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Abstract

During the last decade, the matroid secretary problem (MSP) became one of the most prominent
classes of online selection problems. The interest inMSP is twofold: on the one hand, there are many
interesting applications ofMSP; and on the other hand, there is strong hope thatMSP admitsO(1)-
competitive algorithms, which is the claim of the well-known matroid secretary conjecture. Partially
linked to its numerous applications in mechanism design, substantial interest arose also in the study
of nonlinear versions ofMSP, with a focus on the submodular matroid secretary problem (SMSP).
The fact that submodularity captures the property of diminishing returns, a very natural property for
valuation functions, is a key reason for the interest inSMSP. So far,O(1)-competitive algorithms have
been obtained forSMSP over some basic matroid classes. This created some hope that, analogously
to the matroid secretary conjecture, one may even obtainO(1)-competitive algorithms forSMSP over
any matroid. However, up to now, most questions related toSMSP remained open, including whether
SMSP may be substantially more difficult thanMSP; and more generally, to what extendMSP and
SMSP are related.

Our goal is to address these points by presenting general black-box reductions fromSMSP to MSP.
In particular, we show that anyO(1)-competitive algorithm forMSP, even restricted to a particular ma-
troid class, can be transformed in a black-box way to anO(1)-competitive algorithm forSMSP over
the same matroid class. This implies that the matroid secretary conjecture is equivalent to the same con-
jecture forSMSP. Hence, in this senseSMSP is not harder thanMSP. Also, to findO(1)-competitive
algorithms forSMSP over a particular matroid class, it suffices to considerMSP over the same ma-
troid class. Using our reductions we obtain many first and improvedO(1)-competitive algorithms for
SMSP over various matroid classes by leveraging known algorithms forMSP. Moreover, our reductions
imply anO(log log(rank))-competitive algorithm forSMSP, thus, matching the currently best asymp-
totic algorithm forMSP, and substantially improving on the previously bestO(log(rank))-competitive
algorithm forSMSP.
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1 Introduction

Secretary problems are a very natural class of online selection problems with many interesting applications.
The origin of the secretary problem is hard to track and datesback to at least the ’60s [12, 17, 20, 21, 30].
In its original form, also called theclassical secretary problem, the task is to hire the best secretary out
of a setE of candidates of known sizen = |E|. Secretaries get interviewed (orappear) one by one
in a random order. All secretaries that appeared so far can becompared against each other according to
an underlying linear ordering. Whenever a secretary got interviewed, one has to decide immediately and
irrevocably whether to hire (orselect) him. The task is to hire the best secretary with as high a probability as
possible. Dynkin [12] provided an asympotically optimal algorithm for this problem, which hires the best
secretary with probability at least1/e. The classical secretary problem is naturally interpretedas a stopping
time problem and, not surprisingly, was mostly studied by probabilists.

During the last decade, interest in generalized versions ofthe classical secretary problem surged. One
reason for this is a variety of applications in mechanism design (see [1, 3, 4, 26] and the references therein).
These generalizations allow hiring of more than one secretary, subject to a given set of (down-closed) con-
straints. Each secretary reveals a non-negative weight at appearance, and the task is to hire a maximum
weight set of secretaries. The arguably most canonical generalization is the problem of hiringk out of n
secretaries instead of a single one (see [26]). However, more general constraints are required for many
interesting applications.

A considerably more general setting, known as thematroid secretary problem(MSP for short) and
introduced in [4], allows for selecting a subset ofE that is independent in a given matroidM = (E,I).1

Similar to the classical secretary problem, the numbern = |E| of candidates, orelements, is known upfront,
elements appear in random order, and no assumption is made ontheir weights. Access to the matroidM is
provided by an independence oracle that can be called on appeared elements,i.e., for any subsetS ⊆ E of
elements that appeared so far, one can check whetherS ∈ I or not.

MSP attracted considerable interest recently. It is very appealing due to the fact that it captures a wide
set of interesting selection problems in a single framework. Furthermore, matroids are highly structured con-
straints, which gives reasonable hope that strong online algorithms exist. Indeed, there is a famous conjec-
ture, which we simply call thematroid secretary conjecture, claiming the existence of anO(1)-competitive
algorithm for the matroid secretary problem [4]. We recall that an algorithm isα-competitive if the expected
weight collected by the algorithm is at least1

α · w(OPT), wherew(OPT) is the maximum weight of any
feasible set,i.e., the offline optimum. Whereas this conjecture remains open,O(1)-competitive algorithms
have been obtained for various special cases of matroids (see [4, 9, 11, 24, 25, 27, 32, 36]). The currently
strongest asymptotic competitive ratio obtained for general MSP—without any restriction on the underlying
matroid—isO(log log(rank)) [28, 16], where “rank” is the rank ofM, i.e., the cardinality of a maximum
cardinality independent set inM.

Recently, increased interest arose in nonlinear versions of the secretary problem, with a focus on the
maximization of a non-negative submodular function2 [5, 6, 14, 23, 32], leading to thesubmodular secretary
problem. Submodular functions have widespread use as valuation functions because they reflect the property
of diminishing returns,i.e., the marginal value of an element is the bigger the fewer elements have been
selected so far. This makes them natural candidates for the matroid secretary setting.

Additionally, submodular weight functions capture further generalizations of the secretary problem. For

1 A matroidM = (E,I) consists of a finite setE and a non-empty familyI ⊆ 2E of subsets ofE, calledindependent sets
that satisfy: (i) ifI ∈ I andJ ⊆ I thenJ ∈ I, and (ii) if I, J ∈ I with |I | > |J | then there is an elemente ∈ I \ J such that
J ∪ {e} ∈ I. For further basic matroidal concepts, such as rank and span, we refer to [35, Volume B].

2A non-negative submodular functionf on a ground setE is a functionf : 2E → R
+ giving a non-negative weight to every

subset ofE and satisfying the followingdiminishing returnsproperty:f(A∪{e})−f(A) ≥ f(B∪{e})−f(B) for A ⊆ B ⊆ E

ande ∈ E \B.
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example, Gilbert and Mosteller [22] and Freeman [19] considered a variation of the classical secretary
problem where one can selectk elements with the goal of maximizing the value of the highest-valued
element. This problem can be phrased as a submodular secretary problem with the submodular function
f : 2E → R

+ defined byf(S) = max{w(e) | e ∈ S} for S ⊆ E, wherew(e) is the weight revealed by
elemente.

The currently best asymptotic competitive ratio for the submodular matroid secretary problem (SMSP)
is O(log(rank)) [23]. Furthermore,O(1)-competitive algorithms have been obtained for special classes of
matroids, including uniform matroids [6, 15, 23], partition matroids [15, 23], and laminar and transversal
matroids [32] (both only for monotone3 submodular functions).

In general, our understanding of secretary problems is muchmore limited when dealing with submodular
weights instead of linear ones, leading to many open questions. In particular, is there hope to get anO(1)-
competitive algorithm forSMSP? Notice that this corresponds to the matroid secretary conjecture translated
to the submodular case. Or may the submodular case be substantially harder than the linear one? Do
monotoneSMSP admit considerably better competitive ratios than nonmonotone ones? Can we leverage
strong algorithms forMSP to obtain results forSMSP?

The goal if this paper is to address these questions and get a deeper understanding ofSMSP and its
relation toMSP, independently of the structure of particular classes of underlying matroids.

1.1 Our Results

Our main result below shows an intimate relation between the(linear) matroid secretary problem and the
submodular version. More precisely, we show that one can useany algorithm forMSP as a black box to
obtain an algorithm forSMSP with a slightly weaker competitive ratio.

Theorem 1.1. Given an arbitrary algorithmLinear for MSP and a valueα ≥ 1, there exists an algorithm
for SMSP whose competitive ratio is at most24α(3α+1) = O(α2) for every matroidM on whichLinear
is guaranteed to be at leastα-competitive.

Theorem 1.1 has several interesting implications. In particular, if there is anO(1)-competitive algorithm
for the linear case, then there is anO(1)-competitive algorithm for the submodular case. Hence, thematroid
secretary conjecture is equivalent to the same statement for the submodular version. This provides strong
hope that constant-competitive algorithms exist forSMSP.

Furthermore, Theorem 1.1 implies many new results forSMSP, both for the general version with-
out any restriction on the matroid as well as for many specialclasses of matroids, by leveraging algo-
rithms forMSP. In particular, the knownO(log log(rank))-competitive algorithms forMSP [28, 16] imply
O((log log(rank))2)-competitive algorithms forSMSP, which already considerably improves on the previ-
ously bestO(log(rank))-competitive algorithm forSMSP [23]. We later strengthen this result to match the
asymptotically best algorithm forMSP.

The only matroid classes for whichO(1)-competitive algorithms forSMSP have been explicitly given,
without assuming monotonicity of the submodular weight function, are uniform matroids [6, 23], unitary
partition matroids [23] and matroids for which a reduction to unitary partition matroids is known. Such
reductions are known for graphic matroids [2, 23], cographic matroids [36], and for max-flow min-cut ma-
troids [11]. These reductions have originally been used to obtainO(1)-competitive algorithms forMSP over
these matroids, but they lead also to algorithms forSMSP over the same matroid classes when combined
with an algorithm forSMSP over unitary partition matroids. For other classes of matroids, Theorem 1.1
implies the firstO(1)-competitive algorithm forSMSP, by leveraging knownO(1)-competitive algorithms
for MSP, such as the ones known for transversal matroids [27] and laminar matroids [24]. Furthermore, we

3A submodular function is monotone ifS ⊆ T ⊆ E impliesf(S) ≤ f(T ).
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also improve the competitive ratios for most matroid classes for whichO(1)-competitive algorithms have
already been known.

The analysis of the algorithm that we use to prove Theorem 1.1can easily be improved in many cases, if
the algorithmLinear obeys some natural properties. Theorem 1.2 below gives a first strengthening of Theo-
rem 1.1 and allows us to derive anO(log log(rank))-algorithm forSMSP, thus, matching the currently best
algorithm forMSP up to a constant factor, and improving on the previously bestO(log(rank)) competitive
algorithm forSMSP.

We highlight that Theorem 1.1 can be obtained from Theorem 1.2 by settingk = 1.

Theorem 1.2. Given an algorithmLinear for MSP and valueα ≥ 1, there exists an algorithm forSMSP
whose competitive ratio is at most24kα(3α + 1) = O(k · α2) for every matroidM on which the behavior
of Linear can be characterized as follows.
• For everyMSP instance over the matroidM, there exists a set ofk (correlated) random sets{Pi}

k
i=1

such that each setPi is always independent inM andE[w(
⋃k

i=1 Pi)] ≥ w(OPTw)/α, wherew is
the weight function of theMSP instance andOPTw is the maximum weight independent set givenw.

• Linear outputs a uniformly random set from{Pi}
k
i=1.

Observe that such an algorithmLinear is (k · α)-competitive forM.

Corollary 1.3. There exists anO(log log(rank))-competitive algorithm forSMSP.

Proof. Feldman et al. [16] describe anO(log log(rank))-competitive algorithm forMSP. Their analysis of
the algorithm shows that in fact it obeys the requirements ofTheorem 1.2 forLinear with α = O(1) and
k = O(log log(rank)). Notice that the algorithm guaranteed by Theorem 1.2 does not depend onk. Hence,
there is no need to know therank ahead of time to use this algorithm.

