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Abstract

We show that the integrality gap of the natural LP relaxation of the Asymmetric Traveling
Salesman Problem is polyloglog(n). In other words, there is a polynomial time algorithm that ap-
proximates the value of the optimum tour within a factor of polyloglog(n), where polyloglog(n) is
a bounded degree polynomial of loglog(n). We prove this by showing that any k-edge-connected
unweighted graph has a polyloglog(n)/k-thin spanning tree.

Our main new ingredient is a procedure, albeit an exponentially sized convex program,
that “transforms” graphs that do not admit any spectrally thin trees into those that provably
have spectrally thin trees. More precisely, given a k-edge-connected graph G = (V, E) where
k > Tlog(n), we show that there is a matrix D that “preserves” the structure of all cuts of G such
that for a set F' C E that induces an Q(k)-edge-connected graph, the effective resistance of every
edge in F' w.r.t. D is at most polylog(k)/k. Then, we use a recent extension of the seminal work
of Marcus, Spielman, and Srivastava [MSS13] by the authors [AO14] to prove the existence of a
polylog(k)/k-spectrally thin tree with respect to D. Such a tree is polylog(k)/k-combinatorially
thin with respect to G as D preserves the structure of cuts of G.
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1 Introduction

In the Asymmetric Traveling Salesman Problem (ATSP) we are given a set V' of n := |V/| vertices
and a nonnegative cost function ¢: V x V — R,. The goal is to find the shortest tour that visits
every vertex at least once.

If the cost function is symmetric, i.e., ¢(u,v) = c(v,u) for all u,v € V, then the problem
is known as the Symmetric Traveling Salesman Problem (STSP). There is a 3/2 approximation
algorithm by Christofides [Chr76] for STSP.

There is a natural LP relaxation for ATSP proposed by Held and Karp [HK70],

u,veV
s.t Z Tyw > 1 VS CV,
uES,vgS (1)
quw:va,u—l Yu eV,
veV veV
Ty >0 Yu,v € V.

It is conjectured that the integrality gap of the above LP relaxation is a constant, i.e., the optimum
value of the above LP relaxation is within a constant factor of the length of the optimum ATSP
tour. Until very recently, we had a very limited understanding of the solutions of the above LP
relaxation. To this date, the best known lower bound on the integrality gap of the above LP is 2
[CGKO6].

Despite many efforts, there is no known constant factor approximation algorithm for ATSP.
Recently, Asadpour, Goemans, Madry, the second author and Saberi [AGMT10] designed an
O(logn/loglogn) approximation algorithm for ATSP that broke the O(logn) barrier from Frieze,
Galbiati, and Maffioli [FGM8&2] and subsequent improvements [B1402, KI.SS05, FS07]. The result of
[AGM™10] also upper-bounds the integrality gap of the Held-Karp LP relaxation by O(logn/loglogn).
Later, the second author with Saberi [OS11] and subsequently Erickson and Sidiropoulos [ES14]
designed constant factor approximation algorithms for ATSP on planar and bounded genus graphs.

Thin Trees. The main ingredient of all of the above recent developments is the construction of a
“thin” tree. Let G = (V, E) be an unweighted undirected k-edge-connected graph with n vertices.
Recall that G is k-edge-connected if there are at least k edges in every cut of G, see Subsection 2.3
for properties of k-edge-connected graphs. We allow G to have an arbitrary number of parallel
edges, so we think of F as a multiset of edges. Roughly speaking, a spanning tree 7' C F' is a-thin
with respect to G if it does not contain more than a-fraction of the edges of any cut in G.

Definition 1.1. A spanning tree T C E is a-thin with respect to a (unweighted) graph G = (V, E),
if for each set S CV, B B
T(S,9)| < a-|E(S,S),

where T'(S,S) and E(S,S) are the set of edges of T and G in the cut (S,S) respectively.

One can analogously define a-thin edge covers, a-thin paths, etc. Note that thinness is a downward
closed property, that is any subgraph of an a-thin subgraph of G is also a-thin. In particular, any



Figure 1: Two spanning trees of 4-dimensional hypercube that is 4-edge-connected. Although both
of the trees are Hamiltonian paths, the left spanning tree is 1-thin because all of the edges of the
cut separating red vertices from the black ones are in the tree while the right spanning tree is
0.667-thin.

spanning tree of an a-thin connected subgraph of G is an a-thin spanning tree of G. See Figure 1
for two examples of thin trees.

A key lemma in [AGM " 10] shows that one can obtain an approximation algorithm for ATSP by
finding a thin tree of small cost with respect to the graph defined by the fractional solution of the
LP relaxation. In addition, proving the existence of a thin tree provides a bound on the integrality
gap of the Held-Karp LP relaxation for ATSP.

Later, in [OS11] this connection is made more concrete. Namely, to break the G)(log)lgo(g()n))
barrier, it suffices to ignore the costs of the edges and construct a thin tree in every k-edge-connected
graph for k = O(log(n)).

Theorem 1.2. For any o > 0 (which can be a function of n), and k > logn, a polynomial-
time construction of an «/k-thin tree in any k-edge-connected graph gives an O(«)-approzimation
algorithm for ATSP. In addition, even an ezistential proof gives an O(«) upper bound on the
integrality gap of the LP relaxation.

See Appendix A for the proof of the above theorem. The above theorem shows that to understand
the solutions of LP (1) it is enough to understand the thin tree problem in graphs with low
connectivity.

It is easy to show that any k-edge-connected graph has an O(log(n)/k)-thin tree [GHJS09] using
the independent randomized rounding method of Raghavan and Thompson [RT87]. It is enough to
sample each edge of G independently with probability ©(log(n)/k) and then choose an arbitrary
spanning tree of the sampled graph.

Asadpour et al. [AGM*10] employ a more sophisticated randomized rounding algorithm and

show that any k-edge-connected graph has a ]J{fgglig?w—thin tree. The basic idea of their algorithm
is to use a correlated distribution, that is to sample edges almost independently while preserving
the connectivity of the sampled set. More precisely, they sample a random spanning tree from a

distribution where the edges are negatively correlated, so they get connectivity for free, and they



only use the upper tail of the Chernoff types of bounds. The 1/loglog(n) gain comes from the fact
that the upper tail of the Chernoff bound is slightly stronger than the lower tail,

Independently of the above applications of thin trees, Goddyn formulated the thin tree conjec-
ture because of the close connections to several long-standing open problems regarding nowhere-zero
flows.

Conjecture 1.3 (Goddyn [God04]). There exists a function f(a) such that, for any 0 < o < 1,
every f(a)-edge-connected graph (of arbitrary size) has an a-thin spanning tree.

Goddyn’s conjecture in the strongest form postulates that for a sufficiently large k that is
independent of the size of G, every k-edge-connected graph has an O(1/k)-thin tree. Goddyn
proved that if the above conjecture holds for an arbitrary function f(.), it implies a weaker ver-
sion of Jaeger’s conjecture on the existence of circular nowhere-zero flows [Jae84]. Very recently,
Thomassen proved a weaker version of Jaeger’s conjecture [Thol2, LTWZ13], but his proof has not
yet shed any light on the resolution of the thin tree conjecture.

To this date, Conjecture 1.3 is only proved for planar and bounded genus graphs [OS11, ES14]
and edge-transitive graphs' [MSS13, HO14] for f(a) = O(1/a). We remark that if Goddyn’s thin
tree conjecture holds for an arbitrary function f(.), we get an upper bound of O(logl_g(l)(n)) on
the integrality gap of the LP relaxation of ATSP.

Summary of our Contribution. In this paper, we show that any k-edge-connected graph has
a polyloglog(n)/k-thin tree. Using Theorem 1.2 for a = polyloglog(n) and k = log(n) this implies
that the integrality gap of the LP relaxation is polyloglog(n). Note that this does not resolve
Goddyn’s conjecture. Perhaps, one of the main consequences of our work is that we can round (not
necessarily in polynomial time) the solutions of the LP relaxation exponentially better than the
randomized rounding in the worst case.

The key to our proof is to rigorously relate the thin tree problem to a seemingly related spectral
question that is known as the Kadison-Singer problem in operator theory [Wea04] and then to use
tools in spectral (graph) theory to solve the new problem. Until very recently, the best solution
to the Kadison-Singer problem and the Weaver conjecture was based on the randomized rounding
technique and matrix Chernoff bounds and incurred a loss of log(n) [Rud99, AWO02]. Marcus,
Spielman, and Srivastava [MSS13] in a breakthrough managed to resolve the conjecture using
spectral techniques with no cost that is dependent on n. As we will elaborate in the next section,
the Kadison-Singer problem can be seen as an “Ls” version of the thin tree question, or thin tree
question can be seen as an L version of the Kadison-Singer problem. So, we can summarize our
contribution as an Li to Ly reduction.

We construct this L to Ly reduction using a convex program that symmetrizes the Ly structure
of a given graph while preserving its L, structure. More precisely, a convex program that equalizes
the effective resistance of the edges while preserving the cut structure of G. We expect to see several
other applications of this convex program in combinatorial optimization and approximation algo-
rithms. In addition to that, we extend the result of Marcus, Spielman, and Srivastava to a larger
family of distributions known as strongly Rayleigh distributions [AO14]. Strongly Rayleigh distri-
butions are a family of probability distributions with the strongest forms of negative dependence

LA graph G = (V, E) is edge-transitive, if for any pair of edges e, f € F there is an automorphism of G that maps
e to f.



properties [BBL09]. They have been used also in a recent work of the second author, Saberi, and
Singh [OSS11] to improve the Christofides approximation algorithm for STSP on graph metrics.
We refer the interested readers to [AO14] for more information.

Subsequent Work. Subsequent to our work, Svensson [Svel5] employed a sophisticated cycle
cover idea and designed a constant factor approximation algorithm for ATSP when ¢(.,.) is the
shortest path metric of an unweighted graph. It is unclear if a combination of the ideas in this
work and [Svel5] can lead to constant factor approximation algorithms for general ATSP.

The rest of this section is organized as follows: In Subsection 1.1 we overview the connections
of the thin tree problem and graph sparsifiers and in particular the Kadison-Singer problem. Then,
in Subsection 1.2 we present our main theorems. Finally, in Subsection 1.3 we highlight the main
ideas of the proof.

1.1 Spectrally Thin Trees

As mentioned before, thin trees are the basis for the best-known approximation algorithms for
ATSP on planar, bounded genus, or general graphs. This follows from their intuitive definition
and the fact that they eliminate the difficulty arising from the underlying asymmetry and the
cost function. On the other hand, the major challenge in constructing thin trees or proving their
existence is that we are not aware of any efficient algorithm for measuring or certifying the thinness
of a given tree exactly. In order to verify the thinness of a given tree, it seems that one has to look
at exponentially many cuts.

One possible way to avoid this difficulty is to study a stronger definition of thinness, namely
the spectral thinness. First, we define some notation. For a set S C V we use 1g € RY to denote
the indicator (column) vector of the set S. For a vertex v € V, we abuse notation and write 1,
instead of 1y,y. For any edge e = {u,v} € E we fix an arbitrary orientation, say u — v, and we
define X, := 1, — 1,. The Laplacian of G, L¢, is defined as follows:

Lg =Y XAT.
ecE

If G is weighted, then we scale up each term X, X, according to the weight of the edge e. Also, for
a set T C F of edges, we write
Lp:=> XX
ecT

We say a spanning tree, T', is a-spectrally thin with respect to G if
Ly <a-Lg, ie,forall z e R", 2TLyrx < a-z"Lgw. (2)

We also say G has a spectrally thin tree if it has an a-spectrally thin tree for some a < 1/2.
Observe that if T is a-spectrally thin, then it is also a-(combinatorially) thin. To see that, note
that for any set S C V, 1LLylg = |T(S,S)| and 1L Lgls = |E(S,S)|.
One can verify spectral thinness of 7' (in polynomial time) by finding the smallest o € R such
that
LIPLpLi? < a1,



i.e., by computing the largest eigenvalue of ngLTLg2. Recall that Lg is the pseudoinverse of L,

and Lgﬂ is the square root of the pseudoinverse of Lg; LTG/2 is well-defined because Lg = 0. So,
unlike the combinatorial thinness, spectral thinness can be computed ezactly in polynomial time.

The notion of spectral thinness is closely related to spectral sparsifiers of graphs, which have
been studied extensively in the past few years [ST04, SS11, BSS14, FHHP11]. Roughly speaking,
a spectrally thin tree is a one-sided spectral sparsifier. A spectrally thin tree 7' would be a true
spectral sparsifier if in addition to (2), it satisfies « - (1 — €)2TLgaz < L for some constant e. Until
the recent breakthrough of Batson, Spielman, and Srivastava, all constructions of spectral sparsifiers
used at least Q(nlog(n)) edges of the graph [ST04, SS11, FHHP11]. Because of this they are of no
use for the particular application of ATSP. Batson, Spielman, and Srivastava [BSS14] managed to
construct a spectral sparsifier that uses only O(n) edges of G. But in their construction, they assign
different weights to the edges of the sparsifier which again makes their contribution not helpful for
ATSP.

Indeed, it was observed by several people that there is an underlying barrier for the construc-
tion of spectrally thin trees and unweighted spectral sparsifiers. Many families of k-edge-connected
graphs do not admit spectrally thin trees (see [HO14, Thm 4.9]). Let us elaborate on this observa-
tion. The effective resistance of an edge e = {u,v} in G, Reffy,(e), is the energy of the electrical
flow that sends 1 unit of current from u to v when the network represents an electrical circuit
with each edge being a resistor of resistance 1 (and if G is weighted, the resistance is the inverse
of the weight of e). See [LP13, Ch. 2| for background on electrical flows and effective resistance.
Mathematically, the effective resistance can be computed using LE,

Reffr,(¢) = XTLLA,.

It is not hard to see that the spectral thinness of any spanning tree T of G is at least the maximum
effective resistance of the edges of 7" in G.

Lemma 1.4. For any graph G = (V, E), the spectral thinness of any spanning tree T C E is at
least max.cr Reffr, (€).

Proof. Say the spectral thinness of T is a. Obviously, by the downward closedness of spectral
thinness, the spectral thinness of any subset of edges of T" is at most «, i.e., for any edge e € T,

Ligy 2 Ly 2 a- L.

But, the spectral thinness of an edge is indeed its effective resistance. More precisely, multiplying
ng on both sides of the above inequality we have

LPAXILY? = L L LI < - L La Ll < o - 1.
Since the matrix on the LHS has rank one, its only eigenvalue is equal to its trace; therefore,
Tr(XJLLX,) = Te(L2X.XT L) < o
The lemma follows by the fact that Reffr,(e) = Tr(XJLEXe). O

In light of the above lemma, a necessary condition for GG to have a spanning tree with spectral
thinness bounded away from 1 is that every cut of G must have at least one edge with effective



Thin tree conjecture

G is k-edge-connected ====================== (G has O(1/k)-thin tree
max.cg Reflr . (e) < 1/k G has O(1/k)-spectrally thin tree
E ale) <1/ SSI3 (1/k)

Figure 2: A summary of the relationship between spectrally thin trees and combinatorially thin
trees before our paper.

resistance bounded away from 1. In other words, any graph G with at least one cut where the
effective resistance of every edge is very close to 1 has no spectrally thin tree (see Figure 3 for an
example of a graph where the effective resistance of every edge in a cut is very close to 1).

In a very recent breakthrough, Marcus, Spielman, and Srivastava [MSS13] proved the Kadison-
Singer conjecture. As a byproduct of their result, it was shown in [HO14] that a stronger version
of the above condition is sufficient for the existence of spectrally thin trees.

Theorem 1.5 ([MSS13]). Any connected graph G = (V,E) has a spanning tree with spectral
thinness O(max.cg Reffr,(€)).

See [HO14, Appendix E] for a detailed proof of the above theorem. It follows from the above
theorem that every k-edge-connected edge-transitive graph has an O(1/k)-spectrally thin tree. This
is because in any edge-transitive graph, by symmetry, the effective resistances of all edges are equal.

Let us summarize the relationship between spectrally thin trees and combinatorially thin trees
that has been in the literature before our work. Goddyn conjectured that every k-edge-connected
graph has an O(1/k)-thin tree. The result of [MSS13] shows that a stronger assumption implies an
stronger conclusion, i.e., if the maximum effective resistance of edges of G is at most 1/k, then G
has an O(1/k)-spectrally thin tree (see Figure 2).

We emphasize that max.cp Reffr,,(e) < 1/k is a stronger assumption than k-edge-connectivity.
If Reffr, (u,v) < 1/k, it means that when we send one unit of flow from u to v, the electric current
divides and goes through at least k£ parallel paths connecting u to v, so, there are k edge-disjoint
paths between u,v. But the converse of this does not necessarily hold. If there are k edge-disjoint
paths from wu to v, the electric current may just use one of these paths if the rest are very long, so
the effective resistance can be very close to 1. Therefore, if max.cg Reffr,(e) < 1/k, there are k
edge-disjoint paths between each pair of vertices of G, and G is k-edge-connected, but the converse
does not necessarily hold. For example in the graph in the top of Figure 3, even though there are k
edge-disjoint paths from wuq to v1, a unit electrical flow from u; to v1 almost entirely goes through
the edge {u1,v1}, so Reff(uy,v1) ~ 1.

As a side remark, note that the sum of effective resistances of all edges of any connected graph
Gisn—1,

Soarnha =S mEPxarnl?) = v (Y rifxar i) = vl rarll?) = n -1,
eckE ecll ecll

In the last identity we use that LgﬂLgLJg2 is an identity matrix on the space of vectors that are
orthogonal to the all-1s vector.



If G is k-edge-connected, by Markov’s inequality, at most a quarter of the edges have effective
resistance more than 8/k. Therefore, by an application of [MSS13], any k-edge-connected graph G
has an O(1/k)-spectrally thin set of edges, F' C E where |F| > Q(n) [HO14]. Unfortunately, the
corresponding subgraph (V, F') may have (n/k) connected components. So, this does not give any
improved bounds on the approximability of ATSP.

1.2 Our Contribution

In this paper we introduce a procedure to “transform” graphs that do not admit spectrally thin
trees into those that provably have these trees. Then, we use our recent extension of [MSS13] to
strongly Rayleigh distributions [AO14] to find spectrally thin trees in the transformed “graph”.
Finally, we show that any spectrally thin tree of the transformed “graph” is a (combinatorially)
thin tree in the original graph. From a high level perspective, our transformation massages the
graph to equalize the effective resistance of the edges, while keeping the cut structure of the graph
intact.
For two matrices A, B € R™*" we write A <g B, if for any set ) C S TV,

lg’AlS < lgBls.

Note that A < B implies A <o B, but the converse is not necessarily true. We say a graph D is
a shortcut graph with respect to G if Lp =g Lg. We say a positive definite (PD) matrix D is a
shortcut matrix with respect to G if D < L.

Our ideal plan is as follows: Show that there is a (weighted) shortcut graph D such that for
any edge e € E, Reff,,(e) < O(1/k). Then, use a simple extension of Theorem 1.5 such as [AW13]
to show that there is a spanning tree T' C E such that

Lr =g a-(Lg+ Lp),

for a = O(maxecp Reffr 11, (e)) = O(1/k). But, since Lp <0 Lg, any a-spectrally thin tree of
D + G is a 2a-combinatorially thin tree of G. In summary, the graph D allows us to bypass the
spectral thinness barrier that we described in Lemma 1.4.

Let us give a clarifying example. Consider the k-edge-connected planar graph G illustrated at
the top of Figure 3. In this graph, all edges in the cut ({vi,...,vn}, {u1,...,uy}) have effective
resistance very close to 1. Now, let D consist of the red edges shown at the bottom. Observe that
Lp =g Lg. The effective resistance of every black edge in G + D is O(1/v/k). Roughly speaking,
this is because the red edges shortcut the long paths between the endpoints of vertical edges. This
reduces the energy of the corresponding electrical flows. So, G+ D has a spectrally thin tree T' C E.
Such a tree is combinatorially thin with respect to G.

It turns out that there are k-edge-connected graphs where it is impossible to reduce the effective
resistance of all edges by a shortcut graph D (see Section 5 for details). So, in our main theorem,
we prove a weaker version of the above ideal plan. Firstly, instead of finding a shortcut graph D, we
find a PD shortcut matrix D. The matrix D does not necessarily represent the Laplacian matrix
of a graph as it may have positive off-diagonal entries. Secondly, the shortcut matrix reduces
the effective resistance of only a set F' C FE of edges, that we call good edges, where (V, F) is
Q(k)-edge-connected.



Figure 3: The top shows a k-edge-connected planar graph that has no spectrally thin tree. There
are k+1 vertical edges, (u1,v1), (Up/ks Un/k); - - - » (Un, V). For each 1 <4 < n—1 there are k parallel
edges between w;, u;4+1 and v;, v;41. The effective resistances of all vertical edges are 1 — O(k‘2 /n).
The bottom shows a graph G + D where the effective resistance of every black edge is O(1/Vk).
The red edges are edges in D and there are k parallel edges between the endpoints of consecutive
vertical edges. Note that Lp <g Lg by construction.

Theorem 1.6 (Main). For any k-edge-connected graph G = (V, E) where k > Tlog(n), there is
a shortcut matriz 0 < D =g Lg and a set of good edges F C E such that the graph (V,F) is
Q(k)-edge-connected and that for any edge e € F,

Reffp(e) < O(1/k),?
where Reffp(e) = XI D7LX,.

Note that in the above we upper bound the effective resistance of good edges with respect to
D as opposed to D + Lg; this is sufficient because Reffr 1 p(e) < Reffp(e). We remark that the
dependency on log(n) in the statement of the theorem is because of a limitation of our current
proof techniques. We expect that a corresponding statement without any dependency on n holds
for any k-edge-connected graph G. Such a statement would resolve Goddyn’s thin tree conjecture
1.3 and may lead to improved bounds on the integrality gap of LP (1). Finally, the logarithmic
dependency on k in the upper bound on the effective resistance of the edges of F' is necessary.

Unfortunately, the good edges in the above theorem may be very sparse with respect to G, i.e.,
G may have cuts (S5, S) such that

|F'(S,S)| < |E(S,9)|.

So, if we use Theorem 1.5 or its simple extensions as in [AW13], we get a thin set of edges T'C E
that may have Qg(n) many connected components. Instead, we use a theorem, that we proved in
our recent extension of [MSS13], that shows that as long as F is Q(k)-edge-connected, G has a
spanning tree T' that is O(1/k)-spectrally thin with respect to D + L.

ZFor functions f(.),g(.) we write g = O(f) if g(n) < polylog(f(n)) - f(n) for all sufficiently large n.



Theorem 1.7 ([AO14]). Given a graph G = (V,E), a PD matriz D and F C E such that (V, F)
is k-edge-connected, if for e > 0,

Reft <
max Re ple) <,

then G has a spanning tree T' C F' s.t.,
Ly <O(e+1/k)(D + Lg).

Putting Theorem 1.6 and Theorem 1.7 together implies that any k-edge-connected graph has a
polyloglog(n)/k-thin tree.

Corollary 1.8. Any k-edge-connected graph G = (V, E), has a polyloglog(n)/k-thin tree.

Proof. First, observe that by theorems 1.6, 1.7 any 7log(n) connected graph has a polyloglog(n)/log(n)-
thin tree.

Now, if G is k-edge-connected and k > log(n), then we simply construct a 7log(n) con-
nected subgraph of G that is 7log(n)/k thin by sampling each edge independently with proba-
bility ©(logn/k) (see the proof of Theorem 1.2 for the details of the analysis). Then, we use the
aforementioned statement to prove the existence of a thin tree in the sampled graph.

Otherwise, if k& < log(n), then we add 7log(n)/k copies of each edge of G and make a new graph
H that is 7log(n) connected, then we use the previous corollary to find a polyloglog(n)/log(n)-thin
tree of H. Such a tree is polyloglog(n)/k-thin with respect to G. O

We remark that, the above theorems do not resolve Goddyn’s thin tree conjecture because of
the dependency on n.

At first inspection, it would seem that there are two nonalgorithmic ingredients in our proof.
The first one is the exponential-sized convex program that we will use to find the shortcut matrix
D; this is because verifying D < Lq is equivalent to 2" many linear constraints. Secondly, we
need to have a constructive (in polynomial time) proof of Theorem 1.7. The following theorem
shows we can get around the first barrier.

Theorem 1.9. Assume that there is an oracle that takes an input graph G = (V, E), PD matriz
D, and a k-edge-connected F C E, such that max.cp Reffp(e) < €, and returns the spanning tree
T promised by Theorem 1.7, i.e., Ly = O(e + 1/k)(D + Lg). For any £ < loglogn, there is a
polyloglog(n) - log(n)'/*-approzimation algorithm for ATSP that runs in time n°© (and makes at
most n°®) oracle calls).

We will prove this theorem in Subsection 4.3

1.3 Main Components of the Proof

Our proof has three main components, namely the thin basis problem, the effective resistance
reducing convex programs, and the locally connected hierarchies. In this section we summarize the
high-level interaction of these three components.



The Thin Basis Problem. Let us start by an overview of the proof of Theorem 1.7 which has
appeared in a companion paper [AO14]. The thin basis problem is defined as follows: Given a set
of vectors {x.}ccp € R?, what is a sufficient condition for the existence of an a-thin basis, namely,
d linearly independent set of vectors T' C F such that

E Tex]

ecT

< a?

