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Abstract

During the last decade, the matroid secretary probl&t8K) became one of the most prominent
classes of online selection problems. The intere8t 8P is twofold: on the one hand, there are many
interesting applications dfISP; and on the other hand, there is strong hope M&P admitsO(1)-
competitive algorithms, which is the claim of the well-knowatroid secretary conjecture. Partially
linked to its numerous applications in mechanism desighstsuntial interest arose also in the study
of nonlinear versions oMSP, with a focus on the submodular matroid secretary probISM3P).
The fact that submodularity captures the property of digfiimg returns, a very natural property for
valuation functions, is a key reason for the interesSMSP. So far,0(1)-competitive algorithms have
been obtained foBMSP over some basic matroid classes. This created some hopeaitadgously
to the matroid secretary conjecture, one may even oldéin-competitive algorithms foSMSP over
any matroid. However, up to now, most questions relate8MGP remained open, including whether
SMSP may be substantially more difficult thaiSP; and more generally, to what exteMSP and
SMSP are related.

Our goal is to address these points by presenting generk-blax reductions fronsSMSP to MSP.

In particular, we show that an§(1)-competitive algorithm foMSP, even restricted to a particular ma-
troid class, can be transformed in a black-box way taJdm)-competitive algorithm foSMSP over
the same matroid class. This implies that the matroid s&grebnjecture is equivalent to the same con-
jecture forSMSP. Hence, in this sens8MSP is not harder thaMSP. Also, to findO(1)-competitive
algorithms forSMSP over a particular matroid class, it suffices to consiSP over the same ma-
troid class. Using our reductions we obtain many first andrawed O(1)-competitive algorithms for
SMSP over various matroid classes by leveraging known algostfanMSP. Moreover, our reductions
imply an O(log log(rank))-competitive algorithm foSMSP, thus, matching the currently best asymp-
totic algorithm forMSP, and substantially improving on the previously b@stog(rank))-competitive
algorithm forSMSP.
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1 Introduction

Secretary problems are a very natural class of online sateptoblems with many interesting applications.
The origin of the secretary problem is hard to track and dadek to at least the '605 [12, 117,120,/ 21] 30].
In its original form, also called thelassical secretary problenthe task is to hire the best secretary out
of a setE of candidates of known size = |E|. Secretaries get interviewed (appea) one by one

in a random order. All secretaries that appeared so far carotmpared against each other according to
an underlying linear ordering. Whenever a secretary getwdwed, one has to decide immediately and
irrevocably whether to hire (@elec} him. The task is to hire the best secretary with as high aglitiby as
possible. Dynkin[[12] provided an asympotically optimaja@ithm for this problem, which hires the best
secretary with probability at leasfe. The classical secretary problem is naturally interpreted stopping
time problem and, not surprisingly, was mostly studied lpbpabilists.

During the last decade, interest in generalized versionteetlassical secretary problem surged. One
reason for this is a variety of applications in mechanisngiesee[[1) 3, 4, 26] and the references therein).
These generalizations allow hiring of more than one seyetabject to a given set of (down-closed) con-
straints. Each secretary reveals a non-negative weighimdamance, and the task is to hire a maximum
weight set of secretaries. The arguably most canonicalrgkretion is the problem of hiring out of n
secretaries instead of a single one (see [26]). Howevere general constraints are required for many
interesting applications.

A considerably more general setting, known as niegtroid secretary probleniMSP for short) and
introduced in[[4], allows for selecting a subsetffthat is independent in a given matrodd = (E,I)@
Similar to the classical secretary problem, the number |E| of candidates, oelementsis known upfront,
elements appear in random order, and no assumption is matieiomweights. Access to the matrold is
provided by an independence oracle that can be called oragggpelements,e., for any subset' C F of
elements that appeared so far, one can check whgtkef or not.

MSP attracted considerable interest recently. It is very almpgaue to the fact that it captures a wide
set of interesting selection problems in a single framewbtkthermore, matroids are highly structured con-
straints, which gives reasonable hope that strong onlgerithms exist. Indeed, there is a famous conjec-
ture, which we simply call thenatroid secretary conjecturelaiming the existence of afi(1)-competitive
algorithm for the matroid secretary problem [4]. We redadittan algorithm is--competitive if the expected
weight collected by the algorithm is at Ieaol?*t- w(OPT), wherew(OPT) is the maximum weight of any
feasible setj.e., the offline optimum. Whereas this conjecture remains opk)-competitive algorithms
have been obtained for various special cases of matroidd4d€,[11] 24| 25, 27, 32, B6]). The currently
strongest asymptotic competitive ratio obtained for galldSP—without any restriction on the underlying
matroid—isO (log log(rank)) [28,,[16], where fank” is the rank of M, i.e., the cardinality of a maximum
cardinality independent set iiv.

Recently, increased interest arose in nonlinear versibtiseosecretary problem, with a focus on the
maximization of a non-negative submodular func@{h‘s; 6,14 23 32], leading to thr®ubmodular secretary
problem Submodular functions have widespread use as valuatiatifuns because they reflect the property
of diminishing returnsj.e., the marginal value of an element is the bigger the fewer etgdsnhave been
selected so far. This makes them natural candidates for #teiuh secretary setting.

Additionally, submodular weight functions capture furtigeneralizations of the secretary problem. For

1 A matroid M = (E,T) consists of a finite sef and a non-empty familg C 2% of subsets ofZ, calledindependent sets
that satisfy: (i) ifl € ZandJ C I thenJ € Z, and (i) if I, J € Z with || > |J| then there is an elemeatc I \ J such that
J U {e} € Z. For further basic matroidal concepts, such as rank and syarefer to[[35, Volume B].

2A non-negative submodular functighon a ground sekE is a functionf: 2 — R* giving a non-negative weight to every
subset off and satisfying the followingliminishing returngroperty: f(AU{e}) — f(A) > f(BU{e})— f(B)for AC BCE
ande € £\ B.



example, Gilbert and Mosteller [22] and Freeman| [19] comrsd a variation of the classical secretary
problem where one can selectelements with the goal of maximizing the value of the highedtied
element. This problem can be phrased as a submodular sggpeddlem with the submodular function
f:2¥ — R* defined byf(S) = max{w(e) | e € S} for S C E, wherew(e) is the weight revealed by
elemente.

The currently best asymptotic competitive ratio for theraobular matroid secretary problei8NISP)
is O(log(rank)) [23]. Furthermore((1)-competitive algorithms have been obtained for specialsela of
matroids, including uniform matroidsl[6, 15,123], partitionatroids [[15, 23], and laminar and transversal
matroids [32] (both only for monotoBesubmodular functions).

In general, our understanding of secretary problems is marie limited when dealing with submodular
weights instead of linear ones, leading to many open questilm particular, is there hope to get @f1)-
competitive algorithm foSEMSP? Notice that this corresponds to the matroid secretaryectunje translated
to the submodular case. Or may the submodular case be stddtamarder than the linear one? Do
monotoneSMSP admit considerably better competitive ratios than nonnmm® ones? Can we leverage
strong algorithms foMSP to obtain results foEMSP?

The goal if this paper is to address these questions and geg@ed understanding &SP and its
relation toMSP, independently of the structure of particular classes diuying matroids.

1.1 Our Results

Our main result below shows an intimate relation between(lthear) matroid secretary problem and the
submodular version. More precisely, we show that one carangealgorithm forMSP as a black box to
obtain an algorithm foBMSP with a slightly weaker competitive ratio.

Theorem 1.1. Given an arbitrary algorithnmiinear for MSP and a valuex > 1, there exists an algorithm
for SMSP whose competitive ratio is at mdsta(3a + 1) = O(a?) for every matroidM on whichLinear
is guaranteed to be at leastcompetitive.

Theoreni L1l has several interesting implications. In paler, if there is ar)(1)-competitive algorithm
for the linear case, then there is @fl)-competitive algorithm for the submodular case. Hencenbgoid
secretary conjecture is equivalent to the same statemetttdasubmodular version. This provides strong
hope that constant-competitive algorithms existSMSP.

Furthermore, Theorem 1.1 implies many new resultsSMSP, both for the general version with-
out any restriction on the matroid as well as for many spedméses of matroids, by leveraging algo-
rithms forMSP. In particular, the knowi® (log log(rank))-competitive algorithms foMSP [28,[16] imply
O((log log(rank))?)-competitive algorithms foBMSP, which already considerably improves on the previ-
ously besO (log(rank))-competitive algorithm foSMSP [23]. We later strengthen this result to match the
asymptotically best algorithm faMSP.

The only matroid classes for whieh(1)-competitive algorithms foBMSP have been explicitly given,
without assuming monotonicity of the submodular weightction, are uniform matroids [6, 23], unitary
partition matroids[[28] and matroids for which a reductienunitary partition matroids is known. Such
reductions are known for graphic matroids([2] 23], cographatroids[[36], and for max-flow min-cut ma-
troids [11]. These reductions have originally been usedtainO(1)-competitive algorithms foMSP over
these matroids, but they lead also to algorithmsS®MSP over the same matroid classes when combined
with an algorithm forSMSP over unitary partition matroids. For other classes of mds&oTheorend 1]1
implies the firstO(1)-competitive algorithm foSMSP, by leveraging knowrD(1)-competitive algorithms
for MSP, such as the ones known for transversal matroids [27] anohéarmatroids([24]. Furthermore, we

A submodular function is monotone$ C T C E implies f(S) < f(T).



also improve the competitive ratios for most matroid clagee whichO(1)-competitive algorithms have
already been known.

The analysis of the algorithm that we use to prove Thedrefsdnleasily be improved in many cases, if
the algorithmLinear obeys some natural properties. Theotem 1.2 below gived atfiemgthening of Theo-
rem[1.1 and allows us to derive &{log log(rank))-algorithm forSMSP, thus, matching the currently best
algorithm forMSP up to a constant factor, and improving on the previously Be&tg(rank)) competitive
algorithm forSMSP.

We highlight that Theoremn 1.1 can be obtained from Thedréhby settingk = 1.

Theorem 1.2. Given an algorithnLinear for MSP and valuea > 1, there exists an algorithm f@MSP
whose competitive ratio is at mtka(3a + 1) = O(k - o?) for every matroidM on which the behavior
of Linear can be characterized as follows.

e For everyMSP instance over the matroid, there exists a set @f (correlated) random set&P; 5:1
such that each se®, is always independent iM and IE[w(Uf:1 P;)] > w(OPTy)/a, wherew is
the weight function of thB1SP instance and)PT,, is the maximum weight independent set given

e Linear outputs a uniformly random set frofi?; }%_, .