In what follows we present further useful strengthenings ofTheorem 1.1 that are readily obtained
through our derivation of Theorem 1.1. These results allow for obtaining stronger competitive ratios if
Linear fulfills some very typical properties, or if the submodular valuation function is monotone. When
dealing with monotone submodular functions, we talk about the monotone submodular secretary problem
(MSMSP). We first state the improved reductions and later present their implications in terms of competitive
ratios in the form of a table.

Theorem 1.4. Given an algorithmLinear for MSP and valuesα ≥ 1 and q ∈ (0, 1], there exists an
algorithm forSMSP whose competitive ratio is at least24α(3qα + 1) = O(q · α2) for every matroidM
on whichLinear is guaranteed to:
• be at leastα-competitive.
• select every element with probability at mostq.

The results proved above can be somewhat improved for monotone objective functions. Appendix A
explains how the proofs of Theorems 1.1, 1.2 and 1.4 need to bechanged in order to get the following
theorem.

Theorem 1.5. WhenSMSP is replaced withMSMSP in Theorems 1.1, 1.2 and 1.4 their guarantees can
be improved to8α(α + 1), 8kα(α + 1), and8α(αq + 1), respectively.

For monotone functions there is one additional natural property of Linear that can be used to get a
stronger result. Intuitively this property is thatLinear selects every element of the optimal solution with
probability at leastα−1, and thus, isα-competitive. Many algorithms have this property when items have
disjoint weights, and thus, there is a single optimal solution. Such algorithms are often extended to general
inputs by introducing a random tie breaking rule. The following theorem is designed to deal with algorithms
obtained this way; its proof can be found in Appendix A.
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Theorem 1.6. Given an arbitrary algorithmLinear for MSP and a valueα ≥ 1, there exists an algorithm
for MSMSP whose competitive ratio is at most16α = O(α) for every matroidM on whichLinear has
the following property: For everyMSP instance over the matroidM = (N ,I), there exists a random set
S ⊆ E obeying:
• S is always an optimal solution of theMSP instance.
• For every elementu ∈ E, Pr[u is selected by Linear] ≥ Pr[u ∈ S]/α.

The following table summarizes the competitive ratios we obtain, forSMSP andMSMSP over partic-
ular matroid classes, by leveraging the above-presented reductions.4 A straightforward application of these
reductions leads to improvements or even first results for all matroid classes listed in the table. However,
using some additional observations we can sometimes get further improvements. Further details on how the
stated results are implied by our reductions can be found in Appendix B. Our improvement for unitary par-
tition matroids also implies improvements by the same factor for all matroid classes for which a reduction
to unitary partition matroids is known.

Matroid Type Known Competitive Ratio Our Competitive Ratio
Unitary partition matroids 1297 (1) [23] 261

Transversal matroids − 2496

k-sparse linear matroids(2) − 24ke(3k + 1)
k-sparse linear matroids (MSMSP) − 8ke(k + 1)

Laminar matroids − 585
Laminar matroids (MSMSP) 211 [32] 144

(1) Gupta et al. [23] do not explicitly calculate the competitive ratio of their algorithm, however, its
competitive ratio is no better than48000/37 ≈ 1297.

(2) A k-sparse linear matroid is a linear matroid with a matrix representation using at mostk non-
zeros per column.

We highlight that apart from the unitary partition matroid case, all other results in the above table for
particular matroid classes assume prior knowledge of the matroid, in addition to the size of its ground set.
This is due to the fact that the correspondingMSP algorithms that we put into our framework to get results
for SMSP make this assumption.

Remark: The proofs of all the above theorems useLinear in a black-box manner. Hence, these theorems
apply also to many models allowing the algorithm more information, such as the model in which the al-
gorithm has full knowledge about the matroid from the beginning (but not about the objective function).
Also, we emphasize that all the above results are general reductions fromMSP to SMSP, not assuming any
particular structure about the underlying matroid. This isin stark contrast to almost all results onSMSP so
far.

1.2 Further Related Work

Progress has been made on the matroid secretary conjecture for variants ofMSP which modify the assump-
tions on the order in which elements arrive and the way weights are assigned to elements. One simpler
variant ofMSP is obtained by assumingrandom weight assignment. Here, an adversary can only choose
n = |E| not necessarily distinct weights, and the weights are assigned to the elements uniformly at ran-
dom. In this model, a5.7187-competitive algorithm can be obtained for any matroid [36]. Additionally,
a 16(1 − 1/e)-competitive procedure can still be obtained in the random weight assignment model even
if elements are assumed to arrive in an adversarial order [34, 36]. Hence, this variant is, in a sense, the

4For readability, the competitive ratios in the table have been rounded to the closest integer.
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opposite of the classicalMSP, where weights are adversarial and the arrival order is random. Furthermore,
a 4-competitive algorithm can be obtained in the so-calledfree order model. Here, the weight assignment
is adversarial; however, the algorithm can choose the orderin which elements arrive [1, 25]. Among the
above-discussed variants, this is the only variant with adversarial weight assignments for which anO(1)-
competitive algorithm is known. For more information on recent advances onMSP and its variants we refer
to the survey [10].

We also highlight thatSMSP is an online version of submodular function maximization (SFM) over a
matroid constraint. Interestingly, even in the offline setting, O(1)-approximations forSFM over a matroid
constraint have only been discovered very recently, starting with a(4 + ǫ)-approximation presented in [29].
Considerable progress has been made in the meantime [34, 15]. The currently strongest approximation
algorithm has an approximation ratio of aboute ≈ 2.718 [15]. We refer the interested reader to [8, 15] for
more information on constrainedSFM.

1.3 Organization of the paper

We start by formally introducing our problem and some basic notation and results in Section 2. Section 3
presents our main algorithm that we use to prove our results.Finally, Section 4 provides details on the
analysis of our algorithm.

2 Preliminaries

In this section we formally define our problem and state some notation and known results that are used later
in the paper.

2.1 Problems and Standard Notation

An instance of the Submodular Matroid Secretary Problem (SMSP) consists of a ground setE, a non-
negative submodular objectivef : E → R

+ and a matroid constraintM = (E,I). An algorithm for
this problem faces the elements ofE in a uniformly random order, and must accept or reject each element
immediately upon arrival. The algorithm has access ton = |E| and two oracles:
• A value oracle that, given a subsetS ⊆ E of elements thatalready arrived, returnsf(S).
• An independence oracle that, given a subsetS ⊆ E of elements thatalready arrived, determines

whetherS ∈ I.
The objective of the algorithm is to accept an independent set of elements maximizingf .

The Matroid Secretary Problem (MSP) can be viewed as a restriction ofSMSP to linear objective
functions. More formally, an instance ofMSP is an instance ofSMSP in which the functionf(S) is
defined byf(S) =

∑

u∈S w(u) for some set of non-negative weights{w(u) | u ∈ E}. Similarly, the
Monotone Submodular Matroid Secretary Problem (MSMSP) is a restriction ofSMSP to non-negative
monotone submodular objective functions.

The following notation comes handy in our proofs. Given a setS and an elementu, we useS + u
andS − u to denote the setsS ∪ {u} andS \ {u}, respectively. Additionally, given a weight function
w : E → R

+, we usew(S) as a shorthand for
∑

u∈S w(u). Finally, given a set functionf : 2E → R, we
denote byf(u | S) the marginal contribution of addingu toS. More formally,f(u | S) := f(S+u)−f(S).

5



2.2 The Functionfw

Given a set functionf : 2E → R and a weight vectorw ∈ R
E, let fw : 2E → R be the function defined as:

fw(S) = min
A⊆S
{f(A) + w(S \ A)} ∀S ⊆ E .

This construction offw out of f andw is well known in the field of submodular function optimization, and
is sometimes calledconvolution(see, for example, [31]). We state some basic properties offw. Proofs of
these results can, for example, be found in [33, Chapter 10].

Property 2.1. For every setS ⊆ E, f(S) ≥ fw(S), and forS = ∅ the inequality holds with equality.

Property 2.2. If f is a non-negative submodular function andw is non-negative, thenfw is also non-
negative and submodular. Moreover, iff is also monotone, then so isfw.

2.3 Known Lemmata

We need the following known lemmata. The lemmata have been rephrased a bit to make the difference
between them clearer.

Lemma 2.3(Lemma 2.2 of [13]). Let g : 2E → R
+ be a submodular function. Denote byA(p) a random

subset ofA where each element appears with probabilityp (not necessarily independently). Then,

E[g(A(p))] ≥ (1− p)g(∅) + p · g(A) .

Lemma 2.4(Lemma 2.2 of [7]). Letg : 2E → R
+ be a non-negative submodular function. Denote byA(p)

a random subset ofA where each element appears with probability at mostp (not necessarily independently).
Then,

E[g(A(p))] ≥ (1− p)g(∅) .

3 Algorithm

The algorithm used to prove our results forSMSP is given as Algorithm 1. Observe that the algorithm has
a single probability parameterp ∈ (0, 1). Additionally, the algorithm uses an arbitrary procedureLinear for
MSP whose existence is assumed by Theorem 1.1 and our other results for SMSP. Finally, the algorithm
also uses as a subroutine the standard greedy algorithm for maximizing a submodular function subject to
matroid constraints (denoted byGreedy), which can be found, for completeness, in Appendix C.5 While
reading the description of Algorithm 1, the only important thing one has to know aboutGreedy is that it
creates its solution by starting with the empty set and adding elements to it one by one.

A key challenge in trying to leverageGreedy in an algorithm forSMSP, is that Greedy is not a
constant-factor approximation algorithm for submodular function maximization over a matroid (or even in
the unconstrained setting). In our analysis we show that Algorithm 1 manages to circumvent this issue,
and the setM , produced within Algorithm 1 usingGreedy, does provide a constant approximation for the
optimal solution.

Observe that Algorithm 1 can be implemented online because whenever an elementu is fed toLinear,
the algorithm already knows whetheru ∈ N , and thus, can determine the membership ofu in Q ∩ N
immediately afterLinear determines the membership ofu in Q. Additionally, note that Algorithm 1 applies

5For non-monotone functions there are two versions ofGreedy: one that stops picking elements once they all have negative
marginal contributions, and one that continues as long as possible. In this paper we use the first version.
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Algorithm 1: Online(p)

// Learning Phase
1 ChooseX from the binomial distributionB(n, 1/2).
2 Observe (and reject) the firstX elements of the input. LetL be the set of these elements.

// Selection Phase
3 LetM be the output ofGreedy on the setL.
4 LetN ← ∅.
5 for each arriving elementu ∈ E \ L do
6 Letw(u)← 0.
7 if u is accepted byGreedy when applied toM + u then
8 with probability p do
9 Add u to N .

10 LetMu ⊆M be the solution ofGreedy immediately before it addsu to it.
11 Updatew(u)← f(u |Mu).

12 Passu to Linear with weightw(u).

13 return Q ∩N , whereQ is the output ofLinear .

Linear to the restriction6 of its input matroidM to the setE \L. We assume in the analysis of Algorithm 1
thatLinear isα-competitive for that restriction ofM whenever it isα-competitive forM. Many algorithms
for MSP obey this property without any modifications, but for some weneed the following proposition
which proves that this assumption can be justified in general.

Definition 3.1. Partial-MSP is a variant ofMSP where an instance consists also of a setL ⊆ E knownto
the algorithm. The elements ofE \L arrive at a uniformly random order as usual. The elements ofL never
arrive, and thus, cannot be added to the solution. However, the oracles can answer queries about them as if
they arrived before the first element ofE \ L.