It follows from the work of Marcus, Spielman, and Srivastava [MSS13] that a sufficient condition
for the existence of an a-thin basis is that the vectors are in isotropic position,

E xexl =1,

ecE

and for all e € E, ||z.||* < ¢- « for some universal constant ¢ < 1.

The thin basis problem is closely related to the existential problem of spectrally thin trees. Say
we want to see if a given graph G = (V| E) has a spectrally thin tree. We can define a vector
Ye = LTG/2X6 for each edge e € E. It turns out that these vectors are in isotropic position; in
addition, if all edges of G have effective resistance at most ¢, then HyeH2 = X7 LTGXG < e. So,
these vectors contain an O(e)-thin basis. It is easy to see that such a basis corresponds to an
O(e)-spectrally thin tree of G (see [AO14] for details).

As alluded to in the introduction, if G is a k-edge-connected graph, it may have many edges
of large effective resistance, so ”%”2 in the above argument may be very close to 1. We use the
shortcut matrix D that is promised in Theorem 1.6 to reduce the squared norm of the vectors. We
assign a vector y. = (Lg + D)_I/QXe to any good edge e € F. It follows that

lyel” < XIDT X, < O(1/k).

But, since the good edges are only a subset of the edges of G, the set of vectors {y.}ecr are not
necessarily in an isotropic position; they are rather in a sub-isotropic position,

D vyl <1

ecF

In [AO14] we prove a weaker sufficient condition for the existence of a thin basis. If the vectors
{zc}ecp are in a sub-isotropic position, each of them has a squared norm at most €, and they
contain k disjoint bases, then there exists an O(e + 1/k)-thin basis T C E

E Tex]

ecE

< O(e+1/k).

Since, the set F' of good edges promised in Theorem 1.6 is (k)-edge-connected, it contains Q(k)
edge-disjoint spanning trees, so the set of vectors {y.}.cr defined above contains Q(k) disjoint
bases. S0, {ye}ecr contains a O(1/k)-thin basis T'; this corresponds to a O(1/k)-spectrally thin
tree of Lg + D and a O(1/k)-thin tree of G.
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Figure 4: A tight example for Theorem 5.3. The graph has 27 +1 vertices labeled with {0, 1,...,2"}.
There are k parallel edges connecting each pair of consecutive vertices. In addition, forany 1 <i < h
and any 0 < j < 2"~ there is an edge {j - 2, (j + 1) - 2}.

Effective Resistance Reducing Convex Programs. As illustrated in the previous section, at
the heart of our proof we find a PD shortcut matrix D to reduce the effective resistance of a subset
of edges of G.

It turns out that the problem of finding the best shortcut matrix D that reduces the maximum
effective resistance of the edges of G is convex. This is because for any fixed vector x and D > 0,
27D~z is a convex function of D. See Lemma 2.3 for the proof. The problem of minimizing
the sum of effective resistances of all pairs of vertices in a given graph was previously studied in
[GBS08].

The following (exponentially sized) convex program finds the best shortcut matrix D that
minimizes the maximum effective resistance of the edges of G while preserving the cut structure

of G.

Max-CP:

min £,

s.t.  Reffp(e) <E VeeE,
D =g Lg,
D > 0.

Note that if we replace the constraint D <o Lg with D <X Lg, i.e., if we require D to be
upper-bounded by L¢g in the PSD sense, then the optimum D for any graph G is exactly Lg and
the optimum value is the maximum effective resistance of the edges of G.

Unfortunately, the optimum of the above program can be very close to 1 even if the input
graph G is log(n)-edge-connected. A bad graph is shown in Figure 4. In Theorem 5.3 we show
that the optimum of the above convex program for the family of graphs in Figure 4 is close to 1 by
constructing a feasible solution of the dual.

To prove our main theorem, we study a variant of the above convex program that reduces the
effective resistance of only a subset of edges of G to O(1/k). We will use combinatorial objects
called locally connected hierarchies as discussed in the next paragraph to feed a carefully chosen set
of edges into the convex program. To show that the optimum value of the program is O(l /k), we
analyze its dual. The dual problem corresponds to proving an upper bound on the ratio involving
distances of pairs of vertices of G with respect to an L; embedding of the vertices in a high-
dimensional space. We refrain from going into the details at this point. We will provide a more

11



detailed overview in Section 5.

Locally Connected Hierarchies. The main difficulty in proving Theorem 1.6 is that the good
edges, F', are unknown a priori. If we knew F' then we could use Max-CP to minimize the maximum
effective resistance of edges of F' as opposed to E. In addition, the k-th smallest effective resistance
of the edges of a cut of G is not a convex function of D. So, we cannot write a single program that
gives us the best matrix D for which there are at least (k) edges of small effective resistance in
every cut of G.

So, we take a detour. We use combinatorial structures that we call locally connected hierarchies
that allow us to find an Q(k)-edge-connected set of good edges that may be very sparse with respect
to G in some of the cuts. Let us give an informal definition of locally connected hierarchies. Consider
a laminar structure on the vertices of G, say S1, 59, -+ C V, where by a laminar structure we mean
that there is no ¢ # j such that S; NS}, S; — S;,5; —S; # 0. Modulo some technical conditions, if
for all i, the induced subgraph on S;, G[S;], is k-edge-connected, then we call S1,Ss,... a locally
connected hierarchy.

Let S;= be the smallest set that is a superset of S; in the family, and let O(S;) = E(S;, Si+ — S;)
be the set of edges leaving S; in the induced graph G[S;«]. In our main technical theorem we show
that for any locally connected hierarchy we can find a shortcut matrix D that reduces the maximum
of the average effective resistance of all O(S;)’s. In other words, the shortcut matrix D reduces the
effective resistance of at least half of the edges of each O(S;). Unfortunately, these small effective
resistance edges may have 2(n) connected components.

To prove Theorem 1.6 we choose polyloglog(n) many locally connected hierarchies adaptively,
such that the following holds: Let the laminar family S,S3,... be the j-th locally connected
hierarchy, and D; be a shortcut matrix that reduces the maximum average effective resistance of
O(SZ )’s. We let Fj be the set of small effective resistance edges in UZ-O(SZ ). We choose our locally
connected hierarchies such that F' = U;F} is Q(k)-edge-connected in G. To ensure this we use
several tools in graph partitioning.

1.4 Organization

The rest of the paper is organized as follows: We start with an overview of linear algebraic tools
and graph theoretic tools that we use in the paper. In Section 3 we given a high-level overview of
our approach; we formally define locally connected hierarchies and we describe the main technical
theorem 3.5. Then in Section 4 we prove the main theorem 1.6 assuming the main technical theorem
3.5. The rest of the paper is dedicated to the proof of Theorem 3.5. In Section 5 we characterize
the dual of Tree-CP and we prove Theorem 5.3, then in the last two sections we upper-bound the
value of the dual.

2 Preliminaries

For an integer k > 1, we use [k] to denote the set {1,...,k}. Unless otherwise specified, we assume
that G = (V, E) is an unweighted k-edge-connected graph with n vertices. For a set S C V', we use
G[S] to denote the induced subgraph of G on S. All graphs that we work with are unweighted with
no loops but they may have an arbitrary number of parallel edges between every pair of vertices.

12



For a matrix A € R™*" we write A; to denote the i-th column of A, A’ to denote the i-th row
of A and A;; to denote the i, j-th entry of A.

Throughout the paper we assume that there is a fixed ordering on the edges of G. For an edge
e = {u,v} we use X, =1, — 1. We also write,

— T
Lu,v - Xu,vXu,v :

We use X € RV*F to denote the matrix where the e-th column is A..
For disjoint sets S,T C V we write

E(S,T) = {{u,v} :ue SveT}

We say two sets S, T C V cross if SNT,S —T,T— # (. For a set S of elements we write E.g [.]
to denote the expectation under the uniform distribution over the elements of S. We think of a
permutation of a set S as a bijection mapping the elements of S to 1,2, ...,|S|. For a vector = € R,
we write

lll, =

We will use the following inequality in many places. For any sequence of nonnegative numbers
ai, ...,y and by,...,by,

min% a;+as+ -+ am max%
1<i<m by — by +by 4+ by T 1<i<Sm by

(3)

2.1 Balls and High-Dimensional Geometry
For z € R% and r € R, an L ball is the set of points at L; distance less than r of x,
B(z,r):={y €R*: 0 < ||z —yl|, <7}

Unless otherwise specified, any ball that we consider in this paper is an Ly ball. We may also work
with Lo or L% balls and by that we are referring to a set of points whose Lo or L% distance from a
center is bounded by r.

An L; hollowed ball is a ball with part of it removed; for 0 < r; < 79, we define the hollowed
ball B(z,r1|r2) as follows:

B(z,r1|r2) == {y € R 1y < ||z —yll; < r2}.

Observe that B(x,r) = Bi(z,0]|r). The width of B(x,r1||re) is ro — r1.
We say a point y € R? is inside a hollowed ball B = B(x, ry||rs) if

r < llx—yl; <o,

and we say it is outside of B otherwise. We also say a (hollowed) ball By is inside a (hollowed) ball
B, if every point x € Bj is also in Bs.
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For a (finite) set of points S C R?, the L; diameters of S, diam(S) is defined as the maximum
L, distance between points in S5,

diam(S) = max |lz — y]|; .

For a set S of elements we say X : S — R is an L3 metric if for any three elements u,v,w € S,
HXu - Xw”2 < ”Xu - XvH2 + HXU - Xw”2 :

A cut metric of S is a mapping X : S — {0,1}" equipped with the L; metric. Note that any cut
metric of S is also a L3 metric because for any two elements u,v € S,

HXu - Xv”l = ”Xu - Xv”2 .

Similarly, we define a weighted cut metric, X : S — {0,1}" together with nonnegative weights
w1, ..., Wy, to be the be the points { X, },es where equipped with the weighted L; norm:

h
lzll, = Zwi ||, for all z € R".
i—1

If all the weights are 1 we simply get an (unweighted) cut metric. It is easy to see that any weighted
cut metric can be embedded, with arbitrarily small loss, (up to scaling) in an unweighted cut metric
of a (possibly) higher dimension.

We can look at an embedding X as a matrix where there is a column X, for any vertex u. We
also write

X=XX.

Therefore, for any edge e = {u,v} € E (oriented from u to v),

Xe=X& =X, - X,.

2.2 Facts from Linear Algebra

We use I to denote the identity matrix and J to denote the all 1’s matrix. A matrix U € R™"*"
is called orthogonal/unitary if UUT = UTU = I. An orthogonal matrix is a nonsingular square
matrix whose singular values are all 1. It follows by definition that orthogonal operators preserve
L5 norms of vectors, i.e., for any vector x € R™,

|Uz|| = /(Uz)TUz = VaTUTUz = VaTe = ||z .

A (not necessarily square) matrix U is called semiorthogonal if UUT = I, i.e. the rows are
orthonormal, and the number of rows is less than the number of columns. For any semiorthogonal
U € R™", we can extend U to an actual orthogonal matrix by adding n — m rows.

For two matrices A, B of the same dimension we define the matrix inner product A e B :=
Tr(ABT).

For any matrix A € R™*" and B € R"*"™,

Tr(AB) = Tr(BA).

For any two matrices A € R™*" B € R™ "™ then the nonzero eigenvalues of AB and BA are the
same with the same multiplicities.

14



Lemma 2.1. If A, B are positive semidefinite matrices of the same dimension, then
Tr(AB) > 0.

Proof.
Tr(AB) = Tr(ABY?BY?) = Tr(BY?ABY?) > 0.

O

Fact 2.2 (Schur’s Complement [BV06, Section A.5]). For any symmetric positive-definite matriz
A € R™" g (column) vector x € R™ and ¢ > 0, we have xTA™ 2z < ¢ if and only if

[c xT

T A}EO'

The following lemma proving the operator-convexity of the inverse of PD matrices is well-known.

Lemma 2.3. For any two symmetric n X n matrices A, B > 0,

1 1 -1 1 1
) —B) < ZA'4 B,
(2 * 2 -2 + 2
Proof. For any vector x € R"”,
1[ xTA e o7 ] _1_1[ 2TB 1z o7 } B [ %xTA_la:—F %xTB_lx zT ]
2 z A 2 T B 1 z %A + %B )

By Schur complement both of the matrices on the LHS of above equality are PSD. Therefore,
by convexity of PSD matrices, the matrix in RHS is also PSD. By another application of Schur
complement to the matrix in RHS we obtain the lemma. ]

Definition 2.4 (Matrix Norms). The trace norm (or nuclear norm) of a matrix A € R™*" is

defined as follows:

min{m,n}

1Al =T (A7) %) = Y~ o,
1=1

where o;’s are the singular values of A. The Frobenius norm of A is defined as follows:

R 2
A= [ Y &=

1<i<m,1<j<n

The following lemma is a well-known fact about the trace norm.

RnXm

Lemma 2.5. For any matriz A € such that n > m,

|All, = max Tr(UA),

Semiorthogonal U

where the maximum is over all semiorthogonal matrices U € R™ ™. In particular, Tr(A) < [|4],.
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Proof. Let the singular value decomposition of A be the following

m
_ T
A= g iU
i=1

where s1,...,8, are the singular values and uq,...,u,;, € R™ are the left singular vectors and
V1, ...,0m € R™ are the right singular vectors. Now let

m
_ T
U= E v,
i=1

It is easy to observe that U € R"™*" is semiorthogonal, i.e. UUT = I. Now observe that
m m
UA = Z oivi(ui, ug)v] = Z oivv].
i=1 =1

It is easy to see that Tr(UA) = Y"1, 0, = ||4],.
It remains to prove the other side of the equation. By von Neumann’s trace inequality [Mir75],
for any semiorthogonal matrix U € R™*™ we can write

T(UA) <3105 = 4],

where o1, ..., 0, are the singular values of A. ]

Theorem 2.6 (Hoffman-Wielandt Inequality). Let A, B € R™ " have singular values o1 < o9 <
co.op and o) < ob < ... <al. Then,

n

S (i —o)? < |14 - B
i=1
2.3 Background in Graph Theory
For a graph G = (V, E), and a set S C V, we define
9 (5)
S) =
¢c(S) do(9)

where 0g(S) := |E(S,V — S)| is the number of edges that leave S, and d(S) is the sum of the
degrees (in G) of vertices of S. Note that, by definition, dg(v) = dg({v}) for any vertex. If the
graph is clear in the context we drop the subscript G. The expansion of GG is defined as follows:

o 9:(S)
¢(G) = Srpclg min{dg(S),dc(V — 95)}

= smcigmax{¢c(5), dc(V = 9)},

We say a graph G is an e-expander, if ¢(G) > €. Recall that in an expander graph, ¢(G) = Q(1).

An (unweighted) graph G = (V, E) is k-edge-connected if and only if for any pair of vertices
u,v € V, there are at least k edge-disjoint paths between w,v in G. Equivalently, G is k-edge-
connected if for any set ) C .S C V, 9(S) > k.

There is a well-known theorem by Nash-Williams that gives an almost (up to a factor of 2)
necessary and sufficient condition for k-connectivity.
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Theorem 2.7 ([NWG61]). For any k-edge-connected graph, G = (V,E), there are at least k/2
disjoint spanning trees in G.

Note that any union of k/2 edge-disjoint spanning trees is a k/2-edge-connected graph. So, the
above theorem does not give a necessary and sufficient condition for k-connectivity. A cycle gives
a tight example for the loss of 2 in the above theorem.

Given a graph G = (V, E), and a set S C V, we write G/S to denote the graph where the set S
is contracted, i.e., we remove all vertices v € S and add a new vertex u instead, and for any vertex
w ¢ S, welet |[E(S,{w})| be the number of (parallel) edges between u and w. We also remove any
self-loops that result from this operation. The following fact will be used throughout the paper.

Fact 2.8. For any k-edge-connected graph G = (V, E) and any set S C V', G/S is k-edge-connected.

Throughout the paper we may use a natural decomposition of a graph G (that is not necessarily
k-edge-connected) into k-edge-connected subgraphs as defined below.

Definition 2.9. For a graph G = (V, E) a natural decomposition into k-edge-connected subgraphs
1s defined as follows: Start with a partition S1 = V. While there is a nonempty set S; in the
partition such that G[S;] is not k-edge-connected, find an induced cut (S; 1, S;2) in G[S;] of size less
than k, remove S; and add S;1,S;2 as new sets in the partition.

The following fact follows directly from the above definition.

Lemma 2.10. For any natural decomposition of a graph G = (V, E) into k-edge-connected sub-
graphs S1,...,Sp and any I C [{],

Yo IB(Sy,Su)] < (k= 1)(I] - 1)

i1,i2€ 111 <ig
Consequently,

dasy=2 > |E(S:, Sy <20k —1)( - 1)

=1 il,ige[é}:i1<i2

Proof. Let S = U;erS;- A natural decomposition of the induced subgraph, G[S] into k-edge-
connected subgraphs gives exactly all set S; where ¢ € I. This decomposition partitions G[S] exactly
|I| — 1 times and each time adds at most k — 1 new edges between the sets in the partition. O

3 Overview of Our Approach

In this section we give a high-level overview of our approach. We will motivate and formally define
locally connected hierarchies and we describe our main technical theorem. In this section we will
not overview the proof of the main technical theorem 3.5, see Section 5 for the explanation.

As alluded to in the introduction, in Theorem 5.3 we will show that it is not possible to reduce
the maximum effective resistance of the edges of every k-edge-connected graph using a shortcut
matrix.

The first idea that comes to mind is to reduce the maximum average effective resistance amongst
all cuts of G. We can use the following convex program to find the best such shortcut matrix.
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Average-CP:

min &

s.t. E Reffp(e) <& VP C STV,
e~E(S,S)
D jl:l LG7
D = 0.

Note that if the optimum is small, it means that there are at least k/2 good edges in every cut
of G, so the set F' of good edges is Q(k)-edge-connected and we are done. Unfortunately, as we
will show in Theorem 5.3 the same example shows that the optimum of the above convex program
is very close to 1 for an Q(log(n))-edge-connected graph. In fact, in the proof of Theorem 5.3, we
lower-bound the optimum of Average-CP.

The above impossibility result shows that it is not possible to reduce the average effective
resistance of all cuts of G. Our approach is to recognize families of subsets of edges for which it is
possible to reduce the maximum average effective resistance.

In the first step, we observe that for any partitioning of the vertices of a k-edge-connected graph
G into S1,59,... we can use a variant of the above convex program to reduce the maximum average
effective resistance of the sets

E(S1,51), E(S2,52), and so on

to O(1/k). Next, we illustrate why this is useful using an example. Later, we will see that our
main technical theorem implies a stronger version of this statement.

Example 3.1. Assume that G is defined as follows: Start with a k-regular e-expander on /n
vertices and replace each vertex with a cycle of length \/n repeated k times where the endpoints
of the expander edges incident to each cycle are equidistantly distributed. This graph is k-edge-
connected by definition and all expander edges have effective resistance close to 1.

If we use the \/n cycles as our partition, by the above observation, we can reduce the average
effective resistance of edges coming out of each cycle to some o = O(l/k‘) Let F' be the union of all
of the cycle edges and the expander edges of effective resistance at most 2a/e. Now, we show that
F is Q(k)-edge-connected. For any cut that cuts at least one of the cycles, obviously there are at
least k cycle edges in F. For the rest of the cuts, at least e-fraction of the expander edges incident
to the cycles on the small side of the cut cross the cut; among these edges at least half of them are
in F', so I has at least Q(k) edges in the cut.

We can use the above observation in any k-edge-connected graph repeatedly to gradually make
F Q(k)-edge-connected as follows: Start with partitioning into singletons; let D; be a shortcut
matrix that reduces the average effective resistance of degree cuts to a = O(1/k), and let Fy be
the edges of effective resistance at most 2«.. In the next step, let the partitioning Sy, .Ss,... be a
natural decomposition of (V, F}) into k/2-edge-connected components. Similarly, define Dy and let
F5 be the edges connecting S1,55,... of effective resistance at most 2. This procedure ends in
¢ = O(logn) iterations. It follows that Uf_, F; is Q(k)-edge-connected and the average of shortcut
matrices, E;D;, is a shortcut matrix that reduces the effective resistance of all edges of F' to O(¢-«).
Therefore, if ¢ = polyloglog(n) we are done.

Unfortunately there are k-edge-connected graphs where the above procedure ends in ©(logn)
steps because each time the size of the partition may reduce only by a factor of 2. Note that
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Figure 5: A T (k,1/2,{1,2,...,2"})-locally connected hierarchy of the graph of Figure 4.

this procedure defines a laminar family over the vertices. Let S1,S53,... be all of the sets in all
partitions; observe that they form a laminar family; let .S;« be the smallest set that is a superset of
S;. Also, let O(SZ) = E(SZ',SZ'* — SZ)

Suppose we write a convex program to simultaneously reduce the maximum average effective
resistance of all O(S;)’s; then we may obtain a k-edge-connected set F' of good edges in a single
shot. As we will see next, modulo some technical conditions, this is what we prove in our main
technical theorem. Such a statement is not enough to get a k-edge-connected set of good edges,
but it is enough to get F' in polyloglog(n) steps.

3.1 Locally Connected Hierarchies

For a graph G = (V, E), a hierarchy, T, is a tree where every non-leaf node has at least two children
and each leaf corresponds to a unique vertex of G. We use the terminology node to refer to vertices
of 7. For each node t € T let V(¢) C V be the set of vertices of G that are mapped to the leaves
of the subtree of ¢, E(t) be the set of edges between the vertices of V (¢), and

be the induced subgraph of G on V(t). Let P(t) := E(V (t),V(t)) be the set of edges that leave
V(t) in G. Throughout the paper we use t* to denote the parent of a node t. We define O(t) :=
E(V(t),V(t*) — V(t)) as the set of edges that leave V(¢) in G(t*). We abuse notation and use T
to also denote the set of nodes of T.

Let us give a clarifying example. Say G is the “bad” graph of Figure 4. In Figure 5 we give
a locally connected hierarchy of G. For each node t;, V(t;) = {0,1,...,i}. For each 1 < i < 2h,
the set O(i) is the set of edges from vertex i to all vertices j with j < i. In addition, since ¢; has
exactly two children, O(i) = O(t;—1). Finally, P(7) is all edges incident to vertex i and P(t;) is the
set of edges £({0,1,...,i},{i +1,...,2"}).

For an integer £ > 1, 0 < A < 1, and T C T, we say T is a (k,\,T)-locally connected
hierarchy of G, or (k, A\, T)-LCH if

1. For each node t € T, the induced graph G(t) is k-edge-connected.

2. For any node t € T that is not the root, |O(t)| > k. This property follows from 1 because
O(t) = E(V(t),V(t*) = V(t)) is a cut of G(t¥).

3. For any node t € T, |O(t)| > A - |P(t)|]. Note that unlike the other two properties, this one
only holds for a subset T' of the nodes of 7.
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We say T is a (k, A\, T)-LCH if T is the set of all nodes of 7. For example, the hierarchy of Figure 5
is a (k,1/2,{1,2,...,2"})-LCH of the graph illustrated in Figure 4. Condition 1 holds because
there are k parallel edges between any pair of vertices ¢ — 1,4, so G(V (¢;)) is k-edge-connected.
Condition 2 holds because,

[06)] = [0(ti-1)| = [E(O, ... ,i = 1}, {i})| = k.

Lastly, it is easy to see that condition 3 holds for any leaf node i € T, |O(i)| > d(i)/2 = |P(i)|/2.

We will use the following terminology mostly in Section 7. For two nodes t,t’ of an locally
connected hierarchy, 7, we say t is an ancestor of t', if t # t' and ¢’ is a node of a subtree of t. We
say t is a weak ancestor of t' if either t = ¢’ or t is an ancestor of t. We say t is a descendant of t' if
t' is an ancestor of t. We say t,t' € T are ancestor-descendant if either ¢ is a weak ancestor of ¢’ or
t' is a weak ancestor of t.

Locally Connected Hierarchies and Good Edges. Let 7 be a hierarchy of G. Let t € T
have children ¢1,...,t;. Define

G{t} = G(t)/V(t)/V(t2)/ ... [V (t;)

to be the graph obtained from G(t) by contracting each V(¢;) into a single vertex. We may call
G{t} an internal subgraph of G. Let V{t} be the vertex set of G{t}; we can also identify this set
with the children of ¢ in 7. Also, let E{t} be the edge set of V{t}.

The following property of locally connected hierarchies is crucial in our proof. Roughly speaking,
if a subset F' of edges of G is k-edge-connected in each internal subgraph, then it is globally k-edge-
connected.

Lemma 3.2. Let T be a hierarchy of a graph G = (V,E) and F C E. If for any internal node t,
the subgraph (V{t}, F N E{t}) is k-edge-connected, then (V, F) is k-edge-connected.

Proof. Consider any cut (S,5) of G. Observe that there exists an internal node ¢t € T such that S
crosses V(t). Let ty be the deepest such node in T (root has depth 0). But then,

F(S,5) 2 F(SNV(t), SNV (ko).
and the size of the set on the RHS is at least k by the assumption of the lemma. O

To prove Theorem 1.6 we will find a good set of edges which satisfy the assumption of the above
lemma. Note that the assumption of the above lemma does not imply that F' is dense in G. This
is crucial because Theorem 5.3 shows that there is no shortcut matrix D which has a dense set of
good edges.

Construction of an LCH for Planar Graphs. In this section we give a universal construction
of locally connected hierarchies for k-edge-connected planar graphs.

