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Abstract

We present a new approach to constructing unconditional pseudorandom generators
against classes of functions that involve computing a linear function of the inputs.
We give an explicit construction of a pseudorandom generator that fools the discrete
Fourier transforms of linear functions with seed-length that is nearly logarithmic (up
to polyloglog factors) in the input size and the desired error parameter. Our result
gives a single pseudorandom generator that fools several important classes of tests
computable in logspace that have been considered in the literature, including halfspaces
(over general domains), modular tests and combinatorial shapes. For all these classes,
our generator is the first that achieves near logarithmic seed-length in both the input
length and the error parameter. Getting such a seed-length is a natural challenge in
its own right, which needs to be overcome in order to derandomize RL — a central
question in complexity theory.

Our construction combines ideas from a large body of prior work, ranging from
a classical construction of [NN93] to the recent gradually increasing independence
paradigm of [KMN11, CRSW13, GMR+12], while also introducing some novel ana-
lytic machinery which might find other applications.
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1 Introduction

A central goal of computational complexity is to understand the power that randomness
adds to efficient computation. The main questions in this area are whether BPP = P

and RL = L, which respectively assert that randomness can be eliminated from efficient
computation, at the price of a polynomial slowdown in time, and a constant blowup in
space. It is known that proving BPP = P will imply strong circuit lower bounds that seem
out of reach of current techniques. In contrast, proving RL = L, could well be within reach.
Indeed, bounded-space algorithms are a natural computational model for which we know
how to construct strong pseudo-random generators, PRGs, unconditionally.

Let RL denote the class of randomized algorithms with O(log n) work space which can
access the random bits in a read-once pre-specified order. Nisan [Nis92] devised a PRG of
seed length O(log2(n/ε)) that fools RL with error ε. This generator was subsequently used
by Nisan [Nis94] to show that RL ⊆ SC and by Saks and Zhou [SZ99] to prove that RL can
be simulated in space O(log3/2 n). Constructing PRGs with the optimal O(log(n/ε)) seed
length for this class and showing that RL = L is arguably the outstanding open problem in
derandomization (which might not require a breakthrough in lower bounds). Despite much
progress in this area [INW94, NZ96, RR99, Rei08, RTV06, BRRY14, BV10, KNP11, De11,
GMR+12], there are few cases where we can improve on Nisan’s twenty year old bound of
O(log2(n/ε)) [Nis92].

1.1 Fourier shapes

A conceptual contribution of this work is to propose a class of functions in RL which we call
Fourier shapes that unify and generalize the problem of fooling many natural classes of test
functions that are computable in logspace and involve computing linear combinations of
(functions of) the input variables. In the following, let C1 = {z : |z| ≤ 1} be the unit-disk
in the complex plane.

Definition 1. A (m,n)-Fourier shape f : [m]n → C1 is a function of the form f(x1, . . . , xn) =
∏n

j=1 fj(xj) where each fj : [m] → C1. We refer to m and n as the alphabet size and the
dimension of the Fourier shape respectively.

Clearly, (m,n)-Fourier shapes can be computed with O(log n) workspace, as long as
the bit-complexity of log(fj) is logarithmic for each j; a condition that can be enforced
without loss of generality. Since our goal is to fool functions f : {0, 1}n → {0, 1}, it might be
unclear why we should consider complex-valued functions (or larger domains). The answer
comes from the discrete Fourier transform which maps integer random variables to C1.
Concretely consider a Boolean function f : {0, 1}n → {0, 1} of the form f(x) = g(

∑

j wjxj)
where x ∈ {0, 1}n, wj ∈ Z, and g : Z→ {0, 1} is a simple function like a threshold or a mod
function. To fool such a function f , it suffices to fool the linear function w(x) =

∑

j wjxj .
A natural way to establish the closeness of distributions on the integers is via the discrete
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Fourier transform. The discrete Fourier transform of w(x) at α ∈ [0, 1] is given by

φα(w(x)) = exp(2πiα · w(x)) =
n
∏

j=1

exp(2πiαwjxj)

which is a Fourier shape.
Allowing a non-binary alphabet m not only allows us to capture more general classes

of functions (such as combinatorial shapes), it makes the class more robust. For instance,
given a Fourier shape f : {0, 1}n → C, if we consider inputs bits in blocks of length
log(m), then the resulting function is still a Fourier shape over a larger input domain [m]
(in dimension n/ log(m)). This allows certain compositions of PRGs and simplifies our
construction even for the case m = 2.

1.1.1 PRGs for Fourier shapes and their applications.

A PRG is a function G : {0, 1}r → [m]n. We refer to r as the seed-length of the generator.
We say G is explicit if the output of G can be computed in time poly(n).1

Definition 2. A PRG G : {0, 1}r → [m]n fools a class of functions F = {f : [m]n → C}
with error ε (or ε-fools F) if for every f ∈ F ,

∣

∣

∣

∣

E
x∈u[m]n

[f(x)]− E
y∈u{0,1}r

[f(G(y))]
∣

∣

∣

∣

< ε.

We motivate the problem of constructing PRGs for Fourier shapes by discussing how
they capture a variety of well-studied classes like halfspaces (over general domains), com-
binatorial rectangles, modular tests and combinatorial shapes.

PRGs for halfspaces. Halfspaces are functions h : {0, 1}n → {0, 1} that can be repre-
sented as

h(x) = 1
+(〈w, x〉 − θ)

for some weight vector w ∈ Z
n and threshold θ ∈ Z where 1

+(a) = 1 if a ≥ 0 and
0 otherwise. Halfspaces are of central importance in computational complexity, learn-
ing theory and social choice. Lower bounds for halfspaces are trivial, whereas the prob-
lem of proving lower bounds against depth-2 TC0 or halfspaces of halfspaces is a frontier
open problem in computational complexity. The problem of constructing explicit PRGs
that can fool halfspaces is a natural challenge that has seen a lot of exciting progress
recently [DGJ+09, MZ13, Kan11b, Kan14, KM15]. The best known PRG construction
for halfspaces is that of Meka and Zuckerman [MZ13] who gave a PRG with seed-length
O(log n + log2(1/ε)), which is O(log2(n)) for polynomially small error. They also showed

1Throughout, for a multi-set S, x ∈u S denotes a uniformly random element of S.
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that PRGs against RL with inverse polynomial error can be used to fool halfspaces, and thus
constructing better PRGs for halfspaces is a necessary step towards progress for bounded-
space algorithms. However, even for special cases of halfspaces (such as derandomizing the
Chernoff bound), beating seed-length O(log2(n)) has proved difficult.

We show that a PRG for (2, n)-Fourier shapes with error ε/n2 also fools halfspaces with
error ε. In particular, PRGs fooling Fourier shapes with polynomially small error also fool
halfspaces with small error.

PRGs for generalized halfspaces. PRGs for (m,n)-Fourier shapes give us PRGs for
halfspaces not just for the uniform distribution over the hypercube, but for a large class
of distributions that have been studied in the literature. We can derive these results in a
unified manner by considering the class of generalized halfspaces.

Definition 3. A generalized halfspace over [m]n is a function g : [m]n → {0, 1} that can
be represented as

g(x) = 1
+





n
∑

j=1

gj(xj)− θ



 .

where gj : [m]→ R are arbitrary functions for j ∈ [n] and θ ∈ R.

PRGs for (m,n)-Fourier shapes imply PRGs for generalized halfspaces. This in turn
captures settings of fooling halfspaces with respect to the Gaussian distribution and the
uniform distribution on the sphere [KRS12, MZ13, Kan14, KM15], and a large class of
product distributions over Rn [GOWZ10].

Derandomizing the Chernoff-Hoeffding bound. A consequence of fooling general-
ized halfspaces is to derandomize Chernoff-Hoeffding type bounds for sums of independent
random variables which are ubiquitous in the analysis of randomized algorithms. We state
our result in the language of “randomness-efficient samplers” (cf. [Zuc97]). Let X1, . . . ,Xn

be independent random variables over a domain [m] and let g1, . . . , gn : [m] → [−1, 1] be
arbitrary bounded functions. The classical Chernoff-Hoeffding bounds [Hoe63] say that

Pr

[∣

∣

∣

∣

∣

n
∑

i=1

gi(Xi)−
n
∑

i=1

E[gi(Xi)]

∣

∣

∣

∣

∣

≥ t

]

≤ 2 exp(−t2/4n).

There has been a long line of work on showing sharp tail bounds for pseudorandom se-
quences starting from [SSS95] who showed that similar tail bounds hold under limited
independence. But all previous constructions for the polynomial small error regime re-
quired seed-length O(log2(n)). PRGs for generalized halfspaces give Chernoff-Hoeffding
tail bounds with polynomially small error, with seed-length Õ(log(n)).
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PRGs for modular tests. An important class of functions in L is that of modular tests,
i.e., functions of the form g : {0, 1}n → {0, 1}, where g(x) = 1(

∑

i aixi mod m ∈ S), for
m ≤ M , coefficients ai ∈ Zm and S ⊆ Zm. Such a test is computable in L as long as
M ≤ poly(n). The case when m = 2 corresponds to small-bias spaces, for which optimal
constructions were first given in the seminal work of Naor and Naor [NN93]. The case
of arbitrary m was considered by [LRTV09] (see also [MZ09]), their generator gives seed-
length Õ(log(n/ε) + log2(M)). Thus for M = poly(n), their generator does not improve
on Nisan’s generator even for constant error ε. PRGs fooling (2, n)-Fourier shapes with
polynomially small error fools modular tests.

PRGs for combinatorial shapes. Combinatorial shapes were introduced in the work
of [GMRZ13] as a generalization of combinatorial rectangles and to address fooling linear
sums in statistical distance. These are functions f : [m]n → {0, 1} of the form

f(x) = h

(

n
∑

i=1

gi(xi)

)

for functions gi : [m] → {0, 1} and a function h : {0, . . . , n} → {0, 1}. The best previ-
ous generators of [GMRZ13] and [De14] for combinatorial shapes achieve a seed-length of
O(log(mn)+log2(1/ε)), O(logm+log(n/ε)3/2); in particular, the best previous seed-length
for polynomially small error was O(log3/2(n)). PRGs for (m,n)-Fourier shapes with error
ε/n imply PRGs for combinatorial shapes.

Combinatorial rectangles are a well-studied subset of combinatorial shapes [EGL+98,
ASWZ96, LLSZ97, Lu02]. They are functions that can be written as f(x) =

∏

j 1(xj ∈ Aj)

for some arbitrary subsets Aj ⊆ [m]. The best known PRG due to [GMR+12, GY14] gives
a seed-length of O(log(mn/ε) log log(mn/ε)). Combinatorial rectangles are special cases of
Fourier shapes so our PRG for (m,n)-Fourier shapes also fools combinatorial rectangles,
but requires a slightly longer seed. The alphabet-reduction step in our construction is
inspired by the generator of [GMR+12, GY14].

1.1.2 Achieving optimal error dependence via Fourier shapes.

We note that having generators for Fourier shapes with seed-length Õ(log(n)) even when
ε is polynomially small is essential in our reductions: we sometimes need error ε/poly(n)
for Fourier shapes in order to get ε error for our target class of functions. Once we have
this, starting with ε a sufficiently small polynomial results in polynomially small error for
the target class of functions.

We briefly explain why previous techniques based on limit theorems were unable to
achieve polynomially small error with optimal seed-length, by considering the setting of
halfspaces under the uniform distribution on {0, 1}n. Fooling halfspaces is equivalent to
fooling all linear functions L(x) =

∑

iwixi in Kolmogorov or cdf distance. Previous work
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on fooling halfspaces [DGJ+09, MZ13] relies on the Berry-Esséen theorem, a quantiative
form of the central limit theorem, to show that the cdf of regular linear functions is close
to that of the Gaussian distribution, both under the uniform distribution and under the
pseudorandom distribution. However, even for the majority function (which is the most
regular linear function), the discreteness of

∑

i xi means that the Kolmogorov distance from
the Gaussian distribution is 1/

√
n, even when x is uniformly random. Approaches that

show closeness in cdf distance by comparison to the Gaussian distribution seem unlikely
to give polynomially small error with optimal seed-length.

We depart from the derandomized limit theorem approach taken by several previous
works [DGJ+09, DKN10, GOWZ10, HKM12, GMRZ13, MZ13] and work directly with the
Fourier transform. A crucial insight (that is formalized in Lemma 9.2) is that fooling the
Fourier transform of linear forms to within polynomially small error implies polynomially
small Kolmogorov distance.

1.2 Our results

Our main result is the following:

Theorem 1.1. There is an explicit generator G : {0, 1}r → [m]n that fools all (m,n)-
Fourier shapes with error ε, and has seed-length r = O(log(mn/ε) · (log log(mn/ε))2).

We now state various corollaries of our main result starting with fooling halfspaces.

Corollary 1.2. There is an explicit generator G : {0, 1}r → {0, 1}n that fools halfs-
paces over {0, 1}n under the uniform distribution with error ε, and has seed-length r =
O(log(n/ε)(log log(n/ε))2).