Observe that such an algorithinnear is (k - a)-competitive forM.

Corollary 1.3. There exists a®(log log(rank))-competitive algorithm foBMSP.

Proof. Feldman et al![16] describe &\ log log(rank))-competitive algorithm foMSP. Their analysis of
the algorithm shows that in fact it obeys the requirementSraforeni 1.R folinear with « = O(1) and
k = O(log log(rank)). Notice that the algorithm guaranteed by Theofem 1.2 doedepend ork. Hence,
there is no need to know thank ahead of time to use this algorithm. O

In what follows we present further useful strengtheningsTb&orem[ LIl that are readily obtained
through our derivation of Theorem 1.1. These results allowabtaining stronger competitive ratios if
Linear fulfills some very typical properties, or if the submodulaiuation function is monotone. When
dealing with monotone submodular functions, we talk abbatntonotone submodular secretary problem
(MSMSP). We first state the improved reductions and later preseintithplications in terms of competitive
ratios in the form of a table.

Theorem 1.4. Given an algorithmLinear for MSP and valuesee > 1 andg¢ € (0,1], there exists an
algorithm for SMSP whose competitive ratio is at leadta(3qa + 1) = O(q - o?) for every matroidM
on whichLinear is guaranteed to:

e be at leasin-competitive.

e select every element with probability at mgst

The results proved above can be somewhat improved for moeatbjective functions. Appendix] A
explains how the proofs of Theorems]i[1,]1.2 1.4 need thaeged in order to get the following
theorem.

Theorem 1.5. WhenSMSP is replaced withMSMSP in Theorem$ 111, 1.2 arid 1.4 their guarantees can
be improved t@a(a + 1), 8ka(a + 1), and8a(ag + 1), respectively.

For monotone functions there is one additional natural gnrtypof Linear that can be used to get a
stronger result. Intuitively this property is thiinear selects every element of the optimal solution with
probability at leastv—!, and thus, isx-competitive. Many algorithms have this property when gemave
disjoint weights, and thus, there is a single optimal sotutiSuch algorithms are often extended to general
inputs by introducing a random tie breaking rule. The foilagvtheorem is designed to deal with algorithms
obtained this way; its proof can be found in Appendix A.
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Theorem 1.6. Given an arbitrary algorithnmiinear for MSP and a valuex > 1, there exists an algorithm
for MSMSP whose competitive ratio is at mosta = O(«) for every matroidM on whichLinear has
the following property: For everISP instance over the matroidt = (N, Z), there exists a random set
S C F obeying:

e S is always an optimal solution of tHdSP instance.

e For every element € E, Pr[u is selected by Line&r> Prju € S]/a.

The following table summarizes the competitive ratios wtawt) for SMSP andMSMSP over patrtic-
ular matroid classes, by leveraging the above-presentmtirienﬂ A straightforward application of these
reductions leads to improvements or even first results fanatroid classes listed in the table. However,
using some additional observations we can sometimes dghefumprovements. Further details on how the
stated results are implied by our reductions can be foundpipeAdixB. Our improvement for unitary par-
tition matroids also implies improvements by the same fafpall matroid classes for which a reduction
to unitary partition matroids is known.

Matroid Type Known Competitive Ratio Our Competitive Ratig
Unitary partition matroids 1297 M [23] 261
Transversal matroids — 2496
k-sparse linear matroid$) — 24ke(3k + 1)
k-sparse linear matroid$ASMSP) - 8ke(k + 1)
Laminar matroids — 585
Laminar matroidsNISMSP) 211 [32] 144

(1) Gupta et al.[[28] do not explicitly calculate the compettiatio of their algorithm, however, its
competitive ratio is no better that3000/37 ~ 1297.

(2) A k-sparse linear matroid is a linear matroid with a matrix esentation using at moktnon-
zeros per column.

We highlight that apart from the unitary partition matroigse, all other results in the above table for
particular matroid classes assume prior knowledge of theomain addition to the size of its ground set.
This is due to the fact that the correspondM&P algorithms that we put into our framework to get results
for SMSP make this assumption.

Remark: The proofs of all the above theorems useear in a black-box manner. Hence, these theorems
apply also to many models allowing the algorithm more infation, such as the model in which the al-
gorithm has full knowledge about the matroid from the bemignbut not about the objective function).
Also, we emphasize that all the above results are genenattieds fromMSP to SMSP, not assuming any
particular structure about the underlying matroid. Thisistark contrast to almost all results 8MSP so

far.

1.2 Further Related Work

Progress has been made on the matroid secretary conjeatwaitints oMSP which modify the assump-
tions on the order in which elements arrive and the way weigih¢ assigned to elements. One simpler
variant of MSP is obtained by assumingndom weight assignmenHere, an adversary can only choose
n = |E| not necessarily distinct weights, and the weights are asdigo the elements uniformly at ran-
dom. In this model, &.7187-competitive algorithm can be obtained for any matroid [38Hditionally,
al6(1 — 1/e)-competitive procedure can still be obtained in the randoaigiat assignment model even
if elements are assumed to arrive in an adversarial ordéi38¢ Hence, this variant is, in a sense, the

“For readability, the competitive ratios in the table haverbeunded to the closest integer.
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opposite of the classicdliISP, where weights are adversarial and the arrival order isaemd-urthermore,
a 4-competitive algorithm can be obtained in the so-cafteg order model Here, the weight assignment
is adversarial; however, the algorithm can choose the andethich elements arrive [1, 25]. Among the
above-discussed variants, this is the only variant witheeshrial weight assignments for which @xil1)-
competitive algorithm is known. For more information ongetadvances okISP and its variants we refer
to the survey([10].

We also highlight thaSMSP is an online version of submodular function maximizati&#) over a
matroid constraint. Interestingly, even in the offline isgtt O(1)-approximations foSFM over a matroid
constraint have only been discovered very recently, agauiith a(4 + €)-approximation presented in [29].
Considerable progress has been made in the mearitime_[34,The] currently strongest approximation
algorithm has an approximation ratio of abeutz 2.718 [15]. We refer the interested reader t6[[8] 15] for
more information on constrainesFM.

1.3 Organization of the paper

We start by formally introducing our problem and some basi@tion and results in Sectidh 2. Sectidn 3
presents our main algorithm that we use to prove our res#lisally, Sectior 4 provides details on the
analysis of our algorithm.

2 Preliminaries

In this section we formally define our problem and state soatation and known results that are used later
in the paper.

2.1 Problems and Standard Notation

An instance of the Submodular Matroid Secretary Probl&W$P) consists of a ground seéf, a non-
negative submodular objective: £ — R and a matroid constraintt = (F,Z). An algorithm for
this problem faces the elements Bfin a uniformly random order, and must accept or reject easimeht
immediately upon arrival. The algorithm has access to |E| and two oracles:

e Avalue oracle that, given a subsgtC E of elements thaalready arrived returnsf(.S).

¢ An independence oracle that, given a sulfset FE of elements thaalready arrived determines

whetherS € 7.
The objective of the algorithm is to accept an independanifsglements maximizing'.

The Matroid Secretary ProblenMGP) can be viewed as a restriction 8MSP to linear objective
functions. More formally, an instance MSP is an instance oBMSP in which the functionf(S) is
defined byf(S) = >, cqw(u) for some set of non-negative weightta)(u) | u € E}. Similarly, the
Monotone Submodular Matroid Secretary ProblddSMSP) is a restriction ofSMSP to non-negative
monotone submodular objective functions.

The following notation comes handy in our proofs. Given a$etnd an element, we useS +
and S — u to denote the set§ U {u} and S \ {u}, respectively. Additionally, given a weight function
w: E — R, we usew(S) as a shorthand foy_, s w(u). Finally, given a set functiorf: 28 — R, we
denote byf (u | S) the marginal contribution of addingto S. More formally, f (u | S) := f(S+u)— f(95).



2.2 The Function f,,

Given a set functiory : 2 — R and a weight vectow € R, let f,,: 2 — R be the function defined as:
Fu(8) = min{f(4) + w(S\ A)}  VSCE .

This construction off,, out of f andw is well known in the field of submodular function optimizatjcand
is sometimes calledonvolution(see, for example| [31]). We state some basic propertigg, ofProofs of
these results can, for example, be found.in [33, Chapter 10].

Property 2.1. For every setS C E, f(S) > f,(S), and forS = @ the inequality holds with equality.

Property 2.2. If f is a non-negative submodular function andis non-negative, therf,, is also non-
negative and submodular. Moreoverifs also monotone, then so fs,.

2.3 Known Lemmata

We need the following known lemmata. The lemmata have begirased a bit to make the difference
between them clearer.

Lemma 2.3(Lemma 2.2 of[[18]) Letg: 2¥ — R* be a submodular function. Denote Hyp) a random
subset ofd where each element appears with probabifitghot necessarily independently). Then,

E[g(A(p))] > (1 —p)g(@) +p-g(A) .

Lemma 2.4(Lemma 2.2 of[[7]) Letg: 2 — R* be a non-negative submodular function. Denotelty)
arandom subset of where each element appears with probability at mdstot necessarily independently).
Then,

Elg(A(p))] > (1 —p)g(2) .

3 Algorithm

The algorithm used to prove our results 8¥SP is given as Algorithni 1. Observe that the algorithm has
a single probability parametgre (0, 1). Additionally, the algorithm uses an arbitrary proceduireear for
MSP whose existence is assumed by Theorem 1.1 and our othetsr&mUBMSP. Finally, the algorithm
also uses as a subroutine the standard greedy algorithmakinmizing a submodular function subject to
matroid constraints (denoted IG§reedy), which can be found, for completeness, in Apper’@@ While
reading the description of Algorithid 1, the only importaning one has to know abo@reedy is that it
creates its solution by starting with the empty set and agdlaments to it one by one.

A key challenge in trying to leverag@reedy in an algorithm forSMSP, is that Greedy is not a
constant-factor approximation algorithm for submodulardtion maximization over a matroid (or even in
the unconstrained setting). In our analysis we show thaodtlyn[1 manages to circumvent this issue,
and the sef/, produced within Algorithni 11 usin@reedy, does provide a constant approximation for the
optimal solution.

