
ar
X

iv
:2

30
5.

19
10

4v
1

 [
cs

.C
C

]
 3

0
M

ay
 2

02
3

Hardness of Approximation in PSPACE and

Separation Results for Pebble Games∗

Siu Man Chan, Massimo Lauria1, Jakob Nordström2, and Marc Vinyals3

1Sapienza — Università di Roma, Italy
2University of Copenhagen, Denmark, and Lund University, Sweden

3University of Auckland, New Zealand

May 31, 2023

Abstract

We consider the pebble game on DAGs with bounded fan-in introduced in [Paterson and Hewitt ’70]

and the reversible version of this game in [Bennett ’89], and study the question of how hard it is to decide

exactly or approximately the number of pebbles needed for a given DAG in these games.

We prove that the problem of deciding whether s pebbles suffice to reversibly pebble a DAG G is

PSPACE-complete, as was previously shown for the standard pebble game in [Gilbert, Lengauer and

Tarjan ’80]. Via two different graph product constructions we then strengthen these results to establish

that both standard and reversible pebbling space are PSPACE-hard to approximate to within any additive

constant. To the best of our knowledge, these are the first hardness of approximation results for pebble

games in an unrestricted setting (even for polynomial time). Also, since [Chan ’13] proved that reversible

pebbling is equivalent to the games in [Dymond and Tompa ’85] and [Raz and McKenzie ’99], our results

apply to the Dymond–Tompa and Raz–McKenzie games as well, and from the same paper it follows that

resolution depth is PSPACE-hard to determine up to any additive constant.

We also obtain a multiplicative logarithmic separation between reversible and standard pebbling space.

This improves on the additive logarithmic separation previously known and could plausibly be tight, al-

though we are not able to prove this.

We leave as an interesting open problem whether our additive hardness of approximation result could

be strengthened to a multiplicative bound if the computational resources are decreased from polynomial

space to the more common setting of polynomial time.

1 Introduction

In the pebble game first studied by Paterson and Hewitt [PH70], one starts with an empty directed acyclic

graph (DAG) G with bounded fan-in (and which in this paper in addition will always have a single sink) and

places pebbles on the vertices according to the following rules:

• If all (immediate) predecessors of an empty vertex v contain pebbles, a pebble may be placed on v.

• A pebble may be removed from any vertex at any time.

∗This is the full-length version of the paper with the same title that appeared in Proceedings of the 56th IEEE Symposium on

Foundations of Computer Science (FOCS ’15).

http://arxiv.org/abs/2305.19104v1

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

The goal is to get a pebble on the sink vertex of G with all other vertices being empty, and to do so while

minimizing the total number of pebbles on G at any given time (the pebbling price of G). This game mod-

els computations with execution independent of the actual input. A pebble on a vertex indicates that the

corresponding value is currently kept in memory and the objective is to perform the computation with the

minimum amount of memory.

The pebble game has been used to study flowcharts and recursive schemata [PH70], register alloca-

tion [Set75], time and space as Turing-machine resources [Coo74, HPV77], and algorithmic time-space

trade-offs [Cha73, SS77, SS79, SS83, Tom78]. In the last 10–15 years, there has been a renewed interest

in pebbling in the context of proof complexity as discussed in the survey [Nor13] (although in this context

one is often interested also in the slightly more general black-white pebble game introduced in [CS76]), and

pebbling has also turned out to be useful for applications in cryptography [DNW05, AS15]. An excellent

overview of pebbling up to ca. 1980 is given in [Pip80] and some more recent developments are covered in

the upcoming survey [Nor20].

Bennett [Ben89] introduced the reversible pebble game as part of a broader program [Ben73] to investigate

possibilities to eliminate (or significantly reduce) energy dissipation in logical computation. Another reason

reversible computation is of interest is that observation-free quantum computation is inherently reversible.

In the reversible pebble game, the moves performed in reverse order should also constitute a legal pebbling,

which means that the rules for pebble placement and removal become symmetric as follows:

• If all predecessors of an empty vertex v contain pebbles, a pebble may be placed on v.

• If all predecessors of a pebbled vertex v contain pebbles, the pebble on v may be removed.

Reversible pebblings of DAGs have been studied in [LV96, Krá04] and have been employed to shed light

on time-space trade-offs in reversible simulation of irreversible computation in [LTV98, LMT00, Wil00,

BTV01]. In a different line of work Potechin [Pot10] implicitly used the reversible pebble game for proving

lower bounds on monotone space complexity, with the connection made explicit in the follow-up works [CP14,

FPRC13].

Another pebble game on DAGs that will be of interest in this paper is the Dymond–Tompa game [DT85]

played on a DAG G by a Pebbler and a Challenger. This game is played in rounds, with both players starting

at the sink in the first round. In the following rounds, Pebbler places a pebble on some vertex of G after

which Challenger either stays at the current vertex or moves to the newly pebbled vertex. This repeats until

at the end of a round Challenger is standing on a vertex with all (immediate) predecessors pebbled (or on a

source, in which case the condition vacuously holds), at which point the game ends. Intuitively, Challenger

is challenging Pebbler to “catch me if you can” and wants to play for as many rounds as possible, whereas

Pebbler wants to “surround” Challenger as quickly as possible. The Dymond–Tompa price of G is the smallest

number r such that Pebbler can always finish the game in at most r rounds. The Dymond–Tompa game has

been used to establish that for parallel time a speed-up by a logarithmic factor is always possible [DT85],

and in [VT89] it was shown that a slightly modified variant of this game exactly characterizes parallelism

in complexity classes like ACi, NC, and P, and can be used to re-derive, for instance, Savitch’s theorem.

Furthermore, collapses or separations of these classes can in principle be recast (or discovered) as bounds on

Dymond–Tompa price. Interestingly, this characterization of parallelism extends to proof complexity as well

as discussed in [Cha13a].

A final game with pebbles that we want to just mention without going into any details is the Raz–McKenzie

game introduced in [RM99] to study the depth complexity of decision trees solving search problems. The

reason for bringing up the Dymond–Tompa and Raz–McKenzie games is that it was shown in [Cha13a] that

both games are actually equivalent to the reversible pebble game. Hence, any bounds derived for the reversible

pebble game also hold for Dymond–Tompa price and Raz–McKenzie price.

The main focus of this paper is to study how hard it is to decide exactly or approximately the pebbling

price of a DAG. For the standard pebble game Gilbert et al. [GLT80] showed that given a DAG G and a

2

1 INTRODUCTION

positive integer s it is PSPACE-complete to determine whether space s is sufficient to pebble G or not. It

would seem natural to suspect that reversible pebbling price should be PSPACE-complete as well, but the

construction in [GLT80] cannot be used to show this.

Given that pebbling price is hard to determine exactly, an even more interesting question is if anything

can be said regarding the hardness of approximating pebbling price. Although this seems like a very natural

and appealing question, apparently next to nothing has been known about this.

Wu et al. [WAPL14] showed that “one-shot” standard pebbling price is hard to approximate to within any

multiplicative constant assuming the so-called Small Set Expansion (SSE) hypothesis. In a one-shot pebbling

one is only allowed to pebble each vertex once, however, and this is a major restriction since the complexity

now drops from PSPACE-complete to NP-complete [Set75]. Note that containment in NP is easy to see

since any one-shot pebbling can be described concisely just by listing the order in which the vertices should

be pebbled (and it is easy to compute when a pebble is no longer needed and can be removed). In contrast,

in the general case pebbling strategies that are optimal with respect to space can sometimes provably require

exponential time.

One can also go in the other direction and study more general pebble games, such as the AND/OR pebble

game introduced by Lingas [Lin78] in one of the works leading up to [GLT80]. Here every vertex is labelled

AND or OR. For AND-vertices we have the usual pebbling rule, but for OR-vertices it is sufficient to just

have one pebble on some predecessor in order to be allowed to pebble the vertex. This game has a relatively

straightforward reduction from hitting set [FNPW10], which shows that it is hard to approximate to within a

logarithmic factor, but the reduction crucially depends on the OR-nodes.

We remark that hardness of approximation in PSPACE for other problems has been studied in [CFLS95],

but those techniques seem hard to adapt to pebble games since the reduction from QBF to pebbling is inher-

ently unable to preserve gaps.

Another problem that we study in the current paper is the relation between standard pebbling price and

reversible pebbling price. Clearly, the space needed to reversibly pebble a graph is at least the space required

in the standard pebble game. It is also not hard to see that there are graphs that require strictly more pebbles in

a reversible setting: for a directed path on n vertices only 2 pebbles are needed in the standard game, while it is

relatively straightforward to show that the reversible pebbling space is Θ(log n) [Ben89, LV96]. However, for

“classic” graphs studied in the pebbling literature, such as binary trees, pyramids, certain superconcentrators,

and the worst-case graphs in [PTC77], the reversible and standard pebbling prices coincide asymptotically,

and are sometimes markedly closer than an additive logarithm apart.

This raises the question whether reversible and standard pebbling can be asymptotically separated with

respect to space. It might be worth pointing out in this context that for Turing machines it was proven

in [LMT00] that any computation can be simulated reversibly in exactly the same space. In the more re-

stricted pebbling model, it was shown in [Krá04] that if the standard pebbling price of a DAG G on n vertices

is s, then G can be reversibly pebbled with at most s2 log n pebbles. Thus, if there is not only an additive but

also a multiplicative separation between standard and reversible pebbling price, such a separation cannot be

too large.

1.1 Our Results

We obtain the following results:

1. We establish an asymptotic separation between standard and reversible pebbling by exhibiting families

of graphs {Gn}
∞
n=1 of sizeΘ(n)with a single sink and fan-in 2which have standard pebbling price s(n)

and reversible pebbling price Ω(s(n) log n). This construction works for any s(n) = O
(
n1/2−ǫ

)
with

ǫ > 0 constant, where the constant hidden in the asymptotic notation in the lower bound has a (mild)

dependence on ǫ.

3

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

2. We prove that determining reversible pebbling price is PSPACE-complete. That is, given a single-sink

DAG G of fan-in 2 and a parameter s, it is PSPACE-complete to decide whether G can be reversibly

pebbled in space s or not.

3. Finally, we present two different graph products (for standard and reversible pebbling, respectively) that

take DAGsGi of size ni with pebbling price si for i = 1, 2 and yield a DAG of size O
(
(n1+n2)

2
)

with

pebbling price s1 + s2 +Kp (for Kp = ±1 depending on the flavour of the pebble game). Combining

these graph products with the PSPACE-completeness results for standard pebbling in [GLT80] and

reversible pebbling in item 2, we deduce that for any fixed K the promise problem of deciding for a

DAG G (with a single sink and fan-in 2) whether it can be pebbled in space s or requires space s+K
is PSPACE-hard in both the standard and the reversible pebble game.

We need to provide more formal definitions before going into a detailed discussion of techniques, but

want to stress right away that a key feature of the above results is the bounded fan-in condition. This is the

standard setting for pebble games in the literature and is also crucial in most of the applications mentioned

above. Without this constraint it would be much easier, but also much less interesting, to prove our results.1

Another aspect worth pointing out is that although the reversible pebble game is weaker than the standard

pebble game, it is technically much more challenging to analyze. The reason for this is that a standard pebbling

will always progress in a “forward sweep” through the graph in topological order, and so one can often assume

without loss of generality that once one has pebbled through some subgraph the pebbling will never touch this

subgraph again. For a reversible pebbling this is not so, since any pebble placed on any descendant of vertices

in the subgraph will also have to be removed at some later time, and this has to be done in reverse topological

order. Therefore, in any reversible pebbling there will be alternating phases of “forward sweeps” and “reverse

sweeps,” and these phases can also be interleaved at various levels. For this reason, controlling the progress of

a reversible pebbling is substantially more complicated. Despite the additional technical difficulties, however,

we consider the reversible pebble game to be at least as interesting to study as the standard and black-white

pebble games in view of its tight connection with parallelism in circuit and proof complexity as described

in [Cha13a].

1.2 Follow-up Work

Our hardness of approximation result for the standard pebble game was improved by Demaine and Liu [DL17],

who proved that it is PSPACE-hard to approximate the standard space of a graph of size n within an additive

n1/3−ǫ term.

1.3 Organization of This Paper

We present the necessary preliminaries in Section 2 and then give a detailed overview of our results in Sec-

tion 3. We prove an asymptotic separation between standard and reversible pebbling in Section 4. In Section 5

we compute the exact price of some classic graphs, trees and pyramids, that we use in Section 6 to construct

technical gadgets. These play a key role in Section 7, where we show that reversible pebbling is PSPACE-

complete. We detail the graph product for reversible pebbling in Section 8 and its counterpart for standard

pebbling in Section 9. Some concluding remarks are presented in Section 10.

1The reason to emphasize this is that for unbounded fan-in the first author proved a PSPACE-completeness result for reversible

pebbling in [Cha13b], but this result uses simpler constructions and techniques that do not transfer to the bounded fan-in setting.

Another, somewhat related, example is that deciding space in the black-white pebble game has also been shown to be PSPACE-

complete for unbounded indegree in [HP10], but there the unbounded fan-in can be used to eliminate the white pebbles completely,

and again the techniques fail to transfer to the bounded indegree case.

4

2 PRELIMINARIES

2 Preliminaries

All logarithms in this paper are base 2 unless otherwise specified. For a positive integer n we write [n] to

denote the set of integers {1, 2, . . . , n}. We use Iverson bracket notation

JBK =

{

1 if the Boolean expression B is true;

0 otherwise;
(2.1)

to convert Boolean values to integer values.

2.1 Boolean Formula Notation and Terminology

A literal a over a Boolean variable x is either the variable x itself or its negation x (a positive or negative literal,

respectively). A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals. A k-clause is a clause that contains at

most k literals. A formula F in conjunctive normal form (CNF) is a conjunction of clauses F = C1∧· · ·∧Cm.

A k-CNF formula is a CNF formula consisting of k-clauses. We think of clauses and CNF formulas as sets,

so that the order of elements is irrelevant and there are no repetitions.

A quantified Boolean formula (QBF) is a formula φ = Q1x1 Q2x2 . . . Qnxn F , where F is a CNF

formula over variables x1, . . . , xn and Qi ∈ {∀,∃} are universal or existential quantifiers (i.e., the formula is

in prenex normal form with all variables bound by quantifiers). It was shown in [SM73] that it is PSPACE-

complete to decide whether a QBF is true or not (where we can assume without loss of generality that F is a

3-CNF formula).

2.2 Graph Notation and Terminology

We write G = (V,E) to denote a graph with vertices V (G) = V and edges E(G) = E. All graphs in this

paper are directed acyclic graphs (DAGs). An edge (u, v) ∈ E(G) is an outgoing edge of u and an incoming

edge of v, and we say that u is a predecessor of v and that v is a successor of u. We write predG(v) to denote

the set of all predecessors of v in G and succG(v) to denote all its successors. Vertices with no incoming

edges are called sources and vertices with no outgoing edges are called sinks. For brevity, we will sometimes

refer to a DAG with a unique sink as a single-sink DAG, and this sink will usually be denoted z.

Taking the transitive closures of the predecessor and successor relations, we define the ancestors ancG(v)
of v to be the set of vertices that have a path to v and the descendants descG(v) to be the set of vertices on some

path from v. By convention, v is an ancestor and descendant of itself. We write anc∗G(v) = ancG(v) \ {v}
and desc∗G(v) = descG(v) \ {v} to denote the proper ancestors and proper descendants of v, respectively.

These concepts are extended to sets of pairwise incomparable vertices by taking unions so that ancG(U) =
⋃

u∈U ancG(u), anc
∗
G(U) =

⋃

u∈U anc∗G(u), et cetera, where we say that the vertices in U are pairwise

incomparable when no vertex in the set is an ancestor of any other vertex in the set. When the graph G is

clear from context we will sometimes drop it from the notation.

2.3 Standard and Reversible Pebble Games

A pebble configuration on a DAG G = (V,E) is a subset of vertices P ⊆ V . We consider the following three

rules for manipulating pebble configurations:

1. P
′ = P ∪ {v} for v /∈ P such that predG(v) ⊆ P (a pebble placement on v).

2. P
′ = P \ {v} for v ∈ P (a pebble removal from v).

3. P
′ = P \ {v} for v ∈ P such that predG(v) ⊆ P (a reversible pebble removal from v).

5

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

A standard pebbling from P0 to Pτ is a sequence of pebble configurations P = (P0,P1, . . . ,Pτ) where

each configuration is obtained from the preceding one by the rules 1 and 2 while in a reversible pebbling

rules 1 and 3 should be used. The time of a pebbling P = (P0, . . . ,Pτ) is time(P) = τ , and the space is

space(P) = max0≤t≤τ{|Pt|}.

We say that a pebbling is unconditional if P0 = ∅ and conditional otherwise. The pebbling price

PebG(P) of a pebble configuration P is the minimum space of any unconditional standard pebbling on G
ending in Pτ = P, and we define the reversible pebbling price RPebG(P) by taking the minimum over all

unconditional reversible pebblings reaching P. The pebbling price of a single-sink DAG G with sink z is

Peb(G) = PebG({z}), and the reversible pebbling price of G is RPeb(G) = RPebG({z}). We refer to such

pebblings as (complete) pebblings of G or pebbling strategies for G. Again, when G is clear from context we

can drop it from the notation, and from now on we will usually abuse notation by omitting the curly brackets

around singleton vertex sets.

For technical reasons, we will often be interested in distinguishing particular flavours of reversible peb-

blings. Suppose that v is a vertex in G and that P = (P0 = ∅,P1, . . . ,Pτ) is a reversible pebbling. We will

use the following terminology and notation:

• P is a visiting pebbling of v if v ∈ Pτ . The visiting price RPebV(v) of v is the minimal space of any

such pebbling.

• P is a surrounding pebbling of v if pred (v) ⊆ Pτ and the surrounding price RPebS(v) is the minimal

space of any such pebbling.

• P is a persistent pebbling of v if it is a reversible pebbling of v in the sense defined before, i.e., such

that Pτ = {v}. We will sometimes refer to RPeb(v) as the persistent price of v to distinguish it from

the visiting and surrounding prices.

We also define the visiting price for a single-sink DAG G with sink z as RPebV(G) = RPebVG(z) and the

surrounding price as RPebS(G) = RPebSG(z).
Note that because of reversibility we could obtain exactly the same visiting space measure by defining a

visiting pebbling of v to be a pebbling P = (P0,P1, . . . ,Pτ) such that P0 = Pτ = ∅ and v ∈
⋃

0≤t≤τ Pt,

and let the visiting price be the minimal space of any such pebbling. This is because once we have reached

a configuration containing v we can simply run the pebbling backwards (because of reversibility) until we

reach the empty configuration again. We can therefore think of a pebbling as visiting v if there is a pebble on

v at some point but this pebble does not stay on v until the end of the pebbling. In a persistent pebbling the

pebble remains on v until all other pebbles have been removed. A surrounding pebbling, finally, is a pebbling

that reaches exactly the point where a pebble could be placed on v, since all its predecessors are covered by

pebbles (i.e., v is “surrounded” by pebbles), but where v is not necessarily pebbled.

It is not hard to see that for a single-sink DAG G we have the inequalities

Peb(G) ≤ RPebV(G) (2.2)

and

RPebS(G) ≤ RPebV(G) ≤ RPeb(G) . (2.3)

Perhaps slightly less obviously, we also have the following useful equality.

Proposition 2.1. For any vertex v in a DAG G it holds that RPebS(v) = RPeb(v)− 1.

Proof. To see that RPeb(v) ≤ RPebS(v)+1 consider a surrounding pebbling PS of space RPebS(v). Let P∗

be the pebbling which first runs PS to surround v, then puts a pebble on v, and finally runs the reverse of PS

to “unsurround” v (while keeping the pebble on v). Since P∗ is a persistent pebbling of space RPebS(v)+1,

the inequality follows.

6

2 PRELIMINARIES

We now prove that RPebS(v) ≤ RPeb(v)− 1. Consider a persistent pebbling P for v of space RPeb(v).
Let t be the last time that a pebble is put on v. Then vertex v is surrounded at time t, and there is a pebble on

v since time t. Let P≥t be the conditional pebbling obtained from P after time t, with the modification that

vertex v has no pebble throughout P≥t, and let PR
≥t be this pebbling run in reverse. Then PR

≥t is a surrounding

pebbling in space at most RPeb(v)− 1, and the inequality follows.

2.4 The Dymond–Tompa and Raz–McKenzie Games

As described above, the Dymond–Tompa game on a single-sink DAG G is played in rounds by two players

Pebbler and Challenger. In the first round Pebbler places a pebble on the sink z and Challenger challenges

this vertex. In all subsequent rounds, Pebbler places a pebble on an arbitrary empty vertex and Challenger

chooses to either challenge this new vertex (which we refer to as jumping) or to re-challenge the previously

challenged vertex (referred to as staying). The game ends when at the end of a round all the (immediate)

predecessors of the currently challenged vertex are covered by pebbles.2 The Dymond–Tompa price DT(G)
of G is the maximal number of pebbles r needed for Pebbler to finish the game, or expressed differently the

smallest number r such that Pebbler has a strategy to make the game end in at most r rounds regardless of

how Challenger plays.

Let us also for completeness describe the Raz–McKenzie game, which is also played on a single-sink

DAG G by two players Pebbler and Colourer. In the first round Pebbler places a pebble on the sink z and

Colourer colours it red. In all subsequent rounds, Pebbler places a pebble on an arbitrary empty vertex and

Colourer then colours this new pebble either red or blue. The game ends when there is a vertex with a red

pebble, while all its predecessors in the graph have blue pebbles. The Raz–McKenzie price RM(G) of G is

the smallest number r such that Pebbler has a strategy to make the game end in at most r rounds regardless

of how Colourer plays.

The intuition for this game is that the vertices on the graphs have assigned values true (blue) or false

(red), with the condition that each vertex has value equal to the conjunction of the values of its predecessors.

Colourer claims that the sink is false, but the above condition vacuously implies that all source vertices must

be true. Colourer loses when Pebbler discovers a violation of the condition. Pebbler wants to find the violation

as soon as possible, while Colourer wants to fool Pebbler for as long as possible.

In [Cha13a] the first author proved that the equalities

DT(G) = RM(G) = RPeb(G) (2.4)

hold for any single-sink DAG G, i.e., that the reversible pebbling price, the Dymond–Tompa price and the

Raz–McKenzie price all coincide. Thus, any result we prove for one of these games is also guaranteed to hold

for the other games. The above equalities are very convenient in that they allow us to switch back and forth

between the reversible pebble game and the Dymond–Tompa game (or Raz–McKenzie game) when proving

upper and lower bounds, depending on which perspective is more suitable at any given time. In particular,

when proving lower bounds for reversible pebblings it is often helpful to do so by devising good Challenger

strategies in the Dymond–Tompa game. One final technical remark in this context is that in all such strategies

that we construct it holds that Challenger will either stay or jump to an ancestor of the currently challenged

vertex. Because of this we can assume without loss of generality that Pebbler only pebbles vertices in the

subgraph consisting of ancestors of the currently challenged vertex. If Pebbler pebbles some vertex outside

of this subgraph Challenger will just stay put on the current vertex, and so Pebbler just wastes a round.

2We remark that our description follows [Cha13a] and thus differs slightly from the original definition in [DT85], but the two

versions are equivalent for all practical purposes.

7

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

(a) Path blown up to sequence of K3,3-graphs. (b) Road graph of length 9 and width 3.

Figure 1: Modifications of path graphs to amplify difference between reversible and standard pebbling price.

3 Overview of Results and Sketches of Proofs

In this section we give a detailed overview of our results and also sketch some of the main ideas in the proofs.

In the rest of the paper, we then provide all the missing technical definitions and present the actual formal

proofs.

3.1 Separation Between Standard and Reversible Pebbling

As mentioned in Section 1, the strongest separation hitherto known between standard and reversible pebbling

is for the length-ℓ path on vertices {v1, v2, . . . , vℓ+1} with edges (vi, vi+1) for all i ∈ [ℓ], which has a standard

pebbling with 2 pebbles whereas reversible pebblings require space Θ(log ℓ) [Ben89, LV96]. We give a

simple construction improving this to a multiplicative logarithmic separation.

Theorem 3.1. For any function s(n) = O
(
n1/2−ǫ

)
for ǫ > 0 constant there are DAGs {Gn}

∞
n=1 of size Θ(n)

with a single sink and fan-in 2 such that Peb(G) = O(s(n)) and RPeb(G) = Ω(s(n) log n) (where the

hidden constant depends linearly on ǫ).

A first observation is that if we did not have the bounded fan-in restriction, Theorem 3.1 would be very

easy. In such a case we could just take the path of length ℓ, blow up every vertex vi to s vertices v1i , . . . , v
s
i ,

and add edges
(
vji , v

j′

i+1

)
for all j, j′ ∈ [s], so that we get a sequence of complete bipartite graphs Ks,s glued

together as shown in Figure 1a. It is not hard to show that any reversible pebbling of this DAG would have to

do s parallel, synchronized pebblings of the paths
{
vj1, v

j
2, . . . , v

j
ℓ+1

}
for j ∈ [s], which would require space

Ω(s log ℓ), whereas a standard pebbling would clearly only need space O(s).

