

c′ = (κ+14)b3+21(κ−2)b2c+3(3κ2−15κ+14)bc2+(κ3−9κ2+23κ−14)c3.

Proof Since 〈a, b, c〉 is domain invariant, the signature of this gadget is also domain invari-
ant. As a ternary signature, the rotational symmetry of this gadget implies the symmetry of
the signature. Any symmetric domain invariant ternary signature has a succinct signature
of type τ3.
Consider the gadget in Fig. 24a.We assign 〈a, b, c〉 to both vertices. Then by Lemma11.3,

the succinct quaternary signature of this gadget is the signature f given in Lemma 11.3.
Now consider the gadget in Fig. 24b. We assign 〈a, b, c〉 to the circle vertex and f to the

square vertex. The resulting gadget is the one in Fig. 24c, which is symmetric. Thus, there
is no need to distinguish the external edges. We have three entries to compute.
Let g, r, y ∈ [κ] be distinct edge assignments. To compute a′, suppose that all external

edges are assigned g . We begin with the case where both internal edges have the same
assignment. If this assignment is g , then a f 1 1

1 1
is contributed to the sum. If this assignment

is not g , then b f 1 2
1 2

is contributed to the sum for a total contribution of (κ − 1)b f 1 2
1 2
.

Now consider the case that the two internal edges have a different assignment. If one
of these assignments is g , then b f 1 2

1 1
is contributed to the sum for a total contribution

of 2(κ − 1)b f 1 2
1 1
. If neither assignment is g , then c f 1 3

1 2
is contributed to the sum for a

total contribution of (κ − 1)(κ − 2)c f 1 3
1 2
. After substituting for the entries of f , these total

contributions sum to the value for a′ given in Lemma 11.4.
To compute b′, suppose the left external edges are assigned g and the right external edge

is assigned r.We begin with the case where both internal edges have the same assignment.
If this assignment is g , then b f 1 1

1 1
is contributed to the sum. If this assignment is r, then

a f 1 2
1 2

is contributed to the sum. If this assignment is not g or r, then b f 1 2
1 2

is contributed to
the sum for a total contribution of (κ−2)b f 1 2

1 2
. Now consider the case that the two internal

edges have a different assignments. If both are assigned g or r, then b f 1 2
1 1

is contributed to
the sum for a total contribution of 2b f 1 2

1 1
. If one is assigned g and the other is not assigned

r, then c f 1 2
1 1

is contributed to the sum for a total contribution of 2(κ − 2)c f 1 2
1 1
. If one is

assigned r and the other is not assigned g , then b f 1 3
1 2

is contributed to the sum for a total
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contribution of 2(κ − 2)b f 1 3
1 2
. If neither is assigned g or r, then c f 1 3

1 2
is contributed to the

sum for a total contribution of (κ − 2)(κ − 3)c f 1 3
1 2
. After substituting for the entries of f ,

these total contributions sum to the value for b′ given in Lemma 11.4.
To compute c′, suppose the upper-left external edge is assigned g , the lower-left external

edge is assigned r, and the right external edge is assigned y. We begin with the case
where both internal edges have the same assignment. If this assignment is g , then b f 1 2

1 1
is

contributed to the sum. If this assignment is r, then b f 1 2
1 1

is contributed to the sum. If this
assignment is y, then a f 1 3

1 2
is contributed to the sum. If this assignment is not g , r, or y,

then b f 1 3
1 2

is contributed to the sum for a total contribution of (κ − 3)b f 1 3
1 2
. Now consider

the case that the two internal edges have a different assignments. If the top internal edge
is assigned g and the bottom one is assigned r, then c f 1 1

2 2
is contributed to the sum. If the

top internal edge is assigned r and the bottom one is assigned g , then c f 1 2
2 1

is contributed
to the sum. If the top internal edge is assigned g and the bottom one is assigned y, then
b f 1 1

2 3
is contributed to the sum. If the top internal edge is assigned y and the bottom one

is assigned g , then b f 1 3
2 1

is contributed to the sum. If the top internal edge is assigned r
and the bottom one is assigned y, then b f 1 3

2 1
is contributed to the sum. If the top internal

edge is assigned y and the bottom one is assigned r, then b f 1 1
2 3

is contributed to the sum.
If the top internal edge is assigned g and the bottom one not assigned r or y, then c f 1 1

2 3
is

contributed to the sum for a total contribution of (κ − 3)c f 1 1
2 3
. If the bottom internal edge

is assigned g and the top one not assigned r or y, then c f 1 3
2 1

is contributed to the sum for
a total contribution of (κ − 3)c f 1 3

2 1
. If the top internal edge is assigned r and the bottom

one not assigned g or y, then c f 1 3
2 1

is contributed to the sum for a total contribution of
(κ − 3)c f 1 3

2 1
. If the bottom internal edge is assigned r and the top one not assigned g or

y, then c f 1 1
2 3

is contributed to the sum for a total contribution of (κ − 3)c f 1 1
2 3
. If the one

internal edge is assigned y and the other is not assigned g or r, then b f 1 4
2 3

is contributed to
the sum for a total contribution of 2(κ − 3)b f 1 4

2 3
. If neither internal edge is assigned g r, or

y, then c f 1 4
2 3

is contributed to the sum for a total contribution of (κ − 3)(κ − 4)c f 1 4
2 3
. After

substituting for the entries of f , these total contributions sum to the value for c′ given in
Lemma 11.4. ��

The signature of the gadget in Fig. 25 is difficult to compute using gadget compositions
and partitioning of internal edge assignments as we have been doing. Instead, we compute
this signature using matrix product, trace, and polynomial interpolation.

Lemma 11.5 Suppose κ ≥ 3 is the domain size and a, b, c, x1, y1, x2, y2 ∈ C. Let 〈a, b, c〉 be
a succinct ternary signature of type τ3 and 〈x1, y1〉 and 〈x2, y2〉 be succinct binary signatures
of type τ2. If to the gadget in Fig. 25 we assign 〈a, b, c〉 to the circle vertices, 〈x1, y1〉 to the
square vertex, and 〈x2, y2〉 to the triangle vertex, then the succinct binary signature of type
τ2 of the resulting gadget is 〈x, y〉, where

Fig. 25 A more complicated binary gadget
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x = x1x2a2 + 2(κ − 1)(x1y2 + x2y1 + y1y2)ab + 2(κ − 1)(κ − 2)y1y2ac

+ (κ − 1)[3x1x2 + κ(x1y2 + x2y1) + (7κ − 12)y1y2]b2

+ 2(κ − 1)(κ − 2)[2(x1y2 + x2y1) + (3κ − 7)y1y2]bc

+ (κ − 1)(κ − 2)[x1x2 + (κ − 3)(x1y2 + x2y1) + (κ2 − 5κ + 7)y1y2]c2 and

y = y1y2a2 + 2[x1x2 + x1y2 + x2y1 + 3(κ − 2)y1y2]ab

+ 2(κ − 2)[x1y2 + x2y1 + (κ − 3)y1y2]ac

+ [κx1x2 + (7κ − 12)(x1y2 + x2y1) + 3(3κ2 − 11κ + 11)y1y2]b2

+ 2(κ − 2)[2x1x2 + (3κ − 7)(x1y2 + x2y1) + 3(κ2 − 4κ + 5)y1y2]bc

+ (κ − 2)[(κ − 3)x1x2 + (κ2 − 5κ + 7)(x1y2 + x2y1)+(κ3−6κ2+14κ − 13)]c2.