Observe that Algorithrhl1 can be implemented online becausnever an elementis fed toLinear,
the algorithm already knows whether € N, and thus, can determine the membershipioh Q@ N NV
immediately aftet.inear determines the membershipwfn . Additionally, note that Algorithra]1 applies

SFor non-monotone functions there are two versionSafedy: one that stops picking elements once they all have negative
marginal contributions, and one that continues as long ssilple. In this paper we use the first version.
9 g pap



Algorithm 1: Online(p)

/'l Learni ng Phase
1 ChooseX from the binomial distributiorB(n, 1/2).
2 Observe (and reject) the fir& elements of the input. Ldt be the set of these elements.

/'l Sel ection Phase
3 Let M be the output ofsreedy on the setL.

4 LetN < &.

5 for each arriving element € £ \ L do

6 Letw(u) « 0.

7 if v is accepted bysreedy when applied taV/ + « then

8 with probability p do

9 Add u to V.

10 Let M,, € M be the solution olGreedy immediately before it adds to it.
11 Updatew(u) < f(u | M,).

12 Passu to Linear with weightw(u).

13 return Q N N, where( is the output oLinear.

Linear to the restrictiofl of its input matroidM to the setE \ L. We assume in the analysis of Algoritiiin 1
thatLinear is a-competitive for that restriction of1 whenever it isx-competitive forM. Many algorithms
for MSP obey this property without any modifications, but for some weed the following proposition
which proves that this assumption can be justified in general

Definition 3.1. Partial-MSP is a variant ofMSP where an instance consists also of a et E knownto

the algorithm. The elements &f\ L arrive at a uniformly random order as usual. The elementt oéver
arrive, and thus, cannot be added to the solution. Howekierptacles can answer queries about them as if
they arrived before the first elementBf\ L.

Proposition 3.2. Given an algorithmLinear for MSP, there exists an algorithm for PartidSP whose
competitive ratio for every matroid is as good as the competitive ratiolahear for this matroid.

The proof of Proposition 312 can be found in Apperidix D. NeticatLinear indeed faces an instance
of PartialMSP since the sel is fully known beforeLinear is invoked for the first time, and the weights
assigned to elements depend solelylonThe following simple observation is well known. A proof of i
can be founde.g, as Lemma A.1. of [16].

Observation 3.3. The setL constructed by Algorithri 1 contains every elementafith probability 1/2,
independently.

As is, it is difficult to prove some claims about Algoritith lorfthat purpose, we present Algorittitn 2,
which is an offline algorithm sharing the same joint disttit (as Algorithni1) of the set/ and the output
set (a justification of this claim can be found in Appendix Clearly, the competitive ratio of Algorithid 1
is equal to the approximation ratio of AlgoritHm 2.

Notice that Algorithni 2 also makdsnear face an instance of PartisddSP (with L = E '\ (N U Ny)).
Hence, by Proposition 3.2, we can assume the competitiieaBLinear for M extends to the instance it
faces in Algorithni2.

STherestrictionof a matroidM = (E,Z) to a subseE’ C E of its ground set is the matroitt’ = (E',Z N 27").



Algorithm 2: Simulated(p)

[/ Initialization
1 LetM,N, Ny + @.
2 LetE « E.

/1 Main Loop
3 while £ # @ do

4 Let u be the element of” maximizing f (u | M), and remove: from E'.

5 Letw(u) < f(u| M).

6 if M + wis independent io\ andw(u) > 0 then

7 with probability 1/2 do Add « to M. otherwise with probability p do Add u to N.
otherwise

8 Updatew(u) < 0.

9 L Add u to Nj.

10 else

11 Letw(u) < 0.

12 Add u to N,y with probability 1/2.

13 RunLinear with N U Ny as the input (in a uniformly random order) and the weightsneefibyzw.
14 return @ N N, where@ is the output otinear.

Algorithms[1 and R can be viewed as generalizations of alyos presented by [32] fdSMSP over
laminar matroids. In particular, the idea of defining a sgate weight functions based on a subset of
the elements sampled at the beginning of the algorithm waady used in [32]. Although our analysis of
Algorithms[1 and R is quite different and much more generahthe analysis of [32], it does borrow some
ideas from[[32]. The concept of an offline algorithm simulgta more difficult to analyze online algorithm
has been previously used, even specifically for offline satiuhs of an online greedy algorithml [9,127,
32]. A key novel contribution of our analysis, compared[t8][3s that we manage to relate the expected
w-weight of a maximumw-weight independent set itV to E[w(M)] (see Lemma_418). Furthermore,
we overcome several technical hurdles by first comparingegbf constructed sets with respect to the
convoluted submodular functiofy, instead of the original functiorf. Finally, our use (and analysis) of a
modified greedy algorithm allows us to deal with non-monetsnbmodular functions.

4 Analysis of Algorithms[1 and[2

Throughout this section (except in Section4.4) we fix anteatyi matroidM = (E, Z) for which Linear
is a-competitive, and analyze the approximation ratio of Aithon[2 for this matroid. Since Algorithnis 1
and(2 share their output distribution, the approximatidionae prove for Algorithni 2 implies an identical
competitive ratio for Algorithni L. The analysis of the apgration ratio consists of three main stages. In
each stage we study one of the skfs NV and N N Q. Specifically, we show bounds on the expected values
assigned to each one of these setsulgnd f,,. Notice that once we have a bound®fy,,(N NQ)], we also
get a bound on the expected value of the solution produceddpyrithm[2 sincef (N N Q) > f,(N N Q)
by Propert

Following is some notation that is useful in many of the psooélow. For every elemente F, let £,

"Observe that the weights chosen by AlgorithriLl2 are always non-negative, thus, we sarail the properties of,, stated in
Sectior 2.



be the set of elements processed by Algorithm 2 beforEhen, we define:
N,=NnNE, and M,=MnNE, .
Similarly, we also defind”, = E,, + u and:

N/, =NNnE, and M, =MNE, .

4.1 First Stage

We now begin with the first stage of the analysis,, boundingE[w(M)] andE[f,,(M)]. The following
lemma shows that both values are in fact strongly relatét] fo1/)].

Lemma4.1l. w(M) + f(@) = f(M) = fu(M).

Proof. Observe that, by constructiony(u) = f(u | M,) for everyu € M. Hence, the equality(M) +
f(@) = f(M) holds since:
w(M) =Y flu] My) = f(M) ~ f(2) .
ueM
Let us now prove the equality,, (M) = f(M). By Property 2.1 f,,(M) < f(M). Thus, we only need
to prove the reverse inequality. For every de€ M:

FA) +wM\A) =f@)+ > flul AnNM)+ > flu]M,)

ucA u€M\A
> f(@)+ D flul Mu)+ Y flu] My) = f(M)
ucA u€M\A

where the inequality follows from submodularity. Hence thg definition off,,(M):

fu(M) = min {f(A) + w(M\ A)} > min f(M) = f(M) . O
The bounds given by the above lemma are in termg(éff). To make these bounds useful, we need
to bound alsdE|[f (M )]. This is not trivial sinceGreedy is not a constant-factor approximation algorithm
for submodular function maximization over a matroid. Diéfet approaches are known to adapt or extend
Greedy such that it provides a®(1)-approximation in the offline setting. However, these arewell-
suited for the way we simulate greedy online. The next twontetta show a very simple way to transform
Greedy into an O(1)-approximation algorithm for submodular function maxiation; and most impor-
tantly, this adjustment oBreedy is trivial to simulate online. We are not aware of any preglgiknown
variation of Greedy that provides arO(1)-approximation for submodular function maximization ower
matroid constraint, and that can easily be simulated in tiie® setting.
The next lemma is similar to Lemma 3 0f [23], but does not asstivatf is normalizedite., f(2) = 0).
The proof of the lemma is deferred to Appendik D since it gdesgthe same lines as the proof of [23].

Lemma 4.2. For a matroid and a non-negative submodular functignf S is the independent set returned
by Greedy, then for any independent sét f(S) > f(C U S)/2.

The following lemma gives the promised variant@feedy.

Lemma 4.3. LetS be a random set containing every elemenkafith probability 1/2, independently, then
E[f(Greedy(S))] > f(OPT)/s.



Proof. LetT be the output oGreedy. By Lemmd 4.2, the following inequality always holds:

F(T U(OPTNS))
. .

f(T) >
Hence,

E[f(T)] = Z Pr[OPTNS = A] - E[f(T) | OPTNS = A]
(0) 4

> Z r[OPTNS = A] - E[f(TUA) | OPTNS = 4] .

oP

l\DI»—\

Let g4(T) = f(T'U A). Itis easy to check thaj4 is a non-negative submodular function for every
choice of setd. Additionally, 7" C S, and thus, contains every elementfof\ A with probability at most
1/2 even conditioned o®PT NS = A. Hence, by Lemma 2.4:

E[f(TUA) | OPTNS = A] = E[g4(T \ A) | OPTNS = 4] > 4= _ 22

Combining the two last inequalities gives:

EHGIEENDY <Pr[OPTmS Al f<£4>> _ ELFOPTOS)]  SOPT)
ACOPT 8
where the last inequality follows by LemrmaR.3. -

Corollary 4.4. E[f(M)] > f(OPT)/8.

Proof. We prove the corollary for the sétf of Algorithm[dl, which is fine since it has the same distribatio
as the sef\f of Algorithm[2. Observe that the sétof Algorithm[1 contains every element with probability
1/2, independently, and/ is the result of applyingsreedy to this set. Thus, the corollary holds by
Lemmd4.3. O

4.2 Second Stage
In the second stage we use the bounds proved in the first stggéttounds also dB[w(N)] andE|[f,,(N)].
Lemma 4.5. E[w(N)] = p - E[w(M)].

Proof. Consider an arbitrary elemente E processed by Algorithial 2, and let us fix all history up to the
point beforeu is processed. IM +u ¢ Z or f(u | M) < 0, then there is a zero expected increase in both
w(M) andw(N) during the processing af. Otherwise, the expected increasedf/) is w(u)/2, while

the expected increasein(V) is (p/2) - w(u). Hence, if we denote by\ ), the expected increase in(M)

and byA y the expected increase in( V), then:

02wl
V= Tuwr 8

The lemma now follows from the linearity of expectation. O

M=p Anp .

Getting a bound orf,,(N) is somewhat more involved.

Lemma 4.6. E[f,,(N)] > ’;(er) +p(11+£7 “E[fuw(M)].