For bounded indegree it is not a priori clear what to do, however, or indeed whether there should even

be a multiplicative separation. But it turns out that one can actually simulate a lower bound proof along the

same lines as above by considering a layered graph as in Figure 1b, with s parallel paths of length up to ℓ
and with every path having an extra edge fanning out to its “neighbour path” above (or at the bottom for the

top row) at each level. We will refer to this construction as a road graph of length ℓ and width s (where a

path is a maximally narrow road of width 1). It is easy to verify that the standard pebbling price of a road of

width s ≥ 2 is s+ 2. We claim that the reversible pebbling price is Ω
(
s log(ℓ/s)

)
, from which Theorem 3.1

follows.

To prove the reversible pebbling lower bound it is convenient to think instead in terms of Challenger

strategies in the Dymond–Tompa game. The idea is that Challenger will stay put on the sink until Pebbler has

pebbled enough vertices so that there are no pebble-free paths from any source vertex to the sink. Intuitively,

the cheapest way for Pebbler to disconnect the graph is with a straight cut over some layer. When this happens,

Challenger looks at the latest pebbled vertex and compares the subgraph between the sources and the cut with

the subgraph between the cut and the sink. If more than half of the graph is before the cut, Challenger jumps

to the latest pebbled vertex. If not, Challenger stays on the sink. This strategy is then repeated on a graph of at

least half the length. Since every cut by Pebbler requires s pebbles, Challenger can survive for roughly s log ℓ

8

3 OVERVIEW OF RESULTS AND SKETCHES OF PROOFS

rounds (except that the rigorous argument is not quite this simple, and the slightly smaller factor log(ℓ/s) in

the formal statement of the theorem is in fact inherent).

3.2 PSPACE-Completeness of Reversible Pebbling

Moving on to technically more challenging material, let us next discuss our PSPACE-completeness result for

reversible pebbling, which we restate here more formally for the record.

Theorem 3.2. Given a single-sink DAG G of fan-in 2 and a parameter s, it is PSPACE-complete to decide

whetherG can be reversibly pebbled in space s or not. In more detail, given a QBFφ = Q1x1 Q2x2 . . . Qnxn F ,

where F is a 3-CNF formula over variables x1, . . . , xn, there is a polynomial-time constructible single-

sink graph G(φ) of fan-in 2 and a polynomial-time computable number γ(φ) such that RPeb
(
G(φ)

)
=

γ(φ) + Jφ is falseK.

At a high level, our proof is similar to that in [GLT80] for standard pebbling: we build gadgets for vari-

ables, clauses, and universal and existential quantifiers, and then glue them together in the right way so that

pebbling through the gadgets corresponds to verifying satisfying assignments for universally and existen-

tially quantified subformulas of the QBF φ. However, the execution of this simple idea is highly nontrivial

even in [GLT80], and we run into several additional technical difficulties when we want to do an analogous

reduction for reversible pebbling.

For starters, since the difference in pebbling price for graphs G(φ) obtained from true and false QBFs φ
is just an additive 1, we need exact control over the pebbling price of all components used in the reduction.

For standard pebbling there is no problem here—exact bounds on pebbling price are known for quite a wide

selection of graphs—but in the reversible setting this becomes an issue already for almost the simplest possible

graph: the complete binary tree of height h. An easy inductive argument shows that the standard pebbling

price of such a tree is exactly h+2. Since reversible pebblings find paths more challenging than do standard

pebblings, one could perhaps expect an extra additive log h or so in the reversible pebbling bound. However,

the asymptotically correct bound turns out to be h+Θ(log∗ h) as shown in [Krá04], and the upper and lower

bounds on the multiplicative constant obtained in that paper are far from tight.

The story is even worse for the workhorse of the construction in [GLT80] (and many other pebbling

results), namely pyramids of height h, which have i vertices at level i for i = 1, . . . , h + 1, and where the

jth vertex at level i has incoming edges from the jth and (j + 1)st vertices at level i + 1. There is a very

neat proof in [Coo74] that the standard pebbling price is again exactly h+2, but for reversible pebbling price

nothing has been known except that it has to be somewhere between h + 2 and h + O(log∗ h) (where the

latter bound follows since any strategy for a complete binary tree of height h works for any DAG of height h).

As a crucial first step towards establishing Theorem 3.2, we exactly determine the reversible pebbling price

of pyramids (and also binary trees).

Theorem 3.3. For ∆ denoting a positive integer, let g be the function defined recursively as

g(∆) =

{

0 if ∆ = 1;

2g(∆−1)+∆−2 + g(∆ − 1) otherwise;

and let the inverse g−1 of this function be defined as

g−1(h) = min{∆ | g(∆) ≥ h} .

Then the persistent pebbling price of a pyramid of height h, as well as of a complete binary tree of height h,

is h+ g−1(h), where g−1 is efficiently computable.

9

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

Even though Theorem 3.3 is an important step, we immediately run into new problems when trying to

use it as a building block in our reduction for reversible pebbling. In the standard pebble game a complete

pebbling is any pebbling that reaches the sink. For the reversible game there is a subtle distinction in that

we can ask whether it is sufficient to just reach the sink or whether the rest of the graph must also be cleared

of pebbles. As discussed in Section 2, this leads to two different flavours of reversible pebblings, namely

persistent pebblings, which leave a pebble on the sink with the rest of the graph being empty, and visiting

pebblings, which just reach the sink (and can then be thought to run in reverse after having visited the sink

to clear the whole graph including the sink from pebbles). The pebblings we actually care about are the

persistent ones, but we cannot rule out the possibility that subpebblings of gadgets are visiting pebblings.

Clearly, the difference in pebbling space is at most 1, but this is exactly the additive 1 of which we cannot

afford to lose control! To make things worse, for pyramids it turns out that persistent and visiting pebbling

prices actually do differ except in very rare cases.

Because of this, we have to build more involved graph gadgets for which we can guarantee that visiting

and persistent prices coincide. These gadgets are constructed in two steps. First, we take a pyramid and

append a path of suitable length, depending on the height of the pyramid, to the pyramid sink, resulting in

a graph that we call a teabag. Second, we take such teabags of smaller and smaller size and stack them on

top of one another, which yields a graph that looks a bit like a Christmas tree. These Christmas tree graphs

are guaranteed to have the same pebbling price regardless of whether a reversible pebbling is visiting or

persistent.

With this in hand we are almost ready to follow the approach in the PSPACE-completeness reduction

for standard pebbling in [GLT80]. The idea is that we want to build gadgets for the quantifiers in a formula

φ = ∀x∃y · · ·Qz F of specified pebbling price so that the only way to pebble the graph G(φ) without using

too much space is to first pebble the gadget for ∀x, then ∃y, et cetera, in the correct order until all quantifier

gadgets have been pebbled. Once we get to the clause gadgets, we would like that the pebbles in the quantifier

gadgets are locked in place encoding a truth value assignment to the variables, and that the only way to pebble

through the clause gadgets without exceeding the space budget is if every clause contains at least one literal

satisified by this truth value assignment.

In order to realize this plan, there remains one more significant technical obstacle to overcome, however.

To try to explain what the issue is, we need to discuss the PSPACE-completeness reduction in [GLT80] in

slightly more detail. The way this reduction imposes an order in which the quantifier gadgets have to be

pebbled is that pyramid graphs are included “at the bottom” of the gadgets (i.e., topologically first in order).

The source vertices of the quantifier gadgets all appear in such pyramids, and one has to pebble through these

pyramids to reach the rest of a gadget (where pebble placements encode variable assignments as mentioned

above).

In the first, outermost quantifier gadget the pyramids have large height. In the second gadget the pyramid

heights are slightly smaller, et cetera, down to the last, innermost quantifier gadget where the pyramids have

smallest height. In this way, the pyramids are used to “lock up” pebbles and force a strict order of pebbling of

the gadgets. It can be shown that in order not to exceed the pebbling space budget, any pebbling strategy has

to start by pebbling the highest pyramids in the first gadget. If the pebbling starts anywhere else in the graph,

this will mean that there are already pebbles elsewhere in the graph when the pebbling strategy reaches the

first, highest pyramids in the outermost quantifier, but if so the overall pebbling has to use up too much space

to pebble through this pyramid. One can also show that once the pyramids in the outermost quantifier gadget

have been pebbled, the pebbling cannot proceed until the next quantifier gadget is pebbled. The pyramids in

this gadget have smaller height, but there are also pebbles stuck in place in the outermost gadget, meaning

that pyramids must again be pebbled in exactly the right order to stay within the space budget.

These properties can be used to normalize pebbling strategies in the standard pebble game. Without loss

of generality, one can assume that any strategy that starts pebbling a pyramid in a gadget will complete this

local pebbling in one go, leaving a pebble at the sink of the pyramid, and will not place pebbles anywhere else

10

3 OVERVIEW OF RESULTS AND SKETCHES OF PROOFS

r

(a) Christmas tree.

a

b

r

(b) Turnpike.

Figure 2: Legend for technical gadget building blocks.

x′i

xi

ri

x̄′i

x̄i

ri

(a) Variable gadget.

x′i

xi

ri

x̄′i

x̄i

ri

(b) false position.

x′i

xi

ri

x̄′i

x̄i

ri

(c) true position.

Figure 3: Gadget for variable xi and pebble positions corresponding to truth value assignments.

until the pebbling of the pyramid has been completed. Also, once a pyramid in a quantifier gadget has been

pebbled in this way, one can prove that it will never be pebbled again since there is now at least one additional

pebble at some vertex later in the topological order in the graph, and a repeated pebbling of the pyramid in

question would therefore exceed the space budget. Thus, not only do the pyramids enforce that the gadgets

are pebbled in the right order—they also serve as single-entry access points to the gadgets, making sure that

each gadget is pebbled exactly once.

There is no hope of building gadgets with such properties in a reversible pebbling setting. It is simply

not true that a reversible pebbling will pebble through a subgraph and then never return. Instead, as already

discussed reversible pebblings will proceed in alternating phases of interleaved “forward sweeps” and “reverse

sweeps,” and subgraphs will be entered also in reverse topological order. Therefore, it is not sufficient to add

“space-locking” subgraphs at the source vertices of the gadgets. Rather, we have to insert “single-passage

points” inside and in between the gadgets for quantifiers and clauses. We obtain such subgadgets by further

tweaking our Christmas tree construction so that it can also connect two vertices in such a way that any

pebbling has to “pay a toll” to go through this subgraph. We cannot describe these gadgets, which we call

turnpikes, in detail here, but mention that the “space-locking” property that they have is that when the entrance

vertex is eliminated by having a pebble placed on that vertex, then the cost of pebbling through the rest of the

turnpike drops by 1. This is critically used in the subgraph compositions described next.

Assuming the existence of the necessary technical subgraph constructions sketched above, we can now

describe the overall structure of our reduction from quantified Boolean formulas to reversible pebbling (where

all parameters shown in the figures are fixed appropriately in the formal proofs). In the following figures we

denote a Christmas tree of (visiting and persistent) pebbling price r by the symbol in Figure 2a, where we

only display the sink vertex. We denote the turnpike gadget just discussed by the symbol in Figure 2b. We

write r to denote the toll parameter of the turnpike, where a turnpike with toll r has persistent price r + 2,

but only r + 1 if we do not count the source a as part of the turnpike.

For every variable xi we have a variable gadget as shown in Figure 3a, where we think of a truth value

assignment ρ as represented by pebbles on vertices {x̄i, x
′
i} when ρ(xi) = false and on {xi, x̄

′
i} when

ρ(xi) = true, as shown in Figures 3b and 3c, respectively.

For every clause Cj we have a clause gadget as depicted in Figure 4a. The vertices labelled ℓ′j,k and ℓj,k in

Figure 4a are identified with the corresponding vertices for the positive or negative literal ℓj,k in the variable

11

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

aj

bj

cj

uj

vj

pj

ℓ′j,1

ℓ′j,2

ℓ′j,3

ℓj,1

ℓj,2

ℓj,3

βj

βj

βj

(a) Clause gadget.

z1

z2

d1

d2

d3 d4 e

r

r−1

r−2

(b) Conjunction gadget.

Figure 4: Gadgets for clauses and CNF formulas.

gadget in Figure 3a. If ρ satisfies a literal, then there is a pebble on the entrance vertex of the corresponding

turnpike, meaning that we can pebble through the gadget for a clause containing that literal with one less

pebble than if ρ does not satisfy the clause.

To build the subgraph corresponding to a 3-CNF formula F =
∧m

j=1Cj we join clause gadgets sequen-

tially using the conjunction gadget in Figure 4b. For technical reasons we start by joining a dummy graph

with the first clause gadget, then we join the result to the second clause gadget, and so on up to the mth clause

of F . The resulting graph has the property that if pebbles are placed on the variable gadgets according to an

assignment ρ that satisfies F , then the number of additional pebbles needed to pebble the graph is one less

than if the assignment is falsifying.

Finally we have one quantifier gadget for each variable. To describe this part of the construction, we

sort the variables indices in reverse order from the innermost to the outermost quantifier and denote by φi the

subformula with just the i innermost quantifiers, so that φ0 = F =
∧m

j=1Cj , φi = Qixi φi−1 forQi ∈ {∀,∃},

and φ = φn. We construct graphs G(i) := G(φi), starting with G(0) which is just the subgraph corresponding

to the CNF formula F . To construct G(i+1) from G(i) we add an existential gadget as in Figure 5a if xi is

existentially quantified and a universal gadget as in Figure 5b if xi is universally quantified. An example of

the full construction can be found in Figure 6.

Given this construction we argue along the same lines as in in [GLT80], although as mentioned above

there are numerous additional technical complications that we cannot elaborate on in this brief overview of

the proof. We show that given an assignment ρi to {xn, . . . , xi+1}, the number of additional pebbles needed

to pebble G(i) differs by 1 depending on whether φi is true under the assignment ρi or not. An existential

gadget can be optimally pebbled by setting xi to any value that satisfies φi−1. To pebble a universal gadget one

needs to assign xi to some value, pebble through the gadget, unset xi and assign it to the opposite value, and

finally pebble through the gadget again, and both assignments to xi must yield satisfying assignments to φi−1

in order for the pebbling not to go over budget. Proceeding by induction, we establish that the complete graph

G(n) can be pebbled within the specified space budget only if φ = φn is true, which yields Theorem 3.2.

12

3 OVERVIEW OF RESULTS AND SKETCHES OF PROOFS

x′i

xi

ri

x̄′i

x̄i

ri

fi gi

qi

qi−1

γi−5

(a) Existential quantifier gadget.

x′i

xi

ri

x̄′i

x̄i

ri

f ′
i f̄ ′

i

fi f̄i

gi ḡi

hi h̄i

qi

γi−6 γi−6

qi−1

γi−7 γi−7

(b) Universal quantifier gadget.

Figure 5: Quantifier gadgets for variable xi.

3.3 PSPACE-Inapproximability up to Additive Constants

Let us conclude the detailed overview of our contributions by describing what is arguably the strongest result

in this paper, namely a strengthening of the PSPACE-completeness of standard pebbling in [GLT80] and of

reversible pebbling in Theorem 3.2 to PSPACE-hardness results for approximating standard and reversible

pebbling price to within any additive constant K .

Theorem 3.4. For any fixed positive integer K it is PSPACE-complete to decide whether a single-sink DAGG
with fan-in 2 has (standard or reversible) pebbling price at most s or at least s+K .

We remark that it would of course have been even nicer to prove multiplicative hardness results. We

want to stress again, though, that to the best of our knowledge these are the first results ever for hardness of

approximation of pebble games in a general setting. The fact that these results hold even for PSPACE could

perhaps be taken both as an indication that it should be possible to prove much stronger hardness results for

algorithms limited to polynomial time, and as a challenge to do so.

We obtain Theorem 3.4 by defining and analyzing two graph product constructions, one for standard and

one for reversible pebbling, which take two graphs and output product graphs with pebbling price equal to the

sum of the pebbling prices of the two input graphs (except for an additive adjustment). These graph products

can then be applied iteratively K − 1 times to the graphs obtained by the reductions from QBFs. In the next

theorem we state the formal properties of these graph products.

Theorem 3.5. Given single-sink DAGs Gi of fan-in 2 and size ni for i = 1, 2, there are polynomial-time

constructible single-sink DAGs S(G1, G2) and R(G1, G2) of fan-in 2 and size O
(
(n1 + n2)

2
)

such that

• For standard pebbling price it holds that Peb(S(G1, G2)) = Peb(G1) + Peb(G2)− 1.

• For reversible pebbling price it holds that RPeb
(
R(G1, G2)

)
= RPeb(G1) + RPeb(G2) + 1.

In the remainder of this section we try to convey some of the flavour of the arguments used to prove

Theorem 3.5 and to give a sense of some of the technical obstacles that have to be overcome during the

analysis. In what follows, we will mostly focus on the reversible pebble game, since it is the technically more

challenging and therefore also the more interesting case. We will briefly discuss the product construction for

13

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

x′1

x1

15

x̄′1

x̄1

15

f ′
1 f̄ ′

1

f1 f̄1

g1 ḡ1

h1 h̄1

q1

12 12

x′2

x2

19

x̄′2

x̄2

19

f2 g2

q2

16

x′3

x3

23

x̄′3

x̄3

23

f ′
3 f̄ ′

3

f3 f̄3

g3 ḡ3

h3 h̄3

q3

20 20

19 19
a1

b1

c1

u1

v1

p1

2

2

2

a2

b2

c2

u2

v2

p2

4

4

4

a3

b3

c3

u3

v3

p3

6

6

6

7

d1,1

d1,2 d1,3

d1,4

e1

2

1

0

d2,1

d2,2 d2,3

d2,4

e2

4

3

2

d3,1

d3,2 d3,3

d3,4

e3

6

5

4
11 11

Figure 6: Example of QBF-to-DAG reduction for ∀x3∃x2∀x1(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

14

3 OVERVIEW OF RESULTS AND SKETCHES OF PROOFS

G2 =G1 =

N (G1, G2) = T (G1, G2) =

R(G1, G2) =

Figure 7: Examples of graph products as applied to a pyramid of height 1 (denoted G1) and a rhombus (denoted G2).

standard pebbling at the very end of the section. We will refer to G1 as the outer graph and G2 as the inner

graph in the graph products R(G1, G2) and S(G1, G2).

Intuitively, when taking the graph product of G1 and G2 the idea is to replace every vertex v of the

outer graph G1 with a (possibly slightly modified) copy of the inner graph G2. We will refer to this copy

as the v-block in the product graph. The edges inside blocks are specified by the inner graph. For edges

(u, v) ∈ E(G1) in the outer graph, we will need to connect the sink of the u-block to vertices in the v-block

in some way, and this is the crux of the construction.

A first naive approach would be to add an edge from the sink of the u-block to every source vertex of the

v-block (as shown in the graph product N (G1, G2) in Figure 7). Sadly, this simple idea fails for both standard

and reversible pebbling. It is not hard to find examples showing that the pebbling price of N (G1, G2) is not

a function of the pebbling prices of G1 and G2.

A slightly more refined idea is to add edges from the sink of the u-block to all vertices in the v-block (as

in the graph T (G1, G2) in Figure 7). While we can observe right away that this idea is a non-starter, since

it will blow up the fan-in of the product DAG (and with no bounds on fan-in the gap amplification would be

trivial), it turns out that the analysis yields interesting insights for the graph product that we will actually use.

We will therefore employ this toy construction to showcase some of the ideas and technical challenges that

arise in the actual proof of Theorem 3.5.

Recall that we want to prove that RPeb
(
T (G1, G2)

)
= s1+s2−1, where si = RPeb

(
Gi

)
for i = 1, 2. To

reversibly pebble the product graph T (G1, G2) in at most this amount of space we simulate a minimal space

pebbling of G1, where pebble placement or removal involving a vertex v of G1 invokes a complete pebbling

(or unpebbling) of the copy of G2 corresponding to the v-block. This simulation uses at most s2 pebbles

in the relevant v-block and at most s1 − 1 pebbles on sinks of other blocks, i.e., no more than s1 + s2 − 1
pebbles in total.

Proving the lower bound RPeb
(
T (G1, G2)

)
≥ s1+s2−1 is the difficult part. Here the approach is to as-

sume that we are given a complete pebbling PT of T (G1, G2) and extract from it a pebbling strategy P for G1

with the hope that an expensive configuration in P will also help us to pinpoint an expensive configuration

15

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

in PT .

The most straightforward way to obtain a pebbling strategy P for G1 from PT would be to make a vertex v
in G1 contain a pebble or not depending only on the local pebble configuration of the v-block in T (G1, G2).
A natural idea is that v should get a pebble if the v-block has a pebble on its sink and that this pebble should

be removed from v when the corresponding block has been emptied of pebbles. If we apply this reduction

to a pebbling PT of T (G1, G2) we obtain a valid pebbling of G1. The problem, however, is that PT might

locally be doing a visiting pebbling (as defined in Section 2.3) of the copy of G2 corresponding to the v-block

as a way of moving pebbles on or off other blocks. The consequence of this would be that a configuration of

maximal space s1 in P may result from a configuration in PT that uses space only s1 + s2 − 2, which is off

by one compared to what we need and hence destroys the gap in pebbling price that we are trying to create.

If the visiting price of G2 is the same as its persistent price, then this problem does not arise, but since

this does not hold for graphs in general we need to argue more carefully. It is true that a visiting pebbling of

a copy of G2 might save one pebble as compared to a persistent pebbling, but whenever the sink contains a

pebble in a visiting but not persistent pebbling we know that there must also be some other vertex in G2 that

has a pebble (or else the pebbling would be persistent by definition). We need to count such pebbles also in

our analysis.

To this end, we make a distinction between blocks that have paid the persistent price and the blocks that

have paid the visiting price but not the persistent price. We say that the copy of G2 corresponding to some

v-block is visiting-locked, or just v-locked for brevity, at some point in time if the current pebble configuration

on its vertices requires reversible pebbling space s2−1 to be reached, and that the v-block is persistent-locked

(or p-locked for short) if the configuration has reversible pebbling price s2.

We can now define a more refined way of projecting PT -configurations to P-configurations as follows.

If a v-block has paid the persistent price, we put a pebble on the corresponding vertex v in G1. If a block has

paid just the visiting price but not the persistent price, then we might still put a pebble on v in G1, but we only

do so if an additional (and slightly delicate) technical condition3 holds for the pebbling configurations in the

blocks corresponding to predecessors of v. This technical condition is designed so that with some additional

work4 we are still able to extract a legal pebbling strategy for G1 by applying this projection. Furthermore,

it will be the case that every pebbling move on a vertex in the outer graph G1 is the result of the copy of G2

corresponding to some v-block paying the persistent or visiting price.

The reversible pebbling P thus extracted will be a persistent pebbling of G1 by construction, so it must

contain a configuration with s1 pebbles. If this configuration was reached because a block paid the persistent

price, then that block contains s2 pebbles at a time when at least s1 − 1 other blocks have at least 1 pebble

each, which is the lower bound that we are after. If the pebble configuration on G1 in P was reached because

a block paid the visiting price, however, then we are potentially still one pebble short. This is where the

additional technical condition mentioned above comes into play. This condition on the predecessor blocks

implies that we can find at least one other block that also paid just the visiting price and therefore must contain

two pebbles. Summing up, we obtain one block that has at least s2−1 pebbles, another block that has at least

3We do not want to get into too detailed a technical argument here, but just for the record pebble configurations on T (G1, G2)
can be projected to configurations on G1 in two stages as follows:

1. Let P ⊆ V (G1) consist of all vertices u such that the configuration on the u-block in T (G1, G2) is persistent-locked.

2. Let P′ ⊆ V (G1) \ P consist of all vertices v such that (a) v is not already surrounded by P, and (b) the configuration on the

v-block in T (G1, G2) is visiting-locked.

With this notation, the projected pebble configuration on G1 is defined to be P ∪ P
′.

4One added technical complication that we have to take care of here is that when we apply our projection to a pebbling PT

of T (G1, G2) to obtain a sequence of pebble configurations on G1, this sequence need not be a valid pebbling of G1. However,

when the projected pebble configuration on G1 changes after a pebbling move we can insert a legal pebbling sequence between the

two projected configurations that passes through all vertices of G1 corresponding to v-locked blocks, where pebbles are added in

topological order and removed in inverse topological order, and this local pebbling does not affect the overall argument.

16

3 OVERVIEW OF RESULTS AND SKETCHES OF PROOFS

2 pebbles, and at least s1 − 2 additional blocks that contain at least 1 pebble each, and so the lower bound

holds in this case as well. (Incidentally, this second case is the one where our first, naive, graph product

N (G1, G2) fails.)

We already observed, however, that the construction T (G1, G2) does not get us very far because it blows

up the indegree of the resulting product graph. Therefore, in the actual proof of Theorem 3.5 we have to

consider a different construction. Briefly, the idea is to start with the graph T (G1, G2) but to bring the

indegree down by splitting each vertex w in every block into three vertices wext, wint, wout. All edges to w
from other blocks are routed to wext, all edges from within the block are routed to wint, and finally we add

edges from wext and wint to wout. This is the graph product R(G1, G2) that we use to amplify differences

in reversible pebbling price, and that is also illustrated in Figure 7. Now we have to prove that the ideas

just outlined work for this new construction where each vertex has been replaced by a small “cloud” of three

vertices. The proof of this is much more technically challenging than for the toy case discussed above, and

there is no room to go into details here.