Proposition 3.2. Given an algorithmLinear for MSP, there exists an algorithm for Partial-MSP whose
competitive ratio for every matroidM is as good as the competitive ratio ofLinear for this matroid.

The proof of Proposition 3.2 can be found in Appendix D. Notice thatLinear indeed faces an instance
of Partial-MSP since the setL is fully known beforeLinear is invoked for the first time, and the weights
assigned to elements depend solely onL. The following simple observation is well known. A proof of it
can be found,e.g., as Lemma A.1. of [16].

Observation 3.3. The setL constructed by Algorithm 1 contains every element ofE with probability1/2,
independently.

As is, it is difficult to prove some claims about Algorithm 1. For that purpose, we present Algorithm 2,
which is an offline algorithm sharing the same joint distribution (as Algorithm 1) of the setM and the output
set (a justification of this claim can be found in Appendix C).Clearly, the competitive ratio of Algorithm 1
is equal to the approximation ratio of Algorithm 2.

Notice that Algorithm 2 also makesLinear face an instance of Partial-MSP (with L = E \ (N ∪N0)).
Hence, by Proposition 3.2, we can assume the competitive ratio of Linear forM extends to the instance it
faces in Algorithm 2.

6Therestrictionof a matroidM = (E, I) to a subsetE′ ⊆ E of its ground set is the matroidM′ = (E′, I ∩ 2E
′

).
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Algorithm 2: Simulated(p)

// Initialization
1 LetM,N,N0 ← ∅.
2 LetE′ ← E.

// Main Loop
3 while E′ 6= ∅ do
4 Let u be the element ofE′ maximizingf(u |M), and removeu from E′.
5 Letw(u)← f(u |M).
6 if M + u is independent inM andw(u) ≥ 0 then
7 with probability 1/2 do Add u to M . otherwise with probability p do Add u to N .

otherwise
8 Updatew(u)← 0.
9 Add u to N0.

10 else
11 Letw(u)← 0.
12 Add u toN0 with probability1/2.

13 RunLinear with N ∪N0 as the input (in a uniformly random order) and the weights defined byw.
14 return Q ∩N , whereQ is the output ofLinear .

Algorithms 1 and 2 can be viewed as generalizations of algorithms presented by [32] forMSMSP over
laminar matroids. In particular, the idea of defining a surrogate weight functionw based on a subset of
the elements sampled at the beginning of the algorithm was already used in [32]. Although our analysis of
Algorithms 1 and 2 is quite different and much more general than the analysis of [32], it does borrow some
ideas from [32]. The concept of an offline algorithm simulating a more difficult to analyze online algorithm
has been previously used, even specifically for offline simulations of an online greedy algorithm [9, 27,
32]. A key novel contribution of our analysis, compared to [32], is that we manage to relate the expected
w-weight of a maximumw-weight independent set inN to E[w(M)] (see Lemma 4.8). Furthermore,
we overcome several technical hurdles by first comparing values of constructed sets with respect to the
convoluted submodular functionfw instead of the original functionf . Finally, our use (and analysis) of a
modified greedy algorithm allows us to deal with non-monotone submodular functions.

4 Analysis of Algorithms 1 and 2

Throughout this section (except in Section 4.4) we fix an arbitrary matroidM = (E,I) for which Linear
is α-competitive, and analyze the approximation ratio of Algorithm 2 for this matroid. Since Algorithms 1
and 2 share their output distribution, the approximation ratio we prove for Algorithm 2 implies an identical
competitive ratio for Algorithm 1. The analysis of the approximation ratio consists of three main stages. In
each stage we study one of the setsM , N andN ∩Q. Specifically, we show bounds on the expected values
assigned to each one of these sets byw andfw. Notice that once we have a bound onE[fw(N ∩Q)], we also
get a bound on the expected value of the solution produced by Algorithm 2 sincef(N ∩Q) ≥ fw(N ∩Q)
by Property 2.1.7

Following is some notation that is useful in many of the proofs below. For every elementu ∈ E, letEu

7Observe that the weightsw chosen by Algorithm 2 are always non-negative, thus, we can use all the properties offw stated in
Section 2.
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be the set of elements processed by Algorithm 2 beforeu. Then, we define:

Nu = N ∩ Eu and Mu = M ∩ Eu .

Similarly, we also defineE′
u = Eu + u and:

N ′
u = N ∩ E′

u and M ′
u = M ∩ E′

u .

4.1 First Stage

We now begin with the first stage of the analysis,i.e., boundingE[w(M)] andE[fw(M)]. The following
lemma shows that both values are in fact strongly related toE[f(M)].

Lemma 4.1. w(M) + f(∅) = f(M) = fw(M).

Proof. Observe that, by construction,w(u) = f(u | Mu) for everyu ∈ M . Hence, the equalityw(M) +
f(∅) = f(M) holds since:

w(M) =
∑

u∈M

f(u |Mu) = f(M)− f(∅) .

Let us now prove the equalityfw(M) = f(M). By Property 2.1,fw(M) ≤ f(M). Thus, we only need
to prove the reverse inequality. For every setA ⊆M :

f(A) + w(M \ A) = f(∅) +
∑

u∈A

f(u | A ∩Mu) +
∑

u∈M\A

f(u |Mu)

≥ f(∅) +
∑

u∈A

f(u |Mu) +
∑

u∈M\A

f(u |Mu) = f(M) ,

where the inequality follows from submodularity. Hence, bythe definition offw(M):

fw(M) = min
A⊆M

{f(A) + w(M \ A)} ≥ min
A⊆M

f(M) = f(M) .

The bounds given by the above lemma are in terms off(M). To make these bounds useful, we need
to bound alsoE[f(M)]. This is not trivial sinceGreedy is not a constant-factor approximation algorithm
for submodular function maximization over a matroid. Different approaches are known to adapt or extend
Greedy such that it provides anO(1)-approximation in the offline setting. However, these are not well-
suited for the way we simulate greedy online. The next two lemmata show a very simple way to transform
Greedy into anO(1)-approximation algorithm for submodular function maximization; and most impor-
tantly, this adjustment ofGreedy is trivial to simulate online. We are not aware of any previously known
variation ofGreedy that provides anO(1)-approximation for submodular function maximization overa
matroid constraint, and that can easily be simulated in the online setting.

The next lemma is similar to Lemma 3 of [23], but does not assume thatf is normalized (i.e., f(∅) = 0).
The proof of the lemma is deferred to Appendix D since it goes along the same lines as the proof of [23].

Lemma 4.2. For a matroid and a non-negative submodular functionf , if S is the independent set returned
by Greedy, then for any independent setC, f(S) ≥ f(C ∪ S)/2.

The following lemma gives the promised variant ofGreedy.

Lemma 4.3. LetS be a random set containing every element ofE with probability1/2, independently, then
E[f(Greedy(S))] ≥ f(OPT)/8.
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Proof. Let T be the output ofGreedy. By Lemma 4.2, the following inequality always holds:

f(T ) ≥
f(T ∪ (OPT∩S))

2
.

Hence,

E[f(T )] =
∑

A⊆OPT

Pr[OPT∩S = A] · E[f(T ) | OPT∩S = A]

≥
1

2
·
∑

A⊆OPT

Pr[OPT∩S = A] · E[f(T ∪A) | OPT∩S = A] .

Let gA(T ) = f(T ∪ A). It is easy to check thatgA is a non-negative submodular function for every
choice of setA. Additionally, T ⊆ S, and thus, contains every element ofE \ A with probability at most
1/2 even conditioned onOPT∩S = A. Hence, by Lemma 2.4:

E[f(T ∪A) | OPT∩S = A] = E[gA(T \A) | OPT∩S = A] ≥
gA(∅)

2
=

f(A)

2
.

Combining the two last inequalities gives:

E[f(T )] ≥
1

2
·
∑

A⊆OPT

(

Pr[OPT∩S = A] ·
f(A)

2

)

=
E[f(OPT∩S)]

4
≥

f(OPT)

8
,

where the last inequality follows by Lemma 2.3.

Corollary 4.4. E[f(M)] ≥ f(OPT)/8.

Proof. We prove the corollary for the setM of Algorithm 1, which is fine since it has the same distribution
as the setM of Algorithm 2. Observe that the setL of Algorithm 1 contains every element with probability
1/2, independently, andM is the result of applyingGreedy to this set. Thus, the corollary holds by
Lemma 4.3.

4.2 Second Stage

In the second stage we use the bounds proved in the first stage to get bounds also onE[w(N)] andE[fw(N)].

Lemma 4.5. E[w(N)] = p · E[w(M)].

Proof. Consider an arbitrary elementu ∈ E processed by Algorithm 2, and let us fix all history up to the
point beforeu is processed. IfM + u 6∈ I or f(u | M) ≤ 0, then there is a zero expected increase in both
w(M) andw(N) during the processing ofu. Otherwise, the expected increase inw(M) is w(u)/2, while
the expected increase inw(N) is (p/2) · w(u). Hence, if we denote by∆M the expected increase inw(M)
and by∆N the expected increase inw(N), then:

∆N =
(p/2) · w(u)

w(u)/2
·∆M = p ·∆M .

The lemma now follows from the linearity of expectation.

Getting a bound onfw(N) is somewhat more involved.

Lemma 4.6. E[fw(N)] ≥ f(∅)
1+p + p(1−p)

1+p · E[fw(M)].
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Proof. Consider the auxiliary functionΦ(M,N) = fw(N) − p
1+p · fw(M ∪N). Observe thatΦ is in fact

a random function since it depends on the random vectorw. Our first objective in this proof is to show that

E[Φ(M,N)] ≥ (1 + p)−1 · f(∅) . (1)

For that purpose, we define∆u as the change inΦ(M,N) whenu is processed by Algorithm 2. More
formally, ∆u = Φ(M ′

u, N
′
u) − Φ(Mu, Nu). Additionally, let Ru be an event encoding all the random

decisions of Algorithm 2 up to the moment before it processesu, and letRu be the set of all such events.
Then, since, by Property 2.1,Φ(∅,∅) = (1 + p)−1 · fw(∅) = (1 + p)−1 · f(∅):

E[Φ(M,N)]− (1 + p)−1 · f(∅) =
∑

u∈E

E[∆u] =
∑

u∈E

∑

Ru∈Ru

(Pr[Ru] · E[∆u | Ru]) .

Thus, to prove Inequality (1) it is enough to showE[∆u | Ru] ≥ 0 for an arbitrary elementu ∈ E and event
Ru ∈ Ru. Notice that conditioned onRu, the setsMu andNu and the part of the vectorw corresponding
to E′

u are all deterministic. IfMu + u 6∈ I or f(u | Mu) < 0, then we are done sinceMu = M ′
u and

Nu = N ′
u. Thus, we only need to consider the caseMu+u ∈ I andf(u |Mu) ≥ 0. In this caseu is added

toM with probability1/2 and toN with probabilityp/2. Thus,

E[fw(N
′
u)− fw(Nu) | Ru] = Pr[u ∈ N | Ru] · E[fw(u | Nu) | Ru]

≥ Pr[u ∈ N | Ru] · E[fw(u |Mu ∪Nu) | Ru]

=
p/2

1/2 + p/2
· Pr[u ∈M ∪N | Ru] · E[fw(u |Mu ∪Nu) | Ru]

=
p

1 + p
· E[fw(M

′
u ∪N ′

u)− fw(Mu ∪Nu) | Ru] ,

where the inequality holds sincefw is submodular by Property 2.2. Rearranging the last inequality yields
E[∆u | Ru] ≥ 0, which completes the proof of Inequality (1).