10



Proof. Consider the auxiliary functio® (M, N) = f,(N) — ﬁ - fw(M U N). Observe thaf is in fact
a random function since it depends on the random vectdDur first objective in this proof is to show that

E[@(M,N)| > (1+p)~"- f(2) . (1)

For that purpose, we defing,, as the change i® (M, N) whenu is processed by Algorithinl 2. More
formally, A, = ®(M,,N,) — ®(M,, N,). Additionally, let R, be an event encoding all the random
decisions of Algorithni 2 up to the moment before it processeamnd letR,, be the set of all such events.
Then, since, by Properfly 2.8(2,2) = (1+p)~! - f,(2) = (1 +p)~' - f(2):

E@®(M,N)] - (L+p)~" - f(@) =D E[A]=> > (Pr[R) -E[A,| R .

uelk u€EE RyERy

Thus, to prove Inequality (1) it is enough to sh&jA\,, | R,] > 0 for an arbitrary element € E and event
R, € R,. Notice that conditioned o®,,, the sets\/,, and N,, and the part of the vectar corresponding
to E/, are all deterministic. 1M, +u ¢ Z or f(u | M,) < 0, then we are done sinc®/,, = M,, and
N, = N, Thus, we only need to consider the cdgg+ v € Z and f (u | M,,) > 0. In this case: is added
to M with probability 1/2 and toN with probability p/2. Thus,

Elfw(Ny) = fu(Nu) | Ry = Prlu € N | Ry] - E[fy(u | Nu) | R
> Prlu € N | Ry] - E[fw(u | My UN,) | Ry

__p/?
—W'PY[MGMUNIRu]'E[fw(uIMuuNu)|Ru]

p / /
= T4 B UND) = fuMyUN | Ri]
where the inequality holds singg, is submodular by Properfy 2.2. Rearranging the last inéguaélds
E[A, | Ry] > 0, which completes the proof of Inequalifyl (1).

Next, observe that for an element to ent&rthree things have to happen: first it must hold thgt+v €
Z andf(u | M,) > 0, then the algorithm must randomly decide not to add the eiioel/ and finally the
algorithm must randomly decide (with probability to add the element t&/. The last decision does not
affect the future development @f andw, and thus, even conditioned dd andw, every element belongs
to IV with probability at mosp. To use the last observation, kgt »/(S) = f,(M U S). One can observe
thatg,, »s is non-negative and submodular. Thus, by Lerima 2.4:

E[fw(MUN) | M>w] :E[gw,J\/l(N) |M7w] > (1 _p) 'gw,J\/l(g) = (l—p) fw(M) .

By the law of total expectation, the above inequality imglie

E[fw(MUN)] > (1 _p) E[fw(M)] )

which implies the lemma when combined with Inequalitly (1). O

4.3 Third Stage

In the third stage we use the bounds proved in the first anchdestages to get bounds @w(Q N N)]
andE[f,(Q N N)]. For that purpose, let us defi@T,,(N) as the maximum weight independent set in
N with respect to the weight functian. The fact that.inear is a-competitive forM implies the following
observation.

Observation 4.7. E[w(Q N N)] = Ew(Q)] > 1 - E[w(OPT,(N U Ny))] = 2 - E[w(OPT,(N))].

a

11



Thus, to get a lower bound dijw(Q N N)] it suffices to get a lower bound d&w(OPT,,(N))].

Lemma 4.8. E[w(OPTy,(N))] = & - E[w(M)).
Proof. For this proof we need Algorithin 2 to maintain two additiosetsN’ and H. The setN’ is the set

of elements ofV that are not spanned by previotselements when added 8. More formally, the set

N’ is originally empty. Whenever an elemants added taV, it is also added taV’ if it is not spanned by
previous elements aW. Clearly, the sefV’ C N at the end of the procedure is an independent set, and we
can, thus, us&[w(N')] as a lower bound oE[w(OPTw(N))]E Hence, to prove the lemma it is enough to
showE[w(N')] > {Z-Elw(M)].

The setH is maintained by the following rules:

e Originally H is empty.

e Whenever an elementis added taV’, it is also added td if H + v € Z.

e Whenever an element is added to}M, it is also added tad. If that addition makesd non-
independent, then an arbitrary elemeifts) € H N N’ such thatd — ¢(u) € Z (such an element
exists since \ N’ = M is independent) is removed froff.

Consider now an arbitrary elememtc E processed by Algorithil 2, and let us fix all history up to the
point beforeu is processed. Notice that at this poinfu) is no longer a random variable. We are interested
in the expected increase of M) andw(N’) whenw is processed. IM +u & Z or f(u | M) < 0, then
Algorithm[2 does not add to either M or IV, and thus, there is a zero increase in botd/) andw(N’).
Otherwise, ifN' + u € Z, then the expected increaseuriM) is w(u)/2, while the expected increase in
w(N') is (p/2) - w(u). Finally, we need to consider the case that+ v € Z and f(u | M) > 0 but
N'+u ¢ Z. In this case the expected increasevifi\/) is still w(u)/2, but the expected increasedr{ N')
is 0. To fix that, we chargép/2)-w(u) to the element off that becomes(u) if u is added ta\/ (regardless
of whetheru is really added ta\/ or not).

Let ¢(u) be the amount charged to an elemenBy the above discussion we clearly have:

Efuw(M)] 12
Efw(N)] + 2 pep Elc()] /2

To complete the proof we upper bound the charge to every efeme E. Let us fix all history up to
the point afteru is processed. It ¢ H N N’ at this point, then, by definition;(u) = 0. Otherwise, from
this point on, tillu leavesH N N’, every arriving element’ can have one of two behaviors:

e v’ does not cause a charge to be added to

e u/ causes: to be charged byp/2) - w(u') < (p/2) - w(u) (the inequality holds because Algorittith 2

considers elements in a non-increasing weights orderhisrcase, with probability /2, «” is added

to M andu is removed fromH N N’ (and therefore, will not be charged again in the future).
From the above two options we learn that whegets intod N N’, ¢(u) is upper bounded bfp/2)-w(u)- X,
whereX is distributed according to the geometric distributi@(il /2). Thus, in this case:

Ele(u)] < (p/2) - w(u) - E[X] = p - w(u) .

(2)

Combining both cases, we get that the following inequalityags holds:
Elc(w)] < p-Efw(N' N {u})] .
Plugging the last inequality int@l(2) gives:

Elw(M)] 1. »
Efw(V)] +p Ew®)] ~p  1+p

8In fact, N’ is a maximum weight independent sethsince the process creating it is equivalent to running greedV with
the objective functionu.

Efw(M)] < Elw(N')] . O

12



Corollary 4.9. E[w(Q N N)] > ﬁ -E[w(M)].
Proof. Follows immediately from Observatién 4.7 and Lenima 4.8. O

The bound orE|[f,,(Q N N)] is obtained by showing th&[w(Q NN) — fu,(QNN)] < q-E[w(N) —
fw(N)] for some valug; > é We later show that this inequality always holds §o&= 1, which already
allows us to prove Theorem 1.1. However, it turns out that Xplating some basic properties of many
algorithms for (linear)MSP, the same inequality can be shown for smaller values, ofhich leads to
stronger competitive ratios.

Proposition 4.10. If E[w(Q N N) — f,(Q N N)] < ¢ - Elw(N) — fu(N)] for some valug; > 1, then

E[f(Q N N)] > E[f,(Q N N)] > 243 £(OPT).

Proof. Observe that:

E[fu(@ N N)] 2 E[w(@ N N)] — ¢ - E[w(N) — fu(N)] ®3)
p
> ol +7) -Efw(M)] = ¢ - E[w(N)] + ¢ - E[fuw(N)]

p q f(@) , gp(l—p)
> -Elw(M)] — qp - Elw(M -E
> iy EROD] - o Blw()] + 1700+ e |
where the first inequality holds by the assumption of the psiijon, the second by Corollafy 4.9 and the
last by Lemmata 415 arid 4.6.
Lemmd 4.1 implies the following inequalities:

fu(M)]

ol +p) P = Za= - B = £(2) 2 T - Elf(M)]

—Elw(M)] = —(E[f(M)] - f(2)) > -E[f(M)]  and  E[fu(M)] =E[f(M)] .
Plugging these inequalities into Inequality (3) yields:

Elfu(QNN)] > —L— E[/(M)] - gp- ELF(0)] + L) gip(any

a(1+p) 1+p
p(1 —aq(l +p)+aq(l—p p(1 — 2¢pa
— el el e p +odll 2 p) gy = PL_2000) gy
a(1+p) a(l+p)
The proposition now follows by combining the last inequailitith Corollary[4.4. O

The following observation proves that one can yse 1 for every algorithnLinear.

Observation 4.11. w(S) — f.,(S) is a monotone function of, hencew(Q N N) — f,(QNN) < w(N) —
fuw(N).
Proof. Let .S be an arbitrary subset @ and letu € E'\ S. We need to show that(S + u) — f,,(S +u) >
w(S) — fu(S), or equivalentlyw(u) > f,(S + u) — fi,(S). By definition, there exists a sé& C S such
that:

fuw(S) = f(B) + w(S\ B) .

Hence,
fw(S+u) = Agggu{f(A) +w((S+u)\ A)} < f(B) +w((S+wu)\ B)
= f(B) + w(S\ B) + w(u) = fu(5) + w(u) .
The observation now follows by rearranging the above inktgyua O
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We can now prove Theorem 1.1.

Proof of Theorerh 111By Observatiori_ 4.11, we can plug = 1 into Proposition 4.70. Choosing =
(3a)~! < 1, the proposition implies:

(3a)1(1—2/3) - 1
Ef(@NN)] = o (0% Ga) D) - f(OPT) = Moot 1) - f(OPT) .
Hence, Algorithni2 withp = (3a) ™! is 24a(3a + 1)-competitive for the matroidh1. O

Note thatp = (3a)~! used in the above proof is not the minimizer of the expression-2pa) /(8a/(1+
p)) obtained from Proposition 4.110 by setting= 1. We usep = (3a)~! for simplicity since it leads to a
clean expression that is very close to the one obtained bmthieizing p.

In some cases it is possible to use a smaller valugiofPropositio 4.10. The following two claims
prove one such case. A set functign2” — R is callednormalizedif ¢(@) = 0 andsupermodularif
9(A) +g(B) < g(AU B) + g(AN B).

Lemma 4.12. Letg: 2 — R* be a normalized, monotone asdpermodulafunction. Denote byi(¢) a
random subset ofl where each element appears with probability at ngagtot necessarily independently).
Then E[g(A(q))] < q- g(A).