At this point we want to switch gears a bit and briefly discuss an application in proof complexity of the

PSPACE-hardness result for reversible pebbling. Perhaps the most well-studied proof system for proving

the unsatisfiability of, or refuting, CNF formulas is resolution (we do not give any formal definition here,

referring instead to, for instance, [Seg07] for the necessary details). Every resolution proof can be represented

as a DAG, and the depth of this proof is the length of a longest path in this DAG. The resolution depth of

refuting an unsatisfiable CNF formula is the smallest depth of any resolution proof for the formula. It was

shown in [Cha13a] that computing the reversible pebbling price of a graph of fan-in ℓ reduces to computing

the resolution depth of a (ℓ+ 1)-CNF formula, and from this we can obtain the following corollary.

Corollary 3.6. For any fixed positive integer K , it is PSPACE-complete to compute the resolution depth of

refuting 3-CNF formulas up to an additive error K .

Proof. Assuming that we can efficiently compute the resolution depth within an additive error at most K , we

show how to efficiently compute the reversible pebbling price of any graph G within an additive error K+1,

contradicting Theorem 3.4.

Letting z denote the unique sink of G, we consider a new graph G′ which is G augmented with a new

successor z′ of z (i.e., G′ = (V ∪{z′}, E∪{(z, z′)}) in formal notation). The reversible pebbling prices of G
and G′ differ by at most one. For any graph G, [Cha13a] exhibits an efficiently constructible unsatisfiable

CNF formula FG that requires resolution depth equal to the reversible pebbling price of G′. The width of the

formula is equal to the fan-in of G plus one, so the result holds for 3-CNFs.

Hence, if we could estimate the resolution depth of refuting FG, i.e., the reversible pebbling price of G′,

within error K , this would yield an estimate of the reversible pebbling price of G to within error K +1.

We wrap up this section by switching back to pebbling and describing the product construction S(G1, G2)
used to amplify standard pebbling price. In this construction we also replace every vertex of G1 with a copy

of G2, but this time we append what we refer to as a centipede graph to the sink of every copy. A centipede

is a path where each vertex but the source has an extra, unique predecessor. To connect the blocks, for every

edge (u, v) ∈ E(G1) we add edges from the sink of the u-centipede to every source of the v-centipede. See

Figure 8 for an illustration.

Setting si = Peb
(
Gi

)
for i = 1, 2, we can pebble the graph product S(G1, G2) in space s1 + s2 − 1

by simulating an optimal pebbling of G1: placing a pebble on a vertex v of G1 is simulated by optimally

pebbling the sink of the corresponding v-block, and removing a pebble is simulated by removing the pebble

on the sink.

This pebbling strategy is in fact optimal, and we can show this by projecting any standard pebbling PS

of S(G1, G2) to a strategy P for G1. Each time any block in S(G1, G2) contains s2 pebbles, we pebble all

vertices in G1 whose predecessors have pebbles and whose corresponding block in S has a pebble. When

17

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

G2 =

G1 =

S(G1, G2) =

Figure 8: Illustration of standard pebbling graph product S(G1, G2).

a block in S(G1, G2) becomes empty, we remove the pebble from the corresponding vertex in G1. This

projection has the property that when the sink of a block is pebbled, the corresponding vertex in G1 is also

pebbled. Arguing similarly to in the reversible case, we show that a strategy PS for S using s pebbles yields

a strategy for G1 using s− s2 +1 pebbles. Therefore, PS must use space at least s1 + s2 − 1, and hence the

graph product S(G1, G2) has the property claimed in Theorem 3.5.

4 Separation between Standard and Reversible Pebbling

In this section we discuss how the reversible pebbling price compares with the standard one. A reversible

pebbling is also a legal standard pebbling, but the opposite is not always true. However it is possible to

construct a reversible pebbling from a standard pebbling of time τ that costs at most log τ times the price of

the standard pebbling.

Theorem 4.1 ([Krá04]). If graph G has a standard pebbling of time τ and space p, then G has reversible

pebbling price at most p⌈log τ⌉.

Proof sketch. Let P = (P0, . . . ,Pτ) be a standard pebbling of G in space p. We show a Pebbler strategy

for the Dymond–Tompa game on G that allows Pebbler to win in at most p⌈log τ⌉ rounds. Since DT(G) =
RPeb(G) this is sufficient. Pebbler keeps as an invariant an interval [a, b] such that the challenged pebble

is in Pb and all vertices in Pa are pebbled but not challenged. Initially the interval is [0, τ], and the strategy

proceeds by bisection. At each bisection step Pebbler starts pebbling the vertices in the configuration Pm,

with m = (a + b)/2, in any order. If Challenger jumps to a vertex v, then let t be the smallest number

such that a ≤ t and v ∈ Pt. Pebbler now plays in [a, t]. The interval halves because t ≤ m. If Challenger

stays in all moves, then Pebbler plays in [m, b] and the interval also halves. When the interval becomes unit,

the Pebbler invariant implies that the move from Pa to Pb is precisely a placement on the challenged vertex.

Therefore, the predecessors of the challenged vertex are pebbled and the game ends. The game considers at

most ⌈log τ⌉ configurations of P and spends at most p rounds on each.

18

4 SEPARATION BETWEEN STANDARD AND REVERSIBLE PEBBLING

Figure 9: Road graph of length 9 and width 3.

We already know that the difference between the standard and reversible pebbling price is unbounded.

For example the standard pebbling price for a path of length n is 2, while its reversible pebbling price is

Θ(log n). It follows that if a DAG G has depth d and a standard pebbling of time τ and space p, then

max{p, log d} ≤ RPeb(G) ≤ p log τ

We rule out the possibility of a simulation with only an additive loss. Indeed we show a separation which

is multiplicative in terms of the logarithm of the size of the graph.

Theorem 4.2. For any function s(n) = O
(
n1/2−ǫ

)
where ǫ > 0 is constant there are DAGs {Gn}

∞
n=1 of

size Θ(n) with a single sink and fan-in 2 such that Peb(G) = O(s(n)) and RPeb(G) = Ω(s(n) log n)
(where the hidden constant depends linearly on ǫ).

The graphs that we use to witness the separation are the chains or “wide paths”. A chain of width w and

length ℓ is a graph with ℓ+1 layers, each having w vertices, where the i-th vertex of a layer has two incoming

edges from the i and i + 1-th vertices of the previous layer (modulo w). The layers are indexed from 0 (the

layer of the sources) to ℓ (the layer of the sinks).

Since we want single sink graphs, we define a road of width w and length ℓ to be a chain of width w and

length ℓ− w + 1 plus a pyramid of height w − 1, where we identify the sinks of the chain with the sources

of the pyramid. The layers are indexed in the same way as in the chain.5

By pebbling each layer in order, we get a standard pebbling of a road of width w which uses w + 2
pebbles. The reversible pebbling of a road depends on its length: a road of width w and length ℓ has a

reversible pebbling price O(w log ℓ). The idea is to simulate in parallel w copies of the reversible pebbling

of the path of length ℓ, which has price O(log ℓ). We prove Theorem 4.2 by choosing for each n a road of

width w = s(n) and length ℓ = n/w, and showing that this pebbling is essentially optimal.

A blocking set for a vertex set T ⊆ V (G) is a subset of vertices B ⊆ V (G) such that every path from

any source to any vertex in T must contain a vertex in B. We also say that B blocks T . A blocking set for all

sinks of a directed acyclic graph G is also called a blocking set of G. We say that B is a minimal blocking

set if no subset of B is a blocking set.

A chain of width w has blocking sets with w vertices, all in the same layer. It turns out that if a minimal

blocking set has vertices in multiple layers then it must be larger than that. We say that a blocking set spreads

over d layers when a and b are the lowest and the highest layers that the blocking set intersects, respectively,

and d = b− a+ 1.

Lemma 4.3. A minimal blocking set of a chain that spreads over d layers has size at least d+ w − 1.

Proof. Consider such a minimal blocking set B. Sort the layers of the chain from 0 (sources) to ℓ (sinks) and

let a and b be the first and last layers with vertices in B, so that d = b− a+ 1. If a = b then B must contain

w vertices and the Lemma holds. For the rest of the proof we assume a < b.

5Equivalently, a road of length ℓ and width w ≤ ℓ is an induced subgraph of a chain of length ℓ and width w. Fix one arbitrarily

sink s in the chain: the subgraph induced by vertices in anc(s) is indeed a road of length ℓ and width w.

19

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

Define f(i) to be the number of vertices at layer i that can reach a sink without passing through a vertex

in B (and are not in B themselves). By definition and minimality we get that f(i) = 0 for all layers i ≤ a;

0 < f(i) < w for all layers a < i ≤ b and f(i) = w for i > b.

Now we compute the intersection between B and each layer. All vertices at layer b can reach the sink

unless they are in B, therefore B must have w−f(b) elements at the last layer. We claim that that B contains

at least f(i+ 1)− f(i) + 1 vertices from layer i, for a ≤ i < b.

Indeed, consider the set of the f(i + 1) vertices at layer i + 1 that can reach a sink, and define Ni to be

the set of their predecessors in layer i. Since 0 < f(i+1) < w, there are at least f(i+1)+ 1 vertices in Ni.

A vertex in the i-th layer can reach a sink if and only if it is in Ni and not blocked by B. Since we

assumed that exactly f(i) of them can reach a sink, it must be that |Ni|− f(i) vertices are blocked by B right

on layer i, i.e., they are contained in B. Thus the intersection between B and layer i is |Bi| ≥ |Ni| − f(i) =
f(i+ 1)− f(i) + 1.

Using these facts we get that

|B| =
b∑

i=a

|Bi| ≥ w − f(b) +

b−1∑

i=a

f(i+ 1)− f(i) + 1 = w + f(a) + (d− 1) = d+ w − 1 .

We need to generalize Lemma 4.3 to a road in order to handle blocking sets within the pyramid part.

Lemma 4.4. A minimal blocking set of a road that spreads over d layers has size at least d+ q− 1, where q
is the width of the topmost layer.

Proof. If the blocking set is located on a single layer the lemma follows immediately. Otherwise the proof is

very similar to the one of Lemma 4.3, except that the intersection between B and its last layer b has size at

least q − f(b).

Now we prove the lower bound in Theorem 4.2

Lemma 4.5. The reversible pebbling price of a road of width w and length ℓ is at least w log(ℓ/w)/2.

Proof. We give a Challenger strategy by induction over ℓ that lasts for w log(ℓ/w)/2 moves. Furthermore,

the strategy stays as long as the sink is connected to the sources. The base case is a road of length ℓ ≤ w− 1,

i.e., a pyramid of height ℓ, in which case the lemma holds vacuously.

We say that a directed path in the graph is semiopen when there are no pebbles on it except for its last

vertex. A semiopen path from a vertex to itself is a single vertex with a pebble on it.

During the game Challenger focuses on a subgraph of the road, and keeps the following invariant at

every round: there is a semiopen path from the sink of this subgraph to the currently challenged pebble.

This concretely means that if Pebbler places a pebble inside the subgraph then Challenger plays according

to its strategy for that subgraph. Instead if the new pebble blocks the semiopen path between the currently

challenged pebble and the sink of the subgraph, Challenger jumps to the new pebble—essentially making the

path shorter.

If at some round Challenger focuses on a subgraph, in later rounds Challenger will never challenge a

vertex which is neither in the subgraph nor in the semiopen path between its sink and the current challenge.

Let us now give the strategy for playing inside the subgraph. As long as the sink of the subgraph is

connected to the sources, Challenger stays. If the sink is disconnected from the sources by a blocking set,

Challenger decides to jump or to stay depending on the position of the blocking set. Before describing how

Challenger decides, we describe how the strategy continues in both cases.

20

5 TIGHT BOUNDS FOR TREES AND PYRAMIDS

We consider a minimal blocking set B and note that the last pebbled vertex u is in any blocking set.

Indeed, there is a path from the sources to the sink that only has pebbles at u and at the sink, otherwise the

sink would have already been blocked.

We first consider the strategy after Challenger decides to jump. Let v be the vertex in the semiopen path

from the sources to u at the layer immediately before all the vertices in B. From now on Challenger focuses

on the subgraph induced by the ancestors of v, which is a road. This road is not blocked, has no vertex in the

blocking set B, and there is a semiopen path from v to the challenged pebble u.

If Challenger decides to stay, it focuses on the road with sources at the layer immediately after all vertices

in B. Again, this road is not blocked, it is disjoint from the blocking set B, and there is a semiopen path from

its sink to the currently challenged pebble.

It remains to describe how Challenger decides to jump or to stay. If the last layer of the blocking set has

width q < w, then by Lemma 4.4 it has size at least q + d− 1. In this case Challenger jumps and focuses on

a road of length ℓ− (q + d− 2). Let DT(w, ℓ) be the Dymond–Tompa price of a road of width w and length

ℓ. Overall the Challenger strategy lasts for

|B|+ DT(w, ℓ− (q + d− 2)) ≥ q + d− 1 + w log((ℓ− (q + d− 2))/w)/2 ≥ w log(ℓ/w)/2 (4.1)

steps. Otherwise the blocking set B has size at least w + d − 1 ≥ w for some d ≥ 1 and by Lemma 4.3 it

spreads over at most d layers, where a is the lowest and b is the highest, with d = b−a+1 and m = (a+b)/2.

If m ≤ ℓ/2, Challenger stays and focuses on the road of length ℓ−b−1 obtained considering only the vertices

at the layers from b+ 1 to ℓ. Overall the Challenger strategy lasts for

|B|+ DT(w, b− 1) ≥ w + d− 1 + w log((b− 1)/w)/2 ≥ w + d− 1 + w log((ℓ− d− 1)/2w)/2

= w/2
(
log((ℓ− d− 1)/2w) + 2 + 2(d − 1)/w

)
≥ w/2

(
log(ℓ/2w) + 1

)
= w log(ℓ/w)/2 (4.2)

steps. If m > ℓ/2, Challenger jumps and focuses on a road of length a− 1 obtained considering one vertex

at layer a− 1 which is connected to the sources, and taking all vertices which have a path toward such vertex.

Overall the Challenger strategy lasts for

|B|+ DT(w, a− 1) ≥ w + d− 1 + w log((a− 1)/w)/2

≥ w + d− 1 + w log((ℓ− d− 1)/2w)/2 ≥ w log(ℓ/w)/2 (4.3)

steps.

Note that Theorem 4.2 follows if the road width is w = s(n) and the length is ℓ = n/w because

w log(ℓ/w) = w log(n/w2) = Θ(w log n) if w = O
(
n1/2−ǫ

)
.

5 Tight Bounds for Trees and Pyramids

In this section we show matching upper and lower bounds for the persistent pebbling price of complete binary

trees and pyramids. Asymptotically tight results for trees were given in [Krá04]. The pyramid graph of height

h has a vertex for every pair (i, j) with 0 ≤ i ≤ j ≤ h. The sources are the vertices (0, j) for j ≥ 0, the sink

is the vertex (h, h), and every vertex (i, j) for i < h has one outgoing edge going left to vertex (i + 1, j) if

j > i and one outgoing edge going right to vertex (i + 1, j + 1) if j < h. A pyramid can be obtained from

a complete binary tree of height h by identifying together some of its vertices, in such a way that the left and

right predecessors of two vertices that get identified, get pairwise identified as well. For this reason an upper

bound for binary trees also holds for the pyramids, and a lower bound for pyramids also holds for binary trees.

In the following, let p = h+∆ be the persistent price of a pyramid. A pyramid of height h has standard

pebbling price h+ 2 [Coo74], which means that in the standard pebbling only two extra pebbles are needed

21

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

compared to the height of the pyramid. In a similar fashion ∆ can be interpreted as the extra space needed

by persistent pebbling, with respect to pyramind height. We want to estimate the height of the pyramid that

has persistent pebbling with at most ∆ extra pebbles.

Definition 5.1. Consider ∆ ∈ N
+ and let g(∆) be the function defined by the following recursion,

g(∆) =

{

0 if ∆ = 1

2g(∆−1)+∆−2 + g(∆ − 1) otherwise.

We define its inverse as

g−1(h) = min{∆ | g(∆) ≥ h}.

We show that g(∆) is the maximum height of a pyramid that can be persistently pebbled using ∆ pebbles on

top of h. Observe that g(∆) = Ω(22
···

2

︸︷︷︸

∆

), therefore g−1(h) = O(log∗ h).

Proposition 5.2. We can compute g−1(h) in time (log h)O(1)
and space O(log h).

Proof. If h = 0 then g−1(0) is 1 by definition. If h > 0 then we need to find the smallest ∆ > 1 such that

h ≥ g(∆). We start from ∆ := 2 and go upward. At each step we keep in memory the value g(∆ − 1),
which is smaller than h, and we test the condition

h < g(∆) equivalent to ⌊log(h− g(∆ − 1))⌋ < g(∆ − 1) + ∆− 2 .

The latter test can be achieved in time in log h by checking the length of the bit representation of h−g(∆−1).
If the test fails we output ∆ otherwise we store the value g(∆), we fix ∆ := ∆+ 1 and we continue. We can

do the whole computation by storing at most 4 numbers less than h, each step is polynomial in the length of

the binary representation of the numbers involved, and we need to do at most O(log∗ h) steps.

Theorem 5.3. The persistent pebbling price of a binary tree of height h and a pyramid of height h is h +
g−1(h).

To prove the theorem we need the exact value of the persistent pebbling price of paths.

Lemma 5.4 (Path graphs [LV96]). The persistent pebbling price of a path of length h (i.e., with h + 1
vertices) is ⌊log(h)⌋+ 2.

Lemma 5.5 (Upper bound for binary trees). The persistent pebbling price of a complete binary tree of

height h ≤ g(∆) is at most h+∆.

Proof. We are going to prove the lemma by induction over h. For the base case we observe that a binary tree

of height 0 can be pebbled with 1 pebbles. For the general case we assume the statement of the lemma for

height i < h, and we show that the surrounding pebbling price of the complete binary tree of height h is at

most h+∆− 1. Proposition 2.1 immediately implies the lemma for height h.

Let us denote the root by vh and the right child of vi by vi−1. The strategy is as follows. First we

persistently pebble the left child of vi for i from h down to k := g(∆− 1)+1, in this order. By the induction

hypothesis (i − 1) + ∆ pebbles are enough to persistently pebble the left child of vi, and there are h − i
pebbles left on the rest of the graph from previous steps. So we are within the bound h − 1 + ∆, and after

the last step we have h− (k − 1) pebbles on the tree.

Then we persistently pebble vk−1, the right child of vk. Since k−1 = g(∆−1), by induction hypothesis

(k − 1) + (∆ − 1) pebbles are enough and we are within the bound. Let j := h − k + 1. So far we used

j + 1 = h− k + 2 pebbles.

22

5 TIGHT BOUNDS FOR TREES AND PYRAMIDS

Finally we surround the sink of path (vk, vk+1, . . . , vh), which has j vertices, using ⌊log(j − 1)⌋ + 1
pebbles. Observe that by construction j − 1 = h − k ≤ g(∆) − g(∆ − 1) − 1 < 2g(∆−1)+∆−2, hence we

have the bound ⌊log(j − 1)⌋ < g(∆− 1) +∆− 2. Counting the total number of pebbles in the graph gives
(
h− k+2

)
+ ⌊log(j− 1)⌋+1 ≤

(
h− g(∆− 1)+1

)
+
(
g(∆− 1)+∆− 3

)
+1 = h+∆− 1 pebbles.

We prove the lower bound for a slight generalization of pyramids in order to obtain a lower bound on the

visiting price in addition to the persistent price.

Definition 5.6. An (h, ℓ)-teabag is the union of a pyramid of height h and a path of length ℓ, where we

identify the sink of the pyramid and the source of the path.

Observe that an (h, 0)-teabag is a pyramid.

For the lower bound we will also need the following basic fact about pyramids. Recall that a blocking set

is a subset of vertices B ⊆ V (G) such that every path from any source to the sink must contain a vertex in

B. Also recall that a directed path in the graph is semiopen when there are no pebbles on it except for its last

vertex.

Proposition 5.7 ([Coo74]). Consider a blocking set B on a pyramid of height h; consider a vertex v at level

k such that there is a path between v and the sink whose intersection with B is at most {v}. Let U be the set

of vertices in the sub-pyramid rooted at v. Then |B \ U | ≥ h− k.

Proof. Pick an arbitrary path which starts at vertex v, reaches the pyramid sink and does not intersect B
anywhere other than in v. Denote such path as (vk, vk+1, . . . , vh) where vk is another name for v and vh is

the sink. Each vi is at height i in the pyramid. On pyramids there is a natural notion for edges to go either left

or right. For each i > k we define the path Pi as follows: if edge (vi−1, vi) goes right then Pi is the unique

path that starts at a source vertex, always goes left, and ends at vi; if edge (vi, vi−1) goes left then Pi is the

unique path that starts at a source vertex, always goes right, and ends at vi. It is easy to verify that none of

Ph, . . . , Pk+1 intersects any of the vertices in U , and that these paths are all pairwise vertex disjoint. Since

B is a blocking set it must contain one vertex for each Pi and the proposition follows.

Lemma 5.8. The persistent pebbling price of the (h, ℓ)-teabag is at least h+∆+1 if either of the following

holds:

• h > g(∆),

• h > g(∆ − 1) and ℓ > g(∆)− h.

Proof. We define a Challenger strategy for the Dymond–Tompa game by induction over h and ℓ in this order.

Furthermore this strategy stays on the sink until Pebbler blocks the graph. For the base case h = 0, the

statement is trivial.

Assume that the last Pebbler move blocks the graph, meaning that the currently pebbled vertices form a

blocking set, and fix B to be a minimal one. The vertex v pebbled at that round must be in B. We have two

cases depending on k the layer of vertex v.

• Case k > g(∆−1): Challenger jumps to v. The pebble on v blocks the sources from the sink, so there

must be a semiopen path between v and a source. Let U be the set of pebbles contained in the vertices

of Pv , the subgraph of predecessors of v (notice that v ∈ U). Consider a new game on Pv , in which

the first actions of Pebbler are to pebble U \ {v} in any order, while Challenger stays on v. The set

U \ {v} does not block the subgraph. If k ≥ h then the new sub-game ends in at least h + ∆ steps,

and the total number of rounds is at least 1 + h +∆. Otherwise v is inside the pyramid, and the new

23

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

sub-game ends in k +∆ steps. We use Proposition 5.7 to claim that |B \ U | ≥ h − k. So in total the

rounds in the game are at least

1
︸︷︷︸

challenge to sink

+ |B \ U |
︸ ︷︷ ︸

outside Pv

+ k +∆
︸ ︷︷ ︸

subgame on Pv

≥ h+∆+ 1 .

• Case k ≤ g(∆ − 1): there is a path of length h − k + ℓ from v to the sink having only a pebble on

each end. So any optimal Pebbler strategy must contain a strategy for playing on the semiopen path of

length h − k + ℓ − 1 from one unpebbled successor of v to the sink. Fix q = ⌊log(h − k + ℓ − 1)⌋,
the sub-game on the path of length h − k + ℓ − 1 lasts at least q + 2 rounds (see Lemma 5.4). The

initial challenge on the sink of the graph is part of this sub-game, but all moves on B are not, so the

total number of rounds is

|B|
︸︷︷︸

blocking set

+ q + 2
︸ ︷︷ ︸

subgame on path

≥ h− k + 1
︸ ︷︷ ︸

blocking set

+ g(∆− 1) + ∆
︸ ︷︷ ︸

subgame on path

≥ h+∆+ 1 .

The bound on |B| holds because Proposition 5.7 on vertex v implies |B \ {v}| ≥ h − k. The bound

on q + 2 holds because by hypothesis h − k + ℓ − 1 ≥ g(∆) − g(∆ − 1), which implies that q ≥
⌊log(g(∆)− g(∆ − 1))⌋ ≥ g(∆ − 1) + ∆− 2.

Corollary 5.9 (Lower bound for pyramids). The persistent pebbling price of a pyramid of height h >
g(∆− 1) is at least h+∆. The visiting price of a pyramid of height h = g(∆) is at least h+∆.

Proof. Lemma 5.8 claims the first statement. The second one holds because if the pyramid of height g(∆)
had visiting price h+∆− 1, then the (g(∆), 1)-teabag would have persistent pebbling price h+∆, which

contradicts Lemma 5.8.

6 Technical Constructions

In order to discuss lower bounds on pebbling price we need to identify expensive pebbling configurations,

namely the configurations that are expensive to reach from the empty configuration. We will often use the

reverse direction, i.e., that the empty configuration cannot be reached without passing through an expensive

configuration.

Definition 6.1. A configuration P is v-locked if RPebG(P) = RPebV(G). A configuration P is p-locked if

RPebG(P) = RPeb(G).

6.1 Christmas Tree Construction

This section builds on the pyramid graphs to provide a graph Tr with equal visiting and persistent prices r
for every r ∈ N

+. As a preliminary step we show a graph Gp with persistent price p for every p ∈ N
+.