Lemma 3.3. Any k-edge-connected planar graph G = (V, E) has a (k/5,1/5,T)-LCH T where T
is a binary tree, and T contains at least one child of each nonleaf node of T .

We will use the following fact about planar graphs, whose proof easily follows from the fact that
stmple planar graphs have at least one vertex with degree at most 5.
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Algorithm 1 Construction of a locally connected hierarchy for planar graphs.

Input: A k-edge-connected planar graph G.
Output: A (k/5,.,.)-LCH of G.

1: For each vertex v € V, add a unique leaf node to 7 and map v to it. Let W be the set of these
leaf nodes. >We keep the invariant that W is the nodes of T that do not have a parent yet,
but their subtree is fixed, i.e., V(t) is well-defined for any t € W.

2: while [IW| > 1 do

3: Add a new node t* to W.

4: Let Gy be the graph where for each node ¢t € W, V(t) is contracted to a single vertex;

identify each ¢ € W with the corresponding contracted vertex. >Note that G+ is also a
planar graph, because for any t € W, the induced graph G|V (t)] is connected.

5: Let t; be a vertex with at most 5 neighbors in Gy-. >ty exists by Fact 3.4.
Let t3 be a neighbor of ¢; such that {t1,t2} has the largest number of parallel edges among
all neighbors of ;. >Note that t1,to are not necessarily vertices of G, so parallel edges
between them do not correspond to parallel edges of G.

7 Make t* the parent of tq,to; remove t1,ty from W, and add ¢; to T. >S50,

V(") = V(t1) UV (ta).
8: end while
return 7.

Fact 3.4. In any k-edge-connected planar graph G = (V, E), there is a pair of vertices u,v € V
with at least k/5 parallel edges between them.

The details of the construction are given in Algorithm 1. Observe that the algorithm terminates
after exactly n — 1 iterations of the loop, because any non-leaf node of 7 has exactly two children,
so |W| decreases by 1 in each iteration. We show that 7 is T (k/5,1/5,T)-LCH. First of all, for
any non-leaf node t of 7, G(t) is k/5-edge-connected. We prove this by induction. Say, t1,to are
the two children of t*, and by induction, G(¢1) and G(t2) are k/5-edge-connected. By the selection
of to, there are at least k/5 parallel edges between t1,to, so G(t*) is k/5-edge-connected. Secondly,
we need to show that O(t1) > P(t1)/5. This is because by the selection of t9, 1/5 of the edges
incident to t; in Gy are {t1,t2}. This completes the proof of Lemma 3.3.

3.2 Main Technical Theorem

Given a (k,\,T)-LCH T of G, in our main technical theorem we minimize the maximum average
effective resistance of O(t)’s among all nodes t € T'.

The following convex program finds a shortcut matrix 0 < D < L that minimizes the maximum
of the average effective resistance of edges in O(t) for all t € T'.

Tree-CP(T € (k,\,T)-LCH):

min E

s.t. E TReffple) <& VteT,
e~O(t)
D =p Lg,
D > 0.
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Theorem 3.5 (Main Technical). For any k-edge-connected graph G, and any T (k,\,T)-LCH, T,
of G, there is a PD shortcut matriz D such that for any t € T,
fi(k, )

E i < s 17
eNO(t)Re ple) < ko7

where f1(k,\) is a poly-logarithmic function of k,1/\.

Note that the statement of the above theorem does not have any dependency on the size of G.

If we apply the above theorem to the (k/5,1/5,T)-LCH T of a k-edge-connected planar graph as
constructed in Algorithm 1, we obtain a shortcut matrix D for which the small effective resistance
edges are Q(k)-edge-connected. Let us elaborate on this. Let F' = {e : Reffp(e) < %/551/5)}
First, note that by Lemma 3.3, 7 is a binary tree and at least one child of each internal node of 7
isin T'. Say t is an internal node with children ¢1,%9 and ¢; € T. Then, by Markov’s inequality

FA0) 2 0m)/2 = 1P

Since t has only two children, this implies G(V{t}, F' N E{t}) is k/10-edge-connected. Now, by
Lemma 3.2, (V, F) is k/10-edge-connected.

It is natural to expect that for every k-edge-connected graph G, one can find a locally connected
hierarchy 7 such that one application of the above theorem produces a set F' of good edges such
that for any ¢t € T, G(V{t}, F N E{t}) is Q(k)-edge-connected. By Lemma 3.2 this would imply
(V, F) is Q(k)-edge-connected. However, the following example shows that this may not be the
case.

Example 3.6. Let G = (V,E) be the k-dimensional hypercube (n = 2F). Note that G is k-edge-
connected. Let T be a (QUk),.,.)-LCH for G. Consider an internal node ty € T, all of whose
children are leaves. By definition G(tg) is Q(k)-edge-connected. Consider a dimension cut of the
hypercube that cuts G(to) into (S,V(to) —S). Imagine a solution D of Tree-CP(T) which reduces
the effective resistance of all edges except those in the cut (S,V(tg) — S). In such a solution,
EcoqReffp(e) is small for all t. This is because each verter v € G(t) has at most one of its Q(k)
neighboring edges in the cut (S,V(tg) — S). But note that the small effective resistance edges are
disconnected in G{to} = G(to).

Consider a (Q(k),.,.)-LCH 7T of G and let ¢ be an internal node. Theorem 3.5 promises that
the average effective resistance of all degree cuts of the internal graph G{t} are small. If G{t}
is an ezpander this implies that the good edges are Q(k)-edge-connected in G{t}. Therefore, if
we can find a locally connected hierarchy whose internal subgraphs are expanding we can find an
Q(k)-edge-connected set of good edges by a single application of Theorem 3.5. This is exactly what
we proved in the case of planar graphs. The above hypercube example shows that such a locally
connected hierarchy does not necessarily exist in all k-edge-connected graphs.

3.3 Expanding Locally Connected Hierarchies

In this section we define expanding locally connected hierarchies and we describe our plan to prove
Theorem 1.6 using the main technical theorem.
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Definition 3.7 (Expanding Locally Connected Hierarchies). For a node t with children ti, ... t; in
a locally connected hierarchy T of a graph G = (V, E), an internal node t (or the internal subgraph
G{t}) is called (c, B)-expanding, if G{t} is an a-expander and is B-edge-connected. A subset of the
nodes T is called (, B)-expanding iff each one of them is («, 8)-expanding and similarly the locally
connected hierarchy, T, is («, B)-expanding iff all of its nodes are («, 3)-expanding.

Recall that locally connected hierarchies already guarantee k-edge-connectivity of the internal
subgraphs for some k. So, we always have 8 > k. If 8 = k, we omit it from the notation and write
(a, .)-expanding; otherwise, the (o, §)-expanding property guarantees slightly stronger connectivity
for a subset of the internal subgraphs.

For example, observe that the locally connected hierarchies that we constructed in Algorithm 1
for k-edge-connected planar graphs are (1, k/5)-expanding. In Theorem 4.1 we construct an (Q(1/k), Q(k))-
expanding (Q2(k), Q(1), T )-LCH for any k-edge-connected graph where k > 7logn. But Example 3.6
shows that this is essentially the best possible, as the k-dimensional hypercube does not have any
(w(1/k), Q(k))-expanding locally connected hierarchy.

It follows that if G has an («,Q(k))-expanding locally connected hierarchy then there is a
shortcut matrix D and an (k)-edge-connected set F' of edges such that

Igg;{Reﬁ‘D(e) < O(Tree-CP(T) /).
Recall the argument in Example 3.1 for details. Since the best a we can hope for is O(1/logn)
this argument by itself does not work.

Our approach is to apply Theorem 3.5 to an adaptively chosen sequence of locally connected hi-
erarchies. Each time we recognize the internal subgraphs of the locally connected hierarchy in which
the set of good edges found so far are not {2(k)-edge-connected. Then, we apply Theorem 3.5 to the
nodes in these internal subgraphs. We “refine” these internal subgraphs by a natural decomposition
of the newly found good edges to get the next locally connected hierarchy. At the heart of the argu-
ment we show that this refinement procedure improves the expansion of the aforementioned internal
subgraphs by a constant factor. Therefore, this procedure stops after O(log(1/a)) = polyloglog(n)
steps in the worst case.

We conclude this section by describing an instantiation of the above procedure in the special case
of a k-dimensional hypercube for demonstration purposes. Let G be a k-dimensional hypercube.
We let 71 be a star, i.e., it has only one internal node and the vertices of G are the leaves. This
means that in Tree-CP(7;) we minimize the maximum average effective resistance of degree cuts of
G. Let Fy be the edges of effective resistance at most twice the optimum of Tree-CP(77). It follows
that half the edges incident to each vertex are in F}. Now, we find a natural decomposition of the
good edges F;. In the “worst case”, edges of F} form k/2 dimensional sub-hypercubes and all edges
connecting these sub-hypercubes are not in F;. Note that if we contract these sub-hypercubes, we
get a k/2-dimensional hypercube which is a 2/k-expander, twice more expanding than G. Of course,
we cannot contract, because we need good edges having small effective resistance with respect to
the original vertex set, but the expansion is our measure of progress.

In the next iteration, we construct a (., ., 72)-LCH T3 where the vertices of each k/2-dimensional
sub-hypercube are connected to a unique internal node, and the root is connecting all internal
nodes, i.e., T2 has height 2. We let T be the set of all internal nodes (except the root). Note
that if we delete the leaves, then 73 would be the same as 77 for a k/2-dimensional sub-hypercube.
Similarly, we solve Tree-CP(73), and in the worst case the new good edges form k/4 dimensional
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sub-hypercubes. Continuing this procedure after log(k) = loglogn iterations the good edges span
an Q(k)-edge-connected subset of G.

In the next section, we will use expanding locally connected hierarchies to prove the main
theorem 1.6 using the main technical theorem 3.5. In the remaining sections we will prove the main
technical theorem 3.5.

4 Proof of the Main Theorem

In this section we prove our main theorem 1.6 assuming the main technical theorem 3.5. Lastly, we
will prove the algorithmic theorem 1.9. First, in Subsection 4.1 we show that for k > 7logn, any
k-edge-connected graph has a (1/k,.)-expanding (k/20,1/4, T )-LCH. Then, in Subsection 4.2, we
show that if a given graph G = (V, E) has an (a, .)-expanding (k, .,.)-LCH, then there exists a PD
shortcut matrix D, and an Q(k)-edge-connected subset F' of good edges, such that for any e € F,

 bolylog(k, 1/a)

Reffp(e) ’

4.1 Construction of Locally Connected Hierarchies

In this section, we prove the following theorem. We remark that this is the only place in the entire
paper where we depend on k being 2(log(n)).

Theorem 4.1. Given a k-edge-connected graph G, with k > Tlog(n), one can construct a (%, -
expanding (2—]“0, %, T)-LCHT.

The proof of the theorem will be an adaptation of the proof for the special case of k-edge-
connected planar graphs that we saw in Lemma 3.3. Given a graph G, we iteratively find Q(k)-
edge-connected (1/k) induced expanders, i.e., a set S C V where G[S] is Q(k)-edge-connected
and ¢(G[S]) > Q(1/k). We also need to make sure that G[S] satisfies the following definition to
ensure that we get a (., A,.)-LCH.

Definition 4.2. An induced subgraph H of an unweighted graph G = (V, E) is A-dense if for any
veV(H),
dig(v) > X dg(v),

where we use V(H) to denote the vertex set of H.
The following proposition is the main technical statement that we need for the proof.

Proposition 4.3. Any k > T7logn-edge-connected graph G = (V,E) (with n vertices) has an
induced k/20-edge-connected, 1/4-dense subgraph G[S] that is an 1/k-expander.

Note that for every edge {u,v} € E, the induced graph G[{u,v}] is a l-expander. But, if
there is only one edge between w,v in G, then this induced graph is only 1-edge-connected and
O(1/k)-dense. It is instructive to compare the statement of the above proposition to the planar
case. Recall that Fact 3.4 asserts that in any k-edge-connected planar graph there is a pair of
vertices with k/5 parallel edges. Such an induced graph is a k/5-edge-connected l-expander. Of
course, this fact does not necessarily hold for a general k-edge-connected graph as G may not have
any parallel edges at all.
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Note that, in the above proposition, the condition k > 7logn is necessary up to a constant; a
tight example is the log n-dimensional hypercube, which is a k-edge-connected for any k£ < logn,
but every ©(1)-dense induced subgraph is no better than O(1/log n)-expanding.

We use proof by contradiction. Suppose G does not have any induced subgraph satisfying the
statement of the proposition. Then, invoking the following lemma with H = G and ¢* = 1/k, we
obtain that G must have more than 23%/20 vertices. But this contradicts the fact that k > 7logn.

Lemma 4.4. Given a k-edge-connected graph G, if every k/20-edge-connected 1/4-dense subgraph
G[S] of G satisfies ¢(G[S]) < ¢*, then for any induced subgraph H of G,

gV (1)) > 20— 27U,

Proof. We prove the lemma by induction on the number of vertices of H. Fix an induced subgraph
H = G[U]. Without loss of generality, assume that ¢g(U) < 3/10. We consider two cases, and in
the end we show that one of them always happens.

Case 1: There is a vertex v € U such that dy(v) < 7dg(v)/20. We show that ¢q(U)
decreases when we remove v from U.

bo(U) = 9c(U — {v}) +da(v) — 2dp(v) _ 9c(U — {v}) + 6dc(v)/20
da(U — {v}) + da(v) = do(U = {v}) + dg(v)

The last inequality uses that ¢¢(U) < 3/10. By induction,

3/10 = 66(U — {v}) _ 3/10 - 6a(U)
20* = 20* ’

and we are done. Note that if this case does not happen, then H is %—dense in G.

> ¢c(U — {v})

logy(|U]) = logy(|U — {v}]) >

Case 2: For some S C U, max{¢y(S),on(U — S)} < ¢*. Let T := U — S. Observe that if
0c(S) < ¢a(U) or ¢a(T) < ¢a(U), then we are done by induction. So assume that none of the
two conditions hold. We show that ¢(S), pa(T) < ¢a(U) + 2¢*.

First, it follows from
96(5) + 0c(T) — 20u(T)

06(U) = =408 + do(D)

and 9518 = 45(S) > ¢a(U) that

9a(T) —20u(T) _ _ ,0u(T)
dam o m

¢a(U) > > ¢pa(T) — 26u(T). (4)

Therefore, ¢ (T) < ¢pc(U) + 2¢*. Similarly, we can show ¢ (S) < ¢pa(U) + 2¢*. So, by induction,

3/10 — 66 (U) —26° _ 3/10 — da(U)

logy(|U|) = logy(|S] + [T1) = 1 4 logy(min{|S], |T'[}) = 1+ 20" 25"

We now show that one of the above cases (Case 1 and Case 2) need to happen. Suppose
towards contradiction that none of the above cases happens. Then H is 7/20-dense and for all

25



S C U :max{¢u(S),pu(U —S)} > ¢*. In other words, ¢(H) > ¢*. Therefore, by the assumption

of the lemma, there must be a set S C U such that dy(S) < k/20 (we can also assume that

o (S) > ¢u(U — S), otherwise just take the other side). We now show that this cannot happen.
Note that H is 7/20-dense in G, so for each v € U,

dp(v) 2 Tda(v)/20 = Tk/20, ()

where we used the k-edge-connectivity of G.

We start with a natural decomposition of the induced graph G[S] into k/20-edge-connected
subgraphs, Si,...,Sp, as defined in Definition 2.9. We show that for each i, 0y (S;) > k/10. This
already gives a contradiction, because by Lemma 2.10

%+2(£—1)2—% > GH(S)+;3G[S}(5i)
¢ k
- ZaH(SZ)ZE'To' (6)

It remains to show that dgy(S;) > k/10. For the sake of the contradiction, suppose that
On (S;) < k/10 for some i. First, observe that S; cannot be a singleton, because the induced degree
of each vertex of H is at least 7k/20 > k/10. We reach a contradiction by showing that G[S;]
is a 1/4-dense, k/20-edge-connected induced subgraph of G with expansion ¢(G[S;]) > ¢*. By
definition, G[S;] is k/20-edge-connected. Next, we show G[S;] is dense. For every vertex v € S;,

7d§(§v) - dci'gf) > da(v) /4,

dgis;)(v) = du(v) — Ou(Si) = du(v) — k/10 >

where the third inequality uses (5). Therefore G[S;] is 1/4-dense.
Finally, we show that G[S;] is a ¢*-expander. This is because for any set T C S;,

8G[SZ.](T) S k/20 S on(9)

(D) = @)~ dp(s) 1=

bcis)(T) =

Therefore, G[S;] is a k/20-edge-connected, 1/4-dense and ¢*-expander, which is a contradiction.
So, 9r (S;) > k/10, which gives a contradiction by (6). O

This completes the proof of Proposition 4.3. We are now ready to prove Theorem 4.1. The
details of our construction are given in Algorithm 2.

First of all, observe that the algorithm always terminates in at most n — 1 iterations of the loop,
because in each iteration |W| decreases by at least 1. The properties of Hy« in step 5 translate to
the properties of T as follows:

o 1/k-expansion of H;- guarantees that 7 is (1/k,.)-expanding.
e The k/20-edge-connectivity of H;« implies that T is (k/20,.,.)-LCH.

e Finally, the fact that Hy- is 1/4-dense with respect to Gy« implies that T is (.,1/4, T )-LCH.
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Algorithm 2 Construction of an locally connected hierarchy for a 7log(n)-edge-connected graph.
Input: A k-edge-connected graph G = (V, E) where k > Tlog(n).
Output: A (1/k,.)-expanding (k/20,1/4,7)-LCH T of G.

1: For each vertex v € V, add a unique (leaf) node to 7 and map v to it. Let W be the set of
these leaf nodes. > Throughout the algorithm, we keep the invariant that W consists of the
nodes of T that do not have a parent yet, but their corresponding subtree is fized, i.e., V(t) is
well-defined for any t € W.

2: while [IW| > 1 do

: Add a new node t* to W.
4: Let Gy be the graph where for each node t € W, V (¢) is contracted to a single vertex, and
identify ¢ with the corresponding contracted vertex. Gy is k-edge-connected by Fact 2.8.
5: Let Hy = Gy« [Up+] be the k/20-edge-connected, 1/4-dense 1/k-expanding induced subgraph
of G4 promised by Proposition 4.3.

6: Let W =W — U, and make t* the parent of all nodes in Uy=. >So, V(t*) = User,. V(1)

and G{t*} = Hy-.

7: end while

return 7.

4.2 Extraction of an Q(k)-Edge-Connected Set of Good Edges

In this part we prove the following theorem.

Theorem 4.5. If G = (V, E) has an (o, .)-expanding (k, \, T )-LCH, then there exists a PD shortcut
matriz D, and a k/4-edge-connected set F' of good edges such that

fQ(kv)‘)a)
i < 12
Iglealg(Re ple) < 2 ,

where fo(k, A\, ) = f1(k, Aa) - O(log(1/c)).

The main theorem of the paper , Theorem 1.6, follows from the above theorem together with
Theorem 4.1.

Let T be the («,.)-expanding (k, A\, 7)-LCH given to us. First, observe that it is very easy to
prove a weaker version of the above theorem where

Reffp(e) < %

for edges of F' by a single application of Theorem 3.5. Let D be the optimum of Tree-CP(T); we
let F' C E be the edges where Reffp(e) < % Let G’ = (V, F). It follows that for any node ¢

of T, G'{t} is k/2-edge-connected, so by Lemma 3.2 G’ is k/2-edge-connected and we are done.
The main difficulty in proving the above theorem is to reduce the inverse polynomial depen-
dency on « in the above argument to a polylogarithmic function of «. To achieve that, we apply
Theorem 3.5 to log(1/a) locally connected hierarchies, 7o, ..., Tiog(1/a), of our graph. For each
T;, W; is the set of bad internal nodes of W;_1, i.e., those where their internal subgraph is not
yet Q(k)-edge-connected with respect to the good edges found so far. Originally, Wy contains all

internal nodes of 7y and it is a (1/k,.)-expanding set. For each i, we will make sure that 7; is
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Algorithm 3 Extracting Small Effective Resistance Edges
Input: A graph G = (V, F) and a («, .)-expanding (k,\, 7)-LCH T.
Output: A PD shortcut matrix D and a k/4-edge-connected set F' of good edges.
1: Let Wy be all internal nodes of 7, W; = ) for ¢ > 0, and 7o = T, and G’ = (V,0).
2: for i =0 — log(1/a) do
3: Let D; be the optimum of Tree-CP(T;).
4: Say T; is a (k', N, T;)-LCH of G; let

/ /
F; .= {eeE:Reﬂ“Di(e)gw}, (7)
add all edges of F; to G'.

5: For any node t € W;, let Sy1,...,S; ¢4 be a natural decomposition of G%-{t} into k/4-
edge-connected components as defined in Definition 2.9. If £(¢) > 1, then we add t to Wj41.
>Note that if £(t) = 1 it means that G'{t} is k/4-edge-connected.

6: We construct a (.,.,T;41)-LCH of G, called 7,11, by modifying 7;. For any node t € W;1,
we add £(t) new nodes sy 1, ..., ) to Tiy1 and we make all nodes of S ; children of s;
and we make t the parent of s; ;. Therefore, ¢ has exactly £(¢) children in 7;1;. See Figure 6
for an example. The set T; 11 is the union of all nondominating nodes children of all nodes
of Wz

7: end for

return the PD shortcut matrix E;D; and the good edges U; F;.

(k/4, \a!, T;)-LCH and W; is (2'a, k)-expanding. In other words, each 7; is a “refinement” of 7;_;
whose W; nodes are twice more expanding.

Throughout the algorithm we also make sure that all (except possibly one) children of each
node in W; are in T;. Let us elaborate on this statement. Let ¢ € W, and let tg,t1,... be the
children of ¢. Since W; C Wy, t € Wy. Consider the graph G,{t}; by the theorem’s assumptions
Gt {t} is a k-edge-connected a-expander. It follows that G7;{t} can be obtained from Gy;{t} by
contracting a set U, C V;{t} corresponding to each children ¢; of t. We use the notation

do(t;) = > dey iy (¥)

!
t EUtj

to denote the sum of the degrees of nodes in Sy, in the noncontracted graph Gr;{t}. We say a child
ty of t is dominating if

d()(tg) > % Z d()(tj).
J

It follows that each node ¢ € W; can have at most one dominating child. In addition, if £, is a
dominating child, it may not satisfy O(t;) = P(ts), so we may not add ¢, to T;. Because of this we
need to treat the dominating children (of nodes of W;) differently throughout the algorithm and
the proof. In our construction 7; consists of all nondominating children of all nodes of W;. It is
easy to see that for any nondominating child ¢, of ¢t € W,

O7:(te) = 01 (13 (Uy,) = - dgr (13 (Uy,) = - Y Ont)Za-X- ) Prt) > adPr(t),
= =
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Figure 6: A node ¢ and its children, ty,ts,..., in 7;_1 are illustrated in left. The right diagram
shows the tree 7; when the new nodes s; 1, 54,2, S¢,3 corresponding to the sets Sy 1,5 2, 5,3 are added.

where the first inequality uses the fact that Gy {t} is an a-expander and the second inequality uses
the fact that 7T is (., A, To)-LCH. The following claim is immediate

Claim 4.6. If Ty is an («a,.)-expanding (., \, To)-LCH, then for any i > 1, T; is a (., Aa, T;)-LCH,
where T; consists of all nondominating children of the nodes of W;, .

At the end of the algorithm, we obtain PD shortcut matrices Do, . .., Diog(1/a) and sets Fo, ..., Flog(1/a)
such that the edges of each F; have small effective resistance with respect to D;, and Ui(fél/ a)FZ-
is (k)-edge-connected. Then, we let D be the average of Dy, ..., Dige(1/a) and F' be the union of
Fo, ..., Flog(1/a)- The details of the construction of these matrices and sets are given in Algorithm 3.
We prove the claim by induction on . In the first step we show T;41 is a (k/4,.,.)-LCH. Then,
we show that W;, 1 is (27 a, k)-expanding. Then, we show that Wiog(1/) is empty and we conclude
by showing that G’ = (V,U; F;) is Q(k)-edge-connected.

Claim 4.7. If 7; is a (k/4,.,.)-LCH of G, then Ti1+1 is a (k/4,.,.)-LCH of G. In addition, if W;
is (., k)-expanding, then W1 is (., k)-expanding.

Proof. First, for any node t € T;4 that is also in T;, G7;,,(t) = G7;(t); so, G7;,,(t) is k/4-edge-
connected by induction. So, G, {t} is also k/4-edge-connected. For any new node s;; € Tit1,
since S ; is a k/4-edge-connected subgraph of G7-{t}, G7,,, (s:;) is k/4-edge-connected. Therefore,
Tit11s a (k/4,.,.)-LCH of G.

Similarly, observe that Wj41 is (., k)-expanding, because W;1; C W; and for any node t € T;,
Gy, (1) = Gy (1) 0

We slightly strengthen our induction; instead of showing that G7;{t} is (2'c,.)-expanding for
all t € W;, we show that for any ¢ € W; and any S C V7 {t} where do(S) < 2do (V7 {t}),

Sy 1y (S) = 2'a.

For a set of indices I C [¢] we use ST = U;c1S;. The following is the key lemma of the proof of
this section.

Claim 4.8. For any i >0, t € W;, and any S C V7, {t} where do(S) < 3do(V7:{t}),
$ay. 1y (S) = min{2'e, 1/8}.