Proof. Let A = {us,...,u 4} be an arbitrary numbering of the elementsiinand fori € {0, ..., |Al} we
defineA; = {uq,...,u;}, whereA, = @. Denote byX; an indicator for the event that € A(q), and let
gi = Pr[u; € A(q)] = E[X;] < q. Then:

P i=1
|A| |A|
+Zqz (ui | Ais1) < g(2) +q- Zguz\A

:(1—Q)‘9( )+aq-9(A)=q-9(4) ,

where there first inequality follows from the supermoduiadf ¢, the second one from monotonicity and
the fact thaiy; < ¢ for 1 <i < |A|, and the last equality follows by the fact thais normalized. O

|A] |A]
Elg(A(@)] =E |g(2) + Y Xi - g(u; | A0 A(Q))] <E [9(@) + > Xi-glui | Aiy)

Corollary 4.13. If Linear is guaranteed to pick every element of its input with proliigtat mostq, then

Elw(@NN) = fu(@NN)] < g E[w(N) — fu(N)].

Proof. Let us define the function(S) = w(S) + fu(2) — fu(S). Sincew(S) is linear, f,,(@) is a constant
andf,,(S) is submodularg(.S) is a supermodular function. Additionally(S) is normalized by construction
and monotone by Observation 4.11. Hence, for every fiXethy Lemmd 4.IR2 and the assumption that no
element ofN belongs taQ with probability larger thar:

Elg(QNN)] <q-g(N) .

Since the last inequality holds for every fix&d it holds also, in expectation, without fixiny. Thus:

Elw(@NN) = fu(@NN)] = E[g(QNN)] - fu(2)
< q Elg(N)] = fu(@) < ¢ E[w(N) — fu(N)] ,
where the last inequality holds sing¢g is non-negative by Property 2.2. O
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We can now prove Theorem 1.4.

Proof of Theorern 1140bserve thay must be at least/« since anyx-competitive algorithm foMSP must

be able to select an element with probability at lelggt when this element is the only element having a
non-zero weight. Hence, by Corolldry 4113, we can pjugto Propositiori 4.70. Letting = a¢ > 1 and
choosingp = (33)~! < 1, the proposition implies:

L(1-2¢ass)  L(1-2/3)
33 35 38 ) _ q )
w(@NN) > Sa(l 316) = 8%(1 316) f(OPT)_24ﬂ(3ﬁ 0 f(OPT) .

Hence, Algorithni2 withp = (387! = (3aq)~! has a competitive ratio of at most:
24638 +1)  24aq(3aq + 1)

q q
for the matroidM. O

=0(q- o)

4.4 Proof of Theorem 1.2

In this section we assum#1 is a matroid for which Theorein 1.2 is meaniningful. More sfeally, the
behavior ofLinear on M can be characterized as follows.

e For everyMSP instance over the matroitt, there exists a set d@f (correlated) random sefs; }%_,
such that each sdt; is always independent iM andE[w(Ui‘;1 P;))] > w(OPT,,)/a, wherew is
the weight function of théISP instance andPT,, is the maximum weight independent set given
w.

e Linear outputs a uniformly random set frof?; }=_, .

For everyl < i < k, let Q; be the sef’; corresponding to the execution loihear within Algorithm[2

with p = (3a) L.

Lemma 4.14. E[f (U, Q; N N)] > siagarn - f(OPT).

Proof. One can verify that the fact tha@ is produced byLinear was used in the above analysis of the
competitive ratio of Algorithni2 only to justify the inequigt E[w(Q)] > 1 - E[w(OPT,(N U Ny))].
Thus, the proof of Theorem 1.1 can be viewed as showing ttetefecuting Algorithri]2 withy = (3a) ™!
every random subsét of NV U N, obeying this inequality must obey also:

1
Ef (NN = 240(30 + 1)

- f(OPT) .
The lemma now follows sinc@f:1 Q; is arandom subset @df U Ny obeying the required inequality. [J

The next lemma is necessary to transform the bound giveneblagit lemma into a bound on the values
of the separate segg;.

Lemma4.15. Letg : 2¥ — RT be a non-negative submodular function anddet. .., S, C E. Then,

k k
Y ofs)=f (U &)
i=1

i=1
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Proof. We prove the result by induction dn It clearly holds fork = 1. Fork > 1:

k k k
D F(S) = F(S1) + f(Sa) + D> F(S) = F(S1US2) + f(S1NSs) + Y f(SH)
i=1 =3 =3
k k
> f(S1USe)+ Y f(Si) > f <U5z> ;
=3 i=1

where the first inequality holds by the submodularityfothe second by the non-negativity ffand the last
by the induction hypothesis. O

We are now ready to prove Theoréml1.2.
Proof of Theorerh 112Combining Lemmata 4.14 ahd 4115, we get:

k
1
f (U @-mv)] > SiaGaTD /OPD) -

i=1

k

Y E[f(QiNN)] >E

i=1

Since the output s€) N N of Algorithm[2 is a uniformly random subset frof@; N N}%_,, we get:

_ Y EF(QiNN)) 1
E[f(QNN)] = p > YihaBGa 1) . f(OPT) .
Hence, Algorithni2 withp = (3a)~! is 24ka(3a + 1)-competitive for the matroioM. O
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A Monotone Functions

In this section we prove the results fMSMSP that apply to general matroidsg., Theorem 15 and
Theoren 1.6. The online algorithm we use to prove theseteesugjiven as Algorithm]3, which is a close
variant of Algorithm[1. Just like Algorithrhl1, this algorithhas a probability parametgr but the role of
this parameter in the algorithm is somewhat different.

Like in Algorithm([d], it is easy to show thdt contains every element @ with probability p, indepen-
dently. For the analysis of Algorithid 3, we again need anwedent offline algorithm given as Algorithii 4,
which is a close variant of Algorithin 2
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Algorithm 3: Monotone-Online(p)

/'l Learni ng Phase
1 ChooseX from the binomial distributionB(n, p).
2 Observe (and reject) the fir& elements of the input. Ldt be the set of these elements.

/'l Sel ection Phase

3 Let M be the output ofsreedy on the sefL.
Let N < &.
for each arriving element € £\ L do
Letw(u) « 0.
if v is accepted bysreedy when applied taV/ + « then

Add u to V.

Let M,, € M be the solution oGreedy immediately before it adds to it.
10 Updatew(u) < f(u | M,).

11 | Passuto Linear with weightw(u).

© 00 N o 0 b

12 return @ N N, whereQ is the output otinear.

A similar proof to the one given in AppendixX] C can be used tonstimat Algorithmd B andl4 share the
same joint distribution of the sét/ and the output set.

A.1 Analysis of Algorithms[3 and[4

Throughout this section we fix an arbitrary matrold = (FE,Z) for which Linear is a-competitive and
analyze the approximation ratio of Algoritim 4. Since Aligfams[3 and ¥ share their outputs distribution,
the approximation ratio we prove for Algorithimh 4 implies atemtical competitive ratio for Algorithri] 3.
The analysis closely follows the proof given in Section 4¢d ave mostly explain in this section how to
modify the proof of Sectiohl4 to fit Algorithin] 4.

Let us start with the first stage in which we bodBidv(M )] andE|f,,(M)]. Lemmd&4.1L, which ties both
values toE|[f (M)], still holds, and thus, we only need to bouRgf (M)].

LemmaA.1 E[f(M)] > (p/2) - f(OPT).

Proof. We prove the corollary for the sétf of Algorithm[3, which is fine since it has the same distribatio
as the sed/ of Algorithm[4. Algorithm[3 calculated/ by applyingGreedy to L. Greedy is known to have
an approximation ratio of /2 for the problem of maximizing a non-negative monotone sututar function
subject to a matroid constraint [18]. Heng&\/) > f(OPT(L))/2, whereOPT(L) is the independent
subset ofl maximizing f.

On the other hand, contains every element & with probability p, independently. Hence,

E[f(OPT(L E[f(OPTNL
oy > ELOPTWI]  BFOPLALL (). popr) |
where the second inequality holds sif@@T NL is an independent set ¢# and the last inequality holds
by Lemmd2.B. O

This completes the first stage of the proof. In the seconcestagboundE[w(N)] andE[f,(N)]. In
Section[4 the bound oR[w(NN)] is given by Lemma_4]5. The proof of this lemma uses the prdibabi
that an element, processed by Algorithrin] 2 is added #d (respectively,N) given thatM + v € Z and
f(u | M) > 0. Let us denote this probability by,, (respectively,py). Using this terminology the
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Algorithm 4: Monotone-Simulated(p)

[/ Initialization
1 LetM,N, Ny + @.
2 LetE « E.

/1 Main Loop
3 while £ # @ do
Let u be the element of” maximizing f (u | M), and remove: from E'.
Letw(u) < f(u| M).
if M + u is independent ioM then
L with probability p do Add « to M. otherwise Add u to V.

8 else
9 Letw(u) < 0.
10 Add v to Ny with probability 1 — p.

~N o g b~

11 RunLinear with N U Ny as the input (in a uniformly random order) and the weightsnaefibyw.
12 return Q N N, where( is the output oLinear.

proof actually show€[w(N)] = (pn/pam) - E[w(M)]. It can be verified that the proof holds also for
Algorithm[4, as long as one uses the valpgs andp, corresponding to this algorithm (which gveand
1 — p, respectively). Hence, we get the following lemma.

Lemma A.2. E[w(N)] = 2 - E[w(M)].

Similarly, using the potential functio®(M,N) = f,(N) — mfjij - fw(M U N), the proof of

Lemmal4.6 can be used to show tfigtf,, (V)] > —EL— . f(@) + 22— . E[f,(M U N)] in both

. . . — PMTDPN PM+PN
Algorithms[2 and #4. This gives the following lemma.

Lemma A3. E[f(N)] = p- (&) + (1 - p) - E[fu (M)

Proof. By the above discussion:

P l—p
Elfw(N)] = m'f(@)—i'm E[fu(MUN)]

=p- f(@)+ (1 —p)-E[fu(MUN)] .
The lemma now follows sincé,, is monotone by Property 2.2. O

The last lemma boundg[f,,(N)], and thus, completes the second stage of the proof. In the thi
stage we boundE[w(Q N N)] andE[f,(Q N N)]. Observatiori_4]7 boundB[w(Q N N)] in terms of
E[w(OPT,(N))], and this observation holds also for Algoritiun 4. Hence,dbagbound o [w(Q N V)]
we first need a bound dijw(OPT,,(N))]. The following lemma corresponds to Lemmal4.8.

Lemma A.4. E[w(OPT,(N))] > (1 — p) - Ejw(M)].