Furthermore, if 〈x1, y1〉 = 1
κ
〈ωr + κ − 1,ωr − 1〉 and 〈x2, y2〉 = 1

κ
〈ωs + κ − 1,ωs − 1〉, then

x = B2

κ2
[
�ωr+s + (κ − 1)(ωr + ωs + � + 1)

]
and

y = B2

κ2
[
�ωr+s − (ωr + ωs + � + 1) + κ

]
,

where � = C2

B2 and � = (κ−2)A2

B2 .

Proof Since 〈a, b, c〉, 〈x1, y1〉, and 〈x2, y2〉 are domain invariant, the signature of this gadget
is also domain invariant. Any domain invariant binary signature has a succinct signature
of type τ2.
We compute a′, b′, and c′ using the algorithm for Holant(F ) when every nondegenerate

signature in F is of arity at most 2, which is to use matrix product and trace. Then we
finish with polynomial interpolation. LetMκ (t) be a κ-by-κ matrix such that

(Mκ (t))i,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a i = j = t,

b i = j �= t,

b i �= j and (i = t or j = t),

c otherwise.

For example, M4(1) =
[ a b b b
b b c c
b c b c
b c c b

]

. If we fix an input of 〈a, b, c〉 to t ∈ [κ], then the

resulting binary signature (which is no longer domain invariant) has the signature matrix
Mκ (t).
Consider x and y as polynomials in κ with coefficients in Z[a, b, c, x1, y1, x2, y2]. Then

x(κ) = tr
(
Mκ (1)[y1Jκ + (x1 − y1)Iκ ]Mκ (1)[y2Jκ + (x2 − y2)Iκ ]

)
and

y(κ) = tr
(
Mκ (1)[y1Jκ + (x1 − y1)Iκ ]Mκ (2)[y2Jκ + (x2 − y2)Iκ ]

)
.

Since there are just four internal edges in this gadget, both of x(κ) and y(κ) are of degree at
most 4 in κ . Therefore, we interpolate each of these polynomials using their evaluations
at 3 ≤ κ ≤ 7 and obtain the expressions for x and y given in Lemma 11.5. ��

Remark Lemma 11.2 is the special case of Lemma 11.5 with 〈x1, y1〉 = 〈x2, y2〉 = 〈1, 0〉.
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In order to apply a holographic transformation on a particular signature, it is convenient
to express the signature as a sum of degenerate signatures. Let eκ ,i be the standard basis
vector of length κ with a 1 at location i and 0 elsewhere. Also let 1κ be the all 1’s vector of
length κ . Then the succinct ternary signature 〈a, b, c〉 on domain size κ can be expressed
as

〈a, b, c〉 = c1⊗3
κ + (a − c)

κ∑

i=1
e⊗3
κ ,i + (b − c)

∑

i,j∈[κ]
i �=j

⎛

⎜
⎝

eκ ,i ⊗ eκ ,i ⊗ eκ ,j
+ eκ ,i ⊗ eκ ,j ⊗ eκ ,i
+ eκ ,j ⊗ eκ ,i ⊗ eκ ,i

⎞

⎟
⎠ (21)

= b1⊗3
κ + (a − b)

κ∑

i=1
e⊗3
κ ,i + (c − b)

∑

σ :1,2,3→[κ]
σ injective

eκ ,σ (1) ⊗ eκ ,σ (2) ⊗ eκ ,σ (3). (22)

The expression in (21) contains 1 + κ + 3κ(κ − 1) = 3κ2 − 2κ + 1 summands. In
general, this is smaller than the one in (22), which contains 1 + κ + κ(κ − 1)(κ − 2) =
κ3 − 3κ2 + 3κ + 1 summands. It is advantageous to find an expression that minimizes
the number of summands. This leads to less computation in the proof of Lemma 11.6.
However, determining the fewest number of summands for a given signature is exactly
the problem of determining tensor rank, which is a problem well known to be difficult
[38].
There is a gadget construction thatmimics thebehavior of aholographic transformation.

This construction is called a local holographic transformation [24]. For x, y ∈ C, let 〈x, y〉
be a succinct binary signature of type τ2. Consider the gadget in Fig. 26. If we assign
〈a, b, c〉 to the circle vertex and 〈x, y〉 to the square vertex, then the resulting signature of
this gadget is the same as applying a holographic transformation on 〈a, b, c〉 with basis
T = yJκ + (x − y)Iκ . We use this fact in the following proof.

Lemma 11.6 Suppose κ ≥ 3 is the domain size and a, b, c, x, y ∈ C. Let 〈a, b, c〉 be a
succinct signature of type τ3 and let T = yJκ + (x − y)Iκ . Then T⊗3〈a, b, c〉 = 〈a′, b′, c′〉,
where

a′ = a
[
x3 + (κ − 1)y3

]

+ 3b(κ − 1)
[
x2y + xy2 + (κ − 2)y3

]

+ c(κ − 1)(κ − 2)
[
3xy2 + (κ − 3)y3

]
,

b′ = a
[
x2y + xy2 + (κ − 2)y3

]

+ b
[
x3 + κx2y + (7κ − 12)xy2 + (3κ2 − 11κ + 11)y3

]

+ c(κ − 2)
[
2x2y + (3κ − 7)xy2 + (κ2 − 4κ + 5)y3

]
, and

Fig. 26 Local holographic transformation gadget construction for a ternary signature
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c′ = a
[
3xy2 + (κ − 3)y3

]

+ 3b
[
2x2y + (3κ − 7)xy2 + (κ2 − 4κ + 5)y3

]

+ c
[
x3 + 3(κ − 3)x2y + 3(κ2 − 5κ + 7)xy2 + (κ3 − 6κ2 + 14κ − 13)y3

]
.

In particular,

a′ − b′ = (x − y)2[2D + A(x − y)] and b′ − c′ = (x − y)2D,

whereD = (b − c)(x − y) + By. Furthermore, if A = 0, then

a′ = 3b′ − 2c′,
b′ = [x + (κ − 1)y]

{
bx2 + 2[2b + (κ − 3)c]xy + [(3κ − 5)b + (κ2 − 5κ + 6)c]y2

}
and

c′ = [x + (κ − 1)y]
{
cx2 + 2[3b + (κ − 4)c]xy + [(3κ − 6)b + (κ2 − 5κ + 7)c]y2

}
.

If κ = 3, x = −1, and y = 2, then

a′ = −3(5a + 12b − 8c), b′ = −3(2a + 3b + 4c), and c′ = 3(4a − 12b − c).