The best previous generator due to [MZ13] had a seed-length of O(log n + log2(1/ε)),
which is O(log2 n) for polynomially small error ε.

We also get a PRG with similar parameters for generalized halfspaces.

Corollary 1.3. There is an explicit generator G : {0, 1}r → [m]n that ε-fools generalized
halfspaces over [m]n, and has seed-length r = O(log(mn/ε) · (log log(mn/ε))2).

From this we can derive PRGs with seed-length O(log(n/ε)(log log(n/ε))2) for fooling
halfspaces with error ε under the Gaussian distribution and the uniform distribution on
the sphere. Indeed, we get the following bound for arbitrary product distributions over
R
n, which depends on the 4th moment of each co-ordinate.

Corollary 1.4. Let X be a product distribution on R
n such that for all i ∈ [n],

E[Xi] = 0,E[X2
i ] = 1,E[X4

i ] ≤ C.

There exists an explicit generator G : {0, 1}r → R
n such that if Y = G(z), then for every

halfspace h : Rn → {0, 1},
|E[h(X)] − E[h(Y )]| ≤ ε.
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The generator G has seed-length r = O(log(nC/ε)(log log(nC/ε))2).

This improves on the result of [GOWZ10] who obtained seedlength O(log(nC/ε) log(C/ε)
for this setting via a suitable modification of the generator from [MZ13].

The next corollary is a near-optimal derandomization of the Chernoff-Hoeffding bounds.
To get a similar guarantee, the best known seed-length that follows from previous work
[SSS95, MZ13, GOWZ10] was O(log(mn) + log2(1/ε)).

Corollary 1.5. Let X1, . . . ,Xn be independent random variables over the domain [m].
Let g1, . . . , gn : [m] → [−1, 1] be arbitrary bounded functions. There exists an explicit
generator G : {0, 1}r → [m]n such that if (Y1, . . . , Yn) = G(z) where z ∈u {0, 1}r, then Yi

is distributed identically to Xi and

Pr

[∣

∣

∣

∣

∣

n
∑

i=1

gi(Yi)−
n
∑

i=1

E[gi(Yi)]

∣

∣

∣

∣

∣

≥ t

]

≤ 2 exp(−t2/2n) + ε.

G has seed-length r = O(log(mn/ε)(log log(mn/ε))2).

We get the first generator for fooling modular tests whose dependence on the modulus
M is near-logarithmic. The best previous generator from [LRTV09] had a seed-length of
Õ(log(n/ε) + log2(M)), which is Õ(log2 n) for M = poly(n).

Corollary 1.6. There is an explicit generator G : {0, 1}r → {0, 1}n that fools all linear
tests modulo m for all m ≤ M with error ε, and has seed-length r = O(log(Mn/ε) ·
(log log(Mn/ε))2).

Finally, we get a generator with near-logarithmic seedlength for fooling combinatorial
shapes. [GMRZ13] gave a PRG for combinatorial shapes with a seed-length of O(log(mn)+
log2(1/ε)). This was improved recently by De [De14] who gave a PRG with seed-length
O(logm+ log(n/ε)3/2); in particular, the best previous seed-length for polynomially small
error was O((log(n)3/2).

Corollary 1.7. There is an explicit generator G : {0, 1}r → [m]n that fools (m,n)-
combinatorial shapes to error ε and has seed-length r = O(log(mn/ε)(log log(mn/ε))2).

1.3 Other related work

Starting with the work of Diakonikolas et al. [DGJ+09], there has been a lot of interest
in constructing PRGs for halfspaces and related classes such as intersections of halfspaces
and polynomial threshold functions over the domain {±1}n [DKN10, GOWZ10, HKM12,
MZ13, Kan11b, Kan11a, Kan14]. Rabani and Shpilka [RS10] construct optimal hitting set
generators for halfspaces over {±1}n; hitting set generators are weaker than PRGs.

Another line of work gives PRGs for halfspaces for the uniform distribution over the
sphere (spherical caps) or the Gaussian distribution. For spherical caps, Karnin, Rabani
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and Shpilka [KRS12] gave a PRG with a seed-length of O(log n + log2(1/ε)). For the
Gaussian distribution, [Kan14] gave a PRG which achieves a seed-length of O(log n +
log3/2(1/ε)). Recently, [KM15] gave the first PRGs for these settings with seedlength
O((log(n/ε))(log log(n/ε))). Fooling halfspaces over the hypercube is known to be harder
than the Gaussian setting or the uniform distribution on the sphere; hence our result gives
a construction with similar parameters up to a O(log log n) factor. At a high level, [KM15]
also uses a iterative dimension reduction approach like in [KMN11, CRSW13, GMR+12];
however, the final construction and its analysis are significantly different from ours.

Gopalan et al. [GOWZ10] gave a generator fooling halfspaces under product distribu-
tions with bounded fourth moments, whose seed-length is O(log(n/ε) log(1/ε)).

The present work completely subsumes a manuscript of the authors which essentially
solved the special-case of derandomizing Chernoff bounds and a special class of halfspaces
[GKM14].

2 Proof overview

We describe our PRG for Fourier shapes as in Theorem 1.1. The various corollaries are
derived from this Theorem using properties of the discrete Fourier transform of integer-
valued random variables.

Let us first consider a very simple PRG: O(1)-wise independent distributions over [m]n.
At a glance, it appears to do very poorly as it is easy to express the parity of a subset of
bits as a Fourier shape and parities are not fooled even by (n−1)-wise independence. The
starting point for our construction is that bounded independence does fool a special but
important class of Fourier shapes, namely those with polynomially small total variance.

For a complex valued random variable Z, define the variance of Z as

σ2(Z) = E
[

|Z − E[Z]|2
]

= E[|Z|2]− |E[Z]|2.
It is easy to verify that

σ2(Z) + |E[Z]|2 = E[|Z|2],
so that if Z takes values in C1, then

σ2(Z) + |E[Z]|2 ≤ 1.

The total-variance of a (m,n)-Fourier shape f : [m]n → C1 with f(x) =
∏n

j=1 fj(xj)
is defined as

Tvar(f) =
∑

j

σ2(fj(xj)).

To gain some intuition for why this is a natural quantity, note that Tvar(f) gives an easy
upper bound on the expectation of a Fourier shape:

∣

∣

∣

∣

E
x∈[m]n

[f(x)]

∣

∣

∣

∣

=
∏

j

|E[fj(xj)]| ≤
∏

j

√

1− σ2(fj(xj)) ≤ exp(−Tvar(f)/2). (1)
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This inequality suggests a natural dichotomy for the task of fooling Fourier shapes. It
suggests that high variance shapes where Tvar(f) ≫ log(1/ε) are easy in the sense that
E[f ]≪ ε is small for such Fourier shapes. So a PRG for such shapes only needs to ensure
that E[f ] is also sufficiently small under the pseudorandom output.

To complement the above, we show that if the total-variance Tvar(f) is very small, then
generators based on limited independence do fairly well. Concretely, our main technical
lemma says that limited independence fools products of bounded (complex-valued) random
variables, provided that the sum of their variances is small.

Lemma 2.1. Let Y1, . . . , Yn be k-wise independent random variables taking values in C1.
Then,

∣

∣

∣

∣

∣

∣

E[Y1 · · ·Yn]−
n
∏

j=1

E[Yj]

∣

∣

∣

∣

∣

∣

≤ exp(O(k))

(

∑n
j=1 σ

2(Yj)√
k

)Ω(k)

.

We defer discussion of the proof to Section 2.4, and continue the description of our PRG
construction. Recall that we are trying to fool a (m,n)-Fourier shape f : [m]n → C1 with
Tvar(f) ≤ O(log(1/ε) to error ε = poly(1/nm). It is helpful to think of the desired error
ε as being fixed at the beginning and staying unchanged through our iterations, while m
and n change during the iterations. Generating k-wise independent distributions over [m]n

takes O(k log(mn)) random bits. Thus if we use k = O(log(1/ε))-wise independence, we
would achieve error ε, but with seed-length O(log(1/ε) log(mn)) rather than O(log(1/ε)).

On the other hand, if Tvar(f) ≤ 1/(mn)c for a fixed constant c, then choosing k =
O(log(1/ε)/(logmn))-wise independence is enough to get error ε while also achieving seed-
length O(k log(mn)) = O(log(1/ε)) as desired. We exploit this observation by combining
the use of limited independence with the recent iterative-dimension-reduction paradigm of
[KMN11, CRSW13, GMR+12]. Our construction reduces the problem of fooling Fourier
shapes with Tvar(f) ≤ O(log(1/ε)) through a sequence of iterations to fooling Fourier
shapes where the total variance is polynomially small in m,n in each iteration and then
uses limited independence in each iteration.

To conclude our high-level description, our generator consists of three modular parts.
The first is a generator for Fourier shapes with high total variance: Tvar(f) ≥ poly(log(1/ε)).
We then give two reductions to handle low variance Fourier shapes: an alphabet-reduction
step reduces the alphabet m down to

√
m and leaves n unchanged, and a dimension-

reduction step that reduces the dimension from n to
√
n while possibly blowing up the

alphabet to poly(1/ε). We describe each of these parts in more detail below.

2.1 Fooling high-variance Fourier shapes

We construct a PRGwith seed-length O(log(mn/ε) log log(1/ε)) which ε-fools (m,n)-Fourier
shapes f when Tvar(f) ≥ (log(1/ε))C for some sufficiently large constant C. We build the
generator in two steps.

8



In the first step, we build a PRG with seed-length O(log(mn)) which achieves constant
error for (m,n)-Fourier shapes f with Tvar(f) ≥ 1. In the second step, we drive the
error down to ε as follows. We hash the coordinates into roughly (log(1/ε))O(1) buckets,
so that for at least Ω(log(1/ε)) buckets, f restricted to the coordinates within the bucket
has total-variance at least 1. We use the PRG with constant error within each bucket,
while the seeds across buckets are recycled using a PRG for small-space algorithms. This
construction is inspired by the construction of small-bias spaces due to Naor and Naor
[NN93]; the difference being that we use generators for space bounded algorithms for
amplification, as opposed to expander random walks as done in [NN93].

2.2 Alphabet-reduction

The next building block in our construction is alphabet-reduction which helps us assume
without loss of generality that the alphabet-size m is polynomially bounded in terms of
the dimension n. This is motivated by the construction of [GMR+12].

Concretely, we show that constructing an ε-PRG for (m,n)-Fourier shapes can be re-
duced to that of constructing an ε′-PRG for (n4, n)-Fourier shapes for ε′ ≈ ε/(logm). The
alphabet-reduction step consists of (log logm) steps where in each step we reduce fooling
(m,n)-Fourier shapes for m > n4, to that of fooling (

√
m,n)-Fourier shapes, at the cost

of O(log(m/ε)) random bits.
We now describe a single step that reduces the alphabet from m to

√
m. Consider the

following procedure for generating a uniformly random element in [m]n:

• For D ≈ √m, sample uniformly random subsets

S1 = {X[1, 1],X[1, 2], . . . ,X[D, 1]}, . . . , Sn = {X[1, n],X[2, n], . . . ,X[D,n]} ⊆ [m].

• Sample Y = (Y1, . . . , Yn) uniformly at random from [D]n.

• Output (Z1, . . . , Zn), where Zj = X[Yj , j].

Our goal is to derandomize this procedure. The key observation is that once the subsets
S1, . . . , Sn are chosen, we are left with a (D,n)-Fourier shape as a function of Y . So the
choice of Y can be derandomized using a PRG for Fourier shapes with alphabet [D], and it
suffices to derandomize the choice of the X’s. A calculation shows that (because the Y ’s
are uniformly random), derandomizing the choice of the X’s reduces to that of fooling a
Fourier shape of total-variance 1/mΩ(1). Lemma 2.1 implies that this can be done with
limited independence.

2.3 Dimension-reduction for low-variance Fourier shapes

We show that constructing an ε-PRG for (n4, n)-Fourier shapes f with Tvar(f) ≤ poly(log(mn/ε))
can be reduced to that of ε′-fooling (poly(n/ε),

√
n)-Fourier shapes for ε′ ≈ ε/ log n. Note
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that here we decreased the dimension at the expense of increasing the alphabet-size. How-
ever, this can be fixed by employing another iteration of alphabet-reduction. This is the
reason why considering (m,n)-Fourier shapes for arbitrary m helps us even if we were only
trying to fool (2, n)-Fourier shapes. The dimension-reduction proceeds as follows:

1. We first hash the coordinates into roughly
√
n buckets using a k-wise independent

hash function h ∈u H = {h : [n]← [
√
n]} for k ≈ O(log(n/ε)/ log n). Note that this

only requires O(log(n/ε)) random bits.

2. For the coordinates within each bucket we use a k′-wise independent string in [m]n

for k′ ≈ O(log(n/ε)/ log n). We use true independence across buckets. Note that this
requires

√
n independent seeds of length r = O(log(n/ε)).