Proof. The proof of Lemméa& 418 shows that there exist a random indépersetN’ C N and random
variables{c(u)},eg such that:
Elw(M)] pM

= PN w(N' " .
BN + Yo g Ele@)]  py o4 Ellwl< 0 Elw(Nn tu})]
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It can be verified that this proof holds also for Algoritfiun Adathus, plugging in the corresponding values
of pps andpy, we get:

E[w(M)] _»p 1—p ' ,
BN+ Y Ble)] 1-p° ¢ EBlwl= == Elu®Wniu].

Combining the two equations gives:

Efw(M) o

Efw(N)] + 2 -E[w(N)] ~1-p (1-p) - E[w(M)] <E[w(N)] .

The lemma now follows by observing thaf’ is a possible candidate to @PT,(N), and therefore,
w(OPTy(N)) > w(N'). O
Corollary A.5. E[w(Q N N)] > L2 . E[w(M)).

Proof. Follows immediately from Observatién 4.7 and Lenimal A.4. O

The bound orE[f,,(Q N N)] is obtained from the bound diijw(Q N N)] by showing thaff[w(Q N
N)— fu(@NN)] < q-Elw(N) — f,(N)] for some valug; > 1/a. However, like in Sectiohl4, we first
prove the approximation ratio induced by every value ahd only then discuss the values thaian take.

Proposition A.6. If Ejw(@Q N N) — f,(Q N N)] < ¢-E[w(N) — f,(N)] for some valugy > 1/«, then
E[f(QNN)] = E[f,(Q N N)] > W=BRfe0—1t0) . f(OPT).

Proof. Observe that:

E[£u(Q 1 V)] > E[uw(@ N N)] g~ Eluw(N) — fu(N)] @
> TP BLu(M)] ~ g Blw(N)] +q- E[fu(N)]

l—p gl —p
> 122 ) - L2 ()] + (1 - p) B ()]
where the first inequality holds by the assumption of the psdjon, the second by Corollakry A.5 and the
last by Lemmat& AJ2 arld Al.3 and the non-negativityf of
Lemmd 4.1 implies the following inequalities:

L Ew()] =~ @IF(M)] - £(2)) > L B[] - a1~ p) - £(2)
D) ) = 22 w0 - f(0) = -T2 B 00+ o1 - 5) - f(2)
and

q(1 —p) Elfu(M)] = q(1 —p) - E[f(M)] .
Plugging these inequalities into Inequality (4) yields:

E[fu(@N V)] > L E[f()] - q“p‘ P B (M)] + g1~ p) - ELF(M)]

(= p)p/a—atap) gy 90 =P@/OD = 14D) ey
P p

The proposition now follows by combining the last inequalitith LemmaA.]. O
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Recall that Observatidn 4.111 showed in Secfibn 4 that onelveays choosg = 1. This proof of this
observation holds also for Algorithii 4, and thus, we get dilewing corollary.

Corollary A.7. Forp = % the approximation ratio of Algorithil 4 is at md&t (o + 1).

Proof. By Observation 4.11, we can plyg= 1 into Propositio A.6. Hence, for = % the proposition
implies:

(1 _ 2a41 ) ( 2a41 1, 20+l )
2(a+1) 2a(a+1) 2(a+1)
> .
w(@QNN) > 5 f(OPT)
2( : 1) (22?“1) T : 1))
a+ a(a+ a+

Corollary[A.7 proves the first part of Theordm11.5 correspogdo Theoreni_1]1. The proof can be
extended to prove the two other parts of the theorem in the seawy this is done in Sectidn 4.

From this point on we assunténear has, with respect to the matrait, the properties guaranteed by
Theoreni_1.B. In other words, for eveM{SP instance over the matroiti there exists a random sgtC F
obeying:

e S is always an optimal solution of tHdSP instance.

e For every element € E, Pr(u is selected by Linear> £ - Pr[u € S].

By removing appropriately chosen elements from the outputimear one can get a new algorithm
Linear’ which still has the above properties, but selects no elemightprobability larger thar /«. Clearly
such an algorithm always exists although it might be noreieffit and offline, which is fine since we use
Linear’ only for analysis purposes. The following observation shthatLinear’ must bea-competitive,
and thus, all the results proved above hold for it.

Observation A.8. An algorithm having the properties guaranteed by Thedreéiwith respect to a matroid
M is a-competitive foMSP over this matroid.

Proof. Let T" be the random output set of the algorithm givenM8P instance over/ with a weight
functionw’. Then:

E[w'(T)] = Z w'(u) - Prlu € T] > é . Z w'(u) - Prlu € S] = = -E[w'(S)] .

uel uel

R+

The observation now follows sincgis always an optimal solution for tHdSP instance, and thus,’(.S)
is always equal to the value of such an optimal solution. O

We are now ready to prove Theoréml1.6.

Proof of Theorerh 1l6Let Q and@’ be the sets produced hynear andLinear’ when these algorithms are
placed in Algorithmi 4. By constructiorf) © @', and thus, by the monotonicity gt

E[f(QNN)] = E[f(Q' NN)] . (5)

Consider now Corollary 4.13. It can be verified that this darg holds also for Algorithni 4, and thus,
Ew(Q NN)— fu,(Q NN)] < L.E[w(N)— f,(N)]. Plugging this inequality into PropositiénA.6 gives:

(-per/o =148) oy (=D 1)

E[f(@ N N)] >

. f(OPT) .
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Choosingp = 3/4 now gives:

E[f(Q' NN > L= 3/42)((13/2 =Y ¢opT) = % . F(OPT) .

Combing the last inequality with Inequalityl (5) proves tldgorithm[4 with Linear andp = 3/4 is 16a-
competitive forMSMSP over M. O

B Results for Specific Matroids

In this appendix we explain how to get the improved competitiatios stated in Sectidn 1.1 for specific
classes of matroids. For transversal matroids ksgparse linear matroids the stated competitive ratios
were obtained through an application of Theoderd 1.4. Moeeipely, for transversal matroids we use
Theoreni 1} with th&1SP algorithm of Korula and Pal [27], which &competitive and picks no element
with probability larger thar /2.

For k-sparse linear matroids we use Sotkéscompetitive procedure [36]. To get a stronger result than
what we would get through an application of Theorem 1.1, weeole that we can assume that Soto’s
algorithm selects no element with probability larger thias 1/e. Soto’s algorithm reduces the problem
to the classical matroid secretary problem, by losing aofat .. The classicat-competitive algorithm of
Dynkin can easily be adapted such that no element is chodérprabability more tharl /e, maintaining
e-competitiveness of the algorithm. More precisely, Dyr&kiprocedure selects the heaviest element with
some probabilityp(n) > 1/e that only depends on the size= | E| of the ground set and can be calculated
upfront. Moreover, no element is selected with a probabékceeding(n). We can now modify Dynkin’s
algorithm as follows, to obtain an algorithm that is st#tompetitive and selects no element with probability
larger thanl /e: whenever Dynkin’s algorithm would select an elementve will toss a coin and only select
it with probability 1/(e-p(n)). Hence, using Soto’s algorithm with this modification of Bymis procedure,
we have ake-competitive algorithm foMSP over k-sparse linear matroids that selects no element with
probability larger thani /e. The competitive ratios claimed in Sectionl1.1 now followrfr Theoreni 114
(for SMSP) and Theorerq 115 (fdMSMSP).

Unitary partition matroids have a triviakcompetitive algorithm applying the classical secretdgpa
rithm to every elements class separately. However, thisrifihgn has two weaknesses. First, it requires
prior knowledge about the number of elements in each classhwve sometimes want to avoid. Second, it
might select an element with a probability significantlygkar thanl /e, which prevents an effective use of
Theoren 1.K. In Sectidn B.1 we present a simple algorithnidang these issues. Plugging this algorithm
into Theoreni_ 14 yields the guaranteed competitive ratiG&MSP over unitary partition matroids.

Ma et al. [32] give an algorithm foMSP over laminar matroids selecting every elemenOd&fT with
probability at least/s.6 and no element with probability larger thari 58. Plugging this algorithm dsinear
into Theorems 1]4 and 1.6 results in competitive ratiod2y9 and 154 for SMSP and MSMSP over
laminar matroids, respectivﬂy‘.l’his already improves over the result of [32] fdSMSP and provides the
first O(1)-competitive algorithm foSMSP. However, by a careful combination of our ideas and a lemma
from [32] one can prove the stronger ratios stated in SedfifinThe details can be found in SectionIB.2.

B.1 Algorithm for MSP over Unitary Partition Matroids

In a unitary partition matroid the elements are partitioimgd & disjoint non-empty class€ss; }5_,. AsetS
is independent in the matroid if and only if it contains at trm®e element of every class;. Algorithm[3 is
an algorithm foMSP over unitary partition matroids. Observe that this aldoritcan be implemented with

®The result forSMSP can be improved t@196 by optimizing the parameter of the algorithm bf[32].
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no access to the matroid besides of the independence ofsslesual, the algorithm assumes all weights
are non-negative and disjoint. This assumption is withoss lof generality since negative weights can be
replaced with zero weights (as long as elements of negatdrghis are rejected even if the algorithm tries
to accept them) and ties between weights can be brokenaailyitr

Algorithm 5: Partition-MSP(n)
/'l Learni ng Phase

1 Lett « [n/e].

2 with probabilityt — n/e doLet X < ¢ — 1. otherwiseLet X < t. Observe (and reject) the fir&t
elements of the input. Let be the set of these elements.

/1 Sel ection Phase

3 for each arriving element € £\ L do

4 Let G, be the class of.

5 if G,, has not been marked previoushen
6 if G, N L # @ then

7 if w(u) > maxyeq,nr w(u') then
8 Mark G,,.

9 L Acceptu.

10 else

11 Mark G,,.
12 Acceptu with probability X /|L|.
13 Adduto L.

Informally, Algorithm[3 observes (and discards) the~x n/e first elements. Then, for every arriving

elementy the algorithms makes the following decisions.

e If u’s class has been marked by a previous element, ¢hisrsimply discarded. A marked class is a
class from which we should accept no new elements. A classislly marked because some element
of it has already been accepted, but not always.

e Otherwise, if some elements ofs class have already arrived ands better than all of them, themn
is accepted and its class is marked.

e Finally, if no element ofu’s class has previously arrived, then its class is markedveitid some
probability  is accepted. This is the only case in which a class can getadat&spite the fact that
no element of it has been accepted to the solution.

Observation B.1. Algorithm[3 always produces an independent set.