Therefore, for any i > 1, W; is (2'a, .)-expanding.
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Proof. We prove this by induction. Note that the statement obviously holds for ¢ = 0 because
Gr1,{t} is an a-expander for all t € Ty. Suppose the statement holds for i. Fix a node t € W,
and let Sy 1, ..., St 44 be the natural decomposition of G7;{t} into k/4-edge-connected components.
We abuse notation and drop the subscript ¢ and name these sets S, ..., Syy). Choose I C [((t)]
such that do(S7) < 3do(Vr{t}). If ¢G(13(S1) > 1/8 there is nothing to prove. Otherwise, we
invoke Lemma 4.9 for the k-edge-connected graph G = Gr{t}, F = U;Zle and the natural
decomposition Si, ..., Sy of (V7;{t}, F') into k/4-edge-connected components. The lemma shows
that ¢G7§+1{t}(51) > 2itlq,

We just need to verify the assumptions of the lemma. By the induction hypothesis QSGTZ_ y(S1) >
2'a. In addition, S; only contains nondominating nodes of t, i.e., S; C T;. Therefore, by the main

technical theorem 3.5, equation (7), and the Markov inequality, at least 15/16 fraction of the edges
incident to each ¢’ € T} are in F;. So, 9p,(S1) > 12d(Sy) > Ld(Sy). O

Lemma 4.9 (Expansion Boosting Lemma). Given a k-edge-connected graph G = (V,E), a set
F C E and a natural-decomposition of (V, F) into k/4-edge-connected components Sy, ...,Sy. For
any I C [0] if dp(Sr) > 7d(S1)/8, and ¢(S1) < 1/8, then
a(S1)
Ziel 8(52')
Proof. Think of the edges in F as good edges and the edges not in F', E — F as the bad edges. We
can write the denominator of the above as follows:

S 0(S) =0r(S)+2 D IF(S5S)+ Y dp-r(Si) (8)

iel ije€l,i<j il

> 2¢(57).

where we used Or(S) to denote the edges of F' leaving a set S.
First, we observe that by the natural decomposition lemma 2.10, the middle term on the RHS,
i.e., the number of good edges between {S;};cr is small,

> RS, S| < (] - 1)(k/4) < Za
1,J€1,1<] zEI

where the second inequality follows by k-edge-connectivity of (G. Subtracting twice the above
inequality from (8) we get

Op(S1) + Y 0p-r(S Za ©)
iel zEI

Secondly, by the lemma’s assumption,

ZOE F < ZdE F dE_F(SI) = d(S[) — dF(S[) < %d(SI). (10)

i€l el

Putting the above two inequalities together we get,

—28 ) < 0r(Sr) + d(SI)

el
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Dividing both sides of the above inequality by 0(S7) we get

1 or(Sr) ~ d(Sr)
25 2= ") = Hisy T sacsn)

1
86(57) = 16(51)

where the last inequality uses that o < 1/8. O

iel

< 1+

Claim 4.10. Wiyg(1/q) is empty.

Proof. Let i be the smallest integer such that 2‘a > 1/8. Note that i < log(1/a). By Claim 4.8,
for any ¢t € W,

P(Gr{t}) = 1/8. (11)

We show that W;;1 is empty. Fix a node t € W;. Similar to the previous claim, at least 15/16
fraction of the edges adjacent to any nondominating child of ¢ are in F;. For a set I C [¢(t)] such
that do(S7) < do(Vr {t}), we have ¢G7}{t}(sl) > 1/8; therefore at least half of the edges in the
cut (Sr, Vr{t} — Si) are in F;. By k-edge-connectivity of G7;{t}, F; has at least k/2 edges in this
cut. So, (Vr;{t}, F}) is k/2-edge-connected. O

Claim 4.11. At the end of the algorithm G’ is k/4-edge-connected.

Proof. We show that for any 7 and any node t ¢ W;, G’-{t} is k/4-edge-connected. Then, the claim
follows by Claim 4.10.

At any iteration i, for any new node s; ;, G- {s¢;} is k/4-edge-connected because Sy ; is a k/4-
edge-connected component of G7;{t}; this subgraph remains k/4-edge-connected in the rest of the
algorithm because we never delete edges from G’. On the other hand, when we remove a node t
from W;, we are guaranteed that G7;{t} is k/4-edge-connected. O

Now, Theorem 4.5 follows from the above claim and that for any e € U; F;,

< 16f1(k/4, X - ) log(1 /)
- k/4

Refr, p,(e) <log(1l/a) - min Reffp, (e)

4.3 Algorithmic Aspects

In this part we prove Theorem 1.9. We emphasize that our algorithm does not necessarily find a thin
tree. As alluded to in the introduction, the main barrier is that verifying the thinness is a variant of
the sparsest cut problem for which the best known algorithm only gives an O(+/log n)-approximation
factor. Instead, we use the fact that “directed thinness”, as defined in (59) of Theorem A.1, is
polynomially testable and it is enough to solve ATSP. We refrain from giving the details and we
refer interested readers to [AGM ' 10]. Our rough idea is as follows: We run the ellipsoid algorithm
on the convex program Tree-CP by first discarding the 2" constraints 15D1g < 1[L1g that verify
D is a shortcut matrix. If the directed thinness of the output tree fails, the undirected thinness fails
as well, so we get a set S for which lngs > lnglg. That corresponds to a violating constraint
of the convex program which the ellipsoid algorithm can use in the same way that it uses separation
oracles. Repeating this procedure, either the ellipsoid algorithm converges, i.e., we find an actual
undirected thin tree, or we find an ATSP tour along the way.
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Algorithm 4 Expander Extraction

Input: A k > 7logn-edge-connected graph G = (V, E).

Output: A k/20-edge-connected, 1/4-dense induced subgraph that is an €(1/k?)-expander.
1: Let U <~ V. We always let H be the induced subgraph on U.
2: loop
3: if there is a vertex v € U such that dy(v) < 7dg(v)/20 then

4: Let U < U — {v} and goto 2.

5: end if >If this case does not happen, H is 7/20-dense.
6: Let S be the output of the spectral partitioning algorithm on H, and let T'=U — S.

. if ¢a(S) < da(U) or ¢G(T) < ¢a(U) then

8: Let U = S or U = T whichever has the smallest ¢¢(.), and goto 2.

9: end if

10: if max{¢pp(9),pu(T)} < 1/k then

11: Let U = S or U =T whichever has fewer vertices, and goto 2.

12: end if If this case does not happen, by Cheeger’s inequality, H is an Q(1/k?)-expander.

13: If H is k/20-edge-connected, return H. Otherwise, let S C U be such that dg(S) < k/20
and ¢g(S) > ¢g(U — 9). >So, ¢ (S) > Q(1/k?).

14: Let S1,Ss,... be a natural decomposition of G[S] into k/20-edge-connected components.
By (6) there is S; such that 9y (S;) < k/10. Return G|S;].

15: end loop

To complete the proof we need to make sure that we can construct the starting locally con-
nected hierarchy in polynomial time; we will describe our algorithm later. Apart from that, the
main difficulty is that to obtain the shortcut matrix D promised in Theorem 1.6 we need to solve
O(loglog(n)) many convex programs (Tree-CP(7;)) and each one depends on the solution of the
previous ones. In other words, we should be recursively calling O(loglogn) many ellipsoid algo-
rithms. Therefore, if we find a separating hyperplane for one of the ellipsoids, we should restart the
ellipsoid algorithms for all the proceeding convex programs. The resulting algorithm runs in time
nOUoglogn) and has an approximation factor of polyloglog(n). We can also tradeoff the approxima-
tion factor with the running time of the algorithm by modifying Algorithm 3 to have O(¢) number
of iterations. For constant values of £ this gives a polynomial time approximation algorithm.

We will give an algorithm to construct an (£2(1/k?),.)-expanding (k/20,1/4,T)-LCH, Tq for
some a < 1/log?(n). Then, we run a modified version of Algorithm 3 to obtain locally connected
hierarchies 71,...,7Tas; in particular, we only run the loop for 2¢ iterations; to make sure that 7o,

is (£2(1), .)-expanding, we need to boost the expansion by (é)l/ 2% in every iteration of the loop. To
be more precise, for any 1 < i < 2/, instead of (7), we let

O((1/a)"?") f (K, N) }
k' '

F; = {e € E : Reffp,(e) <

The proof simply follows by a modification to the expansion boosting lemma. The resulting algo-
rithm runs in time n°®® and has an approximation factor of polyloglog(n) - log!/* (n).

It remains to find the starting locally connected hierarchy 7p. Given a k > 7logn-edge-
connected graph G = (V,E), all we need is to find a 1/4-dense k/20-edge-connected induced
subgraph G[S] whose expansion is €2(1/k?). We essentially make the proof of Lemma 4.4 construc-
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tive using the spectral partitioning algorithm [AMS&5, Alo86] at the cost of obtaining an Q(1/k?)-
expander instead of a 1/k-expander. This is because, by Cheeger’s inequality, the spectral parti-
tioning algorithm gives a square-root approximation to the problem of approximating ¢(G). The
details of the algorithm are described in Algorithm 4.

5 The Dual of Tree-CP

In this section we write down the dual of Tree-CP. Before explicitly writing down the dual, let
us give a few lines of intuition. We do this by writing down the dual of a few convex programs
computing the maximum or average effective resistance of a number of pairs of vertices.

For a pair of vertices, a,b € V, the optimum value of the following expression,

@@ —e®)? )

VT, (@) - 2(0)?
is exactly equal to Reffg(a,b); in particular, if we fix 2(b) = 0,z(a) = Reff(a, b), then the optimum
x is the potential vector of the electrical flow that sends one unit of flow from a to b. It is an easy
exercise to cast the above as a convex program.

Now, suppose we want to write a program which computes the maximum effective resistance
of pairs of vertices (a1,b1),..., (an,by). In this case we need to choose a separate potential vector
for each pair, We use a matrix X where the i-th row of X is the potential vector associated to the
i-th pair. The following program gives the maximum effective resistance of all pairs.

S (X — Xin)? S (Xia, — Xip,)?

= Imnax

max
XeRhxV Z?:l S e (Xin — Xi )2 XeRXV 37 (Xy — Xy)?

It follows by (3) that the optimum of the above is the maximum effective resistance of all pairs
(a1,b1),...,(an,bp). Recall that X,, is the u-th column of X.

Note that the denominator of the RHS is coordinate independent, i.e., it is rotationally invariant.
We can rewrite the numerator in the following way and make it rotationally invariant. Instead of
mapping the i-th pair to the i-th coordinate, we map the i-th pair to z; where {z1,..., 2} are h-
orthonormal vectors. In other words, to calculate the numerator we need to find a coordinate system
of the space such that the sum of the square of the projection of the edges on the corresponding
coordinates is as large as possible

h
max > iz (% Xay, — Xb;>2
XGRhXV, ZUNU(XU - X'U)

{z1,-.-,2n} are orthonormal

Instead of choosing z1, ..., 2, we can simply maximize over an orthogonal matrix U € R"*" and
let z1,..., 2, be the first h rows of U,

h i 2
> (U, Xa, — X,
max =10 Xoy X b2l> ; (13)
X eRM*V Orthogonal U § :UNU(‘CU - U)
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where U? is the i-th row of the matrix U. The above program is equivalent to the dual of the
following convex program

min &,
s.t. Reffp(a;, b)) <& V1<i<h,
D < Le.

We will give a formal argument later. When we replace the constraint D < Lg with D =g Lg,
we get the additional assumption that X is a cut metric. This can significantly reduce the value of
(13).

Next, we write a program which computes the expected effective resistance of pairs of vertices
(a1,b1), ..., (an,by) with respect to a distribution Aq, ..., Ap,

h h
(Xia; — Xip,)?
Ai - Reff(a;, b;) = max Aj - - - . 14
iZ:; Z (o000 XeRY Z 2 (K = Xiw)? (14)
where we simply used (12). Equivalently, we can write the above ratio as follows:
2
(Shy VA (K, — Xis,))
max , 15
XeRhxV Y ion (X — Xy)? (15)
To see that the above two are the same, first, assume X is normalized such that > (X4, —

X, p;)? =1 for all i. This simplifies (14) to >_; A\i(Xi.a; — (Xi,0;))% Then let

Vi= X'\ (Xia, — Xip,),

where as usual Y is the i-th row of Y. Plugging in Y in (15) gives the same value i Ni(Xig —
Xin)%
Lastly, we can write a rotationally invariant formulation of (15) using an orthogonal matrix U.

<Ezh:1 VA <Uiv Xa; — Xbi>>2
max

XEeRMXV, D (Xu = Xy)?
Orthogonal U

Let &}, € R™ " be the matrix where the i-th column is X, p;- It follows by Lemma 2.5 that

h

) Xa. — X)) = T XX = I XX .
;W, i bi) Ort}glg%}rfalU r(UXX) = || XX,

max
Orthogonal U
This is is a key observation in the proof of the technical theorem.

In the rest of this section we will prove that a similar expression is equivalent to the dual of
Tree-CP. Then, in Subsection 5.1 we write the dual of Max-CP, Average-CP and we will prove
Theorem 5.3. The following lemma is the main statement that we prove in this section. Recall
that for a mapping X of vertices of G, X = XX is the matrix where for every edge e = {u,v},
X =Xy — X,
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Lemma 5.1. For any graph G = (V, E) and any (.,.,T)-LCH of G, the optimum of Tree-CP (up
to a multiplicative factor of 2) is equal to

1 e 2
Yter 100 (ZEEO(t)<U 7Xe>>
sup
vX zeGE ”XEH2

where the supremum is over all semiorthogonal matrices U &
{0, 1}V, for arbitrary h > 0.

(16)

REXM - and all cut metrics X €

Note that the dimension A in the above can be arbitrarily large because X is a cut metric.
However, only the first |E| rows of U matter. In addition, since X is a cut metric, for any edge
e={u,v} € B, |X.|* = |X|;; so, throughout the paper, we may use either of the two norms.

Proof. First, we show Tree-CP satisfies Slater’s condition, i.e., that Tree-CP has a nonempty inte-
rior. It is easy to see that D = %LG + #J is a PD matrix that satisfies all constraints strictly. In
particular, since G is connected, for any set S, 1{Lglg > 1, so

3—711213(]13 < % < %lngls.
Therefore, lngs < lngls for all S. Hence, Slater’s condition is satisfied, and the strong duality
is satisfied and the primal optimum is equal to the Lagrangian dual’s optimum (see [BV06, Section
5.2.3] for more information).

For every t € T we associate a Lagrange multiplier \; corresponding to the first set of constraints,
and for every set S we associate a nonnegative Lagrange multiplier yg corresponding to the second
set of constraints of the Tree-CP. The Lagrange function is defined as follows:

1
— - 11 _ T 1T
g0 ) 51;f05+§:)\t<|0(t)| S AIp A, 5)+§ ys(1LD1g — 11 Le1g)
teT e€O(t) Scv

First, we differentiate the RHS with respect to £, D to eliminate the inf. This gives us the
Lagrangian dual. Then, we homogenize the dual expression by normalizing the entries of y; finally
we eliminate the dependency on A by an application of the Cauchy-Schwarz inequality.

First of all, differentiating g(\,y) w.r.t. £ we obtain that

> =1L (17)

teT

Let

A= Z@ﬁ( Z XeXeT) and Z := Z yslgsly.
teT ecO(t) pcScv

Note that by definition A and Z are symmetric PSD matrices. The Lagrange dual function simplifies
to

g(A,Z):li)ngAoD_l—i—ZoD—ZoLg,

subject to Y, Ay = 1. Now, we find the optimum D for fixed A, Z. First, we assume that A and
Z are nonsingular. This is without loss of generality by the continuity of g(.) and because the
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assumption ), Ay = 1 can be satisfied by adding arbitrarily small perturbations. Differentiating

with respect to D we obtain
D 'AD ' =Z.

Since, A, D are nonsingular there is a unique solution to the above equation,
D= Z—1/2(Zl/2AZ1/2)1/2Z—1/2

We refer interested readers to [SLB74] to solve the above matrix equation. Using
D—l — Zl/2(Zl/2AZ1/2)_1/2Z1/2,

we have

AeD '+ ZeD = Tr(AZV2(Z'V2AZVH 2212 4 Te(Z2V2( 22 AZN)2 7712
= 2Tr((Z'/2AZY?)1/?),

Therefore,
g(A, Z) =2Tx((ZV2AZY)2) — Z o Lg

Let £ be the optimum value of Tree-CP. By the strong duality,

£* = sup g(A, Z) = sup 2Tx((ZY2AZY*)'/?) — Z o Ly,
Ay>0 Ay>0

It remains to characterize values of ),y that maximize the above function. Let W € RE*F be
a diagonal matrix where for each edge e € F,

We,.e = > A (18)

tET:e€O(t) 0@

Note that the above sum is over zero, one, or two terms because each edge is in at most two sets
O(t). Observe that
A= XW3AT.

Furthermore the nonzero eigenvalues of Z1/2A421/2 = Z1/2xW?2Xx72/2 are the same as the nonzero
eigenvalues of WXTZXW . Therefore,

£ = sup 2Te(WXTZXW)Y?) - Z o L (19)
\y>0

Observe that the above quantity is not homogeneous in y as Z e L scales linearly with y and
Tr((WXTZXW)Y?) scales with V/¥- It is an easy exercise to see that by choosing the right scaling
for y we can rewrite the above as follows:

T 1/2\2
£ — sup Te(WATZXW)'/%)>
Ay>0 Z [ ] LG

Note that although (19) is convex, the above quantity is not necessarily convex but we prefer to
work with the above quantity because it is homogeneous.
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Write Z = XTX where X € R?"*V and each row of X corresponds to a vector yslg for a
set S C V. Observe that X defines a weighted cut metric on the vertices of G which can be
embedded into an unweighted cut metric (see Subsection 2.1 for properties of weighted /unweighted
cut metrics). So, we assume X € {0,1}"*V for an h possibly larger than 2". If h < |E| then we
extend X by adding all zeros rows to make h > |E|. Let X, be the mapping of v in that metric,
i.e., X, is the column v of X. By the definition of the nuclear norm,

Te(WXTZXW)'?)? = | XAW |2 = | XW |2

*

Therefore,

2
_ [XW[;
sup

& = 5
XA Z{U,U}GE HX€”2
In the denominator we used the fact that Z e Lg = > ¢, 3 | Xu — X3 =30, X2

Note that X € R"*F. Since the number of rows of X is at least the number of its columns, by
Lemma 2.5, we can rewrite the nuclear norm as supy Tr(UXW) over all semiorthogonal matrices
U e REXN 50

2
* < ZtET ZeEO(t) We,e : <U67 Xe>>
& = sup

2
XG{O,l}h,)\ZQ ZGEE ”XeH
Semiorthgonal U

(Sier Secorn VAOWDT - (U, X))’
= sup

2
Xe{0,1}",2>0, ZeeE HXe”
Semiorthgonal U

(20)

Note that the second equation is an equality up to a factor of 2 because each edge is contained in
at most two sets O(t). In particular, by (18), for any edge e,

S RVZ W GRS A SENswiG1}

\/5 teT:ecO(t) teT:ecO(t)
Finally, using the Cauchy-Schwarz inequality we can write
2
1 e
£ < sup (Seer ™) - (Seer ol (Secow X))

2
XU 2cen I Xel

The above inequality is tight because in the worst case we can let

A o m< > <UG,XE>>2,

ecO(t)

such that >, Ay = 1. O
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5.1 The Dual for Variants of the Problem

In the rest of this section we prove simple positive and negative results on the value of the dual.
We will not use these results in the proof of the technical theorem; we present them to provide
some intuition on how one can approach the dual.

First of all, using similar ideas as the proof of the above lemma, we can also write the dual of
Max-CP and Average-CP. We write these quantities, without proof, as we do not need them in
the proof of our main theorem. First, we write the dual of Max-CP.

min mngeffD(e), S e X2
eck v e

st. D =glLg = sSup 2 - (21)
o Xe{o,1}hxV 2cer 1 Xell
D>0 Somio;{thoéonal U °c ‘
Now, we write the dual of Average-CP.
min gg}/{EENE(SE)ReH‘D(e), . )
_ (ZeeE Ve - <U 7Xe>)
st. D =g Lg, - sSup P ) (22)
Xe{0,1105V ) >eer [1Xell
D=0 Semiorthogonal U
>\ _
where for any edge e, v = D g..c E(S,5) % and /\(S 5 is a probability distribution on all cuts

of G.
In the following lemma, we show that for any pair of vertices of a k-edge-connected graph there
is a shortcut matrix that reduces the effective resistance of that pair to 1/k.

Lemma 5.2. For any k-edge-connected graph G and any pair of vertices a,b, there is a shortcut
matriz D such that Reffp(a,b) < 1/k.

Proof. The statement can be proven relatively easy in the primal. Since G is k-edge-connected we
can simply shortcut the k edge-disjoint paths connecting a,b and D = k- L, ;. Then it is easy to
see that Reffp(a,b) = 1/k and D < L¢ as desired.

By (21) it is enough to show that

{a,b} _ 2
sup W : Xa Xb>2 < O(1/k),
Xe{0,1}hxV, > o 1 X0 — Xl

Semiorthogonal U€cR!*"

First note that in the worst case the vector U€ is parallel to X, — Xp. Therefore, the numerator is
exactly || X, — Xp|*>. The proof simply follows from the triangle inequality of the cut metrics.
Since G is k-edge-connected there are k edge-disjoint paths from a to b. For any such path P
we have
Z HXe”l > || Xa - Xle :

ecP
O

In the following theorem we show that there is no PD shortcut matrix D that reduces the
average effective resistance of all cuts of the graph of Figure 4 to o(1).
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Theorem 5.3. For any h > k > 2, the optimum of Average-CP for the graph of Figure 4, is at
most

h2
8(h+ k)%’
Proof. Fix k,h and let G be the graph of Figure 4. By (22) it is enough to construct a cut metric
X, a semiorthogonal matrix U, and a distribution A on the cuts of G such that

e 2
(Ceep v WU X)° _ 2
SeeplX? 8RR

(23)

First, we construct X and we calculate the denominator, then we define U and v, A and we
upper bound the numerator. Let n = 2" (so G has n + 1 vertices). Let X € {0,1}"*("*D where
for any vertex 0 < i < 2", X; := 1), i.e., X; is 1 in the first ¢ coordinates and 0 otherwise. So,
Xy = 0. It follows that

> IXi—Xjll,=n-k+n-h.
{i,j}eE
So, it remains to upper bound the numerator. Next, we define the semiorthogonal matrix U.

We define a semiorhogonal matrix U by describing the vectors that we assign to a carefully
chosen set E’ of “long” edges of G. For each 1 < i < h, we assign a vector to each of the edges
{0,2°},{2-2%,3-2'},{4-2?,5-2'},...; we assign the following vector to the edges {252, (2j+1)-2¢}:

1 2j-20 (2§+1)-2° (25+2)-2¢
25-2%,(25+1)-2¢} __ +1 +1 -1 -1
U(25:20,2i+1)2°) [0 S ST S N VPR B S 0].

Note that the above vector is only nonzero in the coordinates 2i-27 to (2i +2)-2/ —1; it is equal to
1/v/27 in the first half of these coordinates and —1/v/27 in the second half. For example the rows
of U corresponding to the 3 top layers of long edges look as follows:

1 n/4 n/2 3n/4
yion/2} \J;_% \J;_% \—/_% _T:L
uton/a %ﬁ ‘ _T\f 0 ... 0
U{n/2,3n/4} 0 0 %5 ‘ —Tx{?

Note that X can be extended to a matrix in {0, 1}¥*("+1) by adding zero rows, and U can be
extended to an orthogonal matrix in RF*F,
By the above construction for each edge e = {25 - 2¢, (25 + 1) - 2} € F/,

e 2' i—1)/2

Therefore, we can write the LHS of (23) as follows:

. 2
(Ceer vie- (U X0)" (Zez{j~2i,(j+1)~2i}eEf Ve 2(2_1)/2>
> een IXel® - n-k+n-h
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Note that we have an inequality because edges not in E’ may have nonzero projection on the
corresponding rows of U.
Now, let us define the distribution A. Let )‘(53) = 1/n for every cut ({0,1,...,¢},{¢+1,...,n+

1}) for all 0 < ¢ < n — 1. Then, for any edge {25 - 2¢, (25 + 1) - 2¢},

1 20
V(2j-2i,(2j+1) 21} = > ) Z
ojaiciemii e " |[E({0,.... 04 {¢+1,...,n+1})| — n-(h+k)

In the above inequality we use the fact that the sum is over 2! many cuts, and each “threshold cut”
({0,1,..., ¢}, {¢+1,...,n}) cuts at most k + h edges of G.
Therefore, the optimum of Average-CP is at least,

i— h—1 i— i
<Z 20<2ﬂ<2h ‘ (h+k) 20 1)/2) (Zz on 2771 (h+k) 20 1)/2>
n-(h+k) (h+ k)

(”hf) &

n-(h+k) 8(h+/<;)

>

O

Let us conclude this section by demonstrating that Tree-CP performs better than Average-CP
for the graph of Figure 4 with respect to the locally connected hierarchy of Figure 5. Let T be the
tree shown in Figure 5 and T = {1,2,...,2"}. Let X and U be the cut metric and the orthogonal
matrix constructed in the proof of Th( orem 5.3, respectively. Let us estimate eeo(t)<U6, X,) for

nodes 2¢ € T'; the rest of the terms can be estimated similarly. For node 2¢, O(2%) has k copies of
the edge {2° — 1,2°} and for each 1 < j < 4, it has an edge {2' — 2/,2!}. By (24), for each edge

) o ) . 2
e={20-27,2"} (U¢,X,) = 20~1/2 Therefore, for any node 2¢, (Zeeo( (U X >) is a geometric
sum and we can approximate it with the largest term, i.e., maXeeo(gi)<U , X¢)2. Therefore,

2

S | 2 X ) S X gy X

teT ecO(t) teT

1 1
< — max (U¢ X,)% < T Z HX6H2'

k
ter o) ecE

In the second inequality we use the crucial fact that each edge e is contained in O(t) for at most
two nodes of T and that |O(t)| > k for all t. So, Tree-CP(7) < O(1/k).