Proof Let f̂ = T⊗3〈a, b, c〉. Since 〈a, b, c〉 and 〈x, y〉 are domain invariant, the signature of
the gadget in Fig. 26, which is the same signature f̂ , is also domain invariant. As a ternary
signature, the rotational symmetry of this gadget implies the symmetry of the signature.
Any symmetric domain invariant ternary signature has a succinct signature of type τ3.
The entries of f̂ are polynomials in κ with coefficients from Z[a, b, c, x, y]. The degree

of these polynomials is at most 3 since the arity of 〈a, b, c〉 is 3. We compute the entries
of f̂ = T⊗3〈a, b, c〉 as elements in Z[a, b, c, x, y] for domain sizes 3 ≤ κ ≤ 6 by replacing
〈a, b, c〉 with an equivalent expression from either (21) or (22). Then we interpolate the
entries of f̂ as elements in (Z[a, b, c, x, y])[κ]. The resulting expressions for the signature
entries are as given in the statement of Lemma 11.6.
It is straightforward to verify the expressions for a′ − b′ and b′ − c′ given those for a′,

b′, and c′. Recall that A = a − 3b + 2c. If A = 0, then it follows that a′ − 3b′ + 2c′ = 0 as
well since

a′ − 3b′ + 2c′ = a′ − b′ − 2(b′ − c′)
= (x − y)2[2D + A(x − y)] − 2(x − y)2D

= A(x − y)3 = 0.

The expressions for b′ and c′ when A = 0 directly follow from their general expressions
above. ��

By composing smaller gadgets, we can easily compute the signatures of rather large
gadgets.

Lemma 11.7 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If 〈a, b, c〉 is assigned to every vertex of the gadget in Fig. 27c,
then the resulting signature is the succinct binary signature 〈x, y〉 of type τ2, where
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(a) (b) (c)

Fig. 27 Decomposition of a binary gadget. All circle vertices are assigned 〈a, b, c〉, and the square vertex
in (b) is assigned the signature of the gadget in (a). a Inner structure b Outer structure c Entire binary gadget

x = a4 + 6(κ − 1)a2b2 + 16(κ − 1)ab3 + 12(κ − 1)(κ − 2)ab2c

+ 12(κ − 1)(κ − 2)abc2 + 4(κ − 1)(κ − 2)(κ − 3)ac3 + 3(κ − 1)(5κ − 7)b4

+ 4(κ − 1)(κ − 2)(κ + 5)b3c + 6(κ − 1)(κ − 2)(7κ − 18)b2c2

+ 12(κ − 3)2(κ − 1)(κ − 2)bc3 + (κ − 1)(κ − 2)(κ3 − 9κ2 + 29κ − 32)c4 and

y = 2a3b + (κ + 4)a2b2 + 4(κ − 2)a2bc + (κ − 2)a2c2 + 2(9κ − 11)ab3

+ 2(κ − 2)(3κ + 8)ab2c + 2(κ − 2)(12κ − 31)abc2 + 2(κ − 2)(2κ2 − 11κ + 16)ac3

+ (7κ2 + 3κ − 24)b4 + 2(κ − 2)(κ2 + 31κ − 70)b3c + (κ − 2)(48κ2 − 234κ + 301)b2c2

+ 2(κ − 2)(6κ3 − 45κ2 + 121κ − 116)bc3

+ (κ − 2)(κ − 3)(κ3 − 7κ2 + 19κ − 20)c4 .

Proof Since 〈a, b, c〉 is domain invariant, the signature of this gadget is also domain invari-
ant. Any domain invariant binary signature has a succinct signature of type τ2.
Consider the gadget in Fig. 27a. We assign 〈a, b, c〉 to both vertices. By Lemma 11.3, this

gadget has the succinct quaternary signature f of type τ4, where f is given in Lemma 11.3.
Now consider the gadget in Fig. 27b. We assign 〈a, b, c〉 the circle vertices and f to

the square vertex. By partitioning the internal edge assignments into parts with the same
contribution to the sum, one can verify that this gadget has the succinct binary signature
〈x, y〉 of type τ2, where

x = f 1 1
1 1

[
a2 + (κ − 1)b2

]

+ 4(κ − 1) f 1 2
1 1

[
ab + b2 + (κ − 2)bc

]

+ (κ − 1) f 1 2
1 2

[
2ab + (κ − 2)b2

]

+ 2(κ2 − 3κ + 2) f 1 3
1 2

[
ac + 2b2 + (κ − 3)bc

]

+ (κ − 1) f 1 2
2 1

[
2b2 + (κ − 2)c2

]

+ 2(κ2 − 3κ + 2) f 1 3
2 1

[
b2 + 2bc + (κ − 3)c2

]

+ (κ − 1) f 1 1
2 2

[
2b2 + (κ − 2)c2

]

+ 2(κ2 − 3κ + 2) f 1 1
2 3

[
b2 + 2bc + (κ − 3)c2

]

+ (κ3 − 6κ2 + 11κ − 6) f 1 4
2 3

[
4bc + (κ − 4)c2

]
and

y = f 1 1
1 1

[
2ab + (κ − 2)b2

]

+ 4 f 1 2
1 1

[
ab + (κ − 2)ac + (2κ − 3)b2 + (κ − 2)2bc

]

+ f 1 2
1 2

[
a2 + 2(κ − 2)ab + (κ2 − 3κ + 3)b2

]

+ 2(κ − 2) f 1 3
1 2

[
2ab + (κ − 3)ac + 2(κ − 2)b2 + (κ2 − 4κ + 5)bc

]

+ f 1 2
2 1

[
2b2 + 4(κ − 2)bc + (κ2 − 5κ + 6)c2

]

+ 2(κ − 2) f 1 3
2 1

[
3b2 + 2(2κ − 5)bc + (κ2 − 5κ + 7)c2

]
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+ f 1 1
2 2

[
2b2 + 4(κ − 2)bc + (κ2 − 5κ + 6)c2

]

+ 2(κ − 2) f 1 1
2 3

[
3b2 + 2(2κ − 5)bc + (κ2 − 5κ + 7)c2

]

+ (κ2 − 5κ + 6) f 1 4
2 3

[
4b2 + 4(κ − 3)bc + (κ2 − 5κ + 8)c2

]
.

Substituting for the entries of f gives the result stated in Lemma 11.7. ��

Lemma 11.8 Suppose κ ≥ 3 is the domain size and a, b, c ∈ C. Let 〈a, b, c〉 be a succinct
ternary signature of type τ3. If 〈a, b, c〉 is assigned to every vertex of the gadget in Fig. 28c,
then the resulting signature is the binary succinct signature 〈x, y〉 of type τ2, where x and y
are given in Table 4.

Proof Since 〈a, b, c〉 is domain invariant, the signature of this gadget is also domain invari-
ant. Any domain invariant binary signature has a succinct signature of type τ2.
Consider the gadget in Fig. 28a. We assign 〈a, b, c〉 to all vertices. By Lemma 11.4, this

gadget has the succinct ternary signature f = 〈a0, b0, c0〉 of type τ4, where a0, b0, and c0
are given in the statement of Lemma 11.4 as a′, b′, and c′, respectively.
Now consider the gadget in Fig. 28b. We assign f to the vertices. By Lemma 11.2, the

resulting gadget has the binary succinct signature 〈x, y〉 of type τ2, where

x = a20 + 3(κ − 1)b20 + (κ − 1)(κ − 2)c20 and

y = 2a0b0 + κb20 + 4(κ − 2)b0c0 + (κ − 2)(κ − 3)c20 .

Substituting for a0, b0, and c0 gives the result in Table 4. ��
Beyond the gadgets in this section, there are two 9-by-9 recurrencematrices that appear

in our proofs (seeTable 1 andTable 2). No entry in those recurrencematrices is any harder
to compute than any signature entry appearing in this section. The difficulty with these
recurrence matrices is the sheer number of terms that must be computed.