Next, observe that for an element to enterN , three things have to happen: first it must hold thatMu+u ∈
I andf(u |Mu) ≥ 0, then the algorithm must randomly decide not to add the element toM and finally the
algorithm must randomly decide (with probabilityp) to add the element toN . The last decision does not
affect the future development ofM andw, and thus, even conditioned onM andw, every element belongs
to N with probability at mostp. To use the last observation, letgw,M(S) = fw(M ∪ S). One can observe
thatgw,M is non-negative and submodular. Thus, by Lemma 2.4:

E[fw(M ∪N) |M,w] = E[gw,M (N) |M,w] ≥ (1− p) · gw,M (∅) = (1− p) · fw(M) .

By the law of total expectation, the above inequality implies:

E[fw(M ∪N)] ≥ (1− p) · E[fw(M)] ,

which implies the lemma when combined with Inequality (1).

4.3 Third Stage

In the third stage we use the bounds proved in the first and second stages to get bounds onE[w(Q ∩ N)]
andE[fw(Q ∩ N)]. For that purpose, let us defineOPTw(N) as the maximum weight independent set in
N with respect to the weight functionw. The fact thatLinear isα-competitive forM implies the following
observation.

Observation 4.7.E[w(Q ∩N)] = E[w(Q)] ≥ 1
α · E[w(OPTw(N ∪N0))] =

1
α · E[w(OPTw(N))].

11



Thus, to get a lower bound onE[w(Q ∩N)] it suffices to get a lower bound onE[w(OPTw(N))].

Lemma 4.8. E[w(OPTw(N))] ≥ p
1+p · E[w(M)].

Proof. For this proof we need Algorithm 2 to maintain two additionalsetsN ′ andH. The setN ′ is the set
of elements ofN that are not spanned by previousN -elements when added toN . More formally, the set
N ′ is originally empty. Whenever an elementu is added toN , it is also added toN ′ if it is not spanned by
previous elements ofN . Clearly, the setN ′ ⊆ N at the end of the procedure is an independent set, and we
can, thus, useE[w(N ′)] as a lower bound onE[w(OPTw(N))].8 Hence, to prove the lemma it is enough to
showE[w(N ′)] ≥ p

1+pE[w(M)].
The setH is maintained by the following rules:
• Originally H is empty.
• Whenever an elementu is added toN ′, it is also added toH if H + u ∈ I.
• Whenever an elementu is added toM , it is also added toH. If that addition makesH non-

independent, then an arbitrary elementφ(u) ∈ H ∩ N ′ such thatH − φ(u) ∈ I (such an element
exists sinceH \N ′ = M is independent) is removed fromH.

Consider now an arbitrary elementu ∈ E processed by Algorithm 2, and let us fix all history up to the
point beforeu is processed. Notice that at this pointw(u) is no longer a random variable. We are interested
in the expected increase ofw(M) andw(N ′) whenu is processed. IfM + u 6∈ I or f(u | M) < 0, then
Algorithm 2 does not addu to eitherM or N , and thus, there is a zero increase in bothw(M) andw(N ′).
Otherwise, ifN ′ + u ∈ I, then the expected increase inw(M) is w(u)/2, while the expected increase in
w(N ′) is (p/2) · w(u). Finally, we need to consider the case thatM + u ∈ I andf(u | M) ≥ 0 but
N ′ + u 6∈ I. In this case the expected increase inw(M) is still w(u)/2, but the expected increase inw(N ′)
is 0. To fix that, we charge(p/2)·w(u) to the element ofH that becomesφ(u) if u is added toM (regardless
of whetheru is really added toM or not).

Let c(u) be the amount charged to an elementu. By the above discussion we clearly have:

E[w(M)]

E[w(N ′)] +
∑

u∈E E[c(u)]
=

1/2

p/2
= p−1 . (2)

To complete the proof we upper bound the charge to every element u ∈ E. Let us fix all history up to
the point afteru is processed. Ifu 6∈ H ∩ N ′ at this point, then, by definition,c(u) = 0. Otherwise, from
this point on, tillu leavesH ∩N ′, every arriving elementu′ can have one of two behaviors:
• u′ does not cause a charge to be added tou.
• u′ causesu to be charged by(p/2) ·w(u′) ≤ (p/2) · w(u) (the inequality holds because Algorithm 2

considers elements in a non-increasing weights order). In this case, with probability1/2, u′ is added
to M andu is removed fromH ∩N ′ (and therefore, will not be charged again in the future).

From the above two options we learn that whenu gets intoH∩N ′, c(u) is upper bounded by(p/2)·w(u)·X,
whereX is distributed according to the geometric distributionG(1/2). Thus, in this case:

E[c(u)] ≤ (p/2) · w(u) · E[X] = p · w(u) .

Combining both cases, we get that the following inequality always holds:

E[c(u)] ≤ p · E[w(N ′ ∩ {u})] .

Plugging the last inequality into (2) gives:

E[w(M)]

E[w(N ′)] + p · E[w(N ′)]
≤

1

p
⇒

p

1 + p
· E[w(M)] ≤ E[w(N ′)] .

8In fact,N ′ is a maximum weight independent set inN since the process creating it is equivalent to running greedy onN with
the objective functionw.
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Corollary 4.9. E[w(Q ∩N)] ≥ p
α(1+p) · E[w(M)].

Proof. Follows immediately from Observation 4.7 and Lemma 4.8.

The bound onE[fw(Q ∩N)] is obtained by showing thatE[w(Q ∩N)− fw(Q ∩N)] ≤ q · E[w(N)−
fw(N)] for some valueq ≥ 1

α . We later show that this inequality always holds forq = 1, which already
allows us to prove Theorem 1.1. However, it turns out that by exploiting some basic properties of many
algorithms for (linear)MSP, the same inequality can be shown for smaller values ofq, which leads to
stronger competitive ratios.

Proposition 4.10. If E[w(Q ∩ N) − fw(Q ∩ N)] ≤ q · E[w(N) − fw(N)] for some valueq ≥ 1
α , then

E[f(Q ∩N)] ≥ E[fw(Q ∩N)] ≥ p(1−2pqα)
8α(1+p) · f(OPT).

Proof. Observe that:

E[fw(Q ∩N)] ≥ E[w(Q ∩N)]− q · E[w(N)− fw(N)] (3)

≥
p

α(1 + p)
· E[w(M)] − q · E[w(N)] + q · E[fw(N)]

≥
p

α(1 + p)
· E[w(M)] − qp · E[w(M)] +

q · f(∅)

1 + p
+

qp(1− p)

1 + p
· E[fw(M)] ,

where the first inequality holds by the assumption of the proposition, the second by Corollary 4.9 and the
last by Lemmata 4.5 and 4.6.

Lemma 4.1 implies the following inequalities:

p

α(1 + p)
· E[w(M)] =

p

α(1 + p)
· (E[f(M)]− f(∅)) ≥

p

α(1 + p)
· E[f(M)]−

q · f(∅)

1 + p
,

−E[w(M)] = −(E[f(M)]− f(∅)) ≥ −E[f(M)] and E[fw(M)] = E[f(M)] .

Plugging these inequalities into Inequality (3) yields:

E[fw(Q ∩N)] ≥
p

α(1 + p)
· E[f(M)]− qp · E[f(M)] +

qp(1− p)

1 + p
· E[f(M)]

=
p(1− αq(1 + p) + αq(1− p))

α(1 + p)
· E[f(M)] =

p(1− 2qpα)

α(1 + p)
· E[f(M)] .

The proposition now follows by combining the last inequality with Corollary 4.4.

The following observation proves that one can useq = 1 for every algorithmLinear.

Observation 4.11.w(S)− fw(S) is a monotone function ofS, hence,w(Q∩N)− fw(Q∩N) ≤ w(N)−
fw(N).

Proof. LetS be an arbitrary subset ofE and letu ∈ E \S. We need to show thatw(S +u)− fw(S +u) ≥
w(S) − fw(S), or equivalently,w(u) ≥ fw(S + u) − fw(S). By definition, there exists a setB ⊆ S such
that:

fw(S) = f(B) + w(S \B) .

Hence,

fw(S + u) = min
A⊆S+u

{f(A) + w((S + u) \ A)} ≤ f(B) + w((S + u) \B)

= f(B) + w(S \B) +w(u) = fw(S) + w(u) .

The observation now follows by rearranging the above inequality.
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We can now prove Theorem 1.1.

Proof of Theorem 1.1.By Observation 4.11, we can plugq = 1 into Proposition 4.10. Choosingp =
(3α)−1 < 1, the proposition implies:

E[f(Q ∩N)] ≥
(3α)−1(1− 2/3)

8α(1 + (3α)−1)
· f(OPT) =

1

24α(3α + 1)
· f(OPT) .

Hence, Algorithm 2 withp = (3α)−1 is 24α(3α + 1)-competitive for the matroidM.

Note thatp = (3α)−1 used in the above proof is not the minimizer of the expressionp(1−2pα)/(8α(1+
p)) obtained from Proposition 4.10 by settingq = 1. We usep = (3α)−1 for simplicity since it leads to a
clean expression that is very close to the one obtained by theminimizing p.

In some cases it is possible to use a smaller value ofq in Proposition 4.10. The following two claims
prove one such case. A set functiong : 2E → R is callednormalizedif g(∅) = 0 andsupermodularif
g(A) + g(B) ≤ g(A ∪B) + g(A ∩B).

Lemma 4.12. Let g : 2E → R
+ be a normalized, monotone andsupermodularfunction. Denote byA(q) a

random subset ofA where each element appears with probability at mostq (not necessarily independently).
Then,E[g(A(q))] ≤ q · g(A).

Proof. LetA = {u1, . . . , u|A|} be an arbitrary numbering of the elements inA, and fori ∈ {0, . . . , |A|} we
defineAi = {u1, . . . , ui}, whereA0 = ∅. Denote byXi an indicator for the event thatui ∈ A(q), and let
qi = Pr[ui ∈ A(q)] = E[Xi] ≤ q. Then:

E[g(A(q))] = E



g(∅) +

|A|
∑

i=1

Xi · g(ui | Ai−1 ∩A(q))



 ≤ E



g(∅) +

|A|
∑

i=1

Xi · g(ui | Ai−1)





= g(∅) +

|A|
∑

i=1

qi · g(ui | Ai−1) ≤ g(∅) + q ·

|A|
∑

i=1

g(ui | Ai)

= (1− q) · g(∅) + q · g(A) = q · g(A) ,

where there first inequality follows from the supermodularity of g, the second one from monotonicity and
the fact thatqi ≤ q for 1 ≤ i ≤ |A|, and the last equality follows by the fact thatg is normalized.

Corollary 4.13. If Linear is guaranteed to pick every element of its input with probability at mostq, then
E[w(Q ∩N)− fw(Q ∩N)] ≤ q · E[w(N)− fw(N)].

Proof. Let us define the functiong(S) = w(S)+fw(∅)−fw(S). Sincew(S) is linear,fw(∅) is a constant
andfw(S) is submodular,g(S) is a supermodular function. Additionally,g(S) is normalized by construction
and monotone by Observation 4.11. Hence, for every fixedN , by Lemma 4.12 and the assumption that no
element ofN belongs toQ with probability larger thanq:

E[g(Q ∩N)] ≤ q · g(N) .