Lemma 6.2 (Modified Pyramids). There is a family of graphs {Gp}p∈N+ such that

1. RPeb(Gp) = p;

2. Gp has in-degree at most two and a unique sink; and

3. Gp is polynomial-time computable given p, and Gp has at most p2 nodes.

24

6 TECHNICAL CONSTRUCTIONS

Proof. The value of g−1(h), which is the extra pebbling price of pyramids with respect to the height, increases

only when h = g(∆) + 1. Therefore the persistent pebbling price of a pyramid increases by 1 unless h =
g(∆) + 1, in which case it increases by 2. If p = h + g−1(h) for some h ∈ N we let Gp be the pyramid

graph of height h. In this way Gp is defined for every p > 0, unless p = h+ g−1(h)+ 1 for some h = g(∆).
In this case we let Gp be the (h, 1)-teabag which, by Lemmas 5.5 and 5.8, has persistent pebbling price

p = h+ g−1(h) + 1.

We want a polynomial-time computable family of graphs {Tr}r∈N+ with matching visiting price and

persistent price, i.e., RPebV(Tr) = RPeb(Tr) = r. The idea is to stack up r appropriately chosen graphs, so

that any visiting or persistent pebbling strategy has to spend one pebble per graph.

We will use r graphs from the family {Gp}p∈N+ where each Gp has persistent pebbling price p, as con-

structed in Lemma 6.2. The resulting graph is a stack of modified pyramids of increasing sizes. If there is

justice in this world, the resulting graph should be called a Christmas Tree; though a graph theorist may have

a hard time calling this a “tree”.

G1 Layer r

G1 Layer r − 1

G2 Layer r − 2

...

Gr−1 Layer 1

Figure 10: Illustration of a Christmas Tree in Construction 6.3.

Construction 6.3 (Christmas Tree). Let {Gp}p∈N+ be given as in Lemma 6.2. Given r ∈ N
+, construct a

graph Tr := (V,E) as follows. Its vertex set V := V 1
.
∪ V 2

.
∪ · · ·

.
∪ V r is a disjoint union of r layers, where

for 1 ≤ t < r the tth layer is a copy of Gr−t with vertices V t := V (Gr−t), and the top-most layer is another

copy of G1 with vertices V r := V (G1). Its edge set E := Eintra

.
∪ Einter consists of intra- and inter-layer

edges. The intra-layer edges Eintra := E1
.
∪ E2

.
∪ · · ·

.
∪ Er come from the corresponding copies of Gp, i.e.,

for 1 ≤ t < r the edges on the tth layer Et are copies of E(Gr−t) and and the edges on the top-most layer Er

are copies of E(G1). The inter-layer edges Einter connect, for each 1 ≤ t ≤ r − 2, the sink of the subgraph

at layer t with all sources of the subgraphs at layer t+ 1 and t+ 2, and also connect the sink of the copy of

G1 at layer r − 1 with the sources of the copy of G1 at layer r.

Lemma 6.4 (Christmas Tree). The family of graphs {Tr}r∈N+ satisfies

1. RPebV(Tr) = RPeb(Tr) = r;

2. Tr has in-degree at most two and a unique sink; and

3. Tr is polynomial-time computable given r, and Tr has at most r3.

25

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

Proof. For Item 3, note that each of the r layers has at most r2 nodes.

For Item 2, if v is a node in Tr we have two cases depending on whether v is some layer’s source node or

not. If it is, then at most two inter-layer edges from lower layers point to v, and no intra-layer edge does. If v
is not a source on any layer then only two intra-layer edges point to it, since all Gp have fan-in at most 2. The

only sink of Tr is the sink of layer r.

To see that RPebS(Tr) ≤ r − 1, and thus that RPeb(Tr) ≤ r, persistently pebble the sink node of Gr−t

on layer t, for t from 1 to r − 1, keeping only the pebbles on the sinks of the previous layers. To persistently

pebble layer t takes r − t pebbles, assuming there is a pebble on each of the sinks of the t− 1 lower layers,

so in total r − 1 pebbles suffice. Note that G1 is a single node, hence when the sinks of the lower layers are

all pebbled the sink of Tr is surrounded. The bound RPeb(Tr) ≤ r follows by Proposition 2.1.

To see that RPebV(Tr) ≥ r, we argue that when visiting layer r there is a v-locked pebble configuration on

each of the previous layers (see Definition 6.1). In particular, any layer with a pebble on the sink has a v-locked

configuration and if a configuration is v-locked, then it contains a pebble. Given a pebbling configuration on

Tr, for the rest of this proof we say that layer t is v-locked if the configuration, restricted to the corresponding

subgraph, is v-locked for the subgraph.

Claim 6.5 (Christmas Tree Locker). Consider any pebbling that uses less than r pebbles. In such a peb-

bling, whenever some layer (t− 1) and layer t contain some pebbles, for 2 ≤ t ≤ r, then layers 1, . . . , t− 2
are all v-locked.

Proof. The claim is true for t = 2 vacuously, establishing the base case. When t > 2, consider a time

that layer t starts to have a pebble: a source node on layer t is pebbled, hence there are pebbles on the sink

nodes of layers t − 1 and t − 2. Thus layers t − 1 and t − 2 are v-locked and each has a pebble. Induction

hypothesis (on t − 1) further says that layer η is v-locked for any 1 ≤ η < t − 2. As long as there are

pebbles on layers t and t − 1, all lower layers remain v-locked: for 1 ≤ η ≤ t − 2, to unlock layer η takes

RPebV(Gr−η) ≥ RPebS(Gr−η) = r−η−1 ≥ r− t+1 pebbles (recall Eq. (2.3)), but there are t−1 pebbles

on layers other than η, which cannot be done with less than r pebbles.

Assume for some r ≥ 2, the sink node of layer r is pebbled using less than r pebbles. When a source

node of layer r is pebbled, there is a pebble on the sink node of layer r − 1. Claim 6.5 shows that there is a

pebble on layer η for 1 ≤ η ≤ r − 2, for a total of r pebbles, contradicting that less than r pebbles are used.

This shows RPebV(Tr) ≥ r for r ≥ 2, and the case for r = 1 is obvious. In the end we get that

r ≤ RPebV(Tr) ≤ RPeb(Tr) = RPebS(Tr) + 1 ≤ r (6.1)

by equation 2.3 and Proposition 2.1, which gives Item 1.

6.2 Molding

Given a graph G we want to construct a graph M(G) with a special source s and a single sink, such that

any pebbling that visits the sink must go through a configuration with at least RPebV(M(G)) pebbles, one

of which is on vertex s.

s

Figure 11: Example of Construction 6.6: molding of a pyramid of height 1.

26

6 TECHNICAL CONSTRUCTIONS

Construction 6.6 (Molding). Given a graph G, we construct a graph M(G) as follows. For every vertex

v ∈ V (G), we add to M(G) two vertices vin and vout, and a directed edge (vin, vout). Also, for every

edge (u, v) ∈ E(G), we add to M(G) a corresponding edge (uout, vin). Finally we add to M(G) a special

new vertex s that we connect to all vertices vout, i.e., for every v ∈ V (G) we add edge (s, vout) to M(G).
Formally, V (M(G)) := {s}

.
∪
{
vin, vout : v ∈ V (G)

}
and E(M(G)) := E1

.
∪ E2

.
∪ E3, where E1 :=

{
(vin, vout) : v ∈ V (G)

}
, E2 :=

{
(uout, vin) : (u, v) ∈ E(G)

}
and E3 :=

{
(s, vout) : v ∈ V (G)

}
.

By construction, if G has in-degree at most two and a unique sink then so does M(G).

Lemma 6.7 (Molding). Given a graph G, the graph M(G) has the following properties.

1. RPeb
(
M(G)

)
≤ RPeb(G) + 2; and

2. For any visiting pebbling P ′ = 〈P′
0,P

′
1, . . . ,P

′
τ 〉 of M(G), there is a configuration P ′

b (for some 0 ≤
b ≤ τ) using at least RPebV(G) + 2 pebbles and containing s.

Proof. For Item (1), fix any persistent pebbling P of G. Simulate the pebbling P as a persistent pebbling

P ′ of M(G) as follows. First, pebble the special source s of M(G) in P ′. Afterwards, whenever there is

a move in P to pebble a node v ∈ V (G), make a phase of three moves in P ′: pebble vin, pebble vout,
unpebble vin. Similarly, whenever there is a move in P to unpebble a node v ∈ V (G), make a phase of

three moves in P ′: pebble vin, unpebble vout, unpebble vin. If the current configuration in P is P, and the

configuration in P ′ at the end of a phase is P′, then P ′ maintains the invariant that P′ = {s}∪
{
vout : v ∈ P

}
.

As a result, P ′ is a legal pebbling on M(G): whenever vin is pebbled or unpebbled, all its predecessors

pred (vin) =
{
uout : u ∈ pred (v)

}
have pebbles in P

′, since pred (v) have pebbles in P; whenever vout
is pebbled or unpebbled, its predecessors s and vin have pebbles. If we add a final move in P ′ to unpebble

s, then P ′ persistently pebbles M(G). Note that whenever P pebbles or unpebbles v ∈ V (G) to get to

configuration P, the simulating pebbling P ′ uses at most two more pebbles to get to P
′, namely s and vin.

Hence RPeb
(
M(G)

)
≤ RPeb(G) + 2.

For Item (2), we start with a visiting pebbling P ′ = 〈P′
0,P

′
1, . . . ,P

′
τ 〉 of M(G) and we construct a

visiting pebbling P of G. We now define two projection operators that turn pebble configurations for M(G)
into configurations for G. Let proj out(P

′
t) :=

{
v ∈ V (G) : vout ∈ P

′
t

}
be the projection of P′

t to V (G) via

vout, and proj any(P
′
t) :=

{
v ∈ V (G) : vin ∈ P

′
t or vout ∈ P

′
t} be the projection of P′

t to V (G) via vin or

vout. By definition proj out(P
′
t) ⊆ proj any(P

′
t). Whenever a vertex of M(G) is pebbled or unpebbled during

a pebbling step from P
′
t to P

′
t+1,

(i) if the vertex is s, then both proj out(P
′
t) = proj out(P

′
t+1) and proj any(P

′
t) = proj any(P

′
t+1);

(ii) if the vertex is vin for some v ∈ V (G), then proj out(P
′
t) = proj out(P

′
t+1) but proj any(P

′
t) may differ

from proj any(P
′
t+1); and

(iii) if the vertex is vout for some v ∈ V (G), then proj any(P
′
t) = proj any(P

′
t+1) but proj out(P

′
t) 6=

proj out(P
′
t+1).

To construct P, we analyze in order each configuration P
′
t in P ′. Depending on how the sequences of

proj out(P
′
t) and proj any(P

′
t) evolve, we may append new configurations to P. In the following η is the index

of the last configuration added to P and t is the configuration of P ′ under analysis. We maintain the following

invariants:

(a) proj out(P
′
t) ⊆ Pη; and

(b) for any v in proj any(P
′
t)△Pη it holds that pred (v) ⊆ proj out(P

′
t).

27

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

Initially at t = 0 and η = 0, P′
t = proj out(P

′
t) = proj any(P

′
t) = Pη = ∅, so the invariant holds for t = 0.

Consider a pebbling move in P ′ from P
′
t to P

′
t+1.

(I) If proj any(P
′
t) = proj any(P

′
t+1) and proj out(P

′
t) = proj out(P

′
t+1) the construction does not append

any new Pη and the invariant is preserved.

(II) If proj any(P
′
t) 6= proj any(P

′
t+1) then we are in case (ii) above, so proj out(P

′
t) does not change and

some node vin is pebbled or unpebbled. Hence the current configuration P
′
t ⊇ pred (vin) =

{
uout :

u ∈ pred (v)
}

, thus proj out(P
′
t) ⊇ pred (v). The construction does not append a new Pη and the

invariant is preserved.

(III) If proj out(P
′
t) 6= proj out(P

′
t+1) then we are in case (iii) above, so proj any(P

′
t) does not change

and some node vout is pebbled or unpebbled. The construction appends to P the two sequences of

moves (“Eras”) described below. After each move proj any(P
′
t)△Pη gets smaller. Note that for any

u ∈ proj any(P
′
t)△Pη, the invariant gives pred (u) ⊆ proj out(P

′
t) ⊆ Pη, so they can be pebbled or

unpebbled in Pη.

Unpebble Era while Pη \ proj any(P
′
t) 6= ∅, pick any u ∈ Pη \ proj any(P

′
t), and unpebble u in P

(increment η := η + 1 and then set Pη := Pη−1 \ {u}). Since proj out(P
′
t) ⊆ proj any(P

′
t),

u /∈ proj out(P
′
t) and the invariant is preserved at time t.

Pebble Era while proj any(P
′
t)\Pη 6= ∅, pick any u ∈ proj any(P

′
t)\Pη , and pebble u in P (increment

η := η + 1 and then set Pη := Pη−1 ∪ {u}). The invariant is preserved at time t.

At the end of the two sequences, proj out(P
′
t+1) ⊆ proj any(P

′
t+1) = proj any(P

′
t) = Pη, so the invariant

now holds also at time t+ 1.

We complete the proof of Item (2). For any visiting pebbling P ′ of M(G), the corresponding pebbling P
is a visiting pebbling of G by invariant (a), thus some constructed configuration Pη has at least RPebV(G)
pebbles. The configuration has been appended to P in case (III) above, and without loss of generality we can

assume it is either at the beginning of an “unpebble era” or at the end of a “pebble era”, since the number of

pebbles in Pη decreases in the former and increases in the latter. Since the beginning of an “unpebble era”

other than the first is also the end of a “pebble era”, we can furthermore assume the latter. This means that

for some t we have proj any(P
′
t) = proj any(P

′
t+1) = Pη, so either the corresponding configuration P

′
t (when

vout is unpebbled) or P′
t+1 (when vout is pebbled) has at least RPebV(G) + 2 pebbles, including s, vin and

vout. This completes Item (2).

6.3 Turnpikes

As an application of molding (Construction 6.6) we show a construction that controls the visiting price of a

node, and that allows us to construct gadgets for the components of a quantified boolean formula.

Construction 6.8 (Turnpike). For any non-negative integer r we define the turnpike of toll r from a to b
(represented by Fig. 12) as follows. If r = 0 then the turnpike just joins the vertices a and b with an edge

(a, b). If r > 0 let Tr be the graph having RPebV(Tr) = RPeb(Tr) = r given by Lemma 6.4. The turnpike

of toll r from a to b is the graph M(Tr), identifying a with the special source s in M(Tr), and identifying b
with the unique sink in M(Tr).

Let G be any graph that contains a turnpike of toll r from a to b. Call the nodes R̃ := ancG(b)\ancG(a)
to be properly in the turnpike, and call the nodesR := R̃∪{a} to be in the turnpike. The turnpike construction

is sensitive to whether the pebble on node a is counted, i.e., whether the pebbling prices are restricted to R
or to R̃.

28

7 PSPACE-COMPLETENESS

a b
r

Figure 12: Turnpike of toll r from a to b.

Lemma 6.9 (Turnpike). We have RPebR(b) = RPebVR(b) = r + 2 and RPebR̃(b) = RPebV
R̃
(b) = r + 1.

Proof. RPebR(b) ≤ r + 2 and RPebR̃(b) ≤ r + 1 by (the proof of) Item (1) of Lemma 6.7 (since pebbles

outside of R or of R̃ are not counted), and RPebVR(b) ≥ r + 2 and RPebV
R̃
(b) ≥ r + 1 by Item (2) of

Lemma 6.7.

The fact that RPebR(b) and RPebR̃(b) do not differ by more than one holds not only for turnpikes but for

any graph.

Lemma 6.10 (Source Difference). Consider regions R1 and R2 such that R1 = R2 \ {s2} for some source

s2 of R2 (i.e., pred (s2) ∩R2 = ∅). We have

RPebR1
(v) ≤ RPebR2

(v) ≤ RPebR1
(v) + 1

RPebVR1
(v) ≤ RPebVR2

(v) ≤ RPebVR1
(v) + 1

RPebSR1
(v) ≤ RPebSR2

(v) ≤ RPebSR1
(v) + 1 .

7 PSPACE-Completeness

In this section we give all details of the construction in Theorem 3.2, restated in the following theorem, and

its full proof.

Theorem 7.1. Given a quantified 3-CNF φ, there is a polynomial-time constructible graph G(φ) and a

polynomial-time computable number γ(φ) such that RPeb
(
G(φ)

)
= γ(φ) + Jφ is falseK.

Let x1 . . . xn be the variables of φ. We sort the variables from the innermost to the outermost quanti-

fier and denote by φi the quantified 3-CNF with just the i innermost quantifiers, namely φ0 =
∧m

j=1Cj ,

φi = Qixiφi−1 for Q ∈ {∀,∃}, and φ = φn. For each φi we consider the gadget G(φi), where G(φ0)
is built as defined in Construction 7.24 and each G(φi) for i ∈ [n] is built according to either Construc-

tion 7.26 or Construction 7.31, depending on the ith innermost quantifier. Furthermore we fix the sequence

of integers {γi}
n
i=0 where γ0 := 2m + 7, γi := 3 + γ(i−1) if the ith innermost quantifier is existential, and

γi = 5 + γ(i−1) if the ith innermost quantifier is universal. To analyze the gadgets for the subformulas we

need the next definition.

Definition 7.2. A region is an induced subgraph of the final gadget G(φ) (or of component gadgets as we build

up the final gadget). We slightly abuse notation and refer to a region by a subset of vertices; for example,

given a subset of vertices Ř of a gadget G, we use RPebŘ(G), RPebV
Ř
(G) and RPebS

Ř
(G) to denote the

different pebbling prices over the subgraph of G induced on Ř.

With these notations and definitions in place, Theorem 7.1 follows immediately from the next lemma

when i is equal to n. In this case ρ and Ř, as stated in the lemma, are respectively the empty assignment and

the full graph G(φ). In the proof of the lemma we refer to definitions, lemmas and constructions that we will

present in full details in the coming subsections.

Lemma 7.3 (Main Lemma). Fix an arbitrary 0 ≤ i ≤ n and let

29

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

• ρ be an assignment to all but the first i variables;

• S be the canonical set of ρ according to Definition 7.11;

• Ř be the subset of vertices of G(φi) defined as V (G(φi)) \ anc(S).

It holds that

RPebŘ

(
G(φi)

)
= γi + Jφi↾ρ is falseK . (7.1)

Proof. When i = 0, the gadget G(φ0) is the CNF gadget from Construction 7.24 and the base case follows

immediately by Lemma 7.25, where βm = 2m. When i > 0, consider the two possible extensions of ρ that

assign xi, namely ρ0 := ρ∪{xi = 0} and ρ1 := ρ∪{xi = 1}. Consider also the corresponding canonical sets

S0, S1 and the regions Ř0 := V (G(φ(i−1))) \ anc(S0) and Ř1 := V (G(φ(i−1))) \ anc(S1). By induction it

holds that

• RPebŘ0

(
G(φ(i−1))

)
= γ(i−i) + Jρ0 falsifies φ(i−1)K

• RPebŘ1

(
G(φ(i−1))

)
= γ(i−1) + Jρ1 falsifies φ(i−1)K

so the hypothesis of Lemmas 7.37 and 7.30 holds. When φi = ∀xiφi−1 Lemma 7.37 gives that

RPeb
(
G(φi)

)
= 5 + γ(i−i) + Jρ0 falsifies φ(i−1) or ρ1 falsifies φ(i−1)K, (7.2)

and φi = ∃xiφ(i−1) Lemma 7.30 gives that

RPeb
(
G(φi)

)
= 3 + γ(i−i) + Jρ0 falsifies φ(i−1) and ρ1 falsifies φ(i−1)K . (7.3)

Equations (7.2) and (7.3) are equivalent, for the respective quantifier type, to Equation (7.1).

7.1 Literal Gadget

Lemma 6.4 allows us to create an edge (u, v) with RPeb(v) = RPeb(u) + 1 = r + 1 given any r ∈ N
+.

This is used for constructing gadgets for literals (represented as Figure 13).

Construction 7.4 (Literal Gadget). Fix a literal ℓ and an integer r ∈ N
+. Let Tr be the graph having

RPebV(Tr) = RPeb(Tr) = r given by Lemma 6.4. The literal gadget of price r for ℓ, is denoted as Lℓ(r).
To construct it, take a copy of Tr and call its sink ℓ′. Then add a new node, named ℓ as the corresponding

literal, and add the edge (ℓ′, ℓ).

ℓ′

ℓ

r

Figure 13: Literal gadget of price r for ℓ.

Lemma 7.5 (Literal Gadget). In Lℓ(r), RPeb(ℓ)− 1 = RPeb(ℓ′) = RPebV(ℓ′) = r.

Proof. Note that visiting node ℓ′ is equivalent to surrounding node ℓ. Hence RPeb(ℓ) − 1 = RPebS(ℓ) =
RPebV(ℓ′) = RPeb(ℓ′) = r by (2.3), Proposition 2.1, and Lemma 6.4.

30

7 PSPACE-COMPLETENESS

We associate pebbling configurations on L := Lr(ℓ) with truth value true, false or ∗ (undefined) as

follows.

Definition 7.6 (Literal Position). Fix a literal gadget L := Lr(ℓ). Given a pebbling configuration P, say

node ℓ′ is v-locked on ancL(ℓ
′) if RPebL(P) = RPebV(ℓ′) = r (when restricted to ancL(ℓ

′)); that is, if

the empty configuration cannot be reached without entering a configuration which has r pebbles. Given a

pebbling configuration on L, say literal ℓ is in

• true position, if node ℓ has a pebble and node ℓ′ is not v-locked;

• false position, if node ℓ′ is v-locked; and

• ∗ position, if node ℓ has no pebble and node ℓ′ is not v-locked.

A transition of literal ℓ is a change of position for ℓ (for instance from true position to false position, or

from false position to ∗ position) due to a pebble move. Finally, we identify certain canonical positions with

configurations on L as follows:

• the canonical true position is the configuration where only node ℓ has a pebble;

• the canonical false position is the configuration where only node ℓ′ has a pebble; and

• the canonical ∗ position is the empty configuration.

Clearly, the canonical true position (resp. canonical false position, canonical ∗ position) is indeed a

true position (resp. false position, ∗ position).

Lemma 7.7 (Literal Transition). Fix a literal gadget L := Lr(ℓ).

1. it is impossible to transition directly from ∗ position to true position, and vice versa; and

2. at a transition, there are r pebbles on ancL(ℓ
′).

Proof. Note that node ℓ′ is v-locked on any configuration with a pebble on node ℓ′. To change from ∗ position

to true position, node ℓ needs to be pebbled, and hence node ℓ′ must have a pebble at some time. At that

time, node ℓ′ is v-locked, so the configuration is in false position. This gives Item (1).

Hence the only valid transitions are from ∗ position to false position (or its reverse), and from false

position to true position (or its reverse). In any of these, node ℓ′ needs to switch between locked and un-

locked status, which requires a configuration with r pebbles on ancL(ℓ
′) by definition of v-locked. This gives

Item (2).

7.2 Variable Gadget

Let ri ∈ N
+ be an integer to be specified later, which is associated with the ith variable xi.

Inspired by previous works [GLT80, HP10, Cha13b] truth values are represented using the gadget in

Figure 14.

Construction 7.8 (Variable Gadget). For the variable xi, its variable gadget G(xi) is constructed as the

disjoint union two literal gadgets of price ri, one for literal xi and one for literal x̄i.

For the gadget G := G(xi), its nodes are V (G) := ancG
(
{xi, x̄i}

)
.

Definition 7.9 (Variable Position). Fix a variable gadget G := G(xi) consisting of literal gadgets L1 :=
Lri(xi) and L0 := Lri(x̄i). We identify certain canonical positions with configurations on G as follows:

31

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

x′i

xi

ri

x̄′i

x̄i

ri

Figure 14: Variable xi.

• the canonical true position is the configuration where only nodes xi and x̄′i have pebbles;

• the canonical false position is the configuration where only nodes x′i and x̄i have pebbles; and

• the canonical ∗ position is the empty configuration.

Lemma 7.10 (Variable Assignment). Variable xi can be put into one among canonical true and canonical

false positions using at most ri + 1 pebbles.

Proof. To put variable xi in canonical true position, persistently pebble node xi, then persistently pebble

x̄′i. It can be done with ri + 1 pebbles by Lemma 7.5. A symmetric argument shows that xi can be put in

canonical false position with ri + 1 pebbles.

As we will see in later sections, the design of the quantifier gadgets would ensure that any pebbling strategy

would effectively associate truth value via the canonical positions. This motivates the following definition.

Definition 7.11 (Canonical Nodes). Given a partial assignment ρ : [n] → {true, false, ∗}, the canonical

nodes of variable xi under ρ are

• {xi, x̄
′
i} if ρ(i) = true;

• {x′i, x̄i} if ρ(i) = false; and

• {} if ρ(i) = ∗.

Note that if ρ(i) 6= ∗, then there are two pebbles on the ancestors of the canonical nodes of xi. For

example, if ρ(i) = true, then there is a pebble on anc(xi) and a pebble on anc(x̄′i).
In general, we consider a partial assignment on variables ρ : [n] → {true, false, ∗} as a partial assign-

ment on literals:

• if variable xi is assigned true under ρ (i.e., ρ(i) = true), then literal xi is assigned true and literal

x̄i is assigned false;

• if variable xi is assigned false under ρ (i.e., ρ(i) = false), then literal xi is assigned false and literal

x̄i is assigned true;

• if variable xi undefined under ρ (i.e., ρ(i) = ∗), then literal xi is ∗ and literal x̄i is ∗.