While the above process requires too many random bits by itself, it is easy to analyze. We
then reduce the seed-length by observing that if we fix the hash function h, then what we
are left with as a function of the seeds used for generating the symbols in each bucket is a
(2r ≤ poly(n/ε),

√
n)-Fourier shape. So rather than using independent seeds, we can use

the output of a generator for such Fourier shapes.
The analysis of the above construction again relies on Lemma 2.1. The intuition is

that since Tvar(f) ≤ poly(log(n/ε)), and we are hashing into
√
n buckets, for most hash

functions h the Fourier shape restricted to each bucket has variance O(1/nc) for some fixed
constant c > 0. By Lemma 2.1, limited independence fools such Fourier shapes.

2.4 Main Technical Lemma

The lemma can be seen as a generalization of a similar result proved for real-valued random
variables in [GY14](who also have an additional restriction on the means of the random
variables Yj). However, the generalization to complex-valued variables is substantial and
seems to require different proof techniques.

We first consider the case where the Yj’s not only have small total-variance, but also
have small absolute deviation from their means. Concretely, let Yj = µj(1 + Zj) where
E[Zj] = 0 and |Zj | ≤ 1/2. In this case, we do a variable change Wj = log(1 + Zj) (taking
the principal branch of the algorithm) to rewrite

∏

j

Yj =
∏

j

µj(1 + Zj) =
∏

j

µj · exp





∑

j

Wj



 .

We then argue that exp(
∑

j Wj) can be approximated by a polynomial P (W1, . . . ,Wn) of
degree less than k with small expected error. The polynomial P is obtained by truncating
the Taylor series expansion of the exp( ) function. Once, we have such a low-degree polyno-
mial approximator, the claim follows as limited independence fools low-degree polynomials.
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To handle the general case where Zj’s are not necessarily bounded, we use an inclusion-
exclusion argument and exploit the fact that with high probability, not many of the Zj ’s
(say more than k/2) will deviate too much from their expectation. We leave the details to
the actual proof.

3 Preliminaries

We start with some notation:

• For v ∈ R
n and a hash function h : [n]→ [m], define

h(v) =

m
∑

j=1

‖v|h−1(j)‖42 (2)

• C1 = {z : z ∈ C, |z| ≤ 1} be the unit disk in the complex plane.

• For a complex valued random variable Z,

V ar(Z) ≡ σ2(Z) ≡ E
[

|Z − E[Z]|2
]

.

• Unless otherwise stated c, C denote universal constants.

• Throughout we assume that n is sufficiently large and that δ, ε > 0 are sufficiently
small.

• For positive functions f, g, h we write f = g +O(h) when |f − g| = O(h).

• For a integer-valued random variable Z, its Fourier transform is given as follows: for
α ∈ [0, 1], Ẑ(α) = E[exp(2πiαZ)]. Further, given the Fourier coefficients Ẑ(α), one
can compute the probability density function of Z as follows: for any integer j,

Pr[Z = j] =

∫ 1

0
exp(2πijα)Ẑ(α) dα.

Definition. For n,m, δ > 0 we say that a family of hash functions H = {h : [n]→ [m]} is
δ-biased if for any r ≤ n distinct indices i1, i2, . . . , ir ∈ [n] and j1, . . . , jr ∈ [m],

Pr
h∈uH

[h(i1) = j1 ∧ h(i2) = j2 ∧ · · · ∧ h(ir) = jr] =
1

mr
± δ.

We say that such a family is k-wise independent if the above holds with δ = 0 for all
r ≤ k.

We say that a distribution over {±1}n is δ-biased or k-wise independent if the corre-
sponding family of functions h : [n]→ [2] is.

11



Such families of functions can be generated efficiently using small seeds.

Fact 3.1. For n,m, k, δ > 0, there exist explicit δ-biased families of hash functions H =
{h : [n] → [m]} that can be generated efficiently from a seed of length s = O(log(n/δ)).
There are also, explicit k-wise independent families that can be generated efficiently from
a seed of length s = O(k log(nm)).

Taking the pointwise sum of such generators modulo m gives a family of hash func-
tions that is both δ-biased and k-wise independent generated from a seed of length s =
O(log(n/δ) + k log(nm)).

3.1 Basic Results

We start with the simple observation that to δ-fool an (m,n)-Fourier shape f , we can
assume the functions in f have bit-precision 2 log2(n/δ). This observation will be useful
when we use PRGs for small-space machines to fool Fourier shapes in certain parameter
regimes.

Lemma 3.2. If a PRG G : {0, 1}r → [m]n δ-fools (m,n)-Fourier shapes f =
∏

j fj when
log(fj)’s have bit precision 2 log2(n/δ), then G fools all (m,n)-Fourier shapes with error
at most 2δ.

Proof. Consider an arbitrary (m,n)-Fourier shape f : [m]n → C1 with f =
∏

j fj. Let

f̃j : [m]→ C1 be obtained by truncating the log(fj)’s to 2 log2(n/δ) bits. Then, |fj(xj)−
f̃j(xj)| ≤ δ/n for all xj ∈ [m]. Therefore, if we define f̃ =

∏

j f̃j, then for any x ∈ [m]n,

(as the fj’s and f̃j’s are in C1)

∣

∣

∣
f(x)− f̃(x)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∏

j

fj(xj)−
∏

j

f̃(xj)

∣

∣

∣

∣

∣

∣

≤
∑

j

∣

∣

∣
fj(xj)− f̃(xj)

∣

∣

∣
≤ δ.

The claim now follows as the above inequality holds point-wise and by assumption, G
δ-fools f̃ .

We collect some known results about pseudorandomness and prove some other technical
results that will be used later.

We shall use PRGs for small-space machines or read-once branching programs (ROBP)
of Nisan [Nis92], [NZ96] and Impagliazzo, Nisan and Wigderson [INW94]. We extend the
usual definitions of read-once branching programs to compute complex-valued functions;
the results of [Nis92], [NZ96], [INW94] apply to this extended model readily2.

Definition 4 ((S,D, T )-ROBP). An (S,D, T )-ROBP M is a layered directed graph with
T + 1 layers and 2S vertices per layer with the following properties.

2This is because these results in fact give guarantees in terms of statistical distance.
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• The first layer has a single start node and the vertices in the last layer are labeled by
complex numbers from C1.

• A vertex v in layer i, 0 ≤ i < T has 2D edges to layer i + 1 each labeled with an
element of {0, 1}D.

A graph M as above naturally defines a function M :
(

{0, 1}D
)T → C1 where on in-

put (z1, . . . , zT ) ∈
(

{0, 1}D
)T

one traverses the edges of the graph according to the labels
z1, . . . , zT and outputs the label of the final vertex reached.

Theorem 3.3 ([Nis92], [INW94]). There exists an explicit PRG GINW : {0, 1}r →
(

{0, 1}D
)T

which ε-fools (S,D, T )-branching programs and has seed-length r = O(D + S log T +
log(T/δ) · (log T )).

Theorem 3.4 ([NZ96]). For all C > 1 and 0 < c < 1, there exists an explicit PRG

GNZ : {0, 1}r →
(

{0, 1}D
)T

which ε-fools (S, S, SC)-branching programs for ε = 2− log1−c S

and has seed-length r = O(S).

The next two lemmas quantify load-balancing properties of δ-biased hash functions in
terms of the ℓp-norms of vectors. Proofs can be found in Appendix A.

Lemma 3.5. Let p ≥ 2 be an integer. Let v ∈ R
n and H = {h : [n] → [m]} be either a

δ-biased hash family for δ > 0 or a p-wise independent family for δ = 0. Then

E[h(v)p] ≤ O(p)2p
(‖v‖42

m

)p

+O(p)2p‖v‖4p4 +mp‖v‖4p2 δ.

Lemma 3.6. For all v ∈ R
n
+, let p ≥ 2 be even and H = {h : [n] → [m]} a p-wise

independent family, and j ∈ [m],

Pr
[∣

∣

∣

∥

∥v|h−1(j)

∥

∥

1
− ‖v‖1 /m

∣

∣

∣
≥ t
]

≤ O(p)p/2 ‖v‖p2
tp

.

4 Fooling products of low-variance random variables

We now show one of our main technical claims that products of complex-valued random
variables are fooled by limited independence if the sum of variances of the random variables
is small. The lemma is essentially equivalent to saying that limited independence fools low-
variance Fourier shapes.

Lemma 4.1. Let Y1, . . . , Yn be k-wise independent random variables taking values in C1.
Then,

∣

∣

∣

∣

∣

∣

E[Y1 · · ·Yn]−
n
∏

j=1

E[Yj ]

∣

∣

∣

∣

∣

∣

≤ exp(O(k)) ·
(

∑

j σ
2(Yj)

k

)Ω(k)

.
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More concretely, let X1, . . . ,Xn be independent random variables taking values in C1.
Let σ2

i = Var(Xi) and
∑n

i=1 σ
2
i ≤ σ2. Let k be a positive even integer and let Y1, . . . , Yn

be a Ck-wise independent family of random variables with each Yi distributed identically
to Xi. Then, we will show that for C a sufficiently big constant,

|E [Y1 · · ·Yn]− E [X1 · · ·Xn]| = exp(O(k)) · (σ/
√
k)k. (3)

We start with the following standard bound on moments of bounded random variables
whose proof is deferred to appendix B.

Lemma 4.2. Let Z1, . . . , Zn ∈ C be random variables with E[Zi] = 0, ‖Zi‖∞ < B and
∑

i V ar(Zi) ≤ σ2. Then, for all even positive integers k,

E





∣

∣

∣

∣

∣

∑

i

Zi

∣

∣

∣

∣

∣

k


 ≤ 2O(k)(σ
√
k +Bk)k.

We also use some elementary properties of the (complex-valued) log and exponential
functions:

Lemma 4.3. 1. For z ∈ C with |z| ≤ 1/2, | log(1 + z)| ≤ 2|z|, where we take the
principle branch of the logarithm.

2. For w ∈ C and k > 0,
∣

∣

∣

∣

∣

∣

exp(w)−
k−1
∑

j=0

wk/k!

∣

∣

∣

∣

∣

∣

≤ O(1)
|w|k
k!
·max(1, exp(ℜ(w))).

3. For a random variable Z ∈ C with |Z|∞ ≤ 1/2, E[Z] = 0, and W = log(1 + Z)
the principle branch of the logarithm function (phase between (−π, π)), V ar(W ) ≤
4V ar(Z).

4. For any complex-valued random variable W ∈ C, | exp(E[W ])| ≤ E[| exp(W )|].

Proof. Claims (1), (2) follow from the Taylor series expansions for the complex-valued log
and exponential functions.

For (3), note that V ar(W ) ≤ E[|W |2] ≤ 4E[|Z|2] = 4V ar(Z).
For (4), note that | exp(E[W ])| = | exp(E[ℜ(W )])| and similarly | exp(W )| = | exp(ℜ(W ))|.

The statement now follows from Jensen’s inequality applied to the random variable ℜ(W ).

We prove Lemma 4.1 or equivalently, Equation (3) by proving a sequence of increasingly
stronger claims. We begin by proving that Equation (3) holds if Xj ’s have small absolute
deviation, i.e., lie in a disk of small radius about a fixed point.

14



Lemma 4.4. Let Xi and Yi be as above. Furthermore, assume that Yi = µi(1 + Zi) for
complex numbers µi = E[Yi] and random variables Zi so that with probability 1, |Zi| ≤ B ≤
1/2 for all i. Let σ̃2

i = Var(Zi), and σ̃2 =
∑n

i=1 σ̃
2
i . Then we have that

|E [X1 · · ·Xn]− E [Y1 · · ·Yn]| = exp(O(k)) · (σ̃/k1/2 +B)k.

Proof. Let Wj = log(1+Zj), taking the principle branch of the logarithm function and let
W ′

j = Wj − E[Wj ]. Then, by Lemma 4.3 (1), (3), |Wj| ≤ 2|Zj | ≤ 2B, so that |Wi|′ ≤ 4B

and Var(W ′
j) = O(σ̃2

j ). Finally, let W =
∑n

j=1W
′
j .

Now, by Lemma 4.3 (3)

n
∏

i=1

Yi =

n
∏

i=1

(µi exp(E[Wi])) exp(W )

=
n
∏

i=1

(µi exp(E[Wi]))

(

k−1
∑

ℓ=0

W ℓ

ℓ!
+O(1) ·

( |W |k
k!

)

·max(1, exp(ℜ(W )))

)

.

Note that the expectation of the ℓth powers of W are fooled by the k-wise independence
of the Y ’s for ℓ < k. Therefore the difference in the expectations between the product of
Y ’s and the product of X’s is at most

O(1) ·
n
∏

i=1

(µi exp(E[Wi]))E

[( |W |k
k!

)

·max(1, exp(ℜ(W )))

]

(4)

Now, by Lemma 4.3 (4),

∣

∣

∣

∣

∣

n
∏

i=1

µi exp(E[Wi])

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∏

i=1

µi · exp
(

E

[

∑

i

Wi

])∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n
∏

i=1

µi · E
[

exp

(

∑

i

Wi

)]∣

∣

∣

∣

∣

= E

[∣

∣

∣

∣

∣

n
∏

i=1

µi exp(Wi)

∣

∣

∣

∣

∣

]

= E

[∣

∣

∣

∣

∣

n
∏

i=1

Yi

∣

∣

∣

∣

∣

]

≤ 1.