Since the last inequality holds for every fixedN , it holds also, in expectation, without fixingN . Thus:

E[w(Q ∩N)− fw(Q ∩N)] = E[g(Q ∩N)]− fw(∅)

≤ q · E[g(N)] − fw(∅) ≤ q · E[w(N)− fw(N)] ,

where the last inequality holds sincefw is non-negative by Property 2.2.
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We can now prove Theorem 1.4.

Proof of Theorem 1.4.Observe thatq must be at least1/α since anyα-competitive algorithm forMSP must
be able to select an element with probability at least1/α when this element is the only element having a
non-zero weight. Hence, by Corollary 4.13, we can plugq into Proposition 4.10. Lettingβ = αq ≥ 1 and
choosingp = (3β)−1 < 1, the proposition implies:

w(Q ∩N) ≥
1
3β (1− 2qα 1

3β )

8α(1 + 1
3β )

=

1
3β (1− 2/3)

8β
q (1 +

1
3β )
· f(OPT) =

q

24β(3β + 1)
· f(OPT) .

Hence, Algorithm 2 withp = (3β−1 = (3αq)−1 has a competitive ratio of at most:

24β(3β + 1)

q
=

24αq(3αq + 1)

q
= O(q · α2)

for the matroidM.

4.4 Proof of Theorem 1.2

In this section we assumeM is a matroid for which Theorem 1.2 is meaniningful. More specifically, the
behavior ofLinear onM can be characterized as follows.
• For everyMSP instance over the matroidM, there exists a set ofk (correlated) random sets{Pi}

k
i=1

such that each setPi is always independent inM andE[w(
⋃k

i=1 Pi)] ≥ w(OPTw)/α, wherew is
the weight function of theMSP instance andOPTw is the maximum weight independent set given
w.

• Linear outputs a uniformly random set from{Pi}
k
i=1.

For every1 ≤ i ≤ k, letQi be the setPi corresponding to the execution ofLinear within Algorithm 2
with p = (3α)−1.

Lemma 4.14.E[f(
⋃k

i=1 Qi ∩N)] ≥ 1
24α(3α+1) · f(OPT).

Proof. One can verify that the fact thatQ is produced byLinear was used in the above analysis of the
competitive ratio of Algorithm 2 only to justify the inequality: E[w(Q)] ≥ 1

α · E[w(OPTw(N ∪ N0))].
Thus, the proof of Theorem 1.1 can be viewed as showing that after executing Algorithm 2 withp = (3α)−1

every random subsetS of N ∪N0 obeying this inequality must obey also:

E[f(S ∩N)] ≥
1

24α(3α + 1)
· f(OPT) .

The lemma now follows since
⋃k

i=1Qi is a random subset ofN ∪N0 obeying the required inequality.

The next lemma is necessary to transform the bound given by the last lemma into a bound on the values
of the separate setsQi.

Lemma 4.15. Letg : 2E → R
+ be a non-negative submodular function and letS1, . . . , Sk ⊆ E. Then,

k
∑

i=1

f(Si) ≥ f

(

k
⋃

i=1

Si

)

.
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Proof. We prove the result by induction onk. It clearly holds fork = 1. Fork > 1:

k
∑

i=1

f(Si) = f(S1) + f(S2) +
k
∑

i=3

f(Si) ≥ f(S1 ∪ S2) + f(S1 ∩ S2) +
k
∑

i=3

f(Si)

≥ f(S1 ∪ S2) +

k
∑

i=3

f(Si) ≥ f

(

k
⋃

i=1

Si

)

,

where the first inequality holds by the submodularity off , the second by the non-negativity off and the last
by the induction hypothesis.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2.Combining Lemmata 4.14 and 4.15, we get:

k
∑

i=1

E[f(Qi ∩N)] ≥ E

[

f

(

k
⋃

i=1

Qi ∩N

)]

≥
1

24α(3α + 1)
· f(OPT) .

Since the output setQ ∩N of Algorithm 2 is a uniformly random subset from{Qi ∩N}ki=1, we get:

E[f(Q ∩N)] =

∑k
i=1 E[f(Qi ∩N)]

k
≥

1

24kα(3α + 1)
· f(OPT) .

Hence, Algorithm 2 withp = (3α)−1 is 24kα(3α + 1)-competitive for the matroidM.
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A Monotone Functions

In this section we prove the results forMSMSP that apply to general matroids,i.e., Theorem 1.5 and
Theorem 1.6. The online algorithm we use to prove these results is given as Algorithm 3, which is a close
variant of Algorithm 1. Just like Algorithm 1, this algorithm has a probability parameterp, but the role of
this parameter in the algorithm is somewhat different.

Like in Algorithm 1, it is easy to show thatL contains every element ofE with probabilityp, indepen-
dently. For the analysis of Algorithm 3, we again need an equivalent offline algorithm given as Algorithm 4,
which is a close variant of Algorithm 2
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Algorithm 3: Monotone-Online(p)

// Learning Phase
1 ChooseX from the binomial distributionB(n, p).
2 Observe (and reject) the firstX elements of the input. LetL be the set of these elements.

// Selection Phase
3 LetM be the output ofGreedy on the setL.
4 LetN ← ∅.
5 for each arriving elementu ∈ E \ L do
6 Letw(u)← 0.
7 if u is accepted byGreedy when applied toM + u then
8 Add u toN .
9 LetMu ⊆M be the solution ofGreedy immediately before it addsu to it.

10 Updatew(u)← f(u |Mu).

11 Passu to Linear with weightw(u).

12 return Q ∩N , whereQ is the output ofLinear .

A similar proof to the one given in Appendix C can be used to show that Algorithms 3 and 4 share the
same joint distribution of the setM and the output set.

A.1 Analysis of Algorithms 3 and 4

Throughout this section we fix an arbitrary matroidM = (E,I) for which Linear is α-competitive and
analyze the approximation ratio of Algorithm 4. Since Algorithms 3 and 4 share their outputs distribution,
the approximation ratio we prove for Algorithm 4 implies an identical competitive ratio for Algorithm 3.
The analysis closely follows the proof given in Section 4, and we mostly explain in this section how to
modify the proof of Section 4 to fit Algorithm 4.

Let us start with the first stage in which we boundE[w(M)] andE[fw(M)]. Lemma 4.1, which ties both
values toE[f(M)], still holds, and thus, we only need to boundE[f(M)].

Lemma A.1. E[f(M)] ≥ (p/2) · f(OPT).

Proof. We prove the corollary for the setM of Algorithm 3, which is fine since it has the same distribution
as the setM of Algorithm 4. Algorithm 3 calculatesM by applyingGreedy toL. Greedy is known to have
an approximation ratio of1/2 for the problem of maximizing a non-negative monotone submodular function
subject to a matroid constraint [18]. Hence,f(M) ≥ f(OPT(L))/2, whereOPT(L) is the independent
subset ofL maximizingf .

On the other hand,L contains every element ofE with probabilityp, independently. Hence,

f(M) ≥
E[f(OPT(L))]

2
≥

E[f(OPT∩L)]

2
≥ (p/2) · f(OPT) ,

where the second inequality holds sinceOPT∩L is an independent set ofM and the last inequality holds
by Lemma 2.3.

This completes the first stage of the proof. In the second stage we boundE[w(N)] andE[fw(N)]. In
Section 4 the bound onE[w(N)] is given by Lemma 4.5. The proof of this lemma uses the probability
that an elementu processed by Algorithm 2 is added toM (respectively,N ) given thatM + u ∈ I and
f(u | M) ≥ 0. Let us denote this probability bypM (respectively,pN ). Using this terminology the
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Algorithm 4: Monotone-Simulated(p)

// Initialization
1 LetM,N,N0 ← ∅.
2 LetE′ ← E.

// Main Loop
3 while E′ 6= ∅ do
4 Let u be the element ofE′ maximizingf(u |M), and removeu from E′.
5 Letw(u)← f(u |M).
6 if M + u is independent inM then
7 with probability p do Add u toM . otherwise Add u to N .

8 else
9 Letw(u)← 0.

10 Add u toN0 with probability1− p.

11 RunLinear with N ∪N0 as the input (in a uniformly random order) and the weights defined byw.
12 return Q ∩N , whereQ is the output ofLinear .

proof actually showsE[w(N)] = (pN/pM ) · E[w(M)]. It can be verified that the proof holds also for
Algorithm 4, as long as one uses the valuespM andpN corresponding to this algorithm (which arep and
1− p, respectively). Hence, we get the following lemma.

Lemma A.2. E[w(N)] = 1−p
p · E[w(M)].

Similarly, using the potential functionΦ(M,N) = fw(N) − pN
pM+pN

· fw(M ∪ N), the proof of
Lemma 4.6 can be used to show thatE[fw(N)] ≥ pM

pM+pN
· f(∅) + pN

pM+pN
· E[fw(M ∪ N)] in both

Algorithms 2 and 4. This gives the following lemma.

Lemma A.3. E[fw(N)] ≥ p · f(∅) + (1− p) · E[fw(M)].

Proof. By the above discussion:

E[fw(N)] ≥
p

p+ (1− p)
· f(∅) +

1− p

p+ (1− p)
· E[fw(M ∪N)]

= p · f(∅) + (1− p) · E[fw(M ∪N)] .

The lemma now follows sincefw is monotone by Property 2.2.

The last lemma boundsE[fw(N)], and thus, completes the second stage of the proof. In the third
stage we boundE[w(Q ∩ N)] andE[fw(Q ∩ N)]. Observation 4.7 boundsE[w(Q ∩ N)] in terms of
E[w(OPTw(N))], and this observation holds also for Algorithm 4. Hence, to get a bound onE[w(Q ∩N)]
we first need a bound onE[w(OPTw(N))]. The following lemma corresponds to Lemma 4.8.

Lemma A.4. E[w(OPTw(N))] ≥ (1− p) · E[w(M)].

Proof. The proof of Lemma 4.8 shows that there exist a random independent setN ′ ⊆ N and random
variables{c(u)}u∈E such that:

E[w(M)]

E[w(N ′)] +
∑

u∈E E[c(u)]
=

pM
pN

, and E[c(u)] ≤
pN
pM
· E[w(N ′ ∩ {u})] .
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It can be verified that this proof holds also for Algorithm 4, and thus, plugging in the corresponding values
of pM andpN , we get:

E[w(M)]

E[w(N ′)] +
∑

u∈E E[c(u)]
=

p

1− p
, and E[c(u)] ≤

1− p

p
· E[w(N ′ ∩ {u})] .

Combining the two equations gives:

E[w(M)]

E[w(N ′)] + 1−p
p · E[w(N

′)]
≤

p

1− p
⇒ (1− p) · E[w(M)] ≤ E[w(N ′)] .

The lemma now follows by observing thatN ′ is a possible candidate to beOPTw(N), and therefore,
w(OPTw(N)) ≥ w(N ′).

Corollary A.5. E[w(Q ∩N)] ≥ 1−p
α · E[w(M)].

Proof. Follows immediately from Observation 4.7 and Lemma A.4.

The bound onE[fw(Q ∩ N)] is obtained from the bound onE[w(Q ∩ N)] by showing thatE[w(Q ∩
N) − fw(Q ∩ N)] ≤ q · E[w(N) − fw(N)] for some valueq ≥ 1/α. However, like in Section 4, we first
prove the approximation ratio induced by every value ofq and only then discuss the values thatq can take.