Proof. Once an element of a claésis accepted, the clags becomes marked and the algorithm dismisses
immediately any future elements of this class. O

For every element. € F, let L, be the setl, beforew is processed,e, it is the set of elements that
arrived beforeu. Additionally, for every clasgs;, letw; be the element with the largest weightGf (which
is also the element aF; in the optimal solution).
Lemma B.2. For everyl < i < k, u} is accepted with probabilit@ — % + E}:Fn/ﬂ %
Proof. Fix the variableX and the seL,,- (and thus, also the location of in the input), and let us calculate
the probabilityu; is accepted. IfL,:| < X, thenu; arrives during the learning phasee( it is one of the
first X elements), and thus, is it not acceptedﬂ&ﬂ > X, then there are three cases.
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e The first case is whely; N Ly = @. In this caseu; is the first element ofx; encountered by
Algorithm[5. Since it is encountered after the learning eh@s., it is not one of the firs elements),
itis accepted with probability< /| L., |.

e The second case is whéni N Ly =# @ and the element; with the maximum weight irG; N Ly
arrives during the learning phase. In this case every eleofefi; N L, arriving after the learning
phase fails the condition on Lifié 7 of Algoritim 5. This, is still uynmarked when:} arrives, and
thus, it is accepted. Since the order of the elements,inis uniformly random, this case happens
with probability X'/| L.+ | conditioned onX and L, .

e Thefinal case is whe@mLu;« = @ and the elemenit; with the maximum weight irdx; N Ly arrives
after the learning phase. In this case, eitGgris already marked whefy; arrives orG; is marked
whena; is processed. Either way, wheii arrivesG; is already marked, and thug; is dismissed.

The above cases imply:

X .
Tl Tl
7

> X,
Prlu is accepted X, L,:| =
' 0 otherwise .

Regardless ok, the arrival time ofu} is distributed uniformly between andn. Hence,

_ 1 - X & X
Prlu} is accepted X| = -~ E — g — .
J=X+1 j=X

The law of total probability now gives:

S -4 - . |
e

-1
For ease of notation, let us denetén) = ({n/d /n—e l+ Z;‘:—ln/d (ej)‘l) . Lemmé&B.2 shows
that every element dDPT is accepted by Algorithrl5 with probability/«(n), and thus, Algorithni]5 is

a(n)-competitive forMSP over unitary partition matroids.

Observation B.3. For everyn > 1, a(n) < e.

Proof.
OIS [/" d_w_/("/ﬂd_w]
j=[n/e] ej ~ e [n/e] ¥ € nje L nje €
1 mlelde 1 nje—[nfe] 2 [n/e]
> - [URp— — == -7
= [lnx](n/e] /n/e n o + n o n O

The next lemma completes the analysis of Algorifim 5.

Lemma B.4. No element is accepted with probability larger thafw(n) by Algorithm[5.
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Proof. Fix an arbitrary element of a class;. For every arrival order of the elements, let us definér)
as the order obtained fromby replacingu andw;. Observe that is a bijection.

Consider now an arbitrary ordergiven which Algorithn{5 accepts with probability p > 0. Clearly
u proceeds.! in 7 because otherwise(u) could not be larger than the weights or all elements appgarin
earlier in, which is a necessary condition farto be accepted. Thus, Algorithinh 5 is in the same state
when processing givenr andu; giveno(r). Sincew(u}) > w(u), this implies that Algorithni 5 accepts
u} with probability of at leasp given the ordet (7).

Recalling thatr is a bijection, we now get:

r[u is accepted given] S Z Prlu’ is accepted given ()]

. P
Prlu is acceptefl= )

nl n!
Prlu* is accepted given . 1
= E il pted given] = Prfu’ is acceptefl= — . O
— n! a(n)

Remark: The fact that Algorithni5 isx(n)-competitive while accepting no element with a probability
larger thanl /«(n) is sufficient to extract all the power of Theorém]1.4 and getrésult stated in the table

in Section 1.lL. However, sometimes it is useful to have aardhgn that ise-competitive and accepts no
element with a probability larger thar/e. This can be achieved by executing Algorithin 5 and accepting
with probability «(n) /e every element accepted by Algorithin 5.

B.2 Results for Laminar Matroids

In this section we prove the competitive ratios stated irtief.1 for laminar matroids. Throughout this
section we assum#1 is a laminar matroid. Ma et al. [32] consider an algorithm eth¢onstructs the sets
M andN in the same way this is done by Algoritith 4. For this algorittand thus, also for Algorithiinl 4,
they proved the following lemma (assuming is laminar).

Lemma B.5 (Rephrased version of Lemma 10 bf [32{Jonsider Algorithni 4 withLinear being the pro-
cedure that accepts every elemenf\bfvhose acceptance does not violate the independence ofiemtcu
solution. Then

2

Elw(Q)] > <1 - m

) Blu)]
wheres = 2e(1 — p).

The last lemma can be used instead of Corollany A.5 in theyaisabf Algorithm[4. This allows us to
prove the result foMSMSP.

Corollary B.6. There exists d44-competitive algorithm foMSMSP over laminar matroids.

Proof. Consider Algorithni ¥4 using the algorithhinear defined by LemmaBI5. By Lemnia B.5 we get

Efw(Q N V)] = Efw(Q)] > (1 - %) ()],

wheres = 2¢(1 — p). Thus,

E[f(Q N N)] > E[w(Q N N)] — Efw(N)] + E[fu () 6)
23
> (1 _ W) Efw(N)] - Ew(V)] + (1 - p) - ELfu(M)]
23

= (1 —p)E[fw(M)] - (1 —,8)3 '
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where the first inequality holds by Observation 4.11 and goesd by Lemmata Al3 and the non-negativity

of f.
Recall that, by Lemmafa4.1 ahd A2, (M) = f(M) and

Efw(N)] = =2 Elw(M)] = —L - E[f(M) - f(2)] < L - E[f(M)] .
p p p
Plugging these inequalities into Inequality (6) yields:

Elfu(@NN)I = (1 —p) - E[fu(M)] -

Y

(1—p)-E[f(M)] -

1-p3 p
22 (1-p- 255 52) slsor)
b
;

1=-p)%  p
de(1 —p) 1-— p)
1—p— : -E[f(OPT)],
(1-r- e T ) D)
where the last inequality follows froffi[f(M)] > £ f(OPT), as stated by Lemnia A.1. The above expres-
sion is maximized fop ~ 0.976299 leading to the claimed competitive ratio. O

To prove the result foBMSP, we first need an observation about Algorithm 2. ConsideoAtgm[6.

Algorithm 6: Middle-Algorithm(p)

/1 Initialization
1 LetM,N <+ @.
2 LetE + E.

/1 Main Loop
while ' # @ do
Let u be the element of” maximizing f (u | M), and remove: from E'.
Letw(u) < f(u| M).
with probability (1 -+ p)/2 do
if M + w is independent ioM andw(u) > 0 then
with probability 1/(1 + p) do Add w to M. otherwise with probability p/(1 + p) do
Adduto N.

o N o 0o b~ W

Observe that every processed element obeying the corsltioinel T of the Algorithni]6 is added by
both Algorithmd 2 and Algorithl6 with probability/2 to M and with probabilityp/2 to N. Hence, both
algorithms produce the same joint distributionMdfand V. On the other hand, in terms of the sétfsand
N Algorithm[@ is identical to Algorithni 4 up to two modificatien

e The valuep in Algorithm[4 is replaced with /(1 + p).

e Algorithm[@ dismisses some elements without processinmthiEhese elements include all the ele-

ments of negative weights and every other element with fiétyal — (1 + p)/2.
The second modification does not affect the proof of [32] femimd B.5 (in fact, the proof requires elements
of negative weight to be dismissed). Hence, we get the faligyemma which is obtained from LemrmaB.5
by replacingp with 1/(1 + p).
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Lemma B.7. Consider Algorithm 2 with.inear being the procedure that accepts every elemenf afhose
acceptance does not violate the independence of the cluaodution. Then

2p

Ejw(Q)] > (1 o

) Blu]

wheref = 2e(1 — 1/(1 + p)).

The last lemma can be used instead of Corollary 4.9 in theysisabf Algorithm[2. This allows us to
prove the result foEMSP.

Corollary B.8. There exists &85-competitive algorithm foSEMSP over laminar matroids.

Proof. Consider Algorithni 2 using the algorithhinear defined by LemmaBl7. By LemnaB.7 we obtain

E[w(Q N N)] = E[w(Q)] > (1 _ %) ()],

whereg = 2e(1 — 1/(1 + p)). Thus,

E[fu(@ N N)] > E[w(Q N N)] = E[w(N)] + E[fu(N)] (7)
26 p(1—p)
> (1 - W> Efu()] — Bu(V)] + B2 iy, ()
PP e o) = —22 Ry |

1+p (1-p5)3

where the first inequality holds by Observation 4.11 and éwesd by Lemmata 4.6 and the non-negativity
of f.
Recall that by Lemmafa 4.1 ahd ¥ 5,(M) = f(M) and
Elw(N)] =p-E[w(M)] =p-E[f(M) - f(@)] < p-E[f(M)] .

Plugging these inequalities into Inequality (6) yields:

Blfu(@n V)] = B2l ) - 2 Bl
>0 (152 - ) Bl
> (52 - 12 ) -ElfoPT)
=L (i e ) - EL P

where the last inequality follows b§[f(M)] > f(OPT)/8 which holds by Corollary 4]4. The above
expression is maximized for~ 0.023769, leading to the claimed competitive ratio. O

C Equivalence of Algorithms[1 and2

In this section we prove that Algorithri$ 1 dnd 2 share the istribution of the sef\/ and the output set.
First, for completeness, let us state the standard algo@heedy as Algorithm[Y. Recall thaBreedy is
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Algorithm 7: Greedy

/1 Initialization
1 LetM + @.
2 LetE « E.

/1 Main Loop
3 while £ # @ do

4 Let u be the element of” maximizing f (u | M), and remove: from E'.
5 if M + wisindependent io\t and f(u | M) > 0 then

6 L Add «u to M.

7 return M.

used by Algorithni L, and observe that, as mentioned in Se&idthe solution)M/ of Greedy starts as the
empty set and elements are added to it one by one.

Let L and F' be two independent random subsetsHfwhere the sef. (respectively,F') contains
every element € E with probability 1/2 (respectivelyp), independently. By Observatign 8.3, the et
constructed by Algorithrhl1 has exactly the same distrilouéie the above sdt. Hence, given access to the
above setd. and F', Algorithm[d can be rewritten as Algorithinh 8. Notice that trdy changes made during
the rewrite are omission of the calculation bfand replacement of the random coin toss on Line 6 with a
reference ta.