Further,
∣

∣

∣

∣

∣

n
∏

i=1

µi exp(E[Wi])

∣

∣

∣

∣

∣

· exp(ℜ(W )) =

∣

∣

∣

∣

∣

n
∏

i=1

µi exp(E[Wi]) · exp(W )

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∏

i=1

Yi

∣

∣

∣

∣

∣

≤ 1.

Therefore, by Lemma 4.2, the expression in (4) is at most

O(1)E

[ |W |k
k!

]

≤ 2O(k) ·
(

σ̃
√
k +Bk

k

)k

= 2O(k) · (σ̃/k1/2 +B)k.
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Next, we relax the conditions to handle the case where we only require the means of
the Xj’s be far from zero.

Lemma 4.5. Let Xi and Yi be as in Equation (3). Let µi = E[Xi]. If |µi| ≥ (σ/
√
k)1/3

for all i, then Equation (3) holds.

Proof. We assume throughout that σ/
√
k is less than a sufficiently small constant; other-

wise, there is nothing to prove. Further, note that there can be at most k different indices
j ∈ [n] where σj ≥ σ/

√
k. As even after conditioning on the values of the corresponding

Y ’s, the remaining Yj ’s are (C − 1)k-independent, it suffices to prove the lemma when
σj ≤ σ/

√
k for all j.

To apply Lemma 4.4, we consider a truncation of our random variables: define

Ỹi =

{

Yi if |Yi − µi| ≤ (σ/
√
k)2/3

µi else

We claim that the variables Ỹi satisfy the conditions of Lemma 4.4. Let µ̃i = E[Ỹi].
Note that by Chebyshev bound, Pr(Ỹi 6= Yi) ≤ σ2

i (σ/
√
k)−4/3 ≤ (σ/

√
k)2/3. Therefore,

|µi − µ̃i| ≤ (σ/
√
k)2/3, so that |µ̃i| ≥ (1/2)|µi|. Furthermore, letting Ỹi = µ̃i(1 + Zi), we

have that

E[Zi] = 0, ‖Zi‖∞ ≤ 2(σ/
√
k)1/3, Var(Zi) ≤ 4σ2

i (σ/
√
k)−2/3,

∑

i

Var(Zi) ≤ 4σ2
i (σ/
√
k)−2/3.

(5)
Finally, note that

n
∏

i=1

Yi =
n
∏

i=1

(Yi − Ỹi + Ỹi) =
∑

S⊆[n]

∏

i∈S

(Yi − Ỹi)
∏

i 6∈S

Ỹi.

We truncate the above expansion to only include terms corresponding to sets S with
|S| < m for m = O(k) to be chosen later. Let

Pm(Y1, . . . , Yn) =
∑

S⊆[n],|S|<m

∏

i∈S

(Yi − Ỹi)
∏

i/∈S

(Ỹi),

and let N equal the number of i so that Yi 6= Ỹi. We claim that

∣

∣

∣

∣

∣

∣

n
∏

j=1

Yj − Pm(Y1, . . . , Yn)

∣

∣

∣

∣

∣

∣

≤ 2m
(

N

m

)

.

The above clearly holds when N < m, since in this case for any S of size at least
m we have

∏

i∈S(Yi − Ỹi) = 0. On the other hand for N ≥ m we note that there
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are at most
∑m−1

ℓ=0

(N
ℓ

)

≤ 2m
(N
m

)

subsets S for which this product is non-zero. Hence,

|Pm(Y1, . . . , Yn)| < 2m
(N
m

)

.
We now argue that Ck-wise independence fools the individual terms of Pm when m =

O(k). This is because, the Yj for j ∈ S are independent and conditioned on their values, the
remaining Ỹj for j /∈ S are still C ′k-wise independent for some sufficiently large constant
C ′. Therefore, applying Lemma 4.4 with parameters as given by Equation (5), Ck-wise
independence fools Pm(Y1, . . . , Yn) up to error

∑

S⊆[n],|S|<m

∏

i∈S

∣

∣

∣E[Yi − Ỹi]
∣

∣

∣ · 2O(k)

(

σ̃2

√
k

(

σ√
k

)−2/3

+

(

σ√
k

)1/3
)3k

,

where
(

σ̃2

√
k

(

σ√
k

)−2/3

+

(

σ√
k

)1/3
)3k

= O(σ/
√
k)k.

Therefore, Pm is fooled to error

m−1
∑

ℓ=0

E

[(

N

ℓ

)]

2O(k) · (σ/
√
k)k.

Note that the expectation above is the same as what it would be if the Yi’s were fully
independent, in which case it is at most

E[2N ] =

n
∏

i=1

(1 + Pr(Yi 6= Ỹi)) ≤ exp

(

n
∑

i=1

Pr(Yi 6= Ỹi)

)

=

exp

(

O

(

n
∑

i=1

σ2
i (σ/
√
k)−4/3

))

= exp(O(σ2/3k2/3)) = exp(O(k)).

Therefore, Ck-wise independence fools Pm to error 2O(k) · (σ/
√
k)k.

On the other hand, the expectation of
(N
m

)

is

∑

S⊆[n],|S|=m

∏

i∈S

Pr(Yi 6= Ỹi) ≤

(

∑n
i=1 Pr(Yi 6= Ỹi)

)m

m!

≤

(

∑n
i=1 σ

2
i (σ/
√
k)−4/3

)m

m!

≤ O
(

(σ2/m)(σ2/k)−2/3
)m

.

Taking m = 3k/2 yields a final error of exp(O(k)) · (σ/
√
k)k. This completes our proof.
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Finally, we can extend our proof to cover the general case.

Proof of Lemma 4.1. Note that it suffices to prove that Equation (3) holds. As before, it
suffices to assume that σ/

√
k ≪ 1 and that σi ≤ σ/

√
k for all i.

Let m be the number of i so that |E[Yi]| ≤ (σ/
√
k)1/3. Assume that the Y ’s with small

expectation are Y1, . . . , Ym. We break into cases based upon the size of m.
On the one hand ifm ≤ 6k, we note that for C sufficiently large, the values of Y1, . . . , Ym

are independent of each other, and even after conditioning on them, the remaining Yi’s are
still C ′k-wise independent. Thus, applying Lemma 4.5 to the expectation of the product
of the remaining Yi we find that the difference between the expectation of the product of
X’s and product of Y ’s is as desired.

For m ≥ 6k we note that
∣

∣

∣

∣

∣

E

[

n
∏

i=1

Xi

]∣

∣

∣

∣

∣

=
n
∏

i=1

|E[Yi]| ≤ (σ/
√
k)m/3.

Therefore, it suffices to show that

∣

∣

∣

∣

∣

E

[

n
∏

i=1

Yi

]∣

∣

∣

∣

∣

= O(σ/
√
k)k.

Notice that so long as at least 3k of Y1, . . . , Ym have absolute value less than 2(σ/
√
k)1/3,

then
∣

∣

∣

∣

∣

n
∏

i=1

Yi

∣

∣

∣

∣

∣

= O(σ/
√
k)k.

Therefore, it suffices to show that this occurs except with probability at most O(σ/
√
k)k.

Let N be the number of 1 ≤ i ≤ m so that |Yi| ≥ 2(σ/
√
k)1/3. Note that

E[N ] =

m
∑

i=1

Pr(|Yi| ≥ 2(σ/
√
k)1/3) ≤

m
∑

i=1

σ2
i (σ/
√
k)−2/3 ≤ σ2(σ2/k)−1/3.
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On the other hand, we have that

Pr(N ≥ 3k) ≤ E

[(

N

3k

)]

=
∑

S⊆[m],|S|=3k

∏

i∈S

Pr(|Yi| ≥ 2(σ/
√
k)1/3)

≤

(

∑m
i=1 Pr(|Yi| ≥ 2(σ/

√
k)1/3)

)3k

(3k)!

=
E[N ]3k

(3k)!

≤ O((σ2/k)2/3)3k

≤ O(σ/
√
k)k.

This completes the proof.

5 A Generator for high-variance Fourier shapes

In this section, we construct a generator that fools Fourier shapes with high variance.

Theorem 5.1. There exists a constant C > 0, such that for all δ > 0, there exists an
explicit generator Gℓ : {0, 1}rℓ → [m]n with seed-length rℓ = O(log(mn/δ) log log(1/δ))
such that for all Fourier shapes f : [m]n → C1 with Tvar(f) ≥ C log5(1/δ), we have

∣

∣

∣

∣

E
z∼{0,1}rℓ

[f(Gℓ(z))]− E
X∈u[m]n

[f(X)]

∣

∣

∣

∣

< δ.

We start with the simple but crucial observation that Fourier shapes with large variance
have small expectation.

Lemma 5.2. For any Fourier shape f : [m]n → C1, we have

∣

∣

∣

∣

E
X∈u[m]n

[f(X)]

∣

∣

∣

∣

≤ exp(−Tvar(f)/2). (6)

Proof. Let f(x) =
∏

j fj(xj). Since fj(x) ∈ C1, we have |fj(x)| ≤ 1. Let µj = EXj∈[m][fj(Xj)].
For X ∈u [m]n,

σ2
j = E[|fj(Xj)− µj|2] = E[|fj(Xj)|2]− |µj |2 ≤ 1− |µj |2.
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Hence
∣

∣

∣

∣

E
X
[f(X)]

∣

∣

∣

∣

=

n
∏

j=1

|µj | ≤
n
∏

j=1

(1− σ2
j )

1/2

≤ exp(−
n
∑

j=1

σ2
j/2) ≤ exp(−Tvar(f)/2).

We build the generator in two steps. We first build a generator with seed-length O(log n)
which achieves constant error for all f with Tvar(f) ≥ 1. In the second step, we reduce the
error down to δ. This construction is inspired by a construction of Naor and Naor [NN93]
of small-bias spaces.

5.1 A generator with constant error

Our goal in this subsection is get a generator with constant error for Fourier shapes where
Tvar(f) = Ω(1). We start by showing that when Tvar(f) = Θ(1) (instead of just Ω(1)),
O(1)-wise independence is enough to fool f .

Lemma 5.3. For all constants 0 < c1 < c2, there exist p ∈ Z+ and 0 < c′ < 1 such that
the following holds. For any (m,n)-Fourier shape, f with Tvar(f) ∈ [c1, c2], and Z ∼ [m]n

2p-wise independent,
∣

∣

∣

∣

E
Z
[f(Z)]

∣

∣

∣

∣

< c′.

Proof. Let f =
∏

j fj, X ∈u [m]n. Now, by Lemma 4.1 applied to Yj = fj(Zj), we have,

|E[f(Z)]− E[f(X)]| ≤ exp(O(p))(Tvar(f)/
√
p)Ω(p) = exp(O(p))(c2/

√
p)Ω(p).

Note that by taking p to be a sufficiently large constant compared to c2, we can make the
last bound arbitrary small.

On the other hand, by Equation (6),

|E[f(X)]| ≤ exp(−Tvar(f)/2) ≤ exp(−c1/2).

Therefore,
|E[f(Z)]| ≤ exp(−c1/2) + exp(O(p))(c2/

√
p)Ω(p) < c′

for p sufficiently large constant and some constant 0 < c′ < 1.

We reduce the general case of Tvar(f) ∈ [1, n] to the case above where Tvar(f) = Θ(1)
by using the Valiant-Vazirani technique of sub-sampling. For B ⊆ [n] let Tvar(fB) =
∑

i∈B σ2
i . If we sample a random subset B ⊆ [n] with |B| ≈ n/Tvar(f) in a pairwise
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independent manner, we will get Tvar(fB) = Θ(1) with Ω(1) probability. Since we do not
know Tvar(f), we sample log(n) subsets whose cardinalities are geometrically increasing;
one of them is likely to satisfy the desired bound.

We set up some notation that will be used in the remainder of this section.

• Assume n is a power of 2, and set T = log2(n) − 1. Let Π ⊆ Sn be a family of
pairwise independent permutations so that π ∈u Π can be sampled efficiently with
O(log n) random bits. For 0 ≤ j ≤ T , let Bj = {π(i) : i ∈ {2j , . . . , 2j+1 − 1}} be the
2j co-ordinates that land in the jth bucket.

• For v ∈ R
n, let vj = vBj

denote the projection of v onto coordinates in bucket j.
Similarly, for x ∈ [m]n, let xj denote the projection of x to the co-ordinates in Bj.

• Fix an (m,n)-Fourier shape f : [m]n → C1 with f(x) =
∏

i fi(xi). Define f j :
[m]Bj → C1 as f j(xj) =

∏

i∈Bj
fi(xi).

Lemma 5.4. Let v ∈ R
n with ‖v‖22 ∈ [1, n], ‖v‖∞ ≤ 1 and t ∈ [log2 n] be such that

n/2t+1 ≤ ‖v‖22 ≤ n/2t. Then,

Pr
π∈uΠ

[

∥

∥vt
∥

∥

2

2
∈ [1/6, 4/3]

]

≥ 7/16.