6 Upper-bounding the Numerator of the Dual

In the rest of the paper we prove the following theorem:.

Theorem 6.1. For any k-edge-connected graph G = (V, E) and any (k,\,T)-LCH, of G, and for
h >0, any cut metric X € {0, 1}hXV, and any semiorthogonal matriz U € REXh,

2
Yter 00 (Zeeo(t)<Ue’Xe>> < JilkA)
Seer Xl -k

(25)
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Recall that fi(k,\) is a polylogarithmic function of k,1/A. Observe that the above theorem
together with Lemma 5.1 implies Theorem 3.5.

In the rest of the paper we fix U, X and we upper-bound the above ratio by polylog(k,1/\)/k.
We also identify every vertex v with its map X,,.

Before getting into the details of the proof let us describe how k-edge-connectivity blends into
our proof. In the following simple fact we show that to lower bound the denominator it is enough
to find many disjoint L; balls centered at the vertices of G with large radii.

Fact 6.2. For any X : V — {0,1}" and any set of £ > 2 disjoint Ly balls By,..., B, centered at
vertices of G with radii r1, ..., we have

¢

Srk< 3P

i=1 eckl

Since there are k edge-disjoint paths connecting the center of each ball to the outside, by the
triangle inequality, the sum of the L length of the edges of the graph is at least k£ times the sum
of the radii of the balls. Note that if / = 1, i.e., if we have only one ball, the conclusion does not
necessarily hold. This is because By may contain all vertices of G.

Now, let us give a high-level overview of the proof of Theorem 6.1 The main proof consists of two
steps; in the rest of this section we upper-bound the numerator by a quantity defined on a geometric
object which we call a sequence of bags of balls. Then, in the next section we lower-bound the
denominator by Q(k) times the same quantity. The main result of this section is Proposition 6.15,
in which we construct a geometric sequence of bags of L balls, By, Bs, ..., centered at the vertices
of GG such that balls in each B; are disjoint and their radii are exactly equal to §;, where 971, d2,
... form a poly(k)-decreasing geometric sequence. We guarantee that the numerator is within a
polylog(k, A) factor of the sum of the radii of balls in the geometric sequence.

In Section 7 we lower-bound the denominator, i.e., the sum of the L, lengths of the edges
by Q(k) times the sum of radii of the balls in our geometric sequence. At the heart of our dual
proof in Section 7, we use an inductive argument with no loss in n. We prove that under some
technical conditions on Bj,Bs,..., we can construct a set of label-disjoint (hollowed) balls such
that the sum of the radii of these (hollowed) balls is a constant factor of the sum of the radii of
balls in the given geometric sequence; by label-disjoint balls we mean that we can assign a set of
nodes C(B) C T to each (hollowed) ball B, called the conflict set of B, such that for any two
intersecting (hollowed) balls B and B’, C(B) N C(B’) = (). Furthermore, we use properties of the
locally connected hierarchy to ensure that for each (hollowed) ball B, there are Q(k) edge-disjoint
paths, supported on the vertices of G in C(B), crossing B.

In the rest of this section we construct a geometric sequence of bags of balls such that the
sum of the radii of balls in the sequence is at least the numerator of (25) up to polylog(k,1/)\)
factors (see Proposition 6.15 for the final result of this section). First, in Subsection 6.1 we prove a
technical lemma; we show that if the average projection of a set F' of edges on U is “comparable”
to the average squared norm of these edges, then we can construct a large number of disjoint balls
centered at the endpoints of edges of F'. We use this technical lemma to show that we can reduce
the average effective resistance of a set F' of edges of any k-edge-connected graph to O(l /k). Then,
in Subsection 6.2 we group these balls into several bags of balls. Finally, in Subsection 6.3 we
partition the edges of GG into parts that have similar projections onto U and for each part we use
the result of Subsection 6.2 to find a family of bags of balls. Putting these families together we
obtain a geometric sequence of families of bags of balls.
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Figure 7: Sets of k edge-disjoint paths in disjoint Lq balls.

6.1 Construction of Disjoint L; Balls

In this section we prove the following proposition; although we do not directly use this proposition
in the proof of our main technical theorem, we do use the main tool of the proof, Lemma 6.4, as
one of the key components of the proof for the main technical theorem.

Proposition 6.3. For any k-edge-connected graph G = (V, E) and any set F' C E, _there is a PD
shortcut matriz D that reduces the average effective resistance of the edges of F to O(1/k).

By Lemma 5.1 it is enough to show that for any X € {0,1}"*V and any semiorthogonal matrix
U e RExh
1 2
7] (Ceer(USXe))”  (Beup (U, X0))?
2 = 2
eer X 1 eer 1%

Let Y =UX and Y = YX = UXX. Note that since U is semiorthogonal, ||[Y,|* < ||X.|/? for all
e. Without loss of generality assume that

< O(1/k).

(EewFYe,e)2
Eevr HY6H2 B

)

for a = polylog(k)/k; otherwise we are done. In the following lemma we show that assuming the
above inequality we can construct b disjoint L% balls of radius r centered at the vertices of the
endpoints of edges of F' such that

aé

r-b>

> (EenrYee)? |F|.
poly(e) ( JIF

On the other hand, since these balls are disjoint, by Fact 6.2,

1
EES b
ecE
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Note that we really need to apply Fact 6.2 to balls in the space of X,’s, since Y,,’s do not necessarily
satisfy the triangle inequality. However, given disjoint balls centered around Y,’s, one can take the
same balls around the corresponding X,’s and they will remain disjoint, since U, the mapping from
X, to Y, is a contraction.

Now, the above proposition simply follows by the above two inequalities for € = log k/ log log k.

Lemma 6.4. Given F C E and a mapping Y € REXV such that

T := ( E Yee> Za- EFHY8||§7 (26)
for some o > 0, for any 0 < € < 1/2, there are b disjoint L3 balls By, ..., By with radius r such
that the center of each ball is an endpoint of an edge in F, b > «o|F|/C1(€), and

ac- Y- |F|
r-b> —-——
- Ci(e)

where C1(€) is a polynomial function of 1/e.

Before getting to the proof of the lemma, let us give an intuitive description of the statement of
the lemma. The extreme case is for & &~ 1. Observe that the inequality (26) enforces a very strong
assumption on the mapping Y. Since for any edge e, Y., < ||Y,|, and o = 1, the following two
conditions must hold for Y:

i) For most edges e € F', Y. ~ || Y|,
ii) For most pairs of edges e, f € F, || Y| ~ ||[Y||.

The above two conditions essentially imply that the vectors {Y.}.cr form an orthonormal basis
up to normalizing the size of the vectors. It is an exercise to see that in this case one can select
Q(|F|) many L3 balls of radius Q(Y) around the endpoints of the edges in F; one can show that
greedily picking balls that do not intersect each other works.

Our proof can be interpreted as a robust version of this argument.

Proof of Lemma 6.4. For a radius r > 0, run the following greedy algorithm. Scan the endpoints
of the edges in an arbitrary order; for each point Yy, if the L3 ball B(Y,,r) doesn’t touch the balls
that we have already selected, select B(Y,,r). Suppose we manage to select b balls. We say the
algorithm succeeds if both of the lemma’s conclusions are satisfied. In the rest of the proof we show
that this algorithm always succeeds for some value of r.

Without loss of generality, in the rest of the proof we drop the columns of Y corresponding
to edges e ¢ F and their corresponding rows and we assume Y € RF*¥. Note that by removing
the rows, we are decreasing HYH%, but this only weakens the assumption of the lemma. Let
012> 032> 2 0| be the singular values of Y. We can rewrite the assumption of the lemma as
follows:

|F|

H(Y)\? . : ,
<‘F‘ Z > < ’F’ > - (EeNFYe,e) 2 EENFHY H ’F’ ”YHF ‘F‘ Z

The first inequality follows by Lemma 2.5. Note that, for o = 1, the LHS is always less than or equal
to the RHS by the Cauchy-Schwarz inequality with equality happening only when o1 = --- = op|.
So, for large o the above inequality can be seen as a reverse Cauchy-Schwarz inequality.
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In the next claim, we show that if the above algorithm finds a “small number” b of balls for a
choice of 7, this means that oy, ..., o|p| are significantly smaller than o1,...,0p-1. In the succeeding
claim we use the above reverse Cauchy-Schwarz inequality to show that this is impossible.

Claim 6.5. Given r > 0, suppose that the greedy algorithm finds b disjoint balls of radius r. Then

= 16|F| Z 3

Proof. We construct a low-rank matrix C € RF*¥. Then, we use Theorem 2.6 to prove the claim.
Let Yy,,..., Yy, be the centers of the chosen balls. Then, for any endpoint v of an edge in F, let
¢(v) be the closest center to Y, i.e.,

c(v) := argmin,, Yy, — Y, i3

We construct a matrix C € RF*F such that the e-th column of C is defined as follows: say the

{u,v}-th column of Y is Y, — Y, for {u,v} € F; we let the {u,v}-th column of C' be Y () — Y.

By definition, rank(C') < b— 1, since C’s columns are a subset of the differences between b points.
First, notice that

Y-Clz = Y ||(Yu—Y) ~ Y — Yo
{u,v}eF
< Y (Ya—Yewll, + 1Yo = Yewl,)?
{u}eF
< D0 2|Va— Yy +2(Ye — Yo 5 < 167 |,
{u,v}eF

where the first inequality follows by the triangle inequality and the last inequality follows by the
definition of greedy algorithm; in particular, for any point v, in the worst case there is a point p in
the L3 ball about ¢(v) such that ||[p — Y, ||* < r, so

(1Yo = Yo ll)? < (1Yo = pll + [[Yew) = p)* < (V7 +V/r)? < 47,
Now by Theorem 2.6,
Ll
16 1F| > Y - C2 = Y o2,
i=b
where the second inequality uses the fact that rank(C) < b — 1. O
All we need to show is that there is a value of b > a|F'|/C} () such that W Em o> T(|) 3

Claim 6.6. There is a universal function C1(€) that is polynomial in 1/€ such that for any 0 < e <1
there is an integer b > a|F|/C1(€) such that

il o T o T |F|
161Fr CH
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Proof. Let us first prove the claim for e = 1; this special case reveals the meat of the argument.
We show the claim holds for b = o|F|/4. By the Cauchy-Schwarz inequality,

2 2

|F|

|F] 4 Z"Z

IN

|F|
<|F| ZU,) +2 |F| ZU,
|F|
< 2 Z T Z“
., b ., |F] . m\T g ,
= m;ai a]FPZUZ_g \F\ZUZ +W§ai.
where the equality uses the definition of b and the last inequality uses (27). Therefore,

2
|F|

T _1
753 \F\ZU’ gawzal’

where the first inequality uses another application of (27). This proves the claim for e = 1 and
Cy(e) < 1/256.
Now, we prove the claim for ¢ < 1. Let by > CJ(‘) be an integer that we fix later. Let

Z = maxp>p, ﬁ ZLFL o;. To prove the claim, it is enough to lower bound z. First, by the
definition of z, for all b > by,
. b IF| ,
> °. 28
|F|e . bl—e — 16|F|1+e ZZ_;UZ ( )
On the other hand, by (27),
|F|
1
Nab > ol <T/a (29)
i=1

Let > 0 be a parameter that we fix later. Summing up (28) for all by < b < |F| and 3 times
(29), we get

§<5+fb01 dw).ff_?<ﬂ+i e
- 167" FI= " a TTFF Sy o1

Note that the integral on the LHS lower-bounds Zbogbgi—l b¢ and the integral on the RHS upper-
bounds 3, < 5| 1/b1-

|F] .
[(i— D —(bg — DN 02 _B-Y =z ([F]-1)¢ _pB-T
;<B+ 32|Fe >m§ o |F|e € = a e (30)

where for z € R, [z]+ = max{z,0}.
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Therefore, by (27) and Cauchy-Schwarz,
|F|

7 i 1 — (b — 1)L\ o2
TS(%'ZU"Y = <;<5+[( . 3211(«‘{)106 - ]+)y_ﬁ>’<z [(z‘—l)ili’bo—l)l“u)

po -1 B+ 32[F ¢
<ﬂ n 3) 323 +1/¢)

o« e/ pri|p| e

IA

(31)

To see the last inequality we need to do some algebra. The first term on the RHS follows from

(30). We obtain the second term in the last inequality by choosing by = 1 + Tre |F |1L+6; later we
will choose 3, C}(€) making sure that by > «|F|/Ci(€). In particular,

s (bo—1)(i+1)1/(1+e)
il 1/|F)| o b1, S (bo 1)(i) 32
i—1 1+4+e__ bo—1 1+4€ — - .
“p+t [(G-1) 32|(F<‘)€ )]y BIF| & By T B-|F|
by — 1 > 32 32(3+1/e)(bg — 1) _ 32(3+1/e
S e
5’ ’ B’F’ 51+5’F’1+€

=101t

1 € 1
where in the first inequality we used by > 1+ ST+¢|F|T+, in second inequality we used (i 4+ 1) T+ —

1 1 1 —€ €
itte = iTte ((1+1/i)T — 1) < iT¥, and in the last inequality we used by < 1 + 51$a|F|1T€

Now, the claim follows directly from (31). Letting 3 = ( ol |F|

[192164/¢)1Fe> We obtain,

6.5ﬁ.|p|1ﬁ.~f BT _ ac T - |F|
z - :
- 32(3+1/e) a T (192/e+ 64/e?)1te

The claim follows by letting Cy(e) = (192/e + 64/€?)'*¢, and noting by = 1 + 51$a|F|1L+6 >
alF|/C1(e). O

Observe that the above claim implies Lemma 6.4. It is sufficient to run the greedy algorithm
with the infimum value of 7 such that the greedy algorithm returns at most b balls. O

6.2 Construction of Bags of Balls

In this subsection we will state the main result of this section, Proposition 6.15, and we give a high-
level overview of the proof of Theorem 6.1. Before that we need to define several combinatorial
objects called bags of balls.

To prove Theorem 6.1 we would like to follow a path similar to the proof of Proposition 6.3,

i.e., we would like to construct disjoint Lq balls By, B, ... centered at the vertices of G of radius
r1,7T2,... such that
2
1
Zﬁ‘ 2 Z W Z (U Xe) | (32)
i teT ecO(t)

and then use a variant of Fact 6.2. This approach completely fails for the example of Figure 4 as
we will show next.
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Example 6.7. Let G be a modification of the graph of Figure / with n = 2" +1 vertices we remove
all long edges of length 2° < h, and we shift all edges of length 2° > h by i to the right, i.e., if we
replace an edge {j - 2%, (5 +1) -2} with {i +7-2%,i+ (j +1)-2'}. It is easy to see that in this new
graph the degree of every vertex is at most O(k).

Let Xo, X1, ..., Xon be the embedding of G where X; = 1j; and U be the semiorthogonal matrix
we constructed in Theorem 5.3. Suppose T has all vertices of G, i.e., we are minimizizing the
average effective resistance of all degree cuts. If we follow the approach in the previous section, to
prove (25), we need to construct disjoint Ly balls By, Ba, ..., with radii r1,r2,... such that

2

an
i

It follows that for the particular choice of X,U the RHS is about

1
Zm > (U Xe)

veV e€E(v,V—{v})

nlogn > nlogn
max, d(v) ~ k

>n,

for k < logn. Unfortunately, for any set of disjoint Ly balls centered at vertices of G we have
> <n. So, it is impossible to prove (32) for k < logn using disjoint balls.

We will deviate from the approach of the previous section in two ways. First, the balls that we
construct have different radii, in fact the radii of the balls form a geometrically decreasing sequence
with a sufficiently large poly(k) decreasing factor; secondly, only the balls of the same radii are
disjoint, but a small ball can completely lie inside a bigger ball.

To construct these balls we will group the edges of G based on their lengths into log(n) buckets
and we apply Lemma 6.4 to each bucket separately; we actually have a more complicated bucketing
because we want to make sure that any two edges e, f in one bucket satisfy (U¢,X.) =~ (U/,X})
and X, ~ X

Since the balls that we construct are not disjoint we can no longer use the simple charging
argument of Fact 6.2. Instead, we partition the set of balls of each radii into bags. The balls of a
bag must satisfy certain properties that we describe next. These properties of bags of balls will be
crucially used in Section 7 to lower bound )" || X[, .

Definition 6.8 (Bag of Balls). A bag of balls, Bag, is a set of disjoint Ly balls of equal radii such
that the center of each ball is a point X, for some v € V.. A bag of balls is of type (0) if each ball
in the bag has radius §. A bag of balls is of type (6,A) if in addition to above, the maximum Lq
distance between the centers of the balls in the bag is at most A,

X, — Xull; <A. 23
B(Xvﬁ),%l(%é,é)eBagH v ull; < (33)

We write | Bag | to denote the number of balls in Bag.

Definition 6.9 (Compact Bag of Balls). For 8 > 0, a bag of balls, Bag, with type (5, A) is [3-
compact if | Bag| > 2 and
B-A<|Bagl-d. (34)

It follows from the definition that for any compact bag of balls of type (J,A), A > 24.
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Definition 6.10 (Assigned Bag of Balls). For a locally connected hierarchy T and 5 > 0, a bag of
balls, Bag, with type (0) is S-assigned to a node t € T, if

B-10(t)| < |Bag], (35)

and for each ball B(X,,0) € Bag, u € V(t) and there is an edge {u,v} € O(t) such that
[ Xu — Xolly < 9.

We use the convention of writing Bag, for a bag of balls assigned to a node ¢.

In Section 7 we will show that S-compact bags of balls with 8 > C' and S-assigned bags of balls
with 8 > C’/k for some universal constants C,C’ are enough to lower-bound the denominator of
(25).

In general, compact bags of balls are significantly easier to handle than assigned bags of balls.
Roughly speaking, given a number of compact bag of balls we can use the compactness property
to “carve” them into disjoint hollowed balls such that the sum of the widths of the hollowed balls
is at least a constant fraction of the sum of the original radii; then we use an argument analogous
to Fact 6.2 to lower bound the denominator (see Subsection 7.1 for the details).

On the other hand, it is impossible to construct disjoint (hollowed) balls out of a given number
of assigned bags of balls without losing too much on the sum of the widths. Instead of restricting
the (hollowed) balls to be disjoint, in the technical proof presented in Subsection 7.2, we label the
balls of each bag with the node of the locally connected hierarchy to which it is assigned. We
construct a conflict set, C(B), by looking at the subtree rooted at the label of B, and pruning some
of its subtrees. We carve the balls and modify the labels in such a way that, in the end, for any two
intersecting balls, the conflict sets are disjoint. Then, to charge the denominator, we use the fact
that for any node t, G(t) is k-edge-connected and thus in any of the remaining balls, we can find
Q(k) edge-disjoint paths contained in G(t); this argument does not overcharge the edges, because
throughout the construction we make sure that these edge-disjoint paths are routed through C(B).

Definition 6.11 (Family of Bags of Balls). A family of bags of balls, FBag, is a set of bags of balls
of the same type such that all balls in all bags are disjoint. We say a family of compact bags of
balls has type (6, A) if all bags in the family have type (0, A). For a locally connected hierarchy, T,
and T C T, we say a family of assigned bags of balls has type (5,T) if the bags in the family are
assigned to distinct nodes of T'.

We abuse notation and write a ball B € FBag if there is a Bag € FBag such that B € Bag.
Note that two distinct bags in FBag may have unequal numbers of balls.

To upper-bound the value of the dual we need to find a sequence of families of bags of balls
with geometrically decreasing radii.

Definition 6.12 (Geometric Sequence of Assigned Bags of Balls). For a locally connected hierarchy,
T, a A-geometric sequence of families of assigned bags of balls is a sequence FBag,, FBag,, ...
such that FBag, has type (8;,T;) where Ty, Ts, ... are disjoint subsets of nodes of T and for all
i>1,

O+ A > 5@'—1—1-

Definition 6.13 (Geometric Sequence of Compact Bags of Balls). A A-geometric sequence of
families of compact bags of balls is defined respectively as a sequence FBag,, FBag,, ..., such that
FBag; has type (8;,A;), and for all i > 1,

5@' A > Ai+1.
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Now, we are ready to describe the main result of this section. Let us justify the assumption of
the Proposition 6.15.

Definition 6.14 (a-bad Nodes). We say a node t € T is a-bad if

e 2
(Eemow) (U, Xe))™ = a-Epvop 1 Xl (36)

First, observe that if there is no bad node in 7T, then we are done with Theorem 6.1. So, to
prove Theorem 6.1 the only thing that we need to upper bound the contribution of the bad nodes
in the numerator. In the following proposition, we construct a A-geometric sequence of bags of
balls such that the sum of the radii of all balls in the sequence is at least

2

1 1 .
posTon(l 173, 2, 100 | 25, V%

a-bad ecO(t)
Note that, we construct a geometric sequence of families of either compact or assigned bags of balls.

Proposition 6.15. Given a locally connected hierarchy T of G and a set T C T of a-bad nodes,
for any > 1, € <1/3, and X\ < 1, if a is sufficiently small such that (a/Ca())¢ S 6.%1(6), then
one of the following holds:

1. There is a A-geometric sequence of families of 5-compact bags of balls FBag,, FBag,, ...,
where FBag, has type (§;, A;) such that

(a/Ca(a) .
BC1(€)Ca(a) - \2105-?; (Apoly())] Z\ ( > (s, ) <>, D di|Bagl (37)

teT ecO'(t) it BageFBag;

2. There is a \-geometric sequence of families of (a/Ca(cr)) +?¢-assigned bags of balls FBag;,
FBags, ..., where FBag; has type (6;,S;) such that

(a/Ca(a) e’
36190 Z| (Z veX)) <Y Y 6 |Bagl (39

5 (a)|log( )\poly ccO(t i BagcFBag;

Here, C1 is the polynomial function that we defined in Lemma 6.4 and Co is a polylogarithmic
function that we will define in Lemma 6.19.

In the proof of Theorem 6.1, we invoke the above proposition for o = polylog(k)/k, € =
log k/loglog k, and A = 1/ poly(k).

In the rest of this section, we prove the above proposition using Lemma 6.4. We do this in
two intermediate steps. In the first step we extract a 1/ polylog(«a)-dominating 2-homogeneous set
O'(t) of edges in each O(t) for any bad node ¢ according to the following definitions.

Definition 6.16 (Homogeneous Edges). For ¢ > 1, we say a set F C E of edges is c-homogeneous
if for any two edges e, f € F,

(U, X,)? 1 Xell3
—— =< cand <c
(U7, Xp)? X ¢1I5
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Definition 6.17 (Dominating Subset). For a node t € T a set O'(t) C O(t) is called y-dominating

if
< > (UG,X6>)227-< > <U6,Xe>)2.

ecO'(t) e€O(t)

The term dominating refers to the fact that the set O'(t) essentially captures the contribution of
the edges of O(t) to the numerator.

Then, we group the bad nodes into sets 7; such that the set Uier, O'(t) is homogeneous for all .
In the second step, we use Lemma 6.4 to construct bags of balls for a give group of homogeneous
edges. We postpone the first step to the next subsection.

Lemma 6.18. Given a locally connected hierarchy T of G, a set T C T of a-bad nodes, and
v-dominating sets O'(t) C O(t) for each t € T such that UierO'(t) is 4-homogeneous, for any
0<e<1/2 and B > 1, if a,v are sufficiently small such that (- 7)€ < 6'011(6), then one of the
following holds:

1. There is a family of B-compact bags of balls with type (5, A), FBag, such that

Z@( > <U€,Xe>)2§ (Cl(e) Y 6-|Bagl. (39)
teT

)
ecO’(t) BagecFBag

2. There is a family of (« - ) T2¢-assigned bags of balls with type (6,5), FBag, and S C T such

that
> o (X wexa) 20 S 6Bl (40)

teT ecO'(t) v BageFBag

where in both cases 0, A = mineeol(t)vteT(UG,XQz up to an O(a-7y) factor.

Proof. Let,
F = UtETO/(t)a
c = géi;1<U€,Xe>2,
¢y = max|X.|3,
ecF
N = ‘UteTO(t)L
N' = |Uwer O'(t)] = |F|.