Proposition A.6. If E[w(Q ∩ N) − fw(Q ∩ N)] ≤ q · E[w(N) − fw(N)] for some valueq ≥ 1/α, then

E[f(Q ∩N)] ≥ E[fw(Q ∩N)] ≥ q(1−p)(p/(αq)−1+p)
2 · f(OPT).

Proof. Observe that:

E[fw(Q ∩N)] ≥ E[w(Q ∩N)]− q · E[w(N)− fw(N)] (4)

≥
1− p

α
· E[w(M)] − q · E[w(N)] + q · E[fw(N)]

≥
1− p

α
· E[w(M)] −

q(1− p)

p
· E[w(M)] + q(1− p) · E[fw(M)] ,

where the first inequality holds by the assumption of the proposition, the second by Corollary A.5 and the
last by Lemmata A.2 and A.3 and the non-negativity off .

Lemma 4.1 implies the following inequalities:

1− p

α
· E[w(M)] =

1− p

α
· (E[f(M)]− f(∅)) ≥

1− p

α
· E[f(M)]− q(1− p) · f(∅) ,

−
q(1− p)

p
· E[w(M)] = −

q(1− p)

p
· (E[f(M)]− f(∅)) ≥ −

q(1− p)

p
· E[f(M)] + q(1− p) · f(∅)

and

q(1− p) · E[fw(M)] = q(1− p) · E[f(M)] .

Plugging these inequalities into Inequality (4) yields:

E[fw(Q ∩N)] ≥
1− p

α
· E[f(M)]−

q(1− p)

p
· E[f(M)] + q(1− p) · E[f(M)]

=
(1− p)(p/α− q + qp)

p
· E[f(M)] =

q(1− p)(p/(αq) − 1 + p)

p
· E[f(M)] .

The proposition now follows by combining the last inequality with Lemma A.1.
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Recall that Observation 4.11 showed in Section 4 that one canalways chooseq = 1. This proof of this
observation holds also for Algorithm 4, and thus, we get the following corollary.

Corollary A.7. For p = 2α+1
2(α+1) , the approximation ratio of Algorithm 4 is at most8α(α + 1).

Proof. By Observation 4.11, we can plugq = 1 into Proposition A.6. Hence, forp = 2α+1
2(α+1) , the proposition

implies:

w(Q ∩N) ≥

(

1− 2α+1
2(α+1)

)(

2α+1
2α(α+1) − 1 + 2α+1

2(α+1)

)

2
· f(OPT)

=

1
2(α+1) ·

(

2α+1
2α(α+1) −

1
2(α+1)

)

2
· f(OPT) =

1

8α(α + 1)
· f(OPT) .

Corollary A.7 proves the first part of Theorem 1.5 corresponding to Theorem 1.1. The proof can be
extended to prove the two other parts of the theorem in the same way this is done in Section 4.

From this point on we assumeLinear has, with respect to the matroidM, the properties guaranteed by
Theorem 1.6. In other words, for everyMSP instance over the matroidM there exists a random setS ⊆ E
obeying:
• S is always an optimal solution of theMSP instance.
• For every elementu ∈ E, Pr[u is selected by Linear] ≥ 1

α · Pr[u ∈ S].
By removing appropriately chosen elements from the output of Linear one can get a new algorithm

Linear ′ which still has the above properties, but selects no elementwith probability larger than1/α. Clearly
such an algorithm always exists although it might be non-efficient and offline, which is fine since we use
Linear ′ only for analysis purposes. The following observation shows thatLinear ′ must beα-competitive,
and thus, all the results proved above hold for it.

Observation A.8. An algorithm having the properties guaranteed by Theorem 1.6 with respect to a matroid
M is α-competitive forMSP over this matroid.

Proof. Let T be the random output set of the algorithm given anMSP instance overM with a weight
functionw′. Then:

E[w′(T )] =
∑

u∈E

w′(u) · Pr[u ∈ T ] ≥
1

α
·
∑

u∈E

w′(u) · Pr[u ∈ S] =
1

α
· E[w′(S)] .

The observation now follows sinceS is always an optimal solution for theMSP instance, and thus,w′(S)
is always equal to the value of such an optimal solution.

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6.LetQ andQ′ be the sets produced byLinear andLinear ′ when these algorithms are
placed in Algorithm 4. By construction,Q ⊇ Q′, and thus, by the monotonicity off :

E[f(Q ∩N)] ≥ E[f(Q′ ∩N)] . (5)

Consider now Corollary 4.13. It can be verified that this corollary holds also for Algorithm 4, and thus,
E[w(Q′ ∩N)− fw(Q

′ ∩N)] ≤ 1
α ·E[w(N)− fw(N)]. Plugging this inequality into Proposition A.6 gives:

E[f(Q′ ∩N)] ≥
(1− p)(αp/α − 1 + p)

2α
· f(OPT) =

(1− p)(2p − 1)

2α
· f(OPT) .
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Choosingp = 3/4 now gives:

E[f(Q′ ∩N)] ≥
(1− 3/4)(3/2 − 1)

2α
· f(OPT) =

1

16α
· f(OPT) .

Combing the last inequality with Inequality (5) proves thatAlgorithm 4 with Linear andp = 3/4 is 16α-
competitive forMSMSP overM.

B Results for Specific Matroids

In this appendix we explain how to get the improved competitive ratios stated in Section 1.1 for specific
classes of matroids. For transversal matroids andk-sparse linear matroids the stated competitive ratios
were obtained through an application of Theorem 1.4. More precisely, for transversal matroids we use
Theorem 1.4 with theMSP algorithm of Korula and Pál [27], which is8-competitive and picks no element
with probability larger than1/2.

Fork-sparse linear matroids we use Soto’ske-competitive procedure [36]. To get a stronger result than
what we would get through an application of Theorem 1.1, we observe that we can assume that Soto’s
algorithm selects no element with probability larger thanq = 1/e. Soto’s algorithm reduces the problem
to the classical matroid secretary problem, by losing a factor of k. The classicale-competitive algorithm of
Dynkin can easily be adapted such that no element is chosen with probability more than1/e, maintaining
e-competitiveness of the algorithm. More precisely, Dynkin’s procedure selects the heaviest element with
some probabilityp(n) ≥ 1/e that only depends on the sizen = |E| of the ground set and can be calculated
upfront. Moreover, no element is selected with a probability exceedingp(n). We can now modify Dynkin’s
algorithm as follows, to obtain an algorithm that is stille-competitive and selects no element with probability
larger than1/e: whenever Dynkin’s algorithm would select an elementu, we will toss a coin and only select
it with probability1/(e ·p(n)). Hence, using Soto’s algorithm with this modification of Dynkin’s procedure,
we have ake-competitive algorithm forMSP over k-sparse linear matroids that selects no element with
probability larger than1/e. The competitive ratios claimed in Section 1.1 now follow from Theorem 1.4
(for SMSP) and Theorem 1.5 (forMSMSP).

Unitary partition matroids have a triviale-competitive algorithm applying the classical secretary algo-
rithm to every elements class separately. However, this algorithm has two weaknesses. First, it requires
prior knowledge about the number of elements in each class, which we sometimes want to avoid. Second, it
might select an element with a probability significantly larger than1/e, which prevents an effective use of
Theorem 1.4. In Section B.1 we present a simple algorithm avoiding these issues. Plugging this algorithm
into Theorem 1.4 yields the guaranteed competitive ratio for SMSP over unitary partition matroids.

Ma et al. [32] give an algorithm forMSP over laminar matroids selecting every element ofOPT with
probability at least1/9.6 and no element with probability larger than0.158. Plugging this algorithm asLinear
into Theorems 1.4 and 1.6 results in competitive ratios of1279 and 154 for SMSP and MSMSP over
laminar matroids, respectively.9 This already improves over the result of [32] forMSMSP and provides the
first O(1)-competitive algorithm forSMSP. However, by a careful combination of our ideas and a lemma
from [32] one can prove the stronger ratios stated in Section1.1. The details can be found in Section B.2.

B.1 Algorithm for MSP over Unitary Partition Matroids

In a unitary partition matroid the elements are partitionedinto k disjoint non-empty classes{Gi}
k
i=1. A setS

is independent in the matroid if and only if it contains at most one element of every classGi. Algorithm 5 is
an algorithm forMSP over unitary partition matroids. Observe that this algorithm can be implemented with

9The result forSMSP can be improved to1196 by optimizing the parameter of the algorithm of [32].
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no access to the matroid besides of the independence oracle.As usual, the algorithm assumes all weights
are non-negative and disjoint. This assumption is without loss of generality since negative weights can be
replaced with zero weights (as long as elements of negative weights are rejected even if the algorithm tries
to accept them) and ties between weights can be broken arbitrarily.

Algorithm 5: Partition-MSP(n)

// Learning Phase
1 Let t← ⌈n/e⌉.
2 with probability t− n/e do LetX ← t− 1. otherwiseLetX ← t. Observe (and reject) the firstX

elements of the input. LetL be the set of these elements.

// Selection Phase
3 for each arriving elementu ∈ E \ L do
4 LetGu be the class ofu.
5 if Gu has not been marked previouslythen
6 if Gu ∩ L 6= ∅ then
7 if w(u) > maxu′∈Gu∩L w(u′) then
8 Mark Gu.
9 Acceptu.

10 else
11 Mark Gu.
12 Acceptu with probabilityX/|L|.

13 Add u toL.

Informally, Algorithm 5 observes (and discards) theX ≈ n/e first elements. Then, for every arriving
elementu the algorithms makes the following decisions.
• If u’s class has been marked by a previous element, thenu is simply discarded. A marked class is a

class from which we should accept no new elements. A class is usually marked because some element
of it has already been accepted, but not always.

• Otherwise, if some elements ofu’s class have already arrived andu is better than all of them, thenu
is accepted and its class is marked.

• Finally, if no element ofu’s class has previously arrived, then its class is marked andwith some
probabilityu is accepted. This is the only case in which a class can get marked despite the fact that
no element of it has been accepted to the solution.

Observation B.1. Algorithm 5 always produces an independent set.

Proof. Once an element of a classG is accepted, the classG becomes marked and the algorithm dismisses
immediately any future elements of this class.

For every elementu ∈ E, let Lu be the setL beforeu is processed,i.e., it is the set of elements that
arrived beforeu. Additionally, for every classGi, letu∗i be the element with the largest weight inGi (which
is also the element ofGi in the optimal solution).

Lemma B.2. For every1 ≤ i ≤ k, u∗i is accepted with probability⌈n/e⌉n − 1
e +

∑n−1
j=⌈n/e⌉

1
ej .

Proof. Fix the variableX and the setLu∗
i

(and thus, also the location ofu∗i in the input), and let us calculate
the probabilityu∗i is accepted. If|Lu∗

i
| < X, thenu∗i arrives during the learning phase (i.e., it is one of the

first X elements), and thus, is it not accepted. If|Lu∗
i
| ≥ X, then there are three cases.
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• The first case is whenGi ∩ Lu∗
i
= ∅. In this caseu∗i is the first element ofGi encountered by

Algorithm 5. Since it is encountered after the learning phase (i.e., it is not one of the firstX elements),
it is accepted with probabilityX/|Lu∗

i
|.