The proof of this lemma is standard and is deferred to Appendix C.
This naturally suggests using an O(1)-wise independent distribution within each bucket.

But using independent strings across the log(n) buckets would require a seed of length
O(log(mn) · (log n)). We analyze our generator assuming independence across distinct
buckets, but then recycle the seeds using PRGs for space bounded computation to keep the
seed-length down to O(log(mn)) (rather than O(log2(n))).

We now prove the main claim of this subsection.

Lemma 5.5. There exists an explicit generator G1 : {0, 1}r → [m]n with r = O(log(mn))
such that for all Fourier shapes f : [m]n → C1 with Tvar(f) ≥ 1, we have

∣

∣

∣

∣

E
z∼{0,1}r

[f(G1(z))]
∣

∣

∣

∣

≤ c.

for some constant 0 < c < 1.

Proof. Let π ∈u Π and let Zj ∼ [m]2
j

be an independent p-wise independent string for a
parameter p = O(1) to be chosen later. Define

G′1(π,Z0, . . . , ZT ) = Y, where YBj
= Zj for j ∈ {0, . . . , T}.

In other words, the generator applies the string Zj to the coordinates in bucket Bj.
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Observe that f(Y ) =
∏log(n)−1

j=0 f j(Zj). Since the Zj’s are independent of each other

|E[f(Y )]| =

∣

∣

∣

∣

∣

∣

log(n)−1
∏

j=0

E[f j(Zj)]

∣

∣

∣

∣

∣

∣

≤
∣

∣E[f t(Zt)]
∣

∣ ,

for any t ≤ T . Applying Lemma 5.3 to v = (σ1(f1), . . . , σn(fj)), we get that for some

t ≤ T , Tvar(f t) =
∥

∥vt
∥

∥

2

2
∈ [1/6, 4/3] with probability at least 7/16. Conditioned on this

event, Lemma 5.3 implies that for p a sufficiently large constant, there exists a constant
c′ < 1 so that

∣

∣E[f t(Zt)]
∣

∣ < c′. Therefore, overall we get

|E[f(Y )]| ≤
∣

∣E[f t(Zt)]
∣

∣ ≤ 9

16
+

7c′

16
= c′′ < 1.

We next improve the seed-length of G′1 using the PRG for ROBPs of Theorem 3.4. To
this end, note that by Lemma 3.2 we can assume that every log(fi(xi)), and hence every
log(f j(xj)), has bit precision at most O(log n) bits (since our goal is to get error δ = O(1)).
Further, each Zj can be generated efficiently with O(log(mn)) random bits.

Thus, for a fixed permutation π, the computation of f(G′(π,Z1, . . . , ZT )) can be done
by a (S,D, T )-ROBP where S, T are O(log n) and D = O(log(mn)): for j ∈ {1, . . . , T},
the ROBP computes f j(Zj) and multiplies it to the product computed so far, which can

be done using O(log n) bits of space. Let GNZ : {0, 1}r →
(

{0, 1}D
)T

be the generator
in Theorem 3.4 fooling (S,D, T )-ROBPs as above with error δ < (1 − c′′)/2. GNZ has
seedlength O(log(mn)). Let

G1(π, z) = G′1(π,GNZ(z)).

It follows that |E[f(G1(π, z))]| < c for some constant c < 1. Finally, the seed-length of
G1 is O(log(mn)) as π can be sampled with O(log n) random bits and the seed-length of
GNZ is O(log(mn)). The lemma is now proved.

5.2 Reducing the error

We now amplify the error to prove Theorem 5.1. The starting point for the construction
is the observation that for X ∈u [m]n, |E[f(X)]| ≤ exp(−Tvar(f/2)) ≤ δ once Tvar(f) ≫
log(1/δ). Therefore, it suffices to design a generator so that E[f ] ≪ δ, when Tvar(f) is
sufficiently large.

Our generator will partition [n] into m = O((log(1/δ))5) buckets B1, . . . , Bm, using a
family of hash functions with the following spreading property:

Definition 5. A family of hash functions H = {h : [n] → [m]} is said to be (B, ℓ, δ)-
spreading if for all v ∈ [0, 1]n with ‖v‖22 ≥ B,

Pr
h∈uH

[|{j ∈ [m] :
∥

∥vh−1(j)

∥

∥

2

2
≥ B/2m}| ≥ ℓ] ≥ 1− δ.
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Using the notation from the last subsection, we write f(x) =
∏m

j=1 f
j(xj) where

f j(xj) =
∏

i∈Bj
fi(xi). If Tvar(f) is sufficiently large, then the spreading property guar-

antees that for at least Ω(log(1/δ)) of the buckets Bj, Tvar(f
j) ≥ 1. If we now generate

X ∈ [m]n by setting XBj
to be an independent instantiation of the generator G1 from

Lemma 5.3, then we get E[f(X)] ≪ δ. As in the proof of Lemma 5.5, we keep the
seed-length down to Õ(log(n/δ)) by recycling the seeds for the buckets using a PRG for
small-space machines.

We start by showing that the desired hash functions can be generated from a small-bias
family of hash functions. We show that it satisfies the conditions of the lemma by standard
moment bounds. The proof is in Appendix C

Lemma 5.6. For all constants C1, there exist constants C2, C3 such that following holds.
For all δ ≥ 0, there exists an explicit hash family H = {h : [n] → [T ]}, where T =
C2 log

5(1/δ)) which is (C3 log
5(1/δ), C1 log(1/δ), δ)-spreading and h ∈u H can be sampled

efficiently with O(log(n/δ)) bits.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let ℓ = C log(1/δ) for some constant to be chosen later and let H =
{h : [n]→ [T ]} be a (B, ℓ, δ)-spreading family as in Lemma 5.6 above for B = Θ(log5(1/δ))
and T = Θ(log5(1/δ)). Let G1 : {0, 1}r1 → [m]n be the generator in Lemma 5.3. Define a
new generator G′ℓ : H× ({0, 1}r′ )T → [m]n as:

G′ℓ(h, z1, . . . , zT ) = X, where Xh−1(j) = G1(zj) for j ∈ [T ].

Let f : [m]n → C1 with Tvar(f) ≥ max(2T,B). For h ∈ H, let I = {j : Tvarf j ≥ 1}.
For any fixed h ∈ H, as the zj ’s are independent of each other,

|E[f(X)]| =
m
∏

j=1

∣

∣E[f j(G1(zj))]
∣

∣ ≤
∏

j∈I

∣

∣E[f j(G1(zj))]
∣

∣ ≤ c|I|,

where c < 1 is the constant from Lemma 5.3. By the spreading property of H, with
probability at least 1− δ, |I| ≥ C log(1/δ). Therefore, for C sufficiently large,

|E[f(X)]| ≤ δ + cC log(1/δ) < 2δ.

As in Lemma 5.5, we recycle the seeds for the various buckets using the PRGs for
ROBPs. By Lemma 3.2, we may assume that f j has bit precision at most O(log(n/δ))
bits. Further note that

f(G′ℓ(h, z1, . . . , zm)) =

m
∏

j=1

f j(G1(zj)).
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For a fixed hash function h ∈ H, this can be computed by a (S,D, T )-ROBP where
S = O(log(n/δ)) and D = O(log(mn)), corresponding to the various possible seeds for G1.
Let GINW : {0, 1}r →

(

{0, 1}D
)T

be a generator fooling (S,D, T )-ROBPs as in Theorem
3.3 with error δ and define

Gℓ(h, z) = G′ℓ(h,GINW (z)).

The seed-length is dominated by the seed-length of GINW , which is

O(log(mn/δ) log T ) = O(log(mn/δ) log log(1/δ)).

It follows that |E[f(Gℓ(h, z))]| < 3δ, whereas for a truly random Y ∈u [m]n,

|E[f(Y )]| ≤ exp(−Tvar(f)/2) < δ.

The theorem now follows.

6 Alphabet reduction for Fourier shapes

In this section, we describe our alphabet-reduction procedure, which reduces the general
problem of constructing an ε-PRG for (m,n)-Fourier shapes where m could be much larger
than n, to that of constructing an ε/ log(m)-PRG for (n4, n)-Fourier shapes. This reduction
is composed of O(log logm) steps where in each step we reduce fooling (m,n)-Fourier shapes
to fooling (

√
m,n)-Fourier shapes. Each of these steps in turn will costO(log(m/ε)) random

bits, so that the overall cost is O(log(m/ε) ·(log logm)). Concretely, we show the following:

Theorem 6.1. Let n, δ > 0 and suppose that for some r′ = r′(n, δ′), for all m′ ≤ n4 there
exists an explicit generator Gm′ : {0, 1}r1 → [m′]n which δ′-fools (m′, n)-Fourier shapes.
For all m, there exists an explicit generator Gm : {0, 1}r → [m]n which (δ′ + δ)-fools
(m,n)-Fourier shapes with seed-length r = r′ +O(log(m/δ) log log(m)).

Proof. We prove the claim by showing that form > n4, we can reduce (δ+δ′)-fooling (m,n)-
Fourier shapes to that of δ′-fooling (

√
m,n)-Fourier shapes with O(log(m/δ)) additional

random bits. The theorem follows by applying the claim log log(m) until the alphabet size
drops below n4 when we can use Gm′ . This costs a total of r′ + O(log(m/δ) log log(m))
random bits, and gives error δ′ + log log(m)δ. The claim follows by replacing δ with
δ/ log log(m).

Thus, suppose that m > n4 and for D = ⌊√m⌋, we have a generator GD : {0, 1}rD →
[D]n which δ′-fools (D,n)-Fourier shapes. The generator Gm works as follows:

1. Generate a matrix X ∈ [m]D×n where

• Each column of X is from a pairwise independent distribution over [m]D.

• The different columns are k-wise independent for k = C log(1/δ)/ log(m) for
some sufficiently large constant C.
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2. Generate Y = (Y1, . . . , Yn) = GD(z) ∈ [D]n for z ∈u {0, 1}rD .

3. Gm outputs Z = (Z1, . . . , Zn) ∈ [m]n where Zj = X[Yj , j] for j ∈ [n].

Each column of X can be generated using a seed of length 2 logm. By using seeds for var-
ious columns that are k-wise independent, generating X requires seedlength O(k logm) =
O(log(1/δ)) (as m > n2), while the number of bits needed to generate Z is rD+O(log(1/δ)).

Fix an (m,n)-Fourier shape f : [m]n → C1, f(z) =
∏

j fj(zj). For x ∈ [m]D×n, define
a (D,n)-Fourier shape fx : [D]n → C1 by:

fx(y1, . . . , yn) =
n
∏

j=1

fj(x[yj , j]).

Note that f(Z) = fX(Y ).
LetX ′, Y ′ be random variables distributed uniformly over [m]D×n and [D]n respectively.

Let Z ′
j = X ′[Y ′

j , j] for j ∈ [n], so that Z ′ is uniform over [m]n and f(Z ′) = fX′

(Y ′). Our
goal is to show that f(Z ′) and f(Z) are close in expectation. We do this by replacing X ′

and Y ′ by X and Y respectively.
That we can replace Y ′ with Y follows from the pseudorandomness of GD. For any

fixed x ∈ [m]n, as GD fools (D,n)-Fourier shapes,

∣

∣

∣

∣

E
Y=GD(z)

[fx(Y )]− E
Y ′∈u[D]n

[fx(Y ′)]

∣

∣

∣

∣

≤ δ′. (7)

We now show that for truly random Y ′, one can replace X by X ′. Note that

E
Y ′∈u[D]n

[fx(Y ′)] =
n
∏

j=1

(

1

D
·
(

D
∑

ℓ=1

fj(x[ℓ, j])

))

≡ Bf (x). (8)

where we define the bias-function Bf : [m]D×n → C1 as above. We claim that X fools Bf :

∣

∣E[Bf (X)]− E[Bf (X
′)]
∣

∣ ≤ δ. (9)

For j ∈ [n], let

Aj =
1

D

(

D
∑

ℓ=1

fj(X[ℓ, j])

)

, A′
j =

1

D

(

D
∑

ℓ=1

fj(X
′[ℓ, j])

)

so that

Bf (X) =

n
∏

j=1

Aj, Bf (X
′) =

n
∏

j=1

A′
j.

25



Since fj(X[ℓ, j]) ∈ C1 for ℓ ∈ [D], it follows that Aj, A
′
j ∈ C1. Since the fj(X[ℓ, j])s are

pairwise independent variables,

E[Aj ] = E[A′
j ], Var[Aj ] = Var[A′

j ].

Note that

E[Bf (X
′)] = E[

n
∏

i=1

A′
j ] =

n
∏

j=1

E[A′
j ] =

n
∏

j=1

E[Aj ], E[Bf (X)] = E[A1 · · ·An]. (10)

The random variables A1, . . . , An are k-wise independent. Further, we have

Var(Aj) =
1

D2

D
∑

ℓ=1

Var(fj(X[ℓ, j])) =
σ2(fj)

D
≤ 1

D
.