12 Appendix 2: More binary interpolation
For some settings of a, b, c ∈ C, Lemma 9.3 and Lemma 9.11 do not apply. However, these
settings are easily handled on a case-by-case basis.

Lemma 12.1 Suppose κ ≥ 3 is the domain size. Let F be a signature set containing the
succinct unary signature 〈1〉 of type τ1 and any of the following succinct ternary signatures
of type τ3:

1. 〈κ − 2 ± iκ
√
2(κ − 2), κ − 2,−2〉;

2. 〈(κ − 2)2 ± iκ
√

κ2 − 4,−2(κ − 2), 4〉;

(a) (b) (c)

Fig. 28 Decomposition of a binary gadget. All circle vertices are assigned 〈a, b, c〉, and the triangle vertices
in (b) is assigned the signature of the gadget in (a). a Inner structure, b outer structure c entire binary gadget
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Table 4 The signature of the gadget in Fig. 28c is 〈x, y〉 for the x and y above

x = a6 + 9(κ − 1)a4b2 + 32(κ − 1)a3b3 + 18(κ − 1)(κ − 2)a3b2c + 12(κ − 1)(κ − 2)a3bc2

+ 2(κ − 1)(κ − 2)(κ − 3)a3c3 + 3(κ − 1)(16κ − 7)a2b4 + 6(κ − 1)(κ − 2)(κ + 19)a2b3c

+ 18(κ − 1)(κ − 2)(4κ − 7)a2b2c2 + 6(κ − 1)(κ − 2)(κ2 + 2κ − 13)a2bc3

+ 3(κ − 1)(κ − 2)(3κ2 − 17κ + 25)a2c4 + 6(κ − 1)(κ2 + 27κ − 42)ab5

+ 6(κ − 1)(κ − 2)(40κ − 41)ab4c + 24(κ − 1)(κ − 2)(3κ2 + 8κ − 36)ab3c2

+ 6(κ − 1)(κ − 2)(κ3 + 50κ2 − 285κ + 393)ab2c3

+ 6(κ − 1)(κ − 2)(13κ3 − 108κ2 + 311κ − 307)abc4

+ 6(κ − 1)(κ − 2)(κ − 3)(κ3 − 8κ2 + 24κ − 26)ac5

+ (κ − 1)(κ3 + 83κ2 − 189κ + 81)b6 + 18(κ − 1)(κ − 2)(4κ2 + 13κ − 43)b5c

+ 3(κ − 1)(κ − 2)(7κ3 + 222κ2 − 1156κ + 1442)b4c2

+ 2(κ − 1)(κ − 2)(κ4 + 221κ3 − 1725κ2 + 4576κ − 4153)b3c3

+ 3(κ − 1)(κ − 2)(43κ4 − 441κ3 + 1791κ2 − 3393κ + 2505)b2c4

+ 6(κ − 1)(κ − 2)(κ − 3)(3κ4 − 29κ3 + 116κ2 − 228κ + 182)bc5

+ (κ − 1)(κ − 2)(κ6 − 15κ5 + 98κ4 − 361κ3 + 798κ2 − 1004κ + 556)c6

and

y = 2a5b + (κ + 8)a4b2 + 4(κ − 2)a4bc + 2(κ − 2)a4c2 + 4(9κ − 11)a3b3 + 2(κ − 2)(3κ + 17)a3b2c

+ 4(κ − 2)(7κ − 18)a3bc2 + 2(κ − 3)2(κ − 2)a3c3 + (23κ2 + 49κ − 114)a2b4

+ 2(κ − 2)(κ2 + 94κ − 147)a2b3c + 6(κ − 2)(12κ2 − 34κ + 17)a2b2c2

+ 2(κ − 2)(3κ3 + 9κ2 − 97κ + 149)a2bc3 + (κ − 2)(9κ3 − 68κ2 + 181κ − 171)a2c4

+ 2(3κ3 + 73κ2 − 183κ + 99)ab5 + 2(κ − 2)(96κ2 − 43κ − 255)ab4c

+ 4(κ − 2)(16κ3 + 94κ2 − 655κ + 855)ab3c2

+ 2(κ − 2)(3κ4 + 159κ3 − 1233κ2 + 3164κ − 2809)ab2c3

+ 2(κ − 2)(39κ4 − 375κ3 + 1425κ2 − 2555κ + 1825)abc4

+ 2(κ − 2)(3κ5 − 36κ4 + 181κ3 − 482κ2 + 686κ − 418)ac5

+ (κ4 + 50κ3 − 17κ2 − 396κ + 486)b6

+ 2(κ − 2)(28κ3 + 251κ2 − 1302κ + 1467)b5c

+ (κ − 2)(19κ4 + 745κ3 − 5374κ2 + 12664κ − 10320)b4c2

+ 2(κ − 2)(κ5 + 224κ4 − 2062κ3 + 7371κ2 − 12357κ + 8227)b3c3

+ (κ − 2)(129κ5 − 1464κ4 + 6952κ3 − 17464κ2 + 23397κ − 13387)b2c4

+ 2(κ − 2)(9κ6 − 123κ5 + 727κ4 − 2405κ3 + 4754κ2 − 5374κ + 2718)bc5

+ (κ − 3)(κ − 2)(κ6 − 13κ5 + 74κ4 − 239κ3 + 470κ2 − 544κ + 292)c6 .

3. 〈−(2κ − 3)
[
2(κ − 2) ± iκ

√
2(κ − 2)

]
,−2(κ − 3)(κ − 2) ± iκ

√
2(κ − 2), 4(2κ − 3)〉

with κ �= 4;
4. 〈−κ2 + 2, 2, 2〉;
5. 〈κ2 − 6κ + 6,−2(κ − 3), 6〉;
6. 〈(κ − 3)(κ − 2)2 ± iκ(2κ − 3)

√
κ2 − 4,−3(κ − 2)2 ∓ iκ

√
κ2 − 4, 2(5κ − 6)〉;

7. 〈−(κ − 1)
[
5(κ − 2) ± 3iκ

√
2(κ − 2)

]
,−(κ − 2)(3κ − 5) ± iκ

√
2(κ − 2), 9κ − 10〉;

8. 〈(κ−1)
[
(κ−2)(2κ+3)±3κ

√
κ2 − 5κ + 6

]
, (κ−3)(κ−2)∓κ

√
κ2 − 5κ + 6,−5κ+6〉;

9. 〈(κ−1)
[
(κ−2)(2κ−7)±3iκ

√
κ2−κ − 2

]
,−(κ−2)(5κ−7)∓ iκ

√
κ2−κ−2, 13κ−14〉;

10. 〈1, 0,−2〉 with κ = 3;
11. 〈±i

√
2, 0, 1〉 with κ = 3;

12. 〈−1 ± i
√
2, 0, 1〉 with κ = 3;

13. 〈−1 ± 3i
√
3, 0, 2〉 with κ = 3;

Then

Pl-Holant(F ∪ {〈x, y〉}) ≤T Pl-Holant(F )

for any x, y ∈ C, where 〈x, y〉 is a succinct binary signature of type τ2.
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Proof In each case, we use the recursive construction in Fig. 7. We simply state which
gadget we use, the signature of that gadget, and the eigenvalues of its associated recur-
rence matrix (cf. Lemma 4.11). Then the result easily follows from Corollary 4.13 as the
eigenvalues have distinct complex norms.
We use three possible gadgets, which are in Figs. 19a, 27c, and 28c. The signatures for

the last two gadgets are given by Lemmas 11.7 and 11.8, respectively.