As we will argue later, the design of the quantifier gadgets would ensure that “invalid variable assign-

ments” would not be a problem: for example, the two literals of the same variable cannot be put into the true

position at the same time (for instance Claim 7.29); also, it does not help to put the two literals of the same

variable into the false position at the same time, and each variable will be assigned eventually (Lemmas 7.28

and 7.34).

The canonical nodes (of a partial assignment) are useful for defining certain regions over different com-

ponent gadgets in the overall construction.

32

7 PSPACE-COMPLETENESS

7.3 Clause Gadget

Let βj ≥ 2 be an integer to be specified later, which is associated with the j th clause Cj . The gadget for the j th

clause, Cj = ℓj,1∨ℓj,2∨ℓj,3, uses as a component the turnpike gadget which is described in Construction 6.8.

Its skeleton is shown in Figure 15 (the literal gadgets are simplified in Figure 15 for a cleaner diagram).

Assume that the literals ℓj,1, ℓj,2, ℓj,3 are over distinct variables.

Construction 7.12 (Clause Gadget). Assume that for each variable xi, 1 ≤ i ≤ nwe have the corresponding

variable gadget G(xi), i.e., two literal gadgets for xi and x̄i. For the j th clause Cj , its clause gadget G(Cj) is

constructed as follows. Create nodes aj, bj , cj , uj, vj , pj , and edges

(aj , uj), (bj , uj), (bj , vj), (cj , vj), (uj , pj), (vj , pj). (7.4)

Finally, add three turnpikes of toll βj , from ℓj,1 to aj , from ℓj,2 to bj , and from ℓj,3 to cj (where the nodes

ℓj,1, ℓj,2, ℓj,3 are the ones from the corresponding literal gadgets).

Note that in Figure 15 the six nodes ℓj,1, ℓ
′
j,1, ℓj,2, ℓ

′
j,2, ℓj,3, and ℓ′j,3 come from the variable gadgets

corresponding to the variables in literals ℓj,1, ℓj,2 and ℓj,3. Recall the definitions of canonical nodes in Defi-

nition 7.11. For example, if literal ℓj,1 is in true position, literals ℓj,2, ℓj,3 false position, then their canonical

nodes are ℓj,1, ℓ
′
j,2, ℓ

′
j,3.

aj

bj

cj

uj

vj

pj

ℓ′j,1

ℓ′j,2

ℓ′j,3

ℓj,1

ℓj,2

ℓj,3

βj

βj

βj

Figure 15: Clause j.

In this subsection, focus on the gadget G := G(Cj) constructed for the j th clause Cj . The gadget G
behaves like a disjunction in the sense that at least one literal is assigned true if, and only if, βj+3 additional

pebbles are needed to surround pj .

Lemma 7.13 (True Clause, upper bound). Fix a partial assignment ρ. Assume none of the literals ℓj,1, ℓj,2, ℓj,3
is assigned ∗, and at least one of them is assigned true. Let Sj be their canonical nodes. Consider the region

Rj := ancG(pj) \ ancG(Sj) beyond the canonical nodes. Then RPebSRj
(pj) ≤ βj + 3.

Proof. Note that the j th clause gadget is symmetric in the three literals ℓj,1, ℓj,2, ℓj,3 when restricting attention

to ancG
(
{aj , bj , cj}

)
\ anc∗G

(
{ℓ′j,1, ℓ

′
j,2, ℓ

′
j,3}

)
. If at least one of the literals ℓj,1, ℓj,2, ℓj,3 is assigned true,

we claim that it takes at most βj +3 pebbles over Rj to leave pebbles only on {aj , bj , cj}; afterwards pj can

be surrounded by pebbling uj and vj (note that βj + 3 ≥ 2
︸︷︷︸
uj ,vj

+ 3
︸︷︷︸

aj ,bj ,cj

= 5).

To prove the claim, note that if ℓj,1 is assigned true, then the intersection of Rj with the turnpike

from ℓj,1 to aj is precisely the nodes properly in the turnpike; if ℓj,1 is assigned false, then the intersec-

tion is precisely the nodes in the turnpike. This holds similarly for literals ℓj,2 and ℓj,3. By symmetry over

ancG
(
{aj , bj , cj}

)
\ anc∗G

(
{ℓ′j,1, ℓ

′
j,2, ℓ

′
j,3}

)
, assume ℓj,1 is assigned true, and each of ℓj,2, ℓj,3 is assigned

true or false. Consider the following strategy to place three pebbles on {aj , bj , cj}, where pebbles outside

of Rj are not counted:

33

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

1. Persistently pebble the turnpike from ℓj,2 to bj . It takes at most βj +2 pebbles over Rj by Lemma 6.9.

2. Persistently pebble the turnpike from ℓj,3 to cj . Now only bj and cj have pebbles over Rj . It takes at

most βj + 2
︸ ︷︷ ︸

anc (cj)

+ 1
︸︷︷︸

bj

= βj + 3 pebbles over Rj by Lemma 6.9.

3. Persistently pebble the turnpike from ℓj,1 to aj . Since ℓj,1 is outside ofRj , it takes at most βj+1 pebbles

over the intersection of the turnpike andRj by Lemma 6.9, for a total of βj + 1
︸ ︷︷ ︸

anc (aj)

+ 2
︸︷︷︸

bj ,cj

= βj+3 pebbles.

Now aj , bj and cj have pebbles.

Lemma 7.14 (False Clause, lower bound). Fix a partial assignment ρ. Assume all of the literals ℓj,1,
ℓj,2 and ℓj,3 are assigned false. Let Sj := {ℓ′j,1, ℓ

′
j,2, ℓ

′
j,3} be their canonical nodes. Consider the region

Rj := ancG(pj) \ ancG(Sj) beyond the canonical nodes. Then RPebSRj
(pj) ≥ βj + 4.

Proof. Note that G consists of a pyramid whose sources are attached to three turnpikes. Since all literals are

assigned false, the intersection of Rj with each of the turnpike is precisely the nodes in the turnpike.

Fix an induced subgraph F ⊆ G (for instance F = the turnpike from ℓj,1 to aj) having a unique sink.

Say a pebbling configuration on F is v-locked if RPebF (P) = RPebV(F), that is if in order to reach the

empty configuration it is necessary to pass through a configuration with RPebV(F) pebbles. In particular,

any configuration with a pebble on the sink of F is v-locked on F . Also, if a configuration is v-locked on

F , then there is a pebble on F . Given a pebbling configuration on G, say aj (resp. bj , cj) is v-locked if the

configuration is v-locked on the turnpike from ℓj,1 to aj (resp. from ℓj,2 to bj , from ℓj,3 to cj).
With locking in mind, consider a “projected” configuration on the pyramid defined as follows. Given

a pebbling configuration P on G, its projection to the pyramid is proj (P) :=
(
{uj , vj , pj} ∩ P

)
∪
{
t ∈

{aj , bj , cj} : t is v-locked under P
}

. Note that given a strategy on G, its (configuration-wise) projection to

the pyramid is a legal strategy on the pyramid.

We are interested in the truncated paths π̆ on the pyramid (i.e., source to sink paths excluding the sink,

which are in bijection to the edges (aj , uj), (bj , uj), (bj , vj), (cj , vj)), and in particular whether they are

blocked under proj (P). A truncated path π̆ is blocked under proj (P) if π̆ ∩ proj (P) 6= ∅.

Consider a strategy on G to surround pj . Its projection to the pyramid is a strategy on the pyramid to

surround pj . At the beginning, all truncated paths on the pyramid are not blocked; at the end, all truncated

paths are blocked. Consider the first time that all truncated paths on the pyramid are blocked: in the strategy

projected on the pyramid, this must be the result of pebbling a source node aj , bj , or cj . By symmetry (in

the rest of this argument), assume aj is pebbled, then there are at least two more pebbles on the pyramid in

the projected configuration. Since aj is being pebbled in the projected strategy, aj is getting v-locked on G
(i.e., restricting attention to the turnpike from ℓj,1 to aj , there are as many pebbles as the visiting price of the

turnpike), accounting for βj + 2 pebbles in the intersection of Rj and the turnpike to aj by Lemma 6.9. The

two other pebbles in the projected strategy each account for one more pebble over Rj , for a total of βj + 4
pebbles.

The lower bound shown in Lemma 7.14 holds for clauses which are falsified. We now prove a weaker

lower bound on the surrounding price for the satisfied clauses, which matches the upper bound.

Lemma 7.15 (Any Clause, lower bound). Fix a partial assignment ρ. Assume none of literals ℓj,1, ℓj,2, or

ℓj,3 is assigned ∗. Let Sj be their canonical nodes. Consider the region Rj := ancG(pj) \ancG(Sj) beyond

the canonical nodes. Then RPebSRj
(pj) ≥ βj + 3.

Proof. Follow the proof of Lemma 7.14 to define v-locked, projection to the pyramid, truncated paths on the

pyramid, and blocking on the pyramid. The only difference is that, since some literal can be assigned true,

the intersection of Rj with some of the turnpike can be the nodes properly in the turnpike.

34

7 PSPACE-COMPLETENESS

Consider a strategy on G to surround pj . Its projection to the pyramid is a strategy on the pyramid to

surround pj . As in the proof of Lemma 7.14, consider the first time that all truncated paths on the pyramid

are blocked, which in the projected strategy must be the result of pebbling a source node, say, aj . And there

are at least two more pebbles on the pyramid in the projected configuration. Since aj is being pebbled in the

projected strategy, aj is getting v-locked on G (i.e., restricting attention to the turnpike from ℓj,1 to aj , there

are as many pebbles as the visiting price of the turnpike), accounting for βj + 1 pebbles in the intersection

of Rj and the turnpike to aj by Lemma 6.9 (note that node ℓj,1 may be outside of Rj if literal ℓj,1 is in true

position). The two other pebbles in the projected strategy each account for one more pebble over Rj , for a

total of βj + 3 pebbles.

Assuming that the literal gadgets are in the position corresponding to ρ, we represent “whether ρ falsifies

Cj” through an increase in the persistent price of the sink of the corresponding gadget, i.e., if ρ satisfies Cj ,

then the persistent price would be a certain number (βj + 4); but if ρ falsifies Cj , then the persistent price

would be one plus that number (βj + 5). The difference in pebbling prices can be succintly expressed using

the Iverson bracket notation Jρ falsifies CjK.

Corollary 7.16 (Clause Gadget). Fix a partial assignment ρ. Assume none of literals ℓj,1, ℓj,2, or ℓj,3 is

assigned ∗. Let Sj be their canonical nodes. Consider the region Rj := ancG(pj) \ ancG(Sj) beyond the

canonical nodes. Then RPebRj
(pj) = βj + 4 + Jρ falsifies CjK.

Proof. If ρ satisfies Cj , i.e., at least one literal is assigned true, then RPebRj
(pj) = βj+4 because persistent

price is one plus surrounding price (Proposition 2.1), and the upper bound (Lemma 7.13) matches the lower

bound (Lemma 7.15). If ρ falsifies Cj , i.e., all literals are assigned false, then RPebRj
(pj) = βj+5 because

it has to increase (Lemma 7.14) but not by more than one (Lemma 6.10).

7.4 Conjunction Gadget

To construct a gadget for the conjunction of m clauses, it suffices to repeatedly compose a gadget for the

conjunction two smaller gadgets, using the conjunction gadget represented in Figure 16.

Construction 7.17 (Conjunction Gadget). Assume two gadgets G1 and G2 with unique sinks are con-

structed. Construct the conjunction gadget of weight r of G1 and G2, denoted Λr(G1, G2), as follows. Call

z1 the sink of G1, z2 the sink of G2. Construct nodes d1, d2, d3, d4, e, and edges (d1, d3), (d2, d3), (d4, e).
Add a turnpike of toll r from z1 to d1, a turnpike of toll r− 1 from z2 to d2, and a turnpike of toll r− 2 from

d3 to d4.

z1

z2

d1

d2

d3 d4 e

r

r−1

r−2

Figure 16: Conjunction gadget of weight r of G1 and G2.

For the gadget G := Λr(G1, G2), the nodes in the gadget are V (G) = anc(e) \
(
anc∗(z1)∪ anc∗(z2)

)
.

We want to analyze pebbling prices restricted to a certain region Ř (in the final gadget containing the con-

junction gadgets) which will be a superset of the nodes of G.

35

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

Lemma 7.18 (True Conjunction). Fix a region Řwhere Ř ⊇ V (G). If RPebŘ(z1) ≤ r+1 and RPebŘ(z2) ≤
r, then RPebS

Ř
(e) ≤ r + 2.

Proof. Consider the following strategy to visit d4 (equivalently, surround e) using at most r + 2 pebbles:

• Persistently pebble z1, persistently pebble the turnpike from z1 to d1, persistently unpebble z1. Now d1
has a pebble. Over Ř, the first sub-step takes at most r + 1 pebbles, the second sub-step takes at most

r + 2 pebbles by Lemma 6.9, and the third sub-step takes at most (r + 1)
︸ ︷︷ ︸

anc (z1)

+ 1
︸︷︷︸

d1

= r + 2 pebbles.

• Persistently pebble z2, persistently pebble the turnpike from z2 to d2, persistently unpebble z2. Now d1
and d2 have pebbles. Over anc(d2)∩ Ř, the first sub-step takes at most r pebbles, the second sub-step

most (r − 1) + 2 = r + 1 pebbles by Lemma 6.9, and the third sub-step takes at most r
︸︷︷︸

anc(z2)

+ 1
︸︷︷︸

d2

pebbles. Over Ř, this step takes at most r + 1
︸ ︷︷ ︸

anc (d2)

+ 1
︸︷︷︸

d1

= r + 2 pebbles.

• Pebble d3, persistently pebble the turnpike from d3 to d4. Now d1, d2, d3, d4 have pebbles. Over

Ř′ :=
(
anc(e) ∩ Ř

)
\
(
anc(d1) ∪ anc(d2)

)
, the first sub-step takes 1 pebble, the second sub-step

takes at most (r − 2) + 2 = r pebbles by Lemma 6.9. Over Ř, this step takes at most r
︸︷︷︸

Ř′

+ 2
︸︷︷︸

d1,d2
pebbles.

Lemma 7.19 (Any Conjunction). Fix a region Ř where Ř ⊇ V (G). We have the following:

1. RPebS
Ř
(e) ≥ r + 2; and

2. if RPebŘ(z1) ≤ r + 2 and RPebŘ(z2) ≤ r + 1, then RPebS
Ř
(e) ≤ r + 3.

Proof. For Item (1), note that any strategy to surround emust visit d1, and RPebV
Ř
(d1) ≥ r+2 by Lemma 6.9.

Item (2) follows from the proof of Lemma 7.18 to visit d4 (equivalently, surround e):

1. persistently pebble z1, persistently pebble the turnpike from z1 to d1, persistently unpebble z1. Now d1
has a pebble. This step takes at most r + 3 pebbles over Ř.

2. persistently pebble z2, persistently pebble the turnpike from z2 to d2, persistently unpebble z2. Now d1
and d2 have pebbles. This step takes at most r + 3 pebbles over Ř.

3. pebble d3, persistently pebble the turnpike from d3 to d4. Now d1, d2, d3, d4 have pebbles. This step

takes at most r + 2 pebbles over Ř.

Lemma 7.20 (False Conjunction). Fix a region Ř where Ř ⊇ V (G). We have the following:

1. if RPebŘ(z1) ≥ r + 2, then RPebS
Ř
(e) ≥ r + 3; and

2. if RPebŘ(z2) ≥ r + 1, then RPebS
Ř
(e) ≥ r + 3.

Proof. Fix a turnpike T ⊆ G, say from s to z (for instance if T is the turnpike from z1 to d1, then s = z1
and z = d1). Say a pebbling configuration on T is s-locked if the pebbles cannot be cleared without using

RPebV
Ř
(T) pebbles including one on s (when restricted to T); that is, if the empty configuration cannot be

reached without entering a configuration which has RPebV
Ř
(T) pebbles and contains s. In particular, any

configuration with a pebble on the sink of T is s-locked on T by Lemmas 6.7 and 6.9. Also, if a configuration

is s-locked on T , then there is a pebble on some node properly in the turnpike (there is a pebble on V (T)\{s}).

36

7 PSPACE-COMPLETENESS

Given a pebbling configuration on G, say d1 (resp. d2, d4) is s-locked if the configuration is s-locked on on

the turnpike from z1 to d1 (resp. from z2 to d2, from d3 to d4).
Fix an induced subgraph F ⊆ G having a unique sink v (for instance F = anc(z1) and v = z1). Say a

pebbling configuration on F is p-locked if RPebF (P) = RPebŘ(F); this is if the pebbles cannot be cleared

without using RPebŘ(F) pebbles (when restricted to F). In particular, the configuration with just a single

pebble on v over Ř is p-locked on F . Also, if a configuration is p-locked on F , then there is a pebble on

F ∩ Ř. Given a pebbling configuration on G, say z1 (resp. z2) is p-locked if the configuration is p-locked on

anc(z1) (resp. anc(z2)).

Claim 7.21 (s-locked implies p-locked). Fix any turnpike T on G, say of toll r from s to z. Assume

RPebŘ(s) ≥ r + 2. In any pebbling that uses at most r + 2 pebbles over anc(z) ∩ Ř, if z is s-locked

then s is p-locked.

Proof. Assume z starts to get s-locked. By definition of s-locked, there are r + 2 pebbles on the turnpike T ,

and s has one of the pebbles. Since at most r+2 pebbles are used over Ř, only s has pebble over anc(s)∩ Ř,

so s is p-locked. Until z is not s-locked, there is one pebble properly in the turnpike (i.e., over V (T) \ {s}).

Since unlocking s requires RPebŘ(s) ≥ r + 2 pebbles over anc(s) ∩ Ř, until z stops being s-locked, s
remains p-locked.

Fix a strategy to surround node e, which at some time t3 must pebble or unpebble d3. At time t3, both

node d1 and node d2 have pebbles, hence both node d1 and node d2 are s-locked. At the beginning, both node

d1 and node d2 are not s-locked. Let t1 (resp. t2) be the earliest time before time t3 such that node d1 (resp. d2)
remains s-locked between time t1 and time t3. Thus node d1 (resp. d2) is s-locked at time t1 (resp. t2).

Claim 7.22 (s-locked). If the pebbling uses at most r + 2 pebbles over Ř to surround e, then

(i) t1 < t2; and

(ii) at time t2, there is exactly one pebble over anc(d1) ∩ Ř.

Proof. For Item (i), if t2 < t1, then at time t1 there is a pebble on the turnpike from z2 to d2 (as node d2 is

already s-locked), and there are r + 2 pebbles on the turnpike from z1 to d1 by definition of s-locked, for a

total of r + 3 pebbles over Ř.

For Item (ii), there is at least one pebble on the turnpike from z1 to d1 as node d1 is already s-locked, and

there is at most one pebble over anc(d1) ∩ Ř since there are at least (r − 1) + 2 = r + 1 pebbles on the

turnpike from z2 to d2 by definition of s-locked, and we assumed that at most r + 2 pebbles are used over

Ř.

For Item (1), assume RPebŘ(z1) ≥ r + 2. If at most r + 2 pebbles are used over Ř to surround node

e, then Claim 7.22 shows that at time t2, node d1 is s-locked (as t1 < t2), and there is exactly one pebble

on anc(d1) ∩ Ř. Since RPebŘ(z1) ≥ r + 2 and the turnpike from z1 to d1 has toll r, Claim 7.21 says that

when node d1 is s-locked (which is the case at time t2), node z1 is p-locked. Therefore at time t2, there are

two pebbles over anc(d1)∩ Ř: one properly on the turnpike from z1 to d1 (since d1 is s-locked); and one on

anc(z1) ∩ Ř (since z1 is p-locked). This contradiction shows that RPebS
Ř
(e) ≥ r + 3.

For Item (2), assume RPebŘ(z2) ≥ r+1. Fix a strategy using at most r+2 pebbles over Ř to surround

node e, i.e., to visit node d4. At the end, node d4 is s-locked; at the beginning, node d4 is not s-locked. Let

t4 be the earliest time such that node d4 remains s-locked since t4 until the end. Thus node d4 is s-locked at

time t4.
Redefine t3 if necessary, assume it is the last time before t4 such that node d3 is pebbled or unpebbled.

Then time t1 and time t2 are defined (as above) relative to this t3, giving t1 < t2 < t3 < t4 (the first inequality

is by Claim 7.22).

37

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

Note that at time t3, node d3 is being pebbled: to see this, we know that at time t4, the turnpike from d3
to d4 is being s-locked, so there is a pebble on node d3 by definition of s-locked. Since there is no pebble

move on node d3 after time t3 and before time t4, it follows that d3 is being pebbled at time t3, and there is a

pebble on node d3 between time t3 and time t4.
We know that both node d1 and node d2 are s-locked at time t3. In fact, they remain s-locked between

time t3 and time t4: to see this, note that to make node d1 not s-locked takes r+2 pebbles over anc(d1)∩ Ř,

but there are two pebbles outside this region (one on the turnpike from z2 to d2, and one on d3), which

cannot be done with at most r + 2 pebbles over Ř. Likewise, note that to make node d2 not s-locked takes

(r − 1) + 2 = r + 1 pebbles over anc(d2) ∩ Ř, but there are two pebbles outside this region (one on the

turnpike from z1 to d1, and one on d3), which cannot be done with at most r + 2 pebbles over Ř. Therefore,

node d1 is s-locked from time t1 to time t4, and node d2 is s-locked from time t2 to time t4.
At time t1, the turnpike from z1 to d1 is getting s-locked, so by definition of s-locked there are r + 2

pebbles on the turnpike. By assumption, at most r + 2 pebbles are used over Ř, so there is no pebble over

anc(d2) ∩ Ř at time t1. Restrict attention to the sub-strategy P ′ between time t1 and time t4. In the sub-

strategy P ′, node d1 remains s-locked, so at most (r+2)− 1 = r+1 pebbles can be used over anc(d2)∩ Ř.

Since RPebŘ(z2) ≥ (r − 1) + 2 and the turnpike from z1 to d1 has toll r − 1, Claim 7.21 says that when

node d2 is s-locked, node z2 is p-locked. At time t4,

• node d1 is s-locked, so there is a pebble properly in the turnpike from z1 to d1;

• node d2 is s-locked, hence node z2 is p-locked, so there is a pebble properly in the turnpike from z2 to

d2, and a pebble over anc(z2) ∩ Ř; and

• there are (r − 2) + 2 = r pebbles in the turnpike from d3 to d4.

This accounts for 1 + 2 + r = r + 3 pebbles over Ř. This contradiction shows that RPebS
Ř
(e) ≥ r + 3.

Recall that we are going to represent the unsatisfiability of a clause by increased persistent prices, i.e., let

qj be the condition that clause Cj is satisfied, and q̄j be its negation, then RPebŘj
(pj) = βj + 4 + Jq̄jK by

Corollary 7.16.

Corollary 7.23 (Conjunction Gadget). Fix a region Ř where Ř ⊇ V (G). Assume that for some conditions

q1 and q2 if holds that RPebŘ(z1) = r + 1 + Jq̄1K and RPebŘ(z2) = r + Jq̄2K. Then RPebŘ(e) = r + 3 +
Jq1 ∧ q2K.

Proof. If both q1 and q2 are true, then RPebŘ(e) = r+3 because persistent price is one plus surround price

(Proposition 2.1), and the upper bound (Lemma 7.18) matches the lower bound (Item (1) of Lemma 7.19).

If q1 or q2 is false, then RPebŘ(e) = r + 4 because the lower bound increases (Lemma 7.20) to match the

new upper bound (Item (2) of Lemma 7.19).

7.5 CNF Gadget

AssumeΓ = C1∧C2∧· · ·∧Cm is a conjunction ofm clauses. LetΓk :=
∧

1≤j≤k Cj be the conjunction of the

first k clauses. We will construct a gadget Fk := G(Γk) for Γk with increasing k by successive conjunction

of two smaller gadgets, then the CNF gadget for Γ is G(Γ) = G(Γm).
For 1 ≤ j ≤ m, let βj := 2j, then βj ≥ 2.

Construction 7.24 (CNF Gadget). Assume for each clause Cj , 1 ≤ j ≤ m, a clause gadget G(Cj) is

constructed. Let Γk :=
∧

1≤j≤k Cj be the conjunction of the first k clauses when 0 ≤ k ≤ m. Construct

a partial CNF gadget Fk for increasing k as follows. Construct F0 := T7 as the graph with RPebV(T7) =
RPeb(T7) = 7 given by Lemma 6.4. Then for 1 ≤ k ≤ m, construct Fk := Λβk

(
Fk−1, G(Ck)

)
be

38

7 PSPACE-COMPLETENESS

the conjunction gadget of weight βk of the previous partial CNF gadget (Fk−1) and the gadget of clause k
(G(Ck)). The CNF gadget G(Γ) for Γ is Fm.

For the gadget G := G(Γ), the nodes in the gadget V (G) contains the nodes of F0 = T7, the nodes of all

clause gadgets G(Cj), and the nodes of all intermediate conjunction gadgets.

Lemma 7.25 (CNF Gadget). Let ρ be an assignment, and let S be the canonical nodes in all variable gadgets

according to ρ (Definition 7.11). Let Ř := V (G) \ anc(S) be the region beyond the canonical nodes of ρ.