Note that N > N’ by definition. First, we show that the edges in F satisfy the assumption of
Lemma 6.4 with « replaced by < ayN/N’. Then, we invoke Lemma 6.4 and we obtain many
disjoint balls A such that the sum of their radii is comparable to LHS of (39) or (40) (see (45)).
Then, we greedily construct a new set B of disjoint large balls of radii A > cy. If |B] is small, we
can partition the balls of A into compact bags of balls; otherwise, we use balls of B to construct
assigned bags of balls.
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First, observe that,

o N2 Yo ( 2 X Dpg( X X
teT ecO'(t) teT ecO(t)
> Y year ) X
teT ecO(t)
> a-y-N-ca. (41)

where the first inequality follows by 4-homogeneity of F', the second inequality uses the fact that
each O'(t) is y-dominating, the third inequality uses that each node t is a-bad, and the last
inequality again uses the 4-homogeneity of F. This is the only place in the proof that we use t € T
is a-bad and O'(t) is y-dominating. By the above equation we can choose & =< ayN/N’ such that
E (U X)) >a- E |X|?.
(e~F< X))z a e~F” ell2
Throughout the proof we use that & 2 ay. Let Y, := UX,, for all v € V. Since U is semiorthogonal,

for each pair u,v
”Yu - Yv”g < ”Xu - XvH% = HXu - Xle :

Applying Lemma 6.4 to Y and F, we obtain a family A of b disjoint L3 balls with radius § such
that

aN’
b>——, 42
_01(6) ( )
and o N
aﬁ. - C1
S-b>—_ 43
Z G0 (43)

Now, we extract disjoint Ly balls in the space of { X, },ey with radius ¢ out of balls in A. Balls in
A correspond to L% balls in the X embedding. Since U is a contraction operator, these L% balls are
disjoint in the X embedding. Now, L% balls with radius ¢ are Lo balls with radius v/8, so the L%
distance between the centers of any two balls is at least 44. Since X is a cut metric, the L3 distance
between centers is the same as their L distance, so Lq balls with radius ¢ around the same centers
are disjoint (in fact radius 20 works as well). So, by abusing notation we let A be the L; balls in
the X embedding.
Next, we construct the large balls. Let

V') ={ueV(t): Hu,v} € O'(t)}

be the endpoints of edges of O'(t) that are in V (¢). Also, let V' = UerV’(t). Let B be a maximal
family of disjoint L; balls of radius A on the points in V’/ for A := max{d,c2}. To construct B,
we scan the points in V' in an arbitrary order; for each point X, if the ball B(X,,A) does not
touch any of the balls already added to B we add B to B. We will consider two cases depending
on the size of B; if |B| is small we construct compact bags of balls and we conclude with case (1);
otherwise we construct assigned bags of balls and we conclude with (2).

Before getting into the details of the two cases, we prove two facts that are useful for both cases.
First, without loss of generality, perhaps by decreasing d, we assume 4 - b < Clc‘slﬁ(é\)f ", We can bound
0 as follows

Cl&eN//Cl(E)<5-b:6:5'b<cldEN/< C1

o <
TS N’ ~ T b ~ aN’ —y-a’

(44)
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where the first inequality uses the lemma’s assumption that (ya)!=¢ < (ya)¢ < 1/C4(a), the second
inequality uses b < 2N’, the third inuequality uses b 2> gf\(fe) and the last inequality uses & > v - a.
Secondly, it follows from (43) that

Zier o (eeon UG X)) Ter 00 e _ Ci()
b-d ~ CldEN//Cl(E) - oac

(45)

In the above we used |O'(t)| < |O(t)| for all t. To prove the lemma, in the first case we construct
a family of compact bags of balls with at least b/2 balls of A, and in the second case we construct
a family of assigned bags of balls with at least |B|/2 balls of 5.

Case 1. |B| < %. We construct a family of compact bags of balls. For each ball B =
B(X,,A) € B let

f(B) = {B(va‘s) cA: Xy — Xle = B(X{?%R)GB | X — Xv”l }7
be the balls of A that are closer to B than any other ball of B. We break ties arbitrarily, making
sure that f(B) N f(B') = 0 for any two distinct balls of B.

First, we show any set f(B) is a bag of balls of type (J,6A); then we add those that are j-
compact to FBag. It is sufficient to show that for any B(X,,A) € B, the L, distance between the
centers of balls of f(B) is at most 6A. Fix a ball B = B(X,,A) € B. For any ball B(X,,,d) € f(B)
we show that ||X, — X,,[; < 3A. Since for all e € F, || Xc||; < ¢2, there is a vertex u; € V' such
that || Xy, — Xy, || < co. Furthermore, by construction of B, there is a ball B(X,,,A) € B such
that || Xy, — Xu,|l; < 2A. Putting these together,

”Xv1 - Xqu < HXm - Xuz”l < HXm - Xu1H1 + HXu1 - Xqul Sc+ 2A < 3A.

So, the L; distance between the centers of balls of f(B) is at most 6A.
So, we just need to add those bags that are S-compact to FBag. For each B € B if |f(B)| >
B - (6A)/6, then f(B) is S-compact, as |f(B)| > 2 and

B-(6A) <d-|f(B)I.
So, we add f(B) to FBag. Observe that all balls of FBag are disjoint because all balls of A are
disjoint.
It remains to verify that FBag satisfies conclusion (1). First, by (44) and the fact that A =
max{d,ca}, 6A = « - -c;. On the other hand, by (41), c2 < ¢1/« as shown in ,
6A S max{d,co} S {c1/ay, e1/an}.

So we just need to verify (39). It is easy to see that the number of balls in FBag is at least b/2.
This is because,

% >b/2.

> |Bag|2b—21[|f<3>|<ﬁ'<“) 1B 2 1B

0
BageFBag BeB

The last inequality uses the assumption of case 1, |B| < %. So, (39) follows by (45).
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Case 2. |B| > %. We construct an assigned family of bags of balls. For any node t € T, let
Bag, be the set of balls in B such that their centers are in V'(¢). If the center of a ball B in B
belongs to multiple V'(¢)’s we include B in exactly one of those sets arbitrarily. Note that each
Bag, is a bag of balls with type (A). For each t € T, if

|Bag, | _ |0
B = AN

(46)

then we add Bag, to FBag and we add ¢ to S. Next, we argue that FBag is a family of (o - v)'*+2¢-
assigned bag of balls. First, balls in FBag are disjoint because they are a subset of balls of B and
each ball of B is in at most one bag of FBag.

Fix a node t € S. We show Bag, is (a - v)!*?¢-assigned. Since for any ball B(X,,A) € Bag,,
u € V'(t), there is an edge {u,v} € O'(t) such that || X, — X,[|; < c2 < A. So, we just need to
verify (35) with 3 replaced by (a - )1 *2¢. If A = 4§, by (46),

)
B-10®)] _ [O@)[-b-6 _ a-|O@)]- N

‘. 1+€
IV 21850 N~ B G N 2@ lom)

| Bag, | >

where the second inequality uses the assumption |B| > %, the third inequality uses (42) and

the last inequality uses (- 7)€ < =A~-—. Otherwise, A = ¢y, by (46),

~ B:Ci(e)
. . . ~€ /-
Bag, | > 1BL1O®] L b8 00 &0 N'-a
4N 48,8 AN Cl(e)ﬁ N C2
ac|o(1)| 142
oy D> €. . 4
Ciog @2 a o) (47)

The third inequality follows by (43), the fourth inequality uses (41), and the last inequality uses
the assumption that (a - 7)€ < m Therefore, FBag is a family of (a - v)'*2¢ assigned bags of
balls with type (A, S).

Finally, it remains to verify (40) where ¢ is replaced by A. First, we show that }, ¢ |Bag, | >
|B|/2. This is because by (46),

S [Bag | <3 OBl g

4N
teT—S teT

Equation (40) follows by (45) and the assumption that |B| > %. O

6.3 Construction of a Geometric Sequence of Families of Bags of Balls

In this section we prove Proposition 6.15. First, we prove a bucketing lemma. We show that for
any a-bad node t € T, we can extract a 1/ polylog(a)-dominating 2-homogeneous set O’ (t) of edges
from O(t).

Lemma 6.19. For a locally connected hierarchy, T, of G, and an a-bad node t € T, if « is
sufficiently small, then there is a 2-homogeneous set O'(t) C O(t) such that O'(t) is 1/Ca(a)-
dominating where Co(.) is a universal polylogarithmic function.
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Proof. We fix t throughout the proof and use O instead of O(t) for brevity. Throughout the proof
all probabilities are measured under the uniform distribution on O. Let

a. = (U%X,),
be = [Xell,
po= Eeoolae.
Note that since |U¢|| = 1, a. < b, for any e. To prove the claim it is enough to find a 2-homogeneous
set O such that )
i
Plee O > 48
e O] - min ag > o)’ (48)

Then, the lemma follows by

2 / L oF- 1
(Zae) 2|(9|2.IP’[66(9] Helgllae Cola) _Cz(a).(Zae)Z

ecO’ ecO

We prove (48) as follows: First, we partition the edges into sets O1,Os,... such that for any
e, f € O;, ac = ay. Then, we show that there is an index 4, such that P [e € O;] - minecp, ae 2 %
(see (51)). Then, we partition O; into sets O; 1,0, 2, ... such that any O; ; is 2-similar. Finally, we
show that there is an index j such that O; ; satisfies (48).

For i € Z and ¢ := /2, define,
O;:={ecOt):c <ac/pu <

We write Ox; = U2, 0;. Also, for any i let an; = mineeo, de.
Next, we show that there exists —4 < i < 2(2+4log(1/a)) such that Ple € O;]an; = 1/ log(1/a).
First, observe that,

—6
Z ani - Ple € O Z cou-Plee O] < p/c. (49)

i=—00 1=—00

Let ¢ = O(log(1/a)) be chosen such that ¢? = ¢®/a. Then,

Ep &
F.Zam..]?[ee@i] < Zam e € O]
i=q

< Emozq[bQ] Ple € Ox]

< Eeolb?] < % (50)

The second inequality uses a. < be and the last inequality uses that ¢ is a-bad. Summing up (49)
and a/c’u of (50) we get

Z apni-Ple € 0] < pfc® = Z a.Ple € O] < /2,

i>q or 1<—6 i>q or 1<—6
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where we used that for any edge e € O;, an; > a/c. Therefore,

IR 1< 1
Ple € O] -apni > —— Pleec O;lan > Plee O] >
max Ple |- an 5 a 2:2_35 [e Jan . Z a.P e ]

1
S — - =. (b1
~5<i<q (5+aq) c5+q) 2 (51)

Let ¢ be the maximizer of the LHS of the above equation. It remains to choose a subset of O; such
that b2/ b? < 2 for all e, f in that subset.
For any integer 7 > 0, we define

Oiji={e€0;i:cd <befan; < It}

Note that any set O; ; is 2-similar. We show that there is an index j < ¢ such that O; ; satisfies

(48). Let 0;>¢ = U352 O, ;. Similar to (50),

*-Ple € Oi > a3; < Eenolbz] <
where the last inequality uses (51). Using ¢ = ¢°/a, we obtain

P[GEOLZ[]]S -(5—|—q)2-IP>[e€OZ-]2§ -P[eé@i]z,

o
4

for a sufficiently small . Now, let j = argmax,,,P[e € O;;]. Then,

2 2. .2 2
2 2 o i 2 Ple€ O] -ap 1%

The last inequality uses (51). Now, (48) follows by the above inequality and Cy(a) = 32¢*(5 + ¢)?
and O'(t) = O, j; O

Now, we are ready to prove Proposition 6.15. First, by Lemma 6.19 for each a-bad node t € T',
there is a 2-homogeneous y-dominating set O'(t) C O(t) where v = 1/Cs(«). For each t € T, let

= min (U°,X.)? and by = min || X,|?.
= B U X O and b= gy, Il

Let A < 1 be a function of A that we fix later. For any integer i € Z, let
e {teT: X2 < g, < X-1/2)

Note that, by definition, for all i # j, T; NT; = 0.

Next, we partition the bad nodes of each T; into sets T; j, ;, such that each set UteTs ju sy O'(t)
is 4-homogeneous. We will apply Lemma 6.18 to the a Tj ;, ;, with the largest contribution in the
numerator. This will give us a family of either compact or assigned bags of balls. Then, we will
drop the bags for odd (or even) i randomly. Since for any t € T;,t' € Tj19, ay < Aa; we will obtain
a A-geometric sequence of bags of balls.

First, we partition the nodes of each T; into sets T; ;, j,; for all integers 0 < j, and 0 < jj let

a . . b .
L~ 2.711"’172.717 < -t~ 2]b+1}'

A . 9Ja
Ev]av]b T {t € 1—; :2 < 5\i+1/2 at
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Observe that for all 4, jq, jy, Uter; ;. i O'(t) is 4-homogeneous. Note that by the definition of Tj, for
ja >log(1/N), T; ;... = 0. On the other hand, since ¢ is a-bad and O’ (t) is y-dominating, a; > ayb;
(see (41)); so for j, > log(1/ay) + O(1), T;,_j, = 0. Therefore, for any 4, the number of nonempty
sets T} j. j, is at most O(log(1/ a)).

For a set S C T, let

For each T; let
T = argmaxr, ;. H(Tz}ja,jb)‘

Since any ¢t € T is a-bad and O'(t) is y-dominating, and Users O'(t) is 4-homogeneous, and by the
lemma’s assumption
(o) = =% <
Co(a)e ™~ B-Ci(e)’
we may invoke Lemma 6.18 for each set T)*. This gives us either a family of S-compact bags of
balls FBag; with type (d;,A;), or a family of (ay)'*2¢-assigned bags of balls, FBag; of type (;, S})
where S C T;*. These families satisfy two additional constraints: Firstly, 6;,A; = mingers a; up

to an O(ay) factor, secondly, the sum of the radii of all balls in the family is at least 6(0{;,2 )H(T*)
We remove half of the families to obtain a geometric sequence. First, by the definition of Tj,

A-mina; > min a;.

teT; teTr,

This means that if we remove families for either odd or even i’s, then the decaying rate of minger- a;

is at least A. Therefore by the properties guaranteed by Lemma 6.18, and the above fact, any
subsequence of odd or even compact or assigned families of bags of balls is O(A/(a - )?)-geometric.
Setting A =< \ - (a - v)? produces A-geometric sequences.

Without loss of generality we assume that IT1(U;Ty;) > II(U;T%;41). Drop the families for odd i;
consider the sum of radii of balls in the remaining compact families and in the remaining assigned
families; one of them is greater. We let this be our A-geometric family.

It remains to verify (37) and (38) By Lemma 6.18, the sum of the radii in the constructed

geometric sequence is at least 2 BC (6 z II(T3;). By the definition of T},

Z II(T.
Now, since each O'(t) is v = 1/Cy()-dominating,

Z!o (X X))

teT ecO(t)

T1(T)
|10g()\cw ZH ) 2 |10g(>\P01Y( NI

I(T)
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7 Lower-bounding the Denominator of the Dual

In this part we upper-bound the sum of radii of balls in a geometric sequence. Throughout this
section we use C3,Cy > 0 as large universal constants. The following two propositions are the main
statements that we prove in this section.

Proposition 7.1. Given a k-edge-connected graph G, and a \-geometric sequence of families of
Cs-compact bags of balls FBag,, FBag,, ... where FBag; has type (0;,A;), if A < 1/12 and C3 > 36,

then i
Z'Zé" > IBagl< ) lIXu— Xolly -

i BagecFBag, {u,v}eFE

Proposition 7.2. Given a (k,k - \,T)-LCH, T, of G and a A-geometric sequence of families of
24C3 /k-assigned bags of balls, FBag,, FBag,, ... such that each FBag,; is of type (6;,T;) where
T; CT,if Cy >3, A< 1/6Cy and C3 > 2((Cy + 1) + 4(Cy + 2)?), then

k. C
DR NLTIE SRS

teT; {uv}eFE

Note that in the above proposition, the assumption A\ < 1/6C} follows from k- A < 1.
First, we use the above propositions to finish the proof of Theorem 6.1. Recall Theorem 6.1:

Theorem 6.1. For any k-edge-connected graph G = (V, E) and any (k,\,T)-LCH, of G, and for
h >0, any cut metric X € {0, 1}hXV, and any semiorthogonal matriz U € REXh,

2
Yter 00 (Zeeo(t)<Ue’Xe>> < JilkA)
Seer Xl -k

Proof. Let T,1paqa € T be the set of a-bad nodes for a parameter o that we set below. It follows
that,

(25)

(& 2 [ 2
0> ZteT—Ta_bad \o—%m ’ (ZeeO(MU ’Xe>) > ZteT—Ta_bad ﬁ ’ (ZeEO(t)<U ’Xe>) (52)
- DT Ty a 2oecco(t) 1Xelly B 23 eer IXelly

The second inequality uses the fact that each edge is in at most two sets O(t).
We apply Proposition 6.15 to Ty paq- Let Cy = 3, 8 = 36 and C3 = 104. We choose o =
O(polylog(k)/k),e = ©(loglog(k)/log(k)) such that the following conditions are satisfied

(@w) = rom

o 1+2¢ - 2403
CQ(CY) - ko

Recall that C'1(¢) is an inverse polynomial of € and Cz(«) is a polylogarithmic function of a so the
above assignment is feasible. Also let A < A\/k be such that A\ < 1/6C}.
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Figure 8: Consider the natural L1 mapping of the graph of Figure 4 where vertex ¢ is mapped to
the number i. Consider h layers of L balls as shown above where the radii of all balls in layer ¢
is 2¢ and they are disjoint. Although the sum of the radii of all balls in this family is ©(n - h), the
sum of the L lengths of the edges of G is n - (h + k).

Now, by Proposition 6.15 either there is a S\—gegmetric sequence of 36-compact bags of balls
FBag,, FBag,, ..., that satisfies (37), or there is a A-geometric sequence of 24C'3 /k-assigned bags
of balls FBag;, FBag, ..., that satisfies (38). Now, by Proposition 7.1 and Proposition 7.2 we get

D eT b \o—%m : (Zeg@(t)(Uevxe»z < C1(e)Ca(e) - | log(A poly(a))]
Yeer IIXelly ~ k- (o) Co))

The theorem follows from the above equation together with (52). O

In the rest of this section we prove above propositions. Before getting into the proofs, we give
a simple example to show that, in order to bound the denominator, it is necessary to use that the
given \-geometric sequence of bags of balls is either compact or assigned. The following example
is designed based on the dual solution that we constructed in Theorem 5.3.

Example 7.3. Let G be the graph illustrated in Figure 4, and let Xo, X1,..., Xon be an embedding
of G where X; = 1. Now, for any 1 <j < h—1, let Bag; be the union of balls

B(X2j72j), B(Xg,zj, 2j),B(X5,2j,2j), N ,B(th_2j,2j).

Note that the center of each of these balls is a vertex of G and that for any j, all balls of Bag;
have equal radius and are disjoint (see Figure 8). So we get a 1/2-geometric sequence of bags of
balls (and similarly we can obtain a \-geometric sequence by letting j be multiples of log(1/X)). As
alluded to in the proof of Theorem 5.3, the sum of the radii of balls in the given sequence is h - 2"
while the sum of the Ly lengths of edges of G is only (h + k) - 2".
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1. We process bags of balls in phases; we assume that phase ¢ starts at time 7y_1 + 1 and ends
at 7¢. In phase £ we process the bags in FBag,; in other words, we process larger balls earlier
than smaller ones. In each time step (except the last one) of phase ¢ we process exactly one
bag of FBag,.

2. In addition to adding new balls, in each phase we may shrink or delete some of the already
inserted (hollowed) balls but when we insert a ball of FBag, we never alter it until after the
end of phase /.

3. We keep the invariant that for any 7, all (hollowed) balls in Z. are disjoint. This crucial
property will not hold in our construction of the assigned bags of balls in the next section and
it is the main reason that our second construction is more technical.

4. For any hollowed ball B(x,r1||r2) € Z., there are vertices u,v € V such that ||z — X,||; <

and ||z — Xy, > 2.

Figure 9: Properties of the inductive charging argument for compact bags of balls.

The above example serves as a crucial barrier to both of our proofs. In the proof of Proposition 7.1
we bypass this barrier using the compactness of bags of balls. Note that in the above example Bag;
is not compact, and indeed the diameter of centers of balls of Bag; is 2" which is the same as the
sum of the radii of balls in Bag;. In the proof of Proposition 7.2 we bypass the above barrier using
the properties of the locally connected hierarchy.

7.1 Charging Argument for Compact Bags of Balls

In this section we prove Proposition 7.1. We construct a set of disjoint L1 hollowed balls inductively
from the given compact bags of balls. For any integer 7 > 0, we use Z; to denote the set of hollowed
balls in the construction at time 7. Initially, we have Zy = () and Z, is the final construction. We
describe the main properties of our construction in Figure 9.

Inductive Charging. Before explaining our construction, we describe our inductive charging
argument. First, by the following lemma, in our construction, we only need to lower-bound the
sum of the widths of all hollowed balls of Z,, by (a constant multiple of) the sum of radii of all
balls in the given sequence of compact bags of balls.

Lemma 7.4. For any 7 > 0,

k- Z (rg —m) < Z [ Xu — Xolly -

B(z,r1||r2)€Z> {u,v}eFE

Proof. We simply use the k-edge-connectivity of G. First, by property 4 of Figure 9 for each
hollowed ball B = B(xz,r1||r2) € Z, there are vertices u,v € V such that ||z — X,||; < r; and
|z — Xy||; > 72. Since G is k-edge-connected, there are at least k edge-disjoint paths between w,v.
Each of these paths must cross B and, by the triangle inequality, the length of the intersection with
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B is at least ro — 1. Finally, since by property 3 of Figure 9, balls of Z, are disjoint, this argument
does not overcount the Li-length of any edge of G. O

Suppose at the end of our construction, we allocate ro — r1 tokens to any hollowed ball
B(z,ri||r2) € Z«. Our goal is to distribute these tokens between all bags of balls such that
each bag, Bag, of type (0;, A;) receives at least | Bag |- d;/4 tokens. We prove this by an induction
on 7. Suppose 17y_1 < T < 7¢; for a hollowed ball B(x,r{||ry) € Z;, define

80— 6A04 if B € FBag,

53
[(rg —71) — 6A]T otherwise. (53)

token,(B) = {

Instead of allocating 79 — 1 tokens to a ball at time 7, we allocate token,(B). The term 64, takes
into account the fact that we shrink balls in Z, later in the post processing phase. We prove the
following lemma inductively.

Lemma 7.5. At any time 7y—1 + 1 < 7 < 714, if we allocate token,(B) tokens to any hollowed ball
B € Z,, then we can distribute these tokens among the bags of balls that we processed by time T
such that each Bag of type (0;, ;) receives at least 0; - | Bag|/4 tokens.

It is easy to see that Proposition 7.1 follows by applying the above lemma to the final set of
hollowed balls Z,, and using Lemma 7.4, since

iz Z J; - | Bag| < Z Ty =11 < Z [ Xu — Xolly -

i Bag€FBag; B(z,ri||r2)€Z- {u,v}eFE

=

Construction. It remains to prove Lemma 7.5. First, we need some definitions. We say a ball
B = B(Xy,d¢) € FBag, is in the interior of a hollowed ball B’ = B(z,r||r2) € Z; if

400+ A < || Xy — 2|y Lo — 60— Ay

Note that B is inside B’ when rq + 0y < || Xy, — z||; < 72 — d¢; so a ball B may be inside B’ but
not in the interior of B’. If such a B’ exists, we call B an interior ball. If B is not an interior ball,

we call it a border ball. Since hollowed balls in Z, are disjoint, B can be in the interior of at most
one hollowed ball of Z,.

Fact 7.6. Any ball B € FBag, is in the interior of at most one hollowed ball of Z.

Suppose Lemma 7.5 holds at time 7 > 7y_1; we show it also holds at time 7 + 1. At time T,
we process a bag of balls in FBag, that has at least one interior ball (and is not processed yet); if
there is no such bag then we run the post processing algorithm that we will describe later. Suppose
at time 7 we are processing Bag® = {B = B(Xy,,0),..., By = B(X,,,0,)} of FBag, and assume
that one of these balls, say Bj, is in the interior of a hollowed ball B(x,ri||rz) € Z;.

First, we show that all balls of Bag™ are inside of B. Let

ri = i [z — X[l and ry = max flo — X,

It follows that
ry <l — Xy Iy + B¢ < (rg — 00 — Ag) + Ay < g — by,
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B\\\\ \/

Figure 10: Balls Bq,..., Bs represent the balls of Bag*; B is in the interior of a ball B € Z,.. We
decompose B into two hollowed balls, B}, B, that do not intersect any of the balls in the given
compact set as shown on the right.

where we used (33); similarly, 7 > 71 + dp. Therefore, all balls of Bag* are inside of B and by
property 3 of Figure 9 they do not touch any other (hollowed) ball of Z;.

Now, we construct Z,41. We remove B and we add two new hollowed balls B = B(x, 1|1} —d¢)
and By = B(z, 15+ d¢l|r2). In addition, we add all of the balls of Bag* (see Figure 10). It is easy to
see that balls in Z, 1 are disjoint. We send d;/4 tokens of each of By, ..., By to Bag*. We send the
rest of their tokens and all of the tokens of B}, B to B and we re-distribute them by the induction
hypothesis. It follows that Bag* receives exactly b - d;/4 tokens and B receives token,(B).

b
token, 1 (B]) + token, 1 (B) + Z token,1(B;)
i=1
>rg—1rp— (rh — 1)) — 26, — 128, +b - (0 — 6244 1)
> token,(B) +b- (1 — 6)) — TA,
> tokenT(B) +b- 55/2 — C3A5/4
> token,(B) +b- dp/4.

where the first inequality uses (53), the second inequality uses Ayy1 < A-dp and Ay > 244, the third
inequality uses that A < 1/12 and C3 > 28. The last inequality uses that Bag* is Cs-compact, i.e.,
(34); this is the only place that we use the compactness of Bag*. Therefore, Lemma 7.5 holds at
time 7 + 1.