1. For 〈κ − 2 ± iκ
√
2(κ − 2), κ − 2,−2〉, we first use the gadget in Fig. 27c. Let

γ = ±i
√
2(κ − 2). Up to a nonzero factor of (γ−2)7γ 2(γ+2)3

64 , the signature of the
gadget is 〈−1, 1〉, which means the eigenvalues are κ − 2 and −2. If κ �= 4, then
these eigenvalues have distinct complex norms. Otherwise, κ = 4 and we use the
gadget in Fig. 28c. Up to a factor of±65536i, the signature of this gadget is 〈1,−3〉,
which means the eigenvalues are −8 and 4.

2. For 〈(κ − 2)2 ± iκ
√

κ2 − 4,−2(κ − 2), 4〉, we first use the gadget in Fig. 27c. Let
γ = ±i

√
κ2 − 4. Up to a nonzero factor of−4(κ −2)κ3(κ2−4γ −8), the signature

of this gadget is 〈κ2−6κ+4,−2(κ−4)〉, whichmeans the eigenvalues are−(κ−2)2

and κ2 − 4k − 4. If κ ≥ 5, then these eigenvalues have opposite signs but cannot
be the negative of each other. Thus, they have distinct complex norms. The same
conclusion holds for κ = 3 by direct inspection. Otherwise, κ = 4 and we use the
gadget in Fig. 28c. Up to a factor of 2097152, the signature of this gadget is 〈5, 1〉,
which means the eigenvalues are 8 and 4.

3. For 〈−(2κ−3)
[
2(κ−2)±iκ

√
2(κ − 2)

]
,−2(κ−3)(κ−2)±iκ

√
2(κ − 2), 4(2κ−3)〉,

we have κ �= 4. We use the gadget in Fig. 27c. Let γ = ±i
√
2(κ − 2). Up to a

nonzero factor of−4(κ −2)κ6(3κ −4)(4κ2 −28κ +41−4γ (2κ −5)), the signature
of the gadget is 1

κ
〈3κ − 4, κ − 4〉, which means the eigenvalues are κ − 2 and 2.

4. For 〈−κ2+2, 2, 2〉, we use the gadget in Fig. 27c. Up to a nonzero factor of (κ−2)κ5,
the signature for this gadget is 〈κ2 + 2κ − 4,−4〉, which means the eigenvalues are
(κ − 2)κ and κ(κ + 2).

5. For 〈κ2 − 6κ + 6,−2(κ − 3), 6〉, we use the gadget in Fig. 27c. Up to a nonzero
factor of (κ − 2)κ5, the signature for this gadget is 〈κ2 + 2κ − 4,−4〉, which means
the eigenvalues are (κ − 2)κ and κ(κ + 2).

6. For 〈(κ − 3)(κ − 2)2 ± iκ(2κ − 3)
√

κ2 − 4,−3(κ − 2)2 ∓ iκ
√

κ2 − 4, 2(5κ − 6)〉,
we use the gadget in Fig. 27c. Let γ = ±i

√
κ2 − 4. Up to a nonzero factor of

(γ − 2)2(γ + 2)2(κ − 2)κ[7κ2 + 60κ − 164 + 8γ (3κ − 10)], the signature of the
gadget is 〈−κ4 + 6κ3 + 4κ2 − 24κ + 16, 2(κ3 − 2κ2 − 8κ + 8)〉, which means the
eigenvalues are λ1 = (κ − 2)κ(κ2 + 2κ − 4) and λ2 = −κ(κ + 2)(κ2 − 6κ + 4). For
3 ≤ κ ≤ 5, one can directly check that these eigenvalues have distinct complex
norms. For κ ≥ 6, we have λ2 < 0, so these eigenvalues have the same complex
norm preciously when λ1 = −λ2. However, λ1 +λ2 = 4κ3 �= 0, so the eigenvalues
have distinct complex norms.

7. For 〈−(κ −1)
[
5(κ −2)±3iκ

√
2(κ − 2)

]
,−(κ −2)(3κ −5)± iκ

√
2(κ − 2), 9κ −10〉,

we first use the gadget in Fig. 27c. Let γ = ±i
√
2(κ − 2). Up to a nonzero factor of

−(κ −2)(κ −1)κ5[81κ2−756κ +1252−24(9κ −26)γ ], the signature of this gadget
is 〈5κ −6, κ −6〉, whichmeans the eigenvalues are κ −2 and 4. If κ �= 6, then these
eigenvalues have distinct complex norms. Otherwise, κ = 6 and we use the gadget
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in Fig. 28c. Up to a factor of −17199267840(1169 ± 450i
√
2), the signature of this

gadget is 〈7, 13〉, which means the eigenvalues are 72 and −6.
8. For 〈(κ−1)

[
(κ−2)(2κ+3)±3κ

√
κ2 − 5κ + 6

]
, (κ−3)(κ−2)∓κ

√
κ2 − 5κ + 6,−5κ+

6〉, we first use the gadget in Fig. 27c. Let γ = ±√
κ2 − 5κ + 6. Up to a factor of

(κ − 2)(κ − 1)κ5[313κ2 − 1500κ + 1764 − 24(13κ − 30)γ ], the signature of this
gadget is 〈κ3 − 3κ2 + 3,−κ + 3〉, which means the eigenvalues are λ1 = (κ − 2)2κ
and λ2 = κ(κ2 − 3κ + 1). If κ ≥ 4, these eigenvalues are positive, so they have the
same complex norm preciously when λ1 = λ2. However, λ1−λ2 = −(κ −3)κ �= 0,
so the eigenvalues have distinct complex norms. Otherwise, κ = 3 and we use the
gadget in Fig. 28c. Up to a factor of 9565938, the signature of this gadget is 〈5, 2〉,
which means the eigenvalues are 9 and 3.

9. For 〈(κ−1)
[
(κ−2)(2κ−7)±3iκ

√
κ2 − κ − 2

]
,−(κ−2)(5κ−7)∓iκ

√
κ2 − κ − 2, 13κ−

14〉, we use the gadget in Fig. 27c. Let γ = ±i
√

κ2 − κ − 2. Up to a nonzero factor
of (κ − 2)(κ − 1)κ5[119κ2 + 76κ − 772 + 24(5κ − 22)γ ], the signature of this
gadget is 〈−κ3 + 7κ2 − 4κ − 3, 2κ2 − 7κ − 3〉, which means the eigenvalues are
λ1 = (κ − 2)κ2 and λ2 = −κ(k2 − 5κ − 3). For 3 ≤ κ ≤ 5, one can directly check
that these eigenvalues have distinct complex norms. For κ ≥ 6, we have λ2 < 0,
so these eigenvalues have the same complex norm preciously when λ1 = −λ2.
However, λ1 + λ2 = 3κ(κ + 1) �= 0, so the eigenvalues have distinct complex
norms.

10. For 〈1, 0,−2〉 with κ = 3, we use the gadget in Fig. 27c. Up to a factor of 3, the
signature of this gadget is 〈11,−4〉, which means the eigenvalues are 3 and 15.