Then RPebŘ(Fm) = βm + 7 + Jρ falsifies ΓK.

Proof. For 1 ≤ j ≤ m, let qj be the condition that clause j (Cj) is satisfied by ρ. For 0 ≤ k ≤ m, let q′k
be the condition that the first k clauses (Γk) are satisfied by ρ. We show by induction that RPebŘ(Fk) =
βk + 7 + Jq̄′kK.

When k = 0, Γk is satisfied vacuously, so q′0 is true. The base case holds as RPebŘ(F0) = RPeb(T7) =
7.

For the general case 1 ≤ k ≤ m, plug r = βk + 4 into Corollary 7.23. Since induction hypothesis

gives RPebŘ(Fk−1) = βk−1 +7+ Jq̄′k−1K = βk + 5+ Jq̄′k−1K, and Corollary 7.16 gives RPebŘ

(
G(Ck)

)
=

βk + 4 + Jq̄kK, it follows that RPebŘ(Fk) = βk + 7 + Jq̄′kK, because q′k = q′k−1 ∧ qk.

7.6 Existential Quantifier Gadget

Assume that we already have the gadget G(φi−1) and that the ith inner-most quantifier is existential, i.e.,

Qi = ∃. This quantifier refers to xi, we set the parameter ri := γi − 2 for the corresponding variable gadget.

We construct G(φi) as follows.

Construction 7.26 (Existential Quantifier Gadget). Let qi−1 denote the sink of G(φi−1). Construct nodes

fi, gi, qi, and edges (xi, gi), (x̄i, gi), (fi, qi), (gi, qi). Add a turnpike of toll γi − 5 from qi−1 to fi.

x′i

xi

ri

x̄′i

x̄i

ri

fi gi

qi

qi−1

γi−5

Figure 17: Existentially quantified variable ∃xi.

For the gadget G := G(φi), the nodes in the gadget V (G) contains the nodes in the previous gadget

V
(
G(φi−1)

)
, the new nodes fi, gi, qi and the nodes in the turnpike from qi−1 to fi.

Lemma 7.27 (Existential Upper Bound). Assume Lemma 7.3 holds for i− 1.

1. If φi ↾ρ is true, then RPebS
Ř
(qi) ≤ γi − 1.

2. If φi ↾ρ is false, then RPebS
Ř
(qi) ≤ γi.

39

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

Proof. For Item (1), by assumption φi ↾ρ = ∃xiφi−1 ↾ρ is true, so there is an assignment of xi to true or

to false to satisfy φi−1, i.e., φi−1 ↾ρ1 is true or φi−1 ↾ρ0 is true. Assume the former by symmetry. Since

φi−1 ↾ρ1 is true, by the assumption that Lemma 7.3 holds for i−1, we have RPebŘ1
(qi−1) = γi−1 = γi−3.

Consider the following strategy to surround qi with at most γi − 1 pebbles over Ř:

(i) Put xi into the canonical true position with ri + 1 = γi − 1 pebbles by Lemma 7.10. Now node xi
and node x̄′i have pebbles;

(ii) Persistently pebble node qi−1 using at most γi − 3 pebbles over the new region Ř1. Now xi, x̄
′
i and

qi−1 have pebbles. Over the old region Ř, at most (γi − 3) + 2 = γi − 1 pebbles are used (this step is

legal as Ř = Ř1 ∪
(
anc(xi) ∪ anc(x̄′i)

)
and xi and x̄i have pebbles);

(iii) Persistently pebble the turnpike from qi−1 to fi. Now xi, x̄
′
i, qi−1 and fi have pebbles. At most

(γi − 5) + 2 = γi − 3 pebbles are used over the turnpike (including the pebble on node qi−1) by

Lemma 6.9, so at most (γi − 3) + 2 = γi − 1 pebbles are used over Ř; and

(iv) Pebble node x̄i then node gi. Now the six nodes xi, x̄
′
i, x̄i, qi−1, fi, gi have pebbles.

For Item (2), since φi−1 ↾ρ1 is false, by the assumption that Lemma 7.3 holds for i − 1, we have

RPebŘ1
(qi−1) = γi−1 + 1 = (γi − 3) + 1 = γi − 2. We run the same strategy as in Item (1) to sur-

round qi, using at most γi pebbles over Ř (only Step (ii) uses one more pebble).

Lemma 7.28 (Existential Lower Bound). Assume Lemma 7.3 holds for i− 1.

1. RPebS
Ř
(qi) ≥ γi − 1.

2. If RPebS
Ř
(qi) ≤ γi − 1, then φi ↾ρ is true.

Proof. Fix a strategy to surround qi using at most γi − 1 pebbles over Ř. At the end, there is a pebble on the

turnpike from qi−1 to fi, and there is a pebble on gi. Let t2 be the earliest time such that since t2 there is at

least one pebble on the turnpike from qi−1 to fi. Let t3 be the earliest time such that since t3 there is a pebble

on gi.
At time t3, node gi is being pebbled, so both nodes xi and x̄i have pebbles, and none of literal xi or x̄i is in

∗ position. Let t0 (resp. t1) be the last time before time t3 such that literal x̄i (resp. literal xi) has a transition

(Definition 7.6). Note that neither literal x̄i nor xi can have a transition after time t3: to make a transition

for literal x̄i (resp. xi) takes ri = γi − 2 pebbles on the ancestors of node x̄′i (resp. x′i) by Lemma 7.7, but

there is a pebble on the other literal gadget, i.e., on Lri(xi) (resp. Lri(x̄i)), and there is a pebble on gi, which

cannot be done with at most γi − 1 pebbles over Ř. So time t0 (resp. t1) is in fact the last time that literal x̄i
(resp. xi) has a transition, and literal x̄i (resp xi) is not in ∗ position since t0 (resp. t1).

Assume t0 < t1 by symmetry (in the rest of this argument).

Claim 7.29 (Clearance). At time t1, there is no pebble over Ř0 = Ř \
(
anc(x′i) ∪ anc(x̄i)

)
.

Proof. At time t1, there is a transition of literal xi, accounting for ri = γi − 2 pebbles on anc(x′i) by

Lemma 7.7. And there is a pebble on the other literal gadget Lri(x̄i), because literal x̄i is not in ∗ position.

This accounts for at least γi − 1 pebbles over Ř.

The proof of Claim 7.29 establishes Item (1).

By Claim 7.29, we know that since time t1 literal xi is not in true position, hence in false position. As

there is no transition of literals x̄i or xi after time t1, there is a pebble on anc(x̄i) and a pebble on anc(x′i)
since time t1. Over the region Ř0, there are at most (γi − 1) − 2 = γi − 3 pebbles since time t1. Note that

region Ř0 is associated with the (i− 1)-assignment ρ0.

40

7 PSPACE-COMPLETENESS

By Claim 7.29, we have t0 < t1 < t2, where t2 is defined (in the first paragraph of this proof) as the

earliest time since which there is at least one pebble on the turnpike from qi−1 to fi. Note that at time t2 − 1
there is no pebble on the turnpike from qi−1 to fi, but at the end there is a pebble on fi. The sub-strategy since

time t2−1 visits fi when restricted to the turnpike from qi−1 to fi, so by Lemma 6.7, there is a time t4 after t2
such that there are (γi−5)+2 = γi−3 pebbles over the turnpike, including one pebble on qi−1. As a result,

over the region Ř0 ∩ anc(qi−1), there is only one pebble at time t4, which is on node qi−1. The sub-strategy

from time t1 to t4 persistently pebble node qi−1 over the region Ř0∩anc(qi−1) using γi−3 = γi−1 pebbles,

so RPebŘ0

(
G(φi−1)

)
≤ γi−1. By the assumption that Lemma 7.3 holds for i−1, we know φi−1 ↾ρ0 is true.

As a result, ∃xiφi−1 ↾ρ = φi ↾ρ is true, giving Item (2).

Lemma 7.30 (Existential Quantifier Gadget). Assume that Lemma 7.3 holds for i−1. We have RPebŘ

(
G(φi)

)
=

γi + Jφi ↾ρ is falseK.

Proof. Since persistent price is one plus surrounding price (Proposition 2.1), it suffices to show that RPebS
Ř

(
G(φi)

)
=

γi − 1+ Jφi ↾ρ is falseK. If φi ↾ρ is true, then RPebS
Ř

(
G(φi)

)
= γi − 1, as the upper bound (Lemma 7.27)

matches the lower bound (Lemma 7.28). If φi ↾ρ is false, then RPebŘ

(
G(φi)

)
= γi, as the upper bound

(Lemma 7.27) matches the lower bound (Lemma 7.28).

7.7 Universal Quantifier Gadget

Assume that we already have the gadget G(φi−1) and that the ith inner-most quantifier is existential, i.e.,

Qi = ∀. This quantifier refers to xi, we set the parameter ri := γi − 3 for the corresponding variable gadget.

We construct G(φi) as follows.

Construction 7.31 (Universal Quantifier Gadget). Let qi−1 denote the sink of G(φi−1). Construct nodes

f ′
i , f̄

′
i , fi, f̄i, gi, ḡi, hi, h̄i, qi, and edges (xi, f

′
i), (x̄

′
i, f

′
i), (fi, hi), (gi, hi), (x̄i, f̄

′
i), (x

′
i, f̄

′
i), (f̄i, h̄i), (ḡi, h̄i),

(hi, qi), (h̄i, qi). Add a turnpike of toll γi − 6 from f ′
i to fi, a turnpike of toll γi − 6 from f̄ ′

i to f̄i, a turnpike

of toll γi − 7 from qi−1 to gi, and a turnpike of toll γi − 7 from qi−1 to ḡi.

x′i

xi

ri

x̄′i

x̄i

ri

f ′
i f̄ ′

i

fi f̄i

gi ḡi

hi h̄i

qi

γi−6 γi−6

qi−1

γi−7 γi−7

Figure 18: Universally quantified variable ∀xi.

For the gadget G := G(φi), the nodes in the gadget V (G) contains the nodes in the previous gadget

V
(
G(φi−1)

)
, the new nodes f ′

i , f̄
′
i , fi, f̄i, gi, ḡi, hi, h̄i, qi, and the nodes in the four turnpikes.

Lemma 7.32 (One-Sided Upper Bound). Assume Lemma 7.3 holds for i− 1.

41

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

1. If φi−1 ↾ρ1 is true, then using at most γi − 2 pebbles over Ř, we can leave pebbles on nodes xi, x̄
′
i, fi,

qi−1, gi.

2. If φi−1 ↾ρ0 is true, then using at most γi − 2 pebbles over Ř, we can leave pebbles on nodes x̄i, x
′
i, f̄i,

qi−1, ḡi.

3. If φi−1 ↾ρ1 is false, then using at most γi − 1 pebbles over Ř, we can leave pebbles on nodes xi, x̄
′
i,

fi, qi−1, gi.

4. If φi−1 ↾ρ0 is false, then using at most γi − 1 pebbles over Ř, we can leave pebbles on nodes x̄i, x
′
i,

f̄i, qi−1, ḡi.

Proof. For Item (1), since φi−1 ↾ρ1 is true, by the assumption that Lemma 7.3 holds for i − 1, we have

RPebŘ1
(qi−1) = γi−1 = γi−5. Consider the following strategy to leave pebbles on xi, x̄

′
i, fi, qi−1, gi using

at most γi − 2 pebbles over Ř:

(i) Put xi into the canonical true position with ri + 1 = γi − 2 pebbles by Lemma 7.10. Now node xi
and node x̄′i have pebbles;

(ii) Pebble f ′
i , persistently pebble the turnpike from f ′

i to fi, then unpebble f ′
i . Now xi, x̄

′
i and fi have

pebbles. Over the turnpike from f ′
i to fi, at most (γi−6)+2 = γi−4 pebbles are used by Lemma 6.9.

Over Ř, at most (γi − 4) + 2
︸︷︷︸

xi,x̄′
i

= γi − 2 pebbles are used.

(iii) Persistently pebble node qi−1 using at most γi − 5 pebbles over the new region Ř1. Now xi, x̄
′
i, fi

and qi−1 have pebbles. Over the old region Ř, at most γi − 5
︸ ︷︷ ︸

Ř1

+ 3
︸︷︷︸

xi,x̄′
i,fi

= γi − 2 pebbles are used

(this step is legal since Ř = Ř1 ∪
(
anc(xi) ∪ anc(x̄′i)

)
and since xi and x̄i have the only pebbles on

anc(xi) ∪ anc(x̄′i));

(iv) Persistently pebble the turnpike from qi−1 to gi. Now xi, x̄
′
i, fi, qi−1 and gi have pebbles. Over the

turnpike from qi−1 to gi, at most (γi − 7) + 2 = γi − 5 pebbles are used by Lemma 6.9. Over Ř, at

most (γi − 5) + 3
︸︷︷︸

xi,x̄′
i,fi

= γi − 2 pebbles are used.

Item (2) is symmetric to Item (1).

For Item (3), since φi−1 ↾ρ1 is false, by the assumption that Lemma 7.3 holds for i − 1, we have

RPebŘ1
(qi−1) = γi−1 + 1 = (γi − 5) + 1 = γi − 4. We run the same strategy as in Item (1) to leave

pebbles on xi, x̄
′
i, fi, qi−1, gi, using at most γi − 1 pebbles over Ř (only Step (iii) uses one more pebble).

Item (4) is symmetric to Item (3).

Lemma 7.33 (Universal Upper Bound). Assume Lemma 7.3 holds for i− 1.

1. If φi ↾ρ is true, then RPebS
Ř
(qi) ≤ γi − 1.

2. If φi ↾ρ is false, then RPebS
Ř
(qi) ≤ γi.

Proof. For Item (1), by assumption φi ↾ρ = ∀xiφi−1 ↾ρ is true, so assigning xi to true and to false both

satisfy φi−1, i.e., φi−1 ↾ρ1 is true and φi−1 ↾ρ0 is true. Consider the following strategy to surround qi with

at most γi − 1 pebbles over Ř:

(i) Run Item (1) of Lemma 7.32 to pebble nodes xi, x̄
′
i, fi, qi−1, gi, using at most γi − 2 pebbles over Ř.

42

7 PSPACE-COMPLETENESS

(ii) Pebble hi. Now the six nodes xi, x̄
′
i, fi, qi−1, gi, hi have pebbles.

(iii) Run the reverse of Item (1) of Lemma 7.32 to remove pebbles from nodes xi, x̄
′
i, fi, qi−1, gi. Now

node hi has a pebble. Over Ř, at most γi − 2 + 1
︸︷︷︸

hi

= γi − 1 pebbles are used.

(iv) Run Item (2) of Lemma 7.32 to pebble nodes x̄i, x
′
i, f̄i, qi−1, ḡi. Now the six nodes hi, x̄i, x

′
i, f̄i, qi−1,

ḡi have pebbles. Over Ř, at most γi − 2 + 1
︸︷︷︸

hi

= γi − 1 pebbles are used.

(v) Pebble h̄i to surround qi. Seven nodes have pebbles.

For Item (2), we run the same strategy as in Item (1) to surround qi, using at most γi pebbles over Ř (each

of Steps (i), (iii), (iv) may use one more pebble by Items (3) and (4) of Lemma 7.32).

Lemma 7.34 (Universal Lower Bound). Assume Lemma 7.3 holds for i− 1.

1. RPebS
Ř
(qi) ≥ γi − 1.

2. If RPebS
Ř
(qi) ≤ γi − 1, then φi ↾ρ is true.

Proof. Fix a strategy to surround qi using at most γi−1 pebbles over Ř. Let Řf := {hi}∪anc (fi)\anc
∗(f ′

i)
be the region to augment hi to the turnpike from f ′

i to fi, and Řf̄ := {h̄i}∪anc (f̄i)\anc
∗(f̄ ′

i) be the region

to augment h̄i to the turnpike from f̄ ′
i to f̄i. At the end, the region Řf has a pebble (on hi) and the region

Řf̄ has a pebble (on h̄i). Let t1 (resp. t0) be the earliest time such that since time t1 (resp. t0) the region Řf

(resp. Řf̄) has pebble.

Assume t0 < t1 by symmetry (in the rest of this argument). At time t1 − 1, there is no pebble on Řf ,

and there are pebbles on nodes xi and x̄′i (so that node f ′
i can be pebbled at time t1). Hence literal x̄i is in

false position, and literal xi is not in ∗ position. Note that there is no transition of literals xi or x̄i since

time t1: to make a transition for literal xi (resp. x̄i) takes ri = γi − 3 pebbles over anc(x′i) (resp. anc(x̄′i))
by Lemma 7.7, but there is a pebble on Řf̄ , a pebble on Řf , and a pebble on the other literal gadget Lri(x̄i)

(resp. Lri(xi)); thus a transition cannot be done with at most γi−1 pebbles over Ř. As such, there is a pebble

on anc(xi) and a pebble on anc(x̄′i) since time t1.
Because node fi must be visited before node hi can be pebbled, by Lemma 6.9, at some later time t2 > t1

there are (γi − 6) + 2 = γi − 4 pebbles on the turnpike from f ′
i to fi. At time t2 over Ř, there are at least

γi − 4
︸ ︷︷ ︸

Řf\{hi}

+ 1
︸︷︷︸

Řf̄

+ 2
︸︷︷︸

anc

(
{xi,x̄′

i}
)

= γi − 1 (7.5)

pebbles, giving Item (1).

At time t2, there is no pebble on {hi} ∪ Řg where Řg := anc(gi) \ anc
(
{xi, x̄

′
i}
)
, as all γi − 1 pebbles

over Ř are on Řf \ {hi}, Řf̄ or anc
(
{xi, x̄

′
i}
)

by (7.5). Over Ř \ Řg, there are at least

1
︸︷︷︸

Řf

+ 1
︸︷︷︸

Řf̄

+ 2
︸︷︷︸

anc

(
{xi,x̄′

i}
)

= 4

pebbles since time t2, so at most (γi−1)−4 = γi−5 pebbles over Řg. Because node gi must be visited before

node hi can be pebbled, by Lemma 6.7, at some later time t3 > t2 there are (γi− 7)+ 2 = γi− 5 pebbles on

the turnpike from qi−1 to gi, including one on node qi−1. Recall the region Ř1 = Ř \
(
anc(xi) ∪ anc(x̄′i)

)

that is associated with the (i− 1)-assignment ρ1. At time t3, there is only one pebble over Ř1 ∩ anc(qi−1),

43

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

which is on node qi−1. The sub-strategy from time t2 to t3 persistently pebble node qi−1 over the region

Ř1 ∩ anc(qi−1) using γi − 5 = γi−1 pebbles, so RPebŘ1

(
G(φi−1)

)
≤ γi−1. By the assumption that

Lemma 7.3 holds for i− 1, we know φi−1 ↾ρ1 is true.

We claim that at time t2, node h̄i has a pebble (by modifying the argument in the previous paragraph).

Let Řh :=
(
{hi} ∪ anc(gi)

)
\ anc(qi−1) be nodes properly in the turnpike from qi−1 to gi plus hi, and

Řh̄ :=
(
{h̄i} ∪ anc(ḡi)

)
\ anc(qi−1) be nodes properly in the turnpike from qi−1 to ḡi plus h̄i.

Claim 7.35 (Persistence). At time t2, node h̄i has a pebble.

Proof. For otherwise, at time t2, there is no pebble on Řh or Řh̄, as all γi−1 pebbles over Ř are on Řf \{hi},

Řf̄ \ {h̄i} or anc({xi, x̄
′
i}) by (7.5). Let t3 (resp. t4) be the earliest time such that since time t3 (resp. t4) the

region Řh (resp. Řh̄) has pebble.

Claim 7.36 (No Double Persistence). Since t3, there are at least two pebbles over Řf ∪ Řh.

Proof. Note that Řf consists of the turnpike from f ′
i to fi plus node hi, and Řh consists of nodes properly in

the turnpike from qi−1 to gi plus node hi.
Fix an induced subgraph F ⊆ G (for instance F = the turnpike from f ′

i to fi) having a unique sink.

Say a pebbling configuration P is v-locked on F if RPebF (P) = RPebV(F); this is if the pebbles cannot

be cleared without using RPebV(F) pebbles (when restricted to F). In particular, any configuration with a

pebble on the sink of F is v-locked on F . Also, if a configuration is v-locked on F , then there is a pebble on

F . Given a pebbling configuration on G, we say that fi (resp. gi) is v-locked if the configuration is v-locked

on the turnpike from f ′
i to fi (resp. from qi−1 to gi).

Assume for contradiction that at some time t7 ≥ t3 there is only one pebble over Řf ∪ Řh, which must be

on hi by the inclusion-exclusion principle. Let t5 be the earliest time before t7 such that there is a pebble on

node hi from t5 to t7. We know t0 < t1 < t3 < t5 < t7. At time t5 node hi is pebbled, so node gi and node

fi each has a pebble, and both are v-locked. At time t7, nodes properly in the two turnpikes have no pebbles,

and nodes gi and fi are not v-locked. Let t6 be the earliest time after t5 such that one of the turnpikes is not

v-locked, then t5 < t6 < t7.

• If the turnpike from f ′
i to fi stops being v-locked at time t6, then at time t6−1 there are (γi−6)+2 =

γi − 4 pebbles over the turnpike from f ′
i to fi by Lemma 6.9. Over Ř, there are

γi − 4
︸ ︷︷ ︸

turnpike from f ′
i to fi

+ 1
︸︷︷︸

turnpike from qi−1 to gi

+ 1
︸︷︷︸

hi

+ 1
︸︷︷︸

Řf̄

+ 2
︸︷︷︸

anc

(
{xi,x̄′

i}
)

= γi + 1

pebbles, contradicting that at most γi − 1 pebbles are used over Ř.

• If the turnpike from qi−1 to gi stops being v-locked at time t6, then at time t6−1 there are (γi−7)+2 =
γi − 5 pebbles over the turnpike from qi−1 to gi by Lemma 6.9. Over Ř, there are

γi − 5
︸ ︷︷ ︸

turnpike from qi−1 to gi

+ 1
︸︷︷︸

turnpike from f ′
i to fi

+ 1
︸︷︷︸

hi

+ 1
︸︷︷︸

Řf̄

+ 2
︸︷︷︸

anc

(
{xi,x̄′

i}
)

= γi

pebbles, contradicting that at most γi − 1 pebbles are used over Ř.

Assume t3 < t4 by symmetry (in the rest of Claim 7.35). At time t4 − 1, there is no pebble on Řh̄. By

Lemma 6.9, at some later time t5 > t4 there are (γi − 7) + 2 = γi + 5 pebbles on the turnpike from qi−1 to

ḡi. Over Ř, there are at least

γi − 5
︸ ︷︷ ︸

turnpike from qi−1 to ḡi

+ 2
︸︷︷︸

Řf∪Řh

+ 1
︸︷︷︸

Řf̄

+ 2
︸︷︷︸

anc

(
{xi,x̄′

i
}
)

= γi

44

8 PRODUCT CONSTRUCTION FOR REVERSIBLE PEBBLING

pebbles, contradicting that at most γi − 1 pebbles are used over Ř.

Claim 7.35 shows that there is a pebble on h̄i at time t2, hence there is no pebble on the turnpike from f̄ ′
i

to f̄i by (7.5). Let t3 be the earliest time before t2 such that the only pebble on Řf̄ is on h̄i, and let t6 be the

earliest time before t3 such that h̄i has a pebble from time t6 to t3. At time t3, there are pebbles on nodes x′i
and x̄i (so that node f̄ ′

i can be unpebbled at time t3 − 1), hence literal xi is in false position, and literal x̄i
is not in ∗ position. Note that there is no transition of literals xi or x̄i between time t6 and t3 − 1: to make a

transition for literal xi (resp. x̄i) takes ri = γi − 3 pebbles over anc(x′i) (resp. anc(x̄′i)) by Lemma 7.7, but

there is a pebble on h̄i, a pebble on Řf̄ \{h̄i}, and a pebble on the other literal gadget Lri(x̄i) (resp. Lri(xi));

thus a transition cannot be done with at most γi − 1 pebbles over Ř. As such, there is a pebble on anc(x′i)
and a pebble on anc(x̄i) between time t6 and t3.

At time t6, node ḡi and node f̄i each has a pebble (so that node h̄i can be pebbled at time t6− 1). At time

t3, the turnpike from f̄ ′
i to f̄i has no pebble. By Lemma 6.9, there is a time t4 between t6 and t3 such that

there are (γi − 6) + 2 = γi − 4 pebbles on the turnpike from f̄ ′
i to f̄i. We know t6 < t4 < t3 < t2. At time

t4 over Ř, there are at least

γi − 4
︸ ︷︷ ︸

Řf̄\{h̄i}

+ 1
︸︷︷︸

h̄i

+ 2
︸︷︷︸

anc

(
{x′

i,x̄i}
)

= γi − 1 (7.6)

pebbles.