Therefore, by Lemma 4.1,

∣

∣

∣

∣

∣

∣

E[A1 · · ·An]−
n
∏

j=1

E[Aj ]

∣

∣

∣

∣

∣

∣

≤
( n

D

)Ω(k)
≤ m−Ω(k) ≤ δ (11)

where the second to last inequality follows becase n ≤ m1/4 and D ≥ √m/2, and the last
holds for k = C log(1/δ)/ log(m) for a sufficiently big constant C. Equation 9 now follows
from Equations (11) and (10).

Finally,

∣

∣E[f(Z)]− E[f(Z ′)]
∣

∣ =
∣

∣

∣E[fX(Y )]− E[fX′

(Y ′)]
∣

∣

∣

=
∣

∣

∣
E[fX(Y ′)]− E[fX′

(Y ′)]
∣

∣

∣
+ δ′ Equation (7)

=
∣

∣E[Bf (X)] − E[Bf (X
′)]
∣

∣+ δ′ Equation (8)

≤ δ + δ′. Equation (9)

Hence the theorem is proved.

7 Dimension reduction for low-variance Fourier shapes

We next describe our dimension reduction step for low-variance Fourier shapes. We start
with an (m,n)-Fourier shape where m ≤ n4 and Tvar(f) ≤ log(n/δ)c. We show how one
can reduce the dimension to t =

√
n, at a price of a blowup in the alphabet size m′ which

now becomes (n/δ)c for some (large) constant c.
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Theorem 7.1. Let δ > 0, n > 0 and t = ⌈√n⌉. There is a constant c and m′ ≤ (n/δ)c

such that the following holds: if there exists an explicit PRG G′ : {0, 1}r′ → [m′]t with
seed-length r′ = r′(n, δ′) which δ′-fools (m′, t)-Fourier shapes, then there exists an explicit
generator G : {0, 1}r → [m]n with seed-length r = r′ + O(log(n/δ)) which (δ + δ′)-fools
(m,n)-Fourier shapes f with m ≤ n4 and Tvar(f) ≤ n1/9.

We first set up some notation. Assume that we have fixed a hash function h : [n]→ [t].
For x ∈ [m]n and j ∈ [t], let xj denote the projection of x onto co-ordinates in h−1(j). For
an (m,n)-Fourier shape f : [m]n → C1 with f =

∏n
i=1 fi, let

f j(xj) =
∏

i:h(i)=j

fi(xi)

so that f(x) =

t
∏

j=1

f j(xj).

We start by constructing an easy to analyze generator G1 which hashes co-ordinates
into buckets using k-wise independence and then uses independent k-wise independent
strings within a bucket. Let

k = C
log(n/δ)

log(n)
(12)

where C will is a sufficiently large constant. Let H : {[n] → t} be a k-wise independent
family of hash functions. Let G0 : {0, 1}r0 → [m]n be a k-wise independent generator over
[m]n. Define a new generator G1 : H× ({0, 1}r0)t → [m]n as:

G1(h, z1, . . . , zt) = Z,where Zj = G0(zj) ∀ j ∈ [t]. (13)

We argue that G1 fools (m,n)-Fourier shapes with small total variance as in the theo-
rem. Our analysis proceeds as follows:

• With high probability over h ∈u H, each of the f j’s has low variance except for a few
heavy co-ordinates (roughly Tvar(f)/t after dropping k/2 heavy coordinates).

• Within each bin we have k-wise independence, whereas the distributions across bins
are independent. So even conditioned on the heavy co-ordinates in a bin, the re-
maining distribution in the bin is k/2-wise independent. Hence each f j is fooled by
Lemma 4.1.

However, the seed-length of G1 is prohibitively large: since we use independent seeds across
the various buckets, the resulting seed-length is O(

√
n log(n/δ)). The crucial observation

is that we can recycle the seeds for various buckets using a generator that fools (m′, t)-
Fourier shapes with m′ = 2r0 = poly(n/δ) and t = O(

√
n). Given such a generator
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G′ : {0, 1}r′ → [m′]t which δ-fools (m′, t)-Fourier shapes, our final generator for small-
variance Fourier shapes is Gs : H× {0, 1}r

′ → [m]n is defined as

G(h,w) = G1(h,G′(w)). (14)

It is worth mentioning that even though the original Fourier shape f : [m]n → C1 has low
total variance, the generator G′ needs to fool all (m′, t)-Fourier shapes, not just those with
low variance.

7.1 Analysis of the dimension-reduction step

For α > 0, to be chosen later, let L = {j ∈ [n] : σ2(fj) ≥ α} denote the α-large indices
and S = [n] \ L denote the small indices. We call a hash function h ∈ H (α, β)-good if the
following two conditions hold for every bin h−1(j) where j ∈ [t]:

1. The bin does not have too many large indices: |h−1(j) ∩ L| ≤ k/2.

2. The small indices in the bin have small total variance:
∑

ℓ/∈L:h(ℓ)=j

σ2(fℓ) ≤ β.

Using standard moment bounds for k-wise independent hash functions one can show
that h ∈u H is (α, β)-good with probability at least 1 − n−Ω(k) for α = n−Ω(1) and β =
n−Ω(1). We defer the proof of the following Lemma to Appendix D.

Lemma 7.2. Let Tvar(f) ≤ n1/9 and let H = {h : [n]→ [t]} be a k-wise independent family
of hash functions for t = Θ(

√
n). Then h ∈ H is (n−1/3, n−1/36)-good with probability

1−O(k)k/2n−Ω(k).

We next argue that if h ∈ H is (α, β)-good then, k-wise independence is sufficient to
fool f j for each j ∈ [t].

Lemma 7.3. Let h ∈ H be (α, β)-good, and let j ∈ [t]. For Z ′ ∼ [m]n k-wise independent,
and Z ′′ ∈u [m]n,

∣

∣E[f j(Z ′)]− E[f j(Z ′′)]
∣

∣ ≤ exp(O(k)) · βΩ(k).

Proof. Fix j ∈ [t]. By relabelling coordinates, let us assume that h−1(j) = {1, . . . , nj}
and L ∩ h−1(j) = {1, . . . , r}, where r ≤ k/2. As Z ′ is k-wise independent, (Z ′

1, . . . , Z
′
r) is

uniformly distributed over [m]r. We couple Z ′ and Z ′′ by taking Z ′
i = Z ′′

i for i ≤ r. Even
after conditioning on these values, Z ′

r+1, . . . , Z
′
nj

are k/2-wise independent.
Let Yℓ = fℓ(Z

′
ℓ) for ℓ ∈ {r + 1, . . . , nj}. As h is (α, β)-good,

n/t
∑

ℓ=r+1

σ2(Yℓ) ≤ β.
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Therefore, by Lemma 4.1,

∣

∣

∣

∣

∣

E

[ nj
∏

ℓ=r+1

Yℓ

]

−
nj
∏

ℓ=r+1

E[Yℓ]

∣

∣

∣

∣

∣

≤ exp(O(k)) · βΩ(k). (15)

But since Z ′
ℓ = Z ′

ℓ for ℓ ≤ r, we have

E[f j(Z ′)] =

r
∏

ℓ=1

E[f ℓ(Z ′
ℓ)]E[

n
∏

ℓ=r+1

Yℓ],

E[f j(Z ′′)] =

r
∏

ℓ=1

E[f ℓ(Z ′
ℓ)]

nj
∏

ℓ=r+1

E[Yℓ],

∣

∣E[f j(Z ′)]− E[f j(Z ′′)]
∣

∣ =

∣

∣

∣

∣

∣

r
∏

ℓ=1

E[f ℓ(Z ′
ℓ)]E[

n
∏

ℓ=r+1

Yℓ]−
r
∏

ℓ=1

E[f ℓ(Z ′
ℓ)]

nj
∏

ℓ=r+1

E[Yℓ]

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

E[

nj
∏

ℓ=r+1

Yℓ]−
nj
∏

ℓ=r+1

E[Yℓ]

∣

∣

∣

∣

∣

Since |f ℓ(Z ′
ℓ)| ≤ 1

≤ exp(O(k)) · βΩ(k). Equation (15)

We use these lemmas to prove Theorem 7.1.

Proof of Theorem 7.1. Let f : [m]n → C1 be a Fourier shape with Tvar(f) ≤ n1/9. Let
G1 be the generator in Equation (13) with parameters as above. We condition on h ∈u H
being (n−1/3, n−1/36)-good; by Lemma 7.2 this only adds an additional O(k)k/2n−Ω(k) to
the error. We fix such a good hash function h.

Recall that G1(h, z1, . . . , zt) = Z where Zj = G0(zj) for j ∈ [t]. Since the zjs are
independent, so are the Zj’s. Hence,

E[f(G1(h, z
1, . . . , zt))] =

t
∏

j=1

E
h

[

f j(Zj)
]

.
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By Lemma 7.3, for (n−1/3, n−1/36)-good h, if Y ∈u [m]n, then

∣

∣

∣

∣

∣

∣

t
∏

j=1

E
[

f j(Zj)
]

−
t
∏

j=1

E
[

f j(Y j)
]

∣

∣

∣

∣

∣

∣

≤
t−1
∑

r=0

∣

∣

∣

∣

∣

∣

r
∏

j=1

E
[

f j(Y j)
]

t
∏

j=r+1

E
[

f j(Zj)
]

−
r+1
∏

j=1

E
[

f j(Y j)
]

t
∏

j=r+2

E
[

f j(Zj)
]

∣

∣

∣

∣

∣

∣

≤
t−1
∑

r=0

∣

∣E
[

f r+1(Zr+1)
]

−
[

f r+1(Y r+1)
]∣

∣

≤ exp(O(k)) · O(tn−k/36).

Combining the above equations we get that for Y ∈u [m]n,

|E[f(G1(h, z1, . . . , zt))]− E[f(Y )]| ≤ O(k)k/2n−Ω(k) + exp(O(k)) · O(tn−k/36) ≤ δ (16)

where the last inequality holds by taking C in Equation (12) to be a sufficiently large
constant.

We next derandomize the choice of the zj ’s by using a PRG for appropriate Fourier
shapes. Let r0 be the seed-length of the generator G0 obtained by setting k = C log(n/δ)/(log n)
as above, and let c be such that r0 ≤ c log(n/δ). Let

m′ = 2r0 ≤
(n

δ

)c

and identify [m′] with {0, 1}r0 . Given a hash function h ∈ H, let us define f̄ j : [m′] → C1

for j ∈ [t] and f̄ : [m′]n → C1 as

f̄ j(zj) = f j(G0(zj)), f̄(z) =
t
∏

i=1

f̄ j(zj)

respectively. Observe that f̄ is a Fourier shape, and

f(G1(h, z1, . . . , zt)) =

t
∏

j=1

f j(G0(zj)) = f̄(z).

By assumption, we have an explicit generator G′ : {0, 1}r′ → [m′]t which δ′-fools (m′, t)-
Fourier shapes. We claim that G : H× {0, 1}r′ → [m]n defined as

Gs(h,w) = G1(h,G′(w))

(δ′ + δ) fools small-variance (m,n)-Fourier shapes.
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Since G′ fools (m′, t)-Fourier shapes,

|E[f(G(h,w))] − E[f(G1(h, z1, . . . , zt))]| ≤ δ′.

By Equation (16), whenever Tvar(f) ≤ log(n/δ)C ,

∣

∣E[f(G1(h, z1, . . . , zt))]− E[f(Z ′)]
∣

∣ ≤ δ.

Combining these equations,

∣

∣E[f(G(h,w))] − E[f(Z ′)]
∣

∣ ≤ δ′ + δ.

The seed-length required for Gs is O(log(n/δ)) for h and r′ for w.

8 Putting things together

We put the pieces together and prove our main theorem, Theorem 1.1. We show the follow-
ing lemma which allows simultaneous reduction in both the alphabet and the dimension,
going from fooling (m,n)-Fourier shapes to fooling (n2, ⌈√n⌉)-Fourier shapes.

Lemma 8.1. Let δ > 0, n > logC(1/δ) for some sufficiently large constant C, and t =
⌈√n⌉. If there exists an explicit PRG G′′ : {0, 1}r′′ → [m′′]t with seed-length r′′ = r′′(n, δ)
which δ-fools (m′′, t)-Fourier shapes for all m′′ ≤ n2, then there exists an explicit generator
G : {0, 1}r → [m]n with seed-length r = r′′ + O(log(mn/δ) log log(mn)) which 4δ-fools
(m,n)-Fourier shapes.3

Proof. Let r′′ be the seed-length required for G′′ to have error δ. Let m′ ≤ (n/δ)c be as in
the statement of 7.1. Applying Theorem 6.1 to G′′, we get a generator G′ with seedlength
r′′+O(log(n/δ) log log(n/δ)) that δ′ = 2δ-fools (m′,

√
n) Fourier shapes. Invoking Theorem

7.1 with G′, we get an explicit generator Gs : {0, 1}rs → [m]n which 3δ fools (m,n)-Fourier
shapes f : [m]n → C1 with Tvar(f) ≤ n1/9 and m ≤ n4, with seed-length

rs = r′′ +O(log(n/δ) log log(n/δ)).