11. For 〈±i
√
2, 0, 1〉 with κ = 3, we use the gadget in Fig. 19a. The signature of this

gadget is 〈±i
√
2, 1〉, which means the eigenvalues are 2 ± i

√
2 and −1 ± i

√
2.

12. For 〈−1± i
√
2, 0, 1〉with κ = 3, we use the gadget in Fig. 19a. The signature of this

gadget is 〈−1 ± i
√
2, 1〉, which means the eigenvalues are 1 ± i

√
2 and −2 ± i

√
2.

13. For 〈−1 ± 3i
√
3, 0, 2〉 with κ = 3, we use the gadget in Fig. 27c. Up to a factor

of 72, the signature of this gadget is 1
3 〈25 ± 13

√
3,−5 ± i

√
3〉, which means the

eigenvalues are 5(1 ± i
√
3) and 2(5 ± 2

√
3). ��

13 Appendix 3: Invariance properties from row eigenvectors
The purpose of this section is to show how a recursive construction in an interpolation
proof can be used to form a hypothesis about possible invariance properties. We often
find that no matter what constructions one considers, all signatures they produce satisfy
certain invariance. Instead of defining this notion formally, we prove the following lemma
as an example. After this lemma and its proof, we explain that this invariance can be
suggested by certain recursive constructions in an alternative proof of Theorem 4.8, that
it is #P-hard to count edge κ-coloring over planar κ-regular graphs for all κ ≥ 3. This
alternative proof uses the interpolation techniques that we developed in Sect. 6.

Lemma 13.1 Suppose κ ≥ 3 is the domain size. If F is a planar {ADκ ,κ }-gate with succinct
quaternary signature 〈a, b, c, d, e〉 of type τcolor, then a + c = b + d.

Proof Fix two distinct colors g, y ∈ [κ]. We define the swap of an edge colored g or y to be
the opposite of these two colors. That is, swapping the color of an edge colored g (resp. y)
gives the same edge colored y (resp. g). The ith external edge of F is the external edge that
corresponds to the ith input of F . Recall that the input edges of F are ordered cyclically.
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For 1 ≤ i ≤ 4, let Si (resp. S′
i) be the set of colorings of the edges (both internal and

external) of F with an external coloring in the partition Pi of the succinct signature type
τcolor such that the first external edge of F is colored g (resp. y) and the remaining external
edges are either colored g or y (as dictated by Pi). Note that |Si| = |S′

i| for 1 ≤ i ≤ 4.
Furthermore, the sizes of these sets do not depend on the choice of g, y ∈ [κ]. Thus, it
suffices to show that

|S1 ∪ S′
1 ∪ S3 ∪ S′

3| = |S2 ∪ S′
2 ∪ S4 ∪ S′

4|. (23)

Let σ ∈ S1 ∪ S′
1 ∪ S3 ∪ S′

3 be a coloring of F . Starting at the first external edge of F ,
there is a unique path π1 that alternates in edge colors between g and y and terminates
at another external edge of F . Suppose for a contradiction that this path terminates at
the third external edge of F . Also consider the unique path π2 that starts at the second
external edge of F , alternates in edge colors between g and y, and must terminate at the
fourth external edge of F . These two paths must cross somewhere since their ends are
crossed. By planarity, they must cross at a vertex, and yet they must be vertex disjoint.
This is a contradiction. Therefore, the path π1 either terminates at the second or fourth
external edge of F .
Suppose π1 terminates at the second external edge of F . If σ ∈ S1 (resp. σ ∈ S′

1), then
swapping the colors of every edge in π1 gives a new coloring π ′

1 ∈ S′
2 (resp. π ′

1 ∈ S2).
Similarly, if σ ∈ S3 (resp. σ ∈ S′

3), then swapping the colors of every edge in π1 gives a
new coloring π ′

1 ∈ S′
4 (resp. π

′
1 ∈ S4).

Otherwise, π1 terminates at the fourth external edge of F . If σ ∈ S1 (resp. σ ∈ S′
1), then

swapping the colors of every edge in π1 gives a new coloring π ′
1 ∈ S′

4 (resp. π ′
1 ∈ S4).

Similarly, if σ ∈ S3 (resp. σ ∈ S′
3), then swapping the colors of every edge in π1 gives a

new coloring π ′
1 ∈ S′

2 (resp. π
′
1 ∈ S2).

Furthermore, this mapping from S1 ∪ S′
1 ∪ S3 ∪ S′

3 to S2 ∪ S′
2 ∪ S4 ∪ S′

4 is invertible.
Therefore, we have established (23), as desired. ��
Now we give an alternative proof of Theorem 4.8. The recursive construction in this

proof will suggest the invariance in Lemma 13.1.
Let q(x, κ) = x3 − x2 + x− (κ − 1). First we determine the nature of the roots of q(x, κ).

Lemma 13.2 For all κ ∈ Z, the polynomial q(x, κ) in x has one real root r ∈ R and two
nonreal complex conjugate roots α,α ∈ C, such that α + α = 1 − r and αα = r2 − r + 1.
Furthermore, if q(x, κ) is reducible inQ[x] and κ ≥ 3, then r ≥ 2 is an integer.

Proof The discriminant of q(x, κ) with respect to x is discx(q(x, κ)) = −27κ2+68κ −44 <

0, so q(x, κ) has one real root r ∈ R and two nonreal complex conjugate roots α,α ∈ C.
We have

α + α + r = 1

αα + (α + α)r = 1

ααr = κ − 1.

It follows that α + α = 1 − r, αα = r2 − r + 1, and

κ = r3 − r2 + r + 1. (24)
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If q(x, κ) is reducible in Q[x] with κ ≥ 3, then r ∈ Z by Gauss’s Lemma and so r ≥ 2
by (24). ��
Lemma 13.3 If κ ≥ 3 is an integer, then the roots of x3 −x2 +x− (κ −1) satisfy the lattice
condition.

Proof If q(x, κ) is irreducible in Q[x], then its roots satisfy the lattice condition by
Lemma 6.4.
Otherwise, q(x, κ) is reducible in Q[x]. By Lemma 13.2, q(x, κ) has one real root r ∈ Z

satisfying r ≥ 2 and two nonreal complex conjugate rootsα,α ∈ C satisfying α+α = 1−r
and αα = r2 − r + 1. Suppose there exist i, j, k ∈ Z such that αiαj = rk and i+ j = k . We
want to show that i = j = k = 0.
There is an element in the Galois group of q(x, κ) that fixes Q pointwise and swaps α

and α. Thus, αjαi = rk . Dividing these two equations gives (α/α)i−j = 1. We claim that
ω = α/α cannot be a root of unity and hence i = j. For a contradiction, suppose ω is a dth
primitive root of unity. Let f (x) = (x − α)(x − α) = x2 + (r − 1)x + (r2 − r + 1) ∈ Z[x].
Then ω belongs to the splitting field of f over Q, which is a degree 2 extension over Q.
This implies that the Euler totient function φ(d) | 2. Therefore, d ∈ {1, 2, 3, 4, 6}. Let
ρ = α+α