At time t4, there is no pebble on Řḡ where Řḡ := anc(ḡi) \ anc
(
{x′i, x̄i}

)
, as all γi − 1 pebbles over Ř

are on Řf̄ or anc({xi, x̄
′
i}) by (7.6). Over Ř \ Řḡ , there are at least

1
︸︷︷︸

Řf̄\{h̄i}

+ 1
︸︷︷︸

h̄i

+ 2
︸︷︷︸

anc

(
{x′

i,x̄i}
)

= 4

pebbles between time t6 and t3 − 1, so at most (γi − 1) − 4 = γi − 5 pebbles over Řḡ. Because node ḡi is

visitied at time t6 and the turnpike from qi−1 to ḡi has no pebble at time t4, by Lemma 6.7, at some time t5
between t6 and t4 there are (γi − 7) + 2 = γi − 5 pebbles on the turnpike from qi−1 to ḡi, including one on

node qi−1. Recall the region Ř0 = Ř \
(
anc(x′i) ∪ anc(x̄i)

)
that is associated with the (i − 1)-assignment

ρ0. At time t5, there is only one pebble over Ř0∩anc(qi−1), which is on node qi−1. The (reverse of the) sub-

strategy from time t5 to t4 persistently pebble node qi−1 over the region Ř0 ∩ anc(qi−1) using γi− 5 = γi−1

pebbles, so RPebŘ0

(
G(φi−1)

)
≤ γi−1. By the assumption that Lemma 7.3 holds for i−1, we know φi−1 ↾ρ0

is true.

As a result, ∀xiφi−1 ↾ρ = φi ↾ρ is true, giving Item (2).

Lemma 7.37 (Universal Quantifier Gadget). Assume that Lemma 7.3 holds for i−1. We have RPebŘ

(
G(φi)

)
=

γi + Jφi ↾ρ is falseK.

Proof. Since persistent price is one plus surrounding price (Proposition 2.1), it suffices to show that RPebS
Ř

(
G(φi)

)
=

γi − 1+ Jφi ↾ρ is falseK. If φi ↾ρ is true, then RPebS
Ř

(
G(φi)

)
= γi − 1, as the upper bound (Lemma 7.33)

matches the lower bound (Lemma 7.34). If φi ↾ρ is false, then RPebŘ

(
G(φi)

)
= γi, as the upper bound

(Lemma 7.33) matches the lower bound (Lemma 7.34).

8 Product Construction for Reversible Pebbling

The part of the proof of Theorem 3.4 that deals with reversible pebbling uses as a black box the construction

in Theorem 3.5 for reversible pebbling. Now we state it again and we give its full proof.

45

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

Theorem 8.1. Given two graphs G1 and G2, there is a polynomial-time constructible graph R(G1, G2) of

size 3|G1| · |G2| with reversible pebbling price RPeb
(
R(G1, G2)

)
= RPeb(G1) + RPeb(G2) + 1.

We want to construct a graph R to inherit structures from two graphs, which are called respectively the

exterior graph G1 and the interior graph G2. Intuitively, for every node in G1, we will construct a block with

the structure of G2: in each such block, for every node in G2 we create a cell of three nodes, where different

cells are connected according to the exterior graph G1 and the interior graph G2.

G2 =

G1 =

R(G1, G2) =

Figure 19: Example of Construction 8.2: product of a pyramid of height 1 and a rhombus.

Construction 8.2 (Product for reversible pebbling). Fix two graphs G1 and G2, and denote z2 as the unique

sink of G2. Construct a graph R := R(G1, G2) as follows. For every node (v1, v2) ∈ V (G1) × V (G2),
create three nodes (v1, v2)out, (v1, v2)ext, (v1, v2)int. Add an edge from the exterior node to the output node,

i.e., from node (v1, v2)ext to (v1, v2)out; add an edge from the interior node to the output node, i.e., from

node (v1, v2)int to (v1, v2)out. The exterior node supports the structure of the exterior graph G1, in the sense

that for every predecessor w1 of v1 in G1, we create an edge from the sink the w1-block of G2, i.e., from

node (w1, z2)out to node (v1, v2)ext. The interior node supports the structure of the interior graph G2, in the

sense that for every predecessor w2 of v2 in G2, we create an edge from the output node of w2, i.e., from node

(v1, w2)out to node (v1, v2)int.

Formally, V (R) :=
{
(v1, v2)out, (v1, v2)ext, (v1, v2)int : v1 ∈ V (G1), v2 ∈ V (G2)

}
, and E(R) :=

Eout
.
∪ Eext

.
∪ Eint, where Eout :=

{(
(v1, v2)ext, (v1, v2)out

)
,
(
(v1, v2)int, (v1, v2)out

)
: v1 ∈ V (G1), v2 ∈

V (G2)
}

, Eext :=
{(

(w1, z2)out, (v1, v2)ext
)
: v1 ∈ V (G1), v2 ∈ V (G2), w1 ∈ predG1

(v1)
}

, and Eint :=
{(

(v1, w2)out, (v1, v2)int
)
: v1 ∈ V (G1), v2 ∈ V (G2), w2 ∈ predG2

(v2)
}

.

Clearly, if G1 and G2 each has in-degree at most two and a unique sink, then so does the resulting graph

R. Note that the graph R partitions into |V (G1)| blocks, namely, for each v1 ∈ V (G1), the v1-block is the

subgraph of R induced over the node set
{
(v1, v2)out, (v1, v2)ext, (v1, v2)int : v2 ∈ V (G2)

}
. Each such

46

8 PRODUCT CONSTRUCTION FOR REVERSIBLE PEBBLING

block further partitions into |V (G2)| cells, namely, in the v1-block, for each v2 ∈ V (G2), the (v1, v2)-cell is

the subgraph of the v1-block induced over the node set
{
(v1, v2)out, (v1, v2)ext, (v1, v2)int

}
.

Finally, given a configuration P
′ on R, say the v1-block (resp. the (v1, v2)-cell) is surrounded if any

exterior node of the v1-block (resp. the interior node of the (v1, v2)-cell) is surrounded in P
′. Note that the

v1-block is surrounded iff every exterior node of the v1-block is surrounded.

Lemma 8.3 (Upper Bound). RPeb
(
R(G1, G2)

)
≤ RPeb(G1) + RPeb(G2) + 1.

Proof. Fix a persistent pebbling P1 of G1 using RPeb(G1) pebbles, and a persistent pebbling P2 of G2 using

RPeb(G2) pebbles. We will construct a persistent pebbling P ′ of R(G1, G2) using RPeb(G1)+RPeb(G2)+
1 pebbles.

We claim that the persistent price of each block of R is at most RPeb(G2) + 2. For any v1 ∈ V (G1),
to persistently pebble the v1-block (assuming the v1-block is surrounded), simulate P2 as follows: whenever

P2 pebbles a node v2 ∈ V (G2), the simulating pebbling has a phase to persistently pebble the (v1, v2)-cell,

and whenever P2 unpebbles a node v2 ∈ V (G2), then the simulating pebbling has a phase to persistently

unpebble the (v1, v2)-cell. If the current configuration in P2 is P, and the configuration in the simulating

pebbling at the end of a phase is P
′, then the simulating pebbling maintains the phase-invariant that P′ =

{
(v1, v2)out : v2 ∈ P

}
. Note that the simulating pebbling is legal: since the pebbling P2 is legal, when v2

is pebbled or unpebbled it is surrounded in the current configuration P, so the (v1, v2)-cell is surrounded in

the simulating configuration P
′ and the interior node can be pebbled or unpebbled; and we assume that the

v1-block is surrounded, so the exterior node can be pebbled or unpebbled. The simulating pebbling uses at

most two more pebbles (on the exterior node and the interior node of each cell), for at most RPeb(G2) + 2
pebbles over the v1-block.

Then the resulting graph R(G1, G2) can be persistently pebbled by simulating P1 as follows. Whenever

P1 pebbles a node v1 ∈ V (G1), the simulating pebbling P ′ has a stage to persistently pebble the v1-block;

whenever P1 unpebbles a node v1 ∈ V (G1), the simulating pebbling P ′ has a stage to persistently unpebble

the v1-block. If the current configuration in P1 is P, and the configuration in the simulating pebbling P ′ at

the end of a stage is P′, then the simulating pebbling maintains the stage-invariant that P′ =
{
(v1, z2)out :

v1 ∈ P
}

. Note that the simulating pebbling P ′ is legal: since the pebbling P1 is legal, when v1 is pebble

or unpebbled it is surrounded in the current configuration P, so the v1-block is surrounded in the simulating

configuration P
′, so the v1-block can be persistently pebbled or unpebbled in a stage of P ′. When the v1-

block is pebbled or unpebbled in a stage of P ′, there are at most RPeb(G1) − 1 pebbles on other blocks of

R, and there are at most RPeb(G2) + 2 pebbles in the v1-block, for a total of RPeb(G1) + RPeb(G2) + 1
pebbles.

To prove the lower bound we extract simultaneous pebblings of G1 and G2 from any pebbling of R and

use the known pebbling prices of G1 and G2 to argue that some configuration needs many pebbles. We do so

by projecting a pebbling of R into G1 and G2 as the skeleton of a pebbling and then filling the gaps between

configurations with a legal sequence of pebbling moves.

Lemma 8.4 (Lower Bound). RPeb
(
R(G1, G2)

)
≥ RPeb(G1) + RPeb(G2) + 1.

Proof. Fix any persistent pebbling P ′ = (P′
0,P

′
1, . . . ,P

′
τ) of R(G1, G2). For every v1 ∈ V (G1), we are

going to simulate a pebbling Pv1 on G2 based (essentially) on the configurations of P ′ over the v1-block.

From the family of pebblings {Pv1}v1∈V (G1), we then simulate a persistent pebbling P on G1.

In more detail, for each v1 ∈ V (G1) we define a mapping Intv1 : R → G2 and we view the sequence of

configurations (Intv1(P′
t))t∈[0,τ] as the skeleton of a pebbling of G2. We fill the gaps between configurations

according to the algorithm described below to obtain a legal pebbling Pv1 . Similarly we define a mapping

Ext : R → G1 to construct the pebbling P on G1.

47

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

To describe the mappings we need some definitions. Given a configuration P
′ in P ′ of R(G1, G2), its

projection to the output (resp. exterior, interior) nodes of the v1-block is proj v1out(P
′) :=

{
v2 ∈ V (G2) :

(v1, v2)out ∈ P
′
}

(resp. proj v1ext(P
′) :=

{
v2 ∈ V (G2) : (v1, v2)ext ∈ P

′
}

, proj v1int(P
′) :=

{
v2 ∈ V (G2) :

(v1, v2)int ∈ P
′
}

).

The closure clos(P′) ⊆ V
(
R(G1, G2)

)
is the smallest set of nodes containing P

′ that is closed under

pebble placements on interior or output nodes; equivalently, clos(P′) can be generated by the following

algorithm: Start with P
′, while there is a node v ∈ V

(
R(G1, G2)

)
which is an interior node v = (v1, v2)int

or an output node v = (v1, v2)out such that v is surrounded by, but not in, the subset of nodes having pebbles,

pebble v. Note that the closure of a v1-block does not depend on other blocks as they are connected only

through exterior nodes.

For brevity, given a graph G and a subset U ⊆ V (G) of vertices, denote unsurG(U) := {v ∈ V (G) :
predG(v) 6⊆ U} as the subset of nodes in G not surrounded by U .

The block mapping is Iw1
(
P
′
)
:= proj

w1

out(P
′) ∪

(

proj
w1

int(P
′) ∩ unsurG2

(
proj

w1

out(P
′)
))

We define the interior mapping Intw1(P′) to be Iw1
(
P
′
)

if the w1-block is surrounded, and Iw1
(
clos(P′)

)

if the w1-block is not surrounded.

Given a configuration P
′, its p-projection is proj P (P′) :=

{
v1 ∈ V (G1) : Intv1(P′) is p-locked

}
, and

v-projection is proj V (t) :=
{
v1 ∈ V (G1) : Int

v1(P′) is v-locked
}

.

Finally the exterior mapping is Ext(P′) := proj P (P′) ∪
(

proj V (P′) ∩ unsurG1

(
proj P (P′)

))

.

We abuse the notation for mappings from configurations in P ′ and write f(t) to mean f(P′
t). In addition

we define P
v1(t) = Intv1(P′

t) and P(t) = Ext(P′
t). Note that there can be multiple pebble moves between,

say, P(t− 1) and P(t).
We construct the pebblings {Pv1}v1∈V (G1) andP according to Algorithm 8.8, which are legal by Claim 8.9.

Note that P is a persistent pebbling of G1: P
w1(τ) = Iw1

(
clos(τ)

)
, which is ∅ if w1 is not the sink of G1,

and {z2} if w1 is the sink of G1, so P(τ) = Ext(τ) = {z1}, the sink of G1. Then the lower bound follows

from Claim 8.13.

The algorithm to construct the remaining configurations in the pebblings {Pv1}v1∈V (G1) and P, given

P ′, is essentially to insert and remove missing pebbles in topological order whenever two configuration are

different, and make such a pebbling go through a specific configuration in the exterior case. We give an

explicit description below and in Claim 8.9 we prove that it is equivalent to this implicit description.

Definition 8.5 (Reasonable pebbling). Given a configuration P, a set of vertices to pebble T+ and a set of

vertices to unpebble T−, the reasonable pebbling is the following pebbling:

• start with P;

• for each v ∈ T+ in a topological order, pebble v;

• for each v ∈ T− in a reverse topological order, unpebble v.

Furthermore, the reasonable pebbling between two configurations P1, P2 is the reasonable pebbling with

P = P1, T+ = P2 \ P1, and T− = P1 \ P2.

Claim 8.6 (Legality). Assume P, T+, T− ⊆ V (G) are given. If for every v ∈ T+∪T−, we have predG(v) ⊆
P ∪ T+, then the reasonable pebbling is legal.

Proof. For any v ∈ T+, right before v is pebbled, we know predG(v) have pebbles since predG(v) ⊆ P∪T+

and the pebble placement on T+ proceeds in a topological order. So all pebble placements on T+ are legal.

For any v ∈ T−, right before v is unpebbled, we know predG(v) have pebbles since predG(v) ⊆ P∪ T+

and the pebble placement on T− proceeds in a reverse topological order. So all pebble removals on T− are

legal.

48

8 PRODUCT CONSTRUCTION FOR REVERSIBLE PEBBLING

Corollary 8.7 (Legality). Assume P1,P2 ⊆ V (G) are given. Assume the sets T+ := P2 \ P1 and T− :=
P1 \ P2 satisfy that for every v ∈ T+ ∪ T− = P1△P2, we have predG(v) ⊆ P1 ∪ T+ = P1 ∪ P2, then the

reasonable pebbling over P1, T+, T− is legal.

Proof. Apply Claim 8.6 on P1, T+, T−.

Algorithm 8.8. As Claim 8.9 shows, we only need to consider the case when an output node (v1, v2)out is

pebbled or unpebbled to get to P
′
t in P ′. In this case we run the following steps in sequence:

(a) if the v1-block is surrounded in P
′
t, we insert the reasonable pebbling between I v1

(
t − 1

)
and I v1

(
t
)

into Pv1 .

(b) if v2 = z2,

(i) if (v1, v2)out is pebbled to get to P
′
t in P ′, for each successor w1 of v1 such that the w1-block is

surrounded in P
′
t, we insert the reasonable pebbling between Iw1

(
clos(t − 1)

)
and Iw1

(
t
)

into

Pw1 .

(ii) if (v1, v2)out is unpebbled to get to P
′
t in P ′, for each successor w1 of v1 such that the w1-block

is surrounded in P
′
t−1, we insert the reasonable pebbling between Iw1

(
t− 1

)
and Iw1

(
clos(t)

)

into Pw1 .

(c) if Ext(t − 1) 6= Ext(t), let D := proj V (t − 1) ∪ proj V (t). We insert the reasonable pebbling with

T+ := D \ Ext(t− 1), and T− := D \ Ext(t) into P.

Claim 8.9 (Correctness). The pebblings {Pv1}v1∈V (G1) and P are legal.

Proof. At the beginning t = 0, we know P
′
0 = ∅, so for any w1 ∈ V (G1) we have Iw1

(
0
)
= ∅ and

Iw1
(
clos(0)

)
= ∅, matching P

w1(0) = ∅. Also proj P (0) = ∅ = proj V (0), and P(0) = ∅ = Ext(0).

For any two consecutive configurations we show that either they are the same or the algorithm inserted a

reasonable pebbling between them, which is legal by Claim 8.11.

When t > 0, if an exterior node or an interior node is pebbled or unpebbled to get to P
′
t in P ′, fix any

w1 ∈ V (G1). Note that the w1-block is surrounded in P
′
t−1 iff it is surrounded in P

′
t.

If thew1-block is surrounded, then projw1

out(·) is the same atP′
t−1 andP′

t, and projw1

int(·)∩unsurG2

(
proj

w1

out(·)
)

is also the same at P′
t−1 and P

′
t because a node being pebbled or unpebbled must be surrounded, and the pre-

decessors of an interior node are output nodes. Hence P
w1(t− 1) = Iw1

(
t− 1

)
= Iw1

(
t
)
= P

w1(t).

Otherwise the w1-block is not surrounded, then the pebble move is not on any exterior node in the w1-

block, hence clos(·) is the same at P′
t−1 and P

′
t over the w1-block, so Iw1

(
clos(·)

)
is also the same at P′

t−1

and P
′
t.

Since Ext(·) only depends on {Pv1(t)}v1∈V (G1), it holds that Pt−1 = Pt as well.

Focus on the case when an output node (v1, v2)out is pebbled or unpebbled to get to P
′
t in P ′, fix any

w1 ∈ V (G1).

• If w1 6= v1 and either w1 is not a successor of v1 or v2 6= z2, note that the w1-block is surrounded in

P
′
t−1 iff it is surrounded in P

′
t. Since P′

t−1 = P
′
t over the w1-block, we have Iw1

(
t− 1

)
= Iw1

(
t
)

and

Iw1
(
clos(t− 1)

)
= Iw1

(
clos(t)

)
.

• If w1 = v1, then the w1-block is surrounded in P
′
t−1 iff it is surrounded in P

′
t. If the w1-block is not

surrounded, since the pebble move is not on any exterior node in the w1-block, we have clos(·) is the

same at P′
t−1 and P

′
t over the w1-block, so Iw1

(
clos(·)

)
is also the same at P′

t−1 and P
′
t.

Otherwise the w1-block is surrounded and Step (a) inserts a reasonable pebbling into Pw1 .

49

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

• If w1 is a successor of v1 and v2 = z2 the w1-block cannot be surrounded in both P
′
t−1 and P

′
t.

If the w1-block is unsurrounded in both P
′
t−1 and P

′
t, since P

′
t−1 = P

′
t over the w1-block, we have

Iw1
(
clos(t− 1)

)
= Iw1

(
clos(t)

)
.

Otherwise w1 is surrounded in exactly one of P′
t−1 and P

′
t and Step (b) inserts a reasonable pebbling

into Pw1 .

Finally, Step (c) inserts a reasonable pebbling into P as needed.

Claim 8.10 (Exterior Symmetry). In Step (c), we have Ext(t− 1) ∪ T+ = D = Ext(t) ∪ T−.

Proof. Since proj P (t) ⊆ proj V (t), we have Ext(t) = proj P (t) ∪
(

proj V (t) ∩ unsurG1

(
proj P (t)

))

⊆

proj V (t) ⊆ D and likewise Ext(t− 1) ⊆ proj V (t− 1) ⊆ D.

Claim 8.11 (Legality). All reasonable pebblings are legal.

Proof. At Step (a) an output node (v1, v2)out is pebbled or unpebbled to get to P′
t inP ′ and the v1-block is sur-

rounded, hence Pv1(t−1) = I v1
(
t−1

)
. By Corollary 8.7 it suffices to show that forw2 ∈ I v1

(
t
)
△ I v1

(
t−1

)
,

we have predG2
(w2) ⊆ I v1

(
t
)
∪I v1

(
t−1

)
. Recall I v1

(
·
)
= proj v1out(·)∪

(

proj v1int(·)∩unsurG2

(
proj v1out(·)

))

.

Assume w2 ∈ I v1
(
t
)
\ I v1

(
t − 1

)
, reversing the roles of t − 1 and t otherwise. If w2 ∈ proj

v1
out(t) \

I v1
(
t− 1

)
, then w2 ∈ proj

v1
out(t) \ proj

v1
out(t− 1), i.e., w2 = v2 and (v1, w2)out is being pebbled to get to P

′
t

in P ′. Since P ′ is legal, (v1, w2)int has a pebble in P
′
t−1, i.e., w2 ∈ proj

v1
int(t − 1), so w2 is surrounded by

proj v1out(t− 1) ⊆ I v1
(
t− 1

)
as needed.

Otherwise w2 ∈
(

proj
v1
int(t) ∩ unsurG2

(
proj

v1
out(t)

))

\ I v1
(
t − 1

)
, since proj

v1
int(t) = proj

v1
int(t − 1),

we know w2 ∈ unsurG2

(
proj

v1
out(t)

)
but w2 /∈ unsurG2

(
proj

v1
out(t − 1)

)
, so w2 is a successor of v2 and

(v1, v2)out is being unpebbled to get to t in P ′ and predG2
(w2) ⊆ proj v1out(t− 1) ⊆ I v1

(
t− 1

)
as needed.

At Step (b)(i) an output node (v1, v2)out is pebbled to get to P
′
t in P ′, and w1 is a successor of v1 such

that the w1-block is surrounded in P
′
t. Note that the w1-block is not surrounded in P

′
t−1, so P

w1(t − 1) =
Iw1

(
clos(t − 1)

)
. Since the pebble move to get to P

′
t in P ′ is not in the w1-block, we have Iw1

(
clos(t −

1)
)
= Iw1

(
clos(t)

)
. By Corollary 8.7 it suffices to show that for w2 ∈ Iw1

(
t
)
△ Iw1

(
clos(t)

)
, we have

predG2
(w2) ⊆ Iw1

(
t
)
∪ Iw1

(
clos(t)

)
.

• Assumew2 ∈ Iw1
(
t
)
\Iw1

(
clos(t)

)
. Since projw1

out(t) ⊆ proj
w1

out(clos(t)) ⊆ Iw1
(
clos(t)

)
, we can as-

sume w2 ∈
(

proj
w1

int(t)∩unsurG2

(
proj

w1

out(t)
))

\ Iw1
(
clos(t)

)
. Since projw1

int(t) ⊆ proj
w1

int(clos(t)),

we know w2 is surrounded by projw1

out(clos(t)) ⊆ Iw1
(
clos(t)

)
as needed.

• Assumew2 ∈ Iw1
(
clos(t)

)
\Iw1

(
t
)
. We claim thatw2 ∈ proj

w1

int(clos(t)): ifw2 ∈
(

proj
w1

int(clos(t))∩

unsurG2

(
proj

w1

out(clos(t))
))

\ Iw1
(
t
)
, then we are done; otherwise w2 ∈ proj

w1

out(clos(t)) \ I
w1
(
t
)
,

then w2 /∈ projw1

out(t) and thus by definition of clos(·) we have w2 ∈ projw1

int(clos(t)) as claimed.

Now if w2 ∈ projw1

int(t), then w2 is surrounded by projw1

out(t) ⊆ Iw1
(
t
)

as needed; otherwise w2 /∈
projw1

int(t), then from w2 ∈ projw1

int(clos(t)) and by definition of clos(·) we have w2 is surrounded by

projw1

out(clos(t)) ⊆ Iw1
(
clos(t)

)
as needed.

To see that Step (b)(ii) is legal, note that it is the reverse of Step (b)(i).

At Step (c) an output node (v1, v2)out is pebbled or unpebbled to get to P
′
t in P ′. By Claim 8.6 it suffices

to show that for w1 ∈
(
D \Ext(t−1)

)
∪
(
D \Ext(t)

)
, we have predG1

(w1) ⊆ Ext(t−1)∪T+ = D, where

50

8 PRODUCT CONSTRUCTION FOR REVERSIBLE PEBBLING

the last equality is due to Claim 8.10. Recall that Ext(·) = proj P (·) ∪
(

proj V (·) ∩ unsurG1

(
proj P (·)

))

and D = proj V (t− 1) ∪ proj V (t).

Fix any w1 ∈
(
D \Ext(t−1)

)
∪
(
D \Ext(t)

)
. Swap the roles of t and t−1 if necessary, we can assume

w1 ∈ D \ Ext(t). If w1 ∈ proj V (t) \ Ext(t), then w1 is surrounded by proj P (t) ⊆ Ext(t) ⊆ D as needed.

Otherwise w1 ∈ proj V (t−1)\proj V (t), in particular Pw1(t−1) 6= P
w1(t), so w1 ∈ {v1}∪ succG1

(v1)
by design of the algorithm. Note that it suffices to show that the w1-block is surrounded in P

′
t−1 or in P

′
t:

if the w1-block is surrounded in P
′, for any u1 ∈ predG1

(w1) the sink z2 of the inner graph G2 satisfies

z2 ∈ proj
u1

out(P
′) ⊆ I u1

(
P
′
)
⊆ Intu1(P′), so u1 ∈ proj V (P′) ⊆ D as needed. If w1 = v1, then in Step (a)

the w1-block is surrounded in P
′
t as needed. Otherwise w1 ∈ succG1

(v1), then in Step (b) the w1-block is

surrounded in P
′
t (in Step (b)(i)) or in P

′
t−1 (in Step (b)(ii)) as needed.

Claim 8.12 (No Spurious Projections). For any w1 ∈ V (G1) and w2 ∈ V (G2), if w2 has a pebble in any

configuration of Pw1 created between time t − 1 and time t, i.e., between P
w1(t − 1) and P

w1(t), then the

(w1, w2)-cell has a pebble both in P
′
t−1 and in P

′
t in P ′.