Post Processing. Let 7, be the time by which we have processed all bags of FBag, with at least
one interior ball, and let FBag) be the set of bags that we have not processed yet, i.e., all balls
of FBag), are border balls with respect to Z,,. As alluded to, at the end of phase ¢, i.e., at time
77, we shrink all (hollowed) balls of Z; except those that were in FBag,. Given a hollowed ball
B = B(z,r1||r2) € Z;,, the shrink, operator is defined as follows:

B if B € FBag,
shrink,(B) := ¢ B(z,r1 + 200 + Ag|lro — 20, — Ay) if B ¢ FBag, and o — r1 > 2A, + 45, (54)
B(z,0) =10 otherwise.
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At time 74, for any hollowed ball B € Z;, we add shrinky(B) to Z.,41. In addition, we add all balls
of all bags of FBag) to Z;,+1. This is the end of phase ¢ and we consider Z,1 as our construction
in the beginning of phase £+ 1.

Let us verify that balls of Z.,1 are disjoint, i.e., Z,,1 satisfies property 3 of Figure 9. For any
hollowed ball B = B(x,r1||r2) € Z;, and ball B' = B(X,/,d;) € FBag), we show that shrink,(B)
and B’ do not intersect. First, if B € FBag,, then shrinky,(B) = B, by Definition 6.11 any two
balls of FBag, do not intersect, so shrinky(B), B’ do not intersect. Now, suppose B ¢ FBag,. Since
B’ € FBag),, B’ is not in the interior of B, i.e., either ||z — Xyy/|l; < r1 4+ d¢ + Ay or ||z — Xyl; >
ro — 0 — Ay. In both cases, B’ does not intersect shrink,(B).

It remains to distribute the tokens. We send all tokens of all balls of all bags of FBag) to their
corresponding bag. Therefore, any Bag € FBag), receives at least

b (0 —6Ap11) >b-5(1 —6X) >b- §;/2

tokens. In addition, for every hollowed ball B € Z;,, we send all tokens of shrink,(B) to B and we
redistribute by induction. Since

token,, (B) < token,,41(shrinky(B)),

B receives at least the same number of tokens. This completes the proof of Proposition 7.1.

7.2 Charging Argument for Assigned Bags of Balls

In this part we prove Proposition 7.2. Before getting into the details of the proof we illustrate the
ideas we use to bypass the barrier of Example 7.3. The first observation is that, unlike the previous
section, we cannot construct a family of disjoint hollowed balls in Z., in such a way that the sum
of widths of hollowed balls of Z,, is a constant fraction of the sum of radii of all balls in the given
geometric sequence. Instead, we let hollowed balls of Z,, intersect and we employ a ball labeling
technique that uses the locally connected hierarchy, 7.

Let us give a simple example to show the crux of our analysis. Suppose a node t; € T has
exactly two children, t2,%3. Say at time 7,1 < 7 < 74 we are processing Bag,,. Suppose Z; has
a large ball B = B(x,r) € Bag, as shown on the left side of Figure 11 such that ¢ is an ancestor
of t1. Say Bag,, has four balls By,..., By. Because Bag,, is not compact, if we remove the part of
B that intersects with balls of Bag,, and add By, ..., By, the sum of the widths of hollowed balls
in Z,4; is the same as that sum in Z, and therefore we gain nothing from adding balls of Bag;.
Instead, we add a new ball that intersects By, ..., By as shown on the right side of Figure 11.

Say the center of each B; is X,,, for u; € V (t2); each X, corresponds to a blue dot in Figure 11.
By the definition of assigned bags of balls, Definition 6.10, for each i there is a vertex v; € V/(¢1) —
V(t2) = V(t3) such that || X,, — X,|; < d¢ (each X,, corresponds to a red dot in Figure 11). We
add all balls of Bag;, and a new hollowed ball centered at z, the center of B, ranging from the
closest red vertex to x to the farthest one. We also break B into two hollowed balls and remove
the part of it that intersects either of these 5 new (hollowed) balls.

Observe that, the sum of the widths of hollowed balls of Z;,; is Q(d, - | Bag,, |) more than
this sum in Z.. The only problem is that, the balls of Z.,, are intersecting. So, it is not clear if
analogous to Lemma 7.4, we can charge the sum of the widths of hollowed balls of Z;,1 to the sum
of Ly lengths of edges of G. Our idea is to label hollowed balls with different subsets of edges of
G. Although the red hollowed ball and the blue balls intersect, we charge their widths to disjoint
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B, B, B; B

B

Figure 11: A simple example of the ball labeling technique. The grey (hollowed) ball B on the left
is one of the hollowed balls of Z.. Small L; balls with blue vertices as their centers represent balls
of Bag,, that we are processing at time 7. Each red vertex together with the closest blue vertex are
the endpoints of an edge of O(t2). The right figure shows new balls added to Z,;. In particular,
each blue vertex is in V(t9) and each red vertex is in V(¢3) where t5,t3 are the only children of ¢;.

subsets of edges of G; we charge the width of the red ball with k£ edge-disjoint paths supported on
G|V (t1) — V(t2)] going across this hollowed ball and we charge the radius of each blue ball with &
edge-disjoint paths supported on G(t2) going across that ball.

We remark that the above idea is essentially the main new operation we need for the charging
argument, compared to the argument for the compact bags of balls. One of the main obstacles in
using this idea is that ¢; can have more than two children. In that case G[V (t1) — V (¢2)] is not
necessarily k-edge-connected. To overcome this, we find a natural decomposition of G[V (t1)—V (t2)]
into k/4-edge-connected components; since each assigned bag of balls, Bag, has > O(t)/k balls,
the centers of a large number of balls of Bag, are neighbors of one of these components; so we can
charge the red ball in the above argument by k/4 edge-disjoint paths in that component.

7.2.1 Ball Labeling

In this part we define a valid labeling of hollowed balls in our construction (see Figure 13). In
the proof of Proposition 7.1, we used the disjointness property of balls in the construction in two
places; namely in the proofs of Lemma 7.4 and Fact 7.6. We address both of these issues by our
ball labeling technique.

Basic Label. In the proof of Lemma 7.4 we used the disjointness property to charge the sum
of the widths of hollowed balls of a set Z, to the sum of the L; lengths of edges of G with no
overcounting. Let us give a simple example to show the difficulty in extending this argument to
the new setting where balls may intersect. Suppose Z; is a union of 10 identical copies of B(z, )
with the guarantee that there is a vertex of G at x and one at distance r of . Then, the sum of
the L lengths of edges of GG can be as small as k - r, as G may just be k-edge-disjoint paths from
a vertex at x to a vertex at distance r of x.
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Figure 12: The red nodes represent the conflict set of a ball B with ¢(B) = t1, i.e., C(B) =
{t1,t3,t4,v3,v4}. The edge-disjoint paths of B can be routed in the induced subgraph G[{vs, v4}].

A hollowed ball B = B(x,r1||r2), can be labeled with ¢t € T, denoted by ¢t(B) = t, if there are
vertices u,v € V(t) such that || — X,[|; < and ||z — X,||; > 72. Recall that, by the definition
of T, for any node t € T, G(t) is k-edge connected. Therefore, if B is labeled with ¢, then k edge-
disjoint paths supported on E(t) cross B. For any ball B € Bag, we let ¢(B) = t. Furthermore,
when we shrink or divide a ball into smaller ones the label of the shrunk ball or the new subdivisions
remain unchanged.

The simplest definition of the validity of the ball labeling is to make sure that for any two
intersecting balls B and B’, t(B) and ¢(B’) are not ancestor-descendant. Unfortunately, this simple
definition is not enough for our inductive argument, and as we elaborate next, we will enrich the
label of some of the balls B by “disallowing routing through some of the descendants of ¢(B)”.
Recall that t,t' € T are ancestor-descendant if either t is a weak ancestor of ¢ or t' is a weak
ancestor of t. Recall that ¢ is a weak ancestor of ¢’ if either ¢ is an ancestor of ¢’ or t = t'.

To this end, we define a conflict set, C(B) to be a connected subset of the nodes of T rooted at
t(B) (see Figure 12). In a valid ball labeling, we make sure that for any two intersecting hollowed
balls B and B’, C(B) N C(B’) = ). For example, if ¢(B),t(B’) are not ancestor-descendant this
condition is always satisfied. In the charging argument, we may only charge the width of B with
edge-disjoint paths supported on the leaves of T which are in C(B) (see Figure 12). Recall that
the leaves of T are identified with the vertices of G.

Avoiding Balls As alluded to in Figure 11, we may add new (hollowed) balls, called avoid-
ing balls, to Z, that do not exist in the given geometric sequence. An avoiding (hollowed) ball B,
has an additional label, t;(B), where t4(B) is always a descendant of ¢(B); the name avoiding stands
for the fact that the edge-disjoint paths of G(t(B)) that are crossing B are avoiding the induced
subgraph G(t4(B)). Therefore, we exclude the subtree of t4(B) from C(B), i.e., C(B) Ntq4(B) = 0.

We insert an avoiding hollowed ball only when we shrink or remove part of a nonavoiding
(hollowed) ball that already exists in Z,. For example, if B’ is the red ball on the right side of
Figure 11, then t(B’) = ¢, t4(B’) = to. Note that it is important that avoiding balls are replacing
nonavoiding balls; if in the arrangement of Figure 11 the ball B were an avoiding ball, then the
red ball would have to avoid two induced subgraphs; further escalation of this would lead to
unmanageable labels. We get around this by never introducing an avoiding ball when the original
B is avoiding. Also, for the charging argument to work we need to allocate a fraction of the number
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of tokens that would be normally allocated to a nonavoiding ball.

For any avoiding hollowed ball B = B(x, r1||r2) there must be vertices u,v € V(t(B))—V (tq(B))
such that | X, — z||; <71, || Xy — 2||; > 72 and that there are at least k/4 edge-disjoint paths from
u to v in the induced graph G[V (¢(B)) — V(t4(B))]. Note that if for such a ball, one defines C(B)
to be the subtree rooted at ¢(B) minus the subtree rooted at t4(B), then these k/4 edge-disjoint
paths must be supported on the leaves of T that are in C(B).

Non-insertable Balls In Fact 7.6 we used the disjointness property to argue that any ball of
FBag, is in the interior of at most one hollowed ball of Z.. Here, this fact may not necessarily
hold: Suppose at time 7, a ball B € Bag, is in the “interior” of two balls By, Bs, i.e., the center of
B is far from the boundaries of By, Ba, and t is an ancestor-descendant of both ¢(B;),t(B2). Then,
B, By intersect. Assuming that balls of Z; have a “valid labeling”, since By, By are intersecting,
t(B1),t(B2) are not ancestor-descendant. One would hope that this configuration is impossible.
But in fact, it could be the case that t(By),t(Bs) are descendants of t(B) that are not ancestor-
descendants of each other. In this configuration, one cannot hope to add B with the label t(B) = t.

In general, the above scenario occurs only if the bags assigned to descendants of a node t
appear earlier in the geometric sequence, i.e., if we process Bag, after processing bags assigned to
its descendants. In the first reading of the proof, one can assume that this scenario does not happen
and avoid the notation tp(.) and (non-)insertable balls that we define below. To address this issue
we will use the third property of the locally connected hierarchy. To any (hollowed) ball B in our
construction with ¢(B) = t, we will assign tp(B) C T to be a set of descendants of ¢ with the
guarantee that there are k edge-disjoint paths across B supported on G[V () — Upesp(z)V(t')]. In
other words, we exclude the subtrees rooted at nodes of tp(B) from C(B). We will prune everything
from Bag, except the balls B such that tp(B) includes all descendants of ¢ that are processed earlier
than . We use the third property of the locally connected hierarchy, 7, to show that the pruning
step only removes a small fraction of balls.

Recall that FBag, has type (d,7y). For a node t € Ty, we say a node ¢’ is a predecessor of t, if ¢/
is a descendant of t and ¢’ € T; for some i < £. For any node ¢t and any ball B = B(X,,r) € Bag, we
say B is non-insertable by ' if t' is a predecessor of ¢ and an endpoint of an edge of P(t') is in B (see
Subsection 3.1 for the definition of P(t')). We say B is insertable otherwise. For any insertable ball
B € Bag, we let tp(B) be the set of predecessors of ¢. In other words, a ball B = B(X,,,r) € Bag,
is insertable if and only if

i) For any t' € tp(B), all endpoints of the edges of P(t') are outside of B, and

ii) For any t' € tp(B), u ¢ V(t), i.e., u does not belong to any of the subtrees rooted at nodes of
tp(B).

Observe that, by the definition of assigned bags of balls, (ii) follows from (i). In particular, since
B € Bag,, there is an edge {u,v} € O(t) for v ¢ V (t). Therefore, if u € V(t'), {u,v} € P(t') which
is a contradiction.

7.2.2 Preprocessing

In this subsection, we delete all non-insertable balls and we show that they contribute only to a
small fraction of the sum of the radii of the given geometric sequence. Then, we formally define a
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valid labeling and we show that we can lower bound the denominator by the sum of the widths of
balls in a valid labeling. At the end of this subsection, we reduce Proposition 7.2 to a “simpler”
statement, that is the existence of an arrangement of a set of hollowed balls with a valid labeling
such that the sum of the widths of all hollowed balls in the construction is a constant fraction of
the sum of the radii of all balls in the given geometric sequence.

In the following lemma we show that for any node ¢t € Ty, the sum of radii of all balls that are
non-insertable by ¢ is < J; - | Bag, |.

Lemma 7.7. For any node t € Ty,

< 45£'|Bagt|.

Z Z I[B is non-insertable by t| - ;
Cs

it BeFBag;

Proof. For any i let b; be the number of balls in FBag; that are non-insertable by ¢. By definition,
b; = 0 for i < ¢. We will show that for all ¢ > ¢,

b; < 2|P(t)]. (55)

Then,

Z Z I[B is non-insertable by t] - §; = Z b; - 6;

¢t BeFBag; i>L

IN
N
)
™
S

>4
< AX-[P(t)] - e
4|0(t)|
< .
< 2 Oy
< 4|Bagt|5£'
< Cs

where the second to last inequality uses T is a (k, kA, T)-LCH of G, i.e., that ¢t € T and A\-k-|P(t)| <
|O(t)|. The last inequality uses (35) and that Bag, is a C3/k-assigned bag of balls.

It remains to prove (55). Fix ¢ > £. For any ball B = B(X,, ;) € Bag, that is non-insertable
by t, at least one endpoint of an edge of P(t) is in B. Since all balls of FBag; are disjoint,
b; < 2[P(t)]. O

By the above lemma it is sufficient to prove Proposition 7.2 with the assumption that all balls
in the given geometric sequence are insertable (see Proposition 7.9 at the end of this part).

In Figure 13 we define a valid labeling of balls. Later, in our inductive argument we will make
sure that at any time 7, Z; has a valid labeling.

The following lemma extends Lemma 7.4 to the new setting where the balls of Z; may intersect.

Lemma 7.8. For any set of hollowed balls Z with a valid labeling we have,

k
12 (e < Y IX - X,

B(z,r1||r2)eZ {u,v}eFE
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Any set of balls has a valid ball labeling if it satisfies the following properties.

1. For any nonavoiding ball B, C(B) is the connected subtree rooted at t(B) excluding the subtrees
rooted at nodes of tp(B). If B is avoiding, in addition to above, C(B) excludes the subtree
rooted at t4(B). Note that we always have ¢(B) € C(B).

2. For any hollowed ball B = B(z,rr2), any t' € tp(B), and {u,v} € P(),
[ = Xully s |z = Xolly = 72

3. For any ball B = (x,71]|r2), there is a vertex v € C(B) such that ||z — X,||; < 1 and there
are at least k/4 edge-disjoint paths originating from u, crossing B, supported on V (¢(B)) —
V(tqs(B)). In the proof of Lemma 7.8 we show that this implies that we have k/4 edge-disjoint
paths crossing B and supported on leaves of 7 which are in C(B).

4. For any two intersecting (hollowed) balls By and Bs, C(B1)NC(By) = (). Observe that C(B1) N

C(B2) # 0 if and only if either ¢(B;) € C(Bs) or t(Bs) € C(By).

Figure 13: Properties of a valid ball labeling

Proof. By property 3, for any ball B = (z,r1||r2) there are k/4 edge-disjoint paths crossing B
originating from a vertex u € C(B) such that || X, — z||; < r;. We only keep the portion of each
of these paths starting from w until the first vertex that lies outside of B(z,72) (and we discard
the rest). Next, we show that these paths remain inside C(B). This is because by property 3
these paths exclude the subtree rooted at t4(B). In addition, these paths start at a vertex that
does not lie in any of the subtrees rooted at tp(B); by property 2 they can never enter such a
vertex. Therefore, these paths avoid the subtrees rooted at tp(B) as well, or in other words they
are completely supported on C(B).

We further trim each of these paths from both ends so that the resulting paths lie inside B. By
the L; triangle inequality, the L; length of the trimmed paths is at least the width of B. Now, by
property 4, no edge of G is charged by more than its L, length. O

Proposition 7.9. Given a (k,k -\, T)-LCH T of G and a A-geometric sequence of families of
12C3 /k-assigned bags of balls, FBag;, FBag,, ..., such that FBag; has type (6;,T;) and T;’s are
disjoint subsets of T', if all balls of all bags in the sequence are insertable, Cy > 3, A < 1/6Cy, and
C3 > 2((Cy+ 1) +4(Cy +2)?), then there is a set Z of hollowed balls with a valid labeling such that

C
1233'225i-]Bagt]§ Z (ro —ry).

i teT; B(z,ri||r2)eZ

It is easy to see that the above proposition together with Lemma 7.8 implies Proposition 7.2.

Proof of Proposition 7.2. For any ¢ and any t € T; we remove all non-insertable balls in Bag,. If
at least half of the balls of Bag, are insertable then we will have a 12C5/k-assigned bag of balls.
Otherwise, we remove Bag, from our geometric sequence and we remove t from 7;. The resulting
geometric sequence satisfies the conditions of Proposition 7.9.

By Lemma 7.7, the sum of the radii of balls that we removed, which is at most twice the sum
of the radii of all non-insertable balls, is at most half of the radii of all balls in the given geometric
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sequence,

Z Z I[B is non-insertable] - §; < Z Z Z Z I[B is non-insertable by ] - §;
J Be€FBag; i t€T; j BeFBag;
4|Bag, | - d; | Bag, | - &
< 22 <22
i teT; 03 i teT; 4
where the last inequality uses C3 > 16. Therefore, the proposition follows by Lemma 7.8. O

We conclude this section with a simple fact. We show that any insertable ball B € Bag, satisfies
properties 2 and 3.

Fact 7.10. Any insertable ball B = B(X,,d¢) € Bag, satisfies properties 2 and 3 of Figure 13.

Proof. Property 2 follows by the definition of insertable balls. To see 3 note that all balls of Bag,
are nonavoiding; in addition, since B is insertable, u does not belong to any of the subtrees rooted
at tp(B). Since by definition of 7, G(t) is k-edge-connected, there are k edge-disjoint paths from u
to a vertex of V(t) outside of B (note that since | Bag, | > 1 there is always a vertex of V (¢) outside
of B). O

7.2.3 Order of Processing

In the rest of this section we prove Proposition 7.9. So from now on, we assume all balls of all bags
in the sequence are insertable and that every bag is 12C5/k-assigned.

Similar to Subsection 7.1, we give an inductive proof. In this part we describe general properties
of our construction and we use them to prove two essential lemmas. We process families of bags of
balls in phases, and in phase ¢ we process FBag,. We need to use slightly larger (compared to the
previous section) constants in the definition of interior balls.

Definition 7.11 (Interior ball). We say a ball B = B(X,,d;) € Bag, is in the interior of a hollowed
ball B' = B(x,r1||r2) if C(B)NC(B') # 0 and,

’r’1—|-03'5g<H:E—Xu||1<7‘2—03'5g.

We say B is an interior ball (with respect to Z) if B is in the interior of a hollowed ball (of Z).
If B is not an interior ball, we call it a border ball. Similar to the previous section we insert all
border balls of phase £ at time 7.

See Figure 14 for the main properties of our inductive construction. In the rest of this part we
use these properties to prove lemmas 7.13 and 7.15. The following fact follows simply by property 3.

Lemma 7.12. Suppose we are processing Bag, € FBag, at time 7. For any s > 0 and any ball
B e Bag, and B' € Z. 5, if C(B)NC(B') # 0, then t(B’) is a weak ancestor of t.

Proof. Let t' = t(B’). If C(B) NC(B’) # (), then by property 1 of Figure 13, ¢,t' are ancestor-
descendant. So, we just need to show that ¢’ is not a descendant of ¢.

First, by properties 2 and 3 of Figure 14, ¢’ € T; for some i < £. If ¢’ € Ty either ¢ =t or Bag,
is processed by time 7. Therefore, by property 1 of Figure 14, ¢’ is not a descendant of ¢t and we
are done. Otherwise, ' € T; and ¢ < £. If t' is a descendant of ¢, then it is a predecessor of ¢ and
since B is an insertable ball, ' € tp(B). So t' ¢ C(B) and C(B") N C(B) = (), which cannot be the
case. ]
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1. Phase ¢ starts at 7,—1 +1 and ends at 7y. In phase ¢, we process assigned bags of balls in FBag,,
in the increasing order of the depth’of the node to which they are assigned in 7. For example,
if Bag,, ,Bag,, € FBag, and t; is an ancestor of t5, we process Bag,, before Bag,,.

2. Any ball of FBag, that we insert (in phase /) remains unchanged till the end of phase ¢. All
other hollowed balls may be shrunk or be split into several balls but their labels (and their
conflict sets) remain invariant.

3. Say at time 7y_1 < 7 < 7y we are processing Bag,. We construct Z,,; inductively by construct-
ing Z;0=2:, Z:1, -, Zr00 = Zr4+1. We make sure that each set Z; ; has a valid labeling.
When we are constructing Z; s41, we insert several new (hollowed) balls where only some of
them are in Bag;. Those not in Bag, are inserted as a result of a conflict in labeling that would
be introduced if we inserted a ball of Bag,. In these cases, we split or shrink an already inserted
nonavoiding ball B and we insert new hollowed balls B C B’ such that C(B) C C(B’). We also

let t(B) = t(B') or t(B) =t depending on whether B is avoiding or nonavoiding.

4. At time 74y we process the border balls of all bags of FBag,.

Figure 14: Properties of our Inductive Construction

In the following lemma we show that when we are processing Bag, (at time 7) any ball in this
bag is in the interior of at most one hollowed ball of Z, .

Lemma 7.13. Say we process Bag, € FBag, at time 7. For any s > 0, and any ball B € Bag, and
B' € Z. 4, ifC(B)NC(B') # 0, then for any ball B” # B’ in Z; s that intersects B', C(B)NC(B") =
0.

Consequently, if B is in the interior of B' € Z. 5, then C(B) NC(B") = 0 for any B" € Z,
that intersects B' and B" # B'. So, B is in the interior of at most one ball of Z 5.

Proof. Let t' = t(B'); fixaball B” € Z. ; and let " = t(B”). Assume, for the sake of contradiciton,
that C(B) N C(B") # 0. First, by Lemma 7.12, ¢/, t" are weak ancestors of ¢t. Since t’' is a weak
ancestor of t and C(B) NC(B’) # 0, we have t € C(B’). Similarly, t € C(B"”). Therefore, C(B’) N
C(B") # () which contradicts the validity of the labeling since B, B” intersect. O

Next, we show that once a ball of Bag, becomes a border ball, it remains a border ball till the
end of phase £. In the proof we use the following simple fact.

Fact 7.14. Suppose B, B’ have a valid labeling; for any ball B” C B such that C(B") C C(B),
{B', B"}’s labeling is valid as well.

Lemma 7.15. Suppose we are processing Bag, € FBag, at time 7. For any ball B € Bag, if B is
an interior ball with respect to (some hollowed ball of ) Z.1 s for some T < 7' < 1y and s > 0, then,
it is also in the interior of a ball of Z s_1.

This lets us backtrack through Z./ ;’s until we reach Z; . So, if B is a border ball at the time
we start processing Bag, it remains a border ball until time 7.

3Note that the root has depth 0.
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Proof. If B is in the interior of a newly inserted ball B’ € Z. ,, by property 3, the conflict set of
B’ is a subset of a conflict set of a ball B” € Z./_; 4 containing B’. So, by Fact 7.14, B is also in
the interior of B”. O

7.2.4 The Construction

At any time 7y_; < 7 < 77 and s > 0, we allocate token,s(B) tokens to any hollowed ball
B = B(z,r1||r2) € Z; 5, where

¢ — Cy - 5g+1 if B e FBagZ

token, 4(B) = { [re —r1 — Cy - &1 if B ¢ FBag, is nonavoiding

[Tz—Tl—C4'5z]+

52T0h) otherwise.

Note that we allocate significantly smaller number of tokens to the avoiding hollowed balls; roughly
speaking we allocate 1/2C} fraction of what we allocate for a same-sized nonavoiding ball.

Say we are processing Bag, at time 7y_1 + 1 < 7 < 7p. We process Bag, in several steps; we
start with Z = Z. and in each iteration of the loop we may add/remove several (hollowed) balls
to/from Z. We use Z, ; to denote the set Z after the s-th iteration of the loop, so, Z2 = Z,9 = Z;
before entering the loop and Z = Z, ., = Z,4; after the loop. Before processing Bag,, we let Bor;
be the set of border balls of Bag, with respect to Z;, and Int; be the set of interior balls. We
update these sets in each iteration of the loop. We use Bor; s, Int; s to denote the sets Bory, Int;
after the s-th iteration of the loop, respectively. In addition, we use Bor; o, Int; o, to denote these
sets after the execution of the loop. We will process the balls in Bor; o, at the end of phase . The
details of our construction are described in Algorithm 5.