• The second case is whenGi ∩ Lu∗
i
6= ∅ and the element̂ui with the maximum weight inGi ∩ Lu∗

i

arrives during the learning phase. In this case every element of Gi ∩ Lu∗
i

arriving after the learning
phase fails the condition on Line 7 of Algorithm 5. Thus,Gi is still unmarked whenu∗i arrives, and
thus, it is accepted. Since the order of the elements inLu∗

i
is uniformly random, this case happens

with probabilityX/|Lu∗
i
| conditioned onX andLu∗

i
.

• The final case is whenGi∩Lu∗
i
6= ∅ and the element̂ui with the maximum weight inGi∩Lu∗

i
arrives

after the learning phase. In this case, eitherGi is already marked when̂ui arrives orGi is marked
whenûi is processed. Either way, whenu∗i arrivesGi is already marked, and thus,u∗i is dismissed.

The above cases imply:

Pr[u∗i is accepted| X,Lu∗
i
] =







X
|L

u
∗
i
| if |Lu∗

i
| ≥ X ,

0 otherwise .
.

Regardless ofX, the arrival time ofu∗i is distributed uniformly between1 andn. Hence,

Pr[u∗i is accepted| X] =
1

n
·

n
∑

j=X+1

X

j − 1
=

n−1
∑

j=X

X

nj
.

The law of total probability now gives:

Pr[u∗i is accepted] =
(

t−
n

e

)

·
n−1
∑

j=t−1

t− 1

nj
+
(

1− t+
n

e

)

·
n−1
∑

j=t

t

nj

=

(

t

n
−

1

e

)

+
[

(t− 1)
(

t−
n

e

)

+ t
(

1− t+
n

e

)]

·
n−1
∑

j=t

1

nj

=
t

n
−

1

e
+

n−1
∑

j=t

1

ej
=
⌈n/e⌉

n
−

1

e
+

n−1
∑

j=⌈n/e⌉

1

ej
.

For ease of notation, let us denoteα(n) =
(

⌈n/e⌉/n − e−1 +
∑n−1

j=⌈n/e⌉(ej)
−1
)−1

. Lemma B.2 shows

that every element ofOPT is accepted by Algorithm 5 with probability1/α(n), and thus, Algorithm 5 is
α(n)-competitive forMSP over unitary partition matroids.

Observation B.3. For everyn ≥ 1, α(n) ≤ e.

Proof.

n−1
∑

j=⌈n/e⌉

1

ej
≥

1

e
·

∫ n

⌈n/e⌉

dx

x
=

1

e
·

[

∫ n

n/e

dx

x
−

∫ ⌈n/e⌉

n/e

dx

x

]

≥
1

e
· [lnx]n⌈n/e⌉ −

∫ ⌈n/e⌉

n/e

dx

n
=

1

e
+

n/e− ⌈n/e⌉

n
=

2

e
−
⌈n/e⌉

n
.

The next lemma completes the analysis of Algorithm 5.

Lemma B.4. No element is accepted with probability larger than1/α(n) by Algorithm 5.
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Proof. Fix an arbitrary elementu of a classGi. For every arrival orderπ of the elements, let us defineσ(π)
as the order obtained fromπ by replacingu andu∗i . Observe thatσ is a bijection.

Consider now an arbitrary orderπ given which Algorithm 5 acceptsu with probability p > 0. Clearly
u proceedsu∗i in π because otherwisew(u) could not be larger than the weights or all elements appearing
earlier inπ, which is a necessary condition foru to be accepted. Thus, Algorithm 5 is in the same state
when processingu givenπ andu∗i givenσ(π). Sincew(u∗i ) > w(u), this implies that Algorithm 5 accepts
u∗i with probability of at leastp given the orderσ(π).

Recalling thatσ is a bijection, we now get:

Pr[u is accepted] =
∑

π

Pr[u is accepted givenπ]
n!

≥
∑

π

Pr[u∗i is accepted givenσ(π)]
n!

=
∑

π

Pr[u∗i is accepted givenπ]
n!

= Pr[u∗i is accepted] =
1

α(n)
.

Remark: The fact that Algorithm 5 isα(n)-competitive while accepting no element with a probability
larger than1/α(n) is sufficient to extract all the power of Theorem 1.4 and get the result stated in the table
in Section 1.1. However, sometimes it is useful to have an algorithm that ise-competitive and accepts no
element with a probability larger than1/e. This can be achieved by executing Algorithm 5 and accepting
with probabilityα(n)/e every element accepted by Algorithm 5.

B.2 Results for Laminar Matroids

In this section we prove the competitive ratios stated in Section 1.1 for laminar matroids. Throughout this
section we assumeM is a laminar matroid. Ma et al. [32] consider an algorithm which constructs the sets
M andN in the same way this is done by Algorithm 4. For this algorithm, and thus, also for Algorithm 4,
they proved the following lemma (assumingM is laminar).

Lemma B.5 (Rephrased version of Lemma 10 of [32]). Consider Algorithm 4 withLinear being the pro-
cedure that accepts every element ofN whose acceptance does not violate the independence of the current
solution. Then

E[w(Q)] ≥

(

1−
2β

(1− β)3

)

· E[w(N)] ,

whereβ = 2e(1 − p).

The last lemma can be used instead of Corollary A.5 in the analysis of Algorithm 4. This allows us to
prove the result forMSMSP.

Corollary B.6. There exists a144-competitive algorithm forMSMSP over laminar matroids.

Proof. Consider Algorithm 4 using the algorithmLinear defined by Lemma B.5. By Lemma B.5 we get

E[w(Q ∩N)] = E[w(Q)] ≥

(

1−
2β

(1− β)3

)

· E[w(N)],

whereβ = 2e(1 − p). Thus,

E[fw(Q ∩N)] ≥ E[w(Q ∩N)]− E[w(N)] + E[fw(N)] (6)

≥

(

1−
2β

(1− β)3

)

· E[w(N)]− E[w(N)] + (1− p) · E[fw(M)]

= (1− p) · E[fw(M)] −
2β

(1− β)3
· E[w(N)] ,
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where the first inequality holds by Observation 4.11 and the second by Lemmata A.3 and the non-negativity
of f .

Recall that, by Lemmata 4.1 and A.2,fw(M) = f(M) and

E[w(N)] =
1− p

p
· E[w(M)] =

1− p

p
· E[f(M)− f(∅)] ≤

1− p

p
· E[f(M)] .

Plugging these inequalities into Inequality (6) yields:

E[fw(Q ∩N)] ≥ (1− p) · E[fw(M)] −
2β

(1− β)3
· E[w(N)]

≥ (1− p) · E[f(M)]−
2β

(1− β)3
·
1− p

p
· E[f(M)]

≥
p

2

(

1− p−
2β

(1− β)3
·
1− p

p

)

· E[f(OPT)]

=
p

2

(

1− p−
4e(1 − p)

(1− 2e(1− p))3
·
1− p

p

)

· E[f(OPT)],

where the last inequality follows fromE[f(M)] ≥ p
2f(OPT), as stated by Lemma A.1. The above expres-

sion is maximized forp ≈ 0.976299 leading to the claimed competitive ratio.

To prove the result forSMSP, we first need an observation about Algorithm 2. Consider Algorithm 6.

Algorithm 6: Middle-Algorithm(p)

// Initialization
1 LetM,N ← ∅.
2 LetE′ ← E.

// Main Loop
3 while E′ 6= ∅ do
4 Let u be the element ofE′ maximizingf(u |M), and removeu from E′.
5 Letw(u)← f(u |M).
6 with probability (1 + p)/2 do
7 if M + u is independent inM andw(u) ≥ 0 then
8 with probability 1/(1 + p) do Add u toM . otherwise with probability p/(1 + p) do

Add u to N .

Observe that every processed element obeying the conditions on Line 7 of the Algorithm 6 is added by
both Algorithms 2 and Algorithm 6 with probability1/2 to M and with probabilityp/2 to N . Hence, both
algorithms produce the same joint distribution ofM andN . On the other hand, in terms of the setsM and
N Algorithm 6 is identical to Algorithm 4 up to two modifications:
• The valuep in Algorithm 4 is replaced with1/(1 + p).
• Algorithm 6 dismisses some elements without processing them. These elements include all the ele-

ments of negative weights and every other element with probability 1− (1 + p)/2.
The second modification does not affect the proof of [32] for Lemma B.5 (in fact, the proof requires elements
of negative weight to be dismissed). Hence, we get the following lemma which is obtained from Lemma B.5
by replacingp with 1/(1 + p).
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Lemma B.7. Consider Algorithm 2 withLinear being the procedure that accepts every element ofN whose
acceptance does not violate the independence of the currentsolution. Then

E[w(Q)] ≥

(

1−
2β

(1− β)3

)

· E[w(N)] ,

whereβ = 2e(1 − 1/(1 + p)).

The last lemma can be used instead of Corollary 4.9 in the analysis of Algorithm 2. This allows us to
prove the result forSMSP.

Corollary B.8. There exists a585-competitive algorithm forSMSP over laminar matroids.

Proof. Consider Algorithm 2 using the algorithmLinear defined by Lemma B.7. By Lemma B.7 we obtain

E[w(Q ∩N)] = E[w(Q)] ≥

(

1−
2β

(1− β)3

)

· E[w(N)],

whereβ = 2e(1 − 1/(1 + p)). Thus,

E[fw(Q ∩N)] ≥ E[w(Q ∩N)]− E[w(N)] + E[fw(N)] (7)

≥

(

1−
2β

(1− β)3

)

· E[w(N)]− E[w(N)] +
p(1− p)

1 + p
· E[fw(M)]

=
p(1− p)

1 + p
· E[fw(M)]−

2β

(1− β)3
· E[w(N)] ,

where the first inequality holds by Observation 4.11 and the second by Lemmata 4.6 and the non-negativity
of f .

Recall that by Lemmata 4.1 and 4.5,fw(M) = f(M) and

E[w(N)] = p · E[w(M)] = p · E[f(M)− f(∅)] ≤ p · E[f(M)] .

Plugging these inequalities into Inequality (6) yields:

E[fw(Q ∩N)] ≥
p(1− p)

1 + p
· E[fw(M)]−

2β

(1− β)3
· E[w(N)]

≥ p

(

1− p

1 + p
−

2β

(1− β)3

)

· E[f(M)]

≥
p

8

(

1− p

1 + p
−

2β

(1− β)3

)

· E[f(OPT)]

=
p

8

(

1− p

1 + p
−

4e(1 − 1/(1 + p))

(1− 2e(1− 1/(1 + p)))3

)

· E[f(OPT)],

where the last inequality follows byE[f(M)] ≥ f(OPT)/8 which holds by Corollary 4.4. The above
expression is maximized forp ≈ 0.023769, leading to the claimed competitive ratio.

C Equivalence of Algorithms 1 and 2

In this section we prove that Algorithms 1 and 2 share the joint distribution of the setM and the output set.
First, for completeness, let us state the standard algorithm Greedy as Algorithm 7. Recall thatGreedy is
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Algorithm 7: Greedy

// Initialization
1 LetM ← ∅.
2 LetE′ ← E.

// Main Loop
3 while E′ 6= ∅ do
4 Let u be the element ofE′ maximizingf(u |M), and removeu from E′.
5 if M + u is independent inM andf(u |M) ≥ 0 then
6 Add u toM .

7 return M .

used by Algorithm 1, and observe that, as mentioned in Section 3, the solutionM of Greedy starts as the
empty set and elements are added to it one by one.