αα
= 1+ω

ωα
= 1−r

r2−r+1 ∈ Q. Since r ≥ 2, we have ρ �= 0 and hence d �= 2. Moreover,
f (x) = x2− (2+ω+ω−1)ρ−1x+ (2+ω+ω−1)ρ−2. Notice that the quantity 2+ω+ω−1 is
4, 1, 2, 3, respectively, when d = 1, 3, 4, 6. As (2+ ω + ω−1)ρ−2 ∈ Z, we get that ρ−1 must
be an integer when d = 3, 4, 6 and half an integer when d = 1. However ρ−1 = −r + 1

r−1 .
The only possibility is r = 3 and d = 1, yet it is easy to check that ω �= 1 when this holds.
This proves the claim.
From αα = r2 − r + 1, we have (r2 − r + 1)i = (αα)i = rk . Since r and r2 − r + 1 are

relatively prime and r ≥ 2, we must have i = k = 0. ��

Alternative proof of Theorem 4.8 Asbefore, letκ be thedomain size of allHolant problems
in this proof and let 〈2, 1, 0, 1, 0〉be a succinct quaternary signatureof type τcolor.We reduce
fromPl-Holant(〈2, 1, 0, 1, 0〉) to Pl-Holant(ADκ ,κ ), which denotes the problemof counting
edge κ-colorings in planar κ-regular graphs as a Holant problem. Then by Corollary 4.7,
we conclude that Pl-Holant(ADκ ,κ ) is #P-hard.
Consider the gadget in Fig. 5, where the bold edge represents κ − 2 parallel edges. We

assign ADκ ,κ to both vertices. Up to a nonzero factor of (κ − 2)!, this gadget has the
succinct quaternary signature f = 〈0, 1, 1, 0, 0〉 of type τcolor. Now consider the recursive
construction in Fig. 29. All vertices are assigned the signature f . Let fs be the succinct

N0 N1

N
k

Nk+1

Fig. 29 Alternate recursive construction to interpolate 〈2, 1, 0, 1, 0〉. The vertices are assigned the signature
of the gadget in Fig. 5
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quaternary signature of type τcolor for the sth gadget of the recursive construction. Then
f0 = f and fs = Ms f0, where

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 κ − 1 0
1 0 0 κ − 2 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The row vectors

(1,−1, 1,−1, 0) and (0, 0, 0, 0, 1)

are linearly independent row eigenvectors ofM, with eigenvalues −1 and 1, respectively,
that are orthogonal to the initial signature f0. Note that our target signature 〈2, 1, 0, 1, 0〉
is also orthogonal to these two row eigenvectors.
Up to a factor of (x−1)(x+1), the characteristic polynomial ofM is x3−x2+x− (κ −1).

The roots of this polynomial satisfy the lattice condition by Lemma 13.3. In particular,
these three roots are distinct. By Lemma 13.2, the only real root is at least 2. Thus, all five
eigenvalues ofM are distinct, soM is diagonalizable.
The 3-by-3 matrix in the upper-left corner of [ f0 M f0 . . . M4 f0] is

[ 0 0 κ−1
1 0 κ−2
1 1 0

]
. Its deter-

minant is κ − 1 �= 0. Thus, [ f0 M f0 . . . M4 f0] has rank at least 3, so by Lemma 6.2, f0 is
not orthogonal to the three remaining row eigenvectors ofM.
Therefore, by Lemma 6.6, we can interpolate 〈2, 1, 0, 1, 0〉, which completes the proof.

��

Notice that the row eigenvector (1,−1, 1,−1, 0) suggests that a − b + c − d = 0 is
an invariance shared by all signatures of symmetric ternary constructions. Some row
eigenvectors, like (0, 0, 0, 0, 1), only indicate an invariance present in some recursive con-
structions. (When κ = 4, there are recursive constructions for which (0, 0, 0, 0, 1) is not a
row eigenvector of the recurrence matrix.) The row eigenvector (1,−1, 1,−1, 0) is more
intrinsic; it must appear because of the invariance present in all constructions as shown
in Lemma 13.1.
This suggests an approach to discover new invariance properties. Given a set F of

signatures, create some recursive construction and inspect the row eigenvectors of the
resulting recurrence matrix. For example, consider the set FA = {〈a, b, c〉 | a, b, c ∈
C and A = 0}, whereA = a−3b+2c. It seems thatFA is closed under symmetric ternary
constructions, such as those in Sect. 7.1. In particular, (1,−3, 2) is a row eigenvector of
the recurrence matrix for every recursive ternary construction with symmetric signatures
that we tried. However, we do not know how to prove this closure property.

Received: 9 June 2015 Accepted: 5 May 2016

References
1. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial: a new graph polynomial. In: SODA, pp. 237–245. Society

for Industrial and Applied Mathematics (2000)
2. Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Counting graph homomorphisms. In: Klazar, M., Kratochvíl,

J., Loebl, M., Matous̆ek, J., Valtr, P., Thomas, R. (eds.) Topics in Discrete Mathematics, volume 26 of Algorithms and
Combinatorics, pp. 315–371. Springer, Berlin (2006)

3. Brylawski, T., Oxley, J.: The Tutte polynomial and its applications. In: White, N. (ed.) Matriod Applications, pp. 123–225.
Cambridge University Press, Cambridge (1992)



Cai et al. Res Math Sci (2016) 3:18 Page 76 of 77

4. Bulatov, A., Dyer, M., Ann Goldberg, L., Jalsenius, M., Richerby, D.: The complexity of weighted Boolean #CSP with
mixed signs. Theor. Comput. Sci. 410(38–40), 3949–3961 (2009)

5. Bulatov, A., Grohe, M.: The complexity of partition functions. Theor. Comput. Sci. 348(2), 148–186 (2005)
6. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53(1), 66–120

(2006)
7. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. J. ACM 60(5), 34:1–34:41 (2013)
8. Bulatov, A.A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. Inform.

Comput. 205(5), 651–678 (2007)
9. Cai, J.-Y., Chen, X.: Complexity of counting CSP with complex weights. In: STOC, pp. 909–920. ACM (2012)
10. Cai, J.-Y., Chen, X., Lipton, R.J., Lu, P.: On tractable exponential sums. In: FAW, pp. 148–159. Springer, Berlin (2010)
11. Cai, J.-Y., Chen, X., Lu, P.: Non-negatively weighted #CSP: an effective complexity dichotomy. In: CCC, pp. 45–54. IEEE

Computer Society (2011)
12. Cai, J.-Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: a dichotomy theorem. SIAM J. Comput. 42(3),

924–1029 (2013)
13. Cai, J.-Y., Choudhary, V.: Valiant’s Holant theorem and matchgate tensors. Theor. Comput. Sci. 384(1), 22–32 (2007)
14. Cai, J.-Y., Guo, H., Williams, T.: A complete dichotomy rises from the capture of vanishing signatures (extended

abstract). In: STOC, pp. 635–644. ACM (2013)
15. Cai, J.-Y., Huang, S., Pinyan, L.: From Holant to #CSP and back: Dichotomy for Holantc problems. Algorithmica 64(3),

511–533 (2012)
16. Cai, J.-Y., Kowalczyk, M.: Spin systems on k-regular graphs with complex edge functions. Theor. Comput. Sci. 461,

2–16 (2012)
17. Cai, J.-Y., Kowalczyk, M., Williams, T.: Gadgets and anti-gadgets leading to a complexity dichotomy. In: ITCS, pp.