For m ≤ n4, let Gℓ : {0, 1}rℓ → [m]n be a generator for large Fourier shapes as in The-
orem 5.1, which δ-fools (m,n)-Fourier shapes f : [m]n → C1 with Tvar(f) ≥ C log5(1/δ).
Since m ≤ n4, this generator requires seed-length

rℓ = O(log(n/δ) log log(1/δ)).

3Comparing this to Theorem 7.1, the main difference is that we do not assume that Tvar(f) is small.
Further, the generator G′′ for small dimensions requires m′′ ≤ n2, and our goal is to fool Fourier shapes in
n dimensions with arbitrary alphabet size m.
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Define the generator
Gℓ⊕s(w1, w2) = Gℓ(wℓ)⊕ Gs(ws)

where the seeds wℓ ∈ {0, 1}rℓ and ws ∈ {0, 1}rs are chosen independently and ⊕ is inter-
preted as the sum mod m. Note that the total seed-length is

rℓ + rs = r′′ +O(log(n/δ) log log(n/δ)).

We now analyze Gℓ⊕s. Let Y = Gℓ(w1) and Z = Gℓ(w2) and let X ∈u [m]n. Fix an
(m,n)-Fourier shape f : [m]n → C1. We consider two cases based on Tvar(f):

Case 1: Tvar(f) ≥ C log(1/δ)5. For any z ∈ [m]n, define a new Fourier shape fz(y) =
f(y ⊕ z). Then, for any fixed z, Y δ-fools fz as Tvar(fz) = Tvar(f) ≥ C log(1/δ)5. There-
fore,

|E[f(Y ⊕ Z)]− E[f(X)]| ≤ E
Z
|E[fZ(Y )]− E[f(X)]| ≤ δ.

Case 2: Tvar(f) ≤ n1/9. Consider a fixing y of Y and define fy(Z) = f(y ⊕ Z). Then,
for any fixed y, Z 3δ-fools fy as Tvar(fy) ≤ n1/9. Therefore,

|E[f(Y ⊕ Z)]− E[f(X)]| ≤ E
Y
|E[fY (Z)]− E[f(X)]| ≤ 3δ.

In either case, we have

|E[f(Y ⊕ Z)]− E[f(X)]| ≤ 3δ.

Finally, for arbitrary m, by applying Theorem 6.1 to Gℓ⊕s, we get a generator G :
{0, 1}r → [m]n that 4δ fools (m,n)-Fourier shapes with seed-length

O(log(m/δ) log log(m)) + rℓ + rs = r′′ +O(log(nm/δ) log log(nm/δ)).

We prove Theorem 1.1 by repeated applications of this lemma.

Proof of Theorem 1.1. Assume that the final error desired is δ′. Let δ = δ′/4 log log(n).
Applying Lemma 8.1, by using O(log(mn/δ′) log log(mn/δ′)) random bits we reduce fooling
(m,n)-Fourier shapes to fooling (m′, ⌈√n⌉)-Fourier shapes for m′ ≤ n2.

We now apply the lemmaO(log log n) times to reduce to the case of fooling (logC(1/δ), logC(1/δ))-
Fourier shapes. This can be done by noting that by Lemma 3.2 it suffices to fool Fourier
shapes with log(fi) having O(log(1/δ)) bits of precision. Such Fourier shapes can be com-
puted by width-O(log(1/δ)) ROBPs, and thus using the generator from Theorem 3.3, we
can fool this case with seed length O(log(1/δ) log log(1/δ)) bits. Since each step requires
O(log(n/δ) log log(n/δ) random bits, the overall seedlength is bounded by

O(log(mn/δ) log log(mn/δ) +O(log(n/δ)(log log(n/δ))2).
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9 Applications of PRGs for Fourier shapes

In this Section, we show how Theorem 1.1 implies near optimal PRGs for halfspaces, modu-
lar tests and combinatorial shapes. We first prove two technical lemmas relating closeness
between Fourier transforms of integer valued random variables to closeness under other
metrics. We define the Fourier distance, statistical distance and Kolmogorov distance
between two integer-valued random variables respectively as

dFT (Z1, Z2) = max
α∈[0,1]

|E[exp(2πiαZ1)]− E[exp(2πiαZ2)]| , (17)

dTV (Z1, Z2) =
1

2

∑

j∈Z

|Pr(Z1 = j)− Pr(Z2 = j)|, (18)

dK(Z1, Z2) = max
k∈Z

(|Pr(Z1 ≤ k)− Pr(Z2 ≤ k)|) (19)

The first standard claim relates closeness in statistical distance and Fourier distance
for bounded integer valued random variables.

Lemma 9.1. Let Z1, Z2 be two integer-valued random variables supported on [0, N ]. Then,

dTV (Z1, Z2) ≤ O(
√
N) · dFT (Z1, Z2).

Proof. Note that the distribution Z1−Z2 is supported on at most 4N+1 points. Therefore,

dTV (Z1, Z2) = ‖Z1 − Z2‖1 ≤
√
4N + 1‖Z1 − Z2‖2.

On the other hand, the Plancherel identity implies that

‖Z1 − Z2‖2 ≤ dFT (Z1, Z2).

This completes the proof.

The second claim relates closeness in Kolmogorov distance to closeness in Fourier dis-
tance. The key is that unlike in Lemma 9.1, the dependence on N is logarithmic. This
difference is crucial to fooling halfspaces with polynomially small error (since there N can
exponential in the dimension n).

Lemma 9.2. Let Z1, Z2 be two integer-valued random variables supported on [−N,N ].
Then,

dK(Z1, Z2) ≤ O(log(N) · dFT (Z1, Z2)).

Proof. By definition we have that

dK(Z1, Z2) = max
−N≤k≤N

(|Pr(Z1 ≤ k)− Pr(Z2 ≤ k)|).
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We note that

Pr(Zi ≤ k) =

k
∑

j=−N

Pr(Zi = j)

=
k
∑

j=−N

∫ 1

0
exp(−2πijα)E[exp(2πiαZi)]dα

=

∫ 1

0
s(k,N, α)E[exp(2πiαZi)]dα

where

s(k,N, α) =

k
∑

j=−N

exp(−2πijα).

It is clear that |s(k,N, α)| ≤ 2N . Further,

|s(k,N, α)| =
∣

∣

∣

∣

exp(−2πikα)(exp(2πi(N + k + 1)α) − 1)

exp(2πiα) − 1

∣

∣

∣

∣

≤ 1

| exp(2πiα) − 1| ≤ O(
1

[α]
)

where [α] is the distance between α and the nearest integer. Therefore, we have

|Pr(Z1 ≤ k)− Pr(Z2 ≤ k)| ≤
∫ 1

0
|s(k,N, α)| |E[exp(2πiαZ1)]− E[exp(2πiαZ1)]| dα

≤
∫ 1

0
O

(

min

(

N,
1

[α]

))

dFT (Z1, Z2)dα

= O(dFT (Z1, Z2))

(

∫ 1/N

0
Ndα+

∫ 1/2

1/N

dα

α
+

∫ 1−1/N

1/2

dα

1− α
+

∫ 1

1−1/N
Ndα

)

= O(dFT (Z1, Z2) log(N)).

9.1 Corollaries of the main result

We combine Lemma 9.2 with Theorem 1.1 to derive Corollary 1.2, which gives PRGs for
halfspaces with polynomially small error from PRGs for (2, n)-Fourier shapes.

Proof of Corollary 1.2. Let G : {0, 1}r → {±1}n be a PRG which δ-fools (2, n)-Fourier
shapes (here we identify [2] with {±1} arbitrarily). We claim that G also fools all halfspaces
with error at most ε = O(n log(n)δ).

Let h : {±1}n → {±1} be a halfspace given by h(x) = 1
+(〈w, x〉 − θ). It is well known

that we can assume the weights and the threshold θ to be integers bounded in the range
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[−N,N ] for N = 2O(n logn) (cf. [LC67]). Let X ∈u {±1}n and Y = G(y) for y ∈u {0, 1}r
and Z1 = 〈w,X〉, Z2 = 〈w, Y 〉. Note that Z1, Z2 are bounded in the range [−n ·N,n ·N ].

We first claim that
dFT (Z1, Z2) ≤ δ.

For α ∈ [0, 1], we define fα : {±1}n → C1 as

fα(x) = exp(2πiα〈w, x〉) =
n
∏

j=1

exp(2πiαwjxj) (20)

then fα is a (2, n)-Fourier shape. Hence,

|E[fα(X)]− E[fα(Y )]| ≤ δ.

That dFT (Z1, Z2) ≤ δ now follows from the definition of Fourier distance, and the fact that
E[fα(X)] and E[fα(Y )] are the Fourier transforms of X and Y at α respectively.

Therefore, by Lemma 9.2 applied to Z1, Z2, dK(Z1, Z2) ≤ O(n log n)δ. Finally, note
that

|E[h(X)] − E[h(Y )]| ≤ dK(〈w,X〉, 〈w, Y 〉) = dK(Z1, Z2) ≤ O(n log n)δ.

The corollary now follows by picking a generator as in Theorem 1.1 for m = 2 with
error δ = ε/(Cn log n) for sufficiently big C.

To prove Corollary 1.3, we need the following lemma about generalized halfspaces.

Lemma 9.3. In Definition 3, we may assume that each gi(j) is an integer of absolute
value (mn)O(mn).

Proof. Let g : [m]n → {0, 1} be a generalized halfspace where the gis are arbitrary. Embed
[m]n into {0, 1}mn by sending each xi ∈ [m] to (yi,1, . . . , yi,m) where yi,j = 1 if xi = j and
yi,j = 0 otherwise. Note that

n
∑

i=1

gi(xi) =

n
∑

i=1

m
∑

j=1

gi(j)yi,j

However, the halfspace
n
∑

i=1

m
∑

j=1

gi(j)yi,j ≥ θ

over the domain {0, 1}mn has a representation where the weights g′i(j) and θ′ are integers
of size at most (mn)O(mn). Hence we can replace each gi(j) in the defintion of g with g′i(j)
without changing its value at any point in [m]n.

We now prove Corollary 1.3 giving PRGs for generalized halfspaces over [m]n.
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Proof of Corollary 1.3. Letting X ∈u [m]n and letting X ′ be obtained from a PRG for
(m,n)-Fourier shapes with error at most ε, we let Z1 =

∑

i gi(Xi) and Z2 =
∑

i gi(X
′
i).

By Lemma 9.2 that dK(Z1, Z2) ≤ O(εnm log(nm)). Picking ε sufficiently small gives our
generator for generalized halfspaces.

Next we use Corollary 1.3 to get PRGs fooling halfspaces under general product dis-
tributions. From the definition of generalized halfspaces, it follows that if D is a discrete
product distribution on R

n where each co-ordinate can be sampled using log(m) bits, then
fooling halfspaces under D reduces to fooling generalized halfspaces over [m]n for some
suitable choice of gi. In fact [GOWZ10] showed that fooling such distributions is in fact
sufficient to sufficient to fool continuous product distributions with bounded moments. The
following is a restatement of [GOWZ10, Lemma 6.1].

Lemma 9.4. Let X be a product distribution on R
n such that for all i ∈ [n],

E[Xi] = 0,E[X2
i ] = 1,E[X4

i ] ≤ C.

Then there exists a discrete product distribution Y such that for every halfspace h,

|E[h(X)] − E[h(Y )]| ≤ ε.

Further, each Yi can be sampled using log(n, 1/ε,C) random bits.

Note that the first and second moment conditions on X can be obtained for any prod-
uct distribution by an affine transformation. Hence we get Corollary 1.4 from combining
Lemma 9.4 with Corollary 1.3. In particular, there exist generators that fool all halfspaces
with error ε under the Gaussian distribution with seed-length r = O(log(n/ε)(log log(n/ε))2).
This nearly matches the recent result of [KM15] upto a log log factor. Further, it is known
(see e.g [GOWZ10, Lemma 11.1]) that PRGs for halfspaces under the Gaussian distribution
imply PRGs for halfspaces over the sphere.

We next prove Corollary 1.5 which derandomizes the Chernoff bound.

Proof of Corollary 1.5. First note that we can assume without loss of generality that each
Xi can be sampled with rx = O(log(mn/ε)) bits (by ignoring elements which happen
with smaller probability). In particular, let each Xi have the same distribution as hi(Z)
for Z ∈u [m′] where m′ = 2rx (here we identify [m′] with {0, 1}rx) and some function
hi : [m

′] → [m]. Let G : {0, 1}r → [m′]n be a PRG which (ε/2)-fools (m′, n)-generalized
halfspaces. Now, let Y = (h1(Z1), h2(Z2), . . . , hn(Zn)), where (Z1, . . . , Zn) = G(w) for
w ∈u {0, 1}r .

Note that Y can be sampled with O(log(mn/ε) · (log log2(mn/ε))) random bits. We
claim that Y satisfies the required guarantees. To see this, define the generalized halfspaces

g+(z) = 1
+

(

n
∑

i=1

gi(hi(zi))− θ

)

, g−(z) = 1
+

(

n
∑

i=1

−gi(hi(zi)) + θ

)

,
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where

θ = t+
∑

i

E[gi(Xi)] = t+

n
∑

i=1

E[gi(Yi)].