Algorithm 8: Coupled Online(L, F)

1 Let M be the output ofsreedy on the setL.

2 LetN «+ @.

3 for each arriving element € £\ L do

4 Letw(u) < 0.

5 if v is accepted bysreedy when applied ta\f + « then
6

7

8

9

if uw € F then
Add u to V.
Let M,, € M be the solution ofsreedy immediately before it adds to it.
Updatew(u) < f(u | My).

10 | PassutoLinearwith weightw(u).
11 return Q N N, where( is the output oLinear.

Similarly, Algorithm[2 can be rewritten using and ' as Algorithm[9. In this case the coin tosses on
Lines[7 and IR have been replaced with referencds amnd the coin toss on Liié 7 has been replaced with
a reference td. It is important to note that an element is never checked #t bimes[T7 and 12, and thus,
the independence of the randomness used by these lineseyed.

In the rest of this section we show that conditionedloand £, Algorithms[8 and ® produce the same
setM and have the same output distribution. Hence, the origitgd®hm[2 has the same joint distribution
of the setM and the output set as Algorithimh 1. Let us start the proof wighfollowing simple observation.

Observation C.1. The elements passed ltmear by both Algorithm$18 and| 9 are exactly the elements of
E\ L. Moreover, the elements &f\ (L U N) are all assigned weights.

Next, observe that Algorithin 9 obtaidd by running a modified version @reedy on the elements of
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Algorithm 9: Coupled Simulated(L, F")
[/ Initialization

1 LetM,N, Ny + @.

2 LetE « E.

/1 Main Loop
3 while £ # @ do

4 Let u be the element of” maximizing f (u | M), and remove: from E'.
5 Letw(u) < f(u| M).

6 if M + wis independent io\ andw(u) > 0 then

7 if w e Lthen Adduto M. elseifu € F'then Adduto N. else

8 Updatew(u) < 0.

9 L Add u to Ny.

10 else

11 Letw(u) < 0.

12 if uw ¢ L then Add u to Nj.

13 RunLinear with N U Ny as the input (in a uniformly random order) and the weightsnaefibyw.
14 return Q N N, where( is the output oLinear.

E. The modified version is identical to the original one, exdapt every time immediately before adding
an element, € E \ L to the result, the element is “stolen” (and getsMar N, instead). We denote such a
modified run ofGreedy by Greedy(FE, E \ L). More generally, we uséreedy(A, B) to denote a run of
greedy on the sed, where the elements @& C A are stolen ifGreedy tries to add them to its solution.

Observation C.2. For four setsA O B andC 2 D obeyingGreedy(A,B) C C'\ D C A\ B, the runs
Greedy(A, B) andGreedy(C, D) behave the same in the following sense:

e The outputs of the two runs are identical, i@reedy(A, B) = Greedy(C, D).

e The runGreedy(A, B) attempts to add an element dfn C' to the solution if and only if the run
Greedy(C, D) attempts to add this element, moreover, both runs attematidothe element to the
same partial solution.

Proof. The behavior ofsreedy depends only on elements that were added to the result seteHelements
that appear in the input but are stolen before being adddgktoutput does not affect the output@feedy,
and the same holds for elements that greedy does not atteragtitto the output. O

Corollary C.3. Conditioned on a sek, Algorithmd 8 an@9 produce the same 36t

Proof. Algorithm[1 selects\/ asGreedy(L, &), while Algorithm[9 selectM asGreedy(E,E \ L). The
equality between these sets follows immediately from Qlagem[C.2 since:

Greedy(L,@) CL=FE\(E\L) . O

Corollary C.4. Conditioned on seté and F', Algorithmdg 8 and19 produce the same a8gtind assign the
same weights to the elements)\df

Proof. Consider an element< E\ L. Algorithm[8 adds.to N ifand only ifu € F andGreedy(M +u, @)
tries to addu to its solution. When this happens,is assigned the weight(v | M, ), whereM,, is the
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solutionGreedy has immediately before it process Clearly both the weight and the membership.oh
N does not change ®reedy(M + u, &) is replaced withGreedy(M + u, ) in the above description.

On the other hand, Algorithi 9 addsto IV if and only if u € F andGreedy(N, E \ L) tries to addu
to its solution. When this happensjs assigned the weight(u | M), whereM,, is the solutionGreedy
has immediately before it process By Observation Cl2, botGreedy(M + u,u) andGreedy(E, E \ L)
behave the same because:

Greedy(E,E\ L) =Greedy(L,@) =M =(M+u)—uCL=E\(E\L) .
Hence, Algorithm$18 and 9 make the same decisions regardingémbership and weight of O

Observation CJ1 together with the last corollary shows tt@tditioned orl. andF, Linear is fed by the
same sefy \ L of elements and weights by Algorithrins 8 did 9. To completetbef that both algorithms
produce the same output distribution, conditionedloand £, we just need to show that the elements of
E \ L are passed thinear in the same distribution of orders under both algorithmsis Thtrue by the
following observations.

¢ Algorithm[8 passes the elementsiof L in the order in which they arrive, which is uniformly random.

e Algorithm[9 passes the elements®fU Ny = E'\ L in a uniformly random order.

D Missing Proofs

In this appendix we provide the missing proofs for Proposif.2 and Lemmia 4.2.

D.1 Proof of Proposition[3.2

Proposition[3.2. Given an algorithmLinear for MSP, there exists an algorithm for Partid4SP whose
competitive ratio for every matroid is as good as the competitive ratiolahear for this matroid.

The algorithm we use to prove Propositlon]|3.2 is Algorithrh 10

Algorithm 10: Algorithm for Partial-MSP

/1 Initialization
1 Letl’ «+ L.
2 Letr «n—|L|.

/1 Main Loop
3 while |[L'| +r > 0do

4 with probability 7/(|z’|+r) do
5 Updater < r — 1.
6 Pass the next arriving elementltmear with its original weightw(u).
otherwise
8 Letu be a uniformly random element &f.
UpdateL’ < L' — u.
10 Passu to Linear with a weight of0.

11 Return the output dfinear without the elements af.
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Observation D.1. The input passed thinear by Algorithm[10 is a uniformly random permutation Bf
where the weight of an elemeinic F is defined by:

, 0 ifuel,
w'(u) = .
w(u) otherwise.

Proof. The only part of the observation that requires a proof is thercthat the elements of are passed
to Linear in a uniformly random order. To see why this is true, notica this maintained as the number of
input elements that have not been passed ykirtear and L’ is the set of elements df that have not been
passed yet thinear. Hence, at each time point the set of elements that have eatssed yet thinear

is of sizer + |L'|, and the algorithm passes a uniformly random element frasrstt. O

The following lemma implies Propositidn_3.2.

Lemma D.2. Algorithm[10 is an algorithm for PartiaMSP whose competitive ratio for every matrael
is as good as the competitive ratiolahear for this matroid.

Proof. AssumeLinear is a-competitive for an arbitrary matroidt = (E,Z). By Observation DJ1, when-
ever Algorithn{ 10 faces an instances of Parkit&P over the matroid\1 with a weight functionw, it makes
Linear face an instance d¥ISP over the same matroid with weights given#$ Hence, if we denote by
the output ofLinear, then, by the guarantee binear:

E[w'(S)] > a - ITng%{w’(T) .

Recall thatw’ is equal tow for elements ofF’ \ L and is equal td for all other elements. Hence,

Elw(S\ L) =Ew(9)] > a maxw' (T)=a- max v (T)=a- max w(T) .
[w(S\ L) = Ew(S)] > o maxw/(0) = o max w(T)=a- max w(l)

This completes the proof of the lemma singg L is the output of Algorithni 10 anthax_7qoe\c w(T')
is the value of the optimal solution for the instance of R&MSP faced by Algorithni_1ID. O

D.2 Proof of Lemmal4.2

Lemmal4.2. For a matroid and a non-negative submodular functjfnif S is the independent set returned
by Greedy, then for any independent sét f(S) > f(C U S)/2.

First, we need some definitions. Liet= |.S|, and for everyd < i < k let S; be the solution oGreedy
afteri elements are added to it. Additionally, for evang i < k, letu; be the single element ifi; \ S;_1.
We also need to define the séts; }¥_, recursively as follows:

e The set’ is simply C. Observe tha€y U Sy = C'is independent.

e For everyl < i < k, the setC; is a maximal independent subset@f | + u; that containsS;. It is
also useful to defin€! = C;_; \ C;, the set of elements that appeacip_; but notinC;. By matroid
properties, sincé; — u; = S;_; C C;_; andC;_; is independent, the size 6f is at mostl.

Let us now make a few observations regarding the above defigit

Observation D.3. f(S;) > f(Ck).

Proof. Assume towards a contradiction th&tSy) < f(Cyx). Then, by submodularity sinc&, C Cj, there
must exist an element € Cj, \ S, obeying f(u | Sk) > 0. On the other hand, sinag;, is independent
we must also have th&t, + « is independent. However, the existence of an element wibetiproperties
contradicts the fact thaff,. is the output olGreedy. O
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LemmaD.4. Foreveryl <i <k, f(u; | Si—1) > f(C/UCk) — f(Cy).

Proof. If C! = @, then the right hand side of the inequality we want to prové ghile its left hand side
is hon-negative (sinc&reedy chose to add:; to S;_1). Thus, we concentrate from this point on the case
cl =1.

Let »; be the single element @f;. SinceC; contains the se$;_; and is independent, we know that
is not in S;_1 and could be added t6;_; by Greedy without violating independence. On the other hand,
sinceGreedy chose to add; to S;_1, we must have:

flui | Si1) > f(uj | Sim1) > f(uj | Cy) = f(C;UCY) — f(Cy) ,
where the second inequality follows by submodularity siice, C Sy, C Cj. O

We are now ready to prove Leminal4.2.

#(5) = TR+ F(@) + T, f(ui | Sim) o F(Cn) + £(2) + T IF(CUC) = £(C)
2 - 2

L S(C) + £(2) + [FUL CIUCh) = £(Cr)] _ f(2) + £(SUC) 5 f8U0)

- 2 a 2 2

)

where the first inequality holds by Observatlon1D.3 and Lernu® the second inequality holds by sub-
modularity of f and the fact that th€’/ are disjoint, and the last by the non-negativityfof
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