The following is the main result of this part.

Lemma 7.16. For any 7,5 > 0 the following holds. The set Z; ;’s labeling is valid. If we allocate
token, s(B) tokens to any hollowed ball B(x,ri||r2) € Z;5, then we can distribute these tokens
among nodes whose bags we have processed by time T such that for any i < £, any t' € T; receives
at least 15—(‘53 - |Bagy | - §; tokens, and any t' € Ty that is processed by time T receives at least

o (| Bagy | — | Botv | — [Tt ac ) - b

tokens, and the node t that we are processing at time T receives at least

C
ot (| Bag | ~ [ Borys |~ [Tntes ) -5

tokens.

Later, in the post processing phase we show that any node ¢ receives at least Gcﬁl Bor o |- new
tokens. This implies Proposition 7.9 as by the stopping condition of the main loop of Algorithm 5,
for any t € Ty, | Int; o | < | Bag, |/2.

We prove the above lemma by an induction on 7, s. From now on, we assume that all conclusions
of the lemma hold for 7, s and we prove the same holds for 7, s+ 1. We construct Z; 51 (from Z. ;)
in one of the three steps of the loop, i.e., steps 5, 14, 16. We analyze these steps in the following
three cases.
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Algorithm 5

Construction of Z. 1 by processing Bag,.

Input: Z; and Bag; € FBag,.
Output: Z, 4
1. Let 2 = Z., t* be parent of ¢t and Bor, Int; be the border balls and interior balls of Bag,
respectively. Also, let O'(t) = {{u,v} € O(t) : | Xy — Xul|; < ¢}
2: while |Int; | > |Bag, |/2 do

3: if 3B’ € Int; s.t. B’ is in the interior of an avoiding hollowed ball B € Z, then
4: Suppose B’ = B(X,,,0;) and B = B(z,r1|r2).
5: Update Z: Remove B and add By = B(z, || || Xy, — z||; — /) and By = B(z, || Xy, — x|, +
d¢||r2) with the same labels as B. Add B’ (to £) and remove it from Int;. Goto step 19.
6: else
7 Let Si,...,S; be a natural decomposition of G[V (t*) — V/(¢)] into k/4-edge-connected sub-
graphs as defined in Definition 2.9. >In Lemma 7.17 we will show that j < 2|O(t)|/k.
8: Let U C V(t) be the centers of balls of Int;,
Vi == {veS;:Fuel{unv} et}
U = {ueU:3wesS;,{uv}ecd(t)}
>By Definition 6.10, every vertex of U is incident to an edge of O'(t), so U‘f: Ui =U.
Also, since Bag, is a 12C3/k-assigned bag, |U| = |Int; | > | Bag, |/2 > ME‘A&
9: Let i = argmax; <;<; |U;]. >So, |Us| > |U|/j > 3C5.
10: Let B = B(z,r1||m2) € Z be a nonavoiding ball such that a ball of Int; with its center in U;
is in the interior of B. >We will show that t(B) is an ancestor of t.
11: We define r] = max{ri, min,ey; ||z — Xp||;} and r} := min{rs, maxey; || — Xyl|; }-
12: Let Intpr be the balls of Int, whose centers are in the hollowed ball B’ = B(x, ] — 0|1}, + 0¢)
and Ups be the centers of balls of Intg,.  >We may have U; & Upr as some vertices of U;
may not even be in B, but all vertices of U are in B.
13: if |Intp |- 6p > 3(ry — r}) then > We treat Intp as if it was a 5-compact bag of balls.
14: Update Z: Remove B and add By = B(x,r1||r] — 26¢) and By = B(xz, 75 + 25y||r2) with
the same labels as B. Add all balls of Intg: to Z and remove them from Int;.
15: else
16: Update Z: Remove B and add By = B(x,r1|r]) and By = B(x,7}||r2) to Z, with the
same labels as B. Add a new (nonavoiding) hollowed ball By = B(z, ] + 0¢||r, — d¢) with
t(B3) = t and tp(Bs) consisting of nodes ¢’ € tp(B) such that ¢’ is a descendant of t. Add an
avoiding hollowed ball By = B(z, 7} ||ry) with t(By) = t(B), t4(Bs4) =t and tp(By) = tp(B).
Remove all balls of Intgs from Int;. See Figure 15 for an example. >Note that no ball of
Int; — Intp/ is in the interior of By or Bs.
17: end if
18: end if

19: Move all balls of Int; that become border balls w.r.t. Z into Bor;.
20: end while

return Z.

71



Case 1: A ball B’ Int, ; is in the interior of an avoiding hollowed ball B = B(z,r1||r2) € Z; .
In this case by Lemma 7.13, for any ball B” € Z, ; such that B # B”, {B’, B"}’s labeling is valid.
Since, by definition, B’ intersects neither of By, B2, Z; s41’s labeling is valid. We send all tokens of
By and By and d;/2 of the tokens of B’ to B and we redistribute them by the induction hypothesis.
We send the rest of the tokens of B’ to t. Then, B receives,

0¢ _ (r1 —ro —207) —2C4 - 0p + 6¢(2 + Cy)
- >
tokenr,s1(By) + tokenr,s 1 (Ba) + 3 2(2+ Cy)

= token, s(B).

In the above equation, we crucially use that, roughly speaking, token, (B) is a only a constant
fraction of the width of B when B is an avoiding ball. This is not the case when we deal with
nonavoiding balls in cases 2,3.

On the other hand, ¢ receives

tokenT,s_H(B/) —0¢/2> 00— Cy - Opr1 — 0¢/2 > ¢/4.

new tokens, where we used 0,41 < A -y and A < 1/4Cy. Since | Bory o471 | + | Inty o1 | = | Bory s | +
|Int s | — 1 we are done by induction.

Now suppose that the above does not happen. Consider the induced graph G[V (t*) — V (¢)].
Note that this graph may be disconnected. Let Si,Ss,...,S; be a natural decomposition of this
graph as defined in Definition 2.9. In the following lemma we show that j < 2|O(t)|/k.

Lemma 7.17. 57 < w

Proof. By the definition of 7, G(t*) is k-edge-connected. Therefore, for any 1 <1i < j,
Therefore,
J
< " 06(Si) = g (V (1)) + Zac v -v) (Si) = [0@)| + ZaG[V(t* —v(e)) (S)-
i=1

=1 =1

But, by Lemma 2.10, the second term on the RHS is at most 2(j — 1)(k/4 — 1). Therefore, j <
2|0(t)|/k. O

As we mentioned in the comments of the algorithm, by the assumption that Bag, is 12C3/k-
assigned, the above lemma implies that

Ui > 3Cs5. (56)

Next, we prove a technical lemma which will be used in both of cases 2 and 3. In case 2 we use this
lemma together with the above inequality to show that |Intg/ | > 3(C3 — 1); we will use this in our
charging argument to compensate for the tokens lost by splitting B. In case 3, we use the following
lemma to show that 75, —r] > (C5 — 1) - §y. Similarly, we use this inequality to compensate for the
tokens lost by splitting B.

Lemma 7.18. Let U,U;,V; be defined as in step 8. If U; € Upr, then vy — 1y > (C5 — 1) - dy.
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Proof. First, we show that there is a vertex v € V; such that X, ¢ B. For the sake of contradiction
assume V; C B. We show that any vertex u € U; is in U/ which is a contradiction. Fix a vertex
u € U;. By Definition 6.10, there is a vertex v € V; such that {u,v} € O'(t). Since X, € B, by
the definition of 7,75, we have r| < || X, — z||; < ). So, Xy, € B(x, ] — 0¢||75 + ¢), i.e., u € Upr.
This is a contradiction.

Now, let v € V; be such that either || X, —z|; > ry or || X, —z||; < ri. Here, we assume the
former; the other case can be analyzed similarly. Then, we have 5, = ro. But by definition of B,
there is a ball B(X,,d;) € Int;s in the interior of B such that u € U;. Since u € Uj, there is a
vertex w € V; such that || X, — X|[|; < . Therefore,

ry < ||z — Xully < [lw— Xull; + 00 <12 — C300 + 6.

where the last inequality uses that B(X,,d;) is in the interior of B. So, r) —r] > (C5 — 1)é,. O

Case 2: |Intp |- dp > 3(rh — 7).
First, we show Z; s11’s labeling is valid. Then, we distribute the tokens. To show that Z; s41’s
labeling is valid, first we argue that all balls of Intps are in the interior of B. Fix a ball A € Intp/,
we show A is in the interior of B. First, {A, B}’s labeling is invalid. Because i) A, B intersect by
the definition of Intp and ii) a ball of Bag, is in the interior of B and all balls of Bag, have the
same labels. Secondly, since Intp C Int; s, A is an interior ball. Therefore, by Lemma 7.13, A is
in the interior of B. Now, by Lemma 7.13, for any B” € Z. ; where B” # B, {A, B"}’s labeling
is valid. Furthermore, by construction, By, By do not intersect any balls of Intp/. Hence, Z; 441’s
labeling is valid.

Next, we describe the distribution of tokens allocated to the balls of Z; 1. Before that, we
show that |Intg | > 3(C5 — 1). We consider two cases. If U; C Ugr. Then, by (56),

\IntB/ ’ = ‘UB/‘ > ‘UZ‘ > 3C5.

Otherwise, U; € Ugs. Then, by Lemma 7.18,

3(h— 1) _ 3(Cs—1) -0

Intp | >
|Intp | > 5 5

=3(Cs —1).
Therefore, |Intg | > 3(C5 — 1).

Now, we send all tokens of Bj, By and 3/4 of the tokens of each ball of Intg to B and we
redistribute them by the induction hypothesis. B receives,

3
tokenT,s_H(Bl) + tOkeHT7s+1(B2) + Z| Intp |(5@ —Cy - 5g+1)
27‘2—7’1—455—(7‘5—7‘3)—2@1'55—1—%-]IntB/\-gég
> token, s(B) — (4 + Cy) - 8¢ + %\ Intp | - 0f

> tokenT,S(B) -4+ C4) -0 + g(Cz), —1)-d

> token; s(B).
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Figure 15: An illustration of Case 3. Upr is the blue vertices. V; is the set of red vertices. The green
vertex belongs to Vi for ¢/ # i. The edges between the blue vertices and red/green vertices are in
O'(t). We update Z; s as follows: We split B to balls By, Bo. We also add an avoiding By from the
closest red point (r}) to the farthest one (r}), and a nonavoiding ball, By = B(., 7} + d¢||r5 — d¢).

where the first inequality uses dp11 < A-dp and A < 1/6CY, the second inequality uses the assumption
3(rh — r}) < |Intp | - d¢, the third inequality uses |Intp | > 3(C3 — 1) and the last inequality uses
C3 > 8(Cy +5)/7. On the other hand, each ball B’ € Intps sends

1 1
—token,(B') > ~ - =§
4 boken (B") > 1 6%
to t. So, t receives | Intps | - 6/5 new tokens. Since
’BOI‘t75+1 ‘ + \Intt7s+1 ‘ = ’BOI‘LS ’ + ‘Intt75 ’ — \IntB/ ’,

and we are done by induction.

Case 3: |Intg|-0; < 3(rh —71)).
As usual, first we verify the validity of the labeling, then we show that the tokens assigned to Bs, By
compensate the loss of B and the balls of Intg that we delete. We emphasize that verifying the
validity of labeling is more involved in this case compared to cases 1, 2; this is because case 3 is
the only one in which we insert new balls, i.e., B3, B4, that do not exist in the given geometric
sequence of bags of balls.

First, we show that property 3 of Figure 14 is satisfied; then we verify properties 4, 2, 3 of
Figure 13 in that order. Recall that the labels of B3y and By are defined as follows:

t() |ta() | tr() c()
Bs |t NA | tp(B) N {descendants of t} | C(B) N subtree rooted at ¢
By | t(B) | t tp(B) C(B) — subtree rooted at ¢

Note that by Lemma 7.12 and that a ball of Bag, is in the interior of B, ¢t(B) is a weak ancestor of
t. Therefore, C(B3),C(B4) C C(B) as required by property 3 of Figure 14. Let us now verify that
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ta(By) =t is a proper descendent of ¢(By) = t(B), i.e., By is a valid avoiding ball. Since we showed
t(B) is a weak ancestor of ¢, it is enough to show that t(B) # t. If t(B) = t, then B is constructed
in an iteration s’ < s of the loop. This does not happen because whenever we construct a new ball
in step 16 we delete all balls of Int; that intersect with the new ball; in addition, no new interior
balls are added throughout the loop by Lemma 7.15. Therefore ¢(B) # t.

Next, we verify property 4 of Figure 13. Since C(Bs),C(By) C C(B), by Fact 7.14, Bs, B4 do
not have a conflict with any ball of Z; ; — {B}, i.e., for any ball B” € Z, ; — { B} that intersects
one of them,

C(B3)NC(B") =0 and C(By) NC(B") = 0.

In addition, since t4(Bs) =t = t(B3), C(B3) NC(By) = 0. Furthermore, B3 and By do not intersect
By, By. So the labelings satisfy property 4 of Figure 13.

It remains to verify that Bjs, B4 satisfy properties 2 and 3 of Figure 13. B3 and B, satisfy
property 2 because tp(Bs),tp(Bs) C tp(B) and they are inside B. Finally, we need to verify
property 3. First, we show Bg satisfies property 3. By the definition of U; there are vertices
ui,uz € U; such that ||z — X, || < 7} + 6 and ||z — Xy, || > 75 — d¢ (see Figure 15). Since G(t)
is k-edge-connected there are k edge-disjoint paths between w; and uy supported on V(t). So, we
just need to argue that u; € C(Bj3), i.e., for any t' € tp(Bs), u; ¢ V(¢'). This is because, u; € U;
is incident to an edge e of O'(t). Since ¢’ is a descendant of ¢, if u; € V(¢') then e € P(t') so an
endpoint of an edge of P(t’) has distance less than 7o from the center of B which is contradictory
with ¢/ € tp(Bg) - tp(B).

Lastly, we show B, satisfies property 3. By the definition of V; there are vertices vy,vy € V;
such that ||z — X,,|| < ] and ||z — X,,|| > 75 (see Figure 15). Since V; C S; and S; is k/4-edge-
connected in G[V (t*) — V/(t)], there are k/4 edge-disjoint paths from v; to ve in G[V (¢t(B)) — V (t)].
We need to argue that v; € C(By), i.e., it is enough to show that for any ¢’ € tp(B4), we have
vy ¢ V(). This is similar to the argument in the previous paragraph. First, since v; € V;, vy is
incident to an edge e € O'(t). Since t’ € tp(B) and || X,, —z||; < 72, we must have e ¢ P(t).
Therefore, if v1 € V(¢'), ' must be a weak ancestor of t*. But, since ¢(B) is an ancestor of ¢ and a
ball of Bag, is in the interior of B, we must have ¢t € C(B), i.e., tp(B) cannot not contain a weak
ancestor of t. So, vy ¢ V(t').

It remains to distribute the tokens. First, we show that v}, — 7] > (C5 —1)-0,. If U; € Upr,
then by Lemma 7.18, 7y, — r] > (C5 — 1) - §p. Otherwise, by the assumption of Case 3,

1
ry =1y > | Intp | -6 > §|Ui|'5é > C3 - 0y,
where the last inequality follows by (56). We send all tokens of By, Bs, B3, and (2Cy + 2)d; tokens

of By to B and we redistribute them by the induction hypothesis. We send the rest of the tokens
of By to t. Ball B receives

3
ZtokenT,SJrl(Bi) + (2014 2) -8y > 19 —r1 — 200 — 3C46¢ + (2C4 + 2)6p = token, 4(B).
i=1
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On the other hand, t receives,

h—rl—Cy- 0 —4(2 2.
tOkenT’s+1(B4)_(204+2)5e _ 7‘2 7‘1 04 5@ ( +O4) 55

2(2+4 Cy)
> T‘é—ri—(C:;—l)(sg/Z
- 2(2+ Cy)
S rh— 1]
~ 424+ 0y)
> |Intg |- ¢ >C4|IHtB|-557
1212+ Cy) T 6Cs

new tokens. In the first inequality we used (C3 — 1) > 2(Cy + 4(Cy + 2)?), the second inequality
uses 75 — r{ > (C3 — 1) - &, and the third inequality uses the assumption ry — r{ > % - [Intg | - &.
This concludes the proof of Lemma 7.16.

7.2.5 Post-processing

Say we have processed all Bag, € FBag, and we are the end of phase ¢, i.e., time 7. We need to
make sure that each node t € Ty receives at least | Bort o |-07 new tokens. Then by Lemma 7.16,
each node ¢, altogether, receives at least
C4 Cy
B — | Int 0y > ——|B 1)
G0 (Bagy| = [Tty ) - 60 = 15| Bag |50

tokens. The above inequality uses that by the condition of the main loop of Algorithm 5, for any
t €Ty, |[Intyo | < |Bag,|/2.

We define the shrink operator as follows: For any hollowed ball B = B(xz,r||r2) € Z,,

B if B € FBag,
shrink,(B) = ¢ B(x,ry + (03 + 1)d¢|lr2 — (C3 +1)d;) if B ¢ FBag, and ro — 11 > 2(C5 + 1)d
B(z,0) = otherwise.

(57)
Let

b = Z|Bort,oo|,

teTy

excess = Z (token,,+1(B) — token,, (B)).
BeZ,,

Think of excess as the additional number of tokens that we gain for all hollowed balls B € Z,
when we go to the new phase ¢+ 1. Our idea is simple. If excess is very large then we do not add
any of the border balls and we just distribute excess between all nodes of Ty. Otherwise, we shrink
balls of Z,, and we add the border balls.
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Case 1:  excess > 6%3 -b-dy.
In this case, we do not add any of the border balls and we simply let Z;, 11 = Z;,.

Now, observe that for any hollowed ball B € Z;,, we have token,, 1 (B) — token,, (B) additional
tokens that B has not used. We distribute these tokens between the nodes of T; proportional to
their number of border balls. More precisely, for any ball B € Z;, and t € T, we send

| Bory oo |

b - (token,,+1(B) — token,,(B))

tokens to t. Therefore, t receives

| Bory o | - excess

Bort o
Z [ Bortoo| (tokenr,11(B) — tokenr, (B)) = b

b
Bez,,

C
é - | Bory oo | - 0y,

v

and we are done.

Case 2: excess < 6%3 b6y
For each hollowed ball B € Z;, we replace B by shrinky(B) in Z,,1;. We also add all balls of
Bor o for all t € Ty to Z;,41. By Lemma 7.15 any border ball B € Bor; o is not in the interior of
any ball of Z;,. By the definition of the shrink operator, and using the fact that balls of FBag, do
not intersect, any ball of Uer, Bors o, does not intersect any ball of Z;,11. So, Z;,41’s labeling is
valid.

It remains to distribute the tokens. First, we prove a technical lemma.

Lemma 7.19. If excess < 6%‘3 -b- 6y, then

by >2 Z (token,,(B) — token,, 1 (shrinky(B))).
Bez.,

Proof. 1t is sufficient to show that for any hollowed ball B = B(x,r|r2) € Z;,

Cy

token,,+1(B) — token,,(B) > 30,

- (token,, (B) — token,, 41 (shrinky(B))). (58)

Because, then

Z token,, (B) — token,, 1 (shrink,(B)) < 3703 Z token,,+1(B) — token,,(B)
Bez., * Bez,
3C3 b-o
= 74 excess < 5

as desired. The last inequality follows by the lemma’s assumption.
It remains to prove (58). First, note that if token,,(B) = 0 then the above holds trivially. So
assume token,, (B) > 0. We consider three cases. i) B € FBag,. In this case both sides of the
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above inequality is zero. This is because shrink,(B) = B and token,,(B) = token,,41(B). ii) B is
a nonavoiding hollowed ball. Since token,,(B) > 0, rg — 11 > C4 - 6p. Therefore,

token,,1(B) — token,, (B) = Cy- (¢ — 0p41) >
token,, (B) — token,,41(shrink,(B)) < 2(C3+1)d;+ Cy -

Cy -6
de41 — 07) < 2C3 - 0y

—~ W N

using dp11 < 0¢/3 and Cy > 3. So, (58) is correct. iii) B is an avoiding hollowed ball. Equation
(58) is equivalent to case (ii) up to a 2(2 + C4) factor in both sides of the inequality. O

For any ball B € Bor; o, and any ball B’ € Z,,, we send

] token,, (B’) — token,,; (shrink,(B’))
2 ZBNEZW token,, (B") — token,, 41 (shrink,(B"))

tokens to B’ and we send the remaining tokens to ¢. For any ball B € Z.,, also send all of the
tokens of shrink,(B) to B.
Therefore, by Lemma 7.19, any ball B € Z;, receives at least

) d¢ token,(B) — token,, 1 (shrink,(B))
token hrink,(B b-—- £ O
okenr, 1 (shrinky(B)) + 2 ZB’GZW token, (B’) — token,, 1 (shrink,(B’))

> token,, 41 (shrinky(B)) + (token,,(B) — token,, ;1 (shrink,(B)))
= token,,(B),

that we redistribute by the induction hypothesis. On the other hand, any ¢ € Ty receives
|B0Tt,oo |- (6 — 00/2 — Cy - dps1) > |B0Tt,oo |- 0¢/4

new tokens, and we are done with the induction. This completes the proof of Proposition 7.9.
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A Missing proofs of Section 1

Theorem 1.2. For any o > 0 (which can be a function of n), and k > logn, a polynomial-
time construction of an a/k-thin tree in any k-edge-connected graph gives an O(«)-approzimation
algorithm for ATSP. In addition, even an existential proof gives an O(a) upper bound on the
integrality gap of the LP relaxation.

Proof. For a feasible vector  of LP (1), let c(z) = >_, , ¢(u,v) - Ty, For two disjoint sets A, B
and a set of arcs T let .
T(A,B) :={(u,v) : u € A,v € B},

be the set of arcs from A to B. We use the following theorem that is proved in [AGM™10].
Theorem A.1l. For a feasible solution x of LP (1) and a spanning tree T such that for any S C V,

IT(S,S)| —|T(5,8)| < a- Z Typ + Tou = a-z(S,9), (59)
ug¢ S,veS

and E(uﬂ))eT c(u,v) < B-c(x), there is a polynomial time algorithm that finds a tour of length
O(a+ B) - c(x).

Given a feasible solution x of LP (1), for a constant C' > 4, we sample Ck - n arcs where the
probability of choosing each arc (u, v) is proportional to z,,,. We drop the direction of the arcs and
we call the sampled graph G = (V, E). Since x(S,S) > 2 for all S C V, and k > logn, it follows by
the seminal work of Karger [Kar99] that for a sufficiently large C, with high probability, for any
S CV,|E(S,S)|is between 1/2 and 2 times Ck - x(S, S). Since this happens with high probability,
by Markov’s inequality we can also assume that

c(E) <2C k- c(x),

where for a set F' C F,
o(F) = Z min{c(u, v), c(v,u)}.

{u,v}eF

Since #(S,S5) > 2 and C > 4, G is 2k-edge-connected. Let 3 = a/k. By the assumption of the
theorem, G has a (-thin tree, say 7). Because of the thinness of Ty, G(V, E —T1) is 2k(1 — ) > k-
edge-connected. Therefore, it also has a [-thin tree. By repeating this argument, we can find
] = % edge-disjoint B-thin spanning trees in G, T1,...,T}.
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Without loss of generality, assume that c¢(771) = minj<j<; c(7;). We show that T satisfies the
conditions of the above theorem. First, since ¢(71) = mini<i<; ¢(T3),

c(E) < 2C - k- c(x)
J - J

co(Ty) < =4C - a - c(z).

On the other hand, since 717 is S-thin with respect to G, for any set S C V/,

Therefore, the theorem follows from an application of Theorem A.1. O

82



	1 Introduction
	1.1 Spectrally Thin Trees
	1.2 Our Contribution
	1.3 Main Components of the Proof
	1.4 Organization

	2 Preliminaries
	2.1 Balls and High-Dimensional Geometry
	2.2 Facts from Linear Algebra
	2.3 Background in Graph Theory

	3 Overview of Our Approach
	3.1 Locally Connected Hierarchies
	3.2 Main Technical Theorem
	3.3 Expanding Locally Connected Hierarchies

	4 Proof of the Main Theorem
	4.1 Construction of Locally Connected Hierarchies
	4.2 Extraction of an (k)-Edge-Connected Set of Good Edges
	4.3 Algorithmic Aspects

	5 The Dual of Tree-CP
	5.1 The Dual for Variants of the Problem

	6 Upper-bounding the Numerator of the Dual
	6.1 Construction of Disjoint L1 Balls
	6.2 Construction of Bags of Balls
	6.3 Construction of a Geometric Sequence of Families of Bags of Balls

	7 Lower-bounding the Denominator of the Dual
	7.1 Charging Argument for Compact Bags of Balls
	7.2 Charging Argument for Assigned Bags of Balls
	7.2.1 Ball Labeling
	7.2.2 Preprocessing
	7.2.3 Order of Processing
	7.2.4 The Construction
	7.2.5 Post-processing


	A Missing proofs of Section 1