From Corollary 1.3 it follows that

|E[g+(X)]− E[g+(Y )]| ≤ ε/2, |E[g−(X)] − E[g−(Y )]| ≤ ε/2.

From the Chernoff-Hoeffding bound [Hoe63], we have

E[g+(X) + g−(X)] = Pr

[∣

∣

∣

∣

∣

n
∑

i=1

gi(Xi)−
n
∑

i=1

E[gi(Xi)]

∣

∣

∣

∣

∣

≥ t

]

≤ 2e−t2/2n.

Hence by the triangle inequality,

Pr

[∣

∣

∣

∣

∣

n
∑

i=1

gi(Yi)−
n
∑

i=1

E[gi(Yi)]

∣

∣

∣

∣

∣

≥ t

]

= E[g+(Y ) + g−(Y )] ≤ 2e−t2/2n + ε.

We next prove Corollary 1.6 about fooling modular tests.

Proof of Corollary 1.6. Let G : {0, 1}r → {0, 1}n be a PRG which fools (2, n)-Fourier shapes
with error ε/

√
Mn. We claim that G fools modular tests with error at most ε.

Let g(x) = 1(
∑

i aixi mod M ∈ S) be a modular test, let X ∈u {0, 1}n and Y = G(y)
for y ∈u {0, 1}r . In order to fools modular tests, it suffices that

dTV (
∑

i

aiXi,
∑

i

aiYi) ≤ ε.

On the other hand, since both these random variables are bounded in the range {0,Mn},
by Lemma 9.1

dTV

(

∑

i

aiXi,
∑

i

aiYi

)

≤
√
Mn · dFT

(

∑

i

aiXi,
∑

i

aiYi

)

≤ ε

where the last inequality uses the fact that the Fourier transforms of both random variables
are (2, n)-Fourier shapes by Equation (20).

Next we prove Corollary 1.7 giving PRGs from combinatorial shapes.
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Proof of Corollary 1.7. Recall that a combinatorial shape f : [m]n → {0, 1} is a function

f(x) = h

(

n
∑

i=1

gi(xi)

)

where gi : [m]→ {0, 1} and h : {0, . . . , n} → {0, 1}. Since∑i gi(xi) ∈ {0, . . . , n}, it suffices
to fool the generalized halfspaces

f(x) =
∑

i

gi(xi)− θ

for θ ∈ {0, . . . , n} each with error ε/n. Hence the claim follows from Corollary 1.3 about
fooling generalized halfspaces.
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A Proofs from Section 3

Proof of Lemma 3.5. Let Ii,k be the indicator function of the event that h(i) = k. Note
that h(v) =

∑

i,j,k Ii,kIj,kv
2
i v

2
j . Therefore,

h(v)p =
∑

i1,...,ip,j1,...,jp

∑

k1,...,kp

p
∏

t=1

Iit,ktIjt,kt

p
∏

t=1

v2itv
2
jt.

Let R(it, jt, kt) be 0 if for some t, t′ kt 6= k′t but one of it or jt equals it′ or jt′ and otherwise
be equal to m−T where T is the number of distinct values taken by it or jt. Notice that
by the δ-biasedness of h that

E

[

p
∏

t=1

Iit,ktIjt,kt

]

≤ R(it, jt, kt) + δ.

Combining with the above we find that

E[h(v)p] ≤
∑

i1,...,ip,j1,...,jp

∑

k1,...,kp

(R(it, jt, kt) + δ)

p
∏

t=1

v2itv
2
jt

≤
∑

i1,...,ip,j1,...,jp

∑

k1,...,kp

R(it, jt, kt)

p
∏

t=1

v2itv
2
jt + δmp

∑

i1,...,ip,j1,...,jp

p
∏

t=1

v2itv
2
jt

≤
∑

i1,...,ip,j1,...,jp

∑

k1,...,kp

R(it, jt, kt)

p
∏

t=1

v2itv
2
jt + δmp‖v‖4p2 .

Next we consider
∑

k1,...,kp

R(it, jt, kt)

for fixed values of i1, . . . , ip, j1, . . . , jp. We claim that it is at most m−S/2 where S is
again the number of distinct elements of the form it or jt that appear in this way an odd
number of times. Letting T be the number of distinct elements of the form it or jt, the
expression in question is m−T times the number of choices of kt so that each value of it
or jt appears with only one value of kt. In other words this is m−T times the number of
functions f : {it, jt} → [m] so that f(it) = f(jt) for all t. This last relation splits {it, jt}
into equivalence classes given by the transitive closure of the operation that x ∼ y if x = it
and y = jt for some t. We note that any x that appears an odd number of times as an
it or jt must be in an equivalence class of size at least 2 because it must appear at least
once with some other element. Therefore, the number of equivalence classes, E is at least
T −S/2. Thus, the sum in question is at most m−TmE ≤ m−S/2. Therefore, we have that

E[h(v)p] ≤ (2p)!
∑

Multisets M⊂[n],|M |=2p

m−{Odd(M)}/2
∏

i∈M

v2i + δmp‖v‖4p2 .
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Where Odd(M) is the number of elements occurring in M an odd number of times. This
equals

E[h(v)p] ≤ (2p)!

p
∑

k=0

∑

Multisets M⊂[n],|M |=2p,Odd(M)=2k

m−k
∏

i∈M

v2i + δmp‖v‖4p2

≤ (2p)!

p
∑

k=0

m−k
∑

i1,...,i2k

∑

j1,...,jp−k

∏

v2it

∏

v4jt + δmp‖v‖4p2

= (2p)!

p
∑

k=0

(‖v‖42
m

)k

‖v‖4(p−k)
4 + δmp‖v‖4p2

≤ O(p)2p
(‖v‖42

m

)p

+O(p)2p‖v‖4p4 + δmp‖v‖4p2 .

Note that the second line above comes from taking M to be the multiset

{i1, i2, . . . , i2k, j1, j1, j2, j2, . . . , jp−k, jp−k}.

This completes our proof.

Proof of Lemma 3.6. Let Xi denote the indicator random variable which is 1 if h(i) = j
and 0 otherwise. Let Z =

∑

i viXi. Now, if h were a truly random hash function, then, by
Hoeffding’s inequality,

Pr [|Z − ‖v‖1 /m| ≥ t] ≤ 2 exp

(

−t2/2
∑

i

v2i

)

.

Therefore, for a truly random hash function and even integer p ≥ 2, ‖Z‖p = O(‖v‖2)
√
p.

Therefore, for a δ-biased hash family, we get ‖Z‖pp ≤ O(p)p/2 ‖v‖p2 + ‖v‖
p
1 δ. Hence, by

Markov’s inequality, for any t > 0,

Pr [|Z − ‖v‖1 /m| ≥ t] ≤ O(p)p/2 ‖v‖p2 + ‖v‖
p
1 δ

tp
.

B Proofs from Section 4

Proof of Lemma 4.2. First we note that since for any complex random variable, Z, that

E

[

|Z|k
]

= 2O(k)
E[|ℜ(Z)|k + |ℑ(Z)|k]
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and Var(Z) = Var(ℜ(Z)) + Var(ℑ(Z)), it suffices to prove our lemma when Z is a real-
valued random variable.

We can now compute the expectation of (
∑

i Zi)
k by expanding out the polynomial in

question and computing the expectation of each term individually. In particular, we have
that

E





∣

∣

∣

∣

∣

∑

i

Zi

∣

∣

∣

∣

∣

k


 =
∑

i1,...,ik

E





k
∏

j=1

Zij



 .

Next we group the terms above by the set S of indices that occur as ij for some j. Thus,
we get

k
∑

m=1

∑

|S|=m

∑

i1,...,ik∈S
{ij}=S

E





k
∏

j=1

Zij



 .

We note that the expectation in question is 0 unless for each j ∈ S, Zj occurs at least
twice in the product. Therefore, the expectation is 0 unless m ≤ k/2 and overall is at most
Bk−2m

∏

j∈S Var(Zj). Thus, the expectation in question is at most

k/2
∑

m=1

∑

|S|=m

mkBk−2m
∏

j∈S

Var(Zj).

Next, note that by expanding out (
∑

iVar(Zi))
m we find that σ2m ≥ m!

∑

|S|=m

∏

j∈S Var(Zj).
Therefore, the expectation in question is at most

k/2
∑

m=1

2O(k)mk−mBk−2mσ2m ≤ 2O(k)

k/2
∑

m=0

kk−mBk−2mσ2m

≤ 2O(k)
(

kk/2σk + kkBk
)

≤ 2O(k)(σ
√
k +Bk)k,

as desired.

C Proofs from Section 5

Proof of Lemma 5.4. First note that t ∈ {0, . . . , T} satisfying the hypothesis exists since
‖v‖22 ∈ [1, n]. For ℓ ∈ [n], let I(ℓ) be the indicator random variable which is 1 if ℓ ∈ Bt.
Since |Bt| = 2t, Pr[I(ℓ) = 1] = 2t/n. If we set V = ‖vt‖2,

V =
∑

ℓ

v2ℓ I(ℓ)

E[V ] = ‖v‖2 2
t

n
∈ [1/2, 1].
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By the pairwise independence of σ,

E[V 2] =

n
∑

ℓ=1

v4ℓ I(ℓ) +

n
∑

ℓ 6=ℓ′=1

v2ℓ v
2
ℓ′I(ℓ)I(ℓ

′)

≤
n
∑

ℓ=1

v4ℓ
2t

n
+

n
∑

ℓ 6=ℓ′=1

v2ℓv
2
ℓ′
22t

n

≤ 2t

n
‖v‖44 + E[V ]2.

Therefore,

Var(V ) = E[V 2]− E[V ]2 ≤ 2t

n
‖v‖4 ≤ 2t ‖v‖22

n
‖v‖2∞ ≤

1

16

Thus, by Chebyshev’s inequality,

Pr[|V − E[V ]| > 1/3] ≤ 9/16

In particular, with probability at least 7/16, V =
∥

∥vt
∥

∥

2

2
∈ [1/6, 4/3].

Proof of Lemma 5.6. Let ℓ = 2C1 log(1/δ) and T = Θ(log5(1/δ)) to be chosen later. Let
H = {h : [n]→ [T ]} to be a δ′-biased family for δ′ = exp(−C(log(1/δ))) for C a sufficiently
large constant.

Let p = c log(1/δ)/ log log(1/δ)) for a constant c to be chosen later. Let v ∈ [0, 1]n

with ‖v‖22 ≥ C2 log
5(1/δ) and note that if

∥

∥vh−1(j)

∥

∥

2

2
≥ ‖v‖22 /ℓ for some j ∈ [T ], then

h(v) ≥ ‖v‖42 /ℓ2 (recall the definition of h(v) from Equation (2)). Therefore, by Lemma 3.5
and Markov’s inequality, the probability that this happens is at most

E[h(v)p]ℓ2p

‖v‖4p2
≤
(

ℓ2p

‖v‖4p2

)(

O(p)2p

(

‖v‖42
T

)p

+O(p)2p‖v‖4p4 + T p ‖v‖4p2 δ′

)

≤ O

(

p2ℓ2

T

)p

+O

(

p2ℓ2

‖v‖22

)p

+ T pℓ2pδ′

≤ O(log(1/δ))−p +O(log(1/δ))7pδ′

< δ,

for a suitable choice of the constant c and δ′ = exp(−C log(1/δ)).

Now suppose that
∥

∥vh−1(j)

∥

∥

2

2
< ‖v‖22 /ℓ for all j ∈ [T ]. Let I = {j :

∥

∥vh−1(j)

∥

∥

2 ≥
‖v‖22 /2T}. Then,

‖v‖22 ≤ |I| · (‖v‖
2
2 /ℓ) + T · ‖v‖22 /(2T ).

Therefore, we must have |I| ≥ ℓ/2. This proves the claim.

45



D Proofs from Section 7

Proof. Let α = n−1/3, β = n−1/36.
Note that |L| ≤ Tvar(f)/α ≤ n2/9. Since h ∈u H is k-wise independent, for any index

j ∈ [t],

Pr[|L ∩ h−1(j)| > k/2] ≤
( |L|
k/2

)(

1

t

)k/2

≤
(

Tvar(f)

α

)k/2(1

t

)k/2

≤ O
(

n−5/18
)k/2

.

(21)

Define v ∈ R
n by vj = σ2(fj) if j ∈ S and 0 otherwise. Now,

‖v‖22 =
∑

j∈S

σ4(fj) ≤ max
j∈S

σ2(fj)
∑

j∈S

σ2(fj) ≤ Tvar(f)α.

By Lemma 3.6 applied to v, we get that for any j ∈ [t],

Pr
h∈H





∑

ℓ∈S:h(ℓ)=j

σ2(fℓ) ≥
Tvar(f)

t
+

(Tvar(f))1/2α1/4

2
≤ β



 ≤ O(k)k/2αk/4 = O(k)k/2n−Ω(k).

(22)

This completes the proof.
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