Let L andF be two independent random subsets ofE, where the setL (respectively,F ) contains
every elementu ∈ E with probability 1/2 (respectively,p), independently. By Observation 3.3, the setL
constructed by Algorithm 1 has exactly the same distribution as the above setL. Hence, given access to the
above setsL andF , Algorithm 1 can be rewritten as Algorithm 8. Notice that theonly changes made during
the rewrite are omission of the calculation ofL and replacement of the random coin toss on Line 6 with a
reference toF .

Algorithm 8: Coupled Online(L,F )

1 LetM be the output ofGreedy on the setL.
2 LetN ← ∅.
3 for each arriving elementu ∈ E \ L do
4 Letw(u)← 0.
5 if u is accepted byGreedy when applied toM + u then
6 if u ∈ F then
7 Add u to N .
8 LetMu ⊆M be the solution ofGreedy immediately before it addsu to it.
9 Updatew(u)← f(u |Mu).

10 Passu to Linear with weightw(u).

11 return Q ∩N , whereQ is the output ofLinear .

Similarly, Algorithm 2 can be rewritten usingL andF as Algorithm 9. In this case the coin tosses on
Lines 7 and 12 have been replaced with references toL, and the coin toss on Line 7 has been replaced with
a reference toF . It is important to note that an element is never checked at both Lines 7 and 12, and thus,
the independence of the randomness used by these lines is preserved.

In the rest of this section we show that conditioned onL andF , Algorithms 8 and 9 produce the same
setM and have the same output distribution. Hence, the original Algorithm 2 has the same joint distribution
of the setM and the output set as Algorithm 1. Let us start the proof with the following simple observation.

Observation C.1. The elements passed toLinear by both Algorithms 8 and 9 are exactly the elements of
E \ L. Moreover, the elements ofE \ (L ∪N) are all assigned0 weights.

Next, observe that Algorithm 9 obtainsM by running a modified version ofGreedy on the elements of
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Algorithm 9: Coupled Simulated(L,F )

// Initialization
1 LetM,N,N0 ← ∅.
2 LetE′ ← E.

// Main Loop
3 while E′ 6= ∅ do
4 Let u be the element ofE′ maximizingf(u |M), and removeu from E′.
5 Letw(u)← f(u |M).
6 if M + u is independent inM andw(u) ≥ 0 then
7 if u ∈ L then Add u toM . else ifu ∈ F then Add u toN . else
8 Updatew(u)← 0.
9 Add u to N0.

10 else
11 Letw(u)← 0.
12 if u 6∈ L then Add u toN0.

13 RunLinear with N ∪N0 as the input (in a uniformly random order) and the weights defined byw.
14 return Q ∩N , whereQ is the output ofLinear .

E. The modified version is identical to the original one, except that every time immediately before adding
an elementu ∈ E \ L to the result, the element is “stolen” (and gets toN orN0 instead). We denote such a
modified run ofGreedy by Greedy(E,E \ L). More generally, we useGreedy(A,B) to denote a run of
greedy on the setA, where the elements ofB ⊆ A are stolen ifGreedy tries to add them to its solution.

Observation C.2. For four setsA ⊇ B andC ⊇ D obeyingGreedy(A,B) ⊆ C \D ⊆ A \ B, the runs
Greedy(A,B) andGreedy(C,D) behave the same in the following sense:

• The outputs of the two runs are identical, i.e.,Greedy(A,B) = Greedy(C,D).

• The runGreedy(A,B) attempts to add an element ofA ∩ C to the solution if and only if the run
Greedy(C,D) attempts to add this element, moreover, both runs attempt toadd the element to the
same partial solution.

Proof. The behavior ofGreedy depends only on elements that were added to the result set. Hence, elements
that appear in the input but are stolen before being added to the output does not affect the output ofGreedy,
and the same holds for elements that greedy does not attempt to add to the output.

Corollary C.3. Conditioned on a setL, Algorithms 8 and 9 produce the same setM .

Proof. Algorithm 1 selectsM asGreedy(L,∅), while Algorithm 9 selectM asGreedy(E,E \ L). The
equality between these sets follows immediately from Observation C.2 since:

Greedy(L,∅) ⊆ L = E \ (E \ L) .

Corollary C.4. Conditioned on setsL andF , Algorithms 8 and 9 produce the same setN and assign the
same weights to the elements ofN .

Proof. Consider an elementu ∈ E\L. Algorithm 8 addsu toN if and only ifu ∈ F andGreedy(M+u,∅)
tries to addu to its solution. When this happens,u is assigned the weightf(u | Mu), whereMu is the
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solutionGreedy has immediately before it processu. Clearly both the weight and the membership ofu in
N does not change ifGreedy(M + u,∅) is replaced withGreedy(M + u, u) in the above description.

On the other hand, Algorithm 9 addsu to N if and only if u ∈ F andGreedy(N,E \ L) tries to addu
to its solution. When this happens,u is assigned the weightf(u | Mu), whereMu is the solutionGreedy
has immediately before it processu. By Observation C.2, bothGreedy(M + u, u) andGreedy(E,E \ L)
behave the same because:

Greedy(E,E \ L) = Greedy(L,∅) = M = (M + u)− u ⊆ L = E \ (E \ L) .

Hence, Algorithms 8 and 9 make the same decisions regarding the membership and weight ofu.

Observation C.1 together with the last corollary shows that, conditioned onL andF , Linear is fed by the
same setE \ L of elements and weights by Algorithms 8 and 9. To complete theproof that both algorithms
produce the same output distribution, conditioned onL andF , we just need to show that the elements of
E \ L are passed toLinear in the same distribution of orders under both algorithms. This is true by the
following observations.
• Algorithm 8 passes the elements ofE\L in the order in which they arrive, which is uniformly random.
• Algorithm 9 passes the elements ofN ∪N0 = E \ L in a uniformly random order.

D Missing Proofs

In this appendix we provide the missing proofs for Proposition 3.2 and Lemma 4.2.

D.1 Proof of Proposition 3.2

Proposition 3.2. Given an algorithmLinear for MSP, there exists an algorithm for Partial-MSP whose
competitive ratio for every matroidM is as good as the competitive ratio ofLinear for this matroid.

The algorithm we use to prove Proposition 3.2 is Algorithm 10.

Algorithm 10: Algorithm for Partial-MSP

// Initialization
1 LetL′ ← L.
2 Let r ← n− |L|.

// Main Loop
3 while |L′|+ r > 0 do
4 with probability r/(|L′|+r) do
5 Updater ← r − 1.
6 Pass the next arriving element toLinear with its original weightw(u).

7 otherwise
8 Let u be a uniformly random element ofL′.
9 UpdateL′ ← L′ − u.

10 Passu to Linear with a weight of0.

11 Return the output ofLinear without the elements ofL.
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Observation D.1. The input passed toLinear by Algorithm 10 is a uniformly random permutation ofE,
where the weight of an elementu ∈ E is defined by:

w′(u) =

{

0 if u ∈ L ,

w(u) otherwise .

Proof. The only part of the observation that requires a proof is the claim that the elements ofE are passed
to Linear in a uniformly random order. To see why this is true, notice that r is maintained as the number of
input elements that have not been passed yet toLinear andL′ is the set of elements ofL that have not been
passed yet toLinear. Hence, at each time point the set of elements that have not been passed yet toLinear
is of sizer + |L′|, and the algorithm passes a uniformly random element from this set.

The following lemma implies Proposition 3.2.

Lemma D.2. Algorithm 10 is an algorithm for Partial-MSP whose competitive ratio for every matroidM
is as good as the competitive ratio ofLinear for this matroid.

Proof. AssumeLinear is α-competitive for an arbitrary matroidM = (E,I). By Observation D.1, when-
ever Algorithm 10 faces an instances of Partial-MSP over the matroidMwith a weight functionw, it makes
Linear face an instance ofMSP over the same matroid with weights given byw′. Hence, if we denote byS
the output ofLinear, then, by the guarantee ofLinear:

E[w′(S)] ≥ α ·max
T∈I

w′(T ) .

Recall thatw′ is equal tow for elements ofE \ L and is equal to0 for all other elements. Hence,

E[w(S \ L)] = E[w′(S)] ≥ α ·max
T∈I

w′(T ) = α · max
T∈I∩2E\L

w′(T ) = α · max
T∈I∩2E\L

w(T ) .

This completes the proof of the lemma sinceS \ L is the output of Algorithm 10 andmaxT∈I∩2E\L w(T )
is the value of the optimal solution for the instance of Partial-MSP faced by Algorithm 10.

D.2 Proof of Lemma 4.2

Lemma 4.2. For a matroid and a non-negative submodular functionf , if S is the independent set returned
by Greedy, then for any independent setC, f(S) ≥ f(C ∪ S)/2.

First, we need some definitions. Letk = |S|, and for every0 ≤ i ≤ k let Si be the solution ofGreedy
afteri elements are added to it. Additionally, for every1 ≤ i ≤ k, let ui be the single element inSi \ Si−1.
We also need to define the sets{Ci}

k
i=0 recursively as follows:

• The setC0 is simplyC. Observe thatC0 ∪ S0 = C is independent.
• For every1 ≤ i ≤ k, the setCi is a maximal independent subset ofCi−1 + ui that containsSi. It is

also useful to defineC ′
i = Ci−1 \Ci, the set of elements that appear inCi−1 but not inCi. By matroid

properties, sinceSi − ui = Si−1 ⊆ Ci−1 andCi−1 is independent, the size ofC ′
i is at most1.

Let us now make a few observations regarding the above definitions.

Observation D.3. f(Sk) ≥ f(Ck).

Proof. Assume towards a contradiction thatf(Sk) < f(Ck). Then, by submodularity sinceSk ⊆ Ck, there
must exist an elementu ∈ Ck \ Sk obeyingf(u | Sk) > 0. On the other hand, sinceCk is independent
we must also have thatSk + u is independent. However, the existence of an element with these properties
contradicts the fact thatSk is the output ofGreedy.
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Lemma D.4. For every1 ≤ i ≤ k, f(ui | Si−1) ≥ f(C ′
i ∪ Ck)− f(Ck).

Proof. If C ′
i = ∅, then the right hand side of the inequality we want to prove is0 while its left hand side

is non-negative (sinceGreedy chose to addui to Si−1). Thus, we concentrate from this point on the case
|C ′

i| = 1.
Let u′i be the single element ofC ′

i. SinceCi contains the setSi−1 and is independent, we know thatu′i
is not inSi−1 and could be added toSi−1 by Greedy without violating independence. On the other hand,
sinceGreedy chose to addui to Si−1, we must have:

f(ui | Si−1) ≥ f(u′i | Si−1) ≥ f(u′i | Ck) = f(C ′
i ∪ Ck)− f(Ck) ,

where the second inequality follows by submodularity sinceSi−1 ⊆ Sk ⊆ Ck.

We are now ready to prove Lemma 4.2.

f(S) =
f(Sk) + f(∅) +

∑k
i=1 f(ui | Si−1)

2
≥

f(Ck) + f(∅) +
∑k

i=1[f(C
′
i ∪ Ck)− f(Ck)]

2

≥
f(Ck) + f(∅) + [f(

⋃k
i=1C

′
i ∪ Ck)− f(Ck)]

2
=

f(∅) + f(S ∪C)

2
≥

f(S ∪ C)

2
,

where the first inequality holds by Observation D.3 and LemmaD.4, the second inequality holds by sub-
modularity off and the fact that theC ′

i are disjoint, and the last by the non-negativity off .
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