Proof. Let us reword the claim. Define projw1
any(P

′) := proj
w1

out(P
′) ∪ proj

w1

ext(P
′) ∪ proj

w1

int(P
′), note that

projw1
any(t− 1) = projw1

any(t), and we want to show P
w1(t− 1) ∪ Tw1

+ ⊆ projw1
any(t).

Note that for anyP′ andw1 ∈ V (G1)we have Iw1
(
P
′
)
⊆ projw1

any(P
′). Moreover, we have Iw1

(
clos(P′)

)
⊆

projw1
any(P

′): for any w2 ∈ Iw1
(
clos(P′)

)
, if w2 ∈ projw1

out(clos(P
′)), then either w2 ∈ projw1

out(P
′) ⊆

projw1
any(P

′) as needed, or w2 /∈ projw1

out(P
′), then by definition of clos(·) we have w2 ∈ projw1

ext(P
′) ⊆

projw1
any(P

′) as needed. Otherwise w2 ∈ proj
w1

int(clos(P
′)) ∩ unsurG2

(
proj

w1

out(clos(P
′))

)
, then it follows

that w2 ∈ proj
w1

int(P
′) ⊆ projw1

any(P
′) as needed; for otherwise w2 /∈ proj

w1

int(P
′), thus by definition of clos(·)

we have predG2
(w2) ⊆ proj

w1

out(clos(P
′)), which contradicts w2 ∈ unsurw1

(
proj

w1

out(clos(P
′))

)
.

To prove the claim it is enough to recall that the set Pw1(t − 1) ∪ Tw1

+ equals Iw1
(
Pt−1

)
∪ Iw1

(
Pt

)

in Step (a) because the w1-block is surrounded, it equals Iw1
(
clos(Pt−1)

)
∪ Iw1

(
Pt

)
in Step (b)(i)), and it

equals Iw1
(
Pt−1

)
∪ Iw1

(
clos(Pt)

)
in Step (b)(ii). All three sets are contained in projw1

any(t) by the previous

paragraph.

Claim 8.13 (Legal implies Lower Bound). Assume that the pebblings {Pv1}v1∈V (G1) and P are legal,

and P is a persistent pebbling of G1. Then there is a configuration P
′
β in P ′ of R(G1, G2) having at least

RPeb(G1) + RPeb(G2) + 1 pebbles.

Proof. Since P is a legal persistent pebbling of G1, there is a configuration Pb having at least RPeb(G1)
pebbles. By definition of the algorithm Pb is created in Step (c) when an output node (v1, v2)out is pebbled or

unpebbled to get to P
′
t in P ′, so the configuration Pb is between P(t− 1) and P(t). Let P′

β be P′
t if the output

node (v1, v2)out is pebbled, and P
′
t−1 if the output node (v1, v2)out is unpebbled, then P

′
β = P

′
t−1 ∪ P

′
t.

Note that for any u1 ∈ Pb we know that between P
u1(t− 1) and P

u1(t), some configuration in Pu1 is not

empty, because u1 ∈ Ext(t− 1)∪Ext(t) ⊆ D = proj V (t− 1)∪ proj V (t). It follows from Claim 8.12 that

there is at least one pebble in every u1-block of P′
β .

If proj P (t − 1) 6= proj P (t), that is if there is w1 ∈ proj P (t− 1)△ proj P (t), then we are done. Since

exactly one of P
w1(t − 1) and P

w1(t) is p-locked, there is a configuration between them having at least

RPeb(G2) pebbles, and by Claim 8.12 at least RPeb(G2) cells of the w1-block have pebbles. Summing up,

in P
′
β , there are

RPeb(G2)
︸ ︷︷ ︸

w1 block

+RPeb(G1)− 1
︸ ︷︷ ︸

other blocks

cells having pebbles, and among them the (v1, v2)-cell has three pebbles, for a total of RPeb(G1)+RPeb(G2)+
1 pebbles as needed.

51

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

Assume that proj P (t−1) = proj P (t) instead. RecallExt(·) = proj P (·)∪
(

proj V (·)∩unsurG1

(
proj P (·)

))

.

In Step (c) we know Ext(t − 1) 6= Ext(t), therefore at least one of D+ := Ext(t) \ Ext(t − 1) and

D− := Ext(t − 1) \ Ext(t) is not empty. Swap t and t − 1 if necessary, by their symmetry in the rest

of this lemma, assume D− 6= ∅. Fix w1 ∈ D− = Ext(t− 1) \ Ext(t).
Since proj P (t− 1) \Ext(t) ⊆ proj P (t− 1) \ proj P (t) = ∅, we can assume that w1 ∈

(
proj V (t− 1)∩

unsurG1
(proj P (t− 1))

)
\ Ext(t).

In particular w1 ∈
(
proj V (t− 1) \ proj V (t)

)
∩ unsurG1

(proj P (t)). Let u1 ∈ predG1
(w1) be such that

u1 /∈ proj P (t− 1) = proj P (t).
Now w1 ∈ proj V (t − 1) \ proj V (t), and as in the proof of Claim 8.11, we know that the w1-block

is surrounded in P
′
t−1 or in P

′
t. This implies that the sink of the u1-block (u1, z2)out has a pebble, and so

z2 ∈ P
u1(t− 1) or z2 ∈ P

u1(t). But u1 is not in the p-projection at either time, so there is some other pebble

other than z2 in P
u1(t− 1) and P

u1(t). By Claim 8.12, at least 2 cells of the u1-block have pebbles.

Since w1 ∈ proj V (t− 1) \ proj V (t), exactly one of Pw1(t− 1) and P
w1(t) is v-locked so there is a con-

figuration of Pw1 between them having at least RPebV(G2) pebbles, and by Claim 8.12 at least RPebV(G2)
cells of the w1-block have pebbles. Summing up, in P

′
β , there are

RPebV(G2)
︸ ︷︷ ︸

w1 block

+ 2
︸︷︷︸

u1 block

+RPeb(G1)− 2
︸ ︷︷ ︸

other blocks

≥ RPeb(G1) + RPeb(G2)− 1

cells having pebbles, and among them the (v1, v2)-cell has three pebbles, for a total of RPeb(G1)+RPeb(G2)+
1 pebbles as needed.

This product construction does not work for the standard black pebbling: there is no single constant C
such that for any two graphs G1 and G2, Peb(R(G1, G2)) = Peb(G1) + Peb(G2) + C , therefore we need

to develop a different construction in the next section.

Indeed, if we take G1 and G2 to be the singleton graph, which has pebbling price 1, the product construc-

tion is the pyramid of height 1, which has pebbling price 3. This gives a value of 1 for C .

If we take G1 and G2 to be the path of length 1, which has pebbling price 2, the product construction has

pebbling price 4. This gives a value of 0 for C .

If we take G1 and G2 to be the pyramid of height 1, which has pebbling price 3, the product construction

has pebbling price 5. An optimal strategy is to pebble the sinks of the two G2 copies corresponding to

sources in G1, then pebble all the exterior nodes of the remaining copy of G2, unpebble the sinks and finish

the pebbling. This gives a value of −1 for C .

9 Product Construction for Standard Pebbling

The part of the proof of Theorem 3.4 that deals with standard pebbling uses as a black box the construction

in Theorem 3.5 for standard pebbling. Now we state it again and we give its full proof.

Theorem 9.1. Given two graphs G1 and G2 of standard pebbling price at least 3, there is a polynomial-time

constructible graph S(G1, G2) of size |G1|(2|G1|+ |G2|) with standard pebbling price Peb(S(G1, G2)) =
Peb(G1) + Peb(G2)− 1.

For the rest of the section we fix G1 and G2 to be two single sink directed acyclic graphs, with sinks z1
and z2, respectively. We set p1 := Peb(G1) and p2 := Peb(G2), and we assume that p2 is at least 3.

Construction 9.2 (Product for standard pebbling). A centipede of length ℓ is a path of length ℓ where

all nodes but the source have an extra predecessor. Formally, it is the graph with vertices {r0, . . . , rℓ},

{s1, . . . , sℓ} and edges {(ri−1, ri) : i ∈ [ℓ]} ∪ {(si, ri) : i ∈ [ℓ]}.

52

9 PRODUCT CONSTRUCTION FOR STANDARD PEBBLING

As the first step we define the graph Ĝ2 from G2 as follows: Ĝ2 is the union of G2 and of a centipede of

length |G1|, where we identify the sink of G2 with the vertex r0 of the centipede. Observe that the pebbling

price of Ĝ2 is max(3, p2) = p2.

The graph S(G1, G2) is as follows. For every vertex v1 of G1 we make a copy of Ĝ2, which we call the

v1-block. Then, for every edge (u1, v1) in G1, we add edges from the sink of the u1-block to all the sources

of the centipede in the v1-block. Formally, S(G1, G2) is the graph with vertices {(v1, v2) : v1 ∈ V (G1), v2 ∈
V (Ĝ2)} and edges {((v1, u2), (v1, v2)) : v1 ∈ V (G1), (u2, v2) ∈ E(G2)}, {((u1, r|G1|), (v1, si)) : (u1, v1) ∈
E(G1), i ∈ [|G1|]}.

G2 =

G1 =

S(G1, G2) =

Figure 20: Example of Construction 9.2: product of a pyramid of height 1 and a rhombus.

Lemma 9.3. The standard pebbling price of S(G1, G2) is at most p1 + p2 − 1.

Proof. To pebble S(G1, G2) we simulate a strategy for pebbling G1 with p1 pebbles. When a pebble is placed

in v1, we pebble the sink of the v1-block using a strategy for Ĝ2 in p2 pebbles. When a pebble is removed

from v1, we remove the pebble from the sink of the v1-block. When we put a pebble in some v1-block there

are at most p1 − 1 other non empty blocks and they all have exactly one pebble, therefore this strategy for

S(G1, G2) is within the pebbling limit.

Lemma 9.4. The standard pebbling price of S(G1, G2) is at least p1 + p2 − 1.

Proof. Given a pebbling PS = (PS
0 ,P

S
1 , . . . ,P

S
τ) for the graph S(G1, G2) we construct a pebbling P for

G1 in such a way that if the space of PS is less than p1 + p2 − 1 then P has space less than p1, which is

impossible.

In particular for any configuration P
S
t in PS , we build a sequence P [t] of pebbling configurations for

G1, such that the final pebbling P of G1 is the concatenation of P [0],P [1], . . . ,P [τ]. While we build these

sequences of configurations, we say that a vertex v1 ∈ V (G1) is active if in the last configuration built so far

v1 does not have a pebble while all of its predecessors do.

53

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

If PS
t follows from a pebbling removal after which some v1-block of S(G1, G2) becomes empty then P [t]

is the pebbling step that removes the pebble present on v1, if any, otherwise P [t] is the empty sequence.

If PS
t is the result of a pebble placement after which some v1-block of S(G1, G2) contains p2 pebbles,

then P [t] performs the following pebbling steps: place a pebble on each empty vertex w1 ∈ V (G1) such that

1. the w1-block of S(G1, G2) contains a pebble in P
S
t ; and

2. w1 is active.

This process is repeated until there is no vertex in V (G1) that meets both conditions. In particular a pebbling

placement in the pebbling PS can cause a long chain of pebbling placements in P.

Pebbling P is a legal standard pebbling of G1 since removals are always legal, and pebbling placements

are only done on active vertices by construction.

Claim 9.5. Assume the pebbling PS uses at most p1 + p2 − 1 pebbles. If there is a pebble on (v1, r|G1|) in

P
S
t , then there is a pebble on v1 at the end of P [t].

Proof. We prove the claim by induction over a topological order of G1. Consider the earliest time t1 such

that PS has p2 pebbles in the v1-block and there is a pebble in the v1-block during the whole interval [t1, t].
Such a time exists because the v1-block is a copy of Ĝ2, and p2 pebbles are necessary to pebble its sink.

If v1 is active at any point during the construction of P [t1], then v1 is pebbled in that sequence and it is

not removed afterwards. This is always the case if v1 is a source of G1.

If v1 is not active we assume that Claim 9.5 holds for all its predecessors. Time t1 is the first time when

there are p2 pebbles in the v1-block since it has been empty. Therefore none of the successors of (v1, z2) in

the v1-block has a pebble. Also, since at most p1 − 1 < |G1| pebbles are outside the G2 part of the v1-block,

some vertex (v1, si) in the centipede part of the v1-block has no pebble.

So far we discovered that at time t1 there is a path (v1, si), (v1, ri), (v1, ri+1) . . . , (v1, r|G1|) with no

pebbles, and that at time t vertex (v1, r|G1|) has a pebble. Then it must be the case that vertex (v1, si) is

pebbled at some time t2 where t1 < t2 < t, and furthermore at time t2 there must be pebbles on (u1, r|G1|)
and (w1, r|G1|), where u1 and w1 are the predecessors of v1 in graph G1. By induction hypothesis u1 and w1

have a pebble at the end of P [t2], so v1 is active at that point and, since the v1-block is not empty, it gets a

pebble. Such pebble stays in place at least until the end of P [t].

We can finally prove Lemma 9.4. Assume for the sake of contradiction that PS uses strictly less than

p1 + p2 − 1 pebbles. Pebbling P is a legal pebbling of G1 which pebbles the sink z1, because of Claim 9.5

and the fact that PS pebbles vertex (z1, r|G1|). Consider a configuration in which P reaches its maximum

number of pebbles. This configuration is at the end of a sequence P [t] corresponding to a pebble placement

in PS that causes some v1-block to have p2 pebbles, since this is the only case in which a sequence P [t] adds

pebbles.

The corresponding configuration P
S
t has p2 pebbles in the v1-block and at most p1 − 2 other non empty

blocks by assumption. Empty blocks in P
S
t corresponds to empty vertices in P [t] by construction, so there

are at most p1 − 1 pebbles in all configurations in P [t]. This contradicts the fact that Peb(G1) = p1.

Observe that the only point where we used the fact that the length of a centipede is |G1| is to claim

that there is one source without a pebble, so any length u ≥ Peb(G1) would suffice. Since in general it is

PSPACE-hard to compute Peb(G1), we settle for the trivial upper bound |G1|.

54

REFERENCES

10 Concluding Remarks

In this paper, we study the pebble game first introduced in [PH70] as well as the more restricted reversible peb-

ble game in [Ben89], where by [Cha13a] the latter game is also equivalent to the Dymond–Tompa game [DT85]

and the Raz–McKenzie game [RM99].

We establish that it is PSPACE-hard to approximate standard and reversible pebbling price up to any

additive constant. To the best of our knowledge, these are the first hardness of approximation results for such

pebble games, even for polynomial time. It would be very interesting to show stronger inapproximability

results for pebbling price under stronger assumptions. On the one hand, we are only able to show additive

hardness, but on the other hand our results hold for arbitrary algorithms using a polynomial amount of mem-

ory. It seems reasonable to believe that the problem should become much harder for algorithms restricted

to polynomial time, but showing this seems like a challenging task—in some sense, it appears that pebbling

might be so hard a problem that it is even hard to prove that it is hard.

Another challenging problem is to prove approximation hardness, or even just PSPACE-completeness,

for the black-white pebble game [CS76] modelling nondeterministic computation. This game is a strict gen-

eralization of the standard (black) pebble game, and so intuitively it should be at least as hard, but the added

option of placing nondeterministic white pebbles anywhere in the graph completely destroys locality and

makes the reduction in [GLT80] break down. Hertel and Pitassi [HP10] showed a PSPACE-completeness

result in the nonstandard setting when unbounded (and very large) fan-in is allowed. Essentially, the large

fan-in makes it possible to lock down almost all pebbles in one place at a time (namely on the predecessors of

a large fan-in vertex to be pebbled) and to completely rule out any use of white pebbles, reducing the whole

problem to black pebbling (although this reduction, it should be stressed, is far from trivial). This approach

does not work for bounded fan-in graphs, however, which is the standard setting studied in the 1970s and 80s

and the setting that could potentially have interesting applications in, for instance, proof complexity.

We also show in this paper that standard black pebbling is asymptotically stronger than reversible pebbling

by exhibiting families of DAGs over n vertices which have standard pebblings in space s but for which the

reversible pebbling price is Ω(s log n). Since any DAG on n vertices with standard pebbling price s can

be reversibly pebbled in space O(s2 log n), our separation is at most a linear factor (in s ≤ n) off from

the optimal. It would be interesting to determine how large the separation can be. We do not rule out the

possibility that the separation we give might in fact be asymptotically optimal.

Acknowledgements

We are grateful to Anna Gál, Yuval Filmus, Toniann Pitassi, and Robert Robere for stimulating discussions

on the topic of pebble games. A special thanks goes to Mladen Mikša, who participated in the initial stages

of this work but somehow managed to avoid the pebbling addiction that seized the rest of us. . .

The first author performed part of this work while at Princeton University. The second, third and fourth

authors were funded by the European Research Council under the European Union’s Seventh Framework

Programme (FP7/2007–2013) / ERC grant agreement no. 279611. The third author was also supported by

the Swedish Research Council grants 621-2012-5645 and 2016-00782, and by the Independent Research Fund

Denmark grant 9040-00389B.

References

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard func-

tions. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC ’15),

pages 595–603, June 2015.

55

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

[Ben73] Charles H. Bennett. Logical reversibility of computation. IBM Journal of Research and Devel-

opment, 17(6):525–532, November 1973.

[Ben89] Charles H Bennett. Time/space trade-offs for reversible computation. SIAM Journal on Com-

puting, 18(4):766–776, August 1989.

[BTV01] Harry Buhrman, John Tromp, and Paul Vitányi. Time and space bounds for reversible simulation.

Journal of Physics A: Mathematical and general, 34:6821–6830, 2001. Preliminary version in

ICALP ’01.

[CFLS95] Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W Shor. Probabilistically checkable

proof systems and nonapproximability of PSPACE-hard functions. Chicago Journal of Theoret-

ical Computer Science, 1995, October 1995. Preliminary version in STOC ’93.

[Cha73] Ashok K. Chandra. Efficient compilation of linear recursive programs. In Proceedings of the

14th Annual Symposium on Switching and Automata Theory (SWAT ’73), pages 16–25, 1973.

[Cha13a] Siu Man Chan. Just a pebble game. In Proceedings of the 28th Annual IEEE Conference on

Computational Complexity (CCC ’13), pages 133–143, June 2013.

[Cha13b] Siu Man Chan. Pebble Games and Complexity. PhD thesis, University of California at Berkeley,

2013.

[Coo74] Stephen A. Cook. An observation on time-storage trade off. Journal of Computer and System

Sciences, 9(3):308–316, 1974. Preliminary version in STOC ’73.

[CP14] Siu Man Chan and Aaron Potechin. Tight bounds for monotone switching networks via Fourier

analysis. Theory of Computing, 10:389–419, October 2014. Preliminary version in STOC ’12.

[CS76] Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polynomial time recog-

nizable languages. Journal of Computer and System Sciences, 13(1):25–37, 1976. Preliminary

version in STOC ’74.

[DL17] Erik D. Demaine and Quanquan C. Liu. Inapproximability of the standard pebble game and hard

to pebble graphs. In Proceedings of the 15th International Symposium on Algorithms and Data

Structures (WADS ’17), pages 313–324, July 2017.

[DNW05] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In Proceedings of

the 25th Annual International Cryptology Conference (CRYPTO ’05), volume 3621 of Lecture

Notes in Computer Science, pages 37–54. Springer, August 2005.

[DT85] Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by synchronous

parallel machines. Journal of Computer and System Sciences, 30(2):149–161, April 1985. Pre-

liminary version in STOC ’83.

[FNPW10] Yuval Filmus, Jakob Nordström, Toniann Pitassi, and Yu Wu. Unpublished note, 2010.

[FPRC13] Yuval Filmus, Toniann Pitassi, Robert Robere, and Stephen A Cook. Average case lower bounds

for monotone switching networks. In Proceedings of the 54th Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS ’13), pages 598–607, November 2013.

[GLT80] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling problem is complete

in polynomial space. SIAM Journal on Computing, 9(3):513–524, August 1980. Preliminary

version in STOC ’79.

56

REFERENCES

[HP10] Philipp Hertel and Toniann Pitassi. The PSPACE-completeness of black-white pebbling. SIAM

Journal on Computing, 39(6):2622–2682, April 2010. Preliminary version in FOCS ’07.

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal of the ACM,

24(2):332–337, April 1977. Preliminary version in FOCS ’75.

[Krá04] Richard Královič. Time and space complexity of reversible pebbling. RAIRO – Theoretical

Informatics and Applications, 38(02):137–161, April 2004.

[Lin78] Andrzej Lingas. A PSPACE-complete problem related to a pebble game. In Proceedings of the

5th Colloquium on Automata, Languages and Programming (ICALP ’78), pages 300–321, 1978.

[LMT00] Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. Reversible space equals deterministic

space. Journal of Computer and System Sciences, 60(2):354–367, April 2000.

[LTV98] Ming Li, John Tromp, and Paul Vitányi. Reversible simulation of irreversible computation.

Physica D: Nonlinear Phenomena, 120(1–2):168–176, September 1998.

[LV96] Ming Li and Paul Vitányi. Reversibility and adiabatic computation: Trading time and space for

energy. Proceedings of the Royal Society of London, Series A, 452(1947):769–789, April 1996.

[Nor13] Jakob Nordström. Pebble games, proof complexity and time-space trade-offs. Logical Methods

in Computer Science, 9(3):15:1–15:63, September 2013.

[Nor20] Jakob Nordström. New wine into old wineskins: A survey of some pebbling clas-

sics with supplemental results. Manuscript in preparation. To appear in Founda-

tions and Trends in Theoretical Computer Science. Current draft version available at

http://www.csc.kth.se/˜jakobn/research/, 2020.

[PH70] Michael S. Paterson and Carl E. Hewitt. Comparative schematology. In Record of the Project

MAC Conference on Concurrent Systems and Parallel Computation, pages 119–127, 1970.

[Pip80] Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Research Center, 1980.

In Proceedings of the 5th IBM Symposium on Mathematical Foundations of Computer Science.

[Pot10] Aaron Potechin. Bounds on monotone switching networks for directed connectivity. In Pro-

ceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS ’10),

pages 553–562, October 2010.

[PTC77] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on graphs.

Mathematical Systems Theory, 10:239–251, 1977.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,

19(3):403–435, March 1999. Preliminary version in FOCS ’97.

[Seg07] Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic,

13(4):417–481, December 2007.

[Set75] Ravi Sethi. Complete register allocation problems. SIAM Journal on Computing, 4(3):226–248,

September 1975.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time (pre-

liminary report). In Proceedings of the 5th Annual ACM Symposium on Theory of Computing

(STOC ’73), pages 1–9, 1973.

57

http://www.csc.kth.se/~jakobn/research/

HARDNESS OF APPROXIMATION IN PSPACE AND SEPARATION FOR PEBBLE GAMES

[SS77] Sowmitri Swamy and John E. Savage. Space-time trade-offs on the FFT-algorithm. Technical

Report CS-31, Brown University, 1977.

[SS79] John E. Savage and Sowmitri Swamy. Space-time tradeoffs for oblivious interger multiplications.

In Proceedings of the 6th International Colloquium on Automata, Languages and Programming

(ICALP ’79), pages 498–504, 1979.

[SS83] Sowmitri Swamy and John E. Savage. Space-time tradeoffs for linear recursion. Mathematical

Systems Theory, 16(1):9–27, 1983.

[Tom78] Martin Tompa. Time-space tradeoffs for computing functions, using connectivity properties

of their circuits. In Proceedings of the 10th Annual ACM symposium on Theory of computing

(STOC ’78), pages 196–204, 1978.

[VT89] H. Venkateswaran and Martin Tompa. A new pebble game that characterizes parallel complex-

ity classes. SIAM Journal on Computing, 18(3):533–549, June 1989. Preliminary version in

FOCS ’86.

[WAPL14] Yu Wu, Per Austrin, Toniann Pitassi, and David Liu. Inapproximability of treewidth and related

problems. Journal of Artificial Intelligence Research, 49:569–600, April 2014.

[Wil00] Ryan Williams. Space-efficient reversible simulations. Technical report, Cornell University,

2000. Available at http://web.stanford.edu/˜rrwill/spacesim9_22.pdf.

58

http://web.stanford.edu/~rrwill/spacesim9_22.pdf

	Introduction
	Our Results
	Follow-up Work
	Organization of This Paper

	Preliminaries
	Boolean Formula Notation and Terminology
	Graph Notation and Terminology
	Standard and Reversible Pebble Games
	The Dymond–Tompa and Raz–McKenzie Games

	Overview of Results and Sketches of Proofs
	Separation Between Standard and Reversible Pebbling
	PSPACE-Completeness of Reversible Pebbling
	PSPACE-Inapproximability up to Additive Constants

	Separation between Standard and Reversible Pebbling
	Tight Bounds for Trees and Pyramids
	Technical Constructions
	Christmas Tree Construction
	Molding
	Turnpikes

	PSPACE-Completeness
	Literal Gadget
	Variable Gadget
	Clause Gadget
	Conjunction Gadget
	CNF Gadget
	Existential Quantifier Gadget
	Universal Quantifier Gadget

	Product Construction for Reversible Pebbling
	Product Construction for Standard Pebbling
	Concluding Remarks