452–467. ACM (2012)
18. Cai, J.-Y., Lu, P., Xia, M.: Holant problems and counting CSP. In: STOC, pp. 715–724. ACM (2009)
19. Cai, J.-Y., Lu, P., Xia, M.: Holographic algorithms with matchgates capture precisely tractable planar #CSP. In: FOCS, pp.

427–436. IEEE Computer Society (2010)
20. Cai, J.-Y., Pinyan, L., Xia, M.: Computational complexity of Holant problems. SIAM J. Comput. 40(4), 1101–1132 (2011)
21. Cai, J.-Y., Pinyan, L., Xia, M.: Holographic reduction, interpolation and hardness. Comput. Complex. 21(4), 573–604

(2012)
22. Cai, J.-Y., Lu, P., Xia, M.: Dichotomy for Holant* problems with domain size 3. In: SODA, pp. 1278–1295. SIAM (2013)
23. Cai, J.-Y., Pinyan, L., Xia, M.: Holographic algorithms by Fibonacci gates. Linear Algebra Appl. 438(2), 690–707 (2013)
24. Cai, J.-Y., Pinyan, L., Xia, M.: The complexity of complex weighted Boolean #CSP. J. Comput. Syst. Sci. 80(1), 217–236

(2014)
25. Dodson, C.T.J., Poston, T.: Tensor Geometry. Graduate Texts in Mathematics, vol. 130, 2nd edn. Springer, Berlin (1991)
26. Dyer, M., Ann Goldberg, L., Jerrum, M.: The complexity of weighted Boolean #CSP. SIAM J. Comput. 38(5), 1970–1986

(2009)
27. Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3–4),

260–289 (2000)
28. Dyer, M., Richerby, D.: On the complexity of #CSP. In: STOC, pp. 725–734. ACM (2010)
29. Ellis-Monaghan, J.A.: New results for the Martin polynomial. J. Comb. Theory Ser. B 74(2), 326–352 (1998)
30. Ellis-Monaghan, J.A.: Identities for circuit partition polynomials, with applications to the Tutte polynomial. Adv. Appl.

Math. 32(1–2), 188–197 (2004)
31. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983)
32. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: a study

through Datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998)
33. Gallagher, P.X.: The large sieve and probabilistic Galois theory. In: Proc. Symp. Pure Math., volume 24 of Analytic

Number Theory, pp. 91–101. American Mathematical Society (1973)
34. Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs.

SIAM J. Comput. 39(7), 3336–3402 (2010)
35. Guo, H., Huang, S., Lu, P., Xia, M.: The complexity of weighted Boolean #CSPmodulo k. In: STACS, pp. 249–260. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)
36. Guo, H., Williams, T.: The complexity of planar Boolean #CSP with complex weights. CoRR, abs/1212.2284 (2012)
37. Guo, H., Williams, T.: The complexity of planar Boolean #CSP with complex weights. In: ICALP, pp. 516–527. Springer,

Berlin (2013)
38. Håstad, J.: Tensor rank is NP-complete. J. Algorithm. 11(4), 644–654 (1990)
39. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)
40. Jacobson, N.: Basic Algebra I, 2nd edn. W. H. Freeman & Co., San Francisco (1985)
41. Joshi, A.W.: Matrices and Tensors in Physics. New Age International, revised third edition(1995)
42. David Forney Jr., G.: Codes on graphs: normal realizations. IEEE Trans. Inf. Theory 47(2), 520–548 (2001)
43. Kowalczyk, M., Cai, J.-Y.: Holant problems for regular graphs with complex edge functions. In: STACS, pp. 525–536.

Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik (2010)
44. Kowalczyk, M., Cai, J.-Y.: Holant problems for regular graphs with complex edge functions. CoRR. arXiv:1001.0464

(2010)
45. Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular graphs. J. Algorithm 4(1), 35–44 (1983)
46. Levin, A.: Private communication (2013)
47. Loeliger, H.-A.: An introduction to factor graphs. IEEE Signal Process. Mag. 21(1), 28–41 (2004)
48. Markov, I.L., Shi, Y.: Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981

(2008)
49. Martin, P.:. Enumérations Eulériennes dans les multigraphes et invariants de Tutte-Grothendieck. PhD thesis, Joseph

Fourier University (1977). http://tel.archives-ouvertes.fr/tel-00287330

http://arxiv.org/abs/1001.0464
http://tel.archives-ouvertes.fr/tel-00287330


Cai et al. Res Math Sci (2016) 3:18 Page 77 of 77

50. Müller, P.: Hilbert’s irreducibility theorem for prime degree and general polynomials. Israel J. Math. 109(1), 319–337
(1999)

51. Poonen, B.: Private communication (2013)
52. Siegel, C.L.: Über einige anwendungen diophantischer approximationen. Abh. Pruess. Akad. Wiss. Phys. Math. Kl., pp.

41–69 (1929)
53. Stewart, I.: Galois Theory, 3rd edn. Chapman Hall/CRC Mathematics Series. Taylor & Francis, London (2003)
54. Stiebitz, M., Scheide, D., Toft, B., Favrholdt, L.M.: Graph Edge Coloring: Vizing’s Theorem and Goldberg’s Conjecture.

Wiley, New York (2012)
55. Tait, P.: Remarks on the colourings of maps. Proc. R. Soc. Edinb. 10, 729 (1880)
56. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput. 31(4), 1229–1254

(2002)
57. Leslie Valiant, G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)
58. Michel Las Vergnas: Le polynôme de Martin d’un graphe Eulerien. Ann. Discrete Math. 17, 397–411 (1983)
59. Vertigan, D.: The computational complexity of Tutte invariants for planar graphs. SIAM J. Comput. 35(3), 690–712

(2005)
60. Vizing, V.G.: Critical graphs with given chromatic class. Metody Diskret. Analiz. 5, 9–17 (1965)
61. Walsh, P.G.: A quantitative version of Runge’s theorem on Diophantine equations. Acta Arith. 62(2), 157–172 (1992)
62. Welsh, D.: Complexity: Knots. Colourings and Countings. London Mathematical Society Lecture Note Series. Cam-

bridge University Press (1993)


	The complexity of counting edge  colorings and a dichotomy for some  higher domain Holant problems
	Abstract
	1 Introduction
	2 Proof outline and techniques
	3 Preliminaries
	3.1 Problems and definitions
	3.2 Holographic reduction
	3.3 Realization
	3.4 Succinct signatures

	4 Counting edge κ-colorings over planar r-regular graphs
	4.1 The Case kappa-equal-r
	4.2 The case kappa-greater-than-r

	5 Tractable problems
	5.1 Previous dichotomy theorem
	5.2 Affine signatures

	6 An interpolation result
	7 Puiseux series, Siegel's theorem, and Galois theory
	7.1 Constructing a special ternary signature
	7.2 Dose of an effective Siegel's theorem and Galois theory

	8 Constructing a nonzero unary signature
	9 Interpolating all binary signatures of type tau-2
	9.1 E pluribus unum
	9.2 Eigenvalue shifted triples

	10 The main dichotomy
	Acknowledgements
	11 Appendix 1: Computing gadget signatures
	12 Appendix 2: More binary interpolation
	13 Appendix 3: Invariance properties from row eigenvectors
	References




